Sample records for density dependent approach

  1. A time-dependent momentum-space density functional theoretical approach for electron transport dynamics in molecular devices

    E-print Network

    Chu, Shih-I; Zhou, Zhongyuan

    2009-10-27

    We propose a time-dependent density functional theoretical (TDDFT) approach in momentum (\\mathcal{P} ) space for the study of electron transport in molecular devices under arbitrary biases. The basic equation of motion, which is a time...

  2. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    E-print Network

    Thygesen, Kristian

    Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory molecule from inside the surface and establish a picture, where the resonance is being probed by the hot unstable and degrades over time. In hot-electron-assisted femtochemistry at surfaces1­8 the hot electrons

  3. Correlated density-dependent chiral forces for infinite-matter calculations within the Green's function approach

    NASA Astrophysics Data System (ADS)

    Carbone, Arianna; Rios, Arnau; Polls, Artur

    2014-11-01

    The properties of symmetric nuclear and pure neutron matter are investigated within an extended self-consistent Green's function method that includes the effects of three-body forces. We use the ladder approximation for the study of infinite nuclear matter and incorporate the three-body interaction by means of a density-dependent two-body force. This force is obtained via a correlated average over the third particle, with an in-medium propagator consistent with the many-body calculation we perform. We analyze different prescriptions in the construction of the average and conclude that correlations provide small modifications at the level of the density-dependent force. Microscopic as well as bulk properties are studied, focusing on the changes introduced by the density-dependent two-body force. The total energy of the system is obtained by means of a modified Galitskii-Migdal-Koltun sum rule. Our results validate previously used uncorrelated averages and extend the availability of chirally motivated forces to a larger density regime.

  4. Correlated density-dependent chiral forces for infinite matter calculations within the Green's function approach

    E-print Network

    Arianna Carbone; Arnau Rios; Artur Polls

    2014-11-19

    The properties of symmetric nuclear and pure neutron matter are investigated within an extended self-consistent Green's function method that includes the effects of three-body forces. We use the ladder approximation for the study of infinite nuclear matter and incorporate the three-body interaction by means of a density-dependent two-body force. This force is obtained via a correlated average over the third particle, with an in-medium propagator consistent with the many-body calculation we perform. We analyze different prescriptions in the construction of the average and conclude that correlations provide small modifications at the level of the density-dependent force. Microscopic as well as bulk properties are studied, focusing on the changes introduced by the density dependent two-body force. The total energy of the system is obtained by means of a modified Galitskii-Migdal-Koltun sum rule. Our results validate previously used uncorrelated averages and extend the availability of chirally motivated forces to a larger density regime.

  5. Inner-shell excitation of open-shell atoms: a spin-dependent localized Hartree Fock density-functional approach

    Microsoft Academic Search

    Zhongyuan Zhou; Shih-I. Chu

    2007-01-01

    We present a spin-dependent localized Hartree-Fock (SLHF) density-functional approach for the treatment of inner-shell excited states of open-shell atomic systems. In this approach, the electron spin-orbitals and single-Slater-determinant energies of an electronic configuration are computed by solving the Kohn-Sham (KS) equation with SLHF exchange potential. The multiplet energy of an inner-shell excited state is evaluated from the single-Slater-determinant energies in

  6. Mixed quantum-classical dynamics with time-dependent external fields: A time-dependent density-functional-theory approach

    SciTech Connect

    Tavernelli, Ivano; Curchod, Basile F. E.; Rothlisberger, Ursula [Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Federale de Lausanne (Switzerland)

    2010-05-15

    A mixed quantum-classical method aimed at the study of nonadiabatic dynamics in the presence of external electromagnetic fields is developed within the framework of time-dependent density functional theory. To this end, we use a trajectory-based description of the quantum nature of the nuclear degrees of freedom according to Tully's fewest switches trajectories surface hopping, where both the nonadiabatic coupling elements between the different potential energy surfaces, and the coupling with the external field are given as functionals of the ground-state electron density or, equivalently, of the corresponding Kohn-Sham orbitals. The method is applied to the study of the photodissociation dynamics of some simple molecules in gas phase.

  7. Analytic derivative couplings in time-dependent density functional theory: Quadratic response theory versus pseudo-wavefunction approach

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Herbert, John M.

    2015-02-01

    We revisit the formalism for analytic derivative couplings between excited states in time-dependent density functional theory (TDDFT). We derive and implement these couplings using quadratic response theory, then numerically compare this response-theory formulation to couplings implemented previously based on a pseudo-wavefunction formalism and direct differentiation of the Kohn-Sham determinant. Numerical results, including comparison to full configuration interaction calculations, suggest that the two approaches perform equally well for many molecular systems, provided that the underlying DFT method affords accurate potential energy surfaces. The response contributions are found to be important for certain systems with high symmetry, but can be calculated with only a moderate increase in computational cost beyond what is required for the pseudo-wavefunction approach. In the case of spin-flip TDDFT, we provide a formal proof that the derivative couplings obtained using response theory are identical to those obtained from the pseudo-wavefunction formulation, which validates our previous implementation based on the latter formalism.

  8. A minimalist approach to the effects of density-dependent competition on insect life-history traits

    E-print Network

    be reproduced in an experimental design requiring a minimal number of indivi- duals. Larvae of the mosquito of one larva per vial experienced no density-dependent interactions with other larvae. 3. Increased nutritional reserves). 4. Female mosquitoes were relatively larger than males (as measured by wing length

  9. Time-dependent density functional approach for the calculation of inelastic x-ray scattering spectra of molecules

    SciTech Connect

    Sakko, Arto; Hakala, Mikko; Haemaelaeinen, Keijo [Department of Physics, University of Helsinki, P.O. Box 64, Helsinki FI-00014 (Finland); Rubio, Angel [Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento Fisica de Materiales, Universidad del Pais Vasco, Centro de Fisica de Materiales CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, San Sebastian E-20018 (Spain)

    2010-11-07

    We apply time-dependent density functional theory to study the valence electron excitations of molecules and generalize the typically used time-propagation scheme and Casida's method to calculate the full wavevector dependent response function. This allows the computational study of dipole-forbidden valence electron transitions and the dispersion of spectral weight as a function of the wavevector. The method provides a novel analysis tool for spectroscopic methods such as inelastic x-ray scattering and electron energy loss spectroscopy. We present results for benzene and CF{sub 3}Cl and make a comparison with experimental results.

  10. Time Dependent Density Functional Theory An introduction

    E-print Network

    Botti, Silvana

    Time Dependent Density Functional Theory An introduction Francesco Sottile LSI, Ecole Polytechnique (ETSF) Time Dependent Density Functional Theory Palaiseau, 7 February 2012 1 / 32 #12;Outline 1 Frontiers 4 Perspectives and Resources Francesco Sottile (ETSF) Time Dependent Density Functional Theory

  11. Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach

    Microsoft Academic Search

    Zoi Dokou; George P. Karatzas

    2012-01-01

    Saltwater intrusion is a naturally occurring phenomenon that is exacerbated significantly by excessive groundwater exploitation in coastal aquifers. In order to determine the extent of saltwater intrusion in a karstified coastal aquifer in Crete, Greece, a three-dimensional, density-dependent groundwater flow and transport model was developed and compared to the more traditional sharp-interface approach. The karstified medium was modelled using a

  12. First principles calculation of field emission from nanostructures using time-dependent density functional theory: A simplified approach

    NASA Astrophysics Data System (ADS)

    Tawfik, Sherif A.; El-Sheikh, S. M.; Salem, N. M.

    2011-05-01

    We introduce a new simplified method for computing the electron field emission current in short carbon nanotubes and graphene sheets using ab-initio computation in slab-periodic simulation cells. The evolution of the wave functions using Time-Dependent Density Functional Theory is computed by utilizing the Crank-Nicholson propagator and using the Octopus code (Castro et al., 2006 [1]), where we skip the wave function relaxation step elaborated by Han et al. (2002) [2], and apply a norm-conserving wave propagation method instead of the norm-nonconserving seventh-order Taylor Expansion method used by Araidai et al. (2004) [3]. Our method is mainly geared towards reducing the time it takes to compute the wave function propagation and enhancing the calculation precision. We found that in pristine carbon nanotubes, the emitted charge tends to emerge mostly from electrons that are concentrated at the nanotube tip region. The charge beam concentrates into specific channel structures, showing the utility of carbon nanotubes in precision emission applications.

  13. Three-dimensional mixed finite element-finite volume approach for the solution of density-dependent flow in porous media

    NASA Astrophysics Data System (ADS)

    Mazzia, Annamaria; Putti, Mario

    2006-01-01

    The density-dependent flow and transport problem in groundwater on three-dimensional triangulations is solved numerically by means of a mixed hybrid finite element scheme for the flow equation combined with a mixed hybrid finite element-finite volume (MHFE-FV) time-splitting-based technique for the transport equation. This procedure is analyzed and shown to be an effective tool in particular when the process is advection dominated or when density variations induce the formation of instabilities in the flow field. From a computational point of view, the most effective strategy turns out to be a combination of the MHFE and a spatially variable time-splitting technique in which the FV scheme is given by a second-order linear reconstruction based on the least-squares minimization and the Barth-Jespersen limiter. The recent saltpool problem introduced as a benchmark test for density-dependent solvers is used to verify the accuracy and reliability of this approach.

  14. Time-dependent localized Hartree-Fock density-functional linear response approach for photoionization of atomic excited states

    E-print Network

    Zhou, Zhongyuan; Chu, Shih-I

    2009-05-13

    electron orbitals and kernel functions, and thus can be used to study the photoionization from atomic excited states. We have applied the approach to the calculation of photoionization cross sections of Ne ground state. The results are in agreement...

  15. Time Dependent Density Functional Theory An Introduction

    E-print Network

    Botti, Silvana

    Time Dependent Density Functional Theory An Introduction Francesco Sottile Laboratoire des Solides) Belfast, 29 Jun 2007 Time Dependent Density Functional Theory Francesco Sottile #12;Intro Formalism Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources Time

  16. Pseudospectral time-dependent density functional theory.

    PubMed

    Ko, Chaehyuk; Malick, David K; Braden, Dale A; Friesner, Richard A; Martínez, Todd J

    2008-03-14

    Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy. PMID:18345873

  17. PERSPECTIVES Estimating delayed density-dependent mortality

    E-print Network

    Myers, Ransom A.

    for delayed density dependence using 34 time series of sockeye data. We found no consistent evidence approche méta-analytique pour vérifier cette hypothèse à partir de 34 séries chronologiques de données sur

  18. The dynamics of density dependent population models

    Microsoft Academic Search

    J. Guckenheimer; G. Oster; A. Ipaktchi

    1977-01-01

    The dynamics of density-dependent population models can be extraordinarily complex as numerous authors have displayed in numerical simulations. Here we commence a theoretical analysis of the mathematical mechanisms underlying this complexity from the viewpoint of modern dynamical systems theory. After discussing the chaotic behavior of one-dimensional difference equations we proceed to illustrate the general theory on a density-dependent Leslie model

  19. Wildlife disease elimination and density dependence.

    PubMed

    Potapov, Alex; Merrill, Evelyn; Lewis, Mark A

    2012-08-22

    Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent (DD) transmission, is ineffective for controlling diseases that are subject to frequency-dependent (FD) transmission. We investigate control for horizontally transmitted diseases with FD transmission where the control is via culling or harvest that is non-selective with respect to infection and the population can compensate through DD recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are FD. Eradication can be achieved under FD transmission when DD birth or recruitment induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination, and there is high enough transmission coefficient, application of both controls may be less efficient than vaccination alone. We illustrate the effects of these control approaches on disease prevalence for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment. PMID:22593103

  20. Local density dependent potential for compressible mesoparticles.

    PubMed

    Faure, Gérôme; Maillet, Jean-Bernard; Stoltz, Gabriel

    2014-03-21

    This work proposes a coarse grained description of molecular systems based on mesoparticles representing several molecules, where interactions between mesoparticles are modelled by an interparticle potential of molecular type. Since strong non-equilibrium situations over a wide range of pressure and density are targeted, the internal compressibility of the mesoparticles has to be considered. This is done by introducing a dependence of the potential on the local environment of the mesoparticles. To define local densities, we resort to a three-dimensional Voronoi tessellation instead of standard local, spherical averages. As an example, a local density dependent potential is fitted to reproduce the Hugoniot curve of a model of nitromethane over a large range of pressures and densities. PMID:24655170

  1. Size-dependent density of zirconia nanoparticles.

    PubMed

    Opalinska, Agnieszka; Malka, Iwona; Dzwolak, Wojciech; Chudoba, Tadeusz; Presz, Adam; Lojkowski, Witold

    2015-01-01

    The correlation between density and specific surface area of ZrO2 nanoparticles (NPs) was studied. The NPs were produced using a hydrothermal process involving microwave heating. The material was annealed at 1100 °C which resulted in an increase in the average grain size of the ZrO2 NPs from 11 to 78 nm and a decrease in the specific surface area from 97 to 15 m(2)/g. At the same time, the density increased from 5.22 g/m(3) to 5.87 g/m(3). This effect was interpreted to be the result of the presence of a hydroxide monolayer on the NP surface. A smaller ZrO2 grain size was correlated with a larger contribution of the low density surface layer to the average density. To prove the existence of such a layer, the material was synthesized using 50% heavy water. Fourier transform infrared spectroscopy (FTIR) permitted the identification of the -OD groups created during synthesis. It was found that the -OD groups persisted on the ZrO2 surface even after annealing at 1100 °C. This hydroxide layer is responsible for the decrease in the average density of the NPs as their size decreases. This study of the correlation between particle size and density may be used to assess the quality of the NPs. In most cases, the technological aim is to avoid an amorphous layer and to obtain fully crystalline nanoparticles with the highest density possible. However, due to the effect of the surface layers, there is a maximum density which can be achieved for a given average NP diameter. The effect of the surface layer on the NP density becomes particularly evident for NPs smaller than 50 nm, and thus, the density of nanoparticles is size dependent. PMID:25671149

  2. Size-dependent density of zirconia nanoparticles

    PubMed Central

    Opalinska, Agnieszka; Dzwolak, Wojciech; Chudoba, Tadeusz; Presz, Adam; Lojkowski, Witold

    2015-01-01

    Summary The correlation between density and specific surface area of ZrO2 nanoparticles (NPs) was studied. The NPs were produced using a hydrothermal process involving microwave heating. The material was annealed at 1100 °C which resulted in an increase in the average grain size of the ZrO2 NPs from 11 to 78 nm and a decrease in the specific surface area from 97 to 15 m2/g. At the same time, the density increased from 5.22 g/m3 to 5.87 g/m3. This effect was interpreted to be the result of the presence of a hydroxide monolayer on the NP surface. A smaller ZrO2 grain size was correlated with a larger contribution of the low density surface layer to the average density. To prove the existence of such a layer, the material was synthesized using 50% heavy water. Fourier transform infrared spectroscopy (FTIR) permitted the identification of the –OD groups created during synthesis. It was found that the –OD groups persisted on the ZrO2 surface even after annealing at 1100 °C. This hydroxide layer is responsible for the decrease in the average density of the NPs as their size decreases. This study of the correlation between particle size and density may be used to assess the quality of the NPs. In most cases, the technological aim is to avoid an amorphous layer and to obtain fully crystalline nanoparticles with the highest density possible. However, due to the effect of the surface layers, there is a maximum density which can be achieved for a given average NP diameter. The effect of the surface layer on the NP density becomes particularly evident for NPs smaller than 50 nm, and thus, the density of nanoparticles is size dependent. PMID:25671149

  3. Gravity and density dependences of sand avalanches

    NASA Astrophysics Data System (ADS)

    Evesque, P.; Fargeix, D.; Habib, P.; Luong, M. P.; Porion, P.

    1992-07-01

    We demonstrate using centrifuge experiment (10 1000 m/s^2) on sand avalanches that: i) grain cohesion is negligible, ii) the avalanche size and the maximum angle of repose depend on the initial pile-density, iii) an internal friction angle may be defined and corresponds to that measured with triaxial cell as assumed in soil mechanics. These data are coherent with a dilatancy effect which depends on density. Nous démontrons en utilisant les résultats d'expériences faites en centrifugeuse (LCPC Nantes) (10 1000 m/s^2) sur les avalanches de sable que la cohésion entre grain est négligeable, que la taile des avalanches et l'angle maximal de repos dépendent de la densité initial du tas, et qu'un angle de frottement interne peut être défini, dont la correspond à celle mesurée par un essai triaxial de mécanique des sols. Ces données sont cohérentes avec un effet de dilatance qui dépend de la densité.

  4. Gravity and density dependences of sand avalanches

    Microsoft Academic Search

    P. Evesque; D. Fargeix; P. Habib; M. P. Luong; P. Porion

    1992-01-01

    We demonstrate using centrifuge experiment (10 1000 m\\/s^2) on sand avalanches that: i) grain cohesion is negligible, ii) the avalanche size and the maximum angle of repose depend on the initial pile-density, iii) an internal friction angle may be defined and corresponds to that measured with triaxial cell as assumed in soil mechanics. These data are coherent with a dilatancy

  5. Tail Density Archimedean and t Copulas Tail Densities of Vines Concluding Remarks A tail density approach in extremal

    E-print Network

    Li, Haijun

    property µ(tB) = t- µ(B), B, bounded away from 0, where > 0 is known as the tail index. Haijun Li A tail approach in extremal dependence analysis for vine copulas Haijun Li (Joint work with Peiling Wu) Department of Mathematics Washington State University Munich, May 2011 Haijun Li A tail density approach in extremal

  6. Time Dependent Density Functional Theory Applications, limitations and ... new frontiers

    E-print Network

    Botti, Silvana

    Time Dependent Density Functional Theory Applications, limitations and ... new frontiers Francesco Spectroscopy Facility (ETSF) Vienna, 19 January 2007 1/55 Time Dependent Density Functional Theory Francesco Sottile #12;Time-Dependent Density Functional Theory Applications and results: The ETSF Outline 1 Time

  7. Density-dependent injury in larval salamanders

    Microsoft Academic Search

    Raymond D. Semlitsch; Steven B. Reichling

    1989-01-01

    The effects of initial larval density, food level, and pond drying regime on intraspecific aggression of larval Ambystoma talpoideum were studied in an artificial pond experiment. Aggression was measured by the frequency of injury of feet, limbs, tail, and the extent of tail loss. Initial larval density had a significant effect on the frequency of foot, limb, and tail loss

  8. Statistical approach to nuclear level density

    SciTech Connect

    Sen'kov, R. A.; Horoi, M. [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Zelevinsky, V. G. [Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2014-10-15

    We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.

  9. THE DEPENDENCE OF STAR FORMATION EFFICIENCY ON GAS SURFACE DENSITY

    SciTech Connect

    Burkert, Andreas [University Observatory Munich, Scheinerstrasse 1, D-81679 Munich (Germany); Hartmann, Lee, E-mail: burkert@usm.lmu.de, E-mail: lhartm@umich.edu [Department of Astronomy, University of Michigan, 830 Dennison, 500 Church St., Ann Arbor, MI 48109-1042 (United States)

    2013-08-10

    Studies by Lada et al. and Heiderman et al. have suggested that star formation mostly occurs above a threshold in gas surface density {Sigma} of {Sigma}{sub c} {approx} 120 M{sub Sun} pc{sup -2} (A{sub K} {approx} 0.8). Heiderman et al. infer a threshold by combining low-mass star-forming regions, which show a steep increase in the star formation rate per unit area {Sigma}{sub SFR} with increasing {Sigma}, and massive cores forming luminous stars which show a linear relation. We argue that these observations do not require a particular density threshold. The steep dependence of {Sigma}{sub SFR}, approaching unity at protostellar core densities, is a natural result of the increasing importance of self-gravity at high densities along with the corresponding decrease in evolutionary timescales. The linear behavior of {Sigma}{sub SFR} versus {Sigma} in massive cores is consistent with probing dense gas in gravitational collapse, forming stars at a characteristic free-fall timescale given by the use of a particular molecular tracer. The low-mass and high-mass regions show different correlations between gas surface density and the area A spanned at that density, with A {approx} {Sigma}{sup -3} for low-mass regions and A {approx} {Sigma}{sup -1} for the massive cores; this difference, along with the use of differing techniques to measure gas surface density and star formation, suggests that connecting the low-mass regions with massive cores is problematic. We show that the approximately linear relationship between dense gas mass and stellar mass used by Lada et al. similarly does not demand a particular threshold for star formation and requires continuing formation of dense gas. Our results are consistent with molecular clouds forming by galactic hydrodynamic flows with subsequent gravitational collapse.

  10. Elevational variation in density dependence in a subtropical forest

    PubMed Central

    Xu, Meng; Yu, Shixiao

    2014-01-01

    Density-dependent mortality has been recognized as an important mechanism that underpins tree species diversity, especially in tropical forests. However, few studies have attempted to explore how density dependence varies with spatial scale and even fewer have attempted to identify why there is scale-dependent differentiation. In this study, we explore the elevational variation in density dependence. Three 1-ha permanent plots were established at low and high elevations in the Heishiding subtropical forest, southern China. Using data from 1200 1 m2 seedling quadrats, comprising of 200 1 m2 quadrats located in each 1-ha plot, we examined the variation in density dependence between elevations using a generalized linear mixed model with crossed random effects. A greenhouse experiment also investigated the potential effects of the soil biota on density-dependent differentiation. Our results demonstrated that density-dependent seedling mortality can vary between elevations in subtropical forests. Species found at a lower elevation suffered stronger negative density dependence than those found at a higher elevation. The greenhouse experiment indicated that two species that commonly occur at both elevations suffered more from soilborne pathogens during seed germination and seedling growth when they grew at the lower elevation, which implied that soil pathogens may play a crucial role in density-dependent spatial variation. PMID:25165522

  11. Dissipative time dependent density functional theory

    E-print Network

    R. Tsekov

    2015-06-24

    The simplest density functional theory due to Thomas, Fermi, Dirac and Weizsacker is employed to describe the non-equilibrium thermodynamic evolution of an electron gas. The temperature effect is introduced via the Fermi-Dirac entropy, while the irreversible dynamics is described by a nonlinear diffusion equation. A dissipative Kohn-Sham equation is also proposed, which improves the Thomas-Fermi-Weizsacker kinetic functional.

  12. Extremal Dependence of Copulas: A Tail Density August 2011

    E-print Network

    Li, Haijun

    for extremal dependence analysis on a vine copula, for which the tail density can be written recursively, vine copula. 1 Introduction The dependence among multivariate extremes can be described by the relative and vine copulas, are specified only by densities. Let X = (X1, . . . , Xd) be a random vector

  13. Statistical inference for density dependent Markovian forestry models

    E-print Network

    Paris-Sud XI, Université de

    Statistical inference for density dependent Markovian forestry models Abstract A stochastic forestry model with a density-dependence structure is studied. The population evolves in discrete roughly speaking, becomes large. From the perspective of the analysis of forestry data and predict

  14. Information density and dependency length as complementary cognitive models.

    PubMed

    Collins, Michael Xavier

    2014-10-01

    Certain English constructions permit two syntactic alternations. (1) a. I looked up the number. b. I looked the number up. (2) a. He is often at the office. b. He often is at the office. This study investigates the relationship between syntactic alternations and processing difficulty. What cognitive mechanisms are responsible for our attraction to some alternations and our aversion to others?This article reviews three psycholinguistic models of the relationship between syntactic alternations and processing: Maximum Per Word Surprisal (building on the ideas of Hale, in Proceedings of the 2nd Meeting of the North American chapter of the association for computational linguistics. Association for Computational Linguistics, Pittsburgh, PA, pp 159-166, 2001), Uniform Information Density (UID) (Levy and Jaeger in Adv Neural Inf Process Syst 19:849-856, 2007; inter alia), and Dependency Length Minimization (DLM) (Gildea and Temperley in Cognit Sci 34:286-310, 2010). Each theory makes predictions about which alternations native speakers should favor. Subjects were recruited using Amazon Mechanical Turk and asked to judge which of two competing syntactic alternations sounded more natural. Logistic regression analysis on the resulting data suggests that both UID and DLM are powerful predictors of human preferences. We conclude that alternations that approach uniform information density and minimize dependency length are easier to process than those that do not. PMID:24077911

  15. Density dependence of the nuclear symmetry energy: A microscopic perspective

    SciTech Connect

    Vidana, Isaac; Providencia, Constanca; Polls, Artur; Rios, Arnau [Centro de Fisica Computacional, Department of Physics, University of Coimbra, PT-3004-516 Coimbra (Portugal); Departament d'Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Faculty of Engineering and Physical Sciences, Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom) and Kavli Institute for Theoretical Physics China (CAS), 100190 Beijing (China)

    2009-10-15

    We perform a systematic analysis of the density dependence of nuclear symmetry energy within the microscopic Brueckner-Hartree-Fock (BHF) approach using the realistic Argonne V18 nucleon-nucleon potential plus a phenomenological three-body force of Urbana type. Our results are compared thoroughly with those arising from several Skyrme and relativistic effective models. The values of the parameters characterizing the BHF equation of state of isospin asymmetric nuclear matter fall within the trends predicted by those models and are compatible with recent constraints coming from heavy ion collisions, giant monopole resonances, or isobaric analog states. In particular we find a value of the slope parameter L=66.5 MeV, compatible with recent experimental constraints from isospin diffusion, L=88{+-}25 MeV. The correlation between the neutron skin thickness of neutron-rich isotopes and the slope L and curvature K{sub sym} parameters of the symmetry energy is studied. Our BHF results are in very good agreement with the correlations already predicted by other authors using nonrelativistic and relativistic effective models. The correlations of these two parameters and the neutron skin thickness with the transition density from nonuniform to {beta}-stable matter in neutron stars are also analyzed. Our results confirm that there is an inverse correlation between the neutron skin thickness and the transition density.

  16. A time-dependent density functional calculation of dispersion coefficients

    NASA Astrophysics Data System (ADS)

    Chu, Xi; Groenenboom, Gerrit; Dalgarno, Alex

    2006-05-01

    Dispersion interactions determine the long-range potentials of approaching atoms. Long-range interactions play a critical role in elastic and inelastic scattering cross sections at low temperatures. In a buffer gas cooling experiment paramagnetic atoms are cooled to about 1 K by elastic collisions with cryogenically cooled helium-3 and trapped in a magnetic field. Anisotropic interactions can result in inelastic spin alignment changing collisions which lead to trap loss. The trapped paramagnetic atoms can be cooled further to the ultracold regime by evaporation. The efficiency of this process depends on the ratio of the rates for elastic and inelastic collisions of the paramagnetic molecules. Therefore calculating the anisotropy of the dispersion interactions is vital for predicting the success of both buffer gas cooling and evaporative cooling experiments. A time-dependent density functional approach is developed for accurate and fast determination of the scalar and tensor dynamic polarizabilites of a wide range of open shell atoms. These polarizabilites are then used to calculate the dispersion interactions between an open shell atom and a helium atom or between two open shell atoms. The results are significant in estimating the likelihood that these atoms can be trapped in a helium buffer gas and cooled by evaporation.

  17. DSA planarization approach to solve pattern density issue

    NASA Astrophysics Data System (ADS)

    Pimenta Barros, P.; Gharbi, A.; Sarrazin, A.; Tiron, R.; Posseme, N.; Barnola, S.; Bos, S.; Tallaron, C.; Claveau, G.; Chevalier, X.; Argoud, M.; Servin, I.; Navarro, C.; Nicolet, C.; Lapeyre, C.; Monget, C.

    2015-03-01

    Directed Self-Assembly (DSA) of Block Copolymers (BCP) is one of the most promising solutions for sub-10 nm nodes. However, some challenges need to be addressed for a complete adoption of DSA in manufacturing such as achieving DSA-friendly design, low defectivity and accurate pattern placement. In this paper, we propose to discuss the DSA integration flows using graphoepitaxy for contact-hole patterning application. DSA process dependence on guiding pattern density has been studied and solved thanks to a new approach called "DSA planarization". The capabilities of this new approach have been evaluated in terms of defectivity, Critical Dimension (CD) control and uniformity before and after DSA etching transfer.

  18. Structural risk minimization: a robust method for density-dependence detection and model selection

    Microsoft Academic Search

    Giorgio Corani; Marino Gatto

    2007-01-01

    Statistically distinguishing density-dependent from density-independent populations and selecting the best demographic model for a given population are problems of primary importance. Traditional approaches are PBLR (parametric bootstrapping of likelihood ratios) and Information criteria (IC), such as the Schwarz information criterion (SIC), the Akaike information criterion (AIC) or the Final prediction error (FPE). While PBLR is suitable for choosing from a

  19. An Infrastructureless Approach to Estimate Vehicular Density in Urban Environments

    PubMed Central

    Sanguesa, Julio A.; Fogue, Manuel; Garrido, Piedad; Martinez, Francisco J.; Cano, Juan-Carlos; Calafate, Carlos T.; Manzoni, Pietro

    2013-01-01

    In Vehicular Networks, communication success usually depends on the density of vehicles, since a higher density allows having shorter and more reliable wireless links. Thus, knowing the density of vehicles in a vehicular communications environment is important, as better opportunities for wireless communication can show up. However, vehicle density is highly variable in time and space. This paper deals with the importance of predicting the density of vehicles in vehicular environments to take decisions for enhancing the dissemination of warning messages between vehicles. We propose a novel mechanism to estimate the vehicular density in urban environments. Our mechanism uses as input parameters the number of beacons received per vehicle, and the topological characteristics of the environment where the vehicles are located. Simulation results indicate that, unlike previous proposals solely based on the number of beacons received, our approach is able to accurately estimate the vehicular density, and therefore it could support more efficient dissemination protocols for vehicular environments, as well as improve previously proposed schemes. PMID:23435054

  20. Nuclear compression moduli and density-dependent forces

    Microsoft Academic Search

    Amand Faessler; J. E. Galonska; K. Goeke; S. A. Moszkowski

    1975-01-01

    Density-dependent zero-range forces of the form of the modified delta interaction (MDI) are generalized (MDI3, MDI4) in order to yield reasonable values of the compression modulus in nuclear matter (KN = 200 MeV). This low value can be fitted by introducing two terms with different density dependence in the force. The four free parameters of MDI3 are adjusted to reproduce

  1. The dependence of interstellar element depletions on mean space density

    Microsoft Academic Search

    A. W. Harris; G. E. Bromage; C. Gry

    1984-01-01

    Correlations of interstellar gas-phase depletions with hydrogen column density N(H), and with mean line-of-sight space density bar-n(H) = N(H)\\/r, are investigated for 14 elements. For the 6 most depleted elements, correlations ith bar-n(H) are clearly stronger than with N(H). In general, the survey supports the proposal that depletion is mainly governed by density-dependent processes. It also suggests that depletion occurs

  2. Transverse momentum dependent quark densities from Lattice QCD

    SciTech Connect

    Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer

    2011-10-01

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.

  3. Transverse momentum dependent quark densities from Lattice QCD

    SciTech Connect

    Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer

    2011-02-01

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simpli?ed operator geometry show visible dipole de- formations of spin-dependent quark momentum densities. We discuss the basic concepts of the method, including renormalization of the gauge link, and an ex- tension to a more elaborate operator geometry that would allow us to analyze process-dependent TMDs such as the Sivers-function.

  4. A Wigner Monte Carlo approach to density functional theory

    SciTech Connect

    Sellier, J.M., E-mail: jeanmichel.sellier@gmail.com; Dimov, I.

    2014-08-01

    In order to simulate quantum N-body systems, stationary and time-dependent density functional theories rely on the capacity of calculating the single-electron wave-functions of a system from which one obtains the total electron density (Kohn–Sham systems). In this paper, we introduce the use of the Wigner Monte Carlo method in ab-initio calculations. This approach allows time-dependent simulations of chemical systems in the presence of reflective and absorbing boundary conditions. It also enables an intuitive comprehension of chemical systems in terms of the Wigner formalism based on the concept of phase-space. Finally, being based on a Monte Carlo method, it scales very well on parallel machines paving the way towards the time-dependent simulation of very complex molecules. A validation is performed by studying the electron distribution of three different systems, a Lithium atom, a Boron atom and a hydrogenic molecule. For the sake of simplicity, we start from initial conditions not too far from equilibrium and show that the systems reach a stationary regime, as expected (despite no restriction is imposed in the choice of the initial conditions). We also show a good agreement with the standard density functional theory for the hydrogenic molecule. These results demonstrate that the combination of the Wigner Monte Carlo method and Kohn–Sham systems provides a reliable computational tool which could, eventually, be applied to more sophisticated problems.

  5. Computational complexity of time-dependent density functional theory

    E-print Network

    J. D. Whitfield; M. -H. Yung; D. G. Tempel; S. Boixo; A. Aspuru-Guzik

    2014-08-21

    Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn-Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn-Sham system can be efficiently obtained given the time-dependent density. Since a quantum computer can efficiently produce such time-dependent densities, we present a polynomial time quantum algorithm to generate the time-dependent Kohn-Sham potential with controllable error bounds. As a consequence, in contrast to the known intractability result for ground state density functional theory (DFT), the computation of the necessary time-dependent potentials given the initial state is in the complexity class described by bounded error quantum computation in polynomial time (BQP).

  6. Towards simple orbital-dependent density functionals for molecular dissociation

    NASA Astrophysics Data System (ADS)

    Zhang, Igor Ying; Richter, Patrick; Scheffler, Matthias

    2015-03-01

    Density functional theory (DFT) is one of the leading first-principles electronic-structure theories. However, molecular dissociation remains a challenge, because it requires a well-balanced description of the drastically different electronic structure at different bond lengths. One typical and well-documented case is the dissociation of both H2+ and H2, for which all popular DFT functionals fail. We start from the Bethe-Goldstone equation to propose a simple orbital-dependent correlation functional which generalizes the linear adiabatic connection approach. The resulting scheme is based on second-order perturbation theory (PT2), but includes the self-consistent coupling of electron-hole pairs, which ensures the correct H2 dissociation limit and gives a finite correlation energy for systems with a (near)-degenerate energy gap. This coupling PT2-like (CPT2) approximation delivers a significant improvement over all existing functionals for both H2 and H2+ dissociation. We will demonstrate the reason for this improvement analytically for H2 in a minimal basis.

  7. Intercohort density dependence drives brown trout habitat selection

    NASA Astrophysics Data System (ADS)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat selection.

  8. Time-dependent density functional theory for quantum transport

    NASA Astrophysics Data System (ADS)

    Kwok, Yanho; Zhang, Yu; Chen, GuanHua

    2014-12-01

    The rapid miniaturization of electronic devices motivates research interests in quantum transport. Recently time-dependent quantum transport has become an important research topic. Here we review recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reduced-single electron density matrix based hierarchical equation of motion, which can be derived from Liouville-von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.

  9. Superlinear density dependence of singlet fission rate in tetracene films

    E-print Network

    Zhang, Bo; Wang, Rui; Tan, Zhanao; Liu, Yunlong; Guo, Wei; Zhai, Xiaoling; Wang, Xiaoyong; Xiao, Min

    2014-01-01

    We experimentally show that the rate of singlet fission in tetracene films has a superlinear dependence on the density of photo-excited singlet excitons with ultrafast transient absorption spectroscopy. The spectrotemporal features of singlet and triplet dynamics can be disentangled from experimental data with the algorithm of singular value decomposition. The correlation between their temporal dynamics indicates a nonlinear density dependence of fission rate, which leads to a conjecture of coherent singlet fission process arising from superradiant excitons in crystalline tetracene. This hypothesis might be able to resolve some long-standing controversies.

  10. Watching excitons move: the time-dependent transition density matrix

    NASA Astrophysics Data System (ADS)

    Ullrich, Carsten

    2012-02-01

    Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.

  11. Density-dependent nest predation in waterfowl: the relative importance of nest density versus nest dispersion.

    PubMed

    Ringelman, Kevin M; Eadie, John M; Ackerman, Joshua T

    2012-07-01

    When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for "dispersion-dependent" predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation. PMID:22179311

  12. Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory.

    PubMed

    Ruggenthaler, Michael; Penz, Markus; van Leeuwen, Robert

    2015-05-27

    In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn-Sham construction. We first present detailed conditions such that a mapping from potentials to densities is defined by solving the time-dependent Schrödinger equation. We specifically discuss intricacies connected with the unboundedness of the Hamiltonian and derive the local-force equation. This equation is then used to set up an iterative sequence that determines a potential that generates a specified density via time propagation of an initial state. This fixed-point procedure needs the invertibility of a certain Sturm-Liouville problem, which we discuss for different situations. Based on these considerations we then present a discussion of the famous Runge-Gross theorem which provides a density-potential mapping for time-analytic potentials. Further we give conditions such that the general fixed-point approach is well-defined and converges under certain assumptions. Then the application of such a fixed-point procedure to lattice Hamiltonians is discussed and the numerical realization of the density-potential mapping is shown. We conclude by presenting an extension of the density-potential mapping to include vector-potentials and photons. PMID:25921322

  13. Existence, Uniqueness, and Construction of the Density-Potential Mapping in Time-Dependent Density-Functional Theory

    E-print Network

    Michael Ruggenthaler; Markus Penz; Robert van Leeuwen

    2015-05-13

    In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn-Sham construction. We first present detailed conditions such that a mapping from potentials to densities is defined by solving the time-dependent Schr\\"odinger equation. We specifically discuss intricacies connected with the unboundedness of the Hamiltonian and derive the local-force equation. This equation is then used to set up an iterative sequence that determines a potential that generates a specified density via time propagation of an initial state. This fixed-point procedure needs the invertibility of a certain Sturm-Liouville problem, which we discuss for different situations. Based on these considerations we then present a discussion of the famous Runge-Gross theorem which provides a density-potential mapping for time-analytic potentials. Further we give conditions such that the general fixed-point approach is well-defined and converges under certain assumptions. Then the application of such a fixed-point procedure to lattice Hamiltonians is discussed and the numerical realization of the density-potential mapping is shown. We conclude by presenting an extension of the density-potential mapping to include vector-potentials and photons.

  14. DEVELOPMENT OF TIME-DEPENDENT DENSITY FUNCTIONAL THEORY IN

    E-print Network

    Burke, Kieron

    DEVELOPMENT OF TIME-DEPENDENT DENSITY FUNCTIONAL THEORY IN CHEMICAL AND SOLID-STATE PHYSICS BY FAN functional theory in chemical and solid-state physics by Fan Zhang Dissertation Director: Professor Kieron of TDDFT in chemical and solid-state physics, we show how to use TDDFT to solve the double excitation

  15. Simulation of salt migrations in density dependent groundwater flow

    E-print Network

    Vuik, Kees

    of the changing climate become more and more visible; the rain falls in higher intensities, the sea level risesSimulation of salt migrations in density dependent groundwater flow E.S. van Baaren Master's Thesis and uses a finite element method for the simulation of groundwater flow in the lateral (2D) direction

  16. FITNESS AND DENSITY-DEPENDENT POPULATION GROWTH IN DROSOPHILA MELANOGASTER

    E-print Network

    Rose, Michael R.

    FITNESS AND DENSITY-DEPENDENT POPULATION GROWTH IN DROSOPHILA MELANOGASTER LAURENCE D. MUELLER cannot explain the large fitness depression of these lines. However, the homozygous lines show large. The average relative fitness of the homozygous lines, as determined from the growth rates at the lowest

  17. Continuous mixture densities and linear discriminant analysis for improved context-dependent acoustic models

    Microsoft Academic Search

    X. Aubert; R. Haeb-Umbach; H. Ney

    1993-01-01

    Linear discriminant analysis (LDA) experiments reported previously (ICASSP-92 vol.1, p.13-16), are extended to context-dependent models and speaker-independent large vocabulary continuous speech recognition. Two variants of using mixture densities are compared: state-specific modeling and the monophone-tying approach where densities are shared across the states relevant to the same phoneme. Results are presented on the DARPA Resource Management (RM) task for both

  18. Cuticular antifungals in spiders: density- and condition dependence.

    PubMed

    González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur

    2014-01-01

    Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders. PMID:24637563

  19. Approach of high density coal preparation method

    SciTech Connect

    Yang, Y.; Chen, Q. [China Univ. of Mining and Technology, Xuzhou, Jiangsu (China). Mineral Processing Research Center

    1996-12-31

    Density difference of aged anthracite coal of high density and discard is less than that of general coal and discard; conventional separation methods are difficult to be used. For the special coal, coal dry beneficiation technology with air-dense medium fluidized bed has obvious superiority over other separation methods.

  20. Dependence of the thermospheric density on solar and magnetic activity

    NASA Astrophysics Data System (ADS)

    Lühr, H.; Häusler, K.

    2012-04-01

    The thermospheric mass density is dependent on a number of external and internal forces. Here we will focus on the prominent effects of solar extreme ultra-violet (EUV) and magnetic activity. We make use of air density values derived from accelerometer measurements from the two satellites CHAMP and GRACE, thus providing readings from two altitudes. Our aim is to determine the functional relation between the forcing and the thermospheric response. The solar EUV flux is approximated by a composite quantity, P10.7 = 0.5 (F10.7 + F10.7a), where F10.7a is an average of the solar flux index F10.7 averaged over 81 days. For isolating the solar influence only quiet days (Ap < 15) have been considered. As a result we obtain an excellent linear relation between P10.7 and mass density. In a second step we normalise the density readings to a fixed solar flux level and investigate the response of thermospheric density to magnetic activity. For our investigation 30 magnetic storms have been considered. The solar wind merging electric field turned out to be a suitable controlling parameter. When taking into account some delayed response to the solar wind input we find a linear dependence of the density increase on the merging E-field. Interestingly, the solar wind input causes an additive increase of the density, on top of the quiet time background, whereas the solar flux effect causes a proportional increase. The linear scaling factor between the mass density increase and the merging E-field becomes smaller at higher pressure levels. We will propose a mechanism that may explain the thermospheric variations at the two different measurement heights.

  1. Compressible Flows with a Density-Dependent Viscosity Coefficient

    Microsoft Academic Search

    Ting Zhang; Daoyuan Fang

    2009-01-01

    We prove the global existence of weak solutions for the 2-D compressible\\u000aNavier-Stokes equations with a density-dependent viscosity coefficient\\u000a($\\\\lambda=\\\\lambda(\\\\rho)$). Initial data and solutions are small in energy-norm\\u000awith nonnegative densities having arbitrarily large sup-norm. Then, we show\\u000athat if there is a vacuum domain at the initial time, then the vacuum domain\\u000awill retain for all time, and vanishes

  2. A Morpho-Density Approach to Estimating Neural Connectivity

    PubMed Central

    Tarigan, Bernadetta; van Pelt, Jaap; van Ooyen, Arjen; de Gunst, Mathisca

    2014-01-01

    Neuronal signal integration and information processing in cortical neuronal networks critically depend on the organization of synaptic connectivity. Because of the challenges involved in measuring a large number of neurons, synaptic connectivity is difficult to determine experimentally. Current computational methods for estimating connectivity typically rely on the juxtaposition of experimentally available neurons and applying mathematical techniques to compute estimates of neural connectivity. However, since the number of available neurons is very limited, these connectivity estimates may be subject to large uncertainties. We use a morpho-density field approach applied to a vast ensemble of model-generated neurons. A morpho-density field (MDF) describes the distribution of neural mass in the space around the neural soma. The estimated axonal and dendritic MDFs are derived from 100,000 model neurons that are generated by a stochastic phenomenological model of neurite outgrowth. These MDFs are then used to estimate the connectivity between pairs of neurons as a function of their inter-soma displacement. Compared with other density-field methods, our approach to estimating synaptic connectivity uses fewer restricting assumptions and produces connectivity estimates with a lower standard deviation. An important requirement is that the model-generated neurons reflect accurately the morphology and variation in morphology of the experimental neurons used for optimizing the model parameters. As such, the method remains subject to the uncertainties caused by the limited number of neurons in the experimental data set and by the quality of the model and the assumptions used in creating the MDFs and in calculating estimating connectivity. In summary, MDFs are a powerful tool for visualizing the spatial distribution of axonal and dendritic densities, for estimating the number of potential synapses between neurons with low standard deviation, and for obtaining a greater understanding of the relationship between neural morphology and network connectivity. PMID:24489738

  3. Modelling interactions of toxicants and density dependence in wildlife populations

    USGS Publications Warehouse

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 ?g g?1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to toxicant impacts until a critical threshold is crossed. In our study population, toxicant-induced changes were observed in the equilibrium number of nonbreeding rather than breeding birds, suggesting that monitoring efforts including both life stages are needed to timely detect population declines. Further, by combining quantitative exposure–response relationships with a wildlife demographic model, we provided a method to quantify critical toxicant thresholds for wildlife population persistence.

  4. Subsystem real-time time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-01

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  5. Multicomponent density-functional theory for time-dependent systems

    SciTech Connect

    Butriy, O.; Ebadi, H.; Boeij, P. L. de; Leeuwen, R. van; Gross, E. K. U. [Theoretical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Department of Physics, University of Jyvaeskylae, FI-40014, Survontie 9, Jyvaeskylae (Finland); Institut fuer Theoretische Physik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany)

    2007-11-15

    We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried out in order to achieve an electron density that reflects the internal symmetry of the system. We discuss the implications of this body-fixed frame transformation and establish a Runge-Gross-type theorem and derive Kohn-Sham equations for the electrons and nuclei. We illustrate the formalism by performing calculations on a one-dimensional diatomic molecule for which the many-body Schroedinger equation can be solved numerically. These benchmark results are then compared to the solution of the time-dependent Kohn-Sham equations in the Hartree approximation. Furthermore, we analyze the excitation energies obtained from the linear response formalism in the single pole approximation. We find that there is a clear need for improved functionals that go beyond the simple Hartree approximation.

  6. Probing the density dependence of the symmetry potential at low and high densities

    SciTech Connect

    Li Qingfeng [Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Li Zhuxia [China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); Soff, Sven; Bleicher, Marcus [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Stoecker, Horst [Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany)

    2005-09-01

    We have investigated the influence of different forms of symmetry energies on various observables proposed to be sensitive to the symmetry energy at subnormal and supranormal densities for reactions {sup 208}Pb +{sup 208}Pb, {sup 132}Sn +{sup 124}Sn, and {sup 96}Zr +{sup 96}zR at E{sub b}=0.4A GeV within the microscopic transport model--ultrarelativistic quantum molecular dynamics model. The same systems are adopted for testing the probes of the symmetry potential at both subnormal and supranormal densities. It is shown that the differences between the predicted values of investigated quantities by different symmetry potentials have a close correspondence with the different behavior of the density dependence of the interaction part of the different symmetry energies. We also find that the comprehensive study with multiple probes provides a possibility for gaining the density dependence of the symmetry potential in a broad density region, which allows us to extract the information of the isospin-dependent part of the effective interaction.

  7. Density functional approach to quantum lattice systems

    NASA Astrophysics Data System (ADS)

    Chayes, J. T.; Chayes, L.; Ruskai, Mary Beth

    1985-02-01

    For quantum lattice systems, we consider the problem of characterizing the set of single-particle densities, ?, which come from the ground-state eigenspace of some N-particle Hamiltonian of the formH_0 + sumnolimits_{i = 1}^N {v(x_i )} where H 0 is a fixed, bounded operator representing the kinetic and interaction energies. We show that the conditions on ? are that it be strictly positive, properly normalized, and consistent with the Pauli principle. Our results are valid for both finite and infinite lattices and for either bosons or fermions. The Coulomb interaction may be included in H 0 if the lattice dimension is ?2. We also characterize those single-particle densities which come from the Gibbs states of such Hamiltonians at finite temperature. In addition to the conditions stated above, ? must satisfy a finite entropy condition.

  8. The significance of viscosity in density-dependent flow of groundwater

    NASA Astrophysics Data System (ADS)

    Ophori, Duke U.

