Science.gov

Sample records for density magnetic resonance

  1. Magnetic Resonance Current Density Imaging of Chemical Processes and Reactions

    NASA Astrophysics Data System (ADS)

    Beravs, Katarina; Demš Ar, Alojz; Demsar, Franci

    1999-03-01

    Electric current density imaging was used to image conductivity changes that occur as a chemical process or reaction progresses. Feasibility was assessed in two models representing the dissolving of an ionic solid and the formation of an insoluble precipitate. In both models, temporal and spatial changes in ionic concentrations were obtained on current density images. As expected, the images showed significant signal enhancement along the ionization/dissociation sites.

  2. 3D Mapping of Polymer Crosslink Density with Magnetic Resonance Imaging

    SciTech Connect

    Herberg, J L; Gjersing, E L; Chinn, S C; Maxwell, R S

    2005-03-11

    Magnetic Resonance Imaging (MRI) techniques have been used to detect areas of low crosslink density in damaged silicone parts in an effort to develop a QA/QC protocol to be used in the development of new parts. Model materials of varying crosslink density first demonstrated the applicability of the method. Analysis of damaged pads has been shown to be clearly distinguishable by MRI. It is our belief that both the T{sub 2} weighted SPI NMR and the T{sub 2} weighted water/fat suppression MRI experiments can be used to map out the location of different cross-linking densities, ultimately determining the quality or homogeneity in polymers.

  3. Optically detected magnetic resonance of high-density ensemble of NV‑ centers in diamond

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Y.; Morishita, H.; Shimooka, T.; Tashima, T.; Kakuyanagi, K.; Semba, K.; Munro, W. J.; Yamaguchi, H.; Mizuochi, N.; Saito, S.

    2016-07-01

    Optically detected magnetic resonance (ODMR) is a way to characterize the ensemble of NV‑centers. Recently, a remarkably sharp dip was observed in the ODMR with a high-density ensemble of NV centers. The model (Zhu et al 2014 Nat. Commun. 5 3424) indicated that such a dip was due to the spin-1 properties of the NV‑ centers. Here, we present many more details of the analysis to show how this model can be applied to investigate the properties of the NV‑ centers. By using our model, we have reproduced the ODMR with and without applied external magnetic fields. Additionally, we investigate how the ODMR is affected by the typical parameters of the ensemble NV‑ centers such as strain distributions, inhomogeneous magnetic fields, and homogeneous broadening width. Our model provides a way to characterize the NV‑ center from the ODMR, which would be crucial to realize diamond-based quantum information processing.

  4. Measurement of electrical current density distribution in a simple head phantom with magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gamba, Humberto R.; Bayford, Richard; Holder, David

    1999-01-01

    Knowledge of the influence of the human skull on the electrical current (d.c.) distribution within the brain tissue could prove useful in measuring impedance changes inside the human head. These changes can be related to physiological functions. The studies presented in this paper examine the current density distribution in a simple phantom consisting of a saline filled tank (to simulate scalp and brain) and a ring made of dental grade plaster of Paris (to simulate the human skull). Images of the distribution of the d.c. density of the phantom with and without the plaster of Paris ring were produced using a magnetic resonance imaging technique. These images indicate that the skull is likely to produce a more uniform d.c. density within the brain.

  5. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    PubMed

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. PMID:26372719

  6. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    SciTech Connect

    SivaRanjan, Uppala; Ramachandran, Ramesh

    2014-02-07

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.

  7. Implementation of propeller, spiral, and variable density spiral methods for dynamic contrast enhanced magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahunbay, Ergun Emin

    2001-09-01

    Previous studies showed that dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a valuable tool for the prognosis and diagnosis of cancer, however it requires a tradeoff between temporal and spatial resolution. The ultimate goal of this dissertation is to compare the temporal performance of three methods (spiral, propeller and variable density spiral), given a certain spatial resolution requirement, for the DCE-MRI. These methods show distinction from the conventional MRI methods in their k-space coverage. Propeller and Variable Density Spiral methods use an approach of oversampling the center of k-space, updating the central 13-20% of the radial k-space more frequently than the peripheries. The reason for this is that most of the image data resides in the central part of k-space. Spiral method, on the other hand approaches the problem by updating the overall k-space as fast as possible, faster than the conventional methods. Comparison is performed mainly by computer simulations, where ground truth is known. In addition to computer simulations, these three methods are compared in- vivo, by tracking the DCE-MRI signal amplitude variation with time for each method on a healthy volunteer's liver. One limitation of the spiral and variable density spiral imaging methods is the effect of off-resonance frequencies on image quality. For these spiral based methods, long readout times are desired to have short overall imaging times and high temporal resolution. However, for long readout times, off resonance frequencies blur the images and reduce the spatial resolution. In this dissertation a new method is proposed which is less complicated than most other methods, and reaches an acceptable level of accuracy with less amount of CPU time compared to previously effective methods.

  8. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    NASA Astrophysics Data System (ADS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed.

  9. Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density

    PubMed Central

    Wilhelm, Michael J.; Ong, Henry H.; Tsai, Ping-Huei; Hackney, David B.; Wehrli, Felix W.

    2012-01-01

    Magnetic resonance imaging has previously demonstrated its potential for indirectly mapping myelin density, either by relaxometric detection of myelin water or magnetization transfer. Here, we investigated whether myelin can be detected and possibly quantified directly. We identified the spectrum of myelin in the spinal cord in situ as well as in myelin lipids extracted via a sucrose gradient method, and investigated its spectral properties. High-resolution solution NMR spectroscopy showed the extract composition to be in agreement with myelin’s known chemical make-up. The 400-MHz 1H spectrum of the myelin extract, at 20 °C (room temperature) and 37 °C, consists of a narrow water resonance superimposed on a broad envelope shifted ∼3.5 ppm upfield, suggestive of long-chain methylene protons. Superimposed on this signal are narrow components resulting from functional groups matching the chemical shifts of the constituents making up myelin lipids. The spectrum could be modeled as a sum of super-Lorentzians with a T2* distribution covering a wide range of values (0.008–26 ms). Overall, there was a high degree of similarity between the spectral properties of extracted myelin lipids and those found in neural tissue. The normalized difference spectrum had the hallmarks of membrane proteins, not present in the myelin extract. Using 3D radially ramp-sampled proton MRI, with a combination of adiabatic inversion and echo subtraction, the feasibility of direct myelin imaging in situ is demonstrated. Last, the integrated signal from myelin suspensions is shown, both spectroscopically and by imaging, to scale with concentration, suggesting the potential for quantitative determination of myelin density. PMID:22628562

  10. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health. PMID:26831342

  11. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  12. Relationship between Bone Mineral Density and Spinal Muscle Area in Magnetic Resonance Imaging

    PubMed Central

    Lee, Dae-Young; Yang, Jae-Ho; Ki, Chul-Hyun; Ko, Min-Seok; Suk, Kyung-Soo; Kim, Hak-Sun; Lee, Hwan-Mo

    2015-01-01

    Background Bone mineral density (BMD) is known to have a positive correlation with lean body mass. Several studies have also reported the positive correlation between muscle power and BMD. From this point of view, we hypothesized BMD of lumbar spine to have a positive correlation with muscle mass. Methods Seventy-nine female patients aged between 60 and 75 years old and who underwent magnetic resonance imaging (MRI) and BMD studies were included. Muscle mass in spine MRI was defined by the sum of the average muscle area of three axial images for each disc level. Lumbosacral muscle is the sum of paraspinal muscle and psoas muscle. Results In correlation analysis, paraspinal muscle mass showed positive correlation with BMD of lumbar spine. Lumbosacral muscle mass showed positive correlation with BMD of trochanteric area of the femur. However, BMD of other area showed no significant correlation with muscle mass. Conclusions Therefore, postmenopausal women older than 60 years with a well developed spine muscle mass, have a high BMD. PMID:26713311

  13. Density functional theory computation of Nuclear Magnetic Resonance parameters in light and heavy nuclei

    NASA Astrophysics Data System (ADS)

    Sutter, Kiplangat

    This thesis illustrates the utilization of Density functional theory (DFT) in calculations of gas and solution phase Nuclear Magnetic Resonance (NMR) properties of light and heavy nuclei. Computing NMR properties is still a challenge and there are many unknown factors that are still being explored. For instance, influence of hydrogen-bonding; thermal motion; vibration; rotation and solvent effects. In one of the theoretical studies of 195Pt NMR chemical shift in cisplatin and its derivatives illustrated in Chapter 2 and 3 of this thesis. The importance of representing explicit solvent molecules explicitly around the Pt center in cisplatin complexes was outlined. In the same complexes, solvent effect contributed about half of the J(Pt-N) coupling constant. Indicating the significance of considering the surrounding solvent molecules in elucidating the NMR measurements of cisplatin binding to DNA. In chapter 4, we explore the Spin-Orbit (SO) effects on the 29Si and 13C chemical shifts induced by surrounding metal and ligands. The unusual Ni, Pd, Pt trends in SO effects to the 29Si in metallasilatrane complexes X-Si-(mu-mt)4-M-Y was interpreted based on electronic and relativistic effects rather than by structural differences between the complexes. In addition, we develop a non-linear model for predicting NMR SO effects in a series of organics bonded to heavy nuclei halides. In chapter 5, we extend the idea of "Chemist's orbitals" LMO analysis to the quantum chemical proton NMR computation of systems with internal resonance-assisted hydrogen bonds. Consequently, we explicitly link the relationship between the NMR parameters related to H-bonded systems and intuitive picture of a chemical bond from quantum calculations. The analysis shows how NMR signatures characteristic of H-bond can be explained by local bonding and electron delocalization concepts. One shortcoming of some of the anti-cancer agents like cisplatin is that they are toxic and researchers are looking for

  14. Resonant X-ray magnetic scattering studies of the TmNi 2B 2C spin density wave

    NASA Astrophysics Data System (ADS)

    Mannix, Danny; Thompson, Paul; Brown, Simon; Bouchenoire, Laurence; Canfield, Paul

    2004-11-01

    We report on polarisation resolved, resonant X-ray magnetic scattering (RXMS) studies of the spin density wave (SDW) formed in the TmNi 2B 2C superconductor. From this high wave-vector resolution investigation, we find the incommensurate magnetic SDW propagation vector to be ( 0±τ0±τ0) with τ=0.096 rlu, slightly larger than the value previously deduced from magnetic neutron studies ( τ=0.093 rlu). The widths of the SDW peaks at 1 K are consistent with long-range magnetic order and we have deduced a magnetic correlation length of ∼1200 Å. When the incident photons are tuned to the Tm L 3 absorption edge, the RXMS energy response consists of a double peak feature, arising from both dipole (E1) transitions, probing the 5d conduction band polarisation, and quadrupole (E2) transitions, probing the Tm 4f magnetic moments. The RXMS wave-vector dependences of the (0± τ 0± τ L) SDW satellites are consistent with the transverse spin-density wave structure, with moments orientated along the crystallographic c-axis, originally proposed from neutron-scattering measurements. Our RXMS data are also in good agreement with the magnetic neutron-scattering response for the thermal evolution of the magnetic moments down to 1 K and in deducing a Nèel temperature of T=1.5 K. However, the RXMS probe reveals a small shift of the magnetic propagation vector of the order 3×10 -3 rlu along the (1 1 0) direction, on decreasing temperature below TN. Using very high-resolution X-ray studies with a conventional Si(1 1 1) analyser, no change in width or position is found below TN or Tc. We have also not observed any charge modulation peaks at 2τ, indicating that the SDW does not couple to the lattice.

  15. Magnetic-field-induced density of states in Mg B2 : Spin susceptibility measured by conduction-electron spin resonance

    NASA Astrophysics Data System (ADS)

    Simon, F.; Jánossy, A.; Fehér, T.; Murányi, F.; Garaj, S.; Forró, L.; Petrovic, C.; Bud'Ko, S.; Ribeiro, R. A.; Canfield, P. C.

    2005-07-01

    The magnetic-field dependence of the electron spin susceptibility χs was measured in the superconducting state of high-purity MgB2 fine powders from the intensity of the conduction-electron spin resonance at 3.8, 9.4, and 35GHz . The measurements confirm that a large part of the density of states is restored at low temperatures at fields below 1T in qualitative agreement with the closing of the π band gaps in the two-band model. However, the increase of χs with field and temperature is larger than expected from current superconductor models of MgB2 .

  16. Cyclotron-resonance transmission through potassium in a perpendicular magnetic field: Effects of the charge-density wave

    NASA Astrophysics Data System (ADS)

    Park, Mi-Ae; Overhauser, A. W.

    1997-01-01

    Microwave transmission through potassium by Dunifer, Sambles, and Mace [J. Phys. Condens. Matter 1, 875 (1989)] in a perpendicular magnetic field shows five signals. They are Gantmakher-Kaner (GK) oscillations, conduction-electron-spin resonance, high-frequency oscillations, cyclotron resonance, and cyclotron-resonance subharmonics. Only the spin resonance has been successfully explained using a free-electron model. However, such a model predicts GK oscillations which are too large by several orders of magnitude. Lacueva and Overhauser [Phys. Rev. B 48, 16t935 (1993)] have shown that charge-density-wave (CDW) energy gaps which cut through the Fermi surface reduce the GK signal. CDW gaps also create a small Fermi-surface cylinder. The high-frequency oscillations were shown to result from Landau-level quantization in the cylinder. Recently we found that the anomalous microwave surface resistance, observed by Grimes and Kip [Phys. Rev. 132, 1991 (1963)], can be explained only if the cylinder axis is tilted ~45° with respect to the [110] crystal direction perpendicular to the surface. (Such a tilt was predicted by Giuliani and Overhauser [Phys. Rev. B 20, 1328 (1979)].) In this study we show that oscillatory motions, parallel to the field, of electrons in the tilted cylinder cause the cyclotron-resonance transmission. This signal and its subharmonics would be completely absent without the tilt. Consequently, four of the five transmission signals require a CDW broken symmetry.

  17. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  18. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  19. Volumetric breast density evaluation by ultrasound tomography and magnetic resonance imaging: a preliminary comparative study

    NASA Astrophysics Data System (ADS)

    Myc, Lukasz; Duric, Neb; Littrup, Peter; Li, Cuiping; Ranger, Bryan; Lupinacci, Jessica; Schmidt, Steven; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    Since a 1976 study by Wolfe, high breast density has gained recognition as a factor strongly correlating with an increased incidence of breast cancer. These observations have led to mammographic density being designated a "risk factor" for breast cancer. Clinically, the exclusive reliance on mammography for breast density measurement has forestalled the inclusion of breast density into statistical risk models. This exclusion has in large part been due to the ionizing radiation associated with the method. Additionally, the use of mammography as valid tool for measuring a three dimensional characteristic (breast density) has been criticized for its prima facie incongruity. These shortfalls have prompted MRI studies of breast density as an alternative three-dimensional method of assessing breast density. Although, MRI is safe and can be used to measure volumetric density, its cost has prohibited its use in screening. Here, we report that sound speed measurements using a prototype ultrasound tomography device have potential for use as surrogates for breast density measurement. Accordingly, we report a strong positive linear correlation between volume-averaged sound speed of the breast and percent glandular tissue volume as assessed by MR.

  20. Current density and state density in diluted magnetic semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Pérez Merchancano, S. T.; Paredes Gutiérrez, H.; Zuñiga, J. A.

    2016-02-01

    We study in this paper the spin-polarized current density components in diluted magnetic semiconductor tunnelling diodes with different sample geometries. We calculate the resonant JxV and the density of states. The differential conductance curves are analyzed as functions of the applied voltage and the magnetic potential strength induced by the magnetic ions.

