Science.gov

Sample records for density material td

  1. Theoretical Studies of Possible Synthetic Routes for the High Energy Density Material Td N4: Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2001-01-01

    Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.

  2. FD-TD calculation with composite materials. Application to C160 aircraft measurements

    NASA Technical Reports Server (NTRS)

    Alliot, J. C.; Grando, J.; Issac, F.; Ferrieres, X.

    1991-01-01

    In a frequency domain in which a material thickness is smaller than the skin depth, a formalism based on the sheet impedance concept was developed and introduced in the FD-TD (finite difference-time domain) code ALICE. The predictive capabilities of the 3D code was evaluated by comparison to analytical and experimental data. The following subject areas are covered: low frequency electromagnetic penetration of loaded apertures; FD-TD modeling; and in-flight experiment modeling.

  3. AR and TD Fossil-Energy Materials Program. Quarterly progress report, March 31, 1982

    SciTech Connect

    Bradley, R.A.

    1982-07-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. All subcontractor work is technically monitored by Program staff members at ORNL and Argonne National Laboratory (ANL). The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. Distribution is as shown on pages 397-403. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-86 (Ref. 1) in which projects are organized according to fossil energy technologies.

  4. Proceedings of the Seventh Annual Conference on Fossil Energy Materials. Fossil Energy AR and TD Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1993-07-01

    Objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The 37 papers are arranged into 3 sessions: ceramics, new alloys/intermetallics, and new alloys/advanced austenitics. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  5. Materials Innovation for Next-Generation T&D Grid Components. Workshop Summary Report

    SciTech Connect

    Taylor, Emmanuel; Kramer, Caroline; Marchionini, Brian; Sabouni, Ridah; Cheung, Kerry; Lee, Dominic F

    2015-10-01

    The Materials Innovations for Next-Generation T&D Grid Components Workshop was co-sponsored by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability and the Oak Ridge National Laboratory (ORNL) and held on August 26 27, 2015, at the ORNL campus in Oak Ridge, Tennessee. The workshop was planned and executed under the direction of workshop co-chair Dr. Kerry Cheung (DOE) and co-chair Dr. Dominic Lee (ORNL). The information contained herein is based on the results of the workshop, which was attended by nearly 50 experts from government, industry, and academia. The research needs and pathways described in this report reflect the expert opinions of workshop participants, but they are not intended to represent the views of the entire electric power community.

  6. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending September 30, 1984

    SciTech Connect

    Bradley, R.A.

    1984-11-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Progam has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1983 to 1987. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  7. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1984

    SciTech Connect

    Not Available

    1985-02-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1984 to 1988. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  8. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending March 31, 1984

    SciTech Connect

    Not Available

    1984-05-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating subcontractor organizations (technically monitored by Program staff members at ORNL and Argonne National Laboratory (ANL)). The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. Distribution is as shown on pages 467-475. Future reports will be issued on a quarterly basis to a similar distribution. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982-86 (Ref. 1) in which projects are organized according to fossil energy technologies. A schematic summary of this organization is provided in Fig. 2. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  9. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1982

    SciTech Connect

    Not Available

    1983-02-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  10. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1983

    SciTech Connect

    Bradley, R.A.

    1984-03-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct reseach and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982 to 1986 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  11. AR and TD Fossil-Energy Materials Program. Quarterly progress report for the period ending March 31, 1983

    SciTech Connect

    Not Available

    1983-05-01

    The objective of the AR and TD Fossil-Energy Materials Program is to conduct research and developmet on materials for fossil-energy applications with a focus on the longer-term and generic needs of the various fossil-fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil-energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. Distribution is as shown on pages 439-446. Future reports will be issued on a quarterly basis to a similar distribution. We hope thie series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  12. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  13. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1981

    SciTech Connect

    Not Available

    1982-04-01

    The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.