    1998-01-01

    Many modeling studies of variable-density groundwater flow have been performed in the last few decades. In most of these studies, fluid density is considered to vary with concentration, while the variation of viscosity with concentration is neglected. The consequences of this negligence is not completely known. The present study uses a numerical simulation approach to investigate the density-viscosity-concentration relationship during groundwater flow and solute transport through a density-stratified system. Fluid density is assumed to increase with depth from freshwater at the surface, through brackish and saline waters, to brines at the bottom half of the system. The system mimics field observations at the Atikokan Research Area (ARA) in northwestern Ontario, Canada. Hypothetical 'unit basin' models, consisting of recharge-, midline- and discharge-area regimes are employed. Simulations with the density-concentration equation of state and a constant (freshwater) viscosity in the density-stratified system causes groundwater to sink against the buoyancy forces of the system. More water is recharged into the system than necessitated by the buoyancy. The configurations and lengths of travel paths, and travel time of conservative contaminants are inaccurately predicted. Accounting for concentration in the viscosity equation causes groundwater floating in agreement with the expected buoyancy physics of the system. Overestimation of concentration-dependent density causes sinking, whereas, overestimation of viscosity results in overfloating and underestimation of groundwater recharge. Even in density-stratified fluids with salinity of seawater, recharge and through flow of water may be slightly overestimated if a concentration-dependent depsity is used along with a constant freshwater viscosity. The concentration dependence of both density and viscosity are to be analyzed carefully during groundwater flow and solute transport simulations in systems with considerable fluid density variations.

  9. A density functional approach to depletion interaction

    NASA Astrophysics Data System (ADS)

    Cuesta, José A.; Martínez-Ratón, Yuri

    1999-12-01

    In this article we introduce depletion in asymmetric mixtures within the context of density functional theory. As in the definition of the interaction potentials, it is convenient to work in a semi-grand ensemble at constant chemical potential of the small particles. The free-energy functional can then be mapped onto that of a one-component effective fluid. This method is applied to the fluid of parallel hard cubes, which is studied in the limit of infinite asymmetry. The phase behaviour of this fluid is shown and discussed in terms of the general phase behaviour of additive mixtures of hard particles.

  10. Exploration of a modified density dependence in the Skyrme functional

    SciTech Connect

    Erler, J.; Reinhard, P.-G. [Institut fuer Theoretische Physik II, Universitaet Erlangen-Nuernberg, Staudtstrasse 7, D-91058 Erlangen (Germany); Kluepfel, P. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland)

    2010-10-15

    A variant of the basic Skyrme-Hartree-Fock functional is considered dealing with a new form of density dependence. It employs only integer powers and thus will allow a more sound basis for projection schemes (particle number, angular momentum). We optimize the new functional with exactly the same adjustment strategy as used in an earlier study with a standard Skyrme functional. This allows direct comparisons of the performance of the new functional relative to the standard one. We discuss various observables: bulk properties of finite nuclei, nuclear matter, giant resonances, superheavy elements, and energy systematics. The new functional performs at least as well as the standard one, but offers a wider range of applicability (e.g., for projection) and more flexibility in the regime of high densities.

  11. Role of density dependent symmetry energy in nuclear stopping

    E-print Network

    Karan Singh Vinayak; Suneel Kumar

    2011-07-27

    Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

  12. Subsystem real-time Time Dependent Density Functional Theory

    E-print Network

    Krishtal, Alisa; Pavanello, Michele

    2015-01-01

    We present the extension of Frozen Density Embedding (FDE) theory to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE a is DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na$_4$ cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  13. Limit cycles in Norwegian lemmings: tensions between phase-dependence and density-dependence

    PubMed Central

    Framstad, E.; Stenseth, N. C.; Bjørnstad, O. N.; Falck, W.

    1997-01-01

    Ever since Elton, the 3–5 year density cycles in lemmings (and other microtines) in Fennoscandia have troubled scientists. Explanations have involved intrinsic regulation and trophic interactions. We have analysed yearly changes in fall abundances for lemmings over 25 years from two local mountain sites in South Norway. These time series appear to have an underlying nonlinear structure of order two. Fitting a piece-wise linear threshold model of maximum order two, the most parsimonious model was, however, of first order for both series. The resulting dynamics from this model is a limit cycle. Reformulating the model in terms of abundances yields a model which combines (delayed) density-dependent effects and the influence of the cyclic phase. The delayed density-dependence of one part of the model is consistent with an effect of specialist predators during the peak and crash phases of the cycle, although other trophic interactions cannot be excluded.

  14. The current density in quantum electrodynamics in time-dependent external potentials and the Schwinger effect

    E-print Network

    Jochen Zahn

    2015-04-13

    In the framework of quantum electrodynamics (QED) in external potentials, we introduce a method to compute the time-dependence of the expectation value of the current density for time-dependent homogeneous external electric fields. We apply it to the so-called Sauter pulse. For late times, our results agree with the asymptotic value due to electron-positron pair production. We correct, and compare to, a general expression derived by Serber for the linearization in the external field. Based on the properties of the current density, we argue that the appearance of enhanced quasi-particle densities at intermediate in slowly varying sub-critical potentials is generic. Also an alternative approach, which circumvents these difficulties, is sketched.

  15. Subsystem real-time time dependent density functional theory.

    PubMed

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-21

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated. PMID:25903875

  16. Time-dependent density-functional studies on strength functions in neutron-rich nuclei

    E-print Network

    Shuichiro Ebata; Tsunenori Inakura; Takashi Nakatsukasa

    2013-02-08

    The electric dipole (E1) strength functions have been systematically calculated based on the time-dependent density functional theory (TDDFT), using the finite amplitude method and the real-time approach to the TDDFT with pairing correlations. The low-energy E1 strengths in neutron-rich isotopes show peculiar behaviors, such as sudden enhancement and reduction, as functions of the neutron numbers.They seem to be due to the interplay between the neutron shell effect and the deformation effect.

  17. Relativistic Hartree-Fock-Bogoliubov Theory With Density Dependent Meson Couplings in Axial Symmetry

    SciTech Connect

    Ebran, J.-P.; Khan, E.; Arteaga, D. Pena; Grasso, M. [Institut de Physique Nucleaire, 15 rue Georges Clemenceau 91406 Orsay Cedex (France); Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb, 10 000 Zagreb (Croatia)

    2009-08-26

    Most nuclei on the nuclear chart are deformed, and the development of new RIB facilities allows the study of exotic nuclei near the drip lines where a successful theoretical description requires both realistic pairing and deformation approaches. Relativistic Hartree-Fock-Bogoliubov model taking into account axial deformation and pairing correlations is introduced. Preliminary illustrative results with density dependent meson-nucleon couplings in axial symmetry will be discussed.

  18. Linear Response Time Dependent Density Functional Theory for Dispersion Coefficients Between Atomic Pairs

    NASA Astrophysics Data System (ADS)

    Chu, Xi; Groenenboom, Gerrit C.

    Dispersion coefficients C6 can be calculated from the dynamic polarizabilities of the interacting monomers at imaginary frequencies. This article describes a linear response time dependent density functional approach that has been recently developed for evaluating these polarizabilities. Using a spherical tensor expansion, both the isotropic and anisotropic components of the C6 coefficient can be obtained for a set of molecular states. Isotropic C6 coefficients for the interactions between a pair of transition metals are presented.

  19. The dependence of ZnO photoluminescence efficiency on excitation conditions and defect densities

    SciTech Connect

    Simmons, Jay G.; Liu, Jie [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)] [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Foreman, John V. [U.S. Army Aviation and Missile Research, Development, and Engineering Center, Redstone Arsenal, Alabama 35898 (United States)] [U.S. Army Aviation and Missile Research, Development, and Engineering Center, Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O., E-mail: everitt@phy.duke.edu [U.S. Army Aviation and Missile Research, Development, and Engineering Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2013-11-11

    The quantum efficiencies of both the band edge and deep-level defect emission from annealed ZnO powders were measured as a function of excitation fluence and wavelength from a tunable sub-picosecond source. A simple model of excitonic decay reproduces the observed excitation dependence of rate constants and associated trap densities for all radiative and nonradiative processes. The analysis explores how phosphor performance deteriorates as excitation fluence and energy increase, provides an all-optical approach for estimating the number density of defects responsible for deep-level emission, and yields new insights for designing efficient ZnO-based phosphors.

  20. Current density partitioning in time-dependent current density functional theory

    SciTech Connect

    Mosquera, Martín A. [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Wasserman, Adam, E-mail: awasser@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States) [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-05-14

    We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.

  1. He?2++ molecular ion in a strong time-dependent magnetic field: a current-density functional study.

    PubMed

    Vikas

    2011-08-01

    The He?2++ molecular ion exposed to a strong ultrashort time-dependent (TD) magnetic field of the order of 10(9) G is investigated through a quantum fluid dynamics (QFD) and current-density functional theory (CDFT) based approach using vector exchange-correlation (XC) potential and energy density functional that depend not only on the electronic charge-density but also on the current density. The TD-QFD-CDFT computations are performed in a parallel internuclear-axis and magnetic field-axis configuration at the field-free equilibrium internuclear separation R = 1.3 au with the field-strength varying between 0 and 10(11) G. The TD behavior of the exchange- and correlation energy of the He?2++ is analyzed and compared with that obtained using a [B-TD-QFD-density functional theory (DFT)] approach based on the conventional TD-DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge-density alone. The CDFT based approach yields TD exchange- and correlation energy and TD electronic charge-density significantly different from that obtained using the conventional TD-DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT-based approach is traced to the TD current-density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He?2++ molecular ion is elucidated by treating electronic charge density as an electron-"fluid" in the terminology of QFD. PMID:21598275

  2. Evolution of nuclear shells with the Skyrme density dependent interaction

    NASA Astrophysics Data System (ADS)

    Brink, D. M.; Stancu, Fl.

    2007-06-01

    We present the evolution of the shell structure of nuclei in Hartree-Fock calculations using Skyrme's density-dependent effective nucleon-nucleon interaction. The role of the tensor part of the Skyrme interaction to the Hartree-Fock spin-orbit splitting in spherical spin unsaturated nuclei is reanalyzed. The contribution of a finite range tensor force to the spin-orbit splitting in closed shell nuclei is calculated. It is found that the exact matrix elements of a Gaussian and of a one-pion exchange tensor potential could be written as a product Skyrme's short range expression times a suppression factor which is almost constant for closed shell nuclei with mass number A?48. The suppression factor is ˜0.15 for the one-pion exchange potential.

  3. The multi-configurational time-dependent Hartree approach revisited.

    PubMed

    Manthe, Uwe

    2015-06-28

    The multi-configurational time-dependent Hartree (MCTDH) approach facilitates accurate high-dimensional quantum dynamics simulations. In the approach, the wavefunction is expanded in a direct product of self-adapting time-dependent single-particle functions (SPFs). The equations of motion for the expansion coefficients and the SPFs are obtained via the Dirac-Frenkel variational principle. While this derivation yields well-defined differential equations for the motion of occupied SPFs, singularities in the working equations resulting from unoccupied SPFs have to be removed by a regularization procedure. Here, an alternative derivation of the MCTDH equations of motion is presented. It employs an analysis of the time-dependence of the single-particle density matrices up to second order. While the analysis of the first order terms yields the known equations of motion for the occupied SPFs, the analysis of the second order terms provides new equations which allow one to identify optimal choices for the unoccupied SPFs. The effect of the optimal choice of the unoccupied SPFs on the structure of the MCTDH equations of motion and their regularization is discussed. Generalized equations applicable in the multi-layer MCTDH framework are presented. Finally, the effects resulting from the initial choice of the unoccupied SPFs are illustrated by a simple numerical example. PMID:26133412

  4. Global fixed point proof of time-dependent density-functional theory

    E-print Network

    Michael Ruggenthaler; Robert van Leeuwen

    2011-04-20

    We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as well provided that the operator norms of the response functions of the members of the iterative sequence of potentials have an upper bound. The densities under consideration have second time-derivatives that are required to satisfy a condition slightly weaker than being square-integrable. This approach avoids the usual restrictions of Taylor-expandability in time of the uniqueness theorem by Runge and Gross [Phys.Rev.Lett.52, 997 (1984)] and of the existence theorem by van Leeuwen [Phys.Rev.Lett. 82, 3863 (1999)]. Owing to its generality, the proof not only answers basic questions in density-functional theory but also has potential implications in other fields of physics.

  5. Unified approach for molecular dynamics and density-functional theory

    Microsoft Academic Search

    R. Car; M. Parrinello

    1985-01-01

    We present a unified scheme that, by combining molecular dynamics and density-functional theory, profoundly extends the range of both concepts. Our approach extends molecular dynamics beyond the usual pair-potential approximation, thereby making possible the simulation of both covalently bonded and metallic systems. In addition it permits the application of density-functional theory to much larger systems than previously feasible. The new

  6. Density-dependent foraging effort of Deer Mice (Peromyscus maniculatus)

    Microsoft Academic Search

    D. L. Davidson; D. W. Morris

    2001-01-01

    Summary 1. Little is known about how population density affects the foraging behaviour of individuals. Simple models are developed to predict the net effect of density on the quitting-harvest rates of optimal foragers. The theory was tested with experiments that measured the foraging behaviour of free-ranging Deer Mice under control and reduced densities. 2. An increased density of conspecifics may

  7. Density-dependence vs. density-independence - linking reproductive allocation to population abundance and vegetation greenness.

    PubMed

    Bårdsen, Bård-Jørgen; Tveraa, Torkild

    2012-03-01

    1. Recent studies have shown that optimal reproductive allocation depends on both climatic conditions and population density. We tested this hypothesis using six years of demographic data from eight reindeer (Rangifer tarandus) populations coupled with data on population abundance and vegetation greenness [measured using the Enhanced Vegetation Index (EVI)]. 2. Female spring body mass positively affected summer body mass gain, and lactating females were unable to compensate for harsh winters as efficiently as barren ones. Female spring body mass was highly sensitive to changes in population abundance and vegetation greenness and less dependent on previous autumn body mass and reproductive status. Lactating females were larger than barren females in the spring. Moreover, female autumn body mass was positively related to female autumn body mass and reproductive success and was not very sensitive to changes in vegetation greenness and population abundance. 3. Offspring autumn body mass was positively related to both maternal spring and autumn body mass, and as predicted from theory, offspring were more sensitive to changes in vegetation greenness and population abundance than adult females. A lagged cost of reproduction was present as larger females who were barren, the previous year produced larger offspring than equally sized females that successfully reproduced the previous year. 4. Reproductive success was negatively related to female autumn body mass and positively related to female spring body mass. Moreover, females who successfully reproduced the previous year experienced the highest reproductive success. The fact that negative density-dependence was only present for females that had successfully reproduced the previous year further support the hypothesis that reproduction is costly. 5. This study shows that female reindeer buffer their reproductive allocation according to expected winter conditions and that their buffering abilities were limited by population abundance and a lagged cost of reproduction and enhanced by vegetation greenness. PMID:21985598

  8. Density-dependent dispersal suggests a genetic measure of habitat suitability

    Microsoft Academic Search

    Denis Carr; Jeff Bowman; Paul J. Wilson

    2007-01-01

    Recent research shows that density dependence should result in predictable movements between habitats of different suitability, depending on whether population densities are increasing or decreasing. When population densities are increasing, habitats become filled in order of their suitability, resulting in a net flow from high suitability to low suitability. When populations decrease in density, the reverse can happen. These patterns

  9. Predator Responses, Prey Refuges, and Density-Dependent Mortality of a Marine Fish

    Microsoft Academic Search

    Todd W. Anderson

    2001-01-01

    Detection of density dependence in animal populations is a primary goal of population ecology, and the processes causing density dependence play a major role in population regulation. Predation can strongly regulate populations by populational and behavioral responses of predators to their prey. Here I evaluate the existence and strength of density-dependent mortality in local populations of a reef fish, the

  10. Response of a galactic disc to vertical perturbations: strong dependence on density distribution

    NASA Astrophysics Data System (ADS)

    Pranav, Pratyush; Jog, Chanda J.

    2010-07-01

    We study the self-consistent, linear response of a galactic disc to non-axisymmetric perturbations in the vertical direction as due to a tidal encounter, and show that the density distribution near the disc mid-plane has a strong impact on the radius beyond which distortions like warps develop. The self-gravity of the disc resists distortion in the inner parts. Applying this approach to a galactic disc with an exponential vertical profile, Saha & Jog showed that warps develop beyond 4-6 disc scalelengths, which could hence be only seen in HI. The real galactic discs, however, have less steep vertical density distributions that lie between a sech and an exponential profile. Here we calculate the disc response for such a general sec h2/n density distribution, and show that the warps develop from a smaller radius of 2-4 disc scalelengths. This naturally explains why most galaxies show stellar warps that start within the optical radius. Thus, a qualitatively different picture of ubiquitous optical warps emerges for the observed less steep density profiles. The surprisingly strong dependence on the density profile is due to the fact that the disc self-gravity depends crucially on its mass distribution close to the mid-plane. General results for the radius of onset of warps, obtained as a function of the disc scalelength and the vertical scaleheight, are presented as contour plots which can be applied to any galaxy.

  11. Business Cycle Duration Dependence: A Parametric Approach

    Microsoft Academic Search

    Daniel E Sichel

    1991-01-01

    This paper reexamines duration dependence in U.S. business cycles using parametric hazard models. Positive duration dependence would indicate that expansions or contractions are more likely to end as they become \\

  12. Towards time-dependent current-density-functional theory in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  13. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations. PMID:25725723

  14. A New Computational Approach to Density Estimation with ...

    E-print Network

    2003-12-19

    tractable procedure to determine parameters such as bandwidth or smoothness weight. ..... g can be done easily by grid search and nonlinear programming techniques [12, 28]. .... The logarithmic barrier function is a convex function whose value diverges as X approaches ..... line) is close to the true density (

  15. On a Density-of-States Approach to Bohmian Mechanics

    E-print Network

    Guy Potvin

    2005-06-16

    We propose the idea that in Bohmian mechanics the wavefunction is related to a density of states and explore some of its consequences. Specifically, it allows a maximum-entropy interpretation of quantum probabilities, which creates a stronger link between it and statistical mechanics. The proposed approach also allows a range of extensions of the guidance condition in Bohmian mechanics.

  16. Three- to two-dimensional crossover in time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Karimi, Shahrzad; Ullrich, Carsten A.

    2014-12-01

    Quasi-two-dimensional (2D) systems, such as an electron gas confined in a quantum well, are important model systems for many-body theories. Earlier studies of the crossover from 3D to 2D in ground-state density-functional theory showed that local and semilocal exchange-correlation functionals which are based on the 3D electron gas are appropriate for wide quantum wells, but eventually break down as the 2D limit is approached. We now consider the dynamical case and study the performance of various linear-response exchange kernels in time-dependent density-functional theory. We compare approximate local, semilocal, and orbital-dependent exchange kernels, and analyze their performance for inter- and intrasubband plasmons as the quantum wells approach the 2D limit. 3D (semi)local exchange functionals are found to fail for quantum well widths comparable to the 2D Wigner-Seitz radius rs2 D, which implies in practice that 3D local exchange remains valid in the quasi-2D dynamical regime for typical quantum well parameters, except for very low densities.

  17. Reassessing nuclear matter incompressibility and its density dependence

    E-print Network

    De, J N; Agrawal, B K

    2015-01-01

    Experimental giant monopole resonance energies are now known to constrain nuclear incompressibility of symmetric nuclear matter $K$ and its density slope $M$ at a particular value of sub-saturation density, the crossing density $\\rho_c$. Consistent with these constraints, we propose a reasonable way to construct a plausible equation of state of symmetric nuclear matter in a broad density region around the saturation density $\\rho_0$. Help of two additional empirical inputs, the value of $\\rho_0$ and that of the energy per nucleon $e(\\rho_0)$ are needed. The value of $K(\\rho_0)$ comes out to be $211.9\\pm 24.5$ MeV.

  18. Modeling of mask thermal distortion and its dependency on pattern density

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaolin; Poolla, Kameshwar; Spanos, Costas J.

    2005-06-01

    Mask distortion due to thermal loading during exposure contributes significantly to the overlay error budget and poses significant challenges for extending optical lithography to the sub-100nm regime. In this paper, we model the thermal mask distortion during the scanning exposure in 193nm lithography, and investigate its dependency on the distribution of the local pattern density on the mask. Several numerical simulation methods are investigated for accurately predicting the transient and steady-state thermal and distortion response of the mask during exposure. In particular, we find that simulating an "effective" continuous illumination power has the same thermal and distortion impact as the actual pulsed laser power delivery to the mask during IC production. This approach dramatically reduces computational cost. Our parametric analysis demonstrates that the magnitude of the thermal and distortion responses are closely related to the global pattern density and exposure dose. Furthermore, thermal mask distortion is found to be significantly dependent on the distribution of the local pattern density on the mask. Given that often the mask pattern layout can be manipulated at some level of abstraction, we conducted Monte Carlo simulation which verifies the existence of optimal pattern density distributions minimizing the mask thermal distortion, and highlights the opportunity to optimize mask pattern layout with respect to mask thermal distortion.

  19. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae.

    PubMed

    Cheng, Jing-Sheng; Ding, Ming-Zhu; Tian, Hong-Chi; Yuan, Ying-Jin

    2009-10-01

    The cell-density-dependent responses of Saccharomyces cerevisiae to inoculation sizes were explored by a proteomic approach. According to their gene ontology, 100 protein spots with differential expression, corresponding to 67 proteins, were identified and classed into 17 different functional groups. Upregulation of eight heat shock, oxidative response and amino acid biosynthesis-related proteins (e.g. Hsp78p, Ssa1p, Hsp60p, Ctt1p, Sod1p, Ahp1p, Met6p and Met17p), which may jointly maintain the cell redox homeostasis, was dependant on inoculation density. Significant increases in the levels of five proteins involved in glycolysis and alcohol biosynthesis pathways (e.g. Glk1p, Fba1p, Eno1p, Pdc1p and Adh1p) might play critical roles in improving ethanol productivity of the fermentation process and shortening the fermentation time when inoculation sizes were increased. Cell-density-dependent glycolytic variations of proteins involved in trehalose, glycerol biosynthesis and pentose phosphate pathway revealed shifts among metabolic pathways during fermentation with different inoculation sizes. Upregulation of three signal transduction proteins (Bmh1p, Bmh2p and Fpr1p) indicated that adequate cell-cell contacts improved cellular communication at high inoculation sizes. These findings provide insights into yeast responses to inoculation size and optimizing the direct inoculation of active dry yeast fermentation, so as to improve the ethanol production. PMID:19743421

  20. Phenomenological approach for describing environment dependent growths

    E-print Network

    Dibyendu Biswas; Swarup Poria

    2014-12-22

    Different classes of phenomenological universalities of environment dependent growths have been proposed. The logistic as well as environment dependent West-type allometry based biological growth can be explained in this proposed framework of phenomenological description. It is shown that logistic and environment dependent West-type growths are phenomenologically identical in nature. However there is a difference between them in terms of coefficients involved in the phenomenological descriptions. It is also established that environment independent and enviornment dependent biological growth processes lead to the same West-type biological growth equation. Involuted Gompertz function, used to describe biological growth processes undergoing atrophy or a demographic and economic system undergoing involution or regression, can be addressed in this proposed environment dependent description. In addition, some other phenomenological descriptions have been examined in this proposed framework and graphical representations of variation of different parameters involved in the description are executed.

  1. Influence of boundary condition types on unstable density-dependent flow.

    PubMed

    Ataie-Ashtiani, Behzad; Simmons, Craig T; Werner, Adrian D

    2014-01-01

    Boundary conditions are required to close the mathematical formulation of unstable density-dependent flow systems. Proper implementation of boundary conditions, for both flow and transport equations, in numerical simulation are critical. In this paper, numerical simulations using the FEFLOW model are employed to study the influence of the different boundary conditions for unstable density-dependent flow systems. A similar set up to the Elder problem is studied. It is well known that the numerical simulation results of the standard Elder problem are strongly dependent on spatial discretization. This work shows that for the cases where a solute mass flux boundary condition is employed instead of a specified concentration boundary condition at the solute source, the numerical simulation results do not vary between different convective solution modes (i.e., plume configurations) due to the spatial discretization. Also, the influence of various boundary condition types for nonsource boundaries was studied. It is shown that in addition to other factors such as spatial and temporal discretization, the forms of the solute transport equation such as divergent and convective forms as well as the type of boundary condition employed in the nonsource boundary conditions influence the convective solution mode in coarser meshes. On basis of the numerical experiments performed here, higher sensitivities regarding the numerical solution stability are observed for the Adams-Bashford/Backward Trapezoidal time integration approach in comparison to the Euler-Backward/Euler-Forward time marching approach. The results of this study emphasize the significant consequences of boundary condition choice in the numerical modeling of unstable density-dependent flow. PMID:23659688

  2. Real-time linear response for time-dependent density-functional theory Department of Physical Chemistry and the Lise Meitner Minerva-Center for Quantum Chemistry,

    E-print Network

    Baer, Roi

    Real-time linear response for time-dependent density-functional theory Roi Baer Department a linear-response approach for time-dependent density-functional theories using time-adiabatic functionals. The resulting theory can be performed both in the time and in the frequency domain. The derivation considers

  3. Mechanisms of density dependence in ducks: importance of space and per capita food.

    PubMed

    Nummi, Petri; Holopainen, Sari; Rintala, Jukka; Pöysä, Hannu

    2015-03-01

    The growth rate of populations usually varies over time, often in a density-dependent manner. Despite the large amount of literature on density dependence, relatively little is known of the mechanisms underlying the density-dependent processes affecting populations, especially per capita natality. We performed a 20-year study on the density dependence of brood production in two duck species differing in the stability of habitat use. Our study was conducted in a boreal watershed in southern Finland. We predicted that a diving duck common goldeneye Bucephala clangula, with more stable habitat use, would show stronger density dependence than a dabbling duck common teal Anas crecca. We investigated reproductive output in relation to the duck pair density per se as well as in relation to per capita food availability. As predicted, the reproductive output of the goldeneye showed a more density-dependent pattern than that of the teal. The number of goldeneye broods per pair decreased when the pair density increased. This was not the case with the teal. However, when the breeding success was measured by taking into account per capita food availability, both species showed density dependence. Our results imply that the occurrence of density dependent processes may vary even in sympatric ducks breeding in the same, relatively stable landscape. Our analysis also emphasizes that it is important to take into account per capita resource availability when studying the density dependence of breeding success. Both findings have important implications for the management and conservation of species. PMID:25398723

  4. Effects of age, sex and density on body weight of Norwegian red deer: evidence of density-dependent senescence.

    PubMed

    Mysterud, A; Yoccoz, N G; Stenseth, N C; Langvatn, R

    2001-05-01

    There are only a few recent studies that have demonstrated senescence in ungulates and nothing is known regarding how patterns of senescence may vary as a function of density Senescence in general is linked to the cost of reproduction, which probably increases with density in ungulates and may differ between the sexes. Further, senescence in ungulates is also regarded to be a function of tooth wear rates. As density dependence and sexual differences in food choice have been well documented, this may lead to different tooth wear rates and, thus, possibly density-dependent and sex-specific patterns of senescence. We therefore investigated the effects of age, sex, density and their possible interactions on the variability of body weight in 29,047 red deer harvested during 1965-1998 from Norway, out of which 380 males and 1452 females were eight years or older. There was clear evidence that spatio-temporal variation in density correlated negatively with body weights. In addition, there was evidence of senescence in both male and female red deer. Age at onset of senescence in females was after 20 years of age and independent of population density. In males, the onset and rate of senescence increased with increasing population density. The onset of senescence for males was at ca. 12 years of age at low density, but decreased to approximately ten years of age at high density. The pattern of density-dependent senescence in males, but not that in females, can be explained if (i) the cost of reproduction increases with density more strongly in male than in female red deer, and/or (ii) tooth wear rates are density dependent in males, but not in females. We discuss the ability of these two different, not mutually exclusive hypotheses in explaining the observed pattern of senescence. PMID:11370963

  5. Spin-dependent localized Hartree-Fock density-functional calculation of singly, doubly, and triply excited and Rydberg states of He- and Li-like ions

    E-print Network

    Chu, Shih-I; Zhou, Zhongyuan

    2005-02-28

    A spin-dependent density-functional approach for the calculation of highly and multiply excited state of atomic system is proposed based on the localized Hartree-Fock density-functional method and Slater’s diagonal sum rule. In this approach...

  6. Analysis of the Independent Particle Model approach to Nuclear Densities

    E-print Network

    F. B. Guimaraes

    2012-08-31

    We present an analysis of the use of the Darwin-Fowler approximation in connection with the statistical IPM, by comparing the results of our recent studies with the occupation number approach (OCN) and some traditional statistical independent particle model (IPM) approaches. The analysis of level density works based on the statistical IPM reveals that the use of the the Darwin-Fowler approximation, in some of them, is theoretically inconsistent and some of their results should rather be considered as theoretical coincidences with other consistent approaches, than proofs of their validity. We conclude that, in general, the use of the Darwin-Fowler approximation with the statistical IPM should be used criteriously or, if possible, avoided altogether and suggest that the combinatorial IPM approaches have important advantages over the other models and formalisms analyzed in this paper, especially regarding the consistency of the microscopic description of the nuclear structure and dynamics of non highly excited systems.

  7. Density dependent stopping power and muon sticking in muon catalyzed D-T fusion

    SciTech Connect

    Rafelski, H.E.; Mueller, B.

    1988-12-27

    The origin of the experimentally observed (1) density dependence of the muon alpha sticking fraction ..omega../sub s/ in muon catalyzed deuterium- tritium fusion is investigated. We show that the reactivation probability depends sensitively on the target stopping power at low ion velocities. The density dependence of the stopping power for a singly charged projectile in liquid heavy hydrogen is parametrized to simulate possible screening effects and a density dependent effective ionization potential. We find that, in principle, a description of the measured density dependence is possible, but the required parameters appear too large. Also, the discrepancy with observed (He..mu..) X-ray data widens.

  8. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    SciTech Connect

    Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R. [Department of Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada)

    2014-10-28

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  9. Relativistic Coulomb excitation within the time dependent superfluid local density approximation.

    PubMed

    Stetcu, I; Bertulani, C A; Bulgac, A; Magierski, P; Roche, K J

    2015-01-01

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus (238)U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. The one-body dissipation of collective dipole modes is shown to lead a damping width ?(?)?0.4??MeV and the number of preequilibrium neutrons emitted has been quantified. PMID:25615463

  10. The importance of prior choice in model selection: a density dependence example

    E-print Network

    Thomas, Len

    DEPENDENCE Density dependence within a species is usually the primary means of numerical self-regulation use a novel sequential Monte Carlo method (particle learning) not previously applied to ecological sources, states that density dependence is necessary for a regulated population. That is, a population

  11. Effects of electron structure and multielectron dynamical response on strong-field multiphoton ionization of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional-theory approach

    E-print Network

    Chu, Shih-I; Telnov, Dmitry A.

    2009-04-03

    .2 19.0 #2;Ref. #3;18#4;#1; 1#7;g #2;HOMO#1; 16.0 15.7 #2;Ref. #3;18#4;#1; DMITRY A. TELNOV AND SHIH-I CHU PHYSICAL REVIEW A 79, 041401#2;R#1; #2;2009#1; RAPID COMMUNICATIONS 041401-2 total survival probability P#2;s#1; can be calculated as P#2;s#1... dominant over the highest-occupied molecular orbital, depending on detailed electronic structure and symmetry, laser field intensity, and orientation angle. DOI: 10.1103/PhysRevA.79.041401 PACS number#2;s#1;: 33.80.Rv, 31.15.ee Processes involving diatomic...

  12. Density-dependent mother-yearling association in bighorn sheep

    Microsoft Academic Search

    MAURO LUCHERINI; MARCO FESTA-BIANCHET; JON T. JORGENSON

    Post-weaning mother-daughter associations are typical of many ungulates, but their existence among sheep is controversial. In bighorn sheep, Ovis canadensis, at high population density, strong mother-yearling associations were found involving mostly ewes whose lamb-of-the-year died at or soon after birth. At low population density, there were no mother-yearling associations regardless of maternal reproductive status. Non-lactating ewes and most ewes caring

  13. Altitude Dependence of Neutral Density Geomagnetic Storm Response

    Microsoft Academic Search

    F. A. Marcos; C. Lin; M. Noah; W. J. Burke; S. B. Cable; J. O. Wise; E. K. Sutton

    2010-01-01

    New formulations for satellite neutral density response to geomagnetic activity developed for the Jacchia-Bowman 2008 empirical model were based on data at GRACE altitudes and are applicable for large geomagnetic storms (ap>75). Storm response from the Jacchia-Bowman 2008 and NRLMSIS empirical models are tested at low satellite altitudes using a unique historic set of accelerometer neutral density data from satellites

  14. How important is self-consistency for the dDsC density dependent dispersion correction?

    SciTech Connect

    Brémond, Éric; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)] [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Golubev, Nikolay [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland) [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Steinmann, Stephan N., E-mail: sns25@duke.edu [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)

    2014-05-14

    The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.

  15. Can inverse density dependence at small spatial scales produce dynamic instability in animal populations?

    Microsoft Academic Search

    J. Wilson White

    All else being equal, inversely density-dependent (IDD) mortality destabilizes population dynamics. However, stability has\\u000a not been investigated for cases in which multiple types of density dependence act simultaneously. To determine whether IDD\\u000a mortality can destabilize populations that are otherwise regulated by directly density-dependent (DDD) mortality, I used scale\\u000a transition approximations to model populations with IDD mortality at smaller “aggregation” scales

  16. Brief review related to the foundations of time-dependent density functional theory

    Microsoft Academic Search

    Thomas A. NiehausNorman; Norman H. March

    2010-01-01

    The electron density n(r,t), which is the central tool of time-dependent density functional theory, is presently considered to be derivable from a one-body\\u000a time-dependent potential V(r,t), via one-electron wave functions satisfying a time-dependent Schrödinger equation. This is here related via a generalized\\u000a equation of motion to a Dirac density matrix now involving t. Linear response theory is then surveyed, with

  17. Volume dependence of two-dimensional large-N QCD with a nonzero density of baryons

    SciTech Connect

    Bringoltz, Barak [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2009-05-15

    We take a first step towards the solution of QCD in 1+1 dimensions at nonzero density. We regularize the theory in the UV by using a lattice and in the IR by putting the theory in a box of spatial size L. After fixing to axial gauge we use the coherent states approach to obtain the large-N classical Hamiltonian H that describes color neutral quark-antiquark pairs interacting with spatial Polyakov loops in the background of baryons. Minimizing H we get a regularized form of the 't Hooft equation that depends on the expectation values of the Polyakov loops. Analyzing the L dependence of this equation we show how volume independence, a la Eguchi and Kawai, emerges in the large-N limit, and how it depends on the expectation values of the Polyakov loops. We describe how this independence relies on the realization of translation symmetry, in particular, when the ground state contains a baryon crystal. Finally, we remark on the implications of our results on studying baryon density in large-N QCD within single-site lattice theories and on some general lessons concerning the way four-dimensional large-N QCD behaves in the presence of baryons.

  18. Determination of density and momentum dependence of nuclear symmetry potentials with asymmetric heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Showalter, Rachel Hodges

    The nuclear symmetry energy, which is important for asymmetric nuclear systems including rare isotopes and neutron stars, has been studied through both experimental and theoretical approaches, spanning a range of densities from below and above normal nuclear matter density. In the past decade, significant constraints on the density dependence have been obtained in the subsaturation density region, from Heavy Ion Collision (HIC) experiments as well as experiments probing nuclear structure. On the other hand, very little has been determined about the symmetry energy at suprasaturation densities; experimentally, this density region is only accessible in HICs. It is therefore important to understand how to extract nuclear symmetry energy information from HIC at high energies where high density nuclear matter is created in a very brief instant. Symmetry energy constraints from HICs are determined by comparing experimental observables with those calculated using transport models. The goals of this dissertation are to identify the observables most sensitive to the symmetry energy strength, the effective mass splitting, and the in-medium nucleon-nucleon cross sections, sigmaNN, at the region just above saturation density which can be created with heavy ion beams available at NSCL. With better constraints in place, the predictive power of transport models will improve. Recent constraints from HIC experiments have relied on symmetric systems, which are predicted to be sensitive to both the density- and the momentum-dependence of the symmetry potentials. In the study of the nuclear equation of state, asymmetric systems have proven to be more effective at low energy in exploring sensitivities to nucleon-nucleon collisions, which is an important input to any transport model. In this work, particles that were emitted from Ca+Sn systems, with a 48Ca beam impinging on 112Sn or 124Sn targets are measured. The experimental data were compared to predictions from the Improved Molecular Dynamics model with Skyrme interactions (ImQMD-Sky). Four Skyrme parameter sets were chosen that span current constraints on the density dependence of the symmetry energy and on the nucleon effective mass splitting, m*n?m* p, which results from the momentum dependent interaction potentials. ImQMD-Sky calculations were repeated using an alternate form for sigma NN.. The yields and ratios of both free and coalescence invariant experimental spectra, constructed as a function of the transverse momentum, were contrasted to those simulated by ImQMD-Sky. To select the overlap region between beam and target nuclei, a mid-rapidity cut was taken in the analysis. The parameter sets included in this analysis did not show a significant sensitivity to the symmetry energy strength, but do suggest that the neutron-to-proton ratio bears a large sensitivity both to the nucleon effective mass splitting and the sigmaNN forms used in the calculations. Comparison to the measured coalescence invariant spectra suggests a better agreement with calculations employing effective masses that are greater for neutrons than for protons and a set of isospin-dependent sigma NN. The results in this analysis for the asymmetric Ca+Sn reaction are compared with previous results for a symmetric Sn+Sn reaction at 120 AMeV, which shows an opposite conclusion for low energy particles.

  19. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities.

    PubMed

    Hauzy, Céline; Gauduchon, Mathias; Hulot, Florence D; Loreau, Michel

    2010-10-01

    Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronizses local dynamics, whereas intraspecific density-dependent dispersal may either synchronize or desynchronize it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation. PMID:20638390

  20. Nuclear level density parameter: its dependence on spin and temperature

    SciTech Connect

    Rajasekaran, M.; Rajasekaran, T.R.; Arunachalam, N.

    1988-01-01

    The effect of temperature and angular momentum on the nuclear level density parameter is investigated. Pairing correlations and deformation degrees of freedom are also included. The level density parameter fluctuates at low temperatures and the effect of angular momentum is very pronounced at low temperatures. The variation of shell correction with angular momentum is also studied. Results for the nuclei /sub //sub <1/ /sub 66//sup 58/Dy, /sub //sub <1/ /sub 78//sup 94/Pt, and /sub //sub <1/ /sub 70//sup 70/Yb are presented.

  1. Spin-dependent localized Hartree-Fock density-functional calculation of singly, doubly, and triply excited and Rydberg states of He and Li-like ions

    Microsoft Academic Search

    Zhongyuan Zhou; Shih-I. Chu

    2005-01-01

    A spin-dependent density-functional approach for the calculation of highly and multiply excited state of atomic system is proposed based on the localized Hartree-Fock density-functional method and Slater's diagonal sum rule. In this approach, electron spin orbitals in an electronic configuration are obtained first by solving the Kohn-Sham equation with an exact nonvariational spin-dependent localized Hartree-Fock exchange potential. Then a single-Slater-determinant

  2. Excursion behaviour of female roe deer may depend on density.

    PubMed

    Bocci, A; Aiello, V; Lovari, S

    2013-07-01

    The excursion behaviour of roe does was studied for two years in a low density population (ca. 6.5 ind./100 ha), in an Apennine-continental forest of Southern Italy, through satellite radiotracking. During the rutting period, our radiotagged does (N=6) moved well outside their summer ranges, with an average exploration area eight times greater than summer ranges. The median duration of excursions was 51 h (range: 10-99 h). One female stayed away for a total of 11 days. In order further to understand this behaviour, we reviewed all studies (N=6) dealing with excursion behaviour of roe does and carried out in areas where population density was assessed through the same method (i.e. drive counts). Out of five ecological parameters included in the analysis, excursion behaviour of roe does was found significantly and negatively associated only to population density: when density was low, the proportion of roaming does increased, probably because of the lower availability of "free" bucks during the short time of female oestrous. PMID:23567912

  3. Time Dependent Density Functional Theory Lucia Reining & Francesco Sottile

    E-print Network

    Botti, Silvana

    what you want,.....so that you can understand! Hn (x1 ,....xN ) = En n (x1 ,....xN ) Want: total systems are often "classical" #12;(TD)DFT point of view: moving density Change of potentials h VH +VXC * transport * feed in MBPT *............... #12;Notes: * Finite systems and correlation * The "bandgap problem

  4. Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels.

    PubMed

    Gilles, J R L; Lees, R S; Soliban, S M; Benedict, M Q

    2011-03-01

    Anopheles arabiensis Patton (Diptera: Culicidae) larvae were reared from hatching to the adult stage in the laboratory under a range of diet and larval concentrations using a factorial design. The range circumscribed most of the larval densities and diet concentrations that would allow larval growth and survival using the particular diet formulation and water volume we tested. We determined how these variables affected three outcomes, as follows: larval development rate, survival, and wing length. As has been reported previously, negative density dependence of survival as a function of increased larval density was the prevalent effect on all outcomes when diet was limiting. When diet was not limiting, density dependence was not observed, and three cases of overcompensatory survival were seen. We discuss these results in the context of diet and larval densities for mass rearing and the effect of larval competition on control strategies. PMID:21485365

  5. Nuclear-density dependence of the electron-proton coupling

    SciTech Connect

    van der Steenhoven, G.; van den Berg, A.M.; Blok, H.P.; Boffi, S.; van den Brand, J.F.J.; Ent, R.; de Forest T. Jr.; Giusti, C.; den Herder, J.W.A.; Jans, E.; and others

    1987-04-27

    A quasielastic (e,e'p) experiment has been performed on /sup 6/Li for both backward- (transverse) and forward-angle (longitudinal) electron kinematics. Cross sections for knockout of protons from two different orbits (1s and 1p) have been measured simultaneously. The densities probed by the (e,e'p) reaction differ by a factor of 4 between these orbits. In both cases the backward/forward cross-section ratio deviates by the same amount from the impulse approximation.

  6. Density-dependent habitat selection by brown-headed cowbirds ( Molothrus ater ) in tallgrass prairie

    Microsoft Academic Search

    William E. Jensen; Jack F. Cully

    2005-01-01

    Local distributions of avian brood parasites among their host habitats may depend upon conspecific parasite density. We used isodar analysis to test for density-dependent habitat selection in brown-headed cowbirds ( Molothrus ater) among tallgrass prairie adjacent to wooded edges, and prairie interior habitat (>100 m from wooded edges) with and without experimental perches. Eight study sites containing these three habitat treatments

  7. Density Dependent Stochastic Navier-Stokes Equations with Non-Lipschitz Random Forcing

    NASA Astrophysics Data System (ADS)

    Sango, Mamadou

    In this work, we investigate the question of existence of weak solutions to the density dependent stochastic Navier-Stokes equations. The noise considered contains functions which depend nonlinearly on the velocity and which do not satisfy the Lipschitz condition. Furthermore, the initial density is allowed to vanish. We introduce a suitable notion of probabilistic weak solution for the problem and prove its existence.

  8. Study of Proto Strange Stars in Temperature and Density Dependent Quark Mass Model

    Microsoft Academic Search

    V. K. Gupta; Asha Gupta; S. Singh; J. D. Anand

    2003-01-01

    We report on the study of the mass-radius (M-R) relation and the radial oscillations of proto strange stars. For the quark matter we have employed the very recent modification, the temperature and density dependent quark mass model of the well known density dependent quark mass model. We find that the maximum mass the star can support increases significantly with the

  9. Modeling density dependent flow in the sedimentary basin of Thuringia

    NASA Astrophysics Data System (ADS)

    Zech, A.; Zehner, B.; Fischer, T.; Kolditz, O.; Attinger, S.

    2012-04-01

    Salty groundwater reaching the surface or coming close to it is a phenomena that can be observed in many places of the Thuringian Basin. However, it is not obvious, why denser brine overlays lighter fresh water in this region. The hydrogeological processes which cause the rising of saltwater plumes from deeper geological layers to the surface are not yet fully understood. The goal of this modeling project is to investigate the mechanism of brine transport within the aquifers of sedimentary basins in general and of Thuringian Basin in particular. In this study we focus at investigating the fluid dynamics of the basin and how the fluid convection of the deep horizons interacts with groundwater flow near the surface. By gradually increasing the complexity of our model we analyze the major mechanism influencing the flow pattern: geology and hydraulic properties, fluid density differences caused by temperature and salt concentration gradients, fractures and faults as well as boundary conditions of the model, like inflow, outflow and groundwater recharge. For our numerical investigations we use a cross section of the Thuringian basin of approximately 80km length and maximal 800m height. The hydrogeological model is based on the major stratigraphical units from upper Perm (Zechstein) to upper Triassic (Keuper) with the lower Triassic (Bundsandstein) formations representing the main aquifer. The structural model as well as aquifer parameters are provided by geological partner groups of the University of Jena, Germany. To investigate hydrogeological scenarios we use the groundwater simulation program OpenGeoSys, which allows us to calculate thermally, hydrologically and chemically coupled processes. The challenge for us is to include density driven flow as a numerically very sensitive process on a grid that represents a large scale geologically realistic setting. With this work we contribute to the understanding of fluid convection processes influenced by density differences and local geological characteristics, especially for the local conditions in the sedimentary basin of Thuringia.

  10. Broadcasting but not receiving: density dependence considerations for SETI signals

    E-print Network

    Reginald D. Smith

    2010-02-07

    This paper develops a detailed quantitative model which uses the Drake equation and an assumption of an average maximum radio broadcasting distance by an communicative civilization to derive a minimum civilization density for contact between two civilizations to be probable in a given volume of space under certain conditions, the amount of time it would take for a first contact, and whether reciprocal contact is possible. Results show that under certain assumptions, a galaxy can be teeming with civilizations yet not have a guarantee of communication between any of them given either short lifetimes or small maximum distances for communication.

  11. Running Head: Neighborhood dependent seedling survival1 Does relatedness matter? Phylogenetic density dependent survival of seedlings in a tropical2

    E-print Network

    Minnesota, University of

    and/or survival (collectively performance) among49 conspecifics (Wright 2002). Plant performance#12;1 Running Head: Neighborhood dependent seedling survival1 Does relatedness matter? Phylogenetic density dependent survival of seedlings in a tropical2 forest3 Edwin Lebrija-Trejos1,2* (lebrijaee

  12. Negative density-dependent dispersal in the American black bear (Ursus americanus) revealed by noninvasive sampling and genotyping

    PubMed Central

    Roy, Justin; Yannic, Glenn; Côté, Steeve D; Bernatchez, Louis

    2012-01-01

    Although the dispersal of animals is influenced by a variety of factors, few studies have used a condition-dependent approach to assess it. The mechanisms underlying dispersal are thus poorly known in many species, especially in large mammals. We used 10 microsatellite loci to examine population density effects on sex-specific dispersal behavior in the American black bear, Ursus americanus. We tested whether dispersal increases with population density in both sexes. Fine-scale genetic structure was investigated in each of four sampling areas using Mantel tests and spatial autocorrelation analyses. Our results revealed male-biased dispersal pattern in low-density areas. As population density increased, females appeared to exhibit philopatry at smaller scales. Fine-scale genetic structure for males at higher densities may indicate reduced dispersal distances and delayed dispersal by subadults. PMID:22822432

  13. Density?Dependent Parasitoid Recruitment per Parasitized Host: Effects on Parasitoid?Host Dynamics

    Microsoft Academic Search

    1997-01-01

    Models of parasitoid-host dynamics are analyzed that include direct density depen- dence in the host population and either parasitoid- or host-density-dependent variation in parasit- oid recruitment per parasitized host (parasitoid ''yield''). The principal question addressed is how these forms of density dependence in parasitoid dynamics combine with aggregated parasitism to affect the stability of the models, in relation to suppression

  14. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    NASA Astrophysics Data System (ADS)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.

    2012-06-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  15. Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

    SciTech Connect

    Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas

    2006-03-17

    A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars.

  16. Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system.