  1. A multi-nuclear magnetic resonance and density functional theory investigation of epitaxially grown InGaP2.

    PubMed

    Knijn, P J; van Bentum, P J M; Fang, C M; Bauhuis, G J; de Wijs, G A; Kentgens, A P M

    2016-08-01

    In this paper the short and long range order in In0.483Ga0.517P thin films is investigated by solid-state Nuclear Magnetic Resonance (NMR) spectroscopy. To this end two samples were grown on a GaAs substrate by metal-organic vapor phase epitaxy at two different growth-pressures. From band gap energy measurements, CuPt long range order parameters of SCuPt = 0.22 and 0.39 were deduced, respectively. In the (31)P spectrum five resonances are observed corresponding to the five possible P(GanIn4-n), n = 0-4, coordinations whose relative intensities correspond to the order in the material, but the intensity variations for order parameters between 0 and 0.5 are minimal. (69)Ga, (71)Ga and (115)In (MQ)MAS spectra were acquired to analyze the quadrupolar and chemical shift distributions related to the (dis)order in these materials in more detail. All these spectra clearly reflect the disorder in the sample and do not show the presence of highly ordered domains. The difference in the order parameter in the sample is not clearly reflected in the spectra. (31)P chemical shifts were calculated using Density Functional Theory. The experimentally observed shifts are well reproduced with a simple random model of the disorder, thus confirming the assignment of the resonances. The (31)P chemical shifts are very sensitive to changes in the lattice parameter and chemical surroundings. These effects nearly compensate and explain why the (31)P chemical shifts in pure InP and GaP are nearly identical whereas a large difference would be expected based on the observed shift difference for the P[In4] and P[Ga4] coordinations in In0.483Ga0.517P. PMID:27424548

  2. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    SciTech Connect

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-12-15

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson'sr, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson'sr increased from 0.86 to 0.92 with the bias field correction

  3. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations

    NASA Astrophysics Data System (ADS)

    Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo

    2013-08-01

    One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.

  4. Magnetic Resonance Q Mapping Reveals a Decrease in Microvessel Density in the arcAβ Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Ielacqua, Giovanna D.; Schlegel, Felix; Füchtemeier, Martina; Xandry, Jael; Rudin, Markus; Klohs, Jan

    2016-01-01

    Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAβ mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates ΔR2* obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV(ΔR2*)]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV(ΔR2*), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV(ΔR2*) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAβ mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a reduction of microvessel density in the old arcAβ mice

  5. Magnetic resonance sees lesions of multiple sclerosis

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    The value of nuclear magnetic resonance imaging in the diagnosis and quantitation of the progression of multiple sclerosis is discussed. Magnetic resonance imaging generates images that reflect differential density and velocity of hydrogen nuclei between cerebral gray and white matter, as well as between white matter and pathological lesions of the disease.

  6. Concentration of metabolites from low-density planktonic communities for environmental metabolomics using nuclear magnetic resonance spectroscopy.

    PubMed

    Everroad, R Craig; Yoshida, Seiji; Tsuboi, Yuuri; Date, Yasuhiro; Kikuchi, Jun; Moriya, Shigeharu

    2012-01-01

    Environmental metabolomics is an emerging field that is promoting new understanding in how organisms respond to and interact with the environment and each other at the biochemical level. Nuclear magnetic resonance (NMR) spectroscopy is one of several technologies, including gas chromatography-mass spectrometry (GC-MS), with considerable promise for such studies. Advantages of NMR are that it is suitable for untargeted analyses, provides structural information and spectra can be queried in quantitative and statistical manners against recently available databases of individual metabolite spectra. In addition, NMR spectral data can be combined with data from other omics levels (e.g. transcriptomics, genomics) to provide a more comprehensive understanding of the physiological responses of taxa to each other and the environment. However, NMR is less sensitive than other metabolomic techniques, making it difficult to apply to natural microbial systems where sample populations can be low-density and metabolite concentrations low compared to metabolites from well-defined and readily extractable sources such as whole tissues, biofluids or cell-cultures. Consequently, the few direct environmental metabolomic studies of microbes performed to date have been limited to culture-based or easily defined high-density ecosystems such as host-symbiont systems, constructed co-cultures or manipulations of the gut environment where stable isotope labeling can be additionally used to enhance NMR signals. Methods that facilitate the concentration and collection of environmental metabolites at concentrations suitable for NMR are lacking. Since recent attention has been given to the environmental metabolomics of organisms within the aquatic environment, where much of the energy and material flow is mediated by the planktonic community, we have developed a method for the concentration and extraction of whole-community metabolites from planktonic microbial systems by filtration. Commercially

  7. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  8. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  9. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  10. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  11. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  12. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution. PMID:27378060

  13. [Magnetic resonance, an introduction].

    PubMed

    Cabrera Rueda, D J; Fernández Herrerías, G

    2000-09-01

    What would you explain to a patient if he/she had to undergo a magnetic resonance imagery session? Do you know if a person wearing a pacemaker can undergo an MRI? These and many other questions are answered in the following article since magnetic resonance imagery is a very useful diagnostic medium; however, it is one which not everyone has been able to get to know and use. The authors shed light on this diagnostic technique for nurses starting with its physical foundations; since knowing these aids professionals to correctly plan our treatments and improves the attention provided to patients who undergo this test. The authors also list the specific components in this device, the possible biological effects, the detractions and some basic recommendations. PMID:11111673

  14. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  15. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  16. Rotation dependence of a phase delay between plasma edge electron density and temperature fields due to a fast rotating, resonant magnetic perturbation field

    SciTech Connect

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Unterberg, B.; Abdullaev, S. S.; Clever, M.; Coenen, J. W.; Kruezi, U.; Schega, D.; Samm, U.; Jakubowski, M. W.

    2010-06-15

    Measurements of the plasma edge electron density n{sub e} and temperature T{sub e} fields during application of a fast rotating, resonant magnetic perturbation (RMP) field show a characteristic modulation of both, n{sub e} and T{sub e} coherent to the rotation frequency of the RMP field. A phase delay PHI between the n{sub e}(t) and T{sub e}(t) waveforms is observed and it is demonstrated that this phase delay PHI is a function of the radius with PHI(r) depending on the relative rotation of the RMP field and the toroidal plasma rotation. This provides for the first time direct experimental evidence for a rotation dependent damping of the external RMP field in the edge layer of a resistive high-temperature plasma which breaks down at low rotation and high resonant field amplitudes.

  17. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  18. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  19. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  20. Magnetic resonance of slotted circular cylinder resonators

    NASA Astrophysics Data System (ADS)

    Du, Junjie; Liu, Shiyang; Lin, Zhifang; Chui, S. T.

    2008-07-01

    By a rigorous full-wave approach, a systemic study is made on the magnetic resonance of slotted circular cylinder resonators (SCCRs) made of a perfect conductor for the lossless case. This is a two-dimensional analog of the split-ring resonator and may serve as an alternative type of essential constituent of electromagnetic metamaterials. It is found that the resonance frequency can be modulated by changing the geometrical parameters and the dielectrics filling in the cavity and the slot. An approximate empirical expression is presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system. Finally, it is demonstrated that the SCCR structure can be miniaturized to less than 1/150 resonant wavelength in size with the dielectrics available currently.

  1. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael

    2011-05-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is currently in phase 4 of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. The micro-NMRG technology is pushing the boundaries of size, weight, power, and performance allowing new small platform applications of navigation grade Inertial Navigation System (INS) technology. Information on the historical development of the technology, basics of operation, task performance goals, application opportunities, and a phase 2 sample of earth rate measurement data will be presented. Funding Provided by the Defense Advanced Research Projects Agency (DARPA)

  2. Cranial magnetic resonance imaging

    SciTech Connect

    Elster, A.D.

    1988-01-01

    Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes.

  3. Magnetic Resonance Imaging Duodenoscope.

    PubMed

    Syms, Richard R A; Young, Ian R; Wadsworth, Christopher A; Taylor-Robinson, Simon D; Rea, Marc

    2013-12-01

    A side-viewing duodenoscope capable of both optical and magnetic resonance imaging (MRI) is described. The instrument is constructed from MR-compatible materials and combines a coherent fiber bundle for optical imaging, an irrigation channel and a side-opening biopsy channel for the passage of catheter tools with a tip saddle coil for radio-frequency signal reception. The receiver coil is magnetically coupled to an internal pickup coil to provide intrinsic safety. Impedance matching is achieved using a mechanically variable mutual inductance, and active decoupling by PIN-diode switching. (1)H MRI of phantoms and ex vivo porcine liver specimens was carried out at 1.5 T. An MRI field-of-view appropriate for use during endoscopic retrograde cholangiopancreatography (ERCP) was obtained, with limited artefacts, and a signal-to-noise ratio advantage over a surface array coil was demonstrated. PMID:23807423

  4. Spin Projection of Empty Partial Density of States by Resonant X-ray Scattering (RXS): Application to Materials with Different Magnetic Ordering

    SciTech Connect

    Draeger, Guenter; Machek, Pavel

    2003-01-24

    We report the first experimental spin projections of empty partial density of states in antiferromagnetic NiO and CuO, paramagnetic MnO and in ferrimagnetic Dy3Fe5O12 by means of resonant X-ray scattering (RXS). Resolving resonantly scattered K{alpha}1,2 , K{beta}1,3 , L{alpha}1 and L1 core line spectra into their spin-up and spin-down components the spin character of the dipole- and quadrupole-excited conduction band states can quantitatively be analyzed. Since the method employs spin conservation in the RXS process and local spin references, it needs neither circularly polarized radiation nor sample magnetization for measuring the spectra. Hence, antiferro- and paramagnetic materials can be investigated as well. In the paper, the basic idea of the novel method, its experimental realization and the data treatment are reported including the spectra decomposition into the spin-up and spin-down components by using Principal Component Analysis (PCA). New and unambiguous results will be presented providing the opportunity to verify experimentally the results of spin-dependent (LSDA+U) calculations. So we argue the new spectroscopy complements X-ray magnetic dichroism, which is silent for antiferro- and paramagnetic materials. In fact, the novel method gives insight into the spin polarization of conduction band states in correlated materials, independently on their magnetic ordering.

  5. Assessing the Relationship between Lung Density and Function with Oxygen-Enhanced Magnetic Resonance Imaging in a Mouse Model of Emphysema

    PubMed Central

    Zurek, Magdalena; Sladen, Louise; Johansson, Edvin; Olsson, Marita; Jackson, Sonya; Zhang, Hui; Mayer, Gaell; Hockings, Paul D.

    2016-01-01

    Purpose A magnetic resonance imaging method is presented that allows for the simultaneous assessment of oxygen delivery, oxygen uptake, and parenchymal density. The technique is applied to a mouse model of porcine pancreatic elastase (PPE) induced lung emphysema in order to investigate how structural changes affect lung function. Method Nine-week-old female C57BL6 mice were instilled with saline or PPE at days 0 and 7. At day 19, oxygen delivery, oxygen uptake, and lung density were quantified from T1 and proton-density measurements obtained via oxygen-enhanced magnetic resonance imaging (OE-MRI) using an ultrashort echo-time imaging sequence. Subsequently, the lungs were sectioned for histological observation. Blood-gas analyses and pulmonary functional tests via FlexiVent were performed in separate cohorts. Principal Findings PPE-challenged mice had reduced density when assessed via MRI, consistent with the parenchyma loss observed in the histology sections, and an increased lung compliance was detected via FlexiVent. The oxygenation levels, as assessed via the blood-gas analysis, showed no difference between PPE-challenged animals and control. This finding was mirrored in the global MRI assessments of oxygen delivery and uptake, where the changes in relaxation time indices were matched between the groups. The heterogeneity of the same parameters however, were increased in PPE-challenged animals. When the oxygenation status was investigated in regions of varying density, a reduced oxygen-uptake was found in low-density regions of PPE-challenged mice. In high-density regions the uptake was higher than that of regions of corresponding density in control animals. The oxygen delivery was proportional to the oxygen uptake in both groups. Conclusions The proposed method allowed for the regional assessment of the relationship between lung density and two aspects of lung function, the oxygen delivery and uptake. When compared to global indices of lung function, an

  6. Magnetic Resonance Elastography

    PubMed Central

    Litwiller, Daniel V.; Mariappan, Yogesh K.; Ehman, Richard L.

    2015-01-01

    Often compared to the practice of manual palpation, magnetic resonance elastography is an emerging technology for quantitatively assessing the mechanical properties of tissue as a basis for characterizing disease. The potential of MRE as a diagnostic tool is rooted in the fact that normal and diseased tissues often differ significantly in terms of their intrinsic mechanical properties. MRE uses magnetic resonance imaging (MRI) in conjunction with the application of mechanical shear waves to probe tissue mechanics. This process can be broken down into three essential steps: inducing shear waves in the tissue,imaging the propagating shear waves with MRI, andanalyzing the wave data to generate quantitative images of tissue stiffness MRE has emerged as a safe, reliable and noninvasive method for staging hepatic liver fibrosis, and is now used in some locations as an alternative to biopsy. MRE is also being used in the ongoing investigations of numerous other organs and tissues, including, for example, the spleen, kidney, pancreas, brain, heart, breast, skeletal muscle, prostate, vasculature, lung, spinal cord, eye, bone, and cartilage. In the article that follows, some fundamental techniques and applications of MRE are summarized. PMID:26361467

  7. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  8. Accessible magnetic resonance imaging.

    PubMed

    Kaufman, L; Arakawa, M; Hale, J; Rothschild, P; Carlson, J; Hake, K; Kramer, D; Lu, W; Van Heteren, J

    1989-10-01

    The cost of magnetic resonance imaging (MRI) is driven by magnetic field strength. Misperceptions as to the impact of field strength on performance have led to systems that are more expensive than they need to be. Careful analysis of all the factors that affect diagnostic quality lead to the conclusion that field strength per se is not a strong determinant of system performance. Freed from the constraints imposed by high-field operation, it is possible to exploit a varied set of opportunities afforded by low-field operation. In addition to lower costs and easier siting, we can take advantage of shortened T1 times, higher contrast, reduced sensitivity to motion, and reduced radiofrequency power deposition. These conceptual advantages can be made to coalesce onto practical imaging systems. We describe a low-cost MRI system that utilizes a permanent magnet of open design. Careful optimization of receiving antennas and acquisition sequences permit performance levels consistent with those needed for an effective diagnostic unit. Ancillary advantages include easy access to the patient, reduced claustrophobia, quiet and comfortable operation, and absence of a missile effect. The system can be sited in 350 sq ft and consumes a modest amount of electricity. MRI equipment of this kind can widen the population base than can access this powerful and beneficial diagnostic modality. PMID:2640910

  9. Virtual magnetic resonance colonography

    PubMed Central

    Debatin, J; Lauenstein, T

    2003-01-01

    Colorectal cancer screening has vast potential. Beyond considerations for cost and diagnostic accuracy, the effectiveness of any colorectal screening strategy will be dependent on the degree of patient acceptance. Magnetic resonance (MR) colonography has been shown to be accurate regarding the detection of clinically relevant colonic polyps exceeding 10 mm in size, with reported sensitivity and specificity values exceeding 95%. To further increase patient acceptance, strategies for fecal tagging have recently been developed. By modulating the signal of fecal material to be identical to the signal characteristics of the enema applied to distend the colon, fecal tagging in conjunction with MR colonography obviates the need for bowel cleansing. The review will describe the techniques underlying MR colonography and describe early clinical experience with fecal tagging techniques. PMID:12746264

  10. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  11. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  12. Superconducting Magnets for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Feenan, Peter

    2000-03-01

    MRI is now a well established diagnostic technique in medicine. The richness of information provided by magnetic resonance gives rise to a variety of techniques which in turn leads to a variety of magnet designs. Magnet designers must consider suitable superconduting materials for the magnet, but need also to consider the overall fomat of the magnet to maximise patient comfort, access for clinicians and convenience of use - in some examples magnets are destined for use within the operating theatre and special considerations are required for this. Magnet types include; (1) low-field general purpose imagers, (2) extremity imaging, (3) open magnets with exellent all-round access often employing iron or permanent magnetic materials, (4) high-field magnets, and (5) very high-field (7 Tesla and more) magnets for spectroscopy and functional imaging research. Examples of these magnet varieties will be shown and some of the design challenges discussed.