  14. Material and Optical Densities

    ERIC Educational Resources Information Center

    Gluck, Paul

    2007-01-01

    The bending of a laser beam in a medium with a density and refractive index gradient in the same direction has been described previously. When a transparent container is half filled with a salt or sugar solution and an equal amount of water is floated on top of it, then diffusion will create a concentration gradient from top to bottom. A laser…

  15. Creep of oxide dispersion strengthened materials /with special reference to T-D nichrome/

    NASA Technical Reports Server (NTRS)

    Lin, J.; Sherby, O. D.

    1981-01-01

    Analyses of oxide dispersion strengthened (ODS) alloys shows that their characteristics are mainly due to the creep behavior of the matrix material. Diffusion-controlled slip creep is established as the rate-controlling process in the alloys investigated, with the glide and climb of edge dislocations associated with the subgrain structure as barriers being the specific rate-controlling step. It is found that the stable subgrain size in ODS alloys is usually associated with the spacing between particles 500-1000 A in size, and that their creep behavior is distinguished from that of the matrix material by the existence of a threshold stress that is not well defined microscopically but appears to be related to particles of less than 500 A size.

  16. Creep of oxide dispersion strengthened materials (with special reference to TD nichrome)

    NASA Technical Reports Server (NTRS)

    Lin, J.; Sherby, O. D.

    1978-01-01

    It was shown that the creep behavior of oxide dispersion strengthened (ODS) alloys is controlled principally by the creep properties of the matrix of the alloy devoid of particles. Thus, diffusion controlled slip process determine the rate controlling step in such materials. The role of the particles is to stabilize a fine substructure which is invariant with the creep stress over a wide range of stress. This characteristic leads to negligible strain hardening during creep and suggests that creep relations developed for pure metals and many solid solution alloys at constant structure should be used to describe the creep of ODS alloys. A second characteristics of the ODS alloys is that a stress may exist below which creep will not occur (threshold stress).

  17. Publications of the Oak Ridge National Laboratory Fossil Energy Program and the AR and TD Materials Program, April 1, 1995--March 31, 1997

    SciTech Connect

    Carlson, P.T.

    1997-07-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities that cover a wide range of fossil energy technologies. The principal focus of the Laboratory`s fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of April 1, 1995, through March 31, 1997, and is a supplement to the earlier bibliographies in this series. The publications listed in this document have been limited to topical reports, open literature publications, full-length papers in published proceedings of conferences, and books and book articles. A major activity of the Fossil Energy Program is the Advanced Research and Technology Development (AR and TD) Materials Program. The objective of the AR and TD Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. Beginning with this report, publications of the AR and TD Materials Program, previously compiled in separate reports, and publications from non-materials activities of the Fossil Energy Program will be combined in a single report.

  18. Method of synthesizing a low density material

    DOEpatents

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  19. Density of Spray-Formed Materials

    SciTech Connect

    Kevin M. McHugh; Volker Uhlenwinkel; Nils Ellendr

    2008-06-01

    Spray Forming is an advanced materials processing technology that transforms molten metal into a near-net-shape solid by depositing atomized droplets onto a substrate. Depending on the application, the spray-formed material may be used in the as-deposited condition or it may undergo post-deposition processing. Regardless, the density of the as-deposited material is an important issue. Porosity is detrimental because it can significantly reduce strength, toughness, hardness and other properties. While it is not feasible to achieve fully-dense material in the as-deposited state, density greater than 99% of theoretical density is possible if the atomization and impact conditions are optimized. Thermal conditions at the deposit surface and droplet impact angle are key processing parameters that influence the density of the material. This paper examines the factors that contribute to porosity formation during spray forming and illustrates that very high as-deposited density is achieved by optimizing processing parameters.

  20. Fabrication of low density ceramic material

    DOEpatents

    Meek, T.T.; Blake, R.D.; Sheinberg, H.

    1985-01-01

    A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.