    PubMed

    Hauzy, Celine; Hulot, Florence D; Gins, Audrey; Loreau, Michel

    2007-05-01

    1. Dispersal intensity is a key process for the persistence of prey-predator metacommunities. Consequently, knowledge of the ecological mechanisms of dispersal is fundamental to understanding the dynamics of these communities. Dispersal is often considered to occur at a constant per capita rate; however, some experiments demonstrated that dispersal may be a function of local species density. 2. Here we use aquatic experimental microcosms under controlled conditions to explore intra- and interspecific density-dependent dispersal in two protists, a prey Tetrahymena pyriformis and its predator Dileptus sp. 3. We observed intraspecific density-dependent dispersal for the prey and interspecific density-dependent dispersal for both the prey and the predator. Decreased prey density lead to an increase in predator dispersal, while prey dispersal increased with predator density. 4. Additional experiments suggest that the prey is able to detect its predator through chemical cues and to modify its dispersal behaviour accordingly. 5. Density-dependent dispersal suggests that regional processes depend on local community dynamics. We discuss the potential consequences of density-dependent dispersal on metacommunity dynamics and stability. PMID:17439471

  17. Density dependence of spin relaxation in GaAs quantum well at room temperature

    NASA Astrophysics Data System (ADS)

    Teng, L. H.; Zhang, P.; Lai, T. S.; Wu, M. W.

    2008-10-01

    Carrier density dependence of electron spin relaxation in an intrinsic GaAs quantum well is investigated at room temperature using time-resolved circularly polarized pump-probe spectroscopy. It is revealed that the spin relaxation time first increases with density in the relatively low-density regime where the linear D'yakonov-Perel' spin-orbit coupling terms are dominant, and then tends to decrease when the density is large and the cubic D'yakonov-Perel' spin-orbit coupling terms become important. These features are in good agreement with theoretical predictions on density dependence of spin relaxation by Lüet al. (Phys. Rev. B, 73 (2006) 125314). A fully microscopic calculation based on numerically solving the kinetic spin Bloch equations with both the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms included, reproduces the density dependence of spin relaxation very well.

  18. A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities

    NASA Astrophysics Data System (ADS)

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2013-01-01

    A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g- model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf. Program summaryProgram title: MM Catalogue identifier: AENM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 193181 No. of bytes in distributed program, including test data, etc.: 1298585 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Any architecture with a Fortran 90 compiler and MPI. Operating system: Linux. RAM: Proportional to the system size, in our examples, up to 75Mb Classification: 17.15. External routines: MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/) Nature of problem: Calculating of the spin- and parity-dependent nuclear level density. Solution method: The algorithm implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The code is parallelized using the Message Passing Interface and a master-slaves dynamical load-balancing approach. Restrictions: The program uses two-body interaction in a restricted single-level basis. For example, GXPF1A in the pf-valence space. Running time: Depends on the system size and the number of processors used (from 1 min to several hours).

  19. A new approach for density contrast interface inversion based on the parabolic density function in the frequency domain

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Li, Yonghua; Zhang, Enhui

    2015-05-01

    Density contrast interface inversion is one of the primary subjects in gravity fields for understanding the Earth's interior structure. In this paper, we presented a new 3D approach for density contrast interface inversion based on the parabolic density function in the frequency domain. The Parabolic density function is adopted to better reflect the real density structure in the subsurface. And the frequency-domain algorithm is utilized to enhance computational efficiency of the forward modeling and inversion. We first derived formula of the frequency-domain parabolic density function, and then presented its procedure for forward modeling and inversion of gravity anomalies to determine density interfaces underground. We also proposed the related techniques for determining the model density parameters and the referencing datum depth, as well as for accelerating convergence. The synthetic data test demonstrated that the new approach and its related techniques are effective and reliable. Finally, we utilized the new approach to obtain the Moho depth distribution in the Sichuan-Yunnan region, China. The result of our approach is consistent well with that from the receiver function, and is better than that from the conventional constant density function approach.

  20. Attosecond time delay in valence photoionization and photorecombination of argon: A time-dependent local-density-approximation study

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed El-Amine; Dixit, Gopal; Ivanov, Misha; Chakraborty, Himadri S.

    2015-06-01

    We determine and analyze the quantum phases and time delays in photoionization and photorecombination of valence 3 p and 3 s electrons of argon using the Kohn-Sham local-density-functional approach. The time-dependent local-density approximation is used to account for the electron correlation. Resulting attosecond Wigner-Smith time delays show very good agreement with the recent experiment on argon that measured the delay in 3 p photorecombination [S. B. Schoun et al., Phys. Rev. Lett. 112, 153002 (2014), 10.1103/PhysRevLett.112.153002].

  1. Magnetized strange quark matter in a mass-density-dependent model

    NASA Astrophysics Data System (ADS)

    Hou, Jia-Xun; Peng, Guang-Xiong; Xia, Cheng-Jun; Xu, Jian-Feng

    2015-01-01

    We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation, charge neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression to maintain thermodynamic consistency. At fixed density, the energy density of magnetized SQM varies with the magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×1019 Gauss when the density is fixed at two times the normal nuclear saturation density.

  2. E xcited E lectronic States of carotenoids; Time-Dependent Density-Matrix-Response Algorithm

    E-print Network

    Tretiak, Sergei

    E xcited E lectronic States of carotenoids; Time-Dependent Density-Matrix-Response Algorithm Sergei, Bosonization, Carotenoids. I . I NTRODUCTI ON T he complete information on the optical response of a quantum

  3. Density-dependent outcomes in a digestive mutualism between carnivorous Roridula plants and their associated hemipterans

    Microsoft Academic Search

    Bruce Anderson; Jeremy J. Midgley

    2007-01-01

    Recent studies have shown that mutualisms often have variable outcomes in space and time. In particular, the outcomes may\\u000a be dependent on the density of the partners with unimodal or saturating outcomes providing stability to the mutualism. We\\u000a examine density-dependent outcomes of an obligate, species-specific mutualism between a South African carnivorous plant (Roridula dentata) and a hemipteran (Pameridea) that facilitates

  4. A metamaterial having a frequency dependent elasticity tensor and a zero effective mass density

    E-print Network

    Graeme Milton; Pierre Seppecher

    2011-05-04

    Within the context of linear elasticity we show that a two-terminal network of springs and masses, can respond exactly the same as a normal spring, but with a frequency dependent spring constant. As a consequence a network of such springs can have a frequency dependent effective elasticity tensor but zero effective mass density. The internal masses influence the elasticity tensor, but do not contribute to the effective mass density at any frequency.

  5. Influence of field dependent critical current density on flux profiles in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Takacs, S.

    1990-01-01

    The field distribution for superconducting cylinders and slabs with field dependent critical current densities in combined DC and AC magnetic fields and the corresponding magnetic fluxes are calculated. It is shown that all features of experimental magnetic-field profile measurements can be explained in the framework of field dependent critical current density. Even the quantitative agreement between the experimental and theoretical results using Kim's model is very good.

  6. Density-dependent dispersal and relative dispersal affect the stability of predator–prey metacommunities

    Microsoft Academic Search

    Céline Hauzy; Mathias Gauduchon; Florence D. Hulot; Michel Loreau

    2010-01-01

    Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator–prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium,

  7. Experimental evidence for density-dependent survival in mallard ( Anas platyrhynchos ) ducklings

    Microsoft Academic Search

    Gunnar Gunnarsson; Johan Elmberg; Kjell Sjöberg; Hannu Pöysä; Petri Nummi

    2006-01-01

    It is unresolved to what extent waterfowl populations are regulated by density-dependent processes. By doing a 2-year crossover perturbation experiment on ten oligotrophic boreal lakes we addressed the hypothesis that breeding output is density dependent. Wing-clipped mallard (Anas platyrhynchos) hens were introduced with their own brood and then monitored for 24 days. Predicted responses were that per capita duckling and hen

  8. Radial oscillations of magnetized proto strange stars in temperature- and density-dependent quark mass model

    Microsoft Academic Search

    V. K. Gupta; Asha Gupta; S. Singh; J. D. Anand

    2003-01-01

    We report on the study of the mass-radius (M–R) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent\\u000a modification, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model.\\u000a We find that the effect of magnetic field, both on the maximum mass and radial frequencies,

  9. Study of Proto Strange Stars (PSS) in Temperature and Density Dependent Quark Mass Model

    Microsoft Academic Search

    V. K. Gupta; Asha Gupta; S. Singh; J. D. Anand

    2002-01-01

    We report on the study of the mass-radius (M-R) relation and the radial\\u000aoscillations of proto strange stars. For the quark matter we have employed the\\u000awell known density dependent quark mass model and its very recent modification,\\u000athe temperature and density dependent quark mass model. We find that the\\u000amaximum mass the star can support increases significantly with the

  10. On compressible Navier–Stokes equations with density dependent viscosities in bounded domains

    Microsoft Academic Search

    Didier Bresch; Benoît Desjardins; David Gérard-Varet

    2007-01-01

    The present note extends to smooth enough bounded domains recent results about barotropic compressible Navier–Stokes systems with density dependent viscosity coefficients. We show how to get the existence of global weak solutions for both classical Dirichlet and Navier boundary conditions on the velocity, under appropriate constraints on the initial density profile and domain curvature. An additional turbulent drag term in

  11. Time-dependent series variance learning with recurrent mixture density networks

    E-print Network

    Tino, Peter

    to capture general non-Gaussian density specifications of `arbitrary' shapes using mixtures of Gaussians [6 conditional mixing coefficients, as well as the means and variances of its Gaussian mixture components. SecondTime-dependent series variance learning with recurrent mixture density networks Nikolay Nikolaev a

  12. WAVELENGTH DEPENDENT EFFECTIVE TRAP DENSITY IN CdTe : EVIDENCE FOR THE PRESENCE OF TWO

    E-print Network

    1 WAVELENGTH DEPENDENT EFFECTIVE TRAP DENSITY IN CdTe : EVIDENCE FOR THE PRESENCE OF TWO determination of the effective trap density in CdTe:V is performed using both counterpropagating (small grating.1016/S0030-4018(96)00516-0 #12;2 Photorefractive semiconductors like CdTe are characterized by a low

  13. Temporal changes in the strength of density-dependent mortality and growth in intertidal barnacles

    Microsoft Academic Search

    Stuart R. Jenkins; Jefferson Murua; Michael T. Burrows

    2008-01-01

    Summary 1. In demographically open marine systems, the extent to which density-dependent processes in the benthic adult phase are required for population persistence is unclear. At one extreme, represented by the recruitment limitation hypothesis, larval supply may be insufficient for the total population size to reach a carrying capacity and density-independent mortality predominates. At the opposite extreme, populations are saturated

  14. The diffusional properties of dendrites depend on the density of dendritic spines

    E-print Network

    De Schutter, Erik

    The diffusional properties of dendrites depend on the density of dendritic spines Fidel Santamaria that molecular trapping by dendritic spines causes diffusion along spiny dendrites to be anomalous and that the value of the anomalous exponent (dw) is proportional to spine density in both cell types. To test

  15. Density-dependent foraging behaviour of sheep on alpine pastures: effects of scale

    Microsoft Academic Search

    K. Kausrud; A. Mysterud; Y. Rekdal; O. Holand; G. Austrheim

    2006-01-01

    Foraging patterns of large herbivores may give important clues as to why their life history varies depending on population density. In this landscape-scale experi- ment, domestic sheep Ovis aries were kept at high (80 sheep km? 2) and low (25 sheep km? 2) population densities during summer in high mountain pastures in Hol, Norway. We predicted an increasing use of

  16. The effects of density dependent resource limitation on size of wild reindeer

    Microsoft Academic Search

    Terje Skogland

    1983-01-01

    A density-dependent decrement in size for wild reindeer from 12 different Norwegian herds at 16 different densities was shown using lower jawbone-length as the criterion of size. This criterion was tested and found to adequately predict body size of both bucks and does. Lactation in does did not affect jaw length but significantly affected dressed weights.

  17. ANALYSIS OF DENSITY-DEPENDENT SURVIVAL OF DIABROTICA (COLEOPTERA: CHRYSOMELIDAE) IN CORN FIELDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed published field data concerning rootworm survival from egg to adult to create general relationships between density and survival. A series of equations were generated that best fit the data and these equations may be used to help understand density-dependent survival of future studies. ...

  18. Frequency-dependent response properties and excitation energies from one-electron density matrix functionals.

    PubMed

    Pernal, Katarzyna; Cioslowski, Jerzy

    2007-12-01

    The recent formulation of the time-dependent density matrix functional theory (TD-DMFT) has opened an avenue to calculations of frequency-dependent response properties and excitation energies of atoms and molecules. In practice, the accuracy of the computed data is limited by both the errors inherent to the adiabatic approximation or its modifications and the quality of the energy functionals. The relative importance of these two factors is carefully assessed with test calculations on diatomic molecules with few electrons. The test results clearly demonstrate the superiority of an ad hoc approach that corrects the improper behavior of the adiabatic approximation at the low-frequency limit. Even more importantly, TD-DMFT convincingly removes the ambiguity in the choice of the two-electron integrals that is present in the stationary-state case. On the other hand, paralleling the previously reached conclusions pertinent to ionization potentials, the presently available BBC-type functionals are found to be insufficiently accurate to provide reliable quantitative predictions of excitation energies. PMID:18004407

  19. Time-dependent density functional methods for Raman spectra in open-shell systems.

    PubMed

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra. PMID:24380604

  20. Size selectivity of predation by brown bears depends on the density of their sockeye salmon prey.

    PubMed

    Cunningham, Curry J; Ruggerone, Gregory T; Quinn, Thomas P

    2013-05-01

    Can variation in prey density drive changes in the intensity or direction of selective predation in natural systems? Despite ample evidence of density-dependent selection, the influence of prey density on predatory selection patterns has seldom been investigated empirically. We used 20 years of field data on brown bears (Ursus arctos) foraging on sockeye salmon (Oncorhynchus nerka) in Alaska, to test the hypothesis that salmon density affects the strength of size-selective predation. Measurements from 41,240 individual salmon were used to calculate variance-standardized selection differentials describing the direction and magnitude of selection. Across the time series, the intensity of predatory selection was inversely correlated with salmon density; greater selection for smaller salmon occurred at low salmon densities as bears' tendency to kill larger-than-average salmon was magnified. This novel connection between density dependence and selective predation runs contrary to some aspects of optimal foraging theory and differs from many observations of density-dependent selection because (1) the direction of selection remains constant while its magnitude changes as a function of density and (2) stronger selection is observed at low abundance. These findings indicate that sockeye salmon may be subject to fishery-induced size selection from both direct mechanisms and latent effects of altered predatory selection patterns on the spawning grounds, resulting from reduced salmon abundance. PMID:23594549

  1. Spatial, Temporal, and Density-Dependent Components of Habitat Quality for a Desert Owl

    PubMed Central

    Flesch, Aaron D.; Hutto, Richard L.; van Leeuwen, Willem J. D.; Hartfield, Kyle; Jacobs, Sky

    2015-01-01

    Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum) in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70) than weather (0.17) or conspecifics (0.13), evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways, integrated approaches that consider habitat resources, stochastic factors, and conspecifics are necessary to accurately assess habitat quality. PMID:25786257

  2. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    PubMed

    Flesch, Aaron D; Hutto, Richard L; van Leeuwen, Willem J D; Hartfield, Kyle; Jacobs, Sky

    2015-01-01

    Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum) in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70) than weather (0.17) or conspecifics (0.13), evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways, integrated approaches that consider habitat resources, stochastic factors, and conspecifics are necessary to accurately assess habitat quality. PMID:25786257

  3. An evaluation of density-dependent and density-independent influences on population growth rates in Weddell seals

    USGS Publications Warehouse

    Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.

    2009-01-01

    Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both environmental covariates and the seal abundance estimates that were developed here. An improved understanding of why vital rates change with changing population abundance will only come as we develop a better understanding of the processes affecting marine food resources in the Southern Ocean.

  4. Demographic variability and density-dependent dynamics of a free-ranging rhesus macaque population

    PubMed Central

    Hernández-Pacheco, Raisa; Rawlins, Richard G.; Kessler, Matthew J.; Williams, Lawrence E.; Ruiz-Maldonado, Tagrid M.; González-Martínez, Janis; Ruiz-Lambides, Angelina V.; Sabat, Alberto M.

    2014-01-01

    Density-dependence is hypothesized as the major mechanism of population regulation. However, the lack of long-term demographic data has hampered the use of density-dependent models in nonhuman primates. In this study, we make use of the long-term demographic data from Cayo Santiago’s rhesus macaques to parameterize and analyze both a density-independent and a density-dependent population matrix model, and compare their projections with the observed population changes. We also employ a retrospective analysis to determine how variance in vital rates, and covariance among them, contributed to the observed variation in long-term fitness across different levels of population density. The population exhibited negative density-dependence in fertility and the model incorporating this relationship accounted for 98% of the observed population dynamics. Variation in survival and fertility of sexually active individuals contributed the most to the variation in long-term fitness, while vital rates displaying high temporal variability exhibited lower sensitivities. Our findings are novel in describing density-dependent dynamics in a provisioned primate population, and in suggesting that selection is acting to lower the variance in the population growth rate by minimizing the variation in adult survival at high density. Because density-dependent mechanisms may become stronger in wild primate populations due to increasing habitat loss and food scarcity, our study demonstrates it is important to incorporate variation in population size, as well as demographic variability into population viability analyses for a better understanding of the mechanisms regulating the growth of primate populations. PMID:23847126

  5. Structural Implications of Reciprocal Exchange: A Power-Dependence Approach

    ERIC Educational Resources Information Center

    Bonacich, Phillip; Bienenstock, Elisa Jayne

    2009-01-01

    This paper presents and tests a general model to predict emergent exchange patterns and power differences in reciprocal exchange networks when individual actors follow the norm of reciprocity. With an interesting qualification, the experimental results reported here support the power-dependence approach (Emerson 1972a, b): those who acquire the…

  6. Reconstructing the adiabatic exchange-correlation kernel of time-dependent density-functional theory

    SciTech Connect

    Thiele, M.; Kuemmel, S. [Physikalisches Institut, Universitaet Bayreuth, D-95440 Bayreuth (Germany)

    2009-07-15

    The interacting and the Kohn-Sham static density-density response functions for different one-dimensional two-electron singlet systems are reconstructed numerically. From their inverse we obtain the exact static exchange-correlation kernel. This quantity represents the adiabatically exact approximation of the frequency-dependent exchange-correlation kernel that is crucial for time-dependent linear density-response theory. We investigate its performance for nonlocal perturbations and analyze its sum rule properties. We also compute the adiabatically exact transition energies that follow from the static kernel within linear-response theory.

  7. Representing the thermal state in time-dependent density functional theory.

    PubMed

    Modine, N A; Hatcher, R M

    2015-05-28

    Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state by a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wavefunctions are fixed by the initial state in TDDFT. We work to address this puzzle by (A) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (B) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble. PMID:26026438

  8. Representing the thermal state in time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Hatcher, R. M.

    2015-05-01

    Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state by a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wavefunctions are fixed by the initial state in TDDFT. We work to address this puzzle by (A) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (B) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble.

  9. Sexual segregation in North American elk: the role of density dependence

    PubMed Central

    Stewart, Kelley M; Walsh, Danielle R; Kie, John G; Dick, Brian L; Bowyer, R Terry

    2015-01-01

    We investigated how density-dependent processes and subsequent variation in nutritional condition of individuals influenced both timing and duration of sexual segregation and selection of resources. During 1999–2001, we experimentally created two population densities of North American elk (Cervus elaphus), a high-density population at 20 elk/km2, and a low-density population at 4 elk/km2 to test hypotheses relative to timing and duration of sexual segregation and variation in selection of resources. We used multi-response permutation procedures to investigate patterns of sexual segregation, and resource selection functions to document differences in selection of resources by individuals in high- and low-density populations during sexual segregation and aggregation. The duration of sexual segregation was 2 months longer in the high-density population and likely was influenced by individuals in poorer nutritional condition, which corresponded with later conception and parturition, than at low density. Males and females in the high-density population overlapped in selection of resources to a greater extent than in the low-density population, probably resulting from density-dependent effects of increased intraspecific competition and lower availability of resources. PMID:25691992

  10. Density-dependent natural selection in Drosophila: Adaptation to adult crowding

    E-print Network

    Rose, Michael R.

    Density-dependent natural selection in Drosophila: Adaptation to adult crowding AMITABH JOSHI,à WAN, Irvine, CA 92697-2525, USA Summary The eects of adult crowding on two components of ®tness were studied-dependent natural selection in the laboratory for over 50 generations. Three days of crowding, early in adult life

  11. Density-dependent carrier dynamics in a quantum dots-in-a-well heterostructure

    E-print Network

    Krishna, Sanjay

    The incorporation of semiconductor quantum dots into different heterostructures for applications in nanoscale lasingDensity-dependent carrier dynamics in a quantum dots-in-a-well heterostructure R. P. Prasankumar,1 dots-in-a-well DWELL heterostructure. We observe excitation-dependent shifts of the quantum dot energy

  12. From Patterns to Processes: Phase and Density Dependencies in the Canadian Lynx Cycle

    Microsoft Academic Search

    Nils C. Stenseth; Wilhelm Falck; Kung-Sik Chan; Ottar N. Bjornstad; Mark O'Donoghue; Howell Tong; Rudy Boonstra; Stan Boutin; Charles J. Krebs; Nigel G. Yoccoz

    1998-01-01

    Across the boreal forest of North America, lynx populations undergo 10-year cycles. Analysis of 21 time series from 1821 to the present demonstrates that these fluctuations are generated by nonlinear processes with regulatory delays. Trophic interactions between lynx and hares cause delayed density-dependent regulation of lynx population growth. The nonlinearity, in contrast, appears to arise from phase dependencies in hunting

  13. Density-dependent habitat selection by brown-headed cowbirds ( Molothrus ater) in tallgrass prairie.

    PubMed

    Jensen, William E; Cully, Jack F

    2005-01-01

    Local distributions of avian brood parasites among their host habitats may depend upon conspecific parasite density. We used isodar analysis to test for density-dependent habitat selection in brown-headed cowbirds ( Molothrus ater) among tallgrass prairie adjacent to wooded edges, and prairie interior habitat (>100 m from wooded edges) with and without experimental perches. Eight study sites containing these three habitat treatments were established along a geographical gradient in cowbird abundance within the Flint Hills region of Eastern Kansas and Oklahoma, USA. The focal host species of our study, the dickcissel ( Spiza americana), is the most abundant and preferred cowbird host in the prairie of this region. Cowbird relative abundance and cowbird:host abundance ratios were used as estimates of female cowbird density, whereas cowbird egg density was measured as parasitism frequency (percent of dickcissel nests parasitized), and parasitism intensity (number of cowbird eggs per parasitized nest). Geographical variation in cowbird abundance was independent of host abundance. Within study sites, host abundance was highest in wooded edge plots, intermediate in the experimental perch plots, and lowest in prairie interior. Cowbirds exhibited a pattern of density-dependent selection of prairie edge versus experimental perch and interior habitats. On sites where measures of cowbird density were lowest, all cowbird density estimates (female cowbirds and their eggs) were highest near (< or =100 m) wooded edges, where host and perch availability are highest. However, as overall cowbird density increased geographically, these density estimates increased more rapidly in experimental perch plots and prairie interiors. Variation in cowbird abundance and cowbird:host ratios suggested density-dependent cowbird selection of experimental perch over prairie interior habitat, but parasitism levels on dickcissel nests were similar among these two habitats at all levels of local cowbird parasitism. The density-dependent pattern of cowbird distribution among prairie edge and interior suggested that density effects on perceived cowbird fitness are greatest at wooded edges. A positive relationship between daily nest mortality rates of parasitized nests during the nestling period with parasitism intensity levels per nest suggested a density-dependent effect on cowbird reproductive success. However, this relationship was similar among habitats, such that all habitats should have been perceived as being equally suitable to cowbirds at all densities. Other unmeasured effects on cowbird habitat suitability (e.g., reduced cowbird success in edge-dwelling host nests, cowbird despotism at edges) might have affected cowbird habitat selection. Managers attempting to minimize cowbird parasitism on sensitive cowbird hosts should consider that hosts in otherwise less-preferred cowbird habitats (e.g., habitat interiors) are at greater risk of being parasitized where cowbirds become particularly abundant. PMID:15375686

  14. Time-dependent first-principles approaches to PV materials

    SciTech Connect

    Miyamoto, Yoshiyuki [Nanosystem Research Institute, AIST, Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 (Japan)

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  15. Density dependence in a recovering osprey population: demographic and behavioural processes.

    PubMed

    Bretagnolle, V; Mougeot, F; Thibault, J-C

    2008-09-01

    1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions. PMID:18564291

  16. Isospin-invariant Skyrme energy-density-functional approach with axial symmetry

    NASA Astrophysics Data System (ADS)

    Sheikh, J. A.; Hinohara, N.; Dobaczewski, J.; Nakatsukasa, T.; Nazarewicz, W.; Sato, K.

    2014-05-01

    Background: Density functional theory (DFT) is the microscopic tool of choice to describe properties of nuclei over the entire nuclear landscape, with a focus on medium-mass and heavy complex systems. Modern energy density functionals (EDFs) often offer a level of accuracy typical of phenomenological approaches based on parameters locally fitted to the data. It is clear, however, that in order to achieve high quality of predictions to guide spectroscopic studies, current functionals must be improved, especially in the isospin channel. In this respect, experimental studies of short-lived nuclei far from stability offer a unique test of isospin aspects of the many-body theory. Purpose: We develop the isospin-invariant Skyrme-EDF method by considering local densities in all possible isospin channels and proton-neutron (p-n) mixing terms as mandated by the isospin symmetry. The EDF employed has the most general form that depends quadratically on the isoscalar and isovector densities. We test and benchmark the resulting p-n EDF approach, and study the general properties of the new scheme by means of the cranking in the isospin space. Methods: We extend the existing axial DFT solver hfbtho to the case of isospin-invariant EDF approach with all possible p-n mixing terms. Explicit expressions have been derived for all the densities and potentials that appear in the isospin representation. In practical tests, we consider the Skyrme EDF SkM* and, as a first application, concentrate on Hartree-Fock aspects of the problem, i.e., pairing has been disregarded. Results: Calculations have been performed for the (A =78,T?11), (A =40,T?8), and (A =48,T?4) isobaric analog chains. Isospin structure of self-consistent p-n mixed solutions has been investigated with and without the Coulomb interaction, which is the sole source of isospin symmetry breaking in our approach. The extended axial hfbtho solver has been benchmarked against the symmetry-unrestricted hfodd code for deformed and spherical states. Conclusions: We developed and tested a general isospin-invariant Skyrme-EDF framework. The new approach permits spin-isospin densities that may give rise to hitherto unexplored modes in the excitation spectrum. The new formalism has been tested in the Hartree-Fock limit. A systematic comparison between hfodd and hfbtho results show a maximum deviation of about 10 keV on the total binding energy for deformed nuclei when the Coulomb term is included. Without this term, the results of both solvers agree down to a ˜10 eV level.

  17. Density dependent growth in adult brown frogs Rana arvalis and Rana temporaria - A field experiment

    NASA Astrophysics Data System (ADS)

    Loman, Jon; Lardner, Björn

    2009-11-01

    In species with complex life cycles, density regulation can operate on any of the stages. In frogs there are almost no studies of density effects on the performance of adult frogs in the terrestrial habitat. We therefore studied the effect of summer density on the growth rate of adult frogs during four years. Four 30 by 30 m plots in a moist meadow were used. In early summer, when settled after post-breeding migration, frogs ( Rana arvalis and Rana temporaria that have a very similar ecology and potentially compete) were enclosed by erecting a fence around the plots. Frogs were captured, measured, marked and partly relocated to create two high density and two low density plots. In early autumn the frogs were again captured and their individual summer growth determined. Growth effects were evaluated in relation to two density measures: density by design (high/low manipulation), and actual (numerical) density. R. arvalis in plots with low density by design grew faster than those in high density plots. No such effect was found for R. temporaria. For none of the species was growth related to actual summer density, determined by the Lincoln index and including the density manipulation. The result suggests that R. arvalis initially settled according to an ideal free distribution and that density had a regulatory effect (mediated through growth). The fact that there were no density effects on R. temporaria (and a significant difference in its response to that of R. arvalis) suggests it is a superior competitor to R. arvalis during the terrestrial phase. There were no density effects on frog condition index, suggesting that the growth rate modifications may actually be an adaptive trait of R. arvalis. The study demonstrates that density regulation may be dependent on resources in frogs' summer habitat.

  18. Ecological drivers of guanaco recruitment: variable carrying capacity and density dependence.

    PubMed

    Marino, Andrea; Pascual, Miguel; Baldi, Ricardo

    2014-08-01

    Ungulates living in predator-free reserves offer the opportunity to study the influence of food limitation on population dynamics without the potentially confounding effects of top-down regulation or livestock competition. We assessed the influence of relative forage availability and population density on guanaco recruitment in two predator-free reserves in eastern Patagonia, with contrasting scenarios of population density. We also explored the relative contribution of the observed recruitment to population growth using a deterministic linear model to test the assumption that the studied populations were closed units. The observed densities increased twice as fast as our theoretical populations, indicating that marked immigration has taken place during the recovery phase experienced by both populations, thus we rejected the closed-population assumption. Regarding the factors driving variation in recruitment, in the low- to medium-density setting, we found a positive linear relationship between recruitment and surrogates of annual primary production, whereas no density dependence was detected. In contrast, in the high-density scenario, both annual primary production and population density showed marked effects, indicating a positive relationship between recruitment and per capita food availability above a food-limitation threshold. Our results support the idea that environmental carrying capacity fluctuates in response to climatic variation, and that these fluctuations have relevant consequences for herbivore dynamics, such as amplifying density dependence in drier years. We conclude that including the coupling between environmental variability in resources and density dependence is crucial to model ungulate population dynamics; to overlook temporal changes in carrying capacity may even mask density dependence as well as other important processes. PMID:24899131

  19. Dependence of SOL Widths on Plasma Current and Density in NSTX H-mode Plasmas

    SciTech Connect

    Ahn, J W [University of California, San Diego; Maingi, Rajesh [ORNL; Boedo, J. [University of California, San Diego; Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL)

    2009-01-01

    The dependence of various SOL widths on the line-averaged density ((n) over bar (e)) and plasma current (I(p)) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width (lambda(q)), measured by the IR camera, is virtually insensitive to (n) over bar (e) and has a strong negative dependence on I(p). This insensitivity of lambda(q) to (n) over bare is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths (lambda(Te), lambda(jsat), lambda(ne), and lambda(pe), respectively) measured by the probe showed that lambda(Te) and lambda(jsat) have strong negative dependence on I(p), whereas lambda(ne) and lambda(pe) revealed only a little or no dependence. The dependence of lambda(Te) on I(p) is consistent with the scaling law in the literature, while lambda(ne) and lambda(pe) dependence shows a different trend. (C) 2009 Elsevier B.V. All rights reserved.

  20. Dependence of various SOL widths on plasma current and density in NSTX H-mode plasmas

    SciTech Connect

    Ahn, J; Maingi, R; Boedo, J; Soukhanovskii, V A

    2009-02-12

    The dependence of various SOL widths on the line-averaged density ({ovr n}{sub e}) and plasma current (l{sub p}) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ({lambda}{sub q}), measured by the IR camera, is virtually insensitive to {ovr n}{sub e} and has a strong negative dependence on l{sub p}. This insensitivity of {lambda}{sub q} to {ovr n}{sub e} is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ({lambda}{sub Te}, {lambda}{sub jsat}, {lambda}{sub ne}, and {lambda}{sub pe}, respectively) measured by the probe showed that {lambda}{sub Te} and {lambda}{sub jsat} have strong negative dependence on l{sub p}, whereas {lambda}{sub ne} and {lambda}{sub pe} revealed only a little or no dependence. The dependence of {lambda}{sub Te} on l{sub p} is consistent with the scaling law in the literature while {lambda}{sub ne} and {lambda}{sub pe} dependence shows a different trend.

  1. Time-dependent Stochastic Bethe-Salpeter Approach

    E-print Network

    Rabani, Eran; Neuhauser, Daniel

    2015-01-01

    A time-dependent formulation for electron-hole excitations in extended finite systems, based on the Bethe-Salpeter equation (BSE), is developed using a stochastic wave function approach. The time-dependent formulation builds on the connection between time-dependent Hartree-Fock (TDHF) theory and configuration-interaction with single substitution (CIS) method. This results in a time dependent Schr\\"odinger-like equation for the quasiparticle orbital dynamics based on an effective Hamiltonian containing direct Hartree and screened exchange terms, where screening is described within the Random Phase Approximation (RPA). To solve for the optical absorption spectrum, we develop a stochastic formulation in which the quasiparticle orbitals are replaced by stochastic orbitals to evaluate the direct and exchange terms in the Hamiltonian as well as the RPA screening. This leads to an overall quadratic scaling, a significant improvement over the equivalent symplectic eigenvalue representation of the BSE. Application of ...

  2. Density Dependence, Prey Dependence, and Population Dynamics of Martens in Ontario

    Microsoft Academic Search

    John M. Fryxell; J. Bruce Falls; E. Ann Falls; Ronald J. Brooks; Linda Dix; Marjorie A. Strickland

    1999-01-01

    Abstract. Ecological factors influencing demographic,parameters,of mammalian,car- nivores are poorly understood, due to the difficulty of simultaneously measuring predator and,prey populations,over an extended,period. We used,cohort,analysis based,on age- specific harvest,data to estimate population,densities over 20 yr for martens,(Martes amer- icana). Marten abundance increased threefold over the study period, probably due to re- laxation,in harvest,intensity at the beginning,of the study,interval. Changes,in rates of

  3. Impact ionization in GaAs: A screened exchange density-functional approach

    SciTech Connect

    Picozzi, S.; Asahi, R.; Geller, C. B.; Continenza, A.; Freeman, A. J.

    2001-08-13

    Results are presented of a fully ab initio calculation of impact ionization rates in GaAs within the density functional theory framework, using a screened-exchange formalism and the highly precise all-electron full-potential linearized augmented plane wave method. The calculated impact ionization rates show a marked orientation dependence in k space, indicating the strong restrictions imposed by the conservation of energy and momentum. This anisotropy diminishes as the impacting electron energy increases. A Keldysh type fit performed on the energy-dependent rate shows a rather soft edge and a threshold energy greater than the direct band gap. The consistency with available Monte Carlo and empirical pseudopotential calculations shows the reliability of our approach and paves the way to ab initio calculations of pair production rates in new and more complex materials.

  4. Restricted dispersal reduces the strength of spatial density dependence in a tropical bird population

    PubMed Central

    Burgess, Malcolm D; Nicoll, Malcolm A.C; Jones, Carl G; Norris, Ken

    2008-01-01

    Spatial processes could play an important role in density-dependent population regulation because the disproportionate use of poor quality habitats as population size increases is widespread in animal populations—the so-called buffer effect. While the buffer effect patterns and their demographic consequences have been described in a number of wild populations, much less is known about how dispersal affects distribution patterns and ultimately density dependence. Here, we investigated the role of dispersal in spatial density dependence using an extraordinarily detailed dataset from a reintroduced Mauritius kestrel (Falco punctatus) population with a territorial (despotic) breeding system. We show that recruitment rates varied significantly between territories, and that territory occupancy was related to its recruitment rate, both of which are consistent with the buffer effect theory. However, we also show that restricted dispersal affects the patterns of territory occupancy with the territories close to release sites being occupied sooner and for longer as the population has grown than the territories further away. As a result of these dispersal patterns, the strength of spatial density dependence is significantly reduced. We conclude that restricted dispersal can modify spatial density dependence in the wild, which has implications for the way population dynamics are likely to be impacted by environmental change. PMID:18285284

  5. Time-dependent stochastic Bethe-Salpeter approach

    NASA Astrophysics Data System (ADS)

    Rabani, Eran; Baer, Roi; Neuhauser, Daniel

    2015-06-01

    A time-dependent formulation for electron-hole excitations in extended finite systems, based on the Bethe-Salpeter equation (BSE), is developed using a stochastic wave function approach. The time-dependent formulation builds on the connection between time-dependent Hartree-Fock (TDHF) theory and the configuration-interaction with single substitution (CIS) method. This results in a time-dependent Schrödinger-like equation for the quasiparticle orbital dynamics based on an effective Hamiltonian containing direct Hartree and screened exchange terms, where screening is described within the random-phase approximation (RPA). To solve for the optical-absorption spectrum, we develop a stochastic formulation in which the quasiparticle orbitals are replaced by stochastic orbitals to evaluate the direct and exchange terms in the Hamiltonian as well as the RPA screening. This leads to an overall quadratic scaling, a significant improvement over the equivalent symplectic eigenvalue representation of the BSE. Application of the time-dependent stochastic BSE (TDsBSE) approach to silicon and CdSe nanocrystals up to size of ?3000 electrons is presented and discussed.

  6. Cell-density-dependent Changes in the Metabolism of Chloronema Cell Cultures

    PubMed Central

    Sharma, Shobhona; Jayaswal, Radheshyam K.; Johri, Man Mohan

    1979-01-01

    In the growing chloronema cell suspension cultures of the moss Funaria hygrometrica Hedw., activities of several enzymes have been found to be cell-density-dependent. Cyclic nucleotide phosphodiesterase (cNPDE), nitrate reductase (NR), and protein kinase showed highest activity at a low cell density (1 to 2 milligrams per milliliter) while indoleacetic acid (IAA) oxidase and peroxidase were highest at a high cell density (>10 milligrams per milliliter). 3?-Nucleotidase and the glycolytic enzymes (aldolase, hexokinase, phosphofructokinase, phosphoglucoisomerase, pyruvate kinase, and triose phosphate isomerase) showed no significant dependence on the cell density. Alternatively, if the NR and peroxidase activities were determined as a function of time in batch cultures, their levels were maximal 60 to 70 and 320 hours after subculture, respectively, the corresponding cell densities being 1 to 2 and 23 milligrams per milliliter. The relationship between cell density and NR and peroxidase activities is the same, whether these enzymes are measured in batch cultures during a growth cycle or in the cells cultured at different initial inoculum densities for a constant time. Conventionally enzymic changes have been correlated with growth phases; however, it is felt that the pattern of enzymic activities can also be interpreted as cell-density-dependent. In moss protonema, the dependence of cNPDE, IAA oxidase, and peroxidase on cell density may play an important role in modulating the endogenous levels of IAA and cAMP, both of which regulate the differentiation of specific cell types (Johri and Desai 1973 Nature New Biol 245: 223-224; and Handa and Johri 1976 Nature 259: 480-482). PMID:16660905

  7. Harnessing the meta-generalized gradient approximation for time-dependent density functional theory.

    PubMed

    Bates, Jefferson E; Furche, Filipp

    2012-10-28

    Density functionals within the meta-generalized gradient approximation (MGGA) are widely used for ground-state electronic structure calculations. However, the gauge variance of the kinetic energy density ? confounds applications of MGGAs to time-dependent systems, excited states, magnetic properties, and states with strong spin-orbit coupling. Becke and Tao used the paramagnetic current density to construct a gauge invariant generalized kinetic energy density ?. We show that ?(W)??, where ?(W) is the von Weizsäcker kinetic energy density of a one-electron system. Thus, replacing ? by ? leads to current-dependent MGGAs (cMGGAs) that are not only gauge invariant but also restore the accuracy of MGGAs in iso-orbital regions for time-dependent and current-carrying states. The current dependence of cMGGAs produces a vector exchange-correlation (XC) potential in the time-dependent adiabatic Kohn-Sham (KS) equations. While MGGA response properties of current-free ground states become manifestly gauge-variant to second order, linear response properties are affected by a new XC kernel appearing in the cMGGA magnetic orbital rotation Hessian. This kernel reflects the first-order coupling of KS orbitals due to changes in the paramagnetic current density and has apparently been ignored in previous MGGA response implementations. Inclusion of the current dependence increases total computation times by less than 50%. Benchmark applications to 109 adiabatic excitation energies using the Tao-Perdew-Staroverov-Scuseria (TPSS) MGGA and its hybrid version TPSSh show that cMGGA excitation energies are slightly lower than the MGGA ones on average, but exhibit fewer outliers. Similarly, the optical rotations of 13 small organic molecules show a small but systematic improvement upon inclusion of the magnetic XC kernel. We conclude that cMGGAs should replace MGGAs in all applications involving time-dependent or current-carrying states. PMID:23126693

  8. Reactivation-dependent amnesia in Pavlovian approach and instrumental transfer

    PubMed Central

    Lee, Jonathan L.C.; Everitt, Barry J.

    2008-01-01

    The theory of memory reconsolidation relates to the hypothesized restabilisation process that occurs following the reactivation of a memory through retrieval. Thus the demonstration of reactivation-dependent amnesia for a previously acquired memory is a prerequisite for showing that such a memory undergoes reconsolidation. Here we show that the appetitive Pavlovian representations that underlie Pavlovian approach and Pavlovian-instrumental transfer are destabilized following their retrieval. This reactivation-dependent amnesia demonstrates that the general motivational or incentive properties of appetitive conditioned stimuli, as well as their conditioned reinforcing properties, can be reduced by blocking memory reconsolidation. PMID:18685151

  9. Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density.

    PubMed

    Cheng, Guangming; Chang, Tzu-Hsuan; Qin, Qingquan; Huang, Hanchen; Zhu, Yong

    2014-02-12

    This paper reports quantitative mechanical characterization of silicon carbide (SiC) nanowires (NWs) via in situ tensile tests inside scanning electron microscopy using a microelectromechanical system. The NWs are synthesized using the vapor-liquid-solid process with growth direction of ?111?. They consist of three types of structures, pure face-centered cubic (3C) structure, 3C structure with an inclined stacking fault (SF), and highly defective structure, in a periodic fashion along the NW length. The SiC NWs are found to deform linear elastically until brittle fracture. Their fracture origin is identified in the 3C structures with inclined SFs, rather than the highly defective structures. The fracture strength increases as the NW diameter decreases from 45 to 17 nm, approaching the theoretical strength of 3C SiC. The size effect on fracture strength of SiC NWs is attributed to the size-dependent defect density rather than the surface effect that is dominant for single crystalline NWs. PMID:24382314

  10. Density-dependent speciation alters the structure and dynamics of neutral communities.

    PubMed

    Wang, Shaopeng; Chen, Anping; Pacala, Stephen W; Fang, Jingyun

    2015-05-01

    The neutral theory of biodiversity (NTB) provides an individual-based modeling framework to study eco-evolutionary dynamics. Previous NTB models usually assumed the same per capita rate of speciation across lineages. However, population dynamics may induce macroevolutionary feedbacks that can result in variable per capita speciation rates across lineages. In this paper, with analytical and simulation approaches, we explore how different scenarios of density-dependent speciation may impact the diversity and phylogenetic patterns of neutral communities, and compare the results to predictions of the original NTB model with an invariant speciation rate. Our results show that positive per capita speciation rate-abundance relationships could result in higher species richness and evenness, enhanced stability (evidenced by higher post-disturbance recovery rates and lower temporal variability in species diversity), and higher imbalance in phylogenetic trees. The opposite patterns are predicted when per capita speciation rates decrease with abundance. Particularly, strong negative speciation rate-abundance relationships can generate a positive correlation between phylogenetic age and abundance, which has been observed in Panamanian tree species. Our findings demonstrate the importance of eco-evolutionary feedbacks for understanding long-term diversity and phylogenetic patterns in ecological communities. PMID:25701450

  11. Estimates of Leaf Vein Density Are Scale Dependent1[C][W][OPEN

    PubMed Central

    Price, Charles A.; Munro, Peter R.T.; Weitz, Joshua S.

    2014-01-01

    Leaf vein density (LVD) has garnered considerable attention of late, with numerous studies linking it to the physiology, ecology, and evolution of land plants. Despite this increased attention, little consideration has been given to the effects of measurement methods on estimation of LVD. Here, we focus on the relationship between measurement methods and estimates of LVD. We examine the dependence of LVD on magnification, field of view (FOV), and image resolution. We first show that estimates of LVD increase with increasing image magnification and resolution. We then demonstrate that estimates of LVD are higher with higher variance at small FOV, approaching asymptotic values as the FOV increases. We demonstrate that these effects arise due to three primary factors: (1) the tradeoff between FOV and magnification; (2) geometric effects of lattices at small scales; and; (3) the hierarchical nature of leaf vein networks. Our results help to explain differences in previously published studies and highlight the importance of using consistent magnification and scale, when possible, when comparing LVD and other quantitative measures of venation structure across leaves. PMID:24259686

  12. Time-dependent HF approach to SHE dynamics

    E-print Network

    A. S. Umar; V. E. Oberacker

    2014-12-04

    We employ the time-dependent Hartree-Fock (TDHF) method to study various aspects of the reactions utilized in searches for superheavy elements. These include capture cross-sections, quasifission, prediction of $P_{\\mathrm{CN}}$, and other interesting dynamical quantities. We show that the microscopic TDHF approach provides an important tool to shed some light on the nuclear dynamics leading to the formation of superheavy elements.

  13. Predicting Fish Densities in Lotic Systems: a Simple Modeling Approach

    EPA Science Inventory

    Fish density models are essential tools for fish ecologists and fisheries managers. However, applying these models can be difficult because of high levels of model complexity and the large number of parameters that must be estimated. We designed a simple fish density model and te...

  14. Inversely density-dependent natal dispersal in brown bears Ursus arctos

    Microsoft Academic Search

    Ole-Gunnar Støen; Andreas Zedrosser; Solve Sæbø; Jon E. Swenson

    2006-01-01

    There is considerable controversy in the literature about the presence of density dependence in dispersal. In this study, we exploit a data series from a long-term study (>18 years) on radio-marked brown bears (Ursus arctos L.) in two study areas in Scandinavia to investigate how individual-based densities influence the probability of natal dispersal and natal dispersal distances. Cumulatively, 32% and 46%

  15. Sampling-Based Approaches to Calculating Marginal Densities

    Microsoft Academic Search

    Alan E. Gelfand; Adrian F. M. Smith

    1990-01-01

    Stochastic substitution, the Gibbs sampler, and the sampling-importance-resampling algorithm can be viewed as three alternative sampling- (or Monte Carlo-) based approaches to the calculation of numerical estimates of marginal probability distributions. The three approaches will be reviewed, compared, and contrasted in relation to various joint probability structures frequently encountered in applications. In particular, the relevance of the approaches to calculating

  16. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile.

    PubMed

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E; Colchero, Fernando

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation. PMID:25514510

  17. Lonely hearts or sex in the city? Density-dependent effects in mating systems

    PubMed Central

    Kokko, Hanna; Rankin, Daniel J

    2006-01-01

    Two very basic ideas in sexual selection are heavily influenced by numbers of potential mates: the evolution of anisogamy, leading to sex role differentiation, and the frequency dependence of reproductive success that tends to equalize primary sex ratios. However, being explicit about the numbers of potential mates is not typical to most evolutionary theory of sexual selection. Here, we argue that this may prevent us from finding the appropriate ecological equilibria that determine the evolutionary endpoints of selection. We review both theoretical and empirical advances on how population density may influence aspects of mating systems such as intrasexual competition, female choice or resistance, and parental care. Density can have strong effects on selective pressures, whether or not there is phenotypic plasticity in individual strategies with respect to density. Mating skew may either increase or decrease with density, which may be aided or counteracted by changes in female behaviour. Switchpoints between alternative mating strategies can be density dependent, and mate encounter rates may influence mate choice (including mutual mate choice), multiple mating, female resistance to male mating attempts, mate searching, mate guarding, parental care, and the probability of divorce. Considering density-dependent selection may be essential for understanding how populations can persist at all despite sexual conflict, but simple models seem to fail to predict the diversity of observed responses in nature. This highlights the importance of considering the interaction between mating systems and population dynamics, and we strongly encourage further work in this area. PMID:16612890

  18. Effects of the density dependence of the nuclear symmetry energy on the properties of superheavy nuclei

    SciTech Connect

    Jiang Weizhou [Department of Physics, Southeast University, Nanjing 211189 (China) and National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China)

    2010-04-15

    Effects of the density dependence of the nuclear symmetry energy on ground-state properties of superheavy nuclei are studied in the relativistic mean-field theory. It is found that the softening of the symmetry energy plays an important role in the empirical shift [Phys. Rev. C 67, 024309 (2003)] of spherical orbitals in superheavy nuclei. The calculation based on the relativistic mean-field models NL3 and FSUGold supports the double shell closure in {sup 292}120 with the softening of the symmetry energy. In addition, the significant effect of the density dependence of the symmetry energy on the neutron skin thickness in superheavy nuclei is investigated.