  13. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  14. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  15. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  16. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  17. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  18. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. PMID:27432660

  19. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference. PMID:26878709

  20. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  1. Nuclear magnetic resonance chemical shifts with the statistical average of orbital-dependent model potentials in Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Poater, Jordi; van Lenthe, Erik; Baerends, Evert Jan

    2003-05-01

    In this paper, an orbital-dependent Kohn-Sham exchange-correlation potential, the so-called statistical average of (model) orbital potentials, is applied to the calculation of nuclear magnetic resonance chemical shifts of a series of simple molecules containing H, C, N, O, and F. It is shown that the use of this model potential leads to isotropic chemical shifts which are substantially improved over both local and gradient-corrected functionals, especially for nitrogen and oxygen atoms. This improvement in the chemical shift calculations can be attributed to the increase in the gap between highest occupied and lowest unoccupied orbitals, thus correcting the excessively large paramagnetic contributions, which have been identified to give deficient chemical shifts with both the local-density approximation and with gradient-corrected functionals. This is in keeping with the improvement by the statitical average of orbital model potentials for response properties in general and for excitation energies in particular. The present results are comparable in accuracy to those previously reported with self-interaction corrected functionals by Patchovskii et al., but still inferior to those obtained with accurate Kohn-Sham potentials by Wilson and Tozer. However, the present approach is computationally expedient and routinely applicable to all systems, requiring virtually the same computational effort as local-density and generalized-gradient calculations.

  2. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  3. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  4. Basics of magnetic resonance imaging

    SciTech Connect

    Oldendorf, W.; Oldendorf, W. Jr.

    1988-01-01

    Beginning with the behavior of a compass needle in a magnetic field, this text uses analogies from everyday experience to explain the phenomenon of nuclear magnetic resonance and how it is used for imaging. Using a minimum of scientific abbreviations and symbols, the basics of tissue visualization and characterization are presented. A description of the various types of magnets and scanners is followed by the practical advantages and limitations of MRI relative to x-ray CT scanning.

  5. Breast Density in Mammography and Magnetic Resonance Imaging in High Risk Women and Women with Breast Cancer

    PubMed Central

    Albert, Marissa; Schnabel, Freya; Chun, Jennifer; Schwartz, Shira; Lee, Jiyon; Leite, Ana Paula Klautau; Moy, Linda

    2015-01-01

    Structured Abstract Purpose To evaluate the relationship between mammographic breast density (MBD), background parenchymal enhancement (BPE), and fibroglandular tissue (FGT) in women with breast cancer (BC) and at high risk for developing BC. Methods Our institutional database was queried for patients who underwent mammography and MRI. Results 403 (85%) had BC and 72 (15%) were at high risk. MBD (p=0.0005), BPE (p<0.0001), and FGT (p=0.02) were all higher in high risk women compared to the BC group. Conclusions Higher levels of MBD, BPE and FGT are seen in women at higher risk for developing BC when compared to women with BC. PMID:26351036

  6. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  7. An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy

    SciTech Connect

    Dowling, Jason A.; Lambert, Jonathan; Parker, Joel; Salvado, Olivier; Fripp, Jurgen; Capp, Anne; Wratten, Chris; Denham, James W.; Greer, Peter B.

    2012-05-01

    Purpose: Prostate radiation therapy dose planning directly on magnetic resonance imaging (MRI) scans would reduce costs and uncertainties due to multimodality image registration. Adaptive planning using a combined MRI-linear accelerator approach will also require dose calculations to be performed using MRI data. The aim of this work was to develop an atlas-based method to map realistic electron densities to MRI scans for dose calculations and digitally reconstructed radiograph (DRR) generation. Methods and Materials: Whole-pelvis MRI and CT scan data were collected from 39 prostate patients. Scans from 2 patients showed significantly different anatomy from that of the remaining patient population, and these patients were excluded. A whole-pelvis MRI atlas was generated based on the manually delineated MRI scans. In addition, a conjugate electron-density atlas was generated from the coregistered computed tomography (CT)-MRI scans. Pseudo-CT scans for each patient were automatically generated by global and nonrigid registration of the MRI atlas to the patient MRI scan, followed by application of the same transformations to the electron-density atlas. Comparisons were made between organ segmentations by using the Dice similarity coefficient (DSC) and point dose calculations for 26 patients on planning CT and pseudo-CT scans. Results: The agreement between pseudo-CT and planning CT was quantified by differences in the point dose at isocenter and distance to agreement in corresponding voxels. Dose differences were found to be less than 2%. Chi-squared values indicated that the planning CT and pseudo-CT dose distributions were equivalent. No significant differences (p > 0.9) were found between CT and pseudo-CT Hounsfield units for organs of interest. Mean {+-} standard deviation DSC scores for the atlas-based segmentation of the pelvic bones were 0.79 {+-} 0.12, 0.70 {+-} 0.14 for the prostate, 0.64 {+-} 0.16 for the bladder, and 0.63 {+-} 0.16 for the rectum

  8. Role of plasma response in determining density pump-out with Resonant Magnetic Perturbations (RMPs) in DIII-D

    NASA Astrophysics Data System (ADS)

    Mordijck, S.; Smith, S. P.

    2014-10-01

    We are studying the effect of RMPs on the density pump-out threshold in order to determine whether the transport changes are the result of change in turbulence or rotation. Applying RMPs strongly reduces the core rotation and increases the edge rotation, which reduces the ExB shear thus increasing turbulent transport. The toroidal rotation measurements made at two different toroidal location show no phase lag during rotating n = 2 RMP experiment, which is an indication that there is a strong n = 0 response. This n = 0 response could be the result of MHD effects, or due to changes in turbulence characteristics. New low ν* experiments at lower RMP strength allow us to test, whether this change in the toroidal rotation is the main drive behind the increase in particle transport in low collisionality H-mode plasmas on DIII-D as well as examine what is causing the n = 0 response to the toroidal rotation. Work supported in part by the US DOE under DE-SC0007880 and DE-FC02-04ER54698.

  9. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  10. Spin connection resonance in magnetic motors

    NASA Astrophysics Data System (ADS)

    Evans, Myron W.; Eckardt, H.

    2007-11-01

    A mechanism is proposed for rotation of magnetic assemblies by a torque consisting of the magnetic dipole moment of the assembly and a magnetic field generated from space-time in Einstein-Cartan-Evans (ECE) field theory. It is shown that when the magnetic assembly is stationary, the space-time is described by a Helmholtz wave equation in the tetrad as eigenfunction. This is a balance condition in which the Cartan torsion of the space-time is zero, but in which the tetrad and spin connection are non-zero. This balance may be broken by a driving current density produced by the magnetic assembly. The Helmholtz equation becomes an undamped oscillator equation. At resonance the torque on the magnetic assembly may be amplified sufficiently to cause the whole assembly to rotate, as observed experimentally in a repeatable and reproducible manner.

  11. Magnetic resonance apparatus

    DOEpatents

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  12. Nuclear magnetic resonance spectroscopy

    SciTech Connect

    Harris, R.K.

    1986-01-01

    NMR is remarkable in the number of innovations that have appeared and become established within the past five years. This thoroughly up-to-date account of the field explains fundamentals and applications of the NMR phenomenon from the viewpoint of a physical chemist. Beginning with descriptions of basic concepts involved in continuous wave operation, the book goes on to cover spectral analysis, relaxation phenomena, the effects of pulses, the Fourier transform model, double resonance and the effects of chemical exchange and quadrupolar interactions. The book also includes the new techniques for work on solids and for complicated pulse sequences, plus abundant figures and illustrative spectra.

  13. Magnetic resonance apparatus

    DOEpatents

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  14. Magnetic resonance imaging with an optical atomicmagnetometer

    SciTech Connect

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-05-09

    Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

  15. Pediatric Body Magnetic Resonance Imaging.

    PubMed

    Kandasamy, Devasenathipathy; Goyal, Ankur; Sharma, Raju; Gupta, Arun Kumar

    2016-09-01

    Magnetic resonance imaging (MRI) is a radiation-free imaging modality with excellent contrast resolution and multiplanar capabilities. Since ionizing radiation is an important concern in the pediatric population, MRI serves as a useful alternative to computed tomography (CT) and also provides additional clues to diagnosis, not discernible on other investigations. Magnetic resonance cholangiopancreatography (MRCP), urography, angiography, enterography, dynamic multiphasic imaging and diffusion-weighted imaging provide wealth of information. The main limitations include, long scan time, need for sedation/anesthesia, cost and lack of widespread availability. With the emergence of newer sequences and variety of contrast agents, MRI has become a robust modality and may serve as a one-stop shop for both anatomical and functional information. PMID:26916887

  16. Quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  17. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  18. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  19. Magnetic resonance imaging of acquired cardiac disease.

    PubMed Central

    Carrol, C L; Higgins, C B; Caputo, G R

    1996-01-01

    Over the last 15 years, advances in magnetic resonance imaging techniques have increased the accuracy and applicability of cardiovascular magnetic resonance imaging. These advances have improved the utility of magnetic resonance imaging in evaluating cardiac morphology, blood flow, and myocardial contractility, all significant diagnostic features in the evaluation of the patient with acquired heart disease. Utilization of cardiovascular magnetic resonance imaging has been limited, primarily due to clinical reliance upon nuclear scintigraphy and echocardiography. Recent developments in fast and ultrafast imaging should continue to enhance the significance of magnetic resonance imaging in this field. Widespread use of magnetic resonance imaging in the evaluation of the cardiovascular system will ultimately depend upon its maturation into a comprehensive, noninvasive imaging technique for the varying manifestations of acquired heart disease, including cardiomyopathy, ischemic heart disease, and acquired valvular disease. Images PMID:8792545

  20. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  1. Practical applications of cardiovascular magnetic resonance

    PubMed Central

    Alpendurada, F; Wong, J; Pennell, D J

    2009-01-01

    Recent developments in magnetic resonance imaging have focused attention on evaluation of patients with cardiac disease. These improvements have been substantiated by a large and expanding body of clinical evidence, making cardiovascular magnetic resonance the imaging modality of choice in a wide variety of cardiovascular disorders. A brief review on the current applications of cardiovascular magnetic resonance is provided, with reference to some of the most relevant studies, statements and reviews published in this field.

  2. Magnetic resonance imaging of the spine

    SciTech Connect

    Modic, M.

    1988-01-01

    MAGNETIC RESONANCE IMAGING OF THE SPINE thoroughly demonstrates the advantages of this new radiologic modality in diagnosing spinal disorders. The book begins with an introductory chapter on the basic physics and technical considerations of magnetic resonance in general and magnetic resonance imaging of the spine in particular. The second chapter covers normal spinal anatomy, and features color photos of multi-planar sections of spinal anatomy.

  3. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  4. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  5. Apparatus for investigating resonance with application to magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Jones, Dyan L.; Gross, Josh; Zollman, Dean

    2015-11-01

    Resonance is typically studied in the context of either a pendulum or a mass on a spring. We have developed an apparatus that enables beginning students to investigate resonant behavior of changing magnetic fields, in addition to the properties of the magnetic field due to a wire and the superposition of magnetic fields. In this resonant system, a compass oscillates at a frequency determined by the compass's physical properties and an external magnetic field. While the analysis is mathematically similar to that of the pendulum, this apparatus has an advantage that the magnetic field is easily controlled, while it is difficult to control the strength of gravity. This apparatus has been incorporated into a teaching module on magnetic resonance imaging.

  6. MAGNETIC RESONANCE ELASTOGRAPHY: A REVIEW

    PubMed Central

    Mariappan, Yogesh K; Glaser, Kevin J; Ehman, Richard L

    2011-01-01

    Magnetic Resonance Elastography (MRE) is a rapidly developing technology for quantitatively assessing the mechanical properties of tissue. The technology can be considered to be an imaging-based counterpart to palpation, commonly used by physicians to diagnose and characterize diseases. The success of palpation as a diagnostic method is based on the fact that the mechanical properties of tissues are often dramatically affected by the presence of disease processes such as cancer, inflammation, and fibrosis. MRE obtains information about the stiffness of tissue by assessing the propagation of mechanical waves through the tissue with a special magnetic resonance imaging (MRI) technique. The technique essentially involves three steps: generating shear waves in the tissue,acquiring MR images depicting the propagation of the induced shear waves andprocessing the images of the shear waves to generate quantitative maps of tissue stiffness, called elastograms. MRE is already being used clinically for the assessment of patients with chronic liver diseases and is emerging as a safe, reliable and noninvasive alternative to liver biopsy for staging hepatic fibrosis. MRE is also being investigated for application to pathologies of other organs including the brain, breast, blood vessels, heart, kidneys, lungs and skeletal muscle. The purpose of this review article is to introduce this technology to clinical anatomists and to summarize some of the current clinical applications that are being pursued. PMID:20544947

  7. High density plasma etching of magnetic devices

    NASA Astrophysics Data System (ADS)

    Jung, Kee Bum

    Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3

  8. Advances in mechanical detection of magnetic resonance

    PubMed Central

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  9. Torque-mixing magnetic resonance spectroscopy.

    PubMed

    Losby, J E; Fani Sani, F; Grandmont, D T; Diao, Z; Belov, M; Burgess, J A J; Compton, S R; Hiebert, W K; Vick, D; Mohammad, K; Salimi, E; Bridges, G E; Thomson, D J; Freeman, M R

    2015-11-13

    A universal, torque-mixing method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by magnetic induction, the transverse component of a precessing dipole moment can be measured in sensitive broadband spectroscopy, here using a resonant mechanical torque sensor. Unlike induction, the torque amplitude allows equilibrium magnetic properties to be monitored simultaneously with the spin dynamics. Comprehensive electron spin resonance spectra of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature reveal assisted switching between magnetization states and mode-dependent spin resonance interactions with nanoscale surface imperfections. The rich detail allows analysis of even complex three-dimensional spin textures. The flexibility of microelectromechanical and optomechanical devices combined with broad generality and capabilities of torque-mixing magnetic resonance spectroscopy offers great opportunities for development of integrated devices. PMID:26564851

  10. Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.

  11. Magnetic resonance elastography of abdomen.

    PubMed

    Venkatesh, Sudhakar Kundapur; Ehman, Richard L

    2015-04-01

    Many diseases cause substantial changes in the mechanical properties of tissue, and this provides motivation for developing methods to noninvasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate noninvasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  12. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  13. Magnetic Resonance Elastography of Abdomen

    PubMed Central

    Venkatesh, Sudhakar K.; Ehman, Richard L.

    2015-01-01

    Many diseases cause substantial changes in the mechanical properties of tissue and this provides motivation for developing methods to non-invasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate non-invasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  14. Enhancement of Magnetic Resonance Imaging with Metasurfaces.