  19. Density matrix expansion for the isospin- and momentum-dependent MDI interaction 

    E-print Network

    Xu, Jun; Ko, Che Ming.

    2010-01-01

    s , (20) FIG. 1. (Color online) Dependence of A(?n, ?p), B(?n, ?p), C(?n, ?p), and D(?n, ?p) on ?n and ?p at subsaturation densities. V UNM (?? , ?? ? ) = 1 2 ( M + H 2 ) ? ? d3s?SL(k? s)?SL(k? ?s) e??s s . (21) Other terms are defined...PHYSICAL REVIEW C 82, 044311 (2010) Density matrix expansion for the isospin- and momentum-dependent MDI interaction Jun Xu1 and Che Ming Ko2 1Cyclotron Institute, Texas A&M University, College Station, Texas 77843-3366, USA 2Cyclotron Institute...

  20. Temperature dependence of the electron density of states and dc electrical resistivity of disordered binary alloys.

    NASA Technical Reports Server (NTRS)

    Chen, A.-B.; Weisz, G.; Sher, A.

    1972-01-01

    A model calculation of the temperature dependence of the electronic density of states and the electrical conductivity of disordered binary alloys, based on the coherent-potential approximation is made by introducing thermal disorder in the single-band model (Velicky and others). Thermal disorder is found to broaden and smear the static-alloy density of states. The electrical resistivity in weak-scattering alloys always increases with temperature. However, in the strong-scattering case, the temperature coefficient of resistivity can be positive, zero, or negative, depending on the location of the Fermi energy.-

  1. A Concept for Airborne Precision Spacing for Dependent Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Abbott, Terence S.; Capron, William R.; Smith, Colin L.; Shay, Richard F.; Hubbs, Clay

    2012-01-01

    The Airborne Precision Spacing concept of operations has been previously developed to support the precise delivery of aircraft landing successively on the same runway. The high-precision and consistent delivery of inter-aircraft spacing allows for increased runway throughput and the use of energy-efficient arrivals routes such as Continuous Descent Arrivals and Optimized Profile Descents. This paper describes an extension to the Airborne Precision Spacing concept to enable dependent parallel approach operations where the spacing aircraft must manage their in-trail spacing from a leading aircraft on approach to the same runway and spacing from an aircraft on approach to a parallel runway. Functionality for supporting automation is discussed as well as procedures for pilots and controllers. An analysis is performed to identify the required information and a new ADS-B report is proposed to support these information needs. Finally, several scenarios are described in detail.

  2. Multiple density-dependence mechanisms regulate a migratory bird population during the breeding season.

    PubMed

    Rodenhouse, Nicholas L; Sillett, T Scott; Doran, Patrick J; Holmes, Richard T

    2003-10-22

    The mechanisms regulating bird populations are poorly understood and controversial. We provide evidence that a migratory songbird, the black-throated blue warbler (Dendroica caerulescens), is regulated by multiple density-dependence mechanisms in its breeding quarters. Evidence of regulation includes: stability in population density during 1969-2002, strong density dependence in time-series analyses of this period, an inverse relationship between warbler density and annual fecundity, and a positive relationship between annual fecundity and recruitment of yearlings in the subsequent breeding season. Tests of the mechanisms causing regulation were carried out within the Hubbard Brook Experimental Forest, New Hampshire, during 1997-1999. When individuals from abutting territories were experimentally removed in a homogeneous patch of high-quality habitat, the fecundity of focal pairs nearly doubled, revealing a locally operating crowding mechanism. A site-dependence mechanism was indicated by an inverse relationship between population size and mean territory quality, as well as by greater annual fecundity on the sites that were most frequently occupied and of highest quality. These site-dependence relationships were revealed by intensive monitoring of territory quality and demography at the landscape spatial scale. Crowding and site-dependence mechanisms, therefore, acted simultaneously but at different spatial scales to regulate local abundance of this migratory bird population. PMID:14561272

  3. Modeling the Effect of Density-Dependent Chemical Interference upon Seed Germination

    PubMed Central

    Sinkkonen, Aki

    2006-01-01

    A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:18648596

  4. Modeling the Effect of Density-Dependent Chemical Interference Upon Seed Germination

    PubMed Central

    Sinkkonen, Aki

    2005-01-01

    A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:19330163

  5. Quantum mechanical/molecular mechanical/continuum style solvation model: time-dependent density functional theory.

    PubMed

    Thellamurege, Nandun M; Cui, Fengchao; Li, Hui

    2013-08-28

    A combined quantum mechanical/molecular mechanical/continuum (QM/MMpol/C) style method is developed for time-dependent density functional theory (TDDFT, including long-range corrected TDDFT) method, induced dipole polarizable force field, and induced surface charge continuum model. Induced dipoles and induced charges are included in the TDDFT equations to solve for the transition energies, relaxed density, and transition density. Analytic gradient is derived and implemented for geometry optimization and molecular dynamics simulation. QM/MMpol/C style DFT and TDDFT methods are used to study the hydrogen bonding of the photoactive yellow protein chromopore in ground state and excited state. PMID:24006973

  6. Tight-binding approach to strain-dependent DNA electronics

    NASA Astrophysics Data System (ADS)

    Malakooti, Sadeq; Hedin, Eric; Joe, Yong

    2013-07-01

    Small mechanical strain perturbations are considered in calculations of the poly(G)-poly(C) DNA molecular electronic structure, using a tight-binding framework in conjunction with the theories of Slater-Koster and linear elasticity. Results reveal a strain-induced band gap for DNA which is linearly dependent on the induced strain. Local density of states calculations expose that the contribution of the guanine-cytosine base pairs in the charge transport mechanism is significantly enhanced relative to the backbones when DNA is compressed. Transport investigations also disclose a strain-induced metal-semiconductor transition for the DNA molecule, which suggests possible potential uses for sensing applications.

  7. Density-dependent survival and fecundity of hemlock woolly adelgid (Hemiptera: Adelgidae).

    PubMed

    Sussky, Elizabeth M; Elkinton, Joseph S

    2014-10-01

    The hemlock woolly adelgid (Adelges tsugae Annand) has decimated eastern hemlocks (Tsuga canadensis Carrière) in forests throughout the eastern United Sates, but its densities in central New England appear to have stabilized. To find out why, we infested 64 eastern hemlocks with varying densities of adelgid ovisacs in a typical eastern hemlock forest in western Massachusetts. We subsequently documented adelgid density, fecundity, and the amount of new growth on experimental trees over two consecutive years. We used a 2 by 2 randomized block design using previously and newly infested hemlocks that were either 1-m tall saplings or branches of mature trees. There was a density-dependent decline in the survival and fecundity of adelgid in both the spring and winter generations. This response was a function of both previous infestation by adelgid and current year's crawler density in the spring generation. Additionally, the production of sexuparae in the spring generation played a key role in the overall density-dependent survival of adelgid, suggesting that sexuparae production is strongly linked to developing crawler density. PMID:25203223

  8. Population and employment density functions revisited: a spatial interaction approach.

    PubMed

    Guldmann, J M; Wang, F

    1998-04-01

    "This article proposes a generalized urban spatial structure and transportation network, and adapts the Garin-Lowry model to simulate both population and service employment densities in this hypothetical, yet realistic, city. The model is solved numerically while varying exogenous factors such as the distance friction coefficients and the spatial distribution of basic employment.... The results are generalized by estimating, via regression analysis, density functions over a large sample of simulated density patterns, pointing to the critical importance of transportation costs and basic employment distribution, and providing a basis for further empirical studies." PMID:12294857

  9. A geometric approach to dislocation densities in semiconductors

    NASA Astrophysics Data System (ADS)

    Bakke, K.; Moraes, F.

    2014-05-01

    Dislocation densities threading semiconductor crystals are a problem for device developers. Among the issues presented by the defect density is the appearance of the so-called shallow levels. In this work, we introduce a geometric model to explain the origin of the observed shallow levels. We show that a uniform distribution of screw dislocations acts as an effective uniform magnetic field which yields electronic bound states even in the presence of a repulsive Coulomb-like potential. This introduces energy levels within the band gap, increasing the carrier concentration in the region threaded by the dislocation density and adding additional recombination paths other than the near band-edge recombination. Our results suggest that one might use a magnetic field to destroy the dislocation density bound states and therefore minimize its effects on the charge carriers.

  10. Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest.

    PubMed

    Fattebert, Julien; Balme, Guy; Dickerson, Tristan; Slotow, Rob; Hunter, Luke

    2015-01-01

    Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the 'mate competition', 'resource competition' and 'resident fitness' hypotheses predict density-dependent dispersal patterns, while the 'inbreeding avoidance' hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved connectivity among leopard populations over a larger landscape. PMID:25875293

  11. Strong density-dependent competition and acquired immunity constrain parasite establishment: implications for parasite aggregation.

    PubMed

    Luong, Lien T; Vigliotti, Beth A; Hudson, Peter J

    2011-04-01

    The vast majority of parasites exhibit an aggregated frequency distribution within their host population, such that most hosts have few or no parasites while only a minority of hosts are heavily infected. One exception to this rule is the trophically transmitted parasite Pterygodermatites peromysci of the white-footed mouse (Peromyscus leucopus), which is randomly distributed within its host population. Here, we ask: what are the factors generating the random distribution of parasites in this system when the majority of macroparasites exhibit non-random patterns? We hypothesise that tight density-dependent processes constrain parasite establishment and survival, preventing the build-up of parasites within individual hosts, and preclude aggregation within the host population. We first conducted primary infections in a laboratory experiment using white-footed mice to test for density-dependent parasite establishment and survival of adult worms. Secondary or challenge infection experiments were then conducted to investigate underlying mechanisms, including intra-specific competition and host-mediated restrictions (i.e. acquired immunity). The results of our experimental infections show a dose-dependent constraint on within-host-parasite establishment, such that the proportion of mice infected rose initially with exposure, and then dropped off at the highest dose. Additional evidence of density-dependent competition comes from the decrease in worm length with increasing levels of exposure. In the challenge infection experiment, previous exposure to parasites resulted in a lower prevalence and intensity of infection compared with primary infection of naïve mice; the magnitude of this effect was also density-dependent. Host immune response (IgG levels) increased with the level of exposure, but decreased with the number of worms established. Our results suggest that strong intra-specific competition and acquired host immunity operate in a density-dependent manner to constrain parasite establishment, driving down aggregation and ultimately accounting for the observed random distribution of parasites. PMID:21215747

  12. Population-level consequences of heterospecific density-dependent movements in predator-prey systems.

    PubMed

    Sjödin, Henrik; Brännström, Ke; Söderquist, Mårten; Englund, Göran

    2014-02-01

    In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density-dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patches depend on the local densities of heterospecifics, giving rise to one reaction norm for each of the two species. Movement rates are assumed to be much faster than demographics rates. A spatial structure of predators and prey emerges which affects the global population dynamics. We derive a criterion which reveals how demographic stability depends on the relationships between the per capita covariance and densities of predators and prey. Specifically, we establish that a positive relationship with prey density and a negative relationship with predator density tend to be stabilizing. On a more mechanistic level we show how these relationships are linked to the movement reaction norms of predators and prey. Numerical results show that these findings hold both for local and global movements, i.e., both when migration is biased towards neighbouring patches and when all patches are reached with equal probability. PMID:24060621

  13. Native Birds and Alien Insects: Spatial Density Dependence in Songbird Predation of Invading Oak Gallwasps

    PubMed Central

    Schönrogge, Karsten; Begg, Tracey; Stone, Graham N.

    2013-01-01

    Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris) at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource. PMID:23342048

  14. Parental care masks a density-dependent shift from cooperation to competition among burying beetle larvae.

    PubMed

    Schrader, Matthew; Jarrett, Benjamin J M; Kilner, Rebecca M

    2015-04-01

    Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density-dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay. PMID:25648525

  15. Parental care masks a density-dependent shift from cooperation to competition among burying beetle larvae

    PubMed Central

    Schrader, Matthew; Jarrett, Benjamin J. M.; Kilner, Rebecca M.

    2015-01-01

    Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density-dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay. PMID:25648525

  16. Equation of state of dense matter from a density dependent relativistic mean field model

    SciTech Connect

    Shen, G.; Horowitz, C. J. [Nuclear Theory Center and Department of Physics, Indiana University Bloomington, Indiana 47405 (United States); Teige, S. [University Information Technology Services, Indiana University, Bloomington, Indiana 47408 (United States)

    2010-07-15

    We calculate the equation of state (EOS) of dense matter using a relativistic mean field (RMF) model with a density dependent coupling that is a slightly modified form of the original NL3 interaction. For nonuniform nuclear matter we approximate the unit lattice as a spherical Wigner-Seitz cell, wherein the meson mean fields and nucleon Dirac wave functions are solved fully self-consistently. We also calculate uniform nuclear matter for a wide range of temperatures, densities, and proton fractions, and match them to nonuniform matter as the density decreases. The calculations took over 6000 CPU days in Indiana University's supercomputer clusters. We tabulate the resulting EOS at over 107,000 grid points in the proton fraction range Y{sub P}=0 to 0.56. For the temperature range T=0.16 to 15.8 MeV, we cover the density range n{sub B}=10{sup -4} to 1.6 fm{sup -3}; and for the higher temperature range T=15.8 to 80 MeV, we cover the larger density range n{sub B}=10{sup -8} to 1.6 fm{sup -3}. In the future we plan to study low density, low temperature (T<15.8 MeV), nuclear matter using a Virial expansion, and we will match the low-density and high-density results to generate a complete EOS table for use in astrophysical simulations of supernova and neutron star mergers.

  17. TEMPERATURE DEPENDENT CREEP EXPANSION OF Ti-6Al-4V LOW DENSITY CORE SANDWICH STRUCTURES

    E-print Network

    Wadley, Haydn

    TEMPERATURE DEPENDENT CREEP EXPANSION OF Ti-6Al-4V LOW DENSITY CORE SANDWICH STRUCTURES Douglas T for the low cost manufacture of porous metal sandwich structures. These porous cored sandwich structures technique for the production of Ti-6Al-4V porous cored sandwich structures. Their process began

  18. Density-dependent competition and selection on immune function in genetic lizard morphs

    Microsoft Academic Search

    Erik Svensson; Barry Sinervo; Tosha Comendant

    2001-01-01

    Density-dependent territorial interactions have been suggested to cause immunosuppression and thereby decrease fitness, but empirical support from natural populations is lacking. Data from a natural lizard population (Uta stansburiana) showed that breeding females surrounded by many territorial neighbors had suppressed immune function. Furthermore, variation in immunological condition had different effects on the fitness of the two heritable female throat-color morphs

  19. The evolution of alternative morphs: density-dependent determination of larval colour dimorphism in

    E-print Network

    Gotthard, Karl

    The evolution of alternative morphs: density-dependent determination of larval colour dimorphism requires knowledge of how the expression of discrete morphs is regulated. In the present study, we explored into either a green or a brown morph, although all individuals are invariably green during the preceding three

  20. DENSITY-DEPENDENT RESPONSES OF GRAY-TAILED VOLES TO MOWING

    EPA Science Inventory

    Voles (Microtus spp.) commonly inhabit forage crops and may cause excessive damage to these crops. owever, cover removal by mowing or haying may cause vole populations to decline. o determine if gray-tailed voles responded to mowing of alfalfa in a density-dependent manner, the a...

  1. Consistent patterns of maturity and density-dependent growth among populations of walleye

    E-print Network

    Venturelli, Paul

    of walleye (Sander vitreus) from Ontario and Quebec, Canada (mean annual GDD = 1200 to 2300 8CÁdays´ provenant de 416 populations de dore´s jaunes (Sander vitreus) de l'Ontario et du Que´bec, Canada (moyenneConsistent patterns of maturity and density- dependent growth among populations of walleye (Sander

  2. Non-swarming grasshoppers exhibit density-dependent phenotypic plasticity reminiscent of swarming locusts

    E-print Network

    Song, Hojun

    Non-swarming grasshoppers exhibit density-dependent phenotypic plasticity reminiscent of swarming belongs to the grasshopper genus Schistocerca Stål, which includes mostly non- swarming, sedentary species (Pener and Simpson, 2009; Sword and Simpson, 2008). Lo- custs are grasshoppers that can form dense

  3. Density-dependent state-space model for population-abundance data with unequal time intervals.

    PubMed

    Dennis, Brian; Ponciano, José Miguel

    2014-08-01

    The Gompertz state-space (GSS) model is a stochastic model for analyzing time-series observations of population abundances. The GSS model combines density dependence, environmental process noise, and observation error toward estimating quantities of interest in biological monitoring and population viability analysis. However, existing methods for estimating the model parameters apply only to population data with equal time intervals between observations. In the present paper, we extend the GSS model to data with unequal time intervals, by embedding it within a state-space version of the Ornstein-Uhlenbeck process, a continuous-time model of an equilibrating stochastic system. Maximum likelihood and restricted maximum likelihood calculations for the Ornstein-Uhlenbeck state-space model involve only numerical maximization of an explicit multivariate normal likelihood, and so the extension allows for easy bootstrapping, yielding confidence intervals for model parameters, statistical hypothesis testing of density dependence, and selection among sub-models using information criteria. Ecologists and managers previously drawn to models lacking density dependence or observation error because such models accommodated unequal time intervals (for example, due to missing data) now have an alternative analysis framework incorporating density dependence, process noise, and observation error. PMID:25230459

  4. Density-dependent tree mortality in pinyon-juniper woodlands David L. Greenwood, Peter J. Weisberg *

    E-print Network

    Weisberg, Peter J.

    Density-dependent tree mortality in pinyon-juniper woodlands David L. Greenwood, Peter J. Weisberg mortality in singleleaf pinyon (Pinus monophylla) and Colorado pinyon (Pinus edulis) woodlands of western and abiotic influences on the spatial heterogeneity of tree mortality. Stand structure, cumulative canopy

  5. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    SciTech Connect

    Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M. [Departament d'Estructura i Conastituents de la Materia and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Marti i Franques 1, 08028, Barcelona (Spain); Instituto Nazionale di Fisica Nucleare, Sezione di Milano , Via Celoria 16, I-20133 Milano (Italy); Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skodowskiej ul. Radziszewskiego 10, 20-031 Lublin (Poland)

    2012-10-20

    The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in {sup 208}Pb.

  6. Qualitative Reasoning beyond the Physics Domain: The Density Dependence Theory of Organizational Ecology

    Microsoft Academic Search

    Jaap Kamps; Gabor Peli

    1995-01-01

    Qualitative reasoning is tradition- ally associated with the domain of physics, al- though the domain of application is, in fact, much broader. This paper investigates the application of qualitative reasoning beyond the domain of physics. It presents a case study of application in the social sciences: the density dependence the- ory of organizational ecology. It discusses how the dierent nature

  7. Electron localization in exact time-dependent density-functional potentials

    NASA Astrophysics Data System (ADS)

    Hodgson, Matthew; Ramsden, James; Durrant, Thomas; Chapman, Jacob; Lillystone, Piers; Godby, Rex

    2015-03-01

    By propagation of the exact many-electron wavefunction, we determine exact Kohn-Sham (KS) potentials for 1D systems with strong correlation. From this we have developed a density functional which incorporates several features, present in the exact KS potential, that are entirely missing from the usual approximations made in time-dependent density-functional theory (TDDFT). We find a strong and time-dependent self-interaction correction, owing to electron localization, as well as large static and dynamic spatial steps in the KS potential. Our new functional, suited to simulating ground-state and time-dependent electronic systems, combines an expression for the exact KS potential in the limit of complete electron localization with a measure of the actual localization. Self-consistent application of the functional provides accurate densities for a range of systems, even where the KS potential requires non-local dependence on the charge density, such as potential steps; the self-interaction correction is accurately described. We explore the relationship between features in the KS potential and the ``derivative discontinuity.''

  8. Density-dependent energy use contributes to the self-thinning relationship of cohorts.

    PubMed

    Smith, James A; Baumgartner, Lee J; Suthers, Iain M; Fielder, D Stewart; Taylor, Matthew D

    2013-03-01

    In resource-limited populations, an increase in average body size can occur only with a decline in abundance. This is known as self-thinning, and the decline in abundance in food-limited populations is considered proportional to the scaling of metabolism with body mass. This popular hypothesis may be inaccurate, because self-thinning populations can also experience density-dependent competition, which could alter their energy use beyond the predictions of metabolic scaling. This study tested whether density-dependent competition has an energetic role in self-thinning, by manipulating the abundance of the fish Macquaria novemaculeata and tank size to partition the effects of competition from metabolic scaling. We found that self-thinning can be density dependent and that changes in intraspecific competition may be more influential than metabolic scaling on self-thinning relationships. The energetic mechanism we propose is that density-dependent competition causes variation in the allocation of energy to growth, which alters the energetic efficiency of self-thinning cohorts. The implication is that food-limited cohorts and populations with competitive strategies that encourage fast-growing individuals will have less body mass at equilibrium and higher mortality rates. This finding sheds light on the processes structuring populations and can be used to explain inconsistencies in the mass-abundance scaling of assemblages and communities (the energetic-equivalence rule). PMID:23448883

  9. Host-parasite population dynamics under combined frequency-and density-dependent transmission

    E-print Network

    White, Andrew

    Host-parasite population dynamics under combined frequency- and density-dependent transmission, Scotland, EH14 4AS. Many host-parasite models assume that transmission increases linearly with host alternative (usually applied to sexually transmitted parasites) assumes instead that the rate at which hosts

  10. Density dependence in a fluctuating wild reindeer herd; maternal vs. offspring effects

    Microsoft Academic Search

    Terje Skogland

    1990-01-01

    The Hardangervidda wild reindeer herd in Norway is the largest in Western Europe. It has fluctuated between 7000 and 32000 animals during the last 35 years. Four density-dependent effects were found: 1. A food limitation effect due to a shift in diet after overgrazing lichen on the winter range. This led to increased tooth wear and lowered body size and

  11. Similarity solutions for a binary diffusion couple with diffusivity and density dependent on composition

    Microsoft Academic Search

    Robert F. Sekerka

    2004-01-01

    We reexamine similarity solutions for composition in a very long binary diffusion couple for the case in which the diffusivity and the density are functions of composition. For such solutions, the composition depends for sufficiently short times only on a similarity variable x\\/t where x is distance and t is time. The classical Boltzmann–Matano treatment holds for the case in

  12. Demonstrating the Temperature Dependence of Density via Construction of a Galilean Thermometer

    ERIC Educational Resources Information Center

    Priest, Marie A.; Padgett, Lea W.; Padgett, Clifford W.

    2011-01-01

    A method for the construction of a Galilean thermometer out of common chemistry glassware is described. Students in a first-semester physical chemistry (thermodynamics) class can construct the Galilean thermometer as an investigation of the thermal expansivity of liquids and the temperature dependence of density. This is an excellent first…

  13. Effect of predator density dependent dispersal of prey on stability of a predatorprey system

    E-print Network

    Poggiale, Jean-Christophe

    predator­prey interaction on each patch. Thus, we take advantage of two time scales in order to reduce of two parts, one describ- ing the local predator­prey interaction and one describing the dispersal fromEffect of predator density dependent dispersal of prey on stability of a predator­prey system

  14. Modeling of mask thermal distortion and its dependency on pattern density

    Microsoft Academic Search

    Qiaolin Zhang; Kameshwar Poolla; Costas J. Spanos

    2005-01-01

    Mask distortion due to thermal loading during exposure contributes significantly to the overlay error budget and poses significant challenges for extending optical lithography to the sub-100nm regime. In this paper, we model the thermal mask distortion during the scanning exposure in 193nm lithography, and investigate its dependency on the distribution of the local pattern density on the mask. Several numerical

  15. Intraspecific variation in the strength of density dependence in aphid populations

    E-print Network

    Underwood, Nora

    -plant species. 2. It is reported that as population growth rate increases, density dependence becomes more population models is appropriate for these aphids, and that population growth rate and carrying capacity are not directly proportional. 3. For populations that conform to these assumptions, population growth rate may

  16. LES/probability density function approach for the simulation of an ethanol spray flame

    E-print Network

    Raman, Venkat

    LES/probability density function approach for the simulation of an ethanol spray flame Colin Heye a an experimental pilot-stabilized ethanol spray flame. In this particular flame, droplet evaporation occurs away: Large-eddy simulation; Probability density function; Flamelet/progress variable approach; Ethanol

  17. Intraspecific competition and density dependence of food consumption and growth in Arctic charr.

    PubMed

    Amundsen, Per-Arne; Knudsen, Rune; Klemetsen, Anders

    2007-01-01

    1. Intraspecific competition for restricted food resources is considered to play a fundamental part in density dependence of somatic growth and other population characteristics, but studies simultaneously addressing the interrelationships between population density, food acquisition and somatic growth have been missing. 2. We explored the food consumption and individual growth rates of Arctic charr Salvelinus alpinus in a long-term survey following a large-scale density manipulation experiment in a subarctic lake. 3. Prior to the initiation of the experiment, the population density was high and the somatic growth rates low, revealing a severely overcrowded and stunted fish population. 4. During the 6-year period of stock depletion the population density of Arctic charr was reduced with about 75%, resulting in an almost twofold increase in food consumption rates and enhanced individual growth rates of the fish. 5. Over the decade following the density manipulation experiment, the population density gradually rose to intermediate levels, accompanied by corresponding reductions in food consumption and somatic growth rates. 6. The study revealed negative relationships with population density for both food consumption and individual growth rates, reflecting a strong positive correlation between quantitative food intake and somatic growth rates. 7. Both the growth and consumption rate relationships with population density were well described by negative power curves, suggesting that large density perturbations are necessary to induce improved feeding conditions and growth rates in stunted fish populations. 8. The findings demonstrate that quantitative food consumption represents the connective link between population density and individual growth rates, apparently being highly influenced by intraspecific competition for limited resources. PMID:17184363

  18. Cosmological density perturbations with a scale-dependent Newton's constant G

    SciTech Connect

    Hamber, Herbert W.; Toriumi, Reiko [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam (Germany); Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2010-08-15

    We explore possible cosmological consequences of a running Newton's constant G({open_square}), as suggested by the nontrivial ultraviolet fixed point scenario in the quantum field-theoretic treatment of Einstein gravity with a cosmological constant term. In particular, we focus here on what possible effects the scale-dependent coupling might have on large scale cosmological density perturbations. Starting from a set of manifestly covariant effective field equations derived earlier, we systematically develop the linear theory of density perturbations for a nonrelativistic, pressureless fluid. The result is a modified equation for the matter density contrast, which can be solved and thus provides an estimate for the growth index parameter {gamma} in the presence of a running G. We complete our analysis by comparing the fully relativistic treatment with the corresponding results for the nonrelativistic (Newtonian) case, the latter also with a weakly scale-dependent G.

  19. An experimental test of density-dependent selection on temperament traits of activity, boldness and sociability.

    PubMed

    Le Galliard, J-F; Paquet, M; Mugabo, M

    2015-05-01

    Temperament traits are seen in many animal species, and recent evolutionary models predict that they could be maintained by heterogeneous selection. We tested this prediction by examining density-dependent selection in juvenile common lizards Zootoca vivipara scored for activity, boldness and sociability at birth and at the age of 1 year. We measured three key life-history traits (juvenile survival, body growth rate and reproduction) and quantified selection in experimental populations at five density levels ranging from low to high values. We observed consistent individual differences for all behaviours on the short term, but only for activity and one boldness measure across the first year of life. At low density, growth selection favoured more sociable lizards, whereas viability selection favoured less active individuals. A significant negative correlational selection on activity and boldness existed for body growth rate irrespective of density. Thus, behavioural traits were characterized by limited ontogenic consistency, and natural selection was heterogeneous between density treatments and fitness traits. This confirms that density-dependent selection plays an important role in the maintenance of individual differences in exploration-activity and sociability. PMID:25865798

  20. On the scaling of avaloids and turbulence with the average density approaching the density limit

    SciTech Connect

    Antar, G.Y.; Counsell, G.; Ahn, J.-W. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2005-08-15

    This article is dedicated to the characterization of turbulent transport in the scrape-off layer of the Mega Ampere Spherical Tokamak [A. Sykes et al., Phys. Plasmas 8, 2101 (2001)] as a function of the average density (n{sub L}). The aim is to answer a renewed interest in this subject since the bursty character of turbulence in the scrape-off layer was shown to be caused by large-scale events with high radial velocity reaching about 1/10th of the sound speed called avaloids [G. Antar et al., Phys. Rev. Lett 87, 065001 (2001)]. With increasing density, turbulence and transport increase nonlinearly at the midplane while remaining almost unchanged in the target region. Using various and complementary statistical analyses, the existence of a 'critical' density, at n{sub L}/n{sub G}{approx_equal}0.35 is emphasized; n{sub G} is the Greenwald density. Both above and below this density, intermittency decreases and avaloids play a decreasing role in the particle radial transport. This is interpreted as caused by the interplay between avaloids and the surrounding turbulent structures which mix them more efficiently with increasing density as the level of the background turbulence increases. The scaling of the different quantities with respect to the normalized density is obtained. It reveals that not only the level of turbulence and transport increase, but also the radial velocity and length scales. This increases the coupling between the hot plasma edge and the cold scrape-off layer that may explain the disruptive instability occurring at high densities.

  1. Nesting success of the great-tailed grackle (Cassidix mexicanus prosopidicola) in relation to certain density dependent and density independent factors

    E-print Network

    Gotie, Robert Francis

    1972-01-01

    NESTING SUCCESS OF THE GREAT-TAILED GRACKLE (CASSIDIX MEXICANUS PROSOPIDICOLA) IN RELATION TO CERTAIN DENSITY DEPENDENT AND DENSITY INDEPENDENT FACTORS A Thesis by ROBERT FRANCIS GOTIE Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1972 Major Subject: Wildlife Science NESTING SUCCESS OF THE GREAT-TAILED GRACKLE (CASSIDIX MEXICANUS PROSOPIDICOLA) IN RELATION TO CERTAIN DENSITY DEPENDENT...

  2. New approaches to measuring biochar density and Catherine E. Brewer a,b,

    E-print Network

    Gonnermann, Helge

    New approaches to measuring biochar density and porosity Catherine E. Brewer a,b, *, Victoria J Accepted 26 March 2014 Available online xxx Keywords: Biochar Skeletal density Envelope density Pore volume of biochar will impact its mobility in the environ- ment, its interaction with the soil hydrologic cycle

  3. An information theory approach to the density of the earth

    NASA Technical Reports Server (NTRS)

    Graber, M. A.

    1977-01-01

    Information theory can develop a technique which takes experimentally determined numbers and produces a uniquely specified best density model satisfying those numbers. A model was generated using five numerical parameters: the mass of the earth, its moment of inertia, three zero-node torsional normal modes (L = 2, 8, 26). In order to determine the stability of the solution, six additional densities were generated, in each of which the period of one of the three normal modes was increased or decreased by one standard deviation. The superposition of the seven models is shown. It indicates that current knowledge of the torsional modes is sufficient to specify the density in the upper mantle but that the lower mantle and core will require smaller standard deviations before they can be accurately specified.

  4. Long-term demographic analysis in goshawk Accipiter gentilis: the role of density dependence and stochasticity.

    PubMed

    Krüger, Oliver

    2007-06-01

    Density dependence and environmental stochasticity are both potentially important processes influencing population demography and long-term population growth. Quantifying the importance of these two processes for population growth requires both long-term population as well as individual-based data. I use a 30-year data set on a goshawk Accipiter gentilis population from Eastern Westphalia, Germany, to describe the key vital rate elements to which the growth rate is most sensitive and test how environmental stochasticity and density dependence affect long-term population growth. The asymptotic growth rate of the fully age-structured mean matrix model was very similar to the observed one (0.7% vs. 0.3% per annum), and population growth was most elastic to changes in survival rate at age classes 1-3. Environmental stochasticity led only to a small change in the projected population growth rate (between -0.16% and 0.67%) and did not change the elasticities qualitatively, suggesting that the goshawk life history of early reproduction coupled with high annual fertility buffers against a variable environment. Age classes most crucial to population growth were those in which density dependence seemed to act most strongly. This emphasises the importance of density dependence as a regulatory mechanism in this goshawk population. It also provides a mechanism that might enable the population to recover from population lows, because a mean matrix model incorporating observed functional responses of both vital rates to population density coupled with environmental stochasticity reduced long-term extinction risk of 30% under density-independent environmental stochasticity and 60% under demographic stochasticity to zero. PMID:17356810

  5. Widespread density-dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest.

    PubMed

    Metz, Margaret R; Sousa, Wayne P; Valencia, Renato

    2010-12-01

    Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest. At local scales, we found a strong negative impact on first-year survival of conspecific seedling densities and adult abundance in multiple neighborhood sizes and a beneficial effect of a local tree neighborhood that is distantly related to the focal seedling. Once seedlings have survived their first year, they also benefit from a more phylogenetically dispersed seedling neighborhood. Across species, we did not find evidence that rare species have an advantage relative to more common species, or a community compensatory trend. These results suggest that the local biotic neighborhood is a strong influence on early seedling survival for species that range widely in their abundance and life history. These patterns in seedling survival demonstrate the role of density-dependent seedling dynamics in promoting and maintaining diversity in understory seedling assemblages. The assemblage-wide impacts of species abundance distributions may multiply with repeated cycles of recruitment and density-dependent seedling mortality and impact forest diversity or the abundance of individual species over longer time scales. PMID:21302838

  6. Density!

    NSDL National Science Digital Library

    Miss Witcher

    2011-10-06

    What is Density? Density is the amount of "stuff" in a given "space". In science terms that means the amount of "mass" per unit "volume". Using units that means the amount of "grams" per "centimeters cubed". Check out the following links and learn about density through song! Density Beatles Style Density Chipmunk Style Density Rap Enjoy! ...

  7. Single-electron approach for time-dependent electron transport

    E-print Network

    Shmuel Gurvitz

    2014-12-03

    We develop a new approach to electron transport in mesoscopic systems by using a particular single-particle basis. Although this basis generates redundant many-particle amplitudes, it greatly simplifies the treatment. By using our method for transport of non-interacting electrons, we generalize the Landauer formula for transient currents and for time-dependent potentials. The result has a very simple form and clear physical interpretation. As an example, we apply it to resonant tunneling through a quantum dot where the tunneling barriers are oscillating in time. We obtain analytical expression for the time-dependent (ac) resonant current. However, in the adiabatic limit this expression displays the dc current for zero bias (electron pumping).

  8. Time-dependent Kohn-Sham approach to quantum electrodynamics

    E-print Network

    M. Ruggenthaler; F. Mackenroth; D. Bauer

    2011-10-10

    We prove a generalization of the van Leeuwen theorem towards quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. Thereby we circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.

  9. Time-dependent Kohn-Sham approach to quantum electrodynamics

    SciTech Connect

    Ruggenthaler, M. [Institut fuer Physik, Universitaet Rostock, DE-18051 Rostock (Germany); Department of Physics, Nanoscience Center, University of Jyvaeskylae, FI-40014 Jyvaeskylae (Finland); Mackenroth, F. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, DE-69029 Heidelberg (Germany); Bauer, D. [Institut fuer Physik, Universitaet Rostock, DE-18051 Rostock (Germany)

    2011-10-15

    We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.

  10. A multilevel approach toward quadrupling the density of flash memory

    Microsoft Academic Search

    David L. Kencke; Robert Richart; Shyam Garg; Sanjay K. Banerjee

    1998-01-01

    A multilevel scheme is presented that explores the possibility of quadrupling flash EEPROM storage density. Sixteen levels (4 bits\\/cell) of charge are stored in existing NOR stacked gate devices. A distinction is made between logical threshold voltages (as seen by the sense amplifier) and transistor threshold voltages (as defined by the gate characteristics), and precise programming gives distinct logical threshold

  11. The density of states approach for the simulation of finite density quantum field theories

    E-print Network

    Langfeld, K; Rago, A; Pellegrini, R; Bongiovanni, L

    2015-01-01

    Finite density quantum field theories have evaded first principle Monte-Carlo simulations due to the notorious sign-problem. The partition function of such theories appears as the Fourier transform of the generalised density-of-states, which is the probability distribution of the imaginary part of the action. With the advent of Wang-Landau type simulation techniques and recent advances, the density-of-states can be calculated over many hundreds of orders of magnitude. Current research addresses the question whether the achieved precision is high enough to reliably extract the finite density partition function, which is exponentially suppressed with the volume. In my talk, I review the state-of-play for the high precision calculations of the density-of-states as well as the recent progress for obtaining reliable results from highly oscillating integrals. I will review recent progress for the $Z_3$ quantum field theory for which results can be obtained from the simulation of the dual theory, which appears to fr...

  12. Progression of Plasmodium berghei through Anopheles stephensi is density-dependent.

    PubMed

    Sinden, Robert E; Dawes, Emma J; Alavi, Yasmene; Waldock, Joanna; Finney, Olivia; Mendoza, Jacqui; Butcher, Geoff A; Andrews, Laura; Hill, Adrian V; Gilbert, Sarah C; Basáñez, María-Gloria

    2007-12-28

    It is well documented that the density of Plasmodium in its vertebrate host modulates the physiological response induced; this in turn regulates parasite survival and transmission. It is less clear that parasite density in the mosquito regulates survival and transmission of this important pathogen. Numerous studies have described conversion rates of Plasmodium from one life stage to the next within the mosquito, yet few have considered that these rates might vary with parasite density. Here we establish infections with defined numbers of the rodent malaria parasite Plasmodium berghei to examine how parasite density at each stage of development (gametocytes; ookinetes; oocysts and sporozoites) influences development to the ensuing stage in Anopheles stephensi, and thus the delivery of infectious sporozoites to the vertebrate host. We show that every developmental transition exhibits strong density dependence, with numbers of the ensuing stages saturating at high density. We further show that when fed ookinetes at very low densities, oocyst development is facilitated by increasing ookinete number (i.e., the efficiency of ookinete-oocyst transformation follows a sigmoid relationship). We discuss how observations on this model system generate important hypotheses for the understanding of malaria biology, and how these might guide the rational analysis of interventions against the transmission of the malaria parasites of humans by their diverse vector species. PMID:18166078

  13. Density- and Size-Dependent Winter Mortality and Growth of Late Chaoborus flavicans Larvae

    PubMed Central

    Schröder, Arne

    2013-01-01

    Winter processes such as overwinter survival and growth of individuals can have wide-ranging consequences for population dynamics and communities within and across seasons. In freshwater organisms winter processes have been mainly studied in fish despite that invertebrates also have substantial impacts on lake and pond food webs. One of the major invertebrate consumers in lake and ponds is the planktonic larvae of the dipteran insect Chaoborus spec. However, while much is known about Chaoborus feeding ecology, behaviour and structuring role in food webs, its winter ecology and how it affects its populations are poorly understood. Here size- and density-dependent winter mortality and body growth of late Chaoborus flavicans larvae were quantified over naturally occurring size and density ranges in autumn and under natural winter conditions using two field enclosure experiments. Winter mortality increased with autumn density but decreased with autumn body size while winter growth rates decreased with autumn density and body sizes. There was also a density- and size-independent background mortality component. The proportion of pupae found in spring decreased strongly and exponentially with autumn density. These results may explain the commonly observed univoltine life cycle and multi-annual density fluctuations in northern Chaoborus populations. They further demonstrate the relevance of winter processes and conditions for freshwater invertebrates and ecosystems. PMID:24124517

  14. Calculation of the photoionization cross sections for the potassium and the bromine atoms by using the time-dependent local spin density approximation

    Microsoft Academic Search

    A. S. Choe; Byungduk Yoo; Jongmin Lee

    1993-01-01

    The density functional approach to local field is extended to a spin-polarized finite electronic system. The time-varying local field, which is dependent on the spin components of electrons, incorporates the polarization-type many-body effects of electronic correlations into the photoionization cross section. To examine the spin-dependent local field effects, the photoionization cross sections of the potassium and the bromine atom are

  15. Density matrix expansion for the isospin- and momentum-dependent MDI interaction

    SciTech Connect

    Xu Jun [Cyclotron Institute, Texas A and M University, College Station, Texas 77843-3366 (United States); Ko Che Ming [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843-3366 (United States)

    2010-10-15

    By assuming that the isospin- and momentum-dependent MDI interaction has a form similar to the Gogny-like effective two-body interaction with a Yukawa finite-range term and the momentum dependence originates only from the finite-range exchange interaction, we determine its parameters by comparing the predicted potential energy density functional in uniform nuclear matter with what has been usually given and used extensively in transport models for studying isospin effects in intermediate-energy heavy-ion collisions as well as in investigating the properties of hot asymmetric nuclear matter and neutron star matter. We then use the density matrix expansion to derive from the resulting finite-range exchange interaction an effective Skyrme-like zero-range interaction with density-dependent parameters. As an application, we study the transition density and pressure at the inner edge of neutron star crusts using the stability conditions derived from the linearized Vlasov equation for the neutron star matter.

  16. Inner-shell excitation of open-shell atoms: A spin-dependent localized Hartree-Fock density-functional calculation

    Microsoft Academic Search

    Zhongyuan Zhou; Shih-I Chu

    The spin-dependent localized Hartree-Fock (SLHF) density-functional approach is extended to the treatment of the inner-shell excited-state calculation of open-shell atomic systems. In this approach, the electron spin-orbitals in an electronic configuration are obtained by solving Kohn-Sham (KS) equation with SLHF exchange potential and the Slater's diagonal sum rule is used to evaluate the multiplet energy of an inner-shell excited state

  17. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission

    PubMed Central

    2009-01-01

    Background Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. Methods A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Results Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. Conclusion These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies. PMID:19822012

  18. Carry-over effects, sequential density dependence and the dynamics of populations in a seasonal environment

    PubMed Central

    Betini, Gustavo S.; Griswold, Cortland K.; Norris, D. Ryan

    2013-01-01

    Most animal populations have distinct breeding and non-breeding periods, yet the implications of seasonality on population dynamics are not well understood. Here, we introduce an experimental model system to study the population dynamics of two important consequences of seasonality: sequential density dependence and carry-over effects (COEs). Using a replicated seasonal population of Drosophila, we placed individuals at four densities in the non-breeding season and then, among those that survived, placed them to breed at three different densities. We show that COEs arising from variation in non-breeding density negatively impacts individual performance by reducing per capita breeding output by 29–77%, implying that non-lethal COEs can have a strong influence on population abundance. We then parametrized a bi-seasonal population model from the experimental results, and show that both sequential density dependence and COEs can stabilize long-term population dynamics and that COEs can reduce population size at low intrinsic rates of growth. Our results have important implications for predicting the successful colonization of new habitats, and for understanding the long-term persistence of seasonal populations in a wide range of taxa, including migratory organisms. PMID:23516241

  19. EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF DEFLAGRATION TO DETONATION DENSITY

    SciTech Connect

    Jackson, Aaron P.; Calder, Alan C. [Department of Physics and Astronomy, State University of New York-Stony Brook, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Chamulak, David A. [Argonne National Laboratory, Argonne, IL (United States); Brown, Edward F.; Timmes, F. X. [Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States)

    2010-09-01

    We explore the effects of the deflagration to detonation transition (DDT) density on the production of {sup 56}Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of {sup 56}Ni masses to those inferred from observations. Within this framework, we utilize a more realistic 'simmered' white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of {sup 56}Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) x10{sup 7} g cm{sup -3}. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 {+-} 0.004 M {sub sun} for a 1 Z{sub sun} increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 {+-} 0.004 M{sub sun} decrease in the {sup 56}Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.

  20. Evaluating systematic dependencies of type Ia supernovae : the influence of deflagration to detonation density.

    SciTech Connect

    Jackson, A. P.; Calder, A. C.; Townsley, D. M.; Chamulak, D. A.; Brown, E. F.; Timmes, F. X. (Physics); (State Univ. of New York); (Univ. of Alabama); (Michigan State Univ.); (Arizona State Univ.); (Joint Inst. for Nuclear Astrophysics)

    2010-09-01

    We explore the effects of the deflagration to detonation transition (DDT) density on the production of {sup 56}Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of {sup 56}Ni masses to those inferred from observations. Within this framework, we utilize a more realistic 'simmered' white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of {sup 56}Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) x 10{sup 7} g cm{sup -3}. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 {+-} 0.004 M {circle_dot} for a 1 Z {circle_dot} increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 {+-} 0.004 M {circle_dot} decrease in the {sup 56}Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.

  1. Lengthscale-Dependent Solvation and Density Fluctuations in n-Octane.

    PubMed

    Wu, Eugene; Garde, Shekhar

    2014-12-01

    Much attention has been focused on the solvation and density fluctuations in water over the past decade. These studies have brought to light interesting physical features of solvation in condensed media, especially the dependence of solvation on the solute lengthscale, which may be general to many fluids. Here, we focus on the lengthscale-dependent solvation and density fluctuations in n-octane, a simple organic liquid. Using extensive molecular simulations, we show a crossover in the solvation of solvophobic solutes with increasing size in n-octane, with the specifics of the crossover depending on the shape of the solute. Large lengthscale solvation, which is dominated by interface formation, emerges over subnanoscopic lengthscales. The crossover in n-octane occurs at smaller lengthscales than that in water. We connect the lengthscale of crossover to the range of attractive interactions in the fluid. The onset of the crossover is accompanied by the emergence of non-Gaussian tails in density fluctuations in solute shaped observation volumes. Simulations over a range of temperatures highlight a corresponding thermodynamic crossover in solvation. Qualitative similarities between lengthscale-dependent solvation in water, n-octane, and Lennard-Jones fluids highlight the generality of the underlying physics of solvation. PMID:25402732

  2. Quantum Well Width Dependence of Threshold Current Density in InGaN Lasers

    SciTech Connect

    Amano, H.; Chow, W.W.; Han, J.; Takeuchi, T.

    1999-03-16

    The quantum confined Stark effect was found to result in a strong quantum well width dependence of threshold current density in strained group-III nitride quantum well lasers. For an In{sub 0.2}Ga{sub 0.8}N/GaN structure with quantum well width in the neighborhood of 3.5nm, our analysis shows that the reduction in spontaneous emission loss by the electron-hole spatial separation outweighs the corresponding reduction in gain to produce a threshold current density minimum.

  3. Quantum-well width dependence of threshold current density in InGaN lasers

    SciTech Connect

    Chow, W.W. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0601 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-0601 (United States); Amano, H.; Takeuchi, T. [Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468 (Japan)] [Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468 (Japan); Han, J. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0601 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-0601 (United States)

    1999-07-01

    The quantum-confined Stark effect was found to result in a strong quantum-well width dependence of threshold current density in strained group-III nitride quantum well lasers. For an In{sub 0.2}Ga{sub 0.8}N/GaN structure with quantum-well width in the neighborhood of 3.5 nm, our analysis shows that the reduction in spontaneous emission loss by the electron{endash}hole spatial separation outweighs the corresponding reduction in gain to produce a threshold current-density minimum. {copyright} {ital 1999 American Institute of Physics.}

  4. Behavioral signature of intraspecific competition and density dependence in colony-breeding marine predators

    PubMed Central

    Breed, Greg A; Don Bowen, W; Leonard, Marty L

    2013-01-01

    In populations of colony-breeding marine animals, foraging around colonies can lead to intraspecific competition. This competition affects individual foraging behavior and can cause density-dependent population growth. Where behavioral data are available, it may be possible to infer the mechanism of intraspecific competition. If these mechanics are understood, they can be used to predict the population-level functional response resulting from the competition. Using satellite relocation and dive data, we studied the use of space and foraging behavior of juvenile and adult gray seals (Halichoerus grypus) from a large (over 200,000) and growing population breeding at Sable Island, Nova Scotia (44.0 oN 60.0 oW). These data were first analyzed using a behaviorally switching state-space model to infer foraging areas followed by randomization analysis of foraging region overlap of competing age classes. Patterns of habitat use and behavioral time budgets indicate that young-of-year juveniles (YOY) were likely displaced from foraging areas near (<10 km) the breeding colony by adult females. This displacement was most pronounced in the summer. Additionally, our data suggest that YOY are less capable divers than adults and this limits the habitat available to them. However, other segregating mechanisms cannot be ruled out, and we discuss several alternate hypotheses. Mark–resight data indicate juveniles born between 1998 and 2002 have much reduced survivorship compared with cohorts born in the late 1980s, while adult survivorship has remained steady. Combined with behavioral observations, our data suggest YOY are losing an intraspecific competition between adults and juveniles, resulting in the currently observed decelerating logistic population growth. Competition theory predicts that intraspecific competition resulting in a clear losing competitor should cause compensatory population regulation. This functional response produces a smooth logistic growth curve as carrying capacity is approached, and is consistent with census data collected from this population over the past 50 years. The competitive mechanism causing compensatory regulation likely stems from the capital-breeding life-history strategy employed by gray seals. This strategy decouples reproductive success from resources available around breeding colonies and prevents females from competing with each other while young are dependent. PMID:24198943

  5. Multidimensional quantum systems in nonperturbative time-dependent approach

    NASA Astrophysics Data System (ADS)

    Melezhik, Vladimir S.

    2000-04-01

    We evolve a time-dependent mesh approach for treating multidimensional quantum systems with different dynamics. In this report we discuss the advantages of the method by using the results obtained recently for the nonseparable two-body problem in strong external fields[1,2]. It is finding the quantum self-ionization process of highly excited ions moving in magnetic fields which has its origin in the energy transfer from the center-of-mass to the electronic motion[1]. The approach has also developed important advantages in the quantitative analysis of the Coulomb breakup reaction[2] ^11Be + ^208Pb arrow ^10Be + n + ^208Pb , which was treated as a two body problem (^10Be + n) in the external varying field defined by the interaction with the target. We apply a mixed treatment describing quantum mechanically the internal degrees of freedom and classically the CM motion. The time-dependent Schrödinger equation for the internal motion is integrated simultaneously with the system of classical Hamiltonian equations for the CM-variables. It includes the coupling of the CM with the internal variables and possesses the important property of conserving the total energy. Note two principal advantages of the approach: the method fast convergency and the proportionality of the computational time to the number of unknowns. It makes the method promising for application to other actual multidimensional quantum problems. [1] V.S. Melezhik and P. Schmelcher, Phys. Rev. Lett. (in press) [2] V.S. Melezhik and D. Baye, Phys. Rev. C59(6) (1999) 3232.

  6. Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach.

    PubMed

    Zhang, Yachao

    2014-12-01

    A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (? and ? phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ?E(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (?H and ?S), and finally extract T(c) by exploiting the ?H/T - T and ?S - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the ? phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior. PMID:25481157

  7. Density

    NSDL National Science Digital Library

    Mr. Hansen

    2010-10-26

    What is density? Density is a relationship between mass (usually in grams or kilograms) and volume (usually in L, mL or cm 3 ). Below are several sights to help you further understand the concept of density. Click the following link to review the concept of density. Be sure to read each slide and watch each video: Chemistry Review: Density Watch the following video: Pop density video The following is a fun interactive sight you can use to review density. Your job is #1, to play and #2 to calculate the density of the ...

  8. Nuclear clustering in the Energy Density Functional Approach

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Khan, E.; Nikši?, T.; Vretenar, D.

    2014-12-01

    Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.

  9. Time-dependent approach to electron pumping in open quantum systems

    NASA Astrophysics Data System (ADS)

    Stefanucci, G.; Kurth, S.; Rubio, A.; Gross, E. K. U.

    2008-02-01

    We use a recently proposed time-dependent approach to investigate the motion of electrons in quantum pump device configurations. The occupied one-particle states are propagated in real time and employed to calculate the local electron density and current. The approach can also be embedded in the framework of time-dependent density functional theory to include electron-electron interactions. An advantage of the present computational scheme is that the same computational effort is required to simulate monochromatic, polychromatic, and nonperiodic drivings. Furthermore, initial-state dependence and history effects are naturally accounted for. We present results for one-dimensional devices exposed to a traveling potential wave. (i) We show that for pumping across a single potential barrier, electrons are transported in pockets and the transport mechanism resembles pumping of water with the Archimedean screw; (ii) we propose a simple model to study pumping through semiconductor nanostructures and we address the phenomenon of the current flowing in the opposite direction to the field propagation; (iii) we present the first numerical evidence of long-lived superimposed oscillations as induced by the presence of bound states and discuss the dependence of their lifetime on the frequency and amplitude of the driving field. By combining Floquet theory with nonequilibrium Green’s functions, we also obtain a general expression for the pumped current in terms of inelastic transmission probabilities. This latter result is used for benchmarking our propagation scheme in the long-time limit. Finally, we discuss the limitations of Floquet-based algorithms and suggest our approach as a possible way to go beyond them.

  10. The current density in quantum electrodynamics in time-dependent external potentials and the Schwinger effect

    E-print Network

    Zahn, Jochen

    2015-01-01

    In the framework of quantum electrodynamics (QED) in external potentials, we introduce a method to compute the time-dependence of the expectation value of the current density for time-dependent homogeneous external electric fields. We apply it to the so-called Sauter pulse. For late times, our results agree with the asymptotic value due to electron-positron pair production. For sub-critical peak field strengths, or results agree very well with the general expression derived by Serber for the linearization in the external field. In particular, the expectation value of the current density at intermediate times can be much greater than at asymptotic times. We comment on consequences of these findings for recent proposals to test the Schwinger effect with high intensity lasers using processes at intermediate times.

  11. A Density Functional Approach to Polarizable Models: A Kim-Gordon-Response Density Interaction Potential for Molecular Simulations

    SciTech Connect

    Tabacchi, G; Hutter, J; Mundy, C

    2005-04-07

    A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparable to Kohn-Sham density functional calculations.

  12. Temperature and concentration dependences of density and refraction of aqueous duloxetine solutions

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Deoraye, S. M.; Kalyankar, T. M.

    2014-07-01

    Present paper reports the measured densities (?) and refractive indices ( n D) of aqueous solutions of Duloxetine drug in wide range of molal concentrations ( m = 0.0101-0.1031 mol kg-1) and at different temperatures (297.15, 302.15, and 307.15 K). Apparent molar volumes (?v) of drug were calculated from density data and fitted to Masson's relation and partial molar volumes (?{v/0}) were evaluated at different temperatures. Concentration dependence of refractive index ( n D = Kc + n {D/0}) at experimental temperature has been studied. Density and refractive index data has been used for the calculation of specific refractions ( R D). Experimental (? and n D) and calculated (?v, ?{v/0}, and R D) properties have been interpreted in terms of concentration and temperature effects on structural fittings and drug-water interactions.

  13. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation.

    PubMed

    Kühn, Michael; Weigend, Florian

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy)3 (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its "spin-forbidden" triplet-singlet transition. PMID:25612698

  14. Bone mineral density and fractures among alcohol-dependent women in treatment and in recovery

    Microsoft Academic Search

    M. Kathleen Clark; MaryFran R. Sowers; Farideh Dekordi; Sara Nichols

    2003-01-01

    Women are at higher risk for osteoporosis, but most of the literature examining the effect of alcohol abuse on bone mineral density (BMD) has been in men. The aim of this study was to determine differences in BMD and fracture prevalence among women in treatment for alcohol abuse, in recovery and non-alcohol-dependent women. This cross-sectional study was completed at two

  15. Long-term demographic analysis in goshawk Accipiter gentilis : the role of density dependence and stochasticity

    Microsoft Academic Search

    Oliver Krüger

    2007-01-01

    Density dependence and environmental stochasticity are both potentially important processes influencing population demography\\u000a and long-term population growth. Quantifying the importance of these two processes for population growth requires both long-term\\u000a population as well as individual-based data. I use a 30-year data set on a goshawk Accipiter gentilis population from Eastern Westphalia, Germany, to describe the key vital rate elements to

  16. Overwinter survival in subadult European rabbits: weather effects, density dependence, and the impact of individual characteristics

    Microsoft Academic Search

    H. G. Rödel; A. Bora; P. Kaetzke; M. Khaschei; H. Hutzelmeyer; D. von Holst

    2004-01-01

    The survival probability of an individual may be limited by density-dependent mechanisms and by environmental stochasticity, but can also be modified by individual characteristics. In our study, we investigated over-winter survival of subadults of an enclosed European rabbit Oryctolagus cuniculus population in a temperate zone habitat over the period 1992–2002. We: (1) selected for appropriate models to explain individual variation

  17. A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients

    Microsoft Academic Search

    Ting Zhang; Daoyuan Fang

    2009-01-01

    In this note, by constructing suitable approximate solutions, we prove the existence of global weak solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients in the whole space or exterior domain, when the initial data are spherically symmetric. In particular, we prove the existence of spherically symmetric solutions to the Saint-Venant model for shallow water in the whole space

  18. Large-scale noninvasive genetic monitoring of wolverines using scats reveals density dependent adult survival

    Microsoft Academic Search

    Henrik Brøseth; Øystein Flagstad; Cecilia Wärdig; Malin Johansson; Hans Ellegren

    2010-01-01

    Noninvasive genetic monitoring has the potential to estimate vital rates essential for conservation and management of many species. In a long-term genetic capture-mark-recapture study using scats we evaluated temporal variation in adult survival in a wolverine (Gulo gulo) population in southern Norway. In contrast to most previous studies of large mammals we found evidence for negative density dependence in adult

  19. Relativistic mean-field theory and a density-dependent spin-orbit Skyrme force

    SciTech Connect

    Pearson, J.M. (Laboratoire de Physique Nucleaire, Universite de Montreal, Montreal, Quebec, H3C 3J7 (Canada) Sektion Physik, Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)); Farine, M. (Ecole Navale, Lanveoc-Poulmic, 29249 Brest Naval (France) Laboratoire de Physique Nucleaire, Universite de Nantes, 44072 Nantes (France))

    1994-07-01

    We generalize the Skyrme force by making its spin-orbit component density dependent. One of the two extra parameters thereby introduced is fixed by performing Hartree-Fock calculations on semi-infinite nuclear matter, and comparing with relativistic Hartree calculations performed on the same system in the nonlinear [sigma]-[omega] model. In this way an essential feature of the relativistic theory is incorporated into the nonrelativistic framework of Skyrme forces.

  20. Quark deconfinement phase transition for improved quark mass density-dependent model

    E-print Network

    Chen Wu; Ru-Keng Su

    2008-09-07

    By using the finite temperature quantum field theory, we calculate the finite temperature effective potential and extend the improved quark mass density-dependent model to finite temperature. It is shown that this model can not only describe the saturation properties of nuclear matter, but also explain the quark deconfinement phase transition successfully. The critical temperature is given and the effect of $\\omega$- meson is addressed.

  1. Spin density functional theory of the temperature-dependent spin susceptibility: Pd and Pt

    Microsoft Academic Search

    K. L. Liu; A. H. MacDonald; J. M. Daams; S. H. Vosko; D. D. Koelling

    1979-01-01

    The finite temperature spin density functional (SDF) formalism is used to derive a variational expression for the temperature-dependent spin susceptibility chip(T) of an inhomogeneous electron gas. The use of a simple trial function in the variational expression results in a Stoner form for chip(T), i.e., chip(T) >= chis(T)\\/[1 - I(T) chis (T)] where chis(T) is the single-particle spin susceptibility including

  2. A new time dependent density functional algorithm for large systems and plasmons in metal clusters.

    PubMed

    Baseggio, Oscar; Fronzoni, Giovanna; Stener, Mauro

    2015-07-14

    A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The method has been applied to very different systems in nature and size (from H2 to [Au147](-)). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemented. PMID:26178089

  3. An irradiation density dependent energy relaxation in plant photosystem II antenna assembly.

    PubMed

    Tian, Wenming; Chen, Jun; Deng, Liezheng; Yao, Mingdong; Yang, Heping; Zheng, Yang; Cui, Rongrong; Sha, Guohe

    2015-02-01

    Plant photosystem II (PSII) is a multicomponent pigment-protein complex that harvests sunlight via pigments photoexcitation, and converts light energy into chemical energy. Against high light induced photodamage, excess light absorption of antenna pigments triggers the operation of photoprotection mechanism in plant PSII. Non-photochemical energy relaxation as a major photoprotection way is essentially correlated to the excess light absorption. Here we investigate the energy relaxation of plant PSII complexes with varying incident light density, by performing steady-state and transient chlorophyll fluorescence measurements of the grana membranes (called as BBY), functional moiety PSII reaction center and isolated light-harvesting complex LHCII under excess light irradiation. Based on the chlorophyll fluorescence decays of these samples, it is found that an irradiation density dependent energy relaxation occurs in the LHCII assemblies, especially in the antenna assembly of PSII supercomplexes in grana membrane, when irradiation increases to somewhat higher density levels. Correspondingly, the average chlorophyll fluorescence lifetime of the highly isolated BBY fragments gradually decreases from ~1680 to ~1360 ps with increasing the irradiation density from 6.1×10(9) to 5.5×10(10) photon cm(-2) pulse(-1). Analysis of the relation of fluorescence decay change to the aggregation extent of LHCIIs suggests that a dense arrangement of trimeric LHCIIs is likely the structural base for the occurrence of this irradiation density dependent energy relaxation. Once altering the irradiation density, this energy relaxation is quickly reversible, implying that it may play an important role in photoprotection of plant PSII. PMID:25482259

  4. Fibrinogen depletion attenuates Staphyloccocus aureus infection by preventing density-dependent virulence gene up-regulation.

    PubMed

    Rothfork, Jacob M; Dessus-Babus, Sophie; Van Wamel, Willem J B; Cheung, Ambrose L; Gresham, Hattie D

    2003-11-15

    Staphylococcus aureus undergoes a density-dependent conversion in phenotype from tissue-adhering to tissue-damaging and phagocyte-evading that is mediated in part by the quorum-sensing operon, agr, and its effector, RNAIII. Contributions of host factors to this mechanism for regulating virulence have not been studied. We hypothesized that fibrinogen, as a component of the inflammatory response, could create spatially constrained microenvironments around bacteria that increase density independently of bacterial numbers and thus potentiate quorum-sensing-dependent virulence gene expression. Here we show that transient fibrinogen depletion significantly reduces the bacterial burden and the consequential morbidity and mortality during experimental infection with wild-type S. aureus, but not with bacteria that lack expression of the quorum-sensing operon, agr. In addition, it inhibits in vivo activation of the promoter for the agr effector, RNAIII, and downstream targets of RNAIII, including alpha hemolysin and capsule production. Moreover, both in vitro and in vivo, the mechanism for promoting this phenotypic switch in virulence involves clumping of the bacteria, demonstrating that S. aureus responds to fibrinogen-mediated bacterial clumping by enhancing density-dependent virulence gene expression. These data demonstrate that down-modulation of specific inflammatory components of the host that augment bacterial quorum sensing can be a strategy for enhancing host defense against infection. PMID:14607942

  5. Variable effort harvesting models in random environments: generalization to density-dependent noise intensities.

    PubMed

    Braumann, Carlos A

    2002-01-01

    In a previous paper [Math. Biosci. 156 (1999) 1], we have studied quite general stochastic differential equation models for the growth of populations subjected to harvesting in a random environment. We have obtained conditions for non-extinction and for the existence of stationary distributions (as well as expressions for such distributions) similar to conditions for non-extinction and for the existence of a stable equilibrium in the corresponding deterministic model. The models were quite general, considering density-dependent natural growth functions and harvesting policies of very general form, so that our results would be model independent and provide minimal requirements for the choice of a wise density-dependent harvesting policy. Those models, however, although quite general on all other respects, have a serious limitation. In fact, the ways environmental fluctuations affect the population per capita growth rate are poorly known and those models only considered two possible ways, namely the noise intensity could be constant or proportional to that rate. To overcome this limitation, in this paper we generalize the previous results to density-dependent positive noise intensities of very general form so that they also become independent from the way environmental fluctuations affect population growth rates. PMID:11965257

  6. Experimental examination of intraspecific density-dependent competition during the breeding period in monarch butterflies (Danaus plexippus).

    PubMed

    Flockhart, D T Tyler; Martin, Tara G; Norris, D Ryan

    2012-01-01

    A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614

  7. Experimental Examination of Intraspecific Density-Dependent Competition during the Breeding Period in Monarch Butterflies (Danaus plexippus)

    PubMed Central

    Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan

    2012-01-01

    A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614

  8. Density

    NSDL National Science Digital Library

    Mrs. Petersen

    2013-10-28

    Students will explain the concept of and be able to calculate density based on given volumes and masses. Throughout today's assignment, you will need to calculate density. You can find a density calculator at this site. Make sure that you enter the correct units. For most of the problems, grams and cubic centimeters will lead you to the correct answer: Density Calculator What is Density? Visit the following website to answer questions ...

  9. Microwave DENSITY—INDEPENDENT Permittivity Functions as Spring Oats Kernels' Moisture Calibrators: a New Approach

    NASA Astrophysics Data System (ADS)

    Das, Priyanka; Ahmad, Zeeshan; Singh, P. N.; Prasad, Ashutosh

    2011-11-01

    The present work makes use of experimental data for real part of microwave complex permittivity of spring oats (Avena sativa L.) at 2.45 GHz and 24 °C as a function of moisture content, as extracted from the literature. These permittivity data were individually converted to those for solid materials using seven independent mixture equations for effective permittivity of random media. Moisture dependent quadratic models for complex permittivity of spring oats (Avena sativa L.), as developed by the present group, were used to evaluate the dielectric loss factor of spring oats kernels. Using these data, seven density—independent permittivity functions were evaluated and plotted as a function of moisture content of the samples. Second and third order polynomial regression equations were used for curve fittings with these data and their performances are reported. Coefficients of determination (r2) approaching unity (˜ 0.95-0.9999) and very small Standard Deviation (SD) ˜0.001-8.87 show good acceptability for these models. The regularity in the nature of these variations revealed the usefulness of the density—independent permittivity functions as indicators/calibrators of moisture content of spring oats kernels. Keeping in view the fact that moisture content of grains and seeds is an important factor determining quality and affecting the storage, transportation, and milling of grains and seeds, the work has the potentiality of its practical applications.

  10. Empirical density-dependent effective interaction for nucleon-nucleus scattering at 500 MeV

    NASA Astrophysics Data System (ADS)

    Flanders, B. S.; Kelly, J. J.; Seifert, H.; Lopiano, D.; Aas, B.; Azizi, A.; Igo, G.; Weston, G.; Whitten, C.; Wong, A.; Hynes, M. V.; McClelland, J.; Bertozzi, W.; Finn, J. M.; Hyde-Wright, C. E.; Lourie, R. W.; Norum, B. E.; Ulmer, P.; Berman, B. L.

    1991-05-01

    We report new cross-section and analyzing-power data for the excitation by 498-MeV protons of all narrow normal-parity states of 16O below 12.1-MeV excitation. In addition, spin-rotation measurements for elastic scattering and depolarization measurements for the 1-1, 2+1, and 3-1 states of 16O have been performed. These data are used in conjunction with existing data for 40Ca to study medium corrections to the effective interaction for nucleon-nucleus scattering at 500 MeV. Systematic differences between the data and nonrelativistic impulse approximation calculations based upon either the free t matrix or a recent density-dependent effective interaction are interpreted within the framework of the local-density approximation. An empirical effective interaction has been constructed which parametrizes the density dependence of the medium modifications in a simple form amenable to phenomenological analysis of data. The parameters of the interaction are adjusted by fitting to data from many transitions simultaneously, including inelastic transitions sensitive to both the surface and the interior of the nucleus. We find that the empirical effective interaction provides a good description of both the fitted inelastic-scattering observables and elastic-scattering observables not included in the fit. Furthermore, we find that the empirical effective interaction fitted to inelastic-scattering data for 16O provides an excellent description of both elastic- and inelastic-scattering data for 40Ca at 500 MeV. The most significant difference between the empirical interaction and the theoretical interaction is that absorption is enhanced at higher density, contrary to expectations based upon Pauli blocking. We find also that the empirical interaction has a stronger repulsive core than expected in nonrelativistic models of the effective interaction. Nevertheless, the optical potentials are very similar to the Schrödinger-equivalent potentials from a relativistic impulse approximation model, showing that the empirical density dependence is comparable to the equivalent density dependence due to elimination of lower components from this relativistic model of the nucleon-nucleus interaction. These results are also compared with global optical potentials from Dirac phenomenology, which suggest even stronger repulsion in the real central interaction.

  11. Temperature dependence of structure and density for D2O confined in MCM-41-S

    NASA Astrophysics Data System (ADS)

    Kamitakahara, William A.; Faraone, Antonio; Liu, Kao-Hsiang; Mou, Chung-Yuan

    2012-02-01

    Using neutron diffraction, we have tracked the temperature dependence of structural properties for heavy water confined in the nanoporous silica matrix MCM-41-S. By observing the correlation peak corresponding to the pore-pore distance, which is determined by the scattering contrast between the silica and the water, we monitored the density of the confined water. Concurrently, we studied the prominent first diffraction peak of D2O at ?1.8 Å-1, which furnishes information on the microscopic arrangement of the water molecules. The data show the presence of a density maximum at ?275 K (±10 K), a property similar to bulk water, and the occurrence of a density minimum at ?180 K (±10 K). The prominent diffraction peak of D2O is found to shift and sharpen over a wide T range from 200 to 270 K, reflecting structural changes that are strongly correlated with the changes in density. We also observe the continuous formation of external ice, arising from water expelled from the pores while expansion takes place within the pores. An efficient method for monitoring the density of the confined D2O using a triple-axis spectrometer is demonstrated.

  12. The ecological–evolutionary interplay: density-dependent sexual selection in a migratory songbird

    PubMed Central

    Ryder, Thomas B; Fleischer, Robert C; Shriver, W Greg; Marra, Peter P

    2012-01-01

    Little is understood about how environmental heterogeneity influences the spatial dynamics of sexual selection. Within human-dominated systems, habitat modification creates environmental heterogeneity that could influence the adaptive value of individual phenotypes. Here, we used the gray catbird to examine if the ecological conditions experienced in the suburban matrix (SM) and embedded suburban parks (SP) influence reproductive strategies and the strength of sexual selection. Our results show that these habitats varied in a key ecological factor, breeding density. Moreover, this ecological factor was closely tied to reproductive strategies such that local breeding density predicted the probability that a nest would contain extra-pair offspring. Partitioning reproductive variance showed that while within-pair success was more important in both habitats, extra-pair success increased the opportunity for sexual selection by 39% at higher breeding densities. Body size was a strong predictor of relative reproductive success and was under directional selection in both habitats. Importantly, our results show that the strength of sexual selection did not differ among habitats at the landscape scale but rather that fine-scale variation in an ecological factor, breeding density, influenced sexual selection on male phenotypes. Here, we document density-dependent sexual selection in a migratory bird and hypothesize that coarse-scale environmental heterogeneity, in this case generated by anthropogenic habitat modification, changed the fine-scale ecological conditions that drove the spatial dynamics of sexual selection. PMID:22837842

  13. Trade-Off between Toxicity and Signal Detection Orchestrated by Frequency- and Density-Dependent Genes

    PubMed Central

    Arthaud, Laury; Rokia-Mille, Selim Ben; Raad, Hussein; Dombrovsky, Aviv; Prevost, Nicolas

    2011-01-01

    Behaviors in insects are partly highly efficient Bayesian processes that fulfill exploratory tasks ending with the colonization of new ecological niches. The foraging (for) gene in Drosophila encodes a cGMP-dependent protein kinase (PKG). It has been extensively described as a frequency-dependent gene and its transcripts are differentially expressed between individuals, reflecting the population density context. Some for transcripts, when expressed in a population at high density for many generations, concomitantly trigger strong dispersive behavior associated with foraging activity. Moreover, genotype-by-environment interaction (GEI) analysis has highlighted a dormant role of for in energetic metabolism in a food deprivation context. In our current report, we show that alleles of for encoding different cGMP-dependent kinase isoforms influence the oxidation of aldehyde groups of aromatic molecules emitted by plants via Aldh-III and a phosphorylatable adaptor. The enhanced efficiency of oxidation of aldehyde odorants into carboxyl groups by the action of for lessens their action and toxicity, which should facilitate exploration and guidance in a complex odor environment. Our present data provide evidence that optimal foraging performance requires the fast metabolism of volatile compounds emitted by plants to avoid neurosensory saturation and that the frequency-dependent genes that trigger dispersion influence these processes. PMID:21625551

  14. Dependence calibration in conditional copulas: a nonparametric approach.

    PubMed

    Acar, Elif F; Craiu, Radu V; Yao, Fang

    2011-06-01

    The study of dependence between random variables is a mainstay in statistics. In many cases, the strength of dependence between two or more random variables varies according to the values of a measured covariate. We propose inference for this type of variation using a conditional copula model where the copula function belongs to a parametric copula family and the copula parameter varies with the covariate. In order to estimate the functional relationship between the copula parameter and the covariate, we propose a nonparametric approach based on local likelihood. Of importance is also the choice of the copula family that best represents a given set of data. The proposed framework naturally leads to a novel copula selection method based on cross-validated prediction errors. We derive the asymptotic bias and variance of the resulting local polynomial estimator, and outline how to construct pointwise confidence intervals. The finite-sample performance of our method is investigated using simulation studies and is illustrated using a subset of the Matched Multiple Birth data. PMID:20731648

  15. Time-Resolved Spectroscopy in Time-Dependent Density Functional Theory: An Exact Condition

    NASA Astrophysics Data System (ADS)

    Fuks, Johanna I.; Luo, Kai; Sandoval, Ernesto D.; Maitra, Neepa T.

    2015-05-01

    A fundamental property of a quantum system driven by an external field is that when the field is turned off the positions of its response frequencies are independent of the time at which the field is turned off. We show that this leads to an exact condition for the exchange-correlation potential of time-dependent density functional theory. The Kohn-Sham potential typically continues to evolve after the field is turned off, which leads to time dependence in the response frequencies of the Kohn-Sham response function. The exchange-correlation kernel must cancel out this time dependence. The condition is typically violated by approximations currently in use, as we demonstrate by several examples, which has severe consequences for their predictions of time-resolved spectroscopy.

  16. Time-resolved spectroscopy in time-dependent density functional theory: an exact condition.

    PubMed

    Fuks, Johanna I; Luo, Kai; Sandoval, Ernesto D; Maitra, Neepa T

    2015-05-01

    A fundamental property of a quantum system driven by an external field is that when the field is turned off the positions of its response frequencies are independent of the time at which the field is turned off. We show that this leads to an exact condition for the exchange-correlation potential of time-dependent density functional theory. The Kohn-Sham potential typically continues to evolve after the field is turned off, which leads to time dependence in the response frequencies of the Kohn-Sham response function. The exchange-correlation kernel must cancel out this time dependence. The condition is typically violated by approximations currently in use, as we demonstrate by several examples, which has severe consequences for their predictions of time-resolved spectroscopy. PMID:26000998

  17. Resampling Method for Applying Density-Dependent Habitat Selection Theory to Wildlife Surveys

    PubMed Central

    Tardy, Olivia; Massé, Ariane; Pelletier, Fanie; Fortin, Daniel

    2015-01-01

    Isodar theory can be used to evaluate fitness consequences of density-dependent habitat selection by animals. A typical habitat isodar is a regression curve plotting competitor densities in two adjacent habitats when individual fitness is equal. Despite the increasing use of habitat isodars, their application remains largely limited to areas composed of pairs of adjacent habitats that are defined a priori. We developed a resampling method that uses data from wildlife surveys to build isodars in heterogeneous landscapes without having to predefine habitat types. The method consists in randomly placing blocks over the survey area and dividing those blocks in two adjacent sub-blocks of the same size. Animal abundance is then estimated within the two sub-blocks. This process is done 100 times. Different functional forms of isodars can be investigated by relating animal abundance and differences in habitat features between sub-blocks. We applied this method to abundance data of raccoons and striped skunks, two of the main hosts of rabies virus in North America. Habitat selection by raccoons and striped skunks depended on both conspecific abundance and the difference in landscape composition and structure between sub-blocks. When conspecific abundance was low, raccoons and striped skunks favored areas with relatively high proportions of forests and anthropogenic features, respectively. Under high conspecific abundance, however, both species preferred areas with rather large corn-forest edge densities and corn field proportions. Based on random sampling techniques, we provide a robust method that is applicable to a broad range of species, including medium- to large-sized mammals with high mobility. The method is sufficiently flexible to incorporate multiple environmental covariates that can reflect key requirements of the focal species. We thus illustrate how isodar theory can be used with wildlife surveys to assess density-dependent habitat selection over large geographic extents. PMID:26042998

  18. Resampling method for applying density-dependent habitat selection theory to wildlife surveys.

    PubMed

    Tardy, Olivia; Massé, Ariane; Pelletier, Fanie; Fortin, Daniel

    2015-01-01

    Isodar theory can be used to evaluate fitness consequences of density-dependent habitat selection by animals. A typical habitat isodar is a regression curve plotting competitor densities in two adjacent habitats when individual fitness is equal. Despite the increasing use of habitat isodars, their application remains largely limited to areas composed of pairs of adjacent habitats that are defined a priori. We developed a resampling method that uses data from wildlife surveys to build isodars in heterogeneous landscapes without having to predefine habitat types. The method consists in randomly placing blocks over the survey area and dividing those blocks in two adjacent sub-blocks of the same size. Animal abundance is then estimated within the two sub-blocks. This process is done 100 times. Different functional forms of isodars can be investigated by relating animal abundance and differences in habitat features between sub-blocks. We applied this method to abundance data of raccoons and striped skunks, two of the main hosts of rabies virus in North America. Habitat selection by raccoons and striped skunks depended on both conspecific abundance and the difference in landscape composition and structure between sub-blocks. When conspecific abundance was low, raccoons and striped skunks favored areas with relatively high proportions of forests and anthropogenic features, respectively. Under high conspecific abundance, however, both species preferred areas with rather large corn-forest edge densities and corn field proportions. Based on random sampling techniques, we provide a robust method that is applicable to a broad range of species, including medium- to large-sized mammals with high mobility. The method is sufficiently flexible to incorporate multiple environmental covariates that can reflect key requirements of the focal species. We thus illustrate how isodar theory can be used with wildlife surveys to assess density-dependent habitat selection over large geographic extents. PMID:26042998

  19. Assessment of range-separated time-dependent density-functional theory for calculating C6 dispersion coefficients

    E-print Network

    Paris-Sud XI, Université de

    Assessment of range-separated time-dependent density-functional theory for calculating C6-l`es-Nancy, France (Dated: May 21, 2013) We assess a variant of linear-response range-separated time-dependent density-functional theory (TDDFT), combining a long-range Hartree-Fock (HF) exchange kernel with a short-range

  20. Survival kinetics of starving bacteria is biphasic and density-dependent.

    PubMed

    Phaiboun, Andy; Zhang, Yiming; Park, Boryung; Kim, Minsu

    2015-04-01

    In the lifecycle of microorganisms, prolonged starvation is prevalent and sustaining life during starvation periods is a vital task. In the literature, it is commonly assumed that survival kinetics of starving microbes follows exponential decay. This assumption, however, has not been rigorously tested. Currently, it is not clear under what circumstances this assumption is true. Also, it is not known when such survival kinetics deviates from exponential decay and if it deviates, what underlying mechanisms for the deviation are. Here, to address these issues, we quantitatively characterized dynamics of survival and death of starving E. coli cells. The results show that the assumption--starving cells die exponentially--is true only at high cell density. At low density, starving cells persevere for extended periods of time, before dying rapidly exponentially. Detailed analyses show intriguing quantitative characteristics of the density-dependent and biphasic survival kinetics, including that the period of the perseverance is inversely proportional to cell density. These characteristics further lead us to identification of key underlying processes relevant for the perseverance of starving cells. Then, using mathematical modeling, we show how these processes contribute to the density-dependent and biphasic survival kinetics observed. Importantly, our model reveals a thrifty strategy employed by bacteria, by which upon sensing impending depletion of a substrate, the limiting substrate is conserved and utilized later during starvation to delay cell death. These findings advance quantitative understanding of survival of microbes in oligotrophic environments and facilitate quantitative analysis and prediction of microbial dynamics in nature. Furthermore, they prompt revision of previous models used to analyze and predict population dynamics of microbes. PMID:25838110

  1. Emergent fungal entomopathogen does not alter density dependence in a viral competitor.

    PubMed

    Liebhold, Andrew M; Plymale, Ruth; Elkinton, Joseph S; Hajek, Ann E

    2013-06-01

    Population cycles in forest Lepidoptera often result from recurring density-dependent epizootics of entomopathogens. While these systems are typically dominated by a single pathogen species, insects are often infected by multiple pathogens, yet little is known how pathogens interact to affect host dynamics. The apparent invasion of northeastern North America by the fungal entomopathogen Entomophaga maimaiga some time prior to 1989 provides a unique opportunity to evaluate such interactions. Prior to the arrival of E. maimaga, the oscillatory dynamics of host gypsy moth, Lymantria dispar, populations were apparently driven by epizootics of a nucleopolyhedrovirus. Subsequent to its emergence, E. maimaiga has caused extensive mortality in host populations, but little is known about how it has altered multigenerational dynamics of the gypsy moth and its virus. Here we compared demographic data collected in gypsy moth populations prior to vs. after E. maimaiga's invasion. We found that the recently invading fungal pathogen virtually always causes greater levels of mortality in hosts than does the virus, but fungal mortality is largely density independent. Moreover, the presence of the fungus has apparently not altered the gypsy moth-virus density-dependent interactions that were shown to drive periodic oscillations in hosts before the arrival of the fungus. PMID:23923480

  2. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    PubMed

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts. PMID:15139307

  3. Quorum Sensing-Mediated, Cell Density-Dependent Regulation of Growth and Virulence in Cryptococcus neoformans

    PubMed Central

    Albuquerque, Patrícia; Nicola, André M.; Nieves, Edward; Paes, Hugo Costa; Williamson, Peter R.; Silva-Pereira, Ildinete; Casadevall, Arturo

    2013-01-01

    ABSTRACT Quorum sensing (QS) is a cell density-dependent mechanism of communication between microorganisms, characterized by the release of signaling molecules that affect microbial metabolism and gene expression in a synchronized way. In this study, we investigated cell density-dependent behaviors mediated by conditioned medium (CM) in the pathogenic encapsulated fungus Cryptococcus neoformans. CM produced dose-dependent increases in the growth of planktonic and biofilm cells, glucuronoxylomannan release, and melanin synthesis, important virulence attributes of this organism. Mass spectrometry revealed the presence of pantothenic acid (PA) in our samples, and commercial PA was able to increase growth and melanization, although not to the same extent as CM. Additionally, we found four mutants that were either unable to produce active CM or failed to respond with increased growth in the presence of wild-type CM, providing genetic evidence for the existence of intercellular communication in C. neoformans. C. neoformans CM also increased the growth of Cryptococcus albidus, Candida albicans, and Saccharomyces cerevisiae. Conversely, CM from Cryptococcus albidus, C. albicans, S. cerevisiae, and Sporothrix schenckii increased C. neoformans growth. In summary, we report the existence of a new QS system regulating the growth and virulence factor expression of C. neoformans in vitro and, possibly, also able to regulate growth in other fungi. PMID:24381301

  4. Dendritic spine dynamics in synaptogenesis after repeated LTP inductions: Dependence on pre-existing spine density

    PubMed Central

    Oe, Yuki; Tominaga-Yoshino, Keiko; Hasegawa, Sho; Ogura, Akihiko

    2013-01-01

    Not only from our daily experience but from learning experiments in animals, we know that the establishment of long-lasting memory requires repeated practice. However, cellular backgrounds underlying this repetition-dependent consolidation of memory remain largely unclear. We reported previously using organotypic slice cultures of rodent hippocampus that the repeated inductions of LTP (long-term potentiation) lead to a slowly developing long-lasting synaptic enhancement accompanied by synaptogenesis distinct from LTP itself, and proposed this phenomenon as a model system suitable for the analysis of the repetition-dependent consolidation of memory. Here we examined the dynamics of individual dendritic spines after repeated LTP-inductions and found the existence of two phases in the spines' stochastic behavior that eventually lead to the increase in spine density. This spine dynamics occurred preferentially in the dendritic segments having low pre-existing spine density. Our results may provide clues for understanding the cellular bases underlying the repetition-dependent consolidation of memory. PMID:23739837

  5. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds

    NASA Astrophysics Data System (ADS)

    Puhakka, P. H.; Ylärinne, J. H.; Lammi, M. J.; Saarakkala, S.; Tiitu, V.; Kröger, H.; Virén, T.; Jurvelin, J. S.; Töyräs, J.

    2014-11-01

    Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (? = 0.853, p < 0.001) and between µt and collagen concentration (? = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (? = 0.504, p < 0.001) but not with collagen concentration (? = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT.

  6. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-11-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm-3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source-target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  7. Thickness Dependent Carrier Density at the Surface of SrTiO3 (111) Slabs

    SciTech Connect

    Sivadas, Mr. Nikhil [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU); Dixit, Hemant M [ORNL] [ORNL; Cooper, Valentino R [ORNL] [ORNL; Xiao, Di [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU)

    2014-01-01

    We investigate the surface electronic structure and thermodynamic stability of the SrTiO3 (111) slabs using density functional theory. We observe that, for Ti-terminated slabs it is indeed possible to create a two-dimensional electron gas (2DEG). However, the carrier density of the 2DEG displays a strong thickness dependence due to the competition between electronic reconstruction and polar distortions. As expected, having a surface oxygen atom at the Ti termination can stabilize the system, eliminating any electronic reconstruction, thereby making the system insulating. An analysis of the surface thermodynamic stability suggests that the Ti terminated (111) surface should be experimentally realizable. This surface may be useful for exploring the behavior of electrons in oxide (111) interfaces and may have implications for modern device applications.

  8. Effective electron displacements: A tool for time-dependent density functional theory computational spectroscopy

    SciTech Connect

    Guido, Ciro A., E-mail: ciro.guido@ecp.fr; Cortona, Pietro [Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), CNRS UMR 8580, École Centrale Paris, Grande Voie des Vignes, F-92295 Châtenay-Malabry (France)] [Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), CNRS UMR 8580, École Centrale Paris, Grande Voie des Vignes, F-92295 Châtenay-Malabry (France); Adamo, Carlo [Laboratoire d’Électrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 (France) [Laboratoire d’Électrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 (France); Institut Universitaire de France, 103 Bd Saint-Michel, F-75005 Paris (France)

    2014-03-14

    We extend our previous definition of the metric ?r for electronic excitations in the framework of the time-dependent density functional theory [C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013)], by including a measure of the difference of electronic position variances in passing from occupied to virtual orbitals. This new definition, called ?, permits applications in those situations where the ?r-index is not helpful: transitions in centrosymmetric systems and Rydberg excitations. The ?-metric is then extended by using the Natural Transition Orbitals, thus providing an intuitive picture of how locally the electron density changes during the electronic transitions. Furthermore, the ? values give insight about the functional performances in reproducing different type of transitions, and allow one to define a “confidence radius” for GGA and hybrid functionals.

  9. Unpolarized transverse momentum dependent densities based on the modified chiral quark model

    E-print Network

    H. Nematollahi; M. M. Yazdanpannah; A. Mirjalili

    2014-06-27

    We investigate the transverse momentum dependent (TMD) quark and gluon distribution functions in the modified chiral quark model ($\\chi QM$). Calculations of the TMD quark and gluon densities, using the modified $\\chi QM$ are done for the first time in this article. For this propose we first formulate the TMD interactions that occur in the $\\chi QM$ at low $Q^2$ scale ($Q^2=0.35~ GeV^2$) and then obtain the TMD parton distributions inside the proton, considering the interactions. To this end, we need to compute the TMD bare quark distributions. These TMD bare densities are calculated, using the solution of Dirac equation with a squared radial symmetry potential . It is shown that our results consist appropriate behavior which are expecting for the TMD parton distributions.

  10. Dependence of the cosmic microwave background lensing power spectrum on the matter density

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Knox, L.; White, M.

    2014-12-01

    The anisotropies in the cosmic microwave background (CMB) provide our best laboratory for testing models of the formation and evolution of large-scale structure. The rich features in the CMB anisotropy spectrum, in combination with highly precise observations and theoretical predictions, also allow us to simultaneously constrain a number of cosmological parameters. As observations have progressed, measurements at smaller angular scales have provided increasing leverage. These smaller angular scales provide sensitive measures of the matter density through the effect of gravitational lensing. In this work, we provide an analytic explanation of the manner in which the lensing of CMB anisotropies depends on the matter density, finding that the dominant effect comes from the shape of the matter power spectrum set by the decay of small-scale potentials between horizon crossing and matter-radiation equality.

  11. Possibility of ??pairing and its dependence on background density in relativistic Hartree-Bogoliubov model

    E-print Network

    Tomonori Tanigawa; Masayuki Matsuzaki; Satoshi Chiba

    2003-03-24

    We calculate a \\Lambda\\Lambda pairing gap in binary mixed matter of nucleons and \\Lambda hyperons within the relativistic Hartree-Bogoliubov model. Lambda hyperons to be paired up are immersed in background nucleons in a normal state. The gap is calculated with a one-boson-exchange interaction obtained from a relativistic Lagrangian. It is found that at background density \\rho_{N}=2.5\\rho_{0} the \\Lambda\\Lambda pairing gap is very small, and that denser background makes it rapidly suppressed. This result suggests a mechanism, specific to mixed matter dealt with relativistic models, of its dependence on the nucleon density. An effect of weaker \\Lambda\\Lambda attraction on the gap is also examined in connection with revised information of the \\Lambda\\Lambda interaction.

  12. A modified NaSch model with density-dependent randomization for traffic flow

    NASA Astrophysics Data System (ADS)

    Zhu, H. B.; Ge, H. X.; Dong, L. Y.; Dai, S. Q.

    2007-05-01

    Based on the Nagel-Schreckenberg (NaSch) model of traffic flow, a modified cellular automaton (CA) traffic model with the density-dependent randomization (abbreviated as the DDR model) is proposed to simulate traffic flow. The fundamental diagram obtained by simulation shows the ability of this modified NaSch model to capture the essential features of traffic flow, e.g., synchronized flow, metastable state, hysteresis and phase separation at higher densities. Comparisons are made between this DDR model and the NaSch model, also between this DDR model and the VDR model. And the underlying mechanism is analyzed. All these results indicate that the presented model is reasonable and more realistic.

  13. Approach for control of high-density plasma reactors through optimal pulse shaping*

    E-print Network

    Raja, Laxminarayan L.

    Approach for control of high-density plasma reactors through optimal pulse shaping* Tyrone L and operation of glow-discharge plasma process reactors. Several approaches have been proposed recently, one of which is the operation of plasma reactors in the pulsed mode where the power input to the reactor

  14. Temperature dependence of current density and admittance in metal-insulator-semiconductor junctions with molecular insulator

    NASA Astrophysics Data System (ADS)

    Fadjie-Djomkam, A. B.; Ababou-Girard, S.; Hiremath, R.; Herrier, C.; Fabre, B.; Solal, F.; Godet, C.

    2011-10-01

    Electrical transport in ultrathin Metal-insulator-semiconductor (MIS) tunnel junctions is analyzed using the temperature dependence of current density and admittance characteristics, as illustrated by Hg//C12H25 - n Si junctions incorporating n-alkyl molecular layers (1.45 nm thick) covalently bonded to Si(111). The voltage partition is obtained from J(V, T) characteristics, over eight decades in current. In the low forward bias regime (0.2-0.4 V) governed by thermionic emission, the observed linear T-dependence of the effective barrier height, q?EFF(T)=q?B+(kT)?0dT, provides the tunnel barrier attenuation, exp(-?0dT), with ?0= 0.93 Å-1 and the thermionic emission barrier height, ?B=0.53 eV. In the high-forward-bias regime (0.5-2.0 V), the bias dependence of the tunnel barrier transparency, approximated by a modified Simmons model for a rectangular tunnel barrier, provides the tunnel barrier height, ?T=0.5 eV; the fitted prefactor value, G0 = 10-10 ?-1, is four decades smaller than the theoretical Simmons prefactor for MIM structures. The density distribution of defects localized at the C12H25 - n Si interface is deduced from admittance data (low-high frequency method) and from a simulation of the response time ?R(V) using Gomila's model for a non equilibrium tunnel junction. The low density of electrically active defects near mid-gap (DS < 2 × 1011 eV-1.cm-2) indicates a good passivation of dangling bonds at the dodecyl - n Si (111) interface.

  15. Critique of the foundations of time-dependent density-functional theory

    SciTech Connect

    Schirmer, J.; Dreuw, A. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany); Institut fuer Physikalische und Theoretische Chemie, Universitaet Frankfurt, D-60439 Frankfurt (Germany)

    2007-02-15

    The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion.

  16. Density dependence and risk of extinction in a small population of sea otters

    USGS Publications Warehouse

    Gerber, L.R.; Buenau, K.E.; VanBlaricom, G.

    2004-01-01

    Sea otters (Enhydra lutris (L.)) were hunted to extinction off the coast of Washington State early in the 20th century. A new population was established by translocations from Alaska in 1969 and 1970. The population, currently numbering at least 550 animals, A major threat to the population is the ongoing risk of majour oil spills in sea otter habitat. We apply population models to census and demographic data in order to evaluate the status of the population. We fit several density dependent models to test for density dependence and determine plausible values for the carrying capacity (K) by comparing model goodness of fit to an exponential model. Model fits were compared using Akaike Information Criterion (AIC). A significant negative relationship was found between the population growth rate and population size (r2=0.27, F=5.57, df=16, p<0.05), suggesting density dependence in Washington state sea otters. Information criterion statistics suggest that the model is the most parsimonious, followed closely by the logistic Beverton-Holt model. Values of K ranged from 612 to 759 with best-fit parameter estimates for the Beverton-Holt model including 0.26 for r and 612 for K. The latest (2001) population index count (555) puts the population at 87-92% of the estimated carrying capacity, above the suggested range for optimum sustainable population (OSP). Elasticity analysis was conducted to examine the effects of proportional changes in vital rates on the population growth rate (??). The elasticity values indicate the population is most sensitive to changes in survival rates (particularly adult survival).

  17. Generalized time-dependent density-functional-theory response functions for spontaneous density fluctuations and nonlinear response: Resolving the causality paradox in real time

    SciTech Connect

    Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

    2005-02-01

    Time-ordered superoperators are used to develop a unified description of nonlinear density response and spontaneous fluctuations of many-electron systems. The pth-order density response functions are decomposed into 2{sup p+1} non-causal Liouville space pathways. Individual pathways are symmetric to the interchange of their space, time, and superoperator indices and can thus be calculated as functional derivatives. Other combinations of these pathways represent spontaneous density fluctuations and the response of such fluctuations to an external field. The resolution of the causality paradox of time-dependent density-functional theory (TDDFT) is shown to be intimately connected with the nonretarded nature of fluctuations.

  18. Constraining depth-dependent anisotropy: A new approach

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Okeler, A.

    2014-12-01

    Splitting of shear waves is commonly used to infer anisotropy of the Earth's interior. However, most data, such as SKS splitting, provide depth-integrated measure of anisotropy along the ray path, and it is difficult to separate contributions from different layers within the Earth. There have been efforts to focus on specific depth range by analyzing differences in splitting between two ray paths, but these studies only report observed differences or rely upon forward modeling with limited parameter-space search. We have developed a new approach to examine the P-to-S converted phases that allows one to construct depth-dependent multi-layer anisotropy models through combination of inversion and grid search. In addition to the conventional fast splitting direction and delay time, the technique allows one to investigate the tilt of the symmetry axis and dip of the discontinuity associated with the P-to-S conversion. Furthermore, the formulation is such that it naturally extends to include and examine multiple layers with different anisotropic properties. With these flexibilities, we can address anisotropic contributions from different layers in two separate procedures. The first scheme takes advantage of data with similar ray paths (e.g., SKS and SKKS waves recorded at the same station). The rays sample different structure when their ray paths differ (e.g., near the core-mantle boundary), but they sample the same structure when the paths are similar (e.g., in the upper part of the mantle and crust). Using our new approach, we can set up the problem as a two-layer anisotropy model where the layer with ray paths sampling different regions (e.g., lowermost mantle) is allowed to vary laterally. The second type of problem that can be addressed by the new approach is layer-by-layer investigation of anisotropy from top to bottom. This procedure combines the new method with receiver function analysis to obtain anisotropic properties of each layer using P-to-S converted waves from different discontinuities such as the Moho, 410-km and 660-km discontinuities. The application of the methods to real data shows significant lateral variations in anisotropy, both in deep Earth and near the surface.