    PubMed

    Slobozhanyuk, Alexey P; Poddubny, Alexander N; Raaijmakers, Alexander J E; van den Berg, Cornelis A T; Kozachenko, Alexander V; Dubrovina, Irina A; Melchakova, Irina V; Kivshar, Yuri S; Belov, Pavel A

    2016-03-01

    It is revealed that the unique properties of ultrathin metasurface resonators can improve magnetic resonance imaging dramatically. A metasurface formed when an array of metallic wires is placed inside a scanner under the studied object and a substantial enhancement of the radio-frequency magnetic field is achieved by means of subwavelength manipulation with the metasurface, also allowing improved image resolution. PMID:26754827

  15. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  16. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  17. Magnetic resonance imaging of radiation optic neuropathy

    SciTech Connect

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S. )

    1990-10-15

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence.

  18. Magnetic resonance imaging of glioblastoma using aptamer conjugated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Bongjune; Yang, Jaemoon; Hwang, Myeonghwan; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2012-10-01

    Here we introduce a new class of smart imaging probes hybridizing polysorbate 80 coated-magnetic nanoparticles with vascular endothelial growth factor receptor 2 (VEGFR2)-targetable aptamer for specific magnetic resonance (MR) imaging of angiogenesis from glioblastoma.

  19. Impact of steam explosion on the wheat straw lignin structure studied by solution-state nuclear magnetic resonance and density functional methods.

    PubMed

    Heikkinen, Harri; Elder, Thomas; Maaheimo, Hannu; Rovio, Stella; Rahikainen, Jenni; Kruus, Kristiina; Tamminen, Tarja

    2014-10-29

    Chemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages. The homolytic cleavage/recoupling reactions were also studied by computational methods, which verified their thermodynamic feasibility. The presence of the tricin bound to wheat straw lignin was confirmed, and it was shown to participate in lignin reactions during the SE treatment. The preferred homolytic β-O-4 cleavage reaction was calculated to follow bond dissociation energies: G-O-G (guaiacyl) (69.7 kcal/mol) > G-O-S (syringyl) (68.4 kcal/mol) > G-O-T (tricin) (67.0 kcal/mol). PMID:25290760

  20. Fermionic density functional at a Feshbach resonance

    SciTech Connect

    Seidl, Michael; Bhaduri, Rajat K.

    2007-05-15

    We consider a dilute gas of neutral unpolarized fermionic atoms at zero temperature. The atoms interact via a short-range (tunable) attractive interaction. We demonstrate analytically a curious property of the gas at unitarity. Namely, the correlation energy of the gas, evaluated by second-order perturbation theory, has the same density dependence as the first-order exchange energy, and the two almost exactly cancel each other at a Feshbach resonance irrespective of the shape of the potential, provided ({mu}r{sub s})>>1. Here ({mu}){sup -1} is the range of the two-body potential, and r{sub s} is defined through the number density, n=3/(4{pi}r{sub s}{sup 3}). The implications of this result for universality are discussed.

  1. Tunable Magnetic Resonance via Interlayer Exchange Interaction

    NASA Astrophysics Data System (ADS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Wilson, Jeffrey; Simons, Rainee; Chui, Sui-Tat; Xiao, John

    Magnetic resonance is a critical property of magnetic materials for the applications in microwave devices and novel spintronics devices. The resonance frequency is commonly controlled with an external magnetic field generated by an energy-inefficient and bulky electromagnet. The search for tuning the resonance frequency without electromagnets has attracted tremendous attention. The voltage control of resonance frequency has been demonstrated in multiferroic heterostructures through magnetoelastic effect. However, the frequency tunable range is limited. We propose a paradigm to tune the magnetic resonance frequency by recognizing the huge interlayer exchange field and the existence of the high-frequency modes in coupled oscillators. We demonstrate the optical mode in exchange coupled magnetic layers which occurred at much higher frequencies than coherent ferromagnetic resonance. We further demonstrated a large resonance frequency tunable range from 11GHz to 21 GHz in a spin valve device by in-situ manipulating of the exchange interaction. The technique developed here is far more efficient than the conventional methods of using electromagnets and multiferroics. This new scheme will have an immediate impact on applications based on magnetic resonance.

  2. Artifacts in Magnetic Resonance Imaging

    PubMed Central

    Krupa, Katarzyna; Bekiesińska-Figatowska, Monika

    2015-01-01

    Summary Artifacts in magnetic resonance imaging and foreign bodies within the patient’s body may be confused with a pathology or may reduce the quality of examinations. Radiologists are frequently not informed about the medical history of patients and face postoperative/other images they are not familiar with. A gallery of such images was presented in this manuscript. A truncation artifact in the spinal cord could be misinterpreted as a syrinx. Motion artifacts caused by breathing, cardiac movement, CSF pulsation/blood flow create a ghost artifact which can be reduced by patient immobilization, or cardiac/respiratory gating. Aliasing artifacts can be eliminated by increasing the field of view. An artificially hyperintense signal on FLAIR images can result from magnetic susceptibility artifacts, CSF/vascular pulsation, motion, but can also be found in patients undergoing MRI examinations while receiving supplemental oxygen. Metallic and other foreign bodies which may be found on and in patients’ bodies are the main group of artifacts and these are the focus of this study: e.g. make-up, tattoos, hairbands, clothes, endovascular embolization, prostheses, surgical clips, intraorbital and other medical implants, etc. Knowledge of different types of artifacts and their origin, and of possible foreign bodies is necessary to eliminate them or to reduce their negative influence on MR images by adjusting acquisition parameters. It is also necessary to take them into consideration when interpreting the images. Some proposals of reducing artifacts have been mentioned. Describing in detail the procedures to avoid or limit the artifacts would go beyond the scope of this paper but technical ways to reduce them can be found in the cited literature. PMID:25745524

  3. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  4. Electron density distribution in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides studied by double nuclear magnetic resonance methods

    SciTech Connect

    Piskunov, Yu. V. Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V.

    2011-11-15

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of {sup 17}O are measured systematically, and the contributions from {sup 17}O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of {sup 17}O-{sup 207}Pb and {sup 17}O-{sup 121}Sb are measured in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin {sup 17}O-{sup 207}Pb interaction are determined as functions of the local Knight shift {sub 207}Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of {sup 17}O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides.

  5. Electron density distribution in BaPb1 - x Sb x O3 superconducting oxides studied by double nuclear magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Piskunov, Yu. V.; Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V.

    2011-11-01

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb1 - x Sb x O3 superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of 17O are measured systematically, and the contributions from 17O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of 17O-207Pb and 17O-121Sb are measured in the metal phase of BaPb1 - x Sb x O3 oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin 17O-207Pb interaction are determined as functions of the local Knight shift 207 Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of 17O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb1 - x Sb x O3 oxides.

  6. Enhancement of artificial magnetism via resonant bianisotropy.

    PubMed

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  7. Enhancement of artificial magnetism via resonant bianisotropy

    NASA Astrophysics Data System (ADS)

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-03-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses.

  8. Drift Resonance in High Density Nonneutral Plasmas

    NASA Astrophysics Data System (ADS)

    Kaup, D. J.

    2005-10-01

    Theoretical studies of the operation of crossed-field electron vacuum devices, such as magnetrons and crossed-field amplifiers (CFA), have usually centered on their initial growth, taking this as an indication of their operating modes. In such an analysis, one solves the equations for the density profile and other features of these devices. However what one actually obtains are only the conditions for the initial operation of the device. Eventually the rf fields will saturate, at which time, an operating device will settle into a stationary operating regime, called the ``saturation stage,'' which is where the device simply delivers rf power. Here there is a different set of physical interactions occuring. The amplitudes have saturated and the ponderomotive forces and nonlinear diffusion of the initiation stage have vanished. In this saturation stage, we now find three new rf modes appearing, in addition to the two modes of the initiation stage. These three new modes have very fast oscillations in the vertical direction: one fast mode corresponds to a plasma drift wave, while the other two fast modes are cyclotron-like modes. In this presentation, we will describe how the fast plasma drift wave interacts with the slow modes at the diocotron resonance. In particular, we will determine the conversion coefficients for the crossing of the drift mode with the slow modes at the diocotron resonance.

  9. The LC resonance probe for determining local plasma density

    NASA Astrophysics Data System (ADS)

    Boris, D. R.; Fernsler, R. F.; Walton, S. G.

    2011-04-01

    We present a novel plasma diagnostic for measuring local plasma density in reactive-gas plasmas, and depositing plasmas. The diagnostic uses a network analyzer to measure the LC resonance (LCR) frequency of a parallel plate capacitor with inductive leads. The location of the LCR (ωR) in frequency space is then used as a measure of the plasma dielectric constant bold varepsilonp between the plates. By properly constructing the LCR probe, ωR can be tuned such that ωR Gt ωce, where ωce is the electron-cyclotron frequency. Thus, the probe can be used in plasmas with varying degrees of magnetization while avoiding complications introduced to bold varepsilonp when ω is comparable to ωce. Density measurements from the LCR probe are compared with Langmuir probe measurements in an electron-beam generated plasma in which density varied from 109 to 1011 cm-3. An axial magnetic field, typically used to confine the electron beam, was varied between 0 to 300 G. The LCR probe showed good agreement with a Langmuir probe across the entire range of magnetic fields.

  10. Coronary Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C.

    2009-01-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use. PMID:19269527

  11. Chronic liver disease: evaluation by magnetic resonance

    SciTech Connect

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR.

  12. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus Videos and Cool Tools

    ... talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA is a noninvasive ... possibility that you’re pregnant tell your doctor as well. On the day of your exam, it’s ...

  13. International Society for Magnetic Resonance in Medicine

    MedlinePlus

    ... Upcoming Workshops & Deadlines Past Workshops Endorsed Meetings & Education International Outreach Event Planning Guides Education MR Safety Resources ... Center E-Library Virtual Meetings Connect With Us International Society for Magnetic Resonance in Medicine 2300 Clayton ...

  14. Pocket atlas of cranial magnetic resonance imaging

    SciTech Connect

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans.

  15. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  16. Torque-mixing Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  17. Implementation of NMR pulse sequences for Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Moores, Bradley; Eichler, Alexander; Degen, Christian

    2014-03-01

    Magnetic resonance force microscopy (MRFM) is a scanning microscopy technique that allows measuring nuclear spin densities with a resolution of a few nanometers. Ongoing efforts are aiming at improving this resolution, which might ultimately facilitate non-destructive 3D scans of complex molecules or solid state systems with atomic resolution. Here, we review our current efforts to utilize in an MRFM experiment pulsing techniques borrowed from the nuclear magnetic resonance community. The use of advanced pulsing schemes may improve signal-to-noise ratio, imaging resolution, and allow the investigation of novel phenomena.

  18. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  19. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  20. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  1. Magnetic Fluctuations in Pair-Density-Wave Superconductors.

    PubMed

    Christensen, Morten H; Jacobsen, Henrik; Maier, Thomas A; Andersen, Brian M

    2016-04-22

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d-wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La_{1.905}Ba_{0.095}CuO_{4} [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)]. PMID:27152819

  2. Children's (Pediatric) Magnetic Resonance Imaging

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the inside of ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  3. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... uses radio waves, a magnetic field and a computer to produce detailed pictures of the spine and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  4. Magnetic Resonance Studies of Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  5. Trapped Ion Magnetic Resonance: Concepts and Designs

    NASA Astrophysics Data System (ADS)

    Pizarro, Pedro Jose

    A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra and resolve the apparent incompatibility in existing techniques between high information content and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established techniques for trapping ions in high magnetic field and observing electrically the trapping frequencies with high resolution (<1 Hz) and sensitivity (single -ion). A magnetic bottle field gradient couples the spin and spatial motions together and leads to the small spin -dependent force on the ion exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment. A series of fundamental innovations is described to extend magnetic resonance to molecular ions ( cong 100 amu) and nuclear magnetic moments. It is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Methods of inducing spin -dependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency. The first proposal presented builds on Dehmelt's experiment to reveal ESR spectra. A more powerful technique for ESR is then designed where axially synchronized spin transitions perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. The most general approach presented is a continuous Stern-Gerlach effect in which a magnetic field

  6. Designing dielectric resonators on substrates: combining magnetic and electric resonances.

    PubMed

    van de Groep, J; Polman, A

    2013-11-01

    High-performance integrated optics, solar cells, and sensors require nanoscale optical components at the surface of the device, in order to manipulate, redirect and concentrate light. High-index dielectric resonators provide the possibility to do this efficiently with low absorption losses. The resonances supported by dielectric resonators are both magnetic and electric in nature. Combined scattering from these two can be used for directional scattering. Most applications require strong coupling between the particles and the substrate in order to enhance the absorption in the substrate. However, the coupling with the substrate strongly influences the resonant behavior of the particles. Here, we systematically study the influence of particle geometry and dielectric environment on the resonant behavior of dielectric resonators in the visible to near-IR spectral range. We show the key role of retardation in the excitation of the magnetic dipole (MD) mode, as well as the limit where no MD mode is supported. Furthermore, we study the influence of particle diameter, shape and substrate index on the spectral position, width and overlap of the electric dipole (ED) and MD modes. Also, we show that the ED and MD mode can selectively be enhanced or suppressed using multi-layer substrates. And, by comparing dipole excitation and plane wave excitation, we study the influence of driving field on the scattering properties. Finally, we show that the directional radiation profiles of the ED and MD modes in resonators on a substrate are similar to those of point-dipoles close to a substrate. Altogether, this work is a guideline how to tune magnetic and electric resonances for specific applications. PMID:24216852

  7. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  8. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  9. Compression-sensitive magnetic resonance elastography.

    PubMed

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus. PMID:23852144

  10. Nuclear Magnetic Resonance Technology for Medical Studies

    NASA Astrophysics Data System (ADS)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-10-01

    Nuclear magnetic resonance proton imaging provides anatomical definition of normal and abnormal tissues with a contrast and detection sensitivity superior to those of x-ray computed tomography in the human head and pelvis and parts of the cardiovascular and musculoskeletal systems. Recent improvements in technology should lead to advances in diagnostic imaging of the breast and regions of the abdomen. Selected-region nuclear magnetic resonance spectroscopy of protons, carbon-13, and phosphorus-31 has developed into a basic science tool for in vivo studies on man and a unique tool for clinical diagnoses of metabolic disorders. At present, nuclear magnetic resonance is considered safe if access to the magnet environment is controlled. Technological advances employing field strengths over 2 teslas will require biophysical studies of heating and static field effects.

  11. Low-temperature magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Wago, Koichi

    Magnetic resonance force microscopy (MRFM) is a technique whose goal is to combine the three-dimensional, chemically specific imaging capability of magnetic resonance imaging with the atomic-scale spatial resolution of scanning force microscopy. MRFM relies on the detection of small oscillatory magnetic forces between spins in the sample and a magnetic tip, using a micromechanical cantilever. The force resolution is a key issue for successfully operating MRFM experiments. Operating at low temperature improves the force resolution because of the reduced thermal energy and increased mechanical Q of the cantilever. The spin polarization is also enhanced at low temperature, leading to the improved magnetic resonance sensitivity for ensemble spin samples. A low-temperature magnetic resonance force detection apparatus was built and used to demonstrate a force resolution of 8×10sp{-17}\\ N/sqrt{Hz} at 6 K with a commercial single-crystal silicon cantilever. Both nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) were detected in micron-size samples. Force-detection technique was also applied to a wide range of magnetic resonance measurements, including inversion recovery, nutation, and spin echoes. Force-detected EPR spectra of phosphorus-doped silicon revealed hyperfine splitting, illustrating the possibility of using the MRFM technique for spectroscopic purposes. An improved low-temperature magnetic resonance force microscope was also built, incorporating a magnetic tip mounted directly on the cantilever. This allows a much wider variety of samples to be investigated and greatly improves the convenience of the technique. Using the improved microscope, three-dimensional EPR imaging of diphenylpicrylhydrazil (DPPH) particles was accomplished by scanning the sample in two dimensions while stepping an external field. The EPR force map showed a broad response reflecting the size and shape of the sample, allowing a three-dimensional real

  12. Resonant excitation of density waves in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Griv, Evgeny

    1996-06-01

    The dynamics of regions in the Saturnian ring system with rare collisions between particles, that is, Ω 2≫ν c2, where Ω is the orbital angular frequency and νc the collision frequency, is considered. According to observations, such low optical depth regions can be found in the C ring, the inner portions of the B ring and the A ring. Kinetic theory with the Vlasov and Poisson equations is used to obtain the eigen-frequencies of oscillations propagating in the plane of the system. In the considered case of rare collisions the resulting kinetic equation for the perturbed distribution function can be solved by successive approximations, neglecting the effect of binary particle collisions in the zeroth-order approximation. An oscillating instability of the kinetic type is discussed. This instability of a particulate disk is similar to the magneto-drift instability first discovered by Krall and Rosenbluth ( Physics Fluids6, 254-265, 1963) in a nonuniform magnetic plasma, and belongs to the class of microinstabilities of an inhomogeneous plasma. The cause of the oscillating instability in Saturn's rings is a resonant interaction of drifting particles with nonaxisymmetric Jeans-stable waves at the corotation. The waves that may be produced by the corotation-resonance interaction represent non-radial normal modes of the gravitationally stable disk modified by a particle drift. It is shown that density waves are effectively excited at this resonance: the growth rate of the mode of maximum instability is large, Im ω∗˜Ω. The resonant excitation of density waves investigated in the present paper may be proposed as the cause of the irregular, small-scale ˜ 100 m structure in regions of low optical depth in Saturn's rings. It is suggested that Cassini spacecraft high-resolution images of low optical depth regions will show this kind of structure.

  13. Cyclotron resonance in an inhomogeneous magnetic field

    SciTech Connect

    Albert, J.M. )

    1993-08-01

    Relativistic test particles interacting with a small monochromatic electromagnetic wave are studied in the presence of an inhomogeneous background magnetic field. A resonance-averaged Hamiltonian is derived which retains the effects of passage through resonance. Two distinct regimes are found. In the strongly inhomogeneous case, the resonant phase angle at successive resonances is random, and multiple resonant interactions lead to a random walk in phase space. In the other, adiabatic limit, the phase angle is determined by the phase portrait of the Hamiltonian and leads to a systematic change in the appropriate canonical action (and therefore in the energy and pitch angle), so that the cumulative effect increases directly with the number of resonances.

  14. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  15. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  16. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials. PMID:25594885

  17. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  18. The Diversity of Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Corey W.; Alekseyev, Viktor Y.; Allwardt, Jeffrey R.; Bankovich, Alexander J.; Cade-Menun, Barbara J.; Davis, Ronald W.; Du, Lin-Shu; Garcia, K. Christopher; Herschlag, Daniel; Khosla, Chaitan; Kraut, Daniel A.; Li, Qing; Null, Brian; Puglisi, Joseph D.; Sigala, Paul A.; Stebbins, Jonathan F.; Varani, Luca

    The discovery of the physical phenomenon of Nuclear Magnetic Resonance (NMR) in 1946 gave rise to the spectroscopic technique that has become a remarkably versatile research tool. One could oversimplify NMR spectros-copy by categorizing it into the two broad applications of structure elucidation of molecules (associated with chemistry and biology) and imaging (associated with medicine). But, this certainly does not do NMR spectroscopy justice in demonstrating its general acceptance and utilization across the sciences. This manuscript is not an effort to present an exhaustive, or even partial review of NMR spectroscopy applications, but rather to provide a glimpse at the wide-ranging uses of NMR spectroscopy found within the confines of a single magnetic resonance research facility, the Stanford Magnetic Resonance Laboratory. Included here are summaries of projects involving protein structure determination, mapping of intermolecular interactions, exploring fundamental biological mechanisms, following compound cycling in the environmental, analysis of synthetic solid compounds, and microimaging of a model organism.

  19. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  20. Magnetic resonance of magnetic fluid and magnetoliposome preparations

    NASA Astrophysics Data System (ADS)

    Morais, Paulo C.; Santos, Judes G.; Skeff Neto, K.; Pelegrini, Fernando; De Cuyper, Marcel

    2005-05-01

    In this study, magnetic resonance was used to investigate lauric acid-coated magnetite-based magnetic fluid particles and particles which are surrounded by a double layer of phospholipid molecules (magnetoliposomes). The data reveal the presence of monomers and dimers in both samples. Whereas evidence for a thermally induced disruption of dimers is found in the magnetic fluid, apparently, the bilayer phospholipid envelop prevents the dissociation in the magnetoliposome samples.

  1. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  2. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. PMID:25700116

  3. Nanomagnetic planar magnetic resonance microscopy "lens".

    PubMed

    Barbic, Mladen; Scherer, Axel

    2005-04-01

    The achievement of three-dimensional atomic resolution magnetic resonance microscopy remains one of the main challenges in the visualization of biological molecules. The prospects for single spin microscopy have come tantalizingly close due to the recent developments in sensitive instrumentation. Despite the single spin detection capability in systems of spatially well-isolated spins, the challenge that remains is the creation of conditions in space where only a single spin is resonant and detected in the presence of other spins in its natural dense spin environment. We present a nanomagnetic planar design where a localized Angstrom-scale point in three-dimensional space is created above the nanostructure with a nonzero minimum of the magnetic field magnitude. The design thereby represents a magnetic resonance microscopy "lens" where potentially only a single spin located in the "focus" spot of the structure is resonant. Despite the presence of other spins in the Angstrom-scale vicinity of the resonant spin, the high gradient magnetic field of the "lens" renders those spins inactive in the detection process. PMID:15826129

  4. Magnetic resonance neurography of the brachial plexus

    PubMed Central

    Upadhyaya, Vaishali; Upadhyaya, Divya Narain; Kumar, Adarsh; Pandey, Ashok Kumar; Gujral, Ratni; Singh, Arun Kumar

    2015-01-01

    Magnetic Resonance Imaging (MRI) is being increasingly recognised all over the world as the imaging modality of choice for brachial plexus and peripheral nerve lesions. Recent refinements in MRI protocols have helped in imaging nerve tissue with greater clarity thereby helping in the identification, localisation and classification of nerve lesions with greater confidence than was possible till now. This article on Magnetic Resonance Neurography (MRN) is based on the authors’ experience of imaging the brachial plexus and peripheral nerves using these protocols over the last several years. PMID:26424974

  5. Artifacts in Breast Magnetic Resonance Imaging.

    PubMed

    Anthony, Marina-Portia; Nguyen, Dustin; Friedlander, Lauren; Mango, Victoria; Wynn, Ralph; Ha, Richard

    2016-01-01

    As breast magnetic resonance imaging has evolved to become a routine part of clinical practice, so too has the need for radiologists to be aware of its potential pitfalls and limitations. Unique challenges arise in the identification and remedy of artifacts in breast magnetic resonance imaging, and it is important that radiologists and technicians work together to optimize protocols and monitor examinations such that these may be minimized or avoided entirely. This article presents patient-related and technical artifacts that may give rise to reduced image quality and ways to recognize and reduce them. PMID:26343534

  6. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  7. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  8. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Arima, Eiji; Naitoh, Yoshitaka; Li, Yan Jun; Yoshimura, Satoru; Saito, Hitoshi; Nomura, Hikaru; Nakatani, Ryoichi; Sugawara, Yasuhiro

    2015-03-01

    In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium.

  9. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance.

    PubMed

    Arima, Eiji; Naitoh, Yoshitaka; Li, Yan Jun; Yoshimura, Satoru; Saito, Hitoshi; Nomura, Hikaru; Nakatani, Ryoichi; Sugawara, Yasuhiro

    2015-03-27

    In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium. PMID:25736463

  10. Magnetic elliptical polarization of Schumann resonances

    SciTech Connect

    Sentman, D.D.

    1987-08-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references.

  11. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  12. Magnetic Resonance Imaging by Synergistic Diffusion-Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Shemesh, Noam; Westin, Carl-Fredrik; Cohen, Yoram

    2012-02-01

    Inferring on the geometry of an object from its frequency spectrum is highly appealing since the object could then be imaged noninvasively or from a distance (as famously put by Kac, “can one hear the shape of a drum?”). In nuclear magnetic resonance of porous systems, the shape of the drum is represented by the pore density function that bears all the information on the collective pore microstructure. So far, conventional magnetic resonance imaging (MRI) could only detect the pore autocorrelation function, which inherently obscures fine details on the pore structure. Here, for the first time, we report on a unique imaging mechanism arising from synergistic diffusion-diffractions that directly yields the pore density function. This mechanism offers substantially higher spatial resolution compared to conventional MRI while retaining all fine details on the collective pore morphology. Thus, using these unique synergistic diffusion-diffractions, the “shape of the drum” can be inferred.

  13. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  14. Magnetic fields and density functional theory

    SciTech Connect

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  15. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  16. Use of Magnetic Resonance in Pancreaticobiliary Emergencies.

    PubMed

    Bates, David D B; LeBedis, Christina A; Soto, Jorge A; Gupta, Avneesh

    2016-05-01

    This article presents the magnetic resonance protocols, imaging features, diagnostic criteria, and complications of commonly encountered emergencies in pancreaticobiliary imaging. Pancreatic trauma, bile leak, acute cholecystitis, biliary obstruction, and pancreatitis are discussed. Various classifications and complications that can arise with these conditions, as well as artifacts that may mimic pathology, are also included. PMID:27150328

  17. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  18. Sports Health Magnetic Resonance Imaging Challenge

    PubMed Central

    Howell, Gary A.; Stadnick, Michael E.; Awh, Mark H.

    2010-01-01

    Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians. PMID:23015984

  19. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  20. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  1. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  2. Probing the Oxygen Environment in UO22+ by Solid-State O-17 Nuclear Magnetic Resonance Spectroscopy and Relativistic Density Functional Calculations

    SciTech Connect

    Cho, Herman M.; De Jong, Wibe A.; Soderquist, Chuck Z.

    2010-02-28

    A combined theoretical and solid-state O-17 NMR study of the electronic structure of the uranyl ion UO22+ in (NH4)4UO2(CO3)3 and rutherfordine UO2CO3 is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens, and the latter exemplifying a uranyl environment without hydrogens. A fully relativistic ab initio treatment reveals unique features of the U-O covalent bond, including the finding of O-17 chemical shift anisotropies that are among the largest ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state O-17 NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the O-17 echo signal of UO22+. The William R. Wiley environmental Molecular Sciences Laboratory is a US Department of Energy national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is operated by Battelle for the US Department of Energy.

  3. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  4. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  5. Volume coil based on hybridized resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jouvaud, C.; Abdeddaim, R.; Larrat, B.; de Rosny, J.

    2016-01-01

    We present an electromagnetic device based on hybridization of four half-wavelength dipoles which increases the uniformity and the strength of the radio-frequency (RF) field of a Magnetic Resonant Imaging (MRI) apparatus. Numerical results show that this Hybridized Coil (HC) excited with a classical loop coil takes advantage of the magnetic hybrid modes. The distribution of the RF magnetic field is experimentally confirmed on a 7-T MRI with a gelatin phantom. Finally, the HC is validated in vivo by imaging the head of an anesthetized rat. We measure an overall increase of the signal to noise ratio with up to 2.4 fold increase in regions of interest far from the active loop coil.

  6. A hybrid, inverse approach to the design of magnetic resonance imaging magnets.

    PubMed

    Zhao, H; Crozier, S; Doddrell, D M

    2000-03-01

    This paper describes a hybrid numerical method of an inverse approach to the design of compact magnetic resonance imaging magnets. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. The emphasis of this work is on the optimal design of short MRI magnets. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric MRI magnets as well as asymmetric magnets. The results highlight that the method can be used to obtain a compact MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1 m in length, significantly shorter than current designs. Viable asymmetric magnet designs, in which the edge of the homogeneous region is very close to one end of the magnet system are also presented. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. PMID:10757611

  7. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  8. A hyperpolarized equilibrium for magnetic resonance

    PubMed Central

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  9. A hyperpolarized equilibrium for magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-12-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10-3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  10. Resonant Absorption of Axisymmetric Modes in Twisted Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Goossens, M.; Verth, G.; Fedun, V.; Van Doorsselaere, T.

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  11. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now—within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  12. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  13. Magnetic resonances in nano-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, Zhao; Liddle, Alex; Martin, Michael

    2006-03-01

    We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.

  14. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  15. Magnetic Resonance Characterization of Ischemic Tissue Metabolism

    PubMed Central

    Cheung, Jerry S; Wang, Xiaoying; Zhe Sun, Phillip

    2011-01-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) are versatile diagnostic techniques capable of characterizing the complex stroke pathophysiology, and hold great promise for guiding stroke treatment. Particularly, tissue viability and salvageability are closely associated with its metabolic status. Upon ischemia, ischemic tissue metabolism is disrupted including altered metabolism of glucose and oxygen, elevated lactate production/accumulation, tissue acidification and eventually, adenosine triphosphate (ATP) depletion and energy failure. Whereas metabolism impairment during ischemic stroke is complex, it may be monitored non-invasively with magnetic resonance (MR)-based techniques. Our current article provides a concise overview of stroke pathology, conventional and emerging imaging and spectroscopy techniques, and data analysis tools for characterizing ischemic tissue damage. PMID:22216079

  16. Magnetic resonance angiography: physical principles and applications.

    PubMed

    Kiruluta, Andrew J M; González, R Gilberto

    2016-01-01

    Magnetic resonance angiography (MRA) is the visualization of hemodynamic flow using imaging techniques that discriminate flowing spins in blood from those in stationary tissue. There are two classes of MRA methods based on whether the magnetic resonance imaging signal in flowing blood is derived from the amplitude of the moving spins, the time-of-flight methods, or is based on the phase accumulated by these flowing spins, as in phase contrast methods. Each method has particular advantages and limitations as an angiographic imaging technique, as evidenced in their application space. Here we discuss the physics of MRA for both classes of imaging techniques, including contrast-enhanced approaches and the recent rapid expansion of the techniques to fast acquisition and processing techniques using parallel imaging coils as well as their application in high-field MR systems such as 3T and 7T. PMID:27432663

  17. [Indications for magnetic resonance imaging in pneumology].

    PubMed

    Arrivé, L

    1997-04-19

    Tissue mobilization caused by respiration and heart beat and lower spacial resolution than with computed tomography has limited use of magnetic resonance imaging (MRI) in pneumology. Nevertheless, because of the high-quality of spontaneous contrast and the non irradiation nature of the examination, there are selected indications. For bronchogenic cancer, MRI is reserved for selected cases to evaluate tumor extension. For tumors of the mediastinum, MRI is particularly useful for evaluating extension of neurogenic tumors. MRI also gives a better visualization of processes involving the diaphragm than computed tomography. The development of magnetic resonance angiography is a major progress for exploration of pulmonary embolism as repeated acquisitions can be obtained without injection of a contrast medium. Several studies have shown that MRI visualizes well solitary lung nodules, clearly distinguishing fat content from vascularized nodules. For the pulmonary parenchyma, further advances are necessary before MRI can become a routine exploration technique. PMID:9180867

  18. Thermal field fluctuations in a magnetic tip / implications for magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Hannay, J. D.; Chantrell, R. W.; Rugar, D.