  19. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides

    SciTech Connect

    Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH

    2009-12-14

    We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.

  20. Pseudo-spin symmetry in density-dependent relativistic Hartree-Fock theory

    E-print Network

    Wen Hui Long; Hiroyuki Sagawa; Jie Meng; Nguyen Van Giai

    2006-03-28

    The pseudo-spin symmetry (PSS) is investigated in the density-dependent relativistic Hartree-Fock theory by taking {the} doubly magic nucleus $^{132}$Sn as a representative. It is found that the Fock terms bring significant contributions to the pseudo-spin orbital potentials (PSOP) and make it comparable to the pseudo-centrifugal barrier (PCB). However, these Fock terms in the PSOP are counteracted by other exchange terms due to the non-locality of the exchange potentials. The pseudo-spin orbital splitting indicates that the PSS is preserved well for the partner states $\\lrb{\

  1. RESEARCH NOTE Analytical approach to the thermodynamics and density distribution of crystalline phases of hard spheres

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Mederos, L.; Navascues, G.

    We extend the well-known free-volume approach to describe the thermodynamic properties and density distribution of crystalline phases of hard hypersphere systems. Despite its extreme simplicity the approach yields results which are in quantitative agreement with simulation data. The theory can, in particular, describe the properties of the body-centred cubic phase of hard spheres, for which density-functional approaches provide unphysical results, allowing for the application of perturbation theory to situations where, as is the case in some colloidal systems, the body-centred cubic is one of the most interesting phases. The theory is also tested by applying it to systems of hard discs.

  2. Hydrodynamic perspective on memory in time-dependent density-functional theory

    SciTech Connect

    Thiele, M.; Kuemmel, S. [Physikalisches Institut, Universitaet Bayreuth, D-95440 Bayreuth (Germany)

    2009-05-15

    The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.

  3. Density determination of nano-layers depending to the thickness by non-destructive method

    NASA Astrophysics Data System (ADS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z.

    2013-12-01

    Non-destructive tests used to characterize and observe the state of the solids near the surface or at depth, without damaging them or damaging them. Density is frequently used to follow the variations of the physical structure of the samples, as well as in the calculation of quantity of material required to fill a given volume, and it is also used to determine the homogeneity of a sample. However, the measurement of the acoustic properties (density, elastic constants,…) of a thin film whose thickness is smaller than several atomic layers is not easy to perform. For that reason, we expose in this work the effects of the thicknesses of thin films on the evolution of the density, where several samples are analyzed. The samples selected structures are thin films deposited on substrates, these coatings have thicknesses varying from a few atomic layers to ten or so micrometers and can change the properties of the substrate on which they are deposited. To do so, we considered a great number of layers (Cr, Al, SiO2, ZnO, Cu, AlN, Si3N4, SiC) deposited on different substrates (Al2O3, Cu and Quartz). It is first shown that the density exhibits a dispersive behaviour. Such a behaviour is characterized by an initial increase (or decrease) followed by a saturated region. Further investigations of these dependences led to the determination of a semi-empirical universal relations, ?=f(h/?T), for all the investigated layer/substrate combination. Such expression could be of great importance in the density prediction of even layers thicknesses.

  4. A density-functional approach to polarizable models: A Kim-Gordon response density interaction potential for molecular simulations

    NASA Astrophysics Data System (ADS)

    Tabacchi, Gloria; Hutter, Jürg; Mundy, Christopher J.

    2005-08-01

    A combined linear-response-frozen electron-density model has been implemented in a molecular-dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory [J. Chem. Phys. 56, 3122 (1972); J. Chem. Phys. 60, 1842 (1974)] and a response contribution determined by the instantaneous ionic configuration of the system. The method is free from empirical pair potentials and the parametrization protocol involves only calculations on properly chosen subsystems. We apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparable to Kohn-Sham density-functional calculations.

  5. A density-functional approach to polarizable models: a Kim-Gordon response density interaction potential for molecular simulations.

    PubMed

    Tabacchi, Gloria; Hutter, Jürg; Mundy, Christopher J

    2005-08-15

    A combined linear-response-frozen electron-density model has been implemented in a molecular-dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory [J. Chem. Phys. 56, 3122 (1972); J. Chem. Phys. 60, 1842 (1974)] and a response contribution determined by the instantaneous ionic configuration of the system. The method is free from empirical pair potentials and the parametrization protocol involves only calculations on properly chosen subsystems. We apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparable to Kohn-Sham density-functional calculations. PMID:16229560

  6. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    E-print Network

    Xiao-Dong Li; Changbom Park; Jaime E. Forero-Romero; Juhan Kim

    2014-12-11

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the Universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter $\\Omega_m$ or the dark energy equation of state $w$ are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the Universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on $D_AH$, the product of the angular diameter distance and the Hubble parameter.

  7. Angularly Dependent, Contact-free Current Density Measurements of YBCO Coated Conductor

    NASA Astrophysics Data System (ADS)

    Sinclair, J. W.; Thompson, J. R.; Christen, D. K.; Zhang, Y.

    2009-03-01

    Studying the angular dependence of the current density J gives insight into vortex pinning. We investigated a coated conductor of YBa2Cu3O˜7 containing c-axis correlated defects (stacks of BaZrO3 particles), striated into six strips to give a high aspect ratio. The current density was determined inductively from the magnetic moment m˜J, using a SQUID magnetometer. The sample was mounted on a horizontal rotating platform to vary the angle ? of the sample with respect to the vertical applied magnetic field. The magnetometer allows us to measure both the longitudinal and transverse components of moment m(?), enabling calculation of the angular dependence of J. For a large range of applied magnetic fields at various temperatures, we found a pronounced peak in J(?) at an angular value (?peak) near the c-axis. We observed that, for a large range of applied magnetic fields, ?peak linearly scales with 1/h, where h = (H/Hc2) is the reduced field. Research sponsored by DOE, Division of Materials Sciences and Engineering, and Office of Electricity Delivery and Energy Reliability.

  8. Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities

    SciTech Connect

    Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz [Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611-8435 (United States); Institute of Physics, Nicolaus Copernicus University, Torun 87-100 (Poland)

    2005-03-01

    Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP.

  9. Altitude and solar activity dependence of 1967-2005 thermospheric density trends derived from orbital drag

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.

    2015-04-01

    We examine 1967-2005 thermospheric mass density trends (as well as 1967-2013 trends) derived from satellite orbit data, as a function of altitude, solar flux, and geomagnetic activity. At 400 km altitude, the estimated 1967-2005 trend is -2.0 ± 0.5% per decade. The estimated trends become increasingly negative with increasing height between 250 and 575 km, suggesting an exospheric temperature trend of -1 to -2 K per decade, which is much smaller than temperature trends that have been inferred from ground-based incoherent scatter radar measurements. The orbit-derived trend height profiles are in good agreement with model simulations of the enhanced cooling that results from increasing concentration of CO2 in the mesosphere and lower thermosphere. In contrast to earlier results, the solar flux dependence of the estimated trends is weak, relative to the trend uncertainty. There is some indication that the trends may be stronger during very low geomagnetic activity conditions. Estimation of the solar flux and geomagnetic activity dependence of the trends is complicated by monotonic decreases in these drivers over the past four solar minima together with the CO2 increase, all of which drive interminima decreases in density.

  10. Time-dependent internal density functional theory formalism and Kohn-Sham scheme for self-bound systems

    SciTech Connect

    Messud, Jeremie [Universite de Toulouse, UPS, Laboratoire de Physique Theorique (IRSAMC), F-31062 Toulouse, France, and CNRS, LPT (IRSAMC), F-31062 Toulouse (France)

    2009-11-15

    The stationary internal density functional theory (DFT) formalism and Kohn-Sham scheme are generalized to the time-dependent case. It is proven that, in the time-dependent case, the internal properties of a self-bound system (such as an atomic nuclei or a helium droplet) are all defined by the internal one-body density and the initial state. A time-dependent internal Kohn-Sham scheme is set up as a practical way to compute the internal density. The main difference from the traditional DFT formalism and Kohn-Sham scheme is the inclusion of the center-of-mass correlations in the functional.

  11. Individual differences, density dependence and offspring birth traits in a population of red deer

    PubMed Central

    Stopher, Katie V; Pemberton, Josephine M; Clutton-Brock, Tim H; Coulson, Tim

    2008-01-01

    Variation between individuals is an essential component of natural selection and evolutionary change, but it is only recently that the consequences of persistent differences between individuals on population dynamics have been considered. In particular, few authors have addressed whether interactions exist between individual quality and environmental variation. In part, this is due to the difficulties of collecting sufficient data, but also the challenge of defining individual quality. Using a long-established study population of red deer, Cervus elaphus, inhabiting the North Block of the Isle of Rum, and three quality measures, this paper investigates how differences in maternal quality affect variation in birth body mass and date, as population density varies, and how this differs depending on the sex of the offspring and the maternal quality measure used. Significant interactions between maternal quality, measured as a hind's total contribution to population growth, and population density are reported for birth mass, but only for male calves. Analyses using dominance or age at primiparity to define maternal quality showed no significant interactions with population density, highlighting the difficulties of defining a consistent measure of individual quality. PMID:18522909

  12. Time-dependent density functional theory of magneto-optical response of periodic insulators

    NASA Astrophysics Data System (ADS)

    Rubio, Angel; Tokatly, Ilya V.; Lebedeva, Irina V.

    2014-03-01

    Though the linear response theory has been successfully used for molecular systems for a long time, the extension of this theory to solids is not straightforward since the position operator is ill defined in extended periodic systems. The theoretical description of homogeneous static magnetic field in periodic systems is particularly challenging as the corresponding vector potential breaks the translational invariance of the Hamiltonian. We present a unified approach to calculation of all-order response to arbitrary electromagnetic fields both for periodic and molecular systems within the formalism of non-equilibrium Green functions. The approach is applied to derive the expression for the magneto-optical response of insulating solids in the approximation of non-interacting electrons. The formula obtained is completely identical to the expression for molecular systems if the proper position and orbital magnetization operators are chosen. The terms corresponding to changes in the optical response due to the orbital magnetization of Bloch states and due to the modified density of Bloch states in the magnetic field are identified. A computational scheme based on the density matrix-perturbation theory is developed for practical calculations of the magneto-optical response. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.

  13. Calculation of the magnetic circular dichroism term from the imaginary part of the Verdet constant using damped time-dependent density functional theory

    Microsoft Academic Search

    Mykhaylo Krykunov; Michael Seth; Tom Ziegler; Jochen Autschbach

    2007-01-01

    A time-dependent density functional theory (TDDFT) formalism with damping for the calculation of the magnetic optical rotatory dispersion and magnetic circular dichroism (MCD) from the complex Verdet constant is presented. For a justification of such an approach, we have derived the TDDFT analog of the sum-over-states formula for the Verdet constant. The results of the MCD calculations by this method

  14. Warming and nitrogen affect size structuring and density dependence in a host-parasitoid food web.

    PubMed

    de Sassi, Claudio; Staniczenko, Phillip P A; Tylianakis, Jason M

    2012-11-01

    Body size is a major factor constraining the trophic structure and functioning of ecological communities. Food webs are known to respond to changes in basal resource abundance, and climate change can initiate compounding bottom-up effects on food-web structure through altered resource availability and quality. However, the effects of climate and co-occurring global changes, such as nitrogen deposition, on the density and size relationships between resources and consumers are unknown, particularly in host-parasitoid food webs, where size structuring is less apparent. We use a Bayesian modelling approach to explore the role of consumer and resource density and body size on host-parasitoid food webs assembled from a field experiment with factorial warming and nitrogen treatments. We show that the treatments increased resource (host) availability and quality (size), leading to measureable changes in parasitoid feeding behaviour. Parasitoids interacted less evenly within their host range and increasingly focused on abundant and high-quality (i.e. larger) hosts. In summary, we present evidence that climate-mediated bottom-up effects can significantly alter food-web structure through both density- and trait-mediated effects. PMID:23007092

  15. Two superhelix density-dependent DNA transitions detected by changes in DNA adsorption/desorption behavior.

    PubMed

    Fojta, M; Bowater, R P; Stanková, V; Havran, L; Lilley, D M; Palecek, E

    1998-04-01

    The adsorption behavior of covalently closed circular plasmid DNA at the mercury/water interface was studied by means of AC impedance measurements. The dependence of the differential capacitance (C) of the electrode double layer on the potential (E) was measured in the presence of adsorbed DNA. It was found that the C-E curves of supercoiled DNA at native and highly negative superhelix densities (sigma), relaxed covalently closed circular DNA, and nicked DNA differed from each other. A detailed study of topoisomer distributions ranging from -sigma of 0 to 0.11 revealed two supercoiling-dependent transitions, at about -sigma = 0.04 (transition TI) and 0.07 (transition TII). Transition TI was detected by measuring the height of the adsorption/desorption peak 1 (at about -1.2 V against the saturated calomel electrode) and the decrease of capacitance (DeltaC) at -0.35 V. This transition may be due to a sudden change in the ability of the DNA to respond to the alternating voltage, probably caused by changes in the DNA tertiary and/or secondary structure. Transition TII was detected by measuring peak 3* (at about -1.3 V), which was absent in topoisomers with -sigma less than 0.05. This transition is due to changes in the DNA adsorption/desorption behavior related to increased accessibility of bases at elevated negative superhelix density. Opening of the duplex at highly negative superhelix density was also detected by the single-strand selective probe of DNA structure, osmium tetroxide, 2, 2'-bipyridine. Our results suggest that electrochemical techniques provide sensitive experimental analysis of changes in DNA structure. PMID:9538002

  16. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    PubMed

    Shiojiri, Kaori; Ozawa, Rika; Kugimiya, Soichi; Uefune, Masayoshi; van Wijk, Michiel; Sabelis, Maurice W; Takabayashi, Junji

    2010-01-01

    Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori) also show such a response to the density of cabbage white (Pieris rapae) larvae and attract more (naive) parasitoids (Cotesia glomerata) when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella) larvae, seedlings of the same variety (cv Shikidori) release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis) of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale) respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala) is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata) as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike. PMID:20808961

  17. {sigma}{sup -}/{sigma}{sup +} ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities

    SciTech Connect

    Li Qingfeng [Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt (Germany); Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080 (China); Li Zhuxia [Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt (Germany); China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); Center of Theoretical Nuclear Physics, National Laboratory of Lanzhou Heavy Ion Accelerator, Lanzhou 730000 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080 (China); Zhao Euguang [Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080 (China); Gupta, Raj K. [Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt (Germany); Department of Physics, Panjab University, Chandigarh - 160014 (India)

    2005-05-01

    Based on the UrQMD (ultrarelativistic quantum molecular dynamics) model, we have investigated the influence of the symmetry potential on the negatively and positively charged {pi} and {sigma} hyperon production ratios in heavy ion collisions at the SIS (SchwerIonen Synchrotron) energies. We find that, in addition to {pi}{sup -}/{pi}{sup +} ratio, the {sigma}{sup -}/{sigma}{sup +} ratio can be taken as a sensitive probe for investigating the density dependence of the symmetry potential of nuclear matter at high densities (1-4 times normal baryon density). This sensitivity of the symmetry potential to both the {pi}{sup -}/{pi}{sup +} and {sigma}{sup -}/{sigma}{sup +} ratios is found to depend strongly on the incident beam energy. Furthermore, the {sigma}{sup -}/{sigma}{sup +} ratio is shown to carry the information about the isospin-dependent part of the {sigma} hyperon single-particle potential.

  18. Dependency of irradiation damage density on tritium migration behaviors in Li2TiO3

    NASA Astrophysics Data System (ADS)

    Kobayashi, Makoto; Toda, Kensuke; Oya, Yasuhisa; Okuno, Kenji

    2014-04-01

    Tritium migration behaviors in Li2TiO3 with the increase of irradiation damage density were investigated by means of electron spin resonance and thermal desorption spectroscopy. The irradiation damages of F+-centers and O--centers were formed by neutron irradiation, and their damage densities were increased with increasing neutron fluence. Tritium release temperature was clearly shifted toward higher temperature side with increasing neutron fluence, i.e. increasing damage density. The rate determining process for tritium release was also clearly changed depending on the damage density. Tritium release was mainly controlled by tritium diffusion process in crystalline grain of Li2TiO3 at lower neutron fluence. The apparent tritium diffusivity was reduced as the damage density in Li2TiO3 increased due to the introduction of tritium trapping/detrapping sites for diffusing tritium. Then, tritium trapping/detrapping processes began to control the overall tritium release with further damage introductions as the amount of tritium trapping sites increased enough to trap most of tritium in Li2TiO3. The effects of water vapor in purge gas on tritium release behaviors were also investigated. It was considered that hydrogen isotopes in purge gas would be dissociated and adsorbed on the surface of Li2TiO3. Then, hydrogen isotopes diffused inward Li2TiO3 would occupy the tritium trapping sites before diffusing tritium reaches to these sites, promoting apparent tritium diffusion consequently. Kinetics analysis of tritium release for highly damaged Li2TiO3 showed that the rate determining process of tritium release was the detrapping process of tritium formed as hydroxyl groups. The rate of tritium detrapping as hydroxyl groups was determined by the kinetic analysis, and was comparable to tritium release kinetics for Li2O, LiOH and Li4TiO4. The dangling oxygen atoms (O--centers) formed by neutron irradiation would contribute strongly on the formation of hydroxyl groups. The efficiency of tritium trapping/detrapping by the dangling oxygen atoms was clearly increased with increasing damage density due to the stabilization of damages by neighboring irradiation damages and/or the lithium burn-up which produces lithium vacancy acting as a pass way of tritium to the dangling oxygen atoms.

  19. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population.

    PubMed

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-07-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong. PMID:25077023

  20. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population

    PubMed Central

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-01-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong. PMID:25077023

  1. A Multiple Motives Approach to Tobacco Dependence: The Wisconsin Inventory of Smoking Dependence Motives (WISDM-68)

    ERIC Educational Resources Information Center

    Piper, Megan E.; Piasecki, Thomas M.; Federman, E. Belle; Bolt, Daniel M.; Smith, Stevens S.; Fiore, Michael C.; Baker, Timothy C.

    2004-01-01

    The dependence construct fills an important explanatory role in motivational accounts of smoking and relapse. Frequently used measures of dependence are either atheoretical or grounded in a unidimensional model of physical dependence. This research creates a multidimensional measure of dependence that is based on theoretically grounded motives for…

  2. Density

    NSDL National Science Digital Library

    Targeting a middle and high school population, this web page has an introduction to the concept of density. It is an appendix of a larger site called, MathMol (Mathematics and Molecules), designed as an introduction to molecular modeling.

  3. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    EPA Science Inventory

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  4. Density-dependent life-history compensation of an iteroparous salmonid.

    PubMed

    Johnston, Fiona D; Post, John R

    2009-03-01

    Over the course of a decade, the bull trout (Salvelinus confluentus) population in Lower Kananaskis Lake, Alberta, Canada, recovered from a heavily overexploited state, experiencing a 28-fold increase in adult abundance after the implementation of zero-harvest regulations. This system provided a unique opportunity to monitor the changes in life-history characteristics in a natural population throughout the recovery process. The purpose of this study was to examine the degree to which life-history traits were able to compensate for harvest-induced changes and the implications of this for management. Density-dependent changes in growth, survival, and reproductive life-history characteristics were observed. As density increased, maturation was delayed, and the frequency of skipped reproductive events, primarily by individuals of poor condition, increased. However, size at maturation and the proportion of fish skipping reproduction differed between the sexes, suggesting that life-history trade-offs differ between the sexes. The rapid response of these life-history traits to changes in density suggests that these changes were primarily due to phenotypic plasticity, although the importance of natural and artificial selection should not be discounted. The magnitude of the variation in the traits represents the degree to which the population was able to compensate for overharvest, although the overexploited state of the population at the beginning of the study demonstrates it was not able to fully compensate for this mortality. However, no evidence of depensatory processes was found. This, in combination with the plasticity of the life-history traits, has important implications for the resilience of the population to overharvest. Furthermore, density-dependent growth may have the unintended result of making size-based regulations less conservative at low levels of population abundance, as younger fish, perhaps even immature fish, become vulnerable to harvest. Finally, the variation in life-history traits in relation to evolutionary change is discussed. Results from this study demonstrate the importance of considering not only survival, but also changes in life-history characteristics for management and conservation. PMID:19323202

  5. A consistent approach for the treatment of Fermi acceleration in time-dependent billiards

    NASA Astrophysics Data System (ADS)

    Karlis, A. K.; Diakonos, F. K.; Constantoudis, V.

    2012-06-01

    The standard description of Fermi acceleration, developing in a class of time-dependent billiards, is given in terms of a diffusion process taking place in momentum space. Within this framework, the evolution of the probability density function (PDF) of the magnitude of particle velocities as a function of the number of collisions n is determined by the Fokker-Planck equation (FPE). In the literature, the FPE is constructed by identifying the transport coefficients with the ensemble averages of the change of the magnitude of particle velocity and its square in the course of one collision. Although this treatment leads to the correct solution after a sufficiently large number of collisions have been reached, the transient part of the evolution of the PDF is not described. Moreover, in the case of the Fermi-Ulam model (FUM), if a standard simplification is employed, the solution of the FPE is even inconsistent with the values of the transport coefficients used for its derivation. The goal of our work is to provide a self-consistent methodology for the treatment of Fermi acceleration in time-dependent billiards. The proposed approach obviates any assumptions for the continuity of the random process and the existence of the limits formally defining the transport coefficients of the FPE. Specifically, we suggest, instead of the calculation of ensemble averages, the derivation of the one-step transition probability function and the use of the Chapman-Kolmogorov forward equation. This approach is generic and can be applied to any time-dependent billiard for the treatment of Fermi-acceleration. As a first step, we apply this methodology to the FUM, being the archetype of time-dependent billiards to exhibit Fermi acceleration.

  6. Time-dependent density-functional-theory calculation of high-order-harmonic generation of H2

    NASA Astrophysics Data System (ADS)

    Chu, Xi; Groenenboom, Gerrit C.

    2012-05-01

    The observation of the isotope effect in the high-order-harmonic generation (HHG) of H2 presents a challenge for time-dependent density-functional-theory (TDDFT) methods, since this effect is related to the dynamics of the ion created in the tunneling ionization step of HHG and it depends on the harmonic order. As an initial step toward describing this effect within current computational capacity, we benchmark a method in which the nuclear and electronic degrees of freedom are separated and both treated quantum mechanically. For the electrons two TDDFT formalisms are adopted. Although the ion-dynamics effect is not described in our method, it reproduces the measured D2-to-H2 HHG ratios up to the 25th harmonic when the 35th is the classical cutoff. Beyond the 25th harmonic, however, our results show substantial deviation and are sensitive to the laser intensity. A higher intensity reproduces the experimental results. Analysis reveals an R-dependent phase factor as the cause of the isotope effect in our calculation. We isolate this phase factor and propose a strong-field-approximation-phase model, which reproduces experimental data, including those for which the ion-dynamics model has to be further modified. We show that the model that we propose is intrinsically related to the ion-dynamics model. Our model provides a correction to the TDDFT approach when the ion-dynamics effect becomes significant. It also indicates that the isotope effect is not only a probe for the ion created by the external field but is ultimately a more useful probe for the ground-state nuclear wave function. For all molecules whose vertical ionization potential strongly depends on the nuclear geometry, HHG may serve as a sensitive ultrafast probe of nuclear dynamics.

  7. Assessment of the ?SCF density functional theory approach for electronic excitations in organic dyes

    SciTech Connect

    Kowalczyk, T.; Yost, S. R.; Van Voorhis, T.

    2010-01-01

    This paper assesses the accuracy of the ?SCF method for computing low-lying HOMO?LUMO transitions in organic dye molecules. For a test set of vertical excitation energies of 16 chromophores, surprisingly similar accuracy is observed for time-dependent density functional theory and for ?SCF density functional theory. In light of this performance, we reconsider the ad hoc ?SCF prescription and demonstrate that it formally obtains the exact stationary density within the adiabatic approximation, partially justifying its use. The relative merits and future prospects of ?SCF for simulating individual excited states are discussed.

  8. Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery.

    PubMed Central

    Simon, B C; Cunningham, L D; Cohen, R A

    1990-01-01

    The direct vasoactive effects of native and oxidatively modified low density lipoproteins as well as their effects on endothelium-dependent relaxations to 5-hydroxytryptamine were studied in isolated rings of pig right coronary artery. Slowly developing contractions were caused by native low density lipoproteins (100 micrograms protein/ml). The contractions were more pronounced in the absence than in the presence of the trace metal chelator, EDTA, and coincided with the formation of lipid peroxides during the response. The lipophilic antioxidant, butylated hydroxytoluene, prevented the oxidation of, and contraction to, native low density lipoproteins. Low density lipoproteins oxidized by exposure to copper contracted coronary arteries more rapidly with a threshold of only 1 micrograms protein/ml, but with a similar maximal contraction at 100 micrograms protein/ml. Superoxide dismutase inhibited the contraction to native low density lipoproteins, but not to oxidized low density lipoproteins. Catalase blocked contractions to both native and oxidized low density lipoproteins. Contractions to oxidized low density lipoproteins were unaffected by indomethacin, but were abolished by removal of the endothelium or by inhibitors of endothelium-derived relaxing factor. Oxidized low density lipoproteins but not native low density lipoproteins inhibited endothelium-dependent relaxations to 5-hydroxytryptamine. Thus, oxidized low density lipoproteins caused endothelium-dependent coronary artery contractions which are mediated by a hydroperoxide. Contractions to native low density lipoproteins are due to their oxidation in the organ chamber by the superoxide anion radical. Oxidized, but not native, low density lipoproteins impair normal endothelial cell vasodilator function in vitro. Oxidized low density lipoproteins, important in the pathogenesis of atherosclerosis, may directly contribute to the increased risk of vasospasm seen in hypercholesterolemia and atherosclerosis. PMID:2365828

  9. Radial oscillations of magnetized proto strange stars in temperature-and density-dependent quark mass model

    Microsoft Academic Search

    V. K. Gupta; Asha Gupta; S. Singh; J. D. Anand

    2003-01-01

    We report on the study of the mass-radius (M-R) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modification, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We find that the effect of magnetic field, both on the maximum mass and radial frequencies,

  10. A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Sudhan Reddy Gudur, Madhu; Hara, Wendy; Le, Quynh-Thu; Wang, Lei; Xing, Lei; Li, Ruijiang

    2014-11-01

    MRI significantly improves the accuracy and reliability of target delineation in radiation therapy for certain tumors due to its superior soft tissue contrast compared to CT. A treatment planning process with MRI as the sole imaging modality will eliminate systematic CT/MRI co-registration errors, reduce cost and radiation exposure, and simplify clinical workflow. However, MRI lacks the key electron density information necessary for accurate dose calculation and generating reference images for patient setup. The purpose of this work is to develop a unifying method to derive electron density from standard T1-weighted MRI. We propose to combine both intensity and geometry information into a unifying probabilistic Bayesian framework for electron density mapping. For each voxel, we compute two conditional probability density functions (PDFs) of electron density given its: (1) T1-weighted MRI intensity, and (2) geometry in a reference anatomy, obtained by deformable image registration between the MRI of the atlas and test patient. The two conditional PDFs containing intensity and geometry information are combined into a unifying posterior PDF, whose mean value corresponds to the optimal electron density value under the mean-square error criterion. We evaluated the algorithm’s accuracy of electron density mapping and its ability to detect bone in the head for eight patients, using an additional patient as the atlas or template. Mean absolute HU error between the estimated and true CT, as well as receiver operating characteristics for bone detection (HU > 200) were calculated. The performance was compared with a global intensity approach based on T1 and no density correction (set whole head to water). The proposed technique significantly reduced the errors in electron density estimation, with a mean absolute HU error of 126, compared with 139 for deformable registration (p = 2? × ?10?4), 283 for the intensity approach (p = 2? × ?10?6) and 282 without density correction (p = 5? × ?10?6). For 90% sensitivity in bone detection, the proposed method achieved a specificity of 86%, compared with 80, 11 and 10% using deformable registration, intensity and without density correction, respectively. Notably, the Bayesian approach was more robust against anatomical differences between patients, with a specificity of 62% in the worst case (patient), compared to 30% specificity in registration-based approach. In conclusion, the proposed unifying Bayesian method provides accurate electron density estimation and bone detection from MRI of the head with highly heterogeneous anatomy.

  11. Evaluating the B-cell density with various activation functions using White Noise Path Integral Approach

    NASA Astrophysics Data System (ADS)

    Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.

    2015-06-01

    A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.

  12. Huge density-dependent blueshift of indirect excitons in biased coupled quantum wells V. Negoita and D. W. Snoke*

    E-print Network

    Snoke, David

    Huge density-dependent blueshift of indirect excitons in biased coupled quantum wells V. Negoita exciton in GaAs-coupled quantum wells of over 20 meV for carrier densities in the range 109 ­1012 cm 2. This behavior, based on the ac Stark ef- fect, has been demonstrated in GaAs single quantum wells1,2 and other

  13. A Vacuum Problem for the One-Dimensional Compressible Navier–Stokes Equations with Density-Dependent Viscosity

    Microsoft Academic Search

    Tong Yang; Huijiang Zhao

    2002-01-01

    This paper is concerned with the free boundary problem for the one-dimensional compressible Navier–Stokes equations with density-dependent viscosity. A local (in time) existence result is established when the initial density is of compact support and connects to the vacuum continuously.

  14. Time-dependent transition density matrix for visualizing charge-transfer excitations in photoexcited organic donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Li, Yonghui; Ullrich, Carsten

    2013-03-01

    The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651

  15. ICESJMS-2012-357 (EA)1 Evidence for density-dependent changes in body condition and3

    E-print Network

    Thomas, Len

    consequences of subtle, sublethal impacts of42 ocean noise and other anthropogenic stressors.43 44 #12; an understanding of density-dependent and density-24 independent factors that regulate populations. Marine mammal identify population-regulation mechanisms. We explored relationships between body28 condition (inferred

  16. Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars

    Microsoft Academic Search

    B. K. Agrawal; Shashi K. Dhiman; Raj Kumar

    2006-01-01

    We parametrize the recently proposed generalized Skyrme effective force (GSEF) containing extended density dependence. The parameters of the GSEF are determined by the fit to several properties of the normal and isospin-rich nuclei. We also include in our fit a realistic equation of state for the pure neutron matter up to high densities so that the resulting Skyrme parameters can

  17. Chirality dependence of the density-of-states singularities in carbon nanotubes S. Reich and C. Thomsen

    E-print Network

    Nabben, Reinhard

    be observable experimentally. The unique one-dimensional structure of carbon nano- tubes and the related.4­6 In a further analysis in this approximation the density of states of nano- tubes was expressedChirality dependence of the density-of-states singularities in carbon nanotubes S. Reich and C

  18. Experimental investigation on the temperature dependence of the nuclear level density parameter

    E-print Network

    Dey, Balaram; Bhattacharya, Srijit; Banerjee, K; Hung, N Quang; Dang, N Dinh; Mondal, Debasish; Mukhopadhyay, S; Pal, Surajit; De, A; Banerjee, S R

    2015-01-01

    The effect of temperature (T) and angular momentum (J) on the inverse level density parameter (k) has been studied by populating the compound nucleus $^{97}$Tc in the reaction $^{4}$He + $^{93}$Nb at four incident beam energies of 28, 35, 42 and 50 MeV. For all the four energies, the value of k decreases with increasing J. The T dependence of k has been compared for two angular momentum windows with different theoretical predictions as well as with FTBCS1 calculation which takes into account the quasiparticle-number fluctuations in the pairing field. Interestingly, the experimental data are in good agreement with the theoretical calculations at higher J but deviate from all the calculations at lower J.

  19. Inelastic collisions and density-dependent excitation suppression in a {sup 87}Sr optical lattice clock

    SciTech Connect

    Bishof, M.; Martin, M. J.; Swallows, M. D.; Benko, C.; Lin, Y.; Quemener, G.; Rey, A. M.; Ye, J. [JILA, NIST and University of Colorado, Boulder, Colorado 80309-0440 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States)

    2011-11-15

    We observe two-body loss of {sup 3} P{sub 0} {sup 87}Sr atoms trapped in a one-dimensional optical lattice. We measure loss rate coefficients for atomic samples between 1 and 6 {mu}K that are prepared either in a single nuclear-spin sublevel or with equal populations in two sublevels. The measured temperature and nuclear-spin preparation dependence of rate coefficients agree well with calculations and reveal that rate coefficients for distinguishable atoms are only slightly enhanced over those of indistinguishable atoms. We further observe a suppression of excitation and losses during interrogation of the {sup 1} S{sub 0}-{sup 3} P{sub 0} transition as density increases and Rabi frequency decreases, which suggests the presence of strong interactions in our dynamically driven many-body system.

  20. Temperature dependence of the charge-density-wave gap in the rare-earth tritelluride compounds

    NASA Astrophysics Data System (ADS)

    Pfuner, F.; Lavagnini, M.; Chu, J.-H.; Fisher, I. R.; Degiorgi, L.

    2010-03-01

    The layered rare-earth tritellurides RTe3 (R= Er and Ho) host an unidirectional, incommensurate charge-density-wave (CDW) transition at TCDW1˜ 265 and 280 K and a further transition to a bidirectional CDW state at TCDW2˜ 160 and 120 K for the Er and Ho compound, respectively. We present optical reflectivity data collected as a function of temperature over a very broad energy interval, ranging from the far-infrared up to the ultraviolet. We extract the temperature dependence of the CDW gap and compare it with our previous results on the whole rare-earth series (R=La, Ce, Pr, Nd, Sm, Gd, Tb and Dy) as a function of chemical and externally applied pressure. We provide clear-cut evidence that upon destroying the CDW state with increasing temperature and pressure there is a progressive closing of the CDW gap excitation.

  1. Isospin effects and the density dependence of the nuclear symmetry energy

    SciTech Connect

    Souza, S. R. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CP 68528, 21941-972, Rio de Janeiro (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, CP 15051, 91501-970, Porto Alegre (Brazil); Tsang, M. B.; Lynch, W. G.; Steiner, A. W. [Joint Institute for Nuclear Astrophysics, National Superconducting Cyclotron Laboratory, and the Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Carlson, B. V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900 Sao Jose dos Campos (Brazil); Donangelo, R. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CP 68528, 21941-972, Rio de Janeiro (Brazil); Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Julio Herrera y Reissig 565, 11.300 Montevideo (Uruguay)

    2009-10-15

    The density dependence of the nuclear symmetry energy is inspected using the statistical multifragmentation model with Skyrme effective interactions. The model consistently considers the expansion of the fragments' volumes at finite temperature at the freeze-out stage. By selecting parametrizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of the isoscaling parameter and the isotopic distributions to differences in the symmetry energy. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments' volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.

  2. Pattern Formation in Populations with Density-Dependent Movement and Two Interaction Scales

    E-print Network

    Martínez-García, Ricardo; Hernández-García, Emilio; López, Cristóbal

    2015-01-01

    We study the spatial patterns formed by a system of interacting particles where the mobility of any individual is determined by the population crowding at two different spatial scales. In this way we model the behavior of some biological organisms (like mussels) that tend to cluster at short ranges as a defensive strategy, and strongly disperse if there is a high population pressure at large ranges for optimizing foraging. We perform stochastic simulations of a particle-level model of the system, and derive and analyze a continuous density description (a nonlinear diffusion equation). In both cases we show that this interplay of scale-dependent-behaviors gives rise to a rich formation of spatial patterns ranging from labyrinths to periodic cluster arrangements. In most cases these clusters have the very peculiar appearance of ring-like structures, i.e., organisms arranging in the perimeter of the clusters, that we discuss in detail.

  3. Thickness dependence of the charge-density-wave transition temperature in VSe2

    NASA Astrophysics Data System (ADS)

    Yang, Jiyong; Wang, Weike; Liu, Yan; Du, Haifeng; Ning, Wei; Zheng, Guolin; Jin, Chiming; Han, Yuyan; Wang, Ning; Yang, Zhaorong; Tian, Mingliang; Zhang, Yuheng

    2014-08-01

    A set of three-dimensional charge-density-wave (3D CDW) VSe2 nano-flakes with different thicknesses were obtained by the scotch tape-based micro-mechanical exfoliation method. Resistivity measurements showed that the 3D CDW transition temperature Tp decreases systematically from 105 K in bulk to 81.8 K in the 11.6 nm thick flake. The Hall resistivity ?xy of all the flakes showed a linear dependent behavior against the magnetic field with a residual electron concentration of the order of ˜1021 cm-3 at 5 K. The electron concentration n increases slightly as the thickness d decreases, possibly due to the CDW gap is reduced with the decrease of the thickness.

  4. Experimental investigation on the temperature dependence of the nuclear level density parameter

    NASA Astrophysics Data System (ADS)

    Dey, Balaram; Pandit, Deepak; Bhattacharya, Srijit; Banerjee, K.; Hung, N. Quang; Dang, N. Dinh; Mondal, Debasish; Mukhopadhyay, S.; Pal, Surajit; De, A.; Banerjee, S. R.

    2015-04-01

    The effect of temperature T and angular momentum J on the inverse level density parameter k has been studied by populating the compound nucleus 97Tc in the reaction 4He+93Nb at four incident beam energies of 28, 35, 42, and 50 MeV. For all four energies, the value of k decreases with increasing J . The T dependence of k has been compared for two angular momentum windows with different theoretical predictions as well as with the finite-temperature BCS calculation which takes into account the quasiparticle-number fluctuations in the pairing field (FTBCS1). Interestingly, the experimental data are in good agreement with the theoretical calculations at higher J but deviate from all the calculations at lower J .

  5. Correlation in time-dependent density functional theory studies of antiproton-helium collisions

    NASA Astrophysics Data System (ADS)

    Baxter, Matthew

    Correlation effects are examined in the context of time-dependent density functional theory (TDDFT) calculations of antiproton helium collisions. An approximation for the correlation potential as well as two models for the correlation integral (Ic) are explored. While one of these models (frozen correlation (FCM)) is entirely new the other is appropriated from the world of laser-induced ionization (Wilken and Bauer (WB)). Total cross sections for both single and double ionization in the range 1-2000 keV are presented. These calculations make use of the basis generator method (BGM) and incorporate microscopic response. While the FCM results provide little improvement over an independent electron model description the WB model agrees quite well with experimental results for both single and double ionization. Our results also lend credence to the belief that an appropriate approximation of Ic is more important in reproducing correlation effects than the correlation potential.

  6. Density dependence of the pairing interaction and pairing correlation in unstable nuclei

    NASA Astrophysics Data System (ADS)

    Changizi, S. A.; Qi, C.

    2015-02-01

    This work aims at a global assessment of the effect of the density dependence of the zero-range pairing interaction. Systematic Skyrme-Hartree-Fock-Bogoliubov calculations with the volume, surface, and mixed pairing forces are carried out to study the pairing gaps in even-even nuclei over the whole nuclear chart. Calculations are also done in coordinate representation for unstable semimagic even-even nuclei. The calculated pairing gaps are compared with empirical values from four different odd-even staggering formulas. Calculations with the three pairing interactions are comparable for most nuclei close to the ? -stability line. However, the surface interaction calculations predict neutron pairing gaps in neutron-rich nuclei that are significantly stronger than those given by the mixed and volume pairing. On the other hand, calculations with volume and mixed pairing forces show noticeable reduction of neutron pairing gaps in nuclei far from stability.

  7. Pattern Formation in Populations with Density-Dependent Movement and Two Interaction Scales

    PubMed Central

    Martínez-García, Ricardo; Murgui, Clara; Hernández-García, Emilio; López, Cristóbal

    2015-01-01

    We study the spatial patterns formed by a system of interacting particles where the mobility of any individual is determined by the population crowding at two different spatial scales. In this way we model the behavior of some biological organisms (like mussels) that tend to cluster at short ranges as a defensive strategy, and strongly disperse if there is a high population pressure at large ranges for optimizing foraging. We perform stochastic simulations of a particle-level model of the system, and derive and analyze a continuous density description (a nonlinear diffusion equation). In both cases we show that this interplay of scale-dependent-behaviors gives rise to a rich formation of spatial patterns ranging from labyrinths to periodic cluster arrangements. In most cases these clusters have the very peculiar appearance of ring-like structures, i.e., organisms arranging in the perimeter of the clusters, which we discuss in detail. PMID:26147351

  8. Modeling fast electron dynamics with real-time time-dependent density functional theory: application to small molecules and chromophores

    SciTech Connect

    Lopata, Kenneth A.; Govind, Niranjan

    2011-05-10

    The response of matter to external fields forms the basis for a vast wealth of fundamental physical processes ranging from light harvesting to nanoscale electron transport. Accurately modeling ultrafast electron dynamics in excited systems thus o_ers unparalleled insight, but requires an inherently non-linear time-resolved approach. To this end, an e_cient and massively parallel real-time real-space time-dependent density functional theory (RT-TDDFT) implementation in NWChem is presented. The implementation is first validated against linearresponse TDDFT and experimental results for a series of molecules subjected to small electric field perturbations. Second, non-linear excitation of green fluorescent protein is studied, which shows a blue-shift in the spectrum with increasing perturbation, as well as a saturation in absorption. Next, the charge dynamics of optically excited zinc porphyrin is presented in real-time and real-space, with relevance to charge injection in photovoltaic devices. Finally, intermolecular excitation in an adenine-thymine base pair is studied using the BNL range separated functional [Baer, R.; Neuhauser, D. Phys. Rev. Lett. 2005, 94, 043002], demonstrating the utility of a real-time approach in capturing charge transfer processes.

  9. Correlation in time-dependent density functional theory studies of antiproton-helium collisions

    NASA Astrophysics Data System (ADS)

    Baxter, Matthew; Kirchner, Tom

    2013-05-01

    Correlation effects are examined in the context of time-dependent density functional theory calculations of antiproton helium collisions. An approximation for the correlation potential as well as two models for the correlation integral (Ic) are explored. While one of these models (frozen correlation (FCM)) is entirely new the other is appropriated from the world of laser-induced ionization (Wilken and Bauer (WB)). Total cross sections for both single and double ionization in the range 1-2000 keV are presented. These calculations make use of the basis generator method and incorporate microscopic response. While the FCM results provide little improvement over an independent electron model description the WB model agrees quite well with experimental results for both single and double ionization. Our results also lend credence to the belief that an appropriate approximation of Ic is more important in reproducing correlation effects than the correlation potential. Correlation effects are examined in the context of time-dependent density functional theory calculations of antiproton helium collisions. An approximation for the correlation potential as well as two models for the correlation integral (Ic) are explored. While one of these models (frozen correlation (FCM)) is entirely new the other is appropriated from the world of laser-induced ionization (Wilken and Bauer (WB)). Total cross sections for both single and double ionization in the range 1-2000 keV are presented. These calculations make use of the basis generator method and incorporate microscopic response. While the FCM results provide little improvement over an independent electron model description the WB model agrees quite well with experimental results for both single and double ionization. Our results also lend credence to the belief that an appropriate approximation of Ic is more important in reproducing correlation effects than the correlation potential. This work has been supported by NSERC Canada.

  10. Modeling dependence in finance and insurance: the copula approach

    Microsoft Academic Search

    Dietmar Pfeifer; Johana Nešlehová

    2003-01-01

    Summary  This paper contains a survey over the mathematical foundations, properties and potential applications of copulas in insurance\\u000a and finance. Special emphasis is put on relationships between copulas and correlation as well as dependence measures, parametric\\u000a families of copulas, Archimedian copulas (in particular in higher dimensions), tail dependence and general stochastic processes.

  11. The Dependency Structure of Coordinate Phrases: A Corpus Approach

    ERIC Educational Resources Information Center

    Temperley, David

    2005-01-01

    Hudson (1990) proposes that each conjunct in a coordinate phrase forms dependency relations with heads or dependents outside the coordinate phrase (the "multi-head" view). This proposal is tested through corpus analysis of Wall Street Journal text. For right-branching constituents (such as direct-object NPs), a short-long preference for conjunct…

  12. Heliocentric distance and temporal dependence of the interplanetary density-magnetic field magnitude correlation

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.

    1990-01-01

    The Helios, IMP 8, ISEE 3, ad Voyager 2 spacecraft are used to examine the solar cycle and heliocentric distance dependence of the correlation between density n and magnetic field magnitude B in the solar wind. Previous work had suggested that this correlation becomes progressively more negative with heliocentric distance out to 9.5 AU. Here it is shown that this evolution is not a solar cycle effect, and that the correlations become even more strongly negative at heliocentric distance larger than 9.5 AU. There is considerable variability in the distributions of the correlations at a given heliocentric distance, but this is not simply related to the solar cycle. Examination of the evolution of correlations between density and speed suggest that most of the structures responsible for evolution in the anticorrelation between n and B are not slow-mode waves, but rather pressure balance structures. The latter consist of both coherent structures such as tangential discontinuities and the more generally pervasive 'pseudosound' which may include the coherent structures as a subset.

  13. Transgenerational effects modulate density-dependent prophylactic resistance to viral infection in a lepidopteran pest.

    PubMed

    Wilson, Kenneth; Graham, Robert I

    2015-03-01

    There is an increasing appreciation of the importance of transgenerational effects on offspring fitness, including in relation to immune function and disease resistance. Here, we assess the impact of parental rearing density on offspring resistance to viral challenge in an insect species expressing density-dependent prophylaxis (DDP); i.e. the adaptive increase in resistance or tolerance to pathogen infection in response to crowding. We quantified survival rates in larvae of the cotton leafworm (Spodoptera littoralis) from either gregarious- or solitary-reared parents following challenge with the baculovirus S. littoralis nucleopolyhedrovirus. Larvae from both the parental and offspring generations exhibited DDP, with gregarious-reared larvae having higher survival rates post-challenge than solitary-reared larvae. Within each of these categories, however, survival following infection was lower in those larvae from gregarious-reared parents than those from solitary-reared, consistent with a transgenerational cost of DDP immune upregulation. This observation demonstrates that crowding influences lepidopteran disease resistance over multiple generations, with potential implications for the dynamics of host-pathogen interactions. PMID:25808002

  14. Density Dependence of the Exchange Energy in the Bcc Phase of Solid HELIUM-3

    NASA Astrophysics Data System (ADS)

    Olejniczak, Zbigniew

    A high-precision Pulse Fourier-Transform Nuclear -Magnetic-Resonance technique was used to measure the magnetic susceptibility of solid helium-3 in the bcc phase. Several molar volume samples ranging from 19.80 ml/mole to 24.40 ml/mole were studied. The helium-4 impurity level was 27 ppm. The measurements were done between 12 mK and 520 mK in a static magnetic field of 17.1 mT. The density dependence of the Curie-Weiss constant could be described by a power law, with a magnetic Gruneisen constant equal to 12.8 (+OR-) 0.3. The Curie-Weiss constant at a molar volume of 24.2 ml/mole was equal to -1.75 mK, which was nearly a factor of two smaller than previous values. This work resolves a long-standing thermodynamic inconsistency between high-magnetic-field pressure measurements and susceptibility measurements. Additional experiments using an independent thermometer provided an upper limit for a possible systematic error in the data to within (+OR-)0.1 mK. More than a tenfold improvement in the precision of the magnetic susceptibility measurements was achieved. When analysed in terms of a two-parameter model of the exchange interaction, the results imposed more stringent experimental constraints on possible values of exchange integrals at a density near melting.