    2000-05-01

    Thermally excited magnetic fluctuations are fundamental to the behavior of small ferromagnetic particles and have practical consequences for the proposed detection of individual spins by magnetic resonance force microscopy (MRFM). In particular, fluctuating fields from a nearby magnetic tip can increase the relaxation rate of spins in a sample if there is significant spectral density of field fluctuation at the Larmor frequency of the target spin. As an initial step toward understanding this issue, magnetic field fluctuations have been simulated which emanate from a magnetic tip with dimensions 60 nm×60 nm×2 μm. It was found that the fluctuations in a cobalt magnetic tip were too strong for MRFM experiments aimed at detecting individual electron spins. However, the results obtained for a PrFeB tip fell within the tolerance required.

  19. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  20. Neurosurgical uses for intraprocedural magnetic resonance imaging.

    PubMed

    Mutchnick, Ian S; Moriarty, Thomas M

    2005-10-01

    Neurosurgical procedures demand precision, and efforts to create accurate neurosurgical navigation have been central to the profession through its history. Magnetic resonance image (MRI)-guided navigation offers the possibility of real-time, image-based stereotactic information for the neurosurgeon, which makes possible a number of diagnostic and therapeutic procedures. This article will review both current options for intraoperative MRI operative suite arrangements and the current therapeutic/diagnostic uses of intraoperative MRI. PMID:16924171

  1. Magnetic resonance imaging: Principles and applications

    SciTech Connect

    Kean, D.; Smith, M.

    1986-01-01

    This text covers the physics underlying magnetic resonance (MR) imaging; pulse sequences; image production; equipment; aspects of clinical imaging; and the imaging of the head and neck, thorax, abdomen and pelvis, and musculoskeletal system; and MR imaging. The book provides about 150 examples of MR images that give an overview of the pathologic conditions imaged. There is a discussion of the physics of MR imaging and also on the spin echo.

  2. Magnetic resonance imaging of diabetic foot complications.

    PubMed

    Low, Keynes T A; Peh, Wilfred C G

    2015-01-01

    This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096

  3. Fundamental physics of magnetic resonance imaging.

    PubMed

    Villafana, T

    1988-07-01

    Although similar to computerized tomography, in that cross-sectional images are produced, the physical principles underlying magnetic resonance are entirely different. The MRI process, as commonly implemented, involves the excitation of hydrogen nuclei and the analysis of how these nuclei recover to the original equilibrium steady states that they had prior to excitation. This article discusses that process, that is, preparatory alignment, RF excitation, relaxation and signal measurement, and spatial localization. PMID:3380941

  4. Nuclear magnetic resonance in Kondo lattice systems

    NASA Astrophysics Data System (ADS)

    Curro, Nicholas J.

    2016-06-01

    Nuclear magnetic resonance has emerged as a vital tool to explore the fundamental physics of Kondo lattice systems. Because nuclear spins experience two different hyperfine couplings to the itinerant conduction electrons and to the local f moments, the Knight shift can probe multiple types of spin correlations that are not accessible via other techniques. The Knight shift provides direct information about the onset of heavy electron coherence and the emergence of the heavy electron fluid.

  5. Magnetic resonance imaging of diabetic foot complications

    PubMed Central

    Low, Keynes TA; Peh, Wilfred CG

    2015-01-01

    This pictorial review aims to illustrate the various manifestations of the diabetic foot on magnetic resonance (MR) imaging. The utility of MR imaging and its imaging features in the diagnosis of pedal osteomyelitis are illustrated. There is often difficulty encountered in distinguishing osteomyelitis from neuroarthropathy, both clinically and on imaging. By providing an accurate diagnosis based on imaging, the radiologist plays a significant role in the management of patients with complications of diabetic foot. PMID:25640096

  6. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  7. Asymmetric zonal shim coils for magnetic resonance applications.

    PubMed

    Forbes, L K; Crozier, S

    2001-08-01

    A method is presented for the systematic design of asymmetric zonal shim coils for magnetic resonance applications. Fourier-series methods are used to represent the magnetic field inside and outside a circular cylinder of length 2L and radius a. The current density on the cylinder is also represented using Fourier series. Any desired field can be specified in advance on the cylinder's radius, over some nonsymmetric portion pLdensity on the coil and the magnetic field components then follow automatically. The method is illustrated by applying it to three sample zonal coil designs, namely, linear, quadratic, and cubic fields located asymmetrically in the coil. Current densities and corresponding coil winding patterns are shown for these three illustrative cases. Field calculations directly from the coil patterns and spherical harmonic deconvolutions of these fields indicate that the example designs match the theory well. Asymmetric shim coils can be used in conventional symmetric MRI magnets, particularly those architected for "head-only" studies. One of their major applications is expected to be in the newly developed asymmetric magnet systems. PMID:11548933

  8. Interpreting the behavior of a quarter-wave transmission line resonator in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Gogna, G. S.; Karkari, S. K.; Turner, M. M.

    2014-12-01

    The quarter wave resonator immersed in a strongly magnetized plasma displays two possible resonances occurring either below or above its resonance frequency in vacuum, fo. This fact was demonstrated in our recent articles [G. S. Gogna and S. K. Karkari, Appl. Phys. Lett. 96, 151503 (2010); S. K. Karkari, G. S. Gogna, D. Boilson, M. M. Turner, and A. Simonin, Contrib. Plasma Phys. 50(9), 903 (2010)], where the experiments were carried out over a limited range of magnetic fields at a constant electron density, ne. In this paper, we present the observation of dual resonances occurring over the frequency scan and find that ne calculated by considering the lower resonance frequency is 25%-30% smaller than that calculated using the upper resonance frequency with respect to fo. At a given magnetic field strength, the resonances tend to shift away from fo as the background density is increased. The lower resonance tends to saturate when its value approaches electron cyclotron frequency, fce. Interpretation of these resonance conditions are revisited by examining the behavior of the resonance frequency response as a function of ne. A qualitative discussion is presented which highlights the practical application of the hairpin resonator for interpreting ne in a strongly magnetized plasma.

  9. Interpreting the behavior of a quarter-wave transmission line resonator in a magnetized plasma

    SciTech Connect

    Gogna, G. S. Turner, M. M.; Karkari, S. K.

    2014-12-15

    The quarter wave resonator immersed in a strongly magnetized plasma displays two possible resonances occurring either below or above its resonance frequency in vacuum, f{sub o}. This fact was demonstrated in our recent articles [G. S. Gogna and S. K. Karkari, Appl. Phys. Lett. 96, 151503 (2010); S. K. Karkari, G. S. Gogna, D. Boilson, M. M. Turner, and A. Simonin, Contrib. Plasma Phys. 50(9), 903 (2010)], where the experiments were carried out over a limited range of magnetic fields at a constant electron density, n{sub e}. In this paper, we present the observation of dual resonances occurring over the frequency scan and find that n{sub e} calculated by considering the lower resonance frequency is 25%–30% smaller than that calculated using the upper resonance frequency with respect to f{sub o}. At a given magnetic field strength, the resonances tend to shift away from f{sub o} as the background density is increased. The lower resonance tends to saturate when its value approaches electron cyclotron frequency, f{sub ce}. Interpretation of these resonance conditions are revisited by examining the behavior of the resonance frequency response as a function of n{sub e}. A qualitative discussion is presented which highlights the practical application of the hairpin resonator for interpreting n{sub e} in a strongly magnetized plasma.

  10. Magnetic Resonance Microscopy of Collagen Mineralization

    PubMed Central

    Chesnick, Ingrid E.; Mason, Jeffrey T.; Giuseppetti, Anthony A.; Eidelman, Naomi; Potter, Kimberlee

    2008-01-01

    A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 ± 0.02 for control strips to a maximum value of 0.31 ± 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils. PMID:18487295

  11. Comparison of nuclear magnetic resonance spectroscopy with dual-photon absorptiometry and dual-energy X-ray absorptiometry in the measurement of thoracic vertebral bone mineral density: compressive force versus bone mineral.

    PubMed

    Myers, T J; Battocletti, J H; Mahesh, M; Gulati, M; Wilson, C R; Pintar, F; Reinartz, J

    1994-05-01

    31P nuclear magnetic resonance spectroscopy (NMRS) measurements were made on human T2 and T3 vertebral bodies. The bone mineral content (BMC) of isolated vertebral bodies minus the posterior elements and disks was measured using (1) NMRS on a 3.5 T, 85 mm bore GE Medical Systems NT-150 superconducting spectrometer, (2) a Lunar Corporation DPX-L dual-energy X-ray absorptiometry (DXA) scanner in an anterior-posterior (AP) orientation, (3) a Norland Corporation XR26 DXA scanner, also in an AP direction, and (4) a Norland Corporation model 2600 dual-photon absorptiometry (DPA) densitometer in both the AP and superior-inferior (SI) directions. Vertebral body volumes were measured using a water displacement technique to determine volume bone mineral densities (VBMD). They were then compressed to failure using an electrohydraulic testing device, followed by ashing in a muffle furnace at 700 degrees C for 18 h. Correlations of BMC between NMRS and DPA, DXA and ashing were excellent (0.96 < or = r < or = 0.99); in a one-way analysis of variance (ANOVA) test, means were not statistically different at a p level of 0.757. The correlations of VBMD between NMRS and the other methods were not as good (0.83 < or = r < or = 0.95); in a one-way ANOVA test, means were not statistically different at a p level of 0.089. BMC was a better predictor of ultimate compressive failure than VBMD for all six methods. For NMRS, the regression coefficient for BMC was r2 = 0.806, compared with r2 = 0.505 for VBMD. NMRS may prove an alternative to present methods of determining bone mineral. PMID:8069051

  12. Continuum resonance induced electromagnetic torque by a rotating plasma response to static resonant magnetic perturbation field

    SciTech Connect

    Liu Yueqiang; Connor, J. W.; Cowley, S. C.; Ham, C. J.; Hastie, R. J.; Hender, T. C.

    2012-10-15

    A numerical study is carried out, based on a simple toroidal tokamak equilibrium, to demonstrate the radial re-distribution of the electromagnetic torque density, as a result of a rotating resistive plasma (linear) response to a static resonant magnetic perturbation field. The computed electromagnetic torque peaks at several radial locations even in the presence of a single rational surface, due to resonances between the rotating response, in the plasma frame, and both Alfven and sound continuum waves. These peaks tend to merge together to form a rather global torque distribution, when the plasma resistivity is large. The continuum resonance induced net electromagnetic torque remains finite even in the limit of an ideal plasma.

  13. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  14. Electron series resonance plasma discharges: Unmagnetized and magnetized

    NASA Astrophysics Data System (ADS)

    Qiu, Weiguang

    2001-08-01

    This thesis explores high frequency electron series resonance in unmagnetized and magnetized bounded plasmas. Special interest is focused on low temperature plasmas in planar systems as such are useful for material processing and fusion devices. Chapter 1, Chapter 2 and Chapter 3 describe simulation studies of unmagnetized electron series resonance (ESR) sustained discharges with comparisons to theory and experiment. These plasmas have many desirable characteristics. The input resistance is small and the drive voltage and current are in phase. The drive voltage is small (˜Te) and the time average plasma potential is low (˜10Te). A strong kinetic phase space bunching process is shown to provide electrons of sufficient energy for ionization, which allows discharge operation at low neutral pressure and low electron temperatures. At low pressure, the ion flux to the wall has a narrow angular spread about the normal and the ion bombarding energy distribution has a sharp peak at the plasma potential. Scaling laws at fixed pressure nr∝w3RF ,s¯∝w -1RF are shown to hold when RF frequency is varied smoothly ("chirping") demonstrating continuous density control. Research on magnetized electron series resonance (MESR) discharges is described in Chapter 4, Chapter 5 and Chapter 6. The resonant frequency is derived from cold plasma theory and shows two resonant modes. Simulations verify these modes to be the natural oscillatory frequencies of weakly magnetized plasmas in a planar plasma diode. A global model is established for magnetized resonant discharges. The interrelations among the plasma parameters and the drive terms are formulated for both resonant modes. The initiation of a MESR discharge and its steady state properties are discussed and compared to the unmagnetized case. Weak lock-on of MESR frequency to the drive frequency is observed in simulation. Similar V - I characteristics as those in ESR are found both in theory and in simulation. Different from the ESR

  15. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  16. Magnetic resonance at the quantum limit

    NASA Astrophysics Data System (ADS)

    Bertet, Patrice

    The detection and characterization of paramagnetic species by electron-spin resonance (ESR) spectroscopy has numerous applications in chemistry, biology, and materials science. Most ESR spectrometers rely on the inductive detection of the small microwave signals emitted by the spins during their Larmor precession into a microwave resonator in which they are embedded. Using the tools offered by circuit Quantum Electrodynamics (QED), namely high quality factor superconducting micro-resonators and Josephson parametric amplifiers that operate at the quantum limit when cooled at 20mK, we report an increase of the sensitivity of inductively detected ESR by 4 orders of magnitude over the state-of-the-art, enabling the detection of 1700 Bismuth donor spins in silicon with a signal-to-noise ratio of 1 in a single echo. We also demonstrate that the energy relaxation time of the spins is limited by spontaneous emission of microwave photons into the measurement line via the resonator, which opens the way to on-demand spin initialization via the Purcell effect. These results constitute a first step towards circuit QED experiments with magnetically coupled individual spins.

  17. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: Off-resonant and resonant cases

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2013-09-01

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.

  18. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris

    Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.

  19. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  20. Magnetic resonance acoustic radiation force imaging

    PubMed Central

    McDannold, Nathan; Maier, Stephan E.

    2008-01-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are “stiffness weighted” and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery. PMID:18777934

  1. Approach to breast magnetic resonance imaging interpretation.

    PubMed

    Palestrant, Sarah; Comstock, Christopher E; Moy, Linda

    2014-05-01

    With the increasing use of breast magnetic resonance (MR) imaging comes the expectation that the breast radiologist is as fluent in its interpretation as in that of mammography and breast ultrasonography. Knowledge of who should be included for imaging and how to perform the imaging are as essential as interpreting the images. When reading the examination, the radiologist should approach the images from both a global and focused perspective, synthesizing findings into a report that includes a management plan. This article reviews a systematic and organized approach to breast MR imaging interpretation. PMID:24792657

  2. Magnetic resonance imaging findings of intramammary metastases.

    PubMed

    Wienbeck, Susanne; Herzog, Aimee; Kinner, Sonja; Surov, Alexey

    2016-01-01

    The purpose of this study was to identify magnetic resonance imaging (MRI) findings of intramammary metastases (IM). We identified 8 cases with IM, which were investigated by breast MRI (1.5T). In every case, the diagnosis of IM was proven histopathologically on breast biopsy specimens. Overall, 187 IM were identified. IM had inconsistent MRI features, which cannot be clearly classify as benign or malignant. IM should be taken into consideration in the differential diagnosis of breast lesions to avoid possible misinterpretations. PMID:27133668

  3. Magnetic Resonance Imaging of Acute Stroke.

    PubMed

    Nael, Kambiz; Kubal, Wayne

    2016-05-01

    Neuroimaging plays a critical role in the management of patients with acute stroke syndrome, with diagnostic, therapeutic, and prognostic implications. A multiparametric magnetic resonance (MR) imaging protocol in the emergency setting can address both primary goals of neuroimaging (ie, detection of infarction and exclusion of hemorrhage) and secondary goals of neuroimaging (ie, identifying the site of arterial occlusion, tissue characterization for defining infarct core and penumbra, and determining stroke cause/mechanism). MR imaging provides accurate diagnosis of acute ischemic stroke (AIS) and can differentiate AIS from other potential differential diagnoses. PMID:27150320

  4. Magnetic Resonance of Pelvic and Gastrointestinal Emergencies.

    PubMed

    Wongwaisayawan, Sirote; Kaewlai, Rathachai; Dattwyler, Matthew; Abujudeh, Hani H; Singh, Ajay K

    2016-05-01

    Magnetic resonance (MR) imaging is gaining increased acceptance in the emergency setting despite the continued dominance of computed tomography. MR has the advantages of more precise tissue characterization, superior soft tissue contrast, and a lack of ionizing radiation. Traditional barriers to emergent MR are being overcome by streamlined imaging protocols and newer rapid-acquisition sequences. As the utilization of MR imaging in the emergency department increases, a strong working knowledge of the MR appearance of the most commonly encountered abdominopelvic pathologies is essential. In this article, MR imaging protocols and findings of acute pelvic, scrotal, and gastrointestinal pathologies are discussed. PMID:27150327

  5. New magnetic resonance imaging methods in nephrology

    PubMed Central

    Zhang, Jeff L.; Morrell, Glen; Rusinek, Henry; Sigmund, Eric; Chandarana, Hersh; Lerman, Lilach O.; Prasad, Pottumarthi Vara; Niles, David; Artz, Nathan; Fain, Sean; Vivier, Pierre H.; Cheung, Alfred K.; Lee, Vivian S.

    2013-01-01

    Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics. PMID:24067433

  6. Cardiovascular magnetic resonance in systemic hypertension

    PubMed Central

    2012-01-01

    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053

  7. Magnetic resonance imaging in central pontine myelinolysis.

    PubMed Central

    Thompson, P D; Miller, D; Gledhill, R F; Rossor, M N

    1989-01-01

    Magnetic resonance imaging (MRI) was performed in two patients in whom a clinical diagnosis of central pontine myelinolysis (CPM) had been made. MRI showed lesions in the pons in both cases about 2 years after the illness, at a time when the spastic quadriparesis and pseudobulbar palsy had recovered. The persisting abnormal signals in CPM are likely to be due to fibrillary gliosis. Persistence of lesions on MRI means that the diagnosis of CPM may be electively, after the acute illness has resolved. Images PMID:2732743

  8. Multiparametric magnetic resonance imaging of prostate cancer.

    PubMed

    Hedgire, Sandeep S; Oei, Tamara N; McDermott, Shaunagh; Cao, Kai; Patel M, Zena; Harisinghani, Mukesh G

    2012-07-01

    In India, prostate cancer has an incidence rate of 3.9 per 100,000 men and is responsible for 9% of cancer-related mortality. It is the only malignancy that is diagnosed with an apparently blind technique, i.e., transrectal sextant biopsy. With increasing numbers of high-Tesla magnetic resonance imaging (MRI) equipment being installed in India, the radiologist needs to be cognizant about endorectal MRI and multiparametric imaging for prostate cancer. In this review article, we aim to highlight the utility of multiparamteric MRI in prostate cancer. It plays a crucial role, mainly in initial staging, restaging, and post-treatment follow-up. PMID:23599562

  9. Insight into protein nuclear magnetic resonance research.

    PubMed

    Stoven, V; Lallemand, J Y; Abergel, D; Bouaziz, S; Delsuc, M A; Ekondzi, A; Guittet, E; Laplante, S; Le Goas, R; Malliavin, T

    1990-08-01

    Nuclear magnetic resonance (NMR) is one of the most powerful techniques to investigate the geometry of molecules in solution. It has been widely applied, in recent years, to the study of protein conformation. However, full reconstruction of the 3-D structure of such macro-molecules, still constitutes a real challenge for the spectroscopist. Skills as diverse as biology, spectroscopy, signal processing, or computer sciences, are required. This paper presents various aspects of the research in that domain, and our contribution to it. PMID:2126458

  10. Emergency Magnetic Resonance Imaging of Musculoskeletal Trauma.

    PubMed

    Kumaravel, Manickam; Weathers, William M

    2016-05-01

    Musculoskeletal (MSK) trauma is commonly encountered in the emergency department. Computed tomography and radiography are the main forms of imaging assessment, but the use of magnetic resonance (MR) imaging has become more common in the emergency room (ER) setting for evaluation of low-velocity/sports-related injury and high-velocity injury. The superior soft tissue contrast and detail provided by MR imaging gives clinicians a powerful tool in the management of acute MSK injury in the ER. This article provides an overview of techniques and considerations when using MR imaging in the evaluation of some of the common injuries seen in the ER setting. PMID:27150325

  11. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  12. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  13. Pelvic applications of diffusion magnetic resonance images.

    PubMed

    Coutinho, Antonio C; Krishnaraj, Arun; Pires, Cintia E; Bittencourt, Leonardo K; Guimarães, Alexander R

    2011-02-01

    Diffusion-weighted imaging (DWI) is a powerful imaging technique in neuroimaging; its value in abdominal and pelvic imaging has only recently been appreciated as a result of improvements in magnetic resonance imaging technology. There is growing interest in the use of DWI for evaluating pathology in the pelvis. Its ability to noninvasively characterize tissues and to depict changes at a cellular level allows DWI to be an effective complement to conventional sequences of pelvic imaging, especially in oncologic patients. The addition of DWI may obviate contrast material in those with renal insufficiency or contrast material allergy. PMID:21129639

  14. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  15. Metabolite specific proton magnetic resonance imaging

    SciTech Connect

    Hurd, R.E.; Freeman, D.M.

    1989-06-01

    An imaging method is described that makes use of proton double quantum nuclear magnetic resonance (NMR) to construct images based on selected metabolites such as lactic acid. The optimization of the method is illustrated in vitro, followed by in vivo determination of lactic acid distribution in a solid tumor model. Water suppression and editing of lipid signals are such that two-dimensional spectra of lactic acid may be obtained from a radiation-induced fibrosarcoma (RIF-1) tumor in under 1 min and lactic acid images from the same tumor in under 1 hr at 2.0 T. This technique provides a fast and reproducible method at moderate magnetic field strength for mapping biologically relevant metabolites.

  16. In vivo nuclear magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leblanc, A.

    1986-05-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  17. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  18. A new resonance based method for the measurement of magnetic field intensity

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, Jinhyuk; Zhang, Haifeng; Umapathy, Mangalanathan; Choi, Seung-Bok

    2016-04-01

    A new magnetic field intensity measurement method using resonance principle is proposed in this paper. The proposed magnetic field sensor consists of magneto rheological (MR) fluid placed between two collocated, piezo-bounded, metallic, circular disc mounted face to face in the z-axis. The resonant frequency of the disc is changed by the magnetic field dependent viscosity of the MR fluid. The key enabling concept in this work is stiffening the circular metal disc using the rheological effect of MR fluid i.e. resonant frequency varies with respect to magnetic field strength. The change in resonant frequency is measured using simple closed loop electronics connected between the two piezo crystals. The analytical model of the vibrating circular discs with MR fluid placed at the center is derived and the results are validated with experimentation. The proposed magnetic flux density measurement concept is novel and it is found to have better sensitivity and linearity.

  19. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible–near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  20. Multiparametric magnetic resonance imaging: Current role in prostate cancer management.

    PubMed

    Ueno, Yoshiko; Tamada, Tsutomu; Bist, Vipul; Reinhold, Caroline; Miyake, Hideaki; Tanaka, Utaru; Kitajima, Kazuhiro; Sugimura, Kazuro; Takahashi, Satoru

    2016-07-01

    Digital rectal examination, serum prostate-specific antigen screening and transrectal ultrasound-guided biopsy are conventionally used as screening, diagnostic and surveillance tools for prostate cancer. However, they have limited sensitivity and specificity. In recent years, the role of multiparametric magnetic resonance imaging has steadily grown, and is now part of the standard clinical management in many institutions. In multiparametric magnetic resonance imaging, the morphological assessment of T2-weighted imaging is correlated with diffusion-weighted imaging, dynamic contrast-enhanced imaging perfusion and/or magnetic resonance spectroscopic imaging. Multiparametric magnetic resonance imaging is currently regarded as the most sensitive and specific imaging technique for the evaluation of prostate cancer, including detection, staging, localization and aggressiveness evaluation. This article presents an overview of multiparametric magnetic resonance imaging, and discusses the current role of multiparametric magnetic resonance imaging in the different fields of prostate cancer management. PMID:27184019

  1. Fano resonance generated by magnetic scatterer in micro metal slit

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Song; Wang, Pei-Jie; Wang, Hai; Feng, Sheng-Fei

    2014-09-01

    A micro metal slit/magnetic scatterer structure is proposed to generate electromagnetic Fano resonance. The magnetic scatterer is formed by infinite long split cylinder resonator array. The analytical transmissivity formulas are deduced from Maxwell electromagnetic theory and the Fano resonance transmission is achieved by the theoretical calculations. The enhancement of environment refractive index leads to an ultrasensitive and linear red shift of resonance peak in the THz range.

  2. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to

  3. Density Limits in Toroidal Magnetic Confinement Experiments

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2001-10-01

    The density limit represents one of the fundamental operating boundaries for magnetic confinement devices - one with practical importance to the goal of fusion power. With fusion reactivity maximized at a plasma temperature on the order of 10 keV and a reaction rate scaling as n^2, an optimum density can be calculated which is not guaranteed to be achievable in any given device. Unlike operational limits for plasma current or pressure, the density limit cannot be explained by magneto-hydrodynamics alone. There is general agreement that the proximate cause for the disruptive limit in the tokamak is cooling of the plasma edge and subsequent current profile shrinkage. The edge cooling may be dominated by atomic physics processes or as suggested in recent experiments, by anomalous transport. A similar picture is emerging for the reversed field pinch (RFP), while the limit in stellarators is apparently due to loss of thermal equilibrium from radiation. Empirical scaling laws in which the maximum plasma density is proportional to the average current density have been fairly successful in predicting the limit for subsequent experiments. Surprisingly, the density limits found in tokamaks and RFPs are virtually identical. Currentless stellarators reach similar density limits, though the expression needs to be recast in terms of the rotational transform. While scaling laws have done a reasonable job in describing data from many recent experiments, they can only give hints at the underlying physics. Understanding the mechanism for the density limit is crucial for extrapolating machine performance into untested regimes and so far, a completely satisfactory theory has not emerged. It seems likely that robust, reliable predictions will only come from the development of a first-principles theory backed up by detailed experimental observations. The extensive work already accomplished and reviewed here should provide a solid basis for such development.

  4. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This book presents the papers on technological advancement and diagnostic uses g magnetic resonance imaging. A comparative evaluation with computerized tomography is presented. Topics covered are imaging principles g magnetic resonance;instrumentation of magnetic resonance (MR);pathophysiology;quality and limitations g images;NMR imaging of brain and spinal cord;MR spectroscopy and its applications;neuroanatomy;Congenital malformations of brain and MR imaging;planning g MR imaging of spine and head and neck imaging.

  5. Massive subchorionic thrombosis followed by magnetic resonance imaging.

    PubMed

    Himoto, Yuki; Okumura, Ryosuke; Tsuji, Natsuki; Nagano, Tadayoshi; Fujimoto, Masakazu; Yamaoka, Toshihide; Kohno, Shigene

    2012-01-01

    Massive subchorionic thrombosis is a rare condition, defined as a large thrombus confined to the subchorionic space. It is associated with poor perinatal prognosis. However, prenatal diagnosis by ultrasonography is often difficult. We report a case of massive subchorionic thrombosis developing dermatomyositis after the delivery, followed by magnetic resonance imaging. Moreover, we review other 4 cases assessed with magnetic resonance imaging. Magnetic resonance imaging is very useful for confirmation of diagnosis and follow-up in combination with ultrasonography. PMID:22592619

  6. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  7. Magnetic resonance force microscopy combined with surface topography

    NASA Astrophysics Data System (ADS)

    Tsuji, S.; Yoshinari, Y.; Kawai, E.; Nakajima, K.; Park, H. S.; Shindo, D.

    2007-10-01

    A new method of surface microscopy is proposed, which combines three-dimensional electron spin resonance imaging by magnetic resonance force microscopy (MRFM) and topographic imaging of the sample surface by scanning force microscopy (SFM). In order to demonstrate its potential for the identification of microscale objects, the individual and combined images are used to provide the locations, shapes and spin density distributions of target phantom objects. We report spatial resolution in MRFM of 2.8 × 2.8 × 2.0μm 3. This could be improved to the theoretical limit of 0.08 × 0.08 × 0.04μm 3 through reduction of the thermal noise by cooling to cryogenic temperatures ˜0.5 K. We believe that this type of microscopy will become a very useful tool for the investigation of anomalies induced in surfaces by materials buried below the surface.

  8. General review of magnetic resonance elastography.

    PubMed

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-28

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation", MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  9. PLANTAR THROMBOPHLEBITIS: MAGNETIC RESONANCE IMAGING FINDINGS

    PubMed Central

    Miranda, Frederico Celestino; Carneiro, Renato Duarte; Longo, Carlos Henrique; Fernandes, Túlio Diniz; Rosemberg, Laércio Alberto; de Gusmão Funari, Marcelo Buarque

    2015-01-01

    Objective: Demonstrate the magnetic resonance imaging (MRI) findings in plantar thrombophlebitis. Methods: Retrospective review of twenty patients with pain in the plantar region of the foot, in which the MRI findings indicated plantar thrombophlebitis. Results: A total of fourteen men and six women, mean age 46.7 years were evaluated. Eight of these patients also underwent Doppler ultrasonography, which confirmed the thrombophlebitis. The magnetic resonance images were evaluated in consensus by two radiologists with experience in musculoskeletal radiology (more than 10 years each), showing perivascular edema in all twenty patients (100%) and muscle edema in nineteen of the twenty patients (95%). All twenty patients had intraluminal intermediate signal intensity on T2-weighted (100%) and venous ectasia was present in seventeen of the twenty cases (85%). Collateral veins were visualized in one of the twenty patients (5%). All fourteen cases (100%), in which intravenous contrast was administered, showed perivenular tissues enhancement and intraluminal filling defect. Venous ectasia, loss of compressibility and no flow on Doppler ultrasound were also observed in all eight cases examined by the method. Conclusion: MRI is a sensitive in the evaluation of plant thrombophlebitis in patients with plantar foot pain. PMID:27047898

  10. Magnetic resonance elastography hardware design: a survey.

    PubMed

    Tse, Z T H; Janssen, H; Hamed, A; Ristic, M; Young, I; Lamperth, M

    2009-05-01

    Magnetic resonance elastography (MRE) is an emerging technique capable of measuring the shear modulus of tissue. A suspected tumour can be identified by comparing its properties with those of tissues surrounding it; this can be achieved even in deep-lying areas as long as mechanical excitation is possible. This would allow non-invasive methods for cancer-related diagnosis in areas not accessible with conventional palpation. An actuating mechanism is required to generate the necessary tissue displacements directly on the patient in the scanner and three different approaches, in terms of actuator action and position, exist to derive stiffness measurements. However, the magnetic resonance (MR) environment places considerable constraints on the design of such devices, such as the possibility of mutual interference between electrical components, the scanner field, and radio frequency pulses, and the physical space restrictions of the scanner bore. This paper presents a review of the current solutions that have been developed for MRE devices giving particular consideration to the design criteria including the required vibration frequency and amplitude in different applications, the issue of MR compatibility, actuation principles, design complexity, and scanner synchronization issues. The future challenges in this field are also described. PMID:19499839

  11. Magnetic resonance imaging. Application to family practice.

    PubMed Central

    Goh, R. H.; Somers, S.; Jurriaans, E.; Yu, J.