  15. Imploded Capsule Fuel Temperature and Density Measurement by Energy-Dependent Neutron Imaging

    SciTech Connect

    Moran, M J; Koch, J; Landen, O L; Haan, S W; Barrera, C A; Morse, E C

    2005-09-28

    Neutron imaging systems measure the spatial distribution of neutron emission from burning inertial confinement fusion (ICF) targets. These systems use a traditional pinhole geometry to project an image of the source onto a two-dimensional scintillator array, and a CCD records the resulting scintillation image. The recent history of ICF neutron images has produced images with qualities that have improved as the fusion neutron yields have increased to nearly 10{sup 14} neutrons. Anticipated future neutron yields in excess of 10{sup 16} at the National Ignition Facility and LMJ have raised the prospect of neuron imaging diagnostics which simultaneously probe several different characteristics of burning fusion targets. The new measurements rely on gated-image recording to select images corresponding to specific bands of neutron energies. Gated images of downscattered neutrons with energies from 5 to 8 MeV can emphasize regions of the target which contain DT fuel which is not burning. At the same time, gated images which select different portions of the 14-MeV spectral peak can produce spatial temperature maps of a burning target. Since the neutron production depends on the DT fuel density and temperature, simultaneous images of temperature and neutron emission can be combined to infer the an image of the source density using an Abel inversion method that is analogous to the method that has been used in x-ray imaging. Thus, with higher-yield sources, neutron imaging offers the potential to record simultaneously several critical features that characterize the performance of an ICF target: the neutron emission distribution, the temperature and density distributions, and the distribution of nonburning fuel within the target.

  16. Theoretical approach for optical response in electrochemical systems: Application to electrode potential dependence of surface-enhanced Raman scattering

    SciTech Connect

    Iida, Kenji; Noda, Masashi; Nobusada, Katsuyuki, E-mail: nobusada@ims.ac.jp [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan)

    2014-09-28

    We propose a theoretical approach for optical response in electrochemical systems. The fundamental equation to be solved is based on a time-dependent density functional theory in real-time and real-space in combination with its finite temperature formula treating an electrode potential. Solvation effects are evaluated by a dielectric continuum theory. The approach allows us to treat optical response in electrochemical systems at the atomistic level of theory. We have applied the method to surface-enhanced Raman scattering (SERS) of 4-mercaptopyridine on an Ag electrode surface. It is shown that the SERS intensity has a peak as a function of the electrode potential. Furthermore, the real-space computational approach facilitates visualization of variation of the SERS intensity depending on an electrode potential.

  17. Density-dependent habitat selection and performance by a large mobile reef fish.

    PubMed

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and condition. Density-dependent habitat selection for shelter and individual growth dynamics were therefore interdependent ecological processes that help to explain how patchy reef habitat sustains gag production. Moreover, gag selected shelter at the expense of maximizing their growth. Thus, mobile reef fishes could experience density-dependent effects on growth, survival, and/or reproduction (i.e., demographic parameters) despite reduced stock sizes as a consequence of fishing. PMID:16711059

  18. Dependence of diffraction efficiency on storage density in digital holographic memory using bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Gary, Charles K.

    1996-12-01

    This paper reports preliminary measurements of the dependence of diffraction efficiency for individual holograms stored in bacteriorhodopsin (BR) on the total number of holograms present in the medium. BR is an organically derived photochromic material that is well suited for use in 3D digital holographic memory. Upon the absorption of photons BR shifts from a ground state with a peak absorption in the red to an excited state with a peak absorption in the blue. Thus images may be written and erased in BR by using different wavelength light sources. Recent advances have led to the ability to permanently store volume holograms in BR films with the ability to repeatedly read, write and erase these holograms. One of the critical parameters that will determine the density of information contained in a BR-holographic memory is the decay of the diffraction efficiency, and thus read-out signal to noise ratio, for individual hologram as other holograms are written into the same space. The diffraction efficiency appears to depend exponentially on the number of holograms for low exposures and vary as a slower exponential or the inverse of the number of holograms for large exposures.

  19. Using an Epidemiological Model for Phylogenetic Inference Reveals Density Dependence in HIV Transmission

    PubMed Central

    Leventhal, Gabriel E.; Günthard, Huldrych F.; Bonhoeffer, Sebastian; Stadler, Tanja

    2014-01-01

    The control, prediction, and understanding of epidemiological processes require insight into how infectious pathogens transmit in a population. The chain of transmission can in principle be reconstructed with phylogenetic methods which analyze the evolutionary history using pathogen sequence data. The quality of the reconstruction, however, crucially depends on the underlying epidemiological model used in phylogenetic inference. Until now, only simple epidemiological models have been used, which make limiting assumptions such as constant rate parameters, infinite total population size, or deterministically changing population size of infected individuals. Here, we present a novel phylogenetic method to infer parameters based on a classical stochastic epidemiological model. Specifically, we use the susceptible-infected-susceptible model, which accounts for density-dependent transmission rates and finite total population size, leading to a stochastically changing infected population size. We first validate our method by estimating epidemic parameters for simulated data and then apply it to transmission clusters from the Swiss HIV epidemic. Our estimates of the basic reproductive number R0 for the considered Swiss HIV transmission clusters are significantly higher than previous estimates, which were derived assuming infinite population size. This difference in key parameter estimates highlights the importance of careful model choice when doing phylogenetic inference. In summary, this article presents the first fully stochastic implementation of a classical epidemiological model for phylogenetic inference and thereby addresses a key aspect in ongoing efforts to merge phylogenetics and epidemiology. PMID:24085839

  20. Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Das, Siddhartha

    2015-05-01

    "Smart" polyelectrolyte-grafted or "soft" nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.

  1. 2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)

    SciTech Connect

    Ullrich Carsten

    2008-09-19

    Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.

  2. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    PubMed Central

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M.

    2010-01-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy. PMID:19942609

  3. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    PubMed

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8±2.1µAcm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781±59µAcm(-2) and 925±68µAcm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells. PMID:25988787

  4. Reverse saturation current density imaging of highly doped regions in silicon: A photoluminescence approach

    E-print Network

    a r t i c l e i n f o Keywords: Photolumincescence Charge carrier lifetime Reverse saturation current and therefore ensuring a correct calibration of the PL signal in terms of excess charge carrier density Dn. We the method of Kane and Swanson [1] to determine J0 images from local injection-dependent carrier lifetime

  5. Scaling approach for the time-dependent Kondo model

    E-print Network

    Tomaras, C

    2010-01-01

    We present a new nonperturbative method to deal with the time-dependent quantum many-body problem, which is an extension of Wegner's flow equations to time-dependent Hamiltonians. The formalism provides a scaling procedure for the set of time-dependent interaction constants. We apply these ideas to a Kondo model with a ferromagnetic exchange coupling switched on over a time scale $\\tau$. We show that the asymptotic expectation value of the impurity spin interpolates continuously between its quenched and adiabatic value.

  6. Scaling approach for the time-dependent Kondo model

    E-print Network

    C. Tomaras; S. Kehrein

    2010-11-04

    We present a new nonperturbative method to deal with the time-dependent quantum many-body problem, which is an extension of Wegner's flow equations to time-dependent Hamiltonians. The formalism provides a scaling procedure for the set of time-dependent interaction constants. We apply these ideas to a Kondo model with a ferromagnetic exchange coupling switched on over a time scale $\\tau$. We show that the asymptotic expectation value of the impurity spin interpolates continuously between its quenched and adiabatic value.

  7. The Effects of Text Density Levels and the Cognitive Style of Field Dependence on Learning from a CBI Tutorial

    ERIC Educational Resources Information Center

    Ipek, Ismail

    2011-01-01

    The purpose of this study was to investigate the effects of variations in text density levels and the cognitive style of field dependence on learning from a CBI tutorial, based on the dependent measures of achievement, reading comprehension, and reading rate, and of lesson completion time. Eighty college undergraduate students were randomly…

  8. Temperature dependence of density, thermal expansion coefficient and shear viscosity of supercooled glycerol as a reflection of its structure

    Microsoft Academic Search

    Ivan V. Blazhnov; Nikolay P. Malomuzh; Sergey V. Lishchuk

    2004-01-01

    The relationship of the microstructure of supercooled, highly viscous glycerol to the temperature dependence of its density, thermal expansion coefficient, and shear viscosity are discussed. The character of this temperature dependence at the transition from low viscosity state to the solid amorphous state (solidified state without nuclei) is described with help of function psi, which can be interpreted as the

  9. Dependence of critical current density on oxygen exposure in Nb-AlO x-Nb tunnel junctions

    Microsoft Academic Search

    Alan W. Kleinsasser; Ronald E. Miller; William H. Mallison

    1995-01-01

    We demonstrate that a large fraction of the available data relating the critical current density Jc of superconducting Nb-AlOx-Nb tunnel junctions to oxidation parameters can be accounted for by a single, nearly universal dependence. For fixed oxidation temperature, Jc does not depend independently on oxygen partial pressure and oxidation time, but only on their product. There are two distinct regimes

  10. Frequency-and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density

    E-print Network

    Gruner, George

    Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks October 2007; published 20 February 2008 We present measurements of the frequency- and electric-field-dependent conductivity of single-walled car- bon nanotube SWCNT networks of various densities. The ac conductivity

  11. Reconstruction of Layer Densities in a Multilayer Snowpack using a Bayesian Approach to Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Aguayo, M.; Marshall, H.; McNamara, J. P.; Mead, J.; Flores, A. N.

    2013-12-01

    Estimation of snowpack parameters such as depth, density and grain structure is a central focus of hydrology in seasonally snow-covered lands. These parameters are directly estimated by field observations, indirectly estimated from other parameters using statistical correlations, or simulated with a model. Difficulty in sampling thin layers and uncertainty in the transition between layers can cause significant uncertainty in measurements of these parameters. Snow density is one of the most important parameters to measure because it is strictly related with snow water content, an important component of the global water balance. We develop a mathematical framework to estimate snow density from measurements of temperature and thickness of snowpack layers over a particular time period, in conjunction with a physics-based model of snowpack evolution. We formulate a Bayesian approach to estimate the snowpack density profile, using a full range of possible simulations that incorporate key sources of uncertainty to build in prior snowpack knowledge. The posterior probability density function of the snow density, conditioned on snowpack temperature measurements, is computed by multiplying the likelihoods and assumed prior distribution function. Random sampling is used to generate a range of densities with same probability when prior uniform probability function is assumed. A posterior probability density function calculated directly via Bayes' theorem is used to calculate the probability of every sample generated. The forward model is a 1D, multilayer snow energy and mass balance model, which solves for snow temperature, density, and liquid water content on a finite element mesh. The surface and ground temperature data of snowpack (boundary conditions), are provided by the Center for Snow and Avalanche Studies (CSAS), Silverton CO, from snow pits made at Swamp Angel and Senator Beck study plot sites. Standard errors between field observations and results computed denote the quality of the estimations and facilitate further arrangements of this approach.

  12. Density-dependent regulation of brook trout population dynamics along a core-periphery distribution gradient in a central Appalachian watershed.

    PubMed

    Huntsman, Brock M; Petty, J Todd

    2014-01-01

    Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3-60 km(2) and long-term average densities ranging from 0.335-0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602

  13. Spike Train Statistics and Dynamics with Synaptic Input from any Renewal Process: A Population Density Approach

    Microsoft Academic Search

    Cheng Ly; Daniel Tranchina

    2009-01-01

    In the probability density function (PDF) approach to neural network modeling, a common simplifying assumption is that the arrival times of elementary postsynaptic events are governed by a Poisson process. This assumption ignores temporal correlations in the input that sometimes have important physiological consequences. We extend PDF methods to models with synaptic event times governed by any modulated renewal process.

  14. Collective enhancement of nuclear state densities by the shell model Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Özen, C.; Alhassid, Y.; Nakada, H.

    2015-04-01

    The shell model Monte Carlo (SMMC) approach allows for the microscopic calculation of statistical and collective properties of heavy nuclei using the framework of the configuration-interaction shell model in very large model spaces. We present recent applications of the SMMC method to the calculation of state densities and their collective enhancement factors in rare-earth nuclei.

  15. A probability density function approach to modeling turbulence–radiation interactions in nonluminous flames

    Microsoft Academic Search

    Sandip Mazumder; Michael F. Modest

    1999-01-01

    The interactions between turbulence and radiation, although acknowledged and qualitatively understood over the last several decades, are extremely difficult to model. Traditional Eulerian turbulence models are incapable of addressing the closure problem for any realistic reactive flow situation, on account of the large number of unknown turbulent moments. A novel approach, based on the velocity-composition joint probability density function (PDF)

  16. Density Functional Approach to Regiochemistry, Activation Energy, and Hardness Profile in 1,3-Dipolar Cycloadditions

    E-print Network

    Nguyen, Minh Tho

    Density Functional Approach to Regiochemistry, Activation Energy, and Hardness Profile in 1Ven, Celestijnenlaan 200F, B-3001 LeuVen, Belgium ReceiVed: January 29, 1998 The principle of hard and soft acids that the transition state with higher hardness is associated with lower activation energy. The hardness profile has

  17. Fatigue life prediction of welded cruciform joints using strain energy density factor approach

    Microsoft Academic Search

    V Balasubramanian; B Guha

    2000-01-01

    The influences of two welding processes, namely, shielded metal arc welding (SMAW) and flux cored arc welding (FCAW), on fatigue life of cruciform joints containing lack of penetration (LOP) defects have been analyzed by using the strain energy density factor (SEDF) approach. Load carrying cruciform joints were fabricated from ASTM 517 ‘F’ grade steel. Fatigue crack growth experiments were carried

  18. Collective enhancement of nuclear state densities by the shell model Monte Carlo approach

    E-print Network

    C. Özen; Y. Alhassid; H. Nakada

    2015-01-22

    The shell model Monte Carlo (SMMC) approach allows for the microscopic calculation of statistical and collective properties of heavy nuclei using the framework of the configuration-interaction shell model in very large model spaces. We present recent applications of the SMMC method to the calculation of state densities and their collective enhancement factors in rare-earth nuclei.

  19. Transverse charge density of the pion in a realistic effective Lagrangian approach

    SciTech Connect

    Dong Yubing [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China) and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)

    2010-01-15

    The transverse charge density of the pion is studied based on a realistic effective Lagrangian approach, where the pion is regarded as a quark-antiquark pair-bound state. Corrections from the two spin-1/2 constituent particles and from the correlation function of quark and antiquark inside the pion are addressed.

  20. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  1. Density-dependent effects of multiple predators sharing a common prey in an endophytic habitat.

    PubMed

    Aukema, Brian H; Clayton, Murray K; Raffa, Kenneth F

    2004-05-01

    Multiple predator species feeding on a common prey can lead to higher or lower predation than would be expected by simply combining their individual effects. Such emergent multiple predator effects may be especially prevalent if predators share feeding habitat. Despite the prevalence of endophagous insects, no studies have examined how multiple predators sharing an endophytic habitat affect prey or predator reproduction. We investigated density-dependent predation of Thanasimus dubius (Coleoptera: Cleridae) and Platysoma cylindrica (Coleoptera: Histeridae) on a bark beetle prey, Ips pini (Coleoptera: Scolytidae), in a laboratory assay. I. pini utilize aggregation pheromones to group-colonize and reproduce within the stems of conifers. T. dubius and P. cylindrica exploit these aggregation pheromones to arrive simultaneously with the herbivore. Adult T. dubius prey exophytically, while P. cylindrica adults enter and prey within the bark beetle galleries. Larvae of both predators prey endophytically. We used a multiple regression analysis, which avoids confounding predator composition with density, to examine the effects of varying predator densities alone and in combination on herbivore establishment, herbivore reproduction, and predator reproduction. Predators reduced colonization success by both sexes, and decreased I. pini reproduction on a per male and per female basis. The combined effects of these predators did not enhance or reduce prey establishment or reproduction in unexpected manners, and these predators were entirely substitutable. The herbivore's net replacement rate was never reduced significantly below one at prey and predator densities emulating field conditions. Similar numbers of each predator species emerged from the logs, but predator reproduction suffered from high intraspecific interference. The net replacement rate of P. cylindrica was not affected by conspecifics or T. dubius. In contrast, the net replacement rate of T. dubius decreased with the presence of conspecifics or P. cylindrica. Combinations of both predators led to an emergent effect, a slightly increased net replacement rate of T. dubius. This may have been due to predation by larval T. dubius on pupal P. cylindrica, as P. cylindrica develops more rapidly than T. dubius within this shared habitat. PMID:14968356

  2. Age-specific, density-dependent and environment-based mortality of a short-lived perennial herb.

    PubMed

    Picó, F X; Retana, J

    2008-05-01

    Density-independent and density-dependent processes affect plant mortality. Although less well understood, age-specific mortality can also play an important role in plant mortality. The goal of this study was to analyse several factors accounting for mortality in the Mediterranean short-lived perennial herb Lobularia maritima. We followed three cohorts of plants (from emergence to death) during 4 years in field conditions. We collected data on plant mortality of the effect of biotic agents (moth larvae and mycoplasma-like organisms, MLOs) and environmental variables. We also estimated density-dependent relationships affecting the fate of seedlings and adults. Results show that cohorts differed in their survival curves and ageing significantly increased mortality risk. Seedling mortality was density-dependent whereas adult mortality was not affected by density. MLO infection led to higher plant mortality whereas moth larvae attack did not affect plant mortality. In general, seedlings and adult plants experienced the highest mortality events in summer. We found, however, weak relationships between weather records and plant mortality. Age and size structures were not correlated. Overall, this study provides a comprehensive review of age-specific, density-dependent and density-independent factors that account for mortality of L. maritima plants throughout their life cycle in field conditions, highlighting the fact that age is an important factor in determining plant population dynamics. PMID:18426484

  3. Time-dependent density-functional study of the alignment-dependent ionization of acetylene and ethylene by strong laser pulses

    NASA Astrophysics Data System (ADS)

    Russakoff, Arthur; Bubin, Sergiy; Xie, Xinhua; Erattupuzha, Sonia; Kitzler, Markus; Varga, Kálmán

    2015-02-01

    The alignment-dependent ionization of acetylene and ethylene in short laser pulses is investigated in the framework of the time-dependent density-functional theory coupled with Ehrenfest dynamics. The molecular alignment is found to have a substantial effect on the total ionization. Bond stretching is shown to cause an increase of the ionization efficiency, i.e., enhanced ionization, in qualitative agreement with previous theoretical investigations. It is also demonstrated that the enhanced ionization mechanism greatly enhances the ionization from the inner valence orbitals, and the ionization of the inner orbitals is primarily due to their extended weakly bound density tails.

  4. Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic

    Microsoft Academic Search

    Roger T. Koide

    1991-01-01

    One purpose of this study was to determine whether an increase in plant density would result in a decrease in response to mycorrhizal infection (particularly as measured by phosphorus content). Increases in plant density generally result in increases in root density in the volume of soil occupied by the plants. Root density, in turn, largely determines phosphorus uptake. If mycorrhizal

  5. Kinetic Approach to Quasi-Ballistic Field-Dependent Electron Transport

    E-print Network

    Pulfrey, David L.

    Kinetic Approach to Quasi-Ballistic Field-Dependent Electron Transport A. R. St.Denis1 and D. L, the components of the two fluxes are not as easily described. Here we visualize the various components (ballistic of the different ways a carrier can come to be at #12;Kinetic Approach to Quasi-Ballistic Field-Dependent Electron

  6. THE COLUMN DENSITY VARIANCE IN TURBULENT INTERSTELLAR MEDIA: A FRACTAL MODEL APPROACH

    SciTech Connect

    Seon, Kwang-Il, E-mail: kiseon@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Astronomy and Space Science Major, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2012-12-20

    Fractional Brownian motion structures are used to investigate the dependency of column density variance ({sigma}{sup 2}{sub lnN}) in the turbulent interstellar medium on the variance of three-dimensional density ({sigma}{sup 2}{sub ln{rho}}) and the power-law slope of the density power spectrum. We provide quantitative expressions to infer the three-dimensional density variance, which is not directly observable, from the observable column density variance and spectral slope. We also investigate the relationship between the column density variance and sonic Mach number (M{sub s}) in the hydrodynamic (HD) regime by assuming the spectral slope and density variance to be functions of sonic Mach number, as obtained from the HD turbulence simulations. They are related by the expression {sigma}{sup 2}{sub lnN} = A{sigma}{sub ln{rho}} {sup 2} = Aln (1 + b {sup 2} M{sup 2}{sub s}), suggested by Burkhart and Lazarian for the magnetohydrodynamic case. The proportional constant A varies from Almost-Equal-To 0.2 to Almost-Equal-To 0.4 in the HD regime as the turbulence forcing parameter b increases from 1/3 (purely solenoidal forcing) to 1 (purely compressive forcing). It is also discussed that the parameter A is lowered in the presence of a magnetic field.

  7. Factors Influencing Density-Dependent Groundwater Flow in the Michigan Basin

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Normani, S. D.; Yin, Y.

    2010-12-01

    Regional-scale density-dependent groundwater flow is analyzed in an approximately 18000 sq km domain of the Michigan basin centered on a site at Tiverton Ontario near the shore of Lake Huron for a proposed deep geologic repository (DGR) for low and intermediate level nuclear waste. Flow was also analyzed in an approximately 600 km west-to-east cross-section through the center of the basin. Both domains extend from the Precambrian basement to the surface and include minimal upscaling of the complex stratigraphy in the basin. The model FRAC3DVS-OPG was used for all analyses. The hydraulic gradients across the basin are small as both Lake Huron and Lake Michigan have the same water surface elevation. As a result, groundwater flow in the basin is expected to be stagnant. Hydrogeologic parameters for the models were developed from borehole and petrophysics data from the DGR site for units from the Cambrian sandstone to the Devonian. Literature data were used for the shallower units in Michigan. Excluding the surficial drift, the hydraulic conductivity in the basin ranges from 3x10e-6 m/s in the Cambrian to less than 10e-14 m/s in the Ordovician sediments. Groundwater flow is sensitive to the distribution of total dissolved solids concentration with concentrations ranging up to 384 g/L in the Guelph formation in the Silurian. Both TDS data from porewater and groundwater at the DGR site and literature data for TDS versus depth were assigned to the sedimentary rock. The TDS distribution with depth for the Precambrian rock was assigned using both data for the Canadian Shield and a literature based model. Data at the DGR site indicates that the Cambrian is overpressured with respect to the surface while the Ordovician sediments are underpressured. It is hypothesized that the underpressures are the result of the presence of a gas phase in the units. The steps in determining a converged solution for saturated density-dependent flow were as follows: (1) solve steady state density-independent flow, (2) assign a TDS concentration distribution and allow the initial equivalent freshwater heads to equilibrate to the fixed TDS distribution, (3) allow the resulting heads to equilibrate to the TDS concentration with solute transport enabled. Convergence of a solution for the regional-scale model was not achieved without the middle step. For the Michigan Basin cross-section, the 3rd step would not yield a converged solution using FRAC3DVS-OPG. Flow in both analyses is sensitive to surface topography and the TDS distribution. The overpressure in the Cambrian could be described by density differences across the basin and surface topography differences. The underpressures can be described with a gas water analysis using TOUGH2-MP. Paleoclimate analyses that included mechanical loading could not describe the underpressures. Flow in the intracratonic Michigan Basin is complex and dynamic as a result of glaciation. Converged solutions are difficult to achieve. Flow in the low permeability units such as those of the Ordovician and Silurian is negligible with solute transport being diffusion dominant. The analyses provide a bench mark for evaluating the upscaling of stratigraphic units required in continental-scale simulations.

  8. Effect of measurement error on tests of density dependence of catchability for walleyes in northern Wisconsin angling and spearing fisheries

    USGS Publications Warehouse

    Hansen, M.J.; Beard, T.D., Jr.; Hewett, S.W.

    2005-01-01

    We sought to determine how much measurement errors affected tests of density dependence of spearing and angling catchability for walleye Sander vitreus by quantifying relationships between spearing and angling catch rates (catch/h) and walleye population density (number/acre) in northern Wisconsin lakes. The mean measurement error of spearing catch rates was 43.5 times greater than the mean measurement error of adult walleye population densities, whereas the mean measurement error of angling catch rates was only 5.6 times greater than the mean measurement error of adult walleye population densities. The bias-corrected estimate of the relationship between spearing catch rate and adult walleye population density was similar to the ordinary-least-squares regression estimate but differed significantly from the geometric mean (GM) functional regression estimate. In contrast, the bias-corrected estimate of the relationship between angling catch rate and total walleye population density was intermediate between ordinary-least-squares and GM functional regression estimates. Catch rates of walleyes in both spearing and angling fisheries were not linearly related to walleye population density, which indicated that catch rates in both fisheries were hyperstable in relation to walleye population density. For both fisheries, GM functional regression overestimated the degree of hyperdepletion in catch rates and ordinary-least-squares regression overestimated the degree of hyperstability in catch rates. However, ordinary-least-squares regression induced significantly less bias in tests of density dependence than GM functional regression, so it may be suitable for testing the degree of density dependence in fisheries for which fish population density is estimated with mark-recapture methods similar to those used in our study. ?? Copyright by the American Fisheries Society 2005.

  9. Relativistic adiabatic time-dependent density functional theory using hybrid functionals and noncollinear spin magnetization

    NASA Astrophysics Data System (ADS)

    Bast, Radovan; Jensen, Hans Jørgen Aa; Saue, Trond

    We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid generalized gradient approximation (GGA) functionals. We avoid reducing the generalized eigenvalue problem to half the dimension involving the square of excitation energies since this may introduce spurious roots and also squares the matrix condition number. Rather we impose structure in terms of hermiticity and time reversal symmetry on trial vectors to obtain even better reductions in terms of memory and run time, and without invoking approximations. Further reductions are obtained by exploiting point group symmetries for D2h and subgroups in a symmetry scheme where symmetry reductions translate into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2 ? ns1np1 excitation energies in the Zn, Cd, and Hg atoms (n = 4-6) and (vertical) excitation energies of UO 22+; and we test the performance of various functionals by comparison with experimental data (group 12 atoms) or higher-level computational results (UO 22+). The results indicate that the adiabatic local density approximation (ALDA) is a good approximation for some GGA functionals, but not all. Furthermore, the results also indicate that ALDA is an extremely bad approximation for hybrid functionals, unless one only employs ALDA for the pure DFT contribution to the exchange-correlation kernel and retains the fraction of exact exchange; we denote this approximation ALDAh.

  10. Neutron star properties in density-dependent relativistic Hartree-Fock theory

    E-print Network

    Bao Yuan Sun; Wen Hui Long; Jie Meng; U. Lombardo

    2009-10-22

    With the equations of state provided by the newly developed density dependent relativistic Hartree-Fock (DDRHF) theory for hadronic matter, the properties of the static and $\\beta$-equilibrium neutron stars without hyperons are studied for the first time, and compared to the predictions of the relativistic mean field (RMF) models and recent observational data. The influences of Fock terms on properties of asymmetric nuclear matter at high densities are discussed in details. Because of the significant contributions from the $\\sigma$- and $\\omega$-exchange terms to the symmetry energy, large proton fractions in neutron stars are predicted by the DDRHF calculations, which strongly affect the cooling process of the star. The critical mass about 1.45 $M_\\odot$, close to the limit 1.5 $M_\\odot$ determined by the modern soft X-ray data analysis, is obtained by DDRHF with the effective interactions PKO2 and PKO3 for the occurrence of direct Urca process in neutron stars. The maximum masses of neutron stars given by the DDRHF calculations lie between 2.45 M$_\\odot$ and 2.49 M$_\\odot$, which are in reasonable agreement with high pulsar mass $2.08 \\pm 0.19 M_\\odot$ from PSR B1516+02B. It is also found that the mass-radius relations of neutron stars determined by DDRHF are consistent with the observational data from thermal radiation measurement in the isolated neutron star RX J1856, QPOs frequency limits in LMXBs 4U 0614+09 and 4U 1636-536, and redshift determined in LMXBs EXO 0748-676.

  11. A relativistic time-dependent density functional study of the excited states of the mercury dimer

    SciTech Connect

    Kullie, Ossama, E-mail: kullie@uni-kassel.de, E-mail: ossama.kullie@unistra.fr [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg, France and Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel, D-34127 Kassel (Germany)] [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg, France and Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel, D-34127 Kassel (Germany)

    2014-01-14

    In previous works on Zn{sub 2} and Cd{sub 2} dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s{sup 2} + 6s6p), (6s{sup 2} + 6s7s), and (6s{sup 2} + 6s7p) atomic asymptotes for the mercury dimer Hg{sub 2}. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg{sub 2} including a comparative analysis with the lighter dimers of the group 12, Cd{sub 2}, and Zn{sub 2}, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg{sub 2}.

  12. Accuracy of estimated geometric parameters of trees depending on the LIDAR data density

    NASA Astrophysics Data System (ADS)

    Hadas, Edyta; Estornell, Javier

    2015-04-01

    The estimation of dendrometric variables has become important for spatial planning and agriculture projects. Because classical field measurements are time consuming and inefficient, airborne LiDAR (Light Detection and Ranging) measurements are successfully used in this area. Point clouds acquired for relatively large areas allows to determine the structure of forestry and agriculture areas and geometrical parameters of individual trees. In this study two LiDAR datasets with different densities were used: sparse with average density of 0.5pt/m2 and the dense with density of 4pt/m2. 25 olive trees were selected and field measurements of tree height, crown bottom height, length of crown diameters and tree position were performed. To determine the tree geometric parameters from LiDAR data, two independent strategies were developed that utilize the ArcGIS, ENVI and FUSION software. Strategy a) was based on canopy surface model (CSM) slicing at 0.5m height and in strategy b) minimum bounding polygons as tree crown area were created around detected tree centroid. The individual steps were developed to be applied also in automatic processing. To assess the performance of each strategy with both point clouds, the differences between the measured and estimated geometric parameters of trees were analyzed. As expected, the tree height were underestimated for both strategies (RMSE=0.7m for dense dataset and RMSE=1.5m for sparse) and tree crown height were overestimated (RMSE=0.4m and RMSE=0.7m for dense and sparse dataset respectively). For dense dataset, strategy b) allows to determine more accurate crown diameters (RMSE=0.5m) than strategy a) (RMSE=0.8m), and for sparse dataset, only strategy a) occurs to be relevant (RMSE=1.0m). The accuracy of strategies were also examined for their dependency on tree size. For dense dataset, the larger the tree (height or crown longer diameter), the higher was the error of estimated tree height, and for sparse dataset, the larger the tree, the higher was the error of estimated crown bottom height. Finally, the spatial distribution of points inside the tree crown was analyzed, by creating a normalized tree crown. It confirms a high concentration of LiDAR points inside the central part of a tree.

  13. A perfect storm: the combined effects on population fluctuations of autocorrelated environmental noise, age structure, and density dependence.

    PubMed

    Wilmers, Christopher C; Post, Eric; Hastings, Alan

    2007-05-01

    While it is widely appreciated that climate can affect the population dynamics of various species, a mechanistic understanding of how climate interacts with life-history traits to influence population fluctuations requires development. Here we build a general density-dependent age-structured model that accounts for differential responses in life-history traits to increasing population density. We show that as the temporal frequency of favorable environmental conditions increases, population fluctuations also increase provided that unfavorable environmental conditions still occur. As good years accumulate and the number of individuals in a population increases, successive life-history traits become vulnerable to density dependence once a return to unfavorable conditions prevails. The stronger this ratcheting of density dependence in life-history traits by autocorrelated climatic conditions, the larger the population fluctuations become. Highly fecund species, and those in which density dependence occurs in juvenile and adult vital rates at similar densities, are most sensitive to increases in the frequency of favorable conditions. Understanding the influence of global warming on temporal correlation in regional environmental conditions will be important in identifying those species liable to exhibit increased population fluctuations that could lead to their extinction. PMID:17427137

  14. Predicting invasive species impacts: a community module functional response approach reveals context dependencies.

    PubMed

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2014-09-29

    Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  15. Time-Dependent Approach to Resonance Raman Scattering

    Microsoft Academic Search

    David Joshua Tannor

    1983-01-01

    The time-dependent theory of resonance Raman scattering (RRS) with its wavepacket interpretation forms the central theme of this dissertation. We extend the original theory, as developed by Lee and Heller, and apply it in numerical calculations to a wide variety of systems. In the Lee -Heller theory, the static and dynamic contributions to RRS are distinguished. The former is due

  16. Secure and Dependable Patterns in Organizations: An Empirical Approach

    Microsoft Academic Search

    Yudistira Asnar; Paolo Giorgini; Roberto Bonato; Valentino Meduri; Carlo Riccucci

    2007-01-01

    Designing a secure and dependable system is not just a technical issue, it involves also a deep analysis of the or- ganizational and the social environment in which the sys- tem will operate. In this paper, we detail our experience in modeling and analyzing requirements for an industrial case (air traffic management system) using the Secure Tropos framework. Particularly, we

  17. Direction-Dependent Learning Approach for Radial Basis Function Networks

    Microsoft Academic Search

    Puneet Singla; Kamesh Subbarao; John L. Junkins

    2007-01-01

    Direction-dependent scaling, shaping, and rotation of Gaussian basis functions are introduced for maximal trend sensing with minimal parameter representations for input output approximation. It is shown that shaping and rotation of the radial basis functions helps in reducing the total number of function units required to approximate any given input-output data, while improving accuracy. Several alternate formulations that enforce minimal

  18. Agricultural irrigation mediates climatic effects and density dependence in population dynamics of Chinese striped hamster in North China Plain.

    PubMed

    Yan, Chuan; Xu, Lei; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shoushen; Yang, Hefang; Zhang, Zhibin

    2013-03-01

    Several studies show that climatic (extrinsic) factors can interact with density-dependent (intrinsic) factors to alter long-term population dynamics, yet there is a surprising lack of investigations of how anthropogenic disturbance modifies such dynamics. Such interactions could be especially important in agricultural systems subject to climate change. We investigated the effects of density dependence, climate, recurrent disturbance from flood irrigation and their interactions on the population dynamics of an important rodent pest, the Chinese striped hamster (Cricetulus barabensis), over 27 years in the croplands of the North China Plain. Strong density-dependent feedbacks occurred at both annual and seasonal scales. While warmer weather increased population sizes in nonbreeding seasons, this effect was counteracted by the negative effect of flood irrigation in breeding seasons. Precipitation showed significant positive effects in nonbreeding seasons, but negative effects in breeding seasons. There were important interactions between intrinsic dynamics, extrinsic dynamics and disturbance. Low temperature significantly increased the strength of density dependence in nonbreeding seasons, whereas intensification of flood irrigation area significantly increased the strength of density dependence but reduced the effect of summer precipitation in breeding seasons. Overall climate change is expected to increase population levels, but anthropogenic disturbance from flood irrigation will help prevent long-term population increases. The interactions between anthropogenic disturbance and both intrinsic and extrinsic (weather-driven) population dynamics caution that we need to consider anthropogenic disturbance as an integral component of population responses to climate change. PMID:23030597

  19. Modes of Competition: Adding and Removing Brown Trout in the Wild to Understand the Mechanisms of Density-Dependence

    PubMed Central

    Kaspersson, Rasmus; Sundström, Fredrik; Bohlin, Torgny; Johnsson, Jörgen I.

    2013-01-01

    While the prevalence of density-dependence is well-established in population ecology, few field studies have investigated its underlying mechanisms and their relative population-level importance. Here, we address these issues, and more specifically, how differences in body-size influence population regulation. For this purpose, two experiments were performed in a small coastal stream on the Swedish west coast, using juvenile brown trout (Salmo trutta) as a study species. We manipulated densities of large and small individuals, and observed effects on survival, migration, condition and individual growth rate in a target group of intermediate-sized individuals. The generality of the response was investigated by reducing population densities below and increasing above the natural levels (removing and adding large and small individuals). Reducing the density (relaxing the intensity of competition) had no influence on the response variables, suggesting that stream productivity was not a limiting factor at natural population density. Addition of large individuals resulted in a negative density-dependent response, while no effect was detected when adding small individuals or when maintaining the natural population structure. We found that the density-dependent response was revealed as reduced growth rate rather than increased mortality and movement, an effect that may arise from exclusion to suboptimal habitats or increased stress levels among inferior individuals. Our findings confirm the notion of interference competition as the primary mode of competition in juvenile salmonids, and also show that the feedback-mechanisms of density-dependence are primarily acting when increasing densities above their natural levels. PMID:23658736

  20. Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Jordán, Raquel Chuliá; Reiber, Holger; Schöpe, Hans-Joachim; Biehl, Ralf; Evers, Martin; Hessinger, Dirk; Olah, Julianna; Palberg, Thomas; Schönberger, Ernest; Wette, Patrick

    2005-09-01

    We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5°Cdensity n between 0.2 and 25?m-3 for the larger, respectively, 2.75 and 210?m-3 for the smaller of two investigated species. At fixed ? the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing ? and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment for counterion-dominated systems we describe our data with a simple model relating to Drude's theory of metal conductivity. The key parameter is an effectively transported particle charge or valence Z*. All temperature dependencies other than that of Z* were taken from literature. Within experimental resolution Z* was found to be independent of n irrespective of the suspension structure. Interestingly, Z* decreases with temperature in near quantitative agreement with numerical calculations.

  1. Drude-type conductivity of charged sphere colloidal crystals: density and temperature dependence.

    PubMed

    Medebach, Martin; Jordán, Raquel Chuliá; Reiber, Holger; Schöpe, Hans-Joachim; Biehl, Ralf; Evers, Martin; Hessinger, Dirk; Olah, Julianna; Palberg, Thomas; Schönberger, Ernest; Wette, Patrick

    2005-09-01

    We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5 degrees C < Theta < 35 degrees C and the particle number density n between 0.2 and 25 microm(-3) for the larger, respectively, 2.75 and 210 microm(-3) for the smaller of two investigated species. At fixed Theta the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing Theta and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment for counterion-dominated systems we describe our data with a simple model relating to Drude's theory of metal conductivity. The key parameter is an effectively transported particle charge or valence Z(*). All temperature dependencies other than that of Z(*) were taken from literature. Within experimental resolution Z(*) was found to be independent of n irrespective of the suspension structure. Interestingly, Z(*) decreases with temperature in near quantitative agreement with numerical calculations. PMID:16178620

  2. Lower Within-Community Variance of Negative Density Dependence Increases Forest Diversity

    PubMed Central

    Miranda, António; Carvalho, Luís M.; Dionisio, Francisco

    2015-01-01

    Local abundance of adult trees impedes growth of conspecific seedlings through host-specific enemies, a mechanism first proposed by Janzen and Connell to explain plant diversity in forests. While several studies suggest the importance of this mechanism, there is still little information of how the variance of negative density dependence (NDD) affects diversity of forest communities. With computer simulations, we analyzed the impact of strength and variance of NDD within tree communities on species diversity. We show that stronger NDD leads to higher species diversity. Furthermore, lower range of strengths of NDD within a community increases species richness and decreases variance of species abundances. Our results show that, beyond the average strength of NDD, the variance of NDD is also crucially important to explain species diversity. This can explain the dissimilarity of biodiversity between tropical and temperate forest: highly diverse forests could have lower NDD variance. This report suggests that natural enemies and the variety of the magnitude of their effects can contribute to the maintenance of biodiversity. PMID:25992631

  3. Negative Density Dependence Regulates Two Tree Species at Later Life Stage in a Temperate Forest

    PubMed Central

    Piao, Tiefeng; Chun, Jung Hwa; Yang, Hee Moon; Cheon, Kwangil

    2014-01-01

    Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height) ?2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species' shade tolerance in NDD study. PMID:25058660

  4. Modeling Changing Morphology and Density Dependent Groundwater Flow in a Dynamic Environment: case study

    NASA Astrophysics Data System (ADS)

    Huizer, Sebastian; Bierkens, Marc; Oude Essink, Gualbert

    2015-04-01

    The prospect of sea level rise and increase in extreme weather conditions has led to a new focus on coastal defense in the Netherlands. As an innovative solution for coastal erosion a mega-nourishment named the Sand Motor (or Sand Engine) has been constructed at the Dutch coast. This body of sand will be distributed slowly along the coastline by wind, waves and currents; keeping the coastal defense structures in place and creating a unique, dynamic environment with changing morphology over time. The large size and position of the Sand Motor might lead to a substantial increase of fresh ground water resources. This creates an opportunity to combine coastal protection with an increase of fresh water resources in coastal regions. With a three dimensional, density dependent, groundwater model the effects of changing morphology over time and the potential increase in fresh water availability have been studied. The preliminary model calculations show that in a period of 20 years volume of fresh water gradually increases to ca. 12 Mm3. In the nearby dune area 7-8 Mm3 is abstracted yearly, therefore the first results are promising in increasing fresh groundwater resources. More model calculations will be performed to investigate the sensitivity of the change in the fresh, brackish and salt water distribution.

  5. Self-similar solutions to a density-dependent reaction-diffusion model.

    PubMed

    Ngamsaad, Waipot; Khompurngson, Kannika

    2012-06-01

    In this paper, we investigated a density-dependent reaction-diffusion equation, u(t)=(u(m))(xx)+u-u(m). This equation is known as the extension of the Fisher or Kolmogoroff-Petrovsky-Piscounoff equation, which is widely used in population dynamics, combustion theory, and plasma physics. By employing a suitable transformation, this equation was mapped to the anomalous diffusion equation where the nonlinear reaction term was eliminated. Due to its simpler form, some exact self-similar solutions with compact support have been obtained. The solutions, evolving from an initial state, converge to the usual traveling wave at a certain transition time. Hence, the connection between the self-similar solution and the traveling wave solution is quite clear from these results. Moreover, the solutions were found in a manner that propagates either to the right or to the left. Furthermore, the two solutions form a symmetric solution, expanding in both directions. Applications to spatiotemporal pattern formation in biological populations is discussed. PMID:23005175

  6. Rotochemical heating of millisecond and classical pulsars with anisotropic and density-dependent superfluid gap models

    NASA Astrophysics Data System (ADS)

    González-Jiménez, Nicolás; Petrovich, Cristobal; Reisenegger, Andreas

    2015-03-01

    When a rotating neutron star loses angular momentum, the progressive reduction of the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium, inducing reactions that release heat (`rotochemical heating'). This effect has previously been studied by Fernández & Reisenegger for non-superfluid neutron stars and by Petrovich & Reisenegger for superfluid millisecond pulsars. Both studies found that pulsars reach a quasi-steady state in which the compression driving the matter out of beta equilibrium is balanced by the reactions trying to restore the equilibrium. We extend previous studies by considering the effect of density-dependence and anisotropy of the superfluid energy gaps, for the case in which the dominant reactions are the modified Urca processes, the protons are non-superconducting, and the neutron superfluidity is parametrized by models proposed in the literature. By comparing our predictions with the surface temperature of the millisecond pulsar PSR J0437-4715 and upper limits for 21 classical pulsars, we find the millisecond pulsar can be only explained by the models with the effectively largest energy gaps (type B models), the classical pulsars require with the gap models that vanish for some angle (type C) and two different envelope compositions. Thus, no single model for neutron superfluidity can simultaneously account for the thermal emission of all available observations of non-accreting neutron stars, possibly due to our neglect of proton superconductivity.

  7. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework.

    PubMed

    Morzan, Uriel N; Ramírez, Francisco F; Oviedo, M Belén; Sánchez, Cristián G; Scherlis, Damián A; Lebrero, Mariano C González

    2014-04-28

    This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix-required to propagate the electron dynamics-, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data. PMID:24784251

  8. SCET approach to regularization-scheme dependence of QCD amplitudes

    E-print Network

    Broggio, A; Signer, A; Stöckinger, D; Visconti, A

    2015-01-01

    We investigate the regularization-scheme dependence of scattering amplitudes in massless QCD and find that the four-dimensional helicity scheme (FDH) and dimensional reduction (DRED) are consistent at least up to NNLO in the perturbative expansion if renormalization is done appropriately. Scheme dependence is shown to be deeply linked to the structure of UV and IR singularities. We use jet and soft functions defined in soft-collinear effective theory (SCET) to efficiently extract the relevant anomalous dimensions in the different schemes. This result allows us to construct transition rules for scattering amplitudes between different schemes (CDR, HV, FDH, DRED) up to NNLO in massless QCD. We also show by explicit calculation that the hard, soft and jet functions in SCET are regularization-scheme independent.

  9. SCET approach to regularization-scheme dependence of QCD amplitudes

    E-print Network

    A. Broggio; Ch. Gnendiger; A. Signer; D. Stöckinger; A. Visconti

    2015-06-17

    We investigate the regularization-scheme dependence of scattering amplitudes in massless QCD and find that the four-dimensional helicity scheme (FDH) and dimensional reduction (DRED) are consistent at least up to NNLO in the perturbative expansion if renormalization is done appropriately. Scheme dependence is shown to be deeply linked to the structure of UV and IR singularities. We use jet and soft functions defined in soft-collinear effective theory (SCET) to efficiently extract the relevant anomalous dimensions in the different schemes. This result allows us to construct transition rules for scattering amplitudes between different schemes (CDR, HV, FDH, DRED) up to NNLO in massless QCD. We also show by explicit calculation that the hard, soft and jet functions in SCET are regularization-scheme independent.

  10. Effect of Density-Dependent Form Factors on Coulomb Sum Rule in the Quasi-Elastic Region

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Cheoun, Myung-Ki

    2014-11-01

    Within the framework of a relativistic single particle model, we study the effects of density-dependent electromagnetic form factors on the inclusive (e,e') reaction in the quasi-elastic region. The density-dependent form factors generated by a quark-meson coupling model are applied into the (e,e') reaction. We calculate the differential cross sections, and extract the longitudinal and transverse structure functions. Furthermore the Coulomb sum is calculated in terms of three momentum transfer from 40Ca. The effects of the density-dependent form factors reduce the longitudinal structure function by amount of a few percent but increase the transverse structure function about 10%, consequently the (e,e') differential cross sections are enhanced.

  11. The challenge of predicting optical properties of biomolecules: What can we learn from time-dependent density-functional theory?

    NASA Astrophysics Data System (ADS)

    Castro, Alberto; Marques, Miguel A. L.; Varsano, Daniele; Sottile, Francesco; Rubio, Angel

    2009-07-01

    The suitability of the time-dependent density-functional theory (TDDFT) approach for the theoretical study of the optical properties of biomolecules is demonstrated by several examples. We critically discuss the limitations of available TDDFT implementations to address some of the present open questions in the description of the excited-state dynamics of biological complexes. The key objective of the present work is to address the performance of TDDFT in the linear response regime of the bio-molecular systems to the visible or near UV radiation - measured by, e.g. optical absorption or optical dichroism spectra. Although these spectra are essentially determined by the electronic degrees of freedom of small, optically active regions within the usually large biological systems, they can also be strongly influenced by environment effects (solvent, hosting protein, temperature, etc.). Moreover, many key biological processes consist of photo-induced dynamics (photoisomerisation, etc.), and their description requires a coupled treatment of electronic and nuclear degrees of freedom. We illustrate these aspects with a selection of paradigmatic biomolecular systems: chromophores in fluorescent proteins, porphyrins, DNA basis, the azobenzene dye, etc. To cite this article: A. Castro et al., C. R. Physique 10 (2009).