    1999-01-01

    OBJECTIVE: To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. QUALITY OF EVIDENCE: Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. MAIN MESSAGE: For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. CONCLUSIONS: With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:10509224

  12. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  13. Magnetic Resonance Imaging in Pediatric Pulmonary Hypertension

    PubMed Central

    Olgunturk, Rana; Cevik, Ayhan; Terlemez, Semiha; Kacar, Emre; Oner, Yusuf Ali

    2015-01-01

    The present study aims to determine the efficacy and reliability of cardiovascular magnetic resonance imaging in establishing the diagnosis and prognosis of pulmonary hypertension in children. This is a retrospective comparison of 25 children with pulmonary hypertension and a control group comprising 19 healthy children. The diagnosis of pulmonary hypertension was made when the mean pulmonary artery pressure was ≥25 mmHg by catheter angiography. The children with pulmonary hypertension had significantly lower body mass indices than did the healthy children (P=0.048). In addition, the children with pulmonary hypertension had significantly larger main pulmonary artery diameters and ascending aortic diameters (both P=0.001) but statistically similar ratios of main pulmonary artery diameter-to-ascending aortic diameter. If the main pulmonary artery diameter was ≥25 mm, pediatric pulmonary hypertension was diagnosed with 72% sensitivity and 84% specificity. In the event that the ratio of main pulmonary artery diameter-to-ascending aorta diameter was ≥1, pediatric pulmonary hypertension was diagnosed with 60% sensitivity and 53% specificity. When compared with children who had New York Heart Association functional class II pulmonary hypertension, the children with functional class III pulmonary hypertension had significantly larger main (P=0.046), right (P=0.036), and left (P=0.003) pulmonary arteries. Cardiovascular magnetic resonance imaging is useful in the diagnosis of children with pulmonary hypertension. Pediatric pulmonary hypertension can be diagnosed with high sensitivity and specificity when the main pulmonary artery diameter measures ≥25 mm. PMID:26175631

  14. Magnetic resonance imaging of spinal injury.

    PubMed

    Tracy, P T; Wright, R M; Hanigan, W C

    1989-03-01

    Magnetic resonance imaging (MRI) was performed on 30 patients following spinal injury (SI). Spin-echo sequences and surface coils were used for all patients. Plain radiographs, high-resolution computed tomography (CT), and MRI were compared for the delineation of bone, disc, and ligament injury, measurement of sagittal spinal canal diameter and subluxation, epidural hematoma, and spinal cord structure. Myelography or intrathecal contrast-enhanced CT were not performed on any of these patients. Magnetic resonance imaging accurately delineated intraspinal pathology in two of four patients with acute penetrating SI, and was normal in the other two patients. In 16 patients with acute nonpenetrating SI, MRI was superior to CT for visualizing injuries to discs, ligaments, and the spinal cord, while CT was superior to MRI in characterizing bony injury. Computed tomography and MRI provided similar measurements of subluxation in six of six patients and of sagittal spinal canal diameter in three of four patients. In ten patients with chronic SI, MRI demonstrated post-traumatic cysts, myelomalacia, spinal cord edema, and the presence or absence of spinal cord compression. In patients with acute penetrating SI and chronic SI, MRI provided comprehensive clinical information. In patients with acute nonpenetrating SI, the information obtained by MRI complemented the data given by plain radiographs and CT, allowing clinical decisions to be made without the need of invasive imaging modalities. PMID:2711244

  15. Magnetic resonance imaging in pediatric pulmonary hypertension.

    PubMed

    Pektas, Ayhan; Olgunturk, Rana; Cevik, Ayhan; Terlemez, Semiha; Kacar, Emre; Oner, Yusuf Ali

    2015-06-01

    The present study aims to determine the efficacy and reliability of cardiovascular magnetic resonance imaging in establishing the diagnosis and prognosis of pulmonary hypertension in children. This is a retrospective comparison of 25 children with pulmonary hypertension and a control group comprising 19 healthy children. The diagnosis of pulmonary hypertension was made when the mean pulmonary artery pressure was ≥25 mmHg by catheter angiography. The children with pulmonary hypertension had significantly lower body mass indices than did the healthy children (P=0.048). In addition, the children with pulmonary hypertension had significantly larger main pulmonary artery diameters and ascending aortic diameters (both P=0.001) but statistically similar ratios of main pulmonary artery diameter-to-ascending aortic diameter. If the main pulmonary artery diameter was ≥25 mm, pediatric pulmonary hypertension was diagnosed with 72% sensitivity and 84% specificity. In the event that the ratio of main pulmonary artery diameter-to-ascending aorta diameter was ≥1, pediatric pulmonary hypertension was diagnosed with 60% sensitivity and 53% specificity. When compared with children who had New York Heart Association functional class II pulmonary hypertension, the children with functional class III pulmonary hypertension had significantly larger main (P=0.046), right (P=0.036), and left (P=0.003) pulmonary arteries. Cardiovascular magnetic resonance imaging is useful in the diagnosis of children with pulmonary hypertension. Pediatric pulmonary hypertension can be diagnosed with high sensitivity and specificity when the main pulmonary artery diameter measures ≥25 mm. PMID:26175631

  16. Magnetic resonance-guided thermal surgery.

    PubMed

    Cline, H E; Schenck, J F; Watkins, R D; Hynynen, K; Jolesz, F A

    1993-07-01

    A demonstration of MR guided thermal surgery involved experiments with imaging of focused ultrasound in an MRI system, measurements of the thermal transients and a thermal analysis of the resulting images. Both the heat distribution and the creation of focused ultrasound lesions in gel phantoms, in vitro bovine muscle and in vivo rabbit muscle were monitored with magnetic resonance imaging. Thermal surgical procedures were modeled by an elongated gaussian heat source where heat flow is controlled by tissue thermal properties and tissue perfusion. Temperature profiles were measured with thermocouples or calculated from magnetic resonance imaging in agreement with the model. A 2-s T1-weighted gradient-refocused acquisition provided thermal profiles needed to localize the heat distribution produced by a 4-s focused ultrasound pulse. Thermal analysis of the images give an effective thermal diffusion coefficient of 0.0015 cm2/s in gel and 0.0033 cm2/s in muscle. The lesions were detected using a T2-weighted spin-echo or fast spin-echo pulse sequence in agreement with muscle tissue sections. Potential thermal surgery applications are in the prostate, liver, kidney, bladder, breast, eye and brain. PMID:8371680

  17. The {sup 57}Fe nuclear magnetic resonance shielding in ferrocene revisited. A density-functional study of orbital energies, shielding mechanisms, and the influence of the exchange-correlation functional

    SciTech Connect

    Schreckenbach, G.

    1999-06-01

    The {sup 57}Fe nuclear magnetic resonance (NMR) shielding and chemical shift in ferrocene, Fe(C{sub 5}H{sub 5}){sub 2}, are studied using density functional theory (DFT) and gauge-including atomic orbitals (GIAO). Electronic factors contributing to the chemical shift are discussed in detail. It is shown that the chemical shift is entirely determined by paramagnetic contributions which in turn are dominated by metal based occupied-virtual d{r_arrow}d couplings. In particular, the HOMO-1(a{sub 1}{sup {prime}}) and the HOMO (e{sub 2}{sup {prime}}) couple with the LUMO (e{sub 1}{sup {double_prime}}). It is argued that the {sup 57}Fe nucleus in ferrocene is less shielded than in the reference compound (iron pentacarbonyl) due to a smaller HOMO-LUMO gap, resulting in stronger interactions between occupied and virtual orbitals. The influence of the XC functional on the calculated molecular orbital (MO) energies of frontier orbitals is discussed. Different generalized gradient approximations (GGA) give similar results whereas hybrid functionals that incorporate part of the Hartree{endash}Fock exchange stabilize occupied MOs strongly and destabilize virtual MOs. HOMO-LUMO gaps are nearly doubled as a result. The previously noted {open_quotes}dramatic influence{close_quotes} of different exchange-correlation (XC) functionals on the calculated chemical shifts is analyzed. The influence of the XC functional is realized through the paramagnetic part of the shielding; hybrid functionals increase it in absolute terms as compared to pure DFT (GGA). It is argued that three factors are responsible. These are (i) the increased occupied-virtual gaps, (ii) the more diffuse nature of virtual orbitals, and (iii) the coupling due to the Hartree{endash}Fock exchange in hybrid functionals. The last two factors increase the paramagnetic part of the shielding, and this effect is only partly reversed by the increased occupied-virtual gaps that result in reduced interactions. It is suggested

  18. The Feasibility of Magnetic Resonance Imaging for Quantification of Liver, Pancreas, Spleen, Vertebral Bone Marrow, and Renal Cortex R2* and Proton Density Fat Fraction in Transfusion-Related Iron Overload

    PubMed Central

    İdilman, İlkay S.; Gümrük, Fatma; Haliloğlu, Mithat; Karçaaltıncaba, Muşturay

    2016-01-01

    Objective: We aimed to evaluate the feasibility of quantification of liver, pancreas, spleen, vertebral bone marrow, and renal cortex R2* and magnetic resonance imaging-proton density fat fraction (MRI-PDFF) and to evaluate the correlations among them in patients with transfusion-related iron overload. Materials and Methods: A total of 9 patients (5 boys, 4 girls) who were referred to our clinic with suspicion of hepatic iron overload were included in this study. All patients underwent T1-independent volumetric multi-echo gradient-echo imaging with T2* correction and spectral fat modeling. MRI examinations were performed on a 1.5 T MRI system. Results: All patients had hepatic iron overload. Severe hepatic iron overload was recorded in 5/9 patients (56%), and when we evaluated the PDFF maps of these patients, we observed an extensive patchy artifact in the liver in 4 of 5 patients (R2* greater than 671 Hz). When we performed MRI-PDFF measurements despite these artifacts, we observed artifactual high MRI-PDFF values. There was a close correlation between average pancreas R2* and average pancreas MRI-PDFF (p=0.003, r=0.860). There was a significant correlation between liver R2* and average pancreas R2* (p=0.021, r=0.747), liver R2* and renal cortex R2* (p=0.020, r=0.750), and average pancreas R2* and renal cortex R2* (p=0.003, r=0.858). There was a significant negative correlation between vertebral bone marrow R2* and age (p=0.018, r=-0.759). Conclusion: High iron content of the liver, especially with a T2* value shorter than the first echo time can spoil the efficacy of PDFF calculation. Fat deposition in the pancreas is accompanied by pancreatic iron overload. There is a significant correlation between hepatic siderosis and pancreatic siderosis. Renal cortical and pancreatic siderosis are correlated, too. PMID:26376710

  19. Phosphorus 31 nuclear magnetic resonance examination of female reproductive tissues

    SciTech Connect

    Noyszewski, E.A.; Raman, J.; Trupin, S.R.; McFarlin, B.L.; Dawson, M.J. )

    1989-08-01

    Nuclear magnetic resonance spectroscopy is a powerful method of investigating the relationship between metabolism and function in living tissues. We present evidence that the phosphorus 31 spectra of myometrium and placenta are functions of physiologic state and gestational age. Specific spectroscopic abnormalities are observed in association with disorders of pregnancy and gynecologic diseases. Our results suggest that noninvasive nuclear magnetic resonance spectroscopy examinations may sometimes be a useful addition to magnetic resonance imaging examinations, and that nuclear magnetic resonance spectroscopy of biopsy specimens could become a cost-effective method of evaluating certain biochemical abnormalities.

  20. Textured-surface quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-08-25

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  1. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are

  2. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  3. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  4. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  5. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  6. Nuclear magnetic and quadrupole resonance studies of the stripes materials

    NASA Astrophysics Data System (ADS)

    Grafe, H.-J.

    2012-11-01

    Nuclear Magnetic and Quadrupole Resonance (NMR/NQR) is a powerful tool to probe electronic inhomogeneities in correlated electron systems. Its local character allows for probing different environments due to spin density modulations or inhomogeneous doping distributions emerging from the correlations in these systems. In fact, NMR/NQR is not only sensitive to magnetic properties through interaction of the nuclear spin, but also allows to probe the symmetry of the charge distribution and its homogeneity, as well as structural modulations, through sensitivity to the electric field gradient (EFG). We review the results of NMR and NQR in the cuprates from intrinsic spatial variations of the hole concentration in the normal state to stripe order at low temperatures, thereby keeping in mind the influence of doping induced disorder and inhomogeneities. Finally, we briefly discuss NQR evidence for local electronic inhomogeneities in the recently discovered iron pnictides, suggesting that electronic inhomogeneities are a common feature of correlated electron systems.

  7. Tuning Mie scattering resonances in soft materials with magnetic fields.

    PubMed

    Brunet, Thomas; Zimny, Kevin; Mascaro, Benoit; Sandre, Olivier; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2013-12-27

    An original approach is proposed here to reversibly tune Mie scattering resonances occurring in random media by means of external low induction magnetic fields. This approach is valid for both electromagnetic and acoustic waves. The experimental demonstration is supported by ultrasound experiments performed on emulsions made of fluorinated ferrofluid spherical droplets dispersed in a Bingham fluid. We show that the electromagnet-induced change of droplet shape into prolate spheroids, with a moderate aspect ratio of 2.5, drastically affects the effective properties of the disordered medium. Its effective acoustic attenuation coefficient is shown to vary by a factor of 5, by controlling both the flux density and orientation of the applied magnetic field. PMID:24483797

  8. Reciprocity and gyrotropism in magnetic resonance transduction

    NASA Astrophysics Data System (ADS)

    Tropp, James

    2006-12-01

    We give formulas for transduction in magnetic resonance—i.e., the appearance of an emf due to Larmor precession of spins—based upon the modified Lorentz reciprocity principle for gyrotropic (also called “nonreciprocal”) media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e., (H1x±iH1y) , where, e.g., for a single transceive antenna, the H ’s are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are swapped

  9. Matched dipole probe for precise electron density measurements in magnetized and non-magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-09-01

    We present a plasma diagnostics method based on impedance measurements of a short matched dipole placed in the plasma. This allows measuring the local electron density in the range from 1012-1015 m-3 with a magnetic field of at least 0-50 mT. The magnetic field strength is not directly influencing the data analysis and requires only that the dipole probe is oriented perpendicularly to the magnetic field. As a result, the magnetic field can be non-homogeneous or even non-defined within the probe length without any effect on the final tolerance of the measurements. The method can be applied to plasmas of relatively small dimensions (< 10 cm) and doesn't require any special boundary conditions. The high sensitivity of the impedance measurements is achieved by using a miniature matching system installed close to the probe tip, which also allows to suppress sheath resonance effects. We experimentally show here that the tolerance of the electron density measurements reaches values lower than 1%, both with and without the magnetic field. The method is successfully validated by both analytical modeling and experimental comparison with Langmuir probes. The validation experiments are conducted in a low pressure (1 mTorr) Ar discharge sustained in a 10 cm size plasma chamber with and without a transversal magnetic field of about 20 mT. This work was supported by a Marie Curie International Incoming Fellowships within FP7 (NEPTUNE PIIF-GA-2012-326054).

  10. Magnetic Resonance Force Microscopy Combined with Surface Topography

    NASA Astrophysics Data System (ADS)

    Tsuji, Shigenori; Yoshinari, Yohsuke

    2007-03-01

    In this presentation, we will show magnetic resonance force microscopy imaging combined with surface topography. The individual and combined images taken in the same coordinate are presented for extraction of the position, shapes and spin density distribution of target phantoms. This imaging technique is useful applied when the surface needs to be investigated in relation to the influence of a material buried below the surface. In our method, the surface topography was observed by the AFM with tapping mode. The spin density distribution was measured by the MRFM with the cyclic saturation technique. The AFM and MRFM experiments were made one after another by using the same experimental set-up, and their images were merged together afterwards. The sample consists of two kind of materials, one is DPPH containing unpaird spins and the other is a glass bead. DPPH particles with the size of 5˜8 micrometer and a 8.8 micrometer single bead were glued on a commercial cantilever.