  12. Age-specific, density-dependent and environment-based mortality of a short-lived perennial herb

    Microsoft Academic Search

    F. X. Pico ´; J. Retana

    2008-01-01

    Density-independent and density-dependent processes affect plant mortality. Although less well understood, age-specific mortality can also play an important role in plant mortality. The goal of this study was to analyse sev- eral factors accounting for mortality in the Mediterranean short-lived peren- nial herb Lobularia maritima. We followed three cohorts of plants (from emergence to death) during 4 years in field

  13. Probing Ionic Crystals by the Invariom Approach: An Electron Density Study of Guanidinium Chloride and Carbonate.

    PubMed

    Nelyubina, Yulia V; Lyssenko, Konstantin A

    2015-06-26

    A comparative study of two guanidinium salts, chloride and carbonate, is carried out to test the performance of the invariom approach for ionic crystals. Although treating them as formed by isolated ions with no charge transfer between them, the invariom approach provides features of interionic contacts that are amazingly similar to those obtained from conventional charge density analysis of high-resolution X-ray diffraction data, thus emerging as an easy way towards reliable description of chemical bonding peculiarities in ionic crystals. PMID:26015224

  14. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    PubMed

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum. PMID:17536406

  15. Direction-dependent learning approach for radial basis function networks.

    PubMed

    Singla, Puneet; Subbarao, Kamesh; Junkins, John L

    2007-01-01

    Direction-dependent scaling, shaping, and rotation of Gaussian basis functions are introduced for maximal trend sensing with minimal parameter representations for input output approximation. It is shown that shaping and rotation of the radial basis functions helps in reducing the total number of function units required to approximate any given input-output data, while improving accuracy. Several alternate formulations that enforce minimal parameterization of the most general radial basis functions are presented. A novel "directed graph" based algorithm is introduced to facilitate intelligent direction based learning and adaptation of the parameters appearing in the radial basis function network. Further, a parameter estimation algorithm is incorporated to establish starting estimates for the model parameters using multiple windows of the input-output data. The efficacy of direction-dependent shaping and rotation in function approximation is evaluated by modifying the minimal resource allocating network and considering different test examples. The examples are drawn from recent literature to benchmark the new algorithm versus existing methods. PMID:17278473

  16. THE TURBULENCE SPECTRUM OF MOLECULAR CLOUDS IN THE GALACTIC RING SURVEY: A DENSITY-DEPENDENT PRINCIPAL COMPONENT ANALYSIS CALIBRATION

    SciTech Connect

    Roman-Duval, Julia; Jackson, James [Institute for Astrophysical Research at Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Federrath, Christoph; Klessen, Ralf S. [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Brunt, Christopher [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Heyer, Mark, E-mail: jduval@bu.edu, E-mail: jackson@bu.edu, E-mail: duval@stsci.edu, E-mail: chfeder@uni-heidelberg.de, E-mail: klessen@uni-heidelberg.de, E-mail: heyer@astro.umass.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States)

    2011-10-20

    Turbulence plays a major role in the formation and evolution of molecular clouds. Observationally, turbulent velocities are convolved with the density of an observed region. To correct for this convolution, we investigate the relation between the turbulence spectrum of model clouds, and the statistics of their synthetic observations obtained from principal component analysis (PCA). We apply PCA to spectral maps generated from simulated density and velocity fields, obtained from hydrodynamic simulations of supersonic turbulence, and from fractional Brownian motion (fBm) fields with varying velocity, density spectra, and density dispersion. We examine the dependence of the slope of the PCA pseudo-structure function, {alpha}{sub PCA}, on intermittency, on the turbulence velocity ({beta}{sub v}) and density ({beta}{sub n}) spectral indexes, and on density dispersion. We find that PCA is insensitive to {beta}{sub n} and to the log-density dispersion {sigma}{sub s}, provided {sigma}{sub s} {<=} 2. For {sigma}{sub s} > 2, {alpha}{sub PCA} increases with {sigma}{sub s} due to the intermittent sampling of the velocity field by the density field. The PCA calibration also depends on intermittency. We derive a PCA calibration based on fBm structures with {sigma}{sub s} {<=} 2 and apply it to 367 {sup 13}CO spectral maps of molecular clouds in the Galactic Ring Survey. The average slope of the PCA structure function, ({alpha}{sub PCA}) = 0.62 {+-} 0.2, is consistent with the hydrodynamic simulations and leads to a turbulence velocity exponent of ({beta}{sub v}) = 2.06 {+-} 0.6 for a non-intermittent, low density dispersion flow. Accounting for intermittency and density dispersion, the coincidence between the PCA slope of the GRS clouds and the hydrodynamic simulations suggests {beta}{sub v} {approx_equal} 1.9, consistent with both Burgers and compressible intermittent turbulence.

  17. The role of stacking faults in the critical current density of MOD films through a thickness dependence study

    Microsoft Academic Search

    J. Gutiérrez; B. Maiorov; T. Puig; J. Gázquez; N. Romà; H. Wang; F. Sandiumenge; X. Obradors

    2009-01-01

    A study is presented on the evolution through thickness of the angular and magnetic field (H) dependence of the critical current density (Jc) for YBa2Cu3O7 films grown by the trifluoroacetate route. A clear relation between Jc at self-field (sf) and the thickness-dependent distribution of pinning centers parallel to the ab-planes is found and confirmed by microstructural analysis. Results indicate that

  18. A New Robust Approach for Highway Traffic Density Estimation Fabio Morbidi, Luis Leon Ojeda, Carlos Canudas de Wit, Iker Bellicot

    E-print Network

    Paris-Sud XI, Université de

    A New Robust Approach for Highway Traffic Density Estimation Fabio Morbidi, Luis Le´on Ojeda for the uncertain graph-constrained Switching Mode Model (SMM), which we use to describe the highway traffic density density reconstruction via a switching observer, in an instrumented 2.2 km highway section of Grenoble

  19. A resprouter herb reduces negative density-dependent effects among neighboring seeders after fire

    NASA Astrophysics Data System (ADS)

    Raventós, José; Wiegand, Thorsten; Maestre, Fernando T.; de Luis, Martín

    2012-01-01

    Plant communities are often composed of species belonging to different functional groups, but relatively few studies to date have explicitly linked their spatial structure to the outcome of the interaction among them. We investigated if mortality of seeder species during their establishment after fire is influenced by the proximity of the resprouter herb Brachypodium retusum. The study was conducted in a Mediterranean shrubland (00°39' W; 38°43' N), 40 km northwest of Alicante (Spain) with Ulex parviflorus, Cistus albidus, Helianthemum marifolium, and Ononis fruticosa as dominant obligate seeder species and a herbaceous layer is dominated by the resprouter B. retusum. We followed the fate of mapped seedlings and the biomass of B. retusum one, two, three and nine years after an experimental fire. We used point pattern analyses to evaluate the spatial pattern of mortality of seeder species at these years in relation to the biomass of B. retusum. We hypothesize that B. retusum may initially have a positive impact on seeder survival. We implemented this hypothesis as a point process model that maintains the overall number of dead seeder plants, but seeder survival varied proportionally to the biomass of B. retusum in its neighborhood. We then contrasted this hypothesis with a previous analysis based on a random mortality hypothesis. Our data were consistent with the hypothesis that proximity of B. retusum reduced the mortality of seeder plants at their establishment phase (i.e., 2 yrs after fire). However, we found no evidence that B. retusum influenced seeder mortality when plants grow to maturity. We also found that, under the more stressful conditions (fire + erosion scenario), B. retusum had a lower impact on the performance of seeder species. Our results suggest that B. retusum may reduce negative density-dependent effects among neighboring seeder plants during the first years after fire.

  20. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability.

    PubMed

    Postma, Johannes Auke; Dathe, Annette; Lynch, Jonathan Paul

    2014-10-01

    Observed phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1-41 cm(-1) major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm(-1)), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm(-1)), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm(-1), suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition. PMID:24850860

  1. A Density Functional Theory Study of Temperature Dependence of Cluster Formation from Sulfuric Acid and Ammonia

    NASA Astrophysics Data System (ADS)

    lin, H.; Chon, N. L.; Lee, S.

    2013-12-01

    Recent atmospheric nucleation studies have shown that acid-base reactions are essential at the initial step of aerosol nucleation. Ammonia is the most abundant base compound present in the atmosphere. Ammonia can directly interact with sulfuric acid clusters to reduce Gibbs free energy of cluster formation and growth, but the role that ammonia plays in atmospheric nucleation is still not well understood, especially at the molecular cluster level. We have performed density functional theory (BL3YP) and ab initio (MP2) calculations to study energetics of cluster formation for (NH3)m(H2SO4) and (NH3)(H2SO4)n (m, n = 1-6) in the temperature range from 200-300 K. For the model (NH3)m(H2SO4) clusters, bindings were predicted to increase from m = 1 to 6 at 200 K, while the most stable complex at 300 K was found to be at m = 2. For the (NH3)(H2SO4)n complexes, enthalpic contributions dominated and the binding is more stable for larger n. The temperature dependency has stronger effects on the (NH3)m(H2SO4) complexes, among which the lowest free energy shifts from m = 6 at T = 200 K to m = 5 around T = 240 K and further to m = 2 at T ? 280 K. The effects on the (NH3)(H2SO4)n complexes are much smaller, while there are similar trends that favor larger n for all temperatures between 200 and 300 K. These results thus indicate that the role of ammonia in atmospheric aerosol nucleation is critical in a wide range of atmospheric temperature conditions.

  2. Characterization of Ichthyocidal Activity of Pfiesteria piscicida: Dependence on the Dinospore Cell Density

    PubMed Central

    Drgon, Tomás; Saito, Keiko; Gillevet, Patrick M.; Sikaroodi, Masoumeh; Whitaker, Brent; Krupatkina, Danara N.; Argemi, Federico; Vasta, Gerardo R.

    2005-01-01

    The ichthyocidal activity of Pfiesteria piscicida dinospores was examined in an aquarium bioassay format by exposing fish to either Pfiesteria-containing environmental sediments or clonal P. piscicida. The presence of Pfiesteria spp. and the complexity of the microbial assemblage in the bioassay were assessed by molecular approaches. Cell-free water from bioassays that yielded significant fish mortality failed to show ichthyocidal activity. Histopathological examination of moribund and dead fish failed to reveal the skin lesions reported elsewhere. Fish larvae within “cages” of variable mesh sizes were killed in those where the pore size exceeded that of Pfiesteria dinospores. In vitro exposure of fish larvae to clonal P. piscicida indicated that fish mortality was directly proportional to the dinospore cell density. Dinospores clustered around the mouth, eyes, and operculi, suggesting that fish health may be affected by their direct interaction with skin, gill epithelia, or mucous surfaces. Molecular fingerprinting revealed the presence of a very diverse microbial community of bacteria, protists, and fungi within bioassay aquaria containing environmental sediments. Some components of the microbial community were identified as potential fish pathogens, preventing the rigorous identification of Pfiesteria spp. as the only cause of fish death. In summary, our results strongly suggest (i) that this aquarium bioassay format, which has been extensively reported in the literature, is unsuitable to accurately assess the ichthyocidal activity of Pfiesteria spp. and (ii) that the ichthyocidal activity of Pfiesteria spp. is mostly due to direct interactions of the zoospores with fish skin and gill epithelia rather than to soluble factors. PMID:15640229

  3. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms

    PubMed Central

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-01-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities. PMID:25535553

  4. Fragment approach to constrained density functional theory calculations using Daubechies wavelets.

    PubMed

    Ratcliff, Laura E; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments. PMID:26093548

  5. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    NASA Astrophysics Data System (ADS)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry

    2015-06-01

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.

  6. TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE

    SciTech Connect

    Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis; Keenan, Francis P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom)

    2012-08-10

    Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to be determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.

  7. Particle-based multiscale coarse graining with density-dependent potentials: Application to molecular crystals (hexahydro-1,3,5-trinitro-s-triazine)

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Chung, Peter W.; Rice, Betsy M.

    2011-07-01

    We describe the development of isotropic particle-based coarse-grain models for crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX). The coarse graining employs the recently proposed multiscale coarse-graining (MS-CG) method, which is a particle-based force-matching approach for deriving free-energy effective interaction potentials. Though one-site and four-site coarse-grain (CG) models were parameterized from atomistic simulations of non-ordered (molten and ambient temperature amorphous) systems, the focus of the paper is a detailed study of the one-site model with a brief recourse to the four-site model. To improve the ability of the one-site model to be applied to crystalline phases at various pressures, it was found necessary to include explicit dependence on a particle density, and a new theory of local density-dependent MS-CG potentials is subsequently presented. The density-dependency is implemented through interpolation of MS-CG force fields derived at a preselected set of reference densities. The computationally economical procedure for obtaining the reference force fields starting from the interaction at ambient density is also described. The one-site MS-CG model adequately describes the atomistic lattice structure of ?-RDX at ambient and high pressures, elastic and vibrational properties, pressure-volume curve up to P = 10 GPa, and the melting temperature. In the molten state, the model reproduces the correct pair structure at different pressures as well as higher order correlations. The potential of the MS-CG model is further evaluated in simulations of shocked crystalline RDX

  8. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    PubMed

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity. PMID:23748864

  9. Emergence of global behaviour in a hostparasitoid model with density-dependent dispersal in a chain of patches

    E-print Network

    Emergence of global behaviour in a host­parasitoid model with density-dependent dispersal´ticas, Universidad de Alcala´, 28771 Alcala´ de Henares, Spain 1. Introduction The study of spatial dynamics of host­parasitoid describing local host­parasitoid inter- actions on each patch and the other describing dispersal among

  10. Latitudinal variations of solar flux dependence in the topside plasma density: comparison between IRI model and observations

    Microsoft Academic Search

    I. Iwamoto; H. Katoh; T. Maruyama; H. Minakoshi; S. Watari; K. Igarashi

    2002-01-01

    The solar flux variations of plasma density in the topside ionosphere around 1000 km altitude at lower and higher latitudes are compared using the satellite data and the International Reference Ionosphere (IRI) model. The modeled profiles show rather stronger dependence on the solar activity at higher latitudes than at lower latitudes. These strong latitudinal variations are not seen in the

  11. The impact of climate change on the bottom up regulation of density dependence in large herbivore populations

    NASA Astrophysics Data System (ADS)

    Ahrestani, F.; Smith, W. A.; Hebblewhite, M.; Running, S. W.; Post, E.

    2013-12-01

    Population dynamics are regulated by either density dependent or, independent (environmental) factors, and climate change may influence populations through either pathway. One key factor in the population dynamics of large herbivores is the dynamics of vegetation nutrient content, which although being an environmental factor, has the potential to impact the degree of density dependence that regulates population dynamics. To understand this bottom up regulatory mechanism and how climate interacts with vegetation, we will estimate the influence of vegetation dynamics on annual abundance estimates of multiple vertebrate populations using time-series analysis. We will test the hypothesis that the strength of density dependence is expected to vary inversely with changes in vegetation availability, i.e., in areas with higher forage abundance and quality, density dependence is expected to be stronger. Extended to climate change, this hypothesis predicts that climate impacts will be stronger in areas of low vegetation availability, such as the arctic and alpine regions. We will analyze a combined dataset of 55 globally distributed Cervus (elk/red deer) and Rangifer (caribou/reindeer) populations that inhabit areas >100km2. These population time-series we will be analyzed using Markov Chain Monte Carlo Bayesian state-space models, and to represent annual vegetation dynamics we will use Global Inventory Monitoring and Modeling System (GIMMS) normalized difference vegetation index (NDVI) data (i.e., third generation GIMMS NDVI from AVHRR sensors).

  12. Predicting population survival under future climate change: density dependence, drought and extraction in an insular bighorn sheep

    Microsoft Academic Search

    Fernando Colchero; Rodrigo A. Medellin; James S. Clark; Raymond Lee; Gabriel G. Katul

    2009-01-01

    Summary 1. Our understanding of the interplay between density dependence, climatic perturbations, and conservation practices on the dynamics of small populations is still limited. This can result in uninformed strategies that put endangered populations at risk. Moreover, the data available for a large number of populations in such circumstances are sparse and mined with missing data. Under the current climate

  13. Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study.

    PubMed

    Laref, Slimane; Cao, Jiangrong; Asaduzzaman, Abu; Runge, Keith; Deymier, Pierre; Ziolkowski, Richard W; Miyawaki, Mamoru; Muralidharan, Krishna

    2013-05-20

    Physical properties of materials are known to be different from the bulk at the nanometer scale. In this context, the dependence of optical properties of nanometric gold thin films with respect to film thickness is studied using density functional theory (DFT). We find that the in-plane plasma frequency of the gold thin film decreases with decreasing thickness and that the optical permittivity tensor is highly anisotropic as well as thickness dependent. Quantitative knowledge of planar metal film permittivity's thickness dependence can improve the accuracy and reliability of the designs of plasmonic devices and electromagnetic metamaterials. The strong anisotropy observed may become an alternative method of realizing indefinite media. PMID:23736404

  14. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: A density functional approach

    PubMed Central

    Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo

    2014-01-01

    In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids [J. Chem. Phys. 124, 154506 (2006); Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)]. It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the mean spherical approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry, and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model. PMID:24880304

  15. Current Density-Dependent Thermal Stability of ZnSe Nanowire in M-S-M Nanostructure

    NASA Astrophysics Data System (ADS)

    Tan, Yu; Wang, Yan-Guo

    2014-12-01

    To enhance the thermal stability of metal-semiconductor nanowire(NW)-metal (M-S-M) nanostructure under high electrical and thermal stress conditions, current-induced failure of ZnSe NWs in the M-S-M nanostructure is studied by in situ transmission electron microscopy. When the single NW is replaced by a bundle of NWs, the large current density flowing through the single NW protruding out of the bundle of NWs is responsible for the electrical breakdown of NWs. In this case, the failure mechanism of the NW changes from the bias polarity-dependent mode to the current density-dependent mode. Consequently, a decrease of current density at the reversely biased metal-semiconductor (M-S) nanocontacts can significantly improve the thermal stability of ZnSe NWs in the M-S-M nanostructure and can enhance the performance of the semiconductor NW-based nanoelectronics.

  16. Substance dependence low-density whole genome association study in two distinct American populations

    Microsoft Academic Search

    Yi Yu; Henry R. Kranzler; Carolien Panhuysen; Roger D. Weiss; James Poling; Lindsay A. Farrer; Joel Gelernter

    2008-01-01

    Cocaine and opioid dependence are common, complex disorders with high heritability that commonly co-occur with other substance\\u000a dependence disorders. Improved insight into the genetic basis of substance dependence would help elucidate its etiology and\\u000a could inform its prevention and treatment. To generate new hypotheses about the genetics of substance dependence, we genotyped\\u000a 5633 tagging single nucleotide polymorphism (SNP) markers in

  17. Anatomy of a population cycle: the role of density dependence and demographic variability on numerical instability and periodicity.

    PubMed

    Row, Jeffrey R; Wilson, Paul J; Murray, Dennis L

    2014-07-01

    Determining the causes of cyclic fluctuations in population size is a central tenet in population ecology and provides insights into population regulatory mechanisms. We have a firm understanding of how direct and delayed density dependence affects population stability and cyclic dynamics, but there remains considerable uncertainty in the specific processes contributing to demographic variability and consequent change in cyclic propensity. Spatiotemporal variability in cyclic propensity, including recent attenuation or loss of cyclicity among several temperate populations and the implications of habitat fragmentation and climate change on this pattern, highlights the heightened need to understand processes underlying cyclic variation. Because these stressors can differentially impact survival and productivity and thereby impose variable time delays in density dependence, there is a specific need to elucidate how demographic vital rates interact with the type and action of density dependence to contribute to population stability and cyclic variation. Here, we address this knowledge gap by comparing the stability of time series derived from general and species-specific (Canada lynx: Lynx canadensis; small rodents: Microtus, Lemmus and Clethrionomys spp.) matrix population models, which vary in their demographic rates and the direct action of density dependence. Our results reveal that density dependence acting exclusively on survival as opposed to productivity is destabilizing, suggesting that a shift in the action of population regulation toward reproductive output may decrease cyclic propensity and cycle amplitude. This result was the same whether delayed density dependence was pulsatile and acted on a single time period (e.g. t-1, t-2 or t-3) vs. more constant by affecting a successive range of years (e.g. t-1,…, t-3). Consistent with our general models, reductions in reproductive potential in both the lynx and small rodent systems led to notably large drops in cyclic propensity and amplitude, suggesting that changes in this vital rate may contribute to the spatial or temporal variability observed in the cyclic dynamics of both systems. Collectively, our results reveal that the type of density dependence and its effect on different demographic parameters can profoundly influence numeric stability and cyclic propensity and therefore may shift populations across the cyclic-to-noncyclic boundary. PMID:24438480

  18. Voyager electron density measurements on Saturn: Analysis with a time dependent ionospheric model

    Microsoft Academic Search

    Tariq Majeed; John C. McConnell

    1996-01-01

    We have used a one-dimensional chemical diffusive model of the ionosphere, in conjunction with the measured Voyager ultraviolet spectrometer (UVS) upper atmospheric temperature and composition structure, to analyze the Voyager measurements of Saturn's upper ionospheric electron densities. Electron density measurements are available from the analysis of the radio science (RSS) experiments. In addition, if interpreted as an atmospheric phenomenon the

  19. Lonely hearts or sex in the city? Density-dependent effects in mating systems

    E-print Network

    Rankin, Daniel

    is not typical to most evolutionary theory of sexual selection. Here, we argue that this may prevent us from ideas in sexual selection are heavily influenced by numbers of potential mates: the evolution strategies with respect to density. Mating skew may either increase or decrease with density, which may

  20. Density-dependent responses of reproductive allocation to elevated atmospheric CO 2 in Phytolacca americana

    Microsoft Academic Search

    J.-S. He; F. A. Bazzaz

    Summary • This study was conducted to determine whether elevated CO 2 alters patterns of plant reproduction, and whether density affects population- and individual-level responses to elevated CO 2 . • Phytolacca americana was grown in a glasshouse at three population densities under ambient and elevated CO 2 environments, and harvested at both vegetative and seed mature stages. •C O

  1. The nucleus-nucleus interaction potential using density-dependent delta interaction

    Microsoft Academic Search

    Bikash Sinha; Steven A. Moszkowski

    1979-01-01

    The interaction potential between two nuclei has been calculated by using a generalized folding model. The direct and the exchange terms are computed by folding in Skyrme interaction with the nuclear density distributions and the density matrices of the two nuclei, respectively. A new definition of the one-body optical potential is also suggested. The results agree quite well with standard

  2. Sea lice as a density-dependent constraint to salmonid farming

    PubMed Central

    Jansen, Peder A.; Kristoffersen, Anja B.; Viljugrein, Hildegunn; Jimenez, Daniel; Aldrin, Magne; Stien, Audun

    2012-01-01

    Fisheries catches worldwide have shown no increase over the last two decades, while aquaculture has been booming. To cover the demand for fish in the growing human population, continued high growth rates in aquaculture are needed. A potential constraint to such growth is infectious diseases, as disease transmission rates are expected to increase with increasing densities of farmed fish. Using an extensive dataset from all farms growing salmonids along the Norwegian coast, we document that densities of farmed salmonids surrounding individual farms have a strong effect on farm levels of parasitic sea lice and efforts to control sea lice infections. Furthermore, increased intervention efforts have been unsuccessful in controlling elevated infection levels in high salmonid density areas in 2009–2010. Our results emphasize host density effects of farmed salmonids on the population dynamics of sea lice and suggest that parasitic sea lice represent a potent negative feedback mechanism that may limit sustainable spatial densities of farmed salmonids. PMID:22319130

  3. An adaptive finite element approach to modelling sediment laden density currents

    NASA Astrophysics Data System (ADS)

    Parkinson, S.; Hill, J.; Allison, P. A.; Piggott, M. D.

    2012-04-01

    Modelling sediment-laden density currents at real-world scales is a challenging task. Here we present Fluidity, which uses dynamic adaptive re-meshing to reduce computational costs whilst maintaining sufficient resolution where and when it is required. This allows small-scale processes to be captured in large scale simulations. Density currents, also known as gravity or buoyancy currents, occur wherever two fluids with different densities meet. They can occur at scales of up to hundred kilometres in the ocean when continental shelves collapse. This process releases large quantities of sediment into the ocean which increase the bulk density of the fluid to form a density current. These currents can carry sediment hundreds of kilometres, at speeds of up to a hundred kilometres per hour, over the sea bed. They can be tsunamigenic and they have the potential to cause significant damage to submarine infrastructure, such as submarine telecommunications cables or oil and gas infrastructure. They are also a key process for movement of organic material into the depths of the ocean. Due to this, they play an important role in the global carbon cycle on the Earth, forming a significant component of the stratigraphic record, and their deposits can form useful sources of important hydrocarbons. Modelling large scale sediment laden density currents is a very challenging problem. Particles within the current are suspended by turbulence that occurs at length scales that are several orders of magnitude smaller than the size of the current. Models that resolve the vertical structure of the flow require a very large, highly resolved mesh, and substantial computing power to solve. Here, we verify our adaptive model by comparison with a set of laboratory experiments by Gladstone et al. [1998] on the propagation and sediment deposition of bidisperse gravity currents. Comparisons are also made with fixed mesh solutions, and it is shown that accuracy can be maintained with fewer elements, and with significantly shorter run times, using a dynamic adaptive mesh approach.

  4. Innovative User Defined Density Profile Approach To FSW Of Aluminium Foam

    NASA Astrophysics Data System (ADS)

    Contorno, Dorotea; Fratini, Livan; Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-04-01

    Metallic foams are one of the most exciting materials in the world of mechanical industry due to their reduced mass and the good mechanical, thermal and acoustic characteristics. Consequently, their application, is increasing day by day even with the important drawbacks that reduce their suitability and diffusion such as high manufacturing cost and difficulty in processing. An innovative approach is outlined in this paper that enables the production of complex shapes taking advantage of deformation processing and friction stir welding (FSW). The aim is to create customized tailored manufactured parts. The cellular construction of foams makes this approach rather challenging as the cell walls are extremely thin and deform unpredictably especially in the presence of rotating and moving hard tool. In this paper, an integrated approach to overcome some of the above challenges is proposed. The initial density is modified by using simple deformation processes, in order to obtained the desired "crushed density", customized for the intended application. Then, the panels are joined to specially designed solid blocks by using FSW process with a proper set-up. Finally, the obtained specimens are evaluated for mechanical performance and the quality of the joint..

  5. Fragment Approach to Constrained Density Functional Theory Calculations using Daubechies Wavelets

    E-print Network

    Ratcliff, Laura E; Mohr, Stephan; Deutsch, Thierry

    2015-01-01

    In a recent paper we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions is optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e. without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical p...

  6. A hybrid approach to crowd density estimation using statistical leaning and texture classification

    NASA Astrophysics Data System (ADS)

    Li, Yin; Zhou, Bowen

    2013-12-01

    Crowd density estimation is a hot topic in computer vision community. Established algorithms for crowd density estimation mainly focus on moving crowds, employing background modeling to obtain crowd blobs. However, people's motion is not obvious in most occasions such as the waiting hall in the airport or the lobby in the railway station. Moreover, conventional algorithms for crowd density estimation cannot yield desirable results for all levels of crowding due to occlusion and clutter. We propose a hybrid method to address the aforementioned problems. First, statistical learning is introduced for background subtraction, which comprises a training phase and a test phase. The crowd images are grided into small blocks which denote foreground or background. Then HOG features are extracted and are fed into a binary SVM for each block. Hence, crowd blobs can be obtained by the classification results of the trained classifier. Second, the crowd images are treated as texture images. Therefore, the estimation problem can be formulated as texture classification. The density level can be derived according to the classification results. We validate the proposed algorithm on some real scenarios where the crowd motion is not so obvious. Experimental results demonstrate that our approach can obtain the foreground crowd blobs accurately and work well for different levels of crowding.

  7. A novel approach to acoustic liquid density measurements using a buffer rod based measuring cell.

    PubMed

    Bjørndal, Erlend; Frøysa, Kjell-Eivind; Engeseth, Svein-Atle

    2008-08-01

    A new method for measuring the pressure reflection coefficient in a buffer rod configuration is presented, together with experimental results for acoustic measurements of the liquid density, based on the measurement of the liquid's acoustic impedance. The method consists of using 2 buffers enclosing the liquid in a symmetrical arrangement with a transducer fixed to each buffer. One of the transducers is used in a pulse-echo mode while the other transducer operates as a receiver. The echo amplitudes leading to the pressure reflection coefficient as found by this method possess advantages such as reduced attenuation due to a shorter liquid transmission path and reduced interference, as compared with the ABC method. Measurements with distilled water and with special density calibration oil qualities have been performed using both the new method and the ABC method and are shown for the new method to give a density span within +/- 0.15% of the reference values. A comparison of the measured densities based on both a time-domain and a l(2)-norm frequency domain integration signal processing approach is given, along with a recommendation as to how the signal processing should be performed. PMID:18986922

  8. Chemical Dependency Treatment: Specialized Approaches for Deaf and Hard of Hearing Clients.

    ERIC Educational Resources Information Center

    Guthmann, Debra; Lybarger, Ron; Sandberg, Katherine A.

    This article addresses issues of chemical dependency treatment of individuals who are deaf or hard of hearing and reports on specialized treatment approaches developed by the Minnesota Chemical Dependency Program for Deaf and Hard of Hearing Individuals. This population faces special barriers to treatment and recovery including lack of recognition…

  9. Density-functional theory for polymer-carbon dioxide mixtures: a perturbed-chain SAFT approach.

    PubMed

    Xu, Xiaofei; Cristancho, Diego E; Costeux, Stéphane; Wang, Zhen-Gang

    2012-08-01

    We propose a density-functional theory (DFT) describing inhomogeneous polymer-carbon dioxide mixtures based on a perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS). The weight density functions from fundamental measure theory are used to extend the bulk excess Helmholtz free energy to the inhomogeneous case. The additional long-range dispersion contributions are included using a mean-field approach. We apply our DFT to the interfacial properties of polystyrene-CO(2) and poly(methyl methacrylate) CO(2) systems. Calculated values for both solubility and interfacial tension are in good agreement with experimental data. In comparison with our earlier DFT based on the Peng-Robinson-SAFT EOS, the current DFT produces quantitatively superior agreement with experimental data and is free of the unphysical behavior at high pressures (>35 MPa) in the earlier theory. PMID:22894381

  10. Density-functional theory for polymer-carbon dioxide mixtures: A perturbed-chain SAFT approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofei; Cristancho, Diego E.; Costeux, Stéphane; Wang, Zhen-Gang

    2012-08-01

    We propose a density-functional theory (DFT) describing inhomogeneous polymer-carbon dioxide mixtures based on a perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS). The weight density functions from fundamental measure theory are used to extend the bulk excess Helmholtz free energy to the inhomogeneous case. The additional long-range dispersion contributions are included using a mean-field approach. We apply our DFT to the interfacial properties of polystyrene-CO2 and poly(methyl methacrylate) CO2 systems. Calculated values for both solubility and interfacial tension are in good agreement with experimental data. In comparison with our earlier DFT based on the Peng-Robinson-SAFT EOS, the current DFT produces quantitatively superior agreement with experimental data and is free of the unphysical behavior at high pressures (>35 MPa) in the earlier theory.

  11. The Role of Density Dependence in Growth Patterns of Ceded Territory Walleye Populations of Northern Wisconsin: Effects of Changing Management Regimes

    Microsoft Academic Search

    Greg G. Sass; Steven W. Hewett; T. Douglas Beard Jr; Andrew H. Fayram; James F. Kitchell

    2004-01-01

    We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (L?), growth rate near t0 (?), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: Adult density explained only

  12. Exact approaches to charged particle motion in a time-dependent flux-driven ring

    Microsoft Academic Search

    Pi-Gang Luan; Chi-Shung Tang

    2005-01-01

    We consider a charged particle which is driven by a time-dependent flux threading a circular ring system. Various approaches including classical treatment, Fourier expansion method, time-evolution method, and Lewis-Riesenfeld method are used and compared to solve the time-dependent problem. By properly managing the boundary condition of the system, a time-dependent wave function of the charged particle can be obtained by

  13. Simple Methods To Reduce Charge-Transfer Contamination in Time-Dependent Density-Functional

    E-print Network

    Herbert, John

    to locate optically dark n* states. The extent of CT contamination is reduced substantially by introducing Society Published on Web 08/02/2007 #12;(but gradient-corrected) density functionals are employed. Hartree

  14. Density-dependent demographic responses of a semelparous plant to natural variation in seed rain

    E-print Network

    Campbell, Diane

    to assess how reproductive success affects vital rates of offspring. We previously reported for Ipomopsis aggregata that per-seed probability of germinating is insensitive to density of seeds sown into plots

  15. Density-dependent eects on tree survival in an old-growth Douglas r forest

    E-print Network

    He, Fangliang

    of the invading late-successional species western hemlock (Tsuga heterophylla) and western red cedar (Thuja plicata) on Vancouver Island, British Columbia, Canada, to test for intra- and interspeci®c density

  16. Pressure and Temperature-Dependent Density Change of Juices During Concentration

    Microsoft Academic Search

    M. A. Magerramov; A. I. Abdulagatov; N. D. Azizov; I. M. Abdulagatov

    2008-01-01

    Density of seven fruit juices (melon, plum, peach, black currants, cherry-plum, pear, and tangerine) have been measured at\\u000a temperatures from 283 to 403 K and at pressures from 0.1 to 10 MPa for the concentrations of soluble solids from 10.7 to 70°Brix.\\u000a Measurements were made with a hydrostatic weighing technique. The uncertainty of the density measurements was estimated to\\u000a be less than

  17. Density Dependence of Walleye Maturity and Fecundity in Big Crooked Lake, Wisconsin, 1997–2003

    Microsoft Academic Search

    Amy M. Schueller; Michael J. Hansen; Steven P. Newman; Clayton J. Edwards

    2005-01-01

    Density is an important factor regulating age at maturity and fecundity of fish populations, so we evaluated the effect of the population density of adult walleyes Sander vitreus on age at 50% maturity and length-specific fecundity in Big Crooked Lake, Wisconsin, during 1997–2003. Abundance of adult walleyes from mark–recapture surveys ranged from 2,046 fish (3 per acre) to 4,901 fish

  18. Polarization Dependence of the Spin-Density-Wave Excitations in Single-Domain Chromium

    SciTech Connect

    Boeni, P. [Labor fuer Neutronenstreuung, Villigen PSI (Switzerland); Sternlieb, B.J.; Shirane, G. [Brookhaven National Lab., Upton, NY (United States); Roessli, B.; Werner, S.A. [Institut Laue Langevin, Grenoble Cedex (France); Lorenzo, J.E. [Laboratoire de Crystallographie, CNRS, Grenoble (France)

    1997-12-31

    A polarised neutron scattering experiment has been performed on a single-Q, single domain sample of Cr in a magnetic field of 4 T in the transverse spin-density-wave phase. It is confirmed that the longitudinal fluctuations are enhanced for energy transfers E {lt} 8 meV similarly as in the longitudinal spin-density-wave phase. The spin wave modes with deltaS parallel and perpendicular to Q are isotropic within the E-range investigated.

  19. Quasilinear dependence of one- and two- electron densities in natural bond orbitals

    Microsoft Academic Search

    Padeleimon Karafiloglou

    1999-01-01

    We explore the possibility of formulating an explicit relation between one- and two-electron densities, which result from correlated wave functions. Based on a second quantized formalism, we derive the relationship P2;0(???;0)=2 P1;0(?;0)?1 (where P1;0 and P2;0 are one- and two-electron densities in ?), which holds under the condition that the two-hole probability in ? is negligible; this condition is satisfied

  20. Determining the density dependence of the nuclear symmetry energy using heavy-ion reactions

    E-print Network

    Lie-Wen Chen; Che Ming Ko; Bao-An Li; Gao-Chan Yong

    2007-11-12

    We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.

  1. Long-term density-dependent changes in habitat selection in red deer (Cervus elaphus).

    PubMed

    Pérez-Barbería, F J; Hooper, R J; Gordon, I J

    2013-11-01

    Understanding how habitat selection changes with population density is a key concept in population regulation, community composition and managing impacts on biodiversity and ecosystem services. At low density, it is expected that individuals select habitats in terms of their preference, but as population density increases, the availability of resources per individual declines on preferred habitats, leading to competition which forces some individuals to exploit less preferred habitats. Using spatial information of Scottish red deer (Cervus elaphus) winter counts, carried out in 110 areas across Scotland between 1961 and 2004 (a total of 1,206,495 deer observations), we showed how winter habitat niche breadth in red deer has widened with increasing population density. Heather moorland and montane habitats were most and least preferred for deer, respectively. Increasing density favoured the selection of grassland, to the detriment of the selection of heather moorland. The selection of heather and grassland decreased when temperature increased, while the selection of montane and peatland habitats increased. These findings are important for understanding how habitat use, density and population are likely to be affected by weather, and allow us to predict habitat impacts by large mammal herbivory and climate. PMID:23719900

  2. Practical approaches to low density lipoprotein oxidation: whys, wherefores and pitfalls.

    PubMed

    Rice-Evans, C; Leake, D; Bruckdorfer, K R; Diplock, A T

    1996-10-01

    The purpose of this review is to bring together the different approaches for studying the oxidation of low density lipoproteins and try to identify some critical factors which will permit greater comparability between laboratories. These issues are discussed both in terms of the variety of exogenous mediators of oxidation applied (transition metal ions, haem proteins, azo initiators, peroxynitrite, cells etc.) and their raisons d'être, as well as the methodologies (formation of conjugated dienes, hydroperoxides, decomposition products of lipid peroxidation, altered surface charge, macrophage uptake) applicable to the different stages of the oxidation and the factors underlying their accurate execution and interpretation. PMID:8889494

  3. Linear-response and real-time time-dependent density functional theory studies of core-level near-edge x-ray absorption

    SciTech Connect

    Lopata, Kenneth A.; Van Kuiken, Benjamin E.; Khalil, Munira; Govind, Niranjan

    2012-09-03

    We discuss our implementation and application of time-dependent density functional theory (TDDFT) to core-level near-edge absorption spectroscopy, using both linear-response (LR) and real-time (RT) approaches. We briefly describe our restricted window TDDFT (REWTDDFT) approach for core excitations which has also been reported by others groups. This is followed by a detailed discussion of real-time TDDFT techniques tailored to core excitations, including obtaining spectral information through delta-function excitation, post-processing time-dependent signals, and resonant excitation through quasi-monochromatic excitation. We present results for the oxygen K-edge of water and carbon dioxide; the carbon K-edge of carbon dioxide; the ruthenium L3-edge for the hexaamminerutheium(III) ion, including scalar relativistic corrections via the zeroth order regular approximation (ZORA); and the carbon and fluorine K-edges for a series of fluorobenzenes. In all cases, the calculated spectra are found to be in good agreement with experiment, requiring only a uniform shift on the order of a few percent. Real-time TDDFT visualization of excited state charge densities are used to visually examine the nature of each excitation, which gives insight into the effects of atoms bound to the absorbing center.

  4. Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory

    SciTech Connect

    Serra, L. [Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca (Spain)] [Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca (Spain); Rubio, A. [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid (Spain)] [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid (Spain)

    1997-02-01

    We present a generalized time-dependent density-functional theory (TDDFT) for the optical response of metal clusters where both core polarization and valence responses are treated microscopically. It is shown that the valence electrons response is described by an effective external field and residual interaction that are those of the standard TDDFT modified by the self-consistent contributions of the array of polarizable ionic cores. As an application the equations are solved within the adiabatic local-density approximation for silver clusters, where core 4d electrons greatly influence the optical response. The experimental data are well reproduced by the present theory. {copyright} {ital 1997} {ital The American Physical Society}

  5. Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles.

    PubMed

    Haid, Sibylle; Pietschmann, Thomas; Pécheur, Eve-Isabelle

    2009-06-26

    Hepatitis C virus (HCV) is an enveloped, positive strand RNA virus of about 9.6 kb. Like all enveloped viruses, the HCV membrane fuses with the host cell membrane during the entry process and thereby releases the genome into the cytoplasm, initiating the viral replication cycle. To investigate the features of HCV membrane fusion, we developed an in vitro fusion assay using cell culture-produced HCV and fluorescently labeled liposomes. With this model we could show that HCV-mediated fusion can be triggered in a receptor-independent but pH-dependent manner and that fusion of the HCV particles with liposomes is dependent on the viral dose and on the lipid composition of the target membranes. In addition CBH-5, an HCV E2-specific antibody, inhibited fusion in a dose-dependent manner. Interestingly, point mutations in E2, known to abrogate HCV glycoprotein-mediated fusion in a cell-based assay, altered or even abolished fusion in the liposome-based assay. When assaying the fusion properties of HCV particles with different buoyant density, we noted higher fusogenicity of particles with lower density. This could be attributable to inherently different properties of low density particles, to association of these particles with factors stimulating fusion, or to co-flotation of factors enhancing fusion activity in trans. Taken together, these data show the important role of lipids of both the viral and target membranes in HCV-mediated fusion, point to a crucial role played by the E2 glycoprotein in the process of HCV fusion, and reveal an important behavior of HCV of different densities with regard to fusion. PMID:19411248

  6. EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF CENTRAL DENSITY

    SciTech Connect

    Krueger, Brendan K.; Jackson, Aaron P.; Calder, Alan C. [Department of Physics and Astronomy, State University of New York-Stony Brook, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Brown, Edward F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Timmes, Francis X., E-mail: brendan.krueger@stonybrook.edu [Joint Institute for Nuclear Astrophysics, Notre Dame, IN (United States)

    2012-10-01

    We present a study exploring a systematic effect on the brightness of Type Ia supernovae using numerical models that assume the single-degenerate paradigm. Our investigation varied the central density of the progenitor white dwarf at flame ignition, and considered its impact on the explosion yield, particularly the production and distribution of radioactive {sup 56}Ni, which powers the light curve. We performed a suite of two-dimensional simulations with randomized initial conditions, allowing us to characterize the statistical trends that we present. The simulations indicate that the production of Fe-group material is statistically independent of progenitor central density, but the mass of stable Fe-group isotopes is tightly correlated with central density, with a decrease in the production of {sup 56}Ni at higher central densities. These results imply that progenitors with higher central densities produce dimmer events. We provide details of the post-explosion distribution of {sup 56}Ni in the models, including the lack of a consistent centrally located deficit of {sup 56}Ni, which may be compared to observed remnants. By performing a self-consistent extrapolation of our model yields and considering the main-sequence lifetime of the progenitor star and the elapsed time between the formation of the white dwarf and the onset of accretion, we develop a brightness-age relation that improves our prediction of the expected trend for single degenerates and we compare this relation with observations.

  7. Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus.

    PubMed

    Muturi, Ephantus J; Blackshear, Millon; Montgomery, Allison

    2012-06-01

    Mosquito larvae experience multiple environmental stressors that may modify how subsequent adults interact with pathogens. We evaluated the effect of larval rearing temperature and intraspecific larval competition on adult mosquito immunity and vector competence for Sindbis virus (SINV). Aedes aegypti larvae were reared at two intraspecific densities (150 and 300 larvae) at 20° C and 30° C and the adults were fed artificially on citrated bovine blood containing 10(5) plaque forming units of SINV. Expression of cecropin, defensin, and transferrin was also evaluated in one- and five-day-old female adults. There was a direct relationship between larval density and SINV infection and dissemination rates at low temperature (20° C) and an inverse relationship between larval density and SINV infection rate at high temperature (30° C). Cecropin was only expressed in five-day-old adults that were raised at high temperature as larvae and was 20-fold over-expressed at low compared to high density treatments. Defensin and transferrin were under-expressed in one-day-old adults and over-expressed in five-day-old adults in all competition-temperature combinations relative to low density treatments at 20° C. These findings suggest that interaction between biotic and abiotic conditions of the larval environment may alter adult mosquito immunity resulting in enhanced vector competence for arboviruses. PMID:22548549

  8. Density-dependent selection closes an eco-evolutionary feedback loop in the stick insect Timema cristinae.

    PubMed

    Farkas, Timothy E; Montejo-Kovacevich, Gabriela

    2014-12-01

    Empirical demonstrations of feedbacks between ecology and evolution are rare. Here, we used a field experiment to test the hypothesis that avian predators impose density-dependent selection (DDS) on Timema cristinae stick insects. We transplanted wild-caught T. cristinae to wild bushes at 50 : 50 cryptic : conspicuous morph ratio and manipulated density by transplanting either 24 or 48 individuals. The frequency of the conspicuous morph was reduced by 73% in the low-density treatment, but only by 50% in the high-density treatment, supporting a hypothesis of negative DDS. Coupled with previous studies on T. cristinae, which demonstrate that maladaptive gene flow reduces population density, we support an eco-evolutionary feedback loop in this system. Furthermore, our results support the hypothesis that predator satiation is the mechanism driving DDS. We found no effects of T. cristinae density on the abundance or species richness of other arthropods. Eco-evolutionary feedbacks, driven by processes like DDS, can have implications for adaptive divergence and speciation. PMID:25505057

  9. Time dependent human hip joint lubrication for periodic motion with stochastic asymmetric density function.

    PubMed

    Wierzcholski, Krzysztof

    2014-01-01

    The present paper is concerned with the calculation of the human hip joint parameters for periodic, stochastic unsteady, motion with asymmetric probability density function for gap height. The asymmetric density function indicates that the stochastic probabilities of gap height decreasing are different in comparison with the probabilities of the gap height increasing. The models of asymmetric density functions are considered on the grounds of experimental observations. Some methods are proposed for calculation of pressure distributions and load carrying capacities for unsteady stochastic conditions in a super thin layer of biological synovial fluid inside the slide biobearing gap limited by a spherical bone acetabulum. Numerical calculations are performed in Mathcad 12 Professional Program, by using the method of finite differences. This method assures stability of numerical solutions of partial differential equations and gives proper values of pressure and load carrying capacity forces occurring in human hip joints. PMID:24707824

  10. Temperature and density dependence of properties of nuclear matter deduced from heavy ion collisions

    SciTech Connect

    Shlomo, Shalom [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States)

    2010-11-24

    Heavy-ion collision experiments are often employed to determine properties of nuclear matter under extreme conditions of temperature and density. This has been the subject of many investigations in recent decades, since understanding the equation of state of hot nuclear matter is very important in the study supernovae, neutron stars and nuclei. We present a short and limited review of the theoretical and experimental status of determining the temperature and density of the disassembling hot nucleus from ratios of the yields of emitted fragments.

  11. Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.; Lomakina, Ekaterina I.

    2009-08-01

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6±0.2 kcal mol-1. In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  12. Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsaecker functional

    SciTech Connect

    Garcia-Aldea, David; Alvarellos, J. E. [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia (UNED), Apartado 60.14, E-28080 Madrid (Spain)

    2008-02-15

    We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved.

  13. Temperature Dependence of Density, Viscosity and Electrical Conductivity for Hg-Based II-VI Semiconductor Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.

  14. Rich Global Dynamics in a Prey-Predator Model with Allee Effect and Density Dependent Death Rate of Predator

    NASA Astrophysics Data System (ADS)

    Sen, Moitri; Banerjee, Malay

    In this work we have considered a prey-predator model with strong Allee effect in the prey growth function, Holling type-II functional response and density dependent death rate for predators. It presents a comprehensive study of the complete global dynamics for the considered system. Especially to see the effect of the density dependent death rate of predator on the system behavior, we have presented the two parametric bifurcation diagrams taking it as one of the bifurcation parameters. In course of that we have explored all possible local and global bifurcations that the system could undergo, namely the existence of transcritical bifurcation, saddle node bifurcation, cusp bifurcation, Hopf-bifurcation, Bogdanov-Takens bifurcation and Bautin bifurcation respectively.

  15. On non-Gaussianity and dependence in financial time series: a nonextensive approach

    Microsoft Academic Search

    S. M. Duarte Queirós

    2005-01-01

    In this article a probability density function and dependence degree analysis of financial time series, namely the Dow Jones and NYSE, is presented. The present study, which aims to give theoretical support to some stylized empirical evidence, is performed under the present non-extensive framework for which the probability distributions that optimize its fundamental information measure form, , are also the

  16. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    PubMed

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone. PMID:23075610

  17. Improved quark mass density- dependent model with quark-sigma meson and quark-omega meson couplings

    E-print Network

    Chen Wu; Wei-Liang Qian; Ru-Keng Su

    2007-06-10

    An improved quark mass density- dependent model with the non-linear scalar sigma field and the $\\omega$-meson field is presented. We show that the present model can describe saturation properties, the equation of state, the compressibility and the effective nuclear mass of nuclear matter under mean field approximation successfully. The comparison of the present model and the quark-meson coupling model is addressed.

  18. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Tran, P.X.

    2008-09-22

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed

  19. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  20. Biochemical and Immunochemical Evidence That the ``Major Postsynaptic Density Protein'' is a Subunit of a Calmodulin-Dependent Protein Kinase

    Microsoft Academic Search

    Mary B. Kennedy; Mark K. Bennett; Ngozi E. Erondu

    1983-01-01

    By three criteria, two biochemical and one immunochemical, the major postsynaptic density protein (mPSDp) is indistinguishable from the 50-kilodalton (kDa) alpha subunit of a brain calmodulin-dependent protein kinase. First, the two proteins comigrate on NaDodSO4\\/polyacrylamide gels. Second, iodinated tryptic peptide maps of the two are identical. Finally, a monoclonal antibody (6G9) that was raised against the protein kinase binds on