  1. Research on high energy density capacitor materials

    NASA Technical Reports Server (NTRS)

    Somoano, Robert

    1988-01-01

    The Pulsed Plasma thruster is the simplest of all electric propulsion devices. It is a pulsed device which stores energy in capacitors for each pulse. The lifetimes and energy densities of these capacitors are critical parameters to the continued use of these thrusters. This report presents the result of a research effort conducted by JPL into the materials used in capacitors and the modes of failure. The dominant failure mechanism was determined to be material breakdown precipitated by heat build-up within the capacitors. The presence of unwanted gas was identified as the source of the heat. An aging phenomena was discovered in polycarbonate based capacitors. CO build-up was noted to increase with the number of times the capacitor had been discharged. Improved quality control was cited as being essential for the improvement of capacitor lifetimes.

  2. Enhanced diffusion welding of TD-NiCr sheet.

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.

    1972-01-01

    A method termed 'enhanced diffusion welding' has been developed to produce solid-state welds in TD-NiCr (Ni-20Cr-2ThO2) alloy sheet with weld strengths of 100% of the parent metal strength. Diffusion welded joints were made in specially processed TD-NiCr that equaled the tensile-shear and creep-rupture shear strengths of the parent material at 1090 deg C. The following observations have been made: specially processed TD-NiCr is preferred over commercial TD-NiCr for diffusion welding; the weld line can be eliminated when joining specially processed TD-NiCr by 600-grit sanding and electropolishing the faying surfaces prior to welding; and, a two-step weld cycle is preferred for diffusion welding of this alloy.

  3. Determining particle density using known material Hugeniot curves

    NASA Technical Reports Server (NTRS)

    Dibattista, J. D. (Inventor)

    1974-01-01

    A method is detailed to determine the density of particles wherein the closing velocity is known between the impacting particles and a plate of known material. Either the shock wave velocity or the material velocity produced in the plate upon impact by an unknown material particle is determined and compared with the corresponding shock wave or material velocity that would by produced by different known material particles having the same closing velocity upon impact with the plate. The unknown material particle density is derived by obtaining a coincidence of the shock wave velocity or material velocity conditions initially produced upon impact between the known material plate and one of the different material particles and from the fact that shock wave velocity and material velocity are ordered on the impacting particle material density alone.

  4. Density functional theory in materials science

    PubMed Central

    Neugebauer, Jörg; Hickel, Tilmann

    2013-01-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition–structure–property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form. PMID:24563665

  5. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD).

    PubMed

    Yokogawa, D

    2016-09-01

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced. PMID:27608983

  6. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    SciTech Connect

    Webster, R. Harrison, N. M.; Bernasconi, L.

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  7. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    SciTech Connect

    Judkins, R.R.; Cole, N.C.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  8. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    SciTech Connect

    Judkins, R.R.; Cole, N.C.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  9. Deformation and annealing response of TD-nickel chromium sheet

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1973-01-01

    The deformation and annealing response of TD-nickel chromium (TD-NiCr) 0.1 inch thick sheet was examined using various cold-rolling and annealing treatments. Upon annealing (above 816 C (1500 F), the as-received material was converted from an initially ultra-fine grain size (average grain dimension 0.51 micron) to a large grain structure. Increases in grain size by a factor of 100 to 200 were observed for this transformation. However, in those material states where the large grain transformation was absent, a fine grain recrystallized structure formed upon annealing (above 732 C (1350 F)). The deformation and annealing response of TD-NiCr sheet was evaluated with respect to the processing related variables as mode and severity of deformation and annealing temperature. Results indicate that the large grain transformation, classical primary recrystallization occurs. Using selected materials produced during the deformation and annealing study, the elevated temperature tensile properties of TD-NiCr sheet were examined in the temperature range 593 C (1100 F) to 1093 C (2000 F). It was observed that the elevated temperature tensile properties of TD-NiCr sheet could be optimized by the stabilization of a large grain size in this material using the cold working and/or annealing treatments developed during the present investigation.

  10. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    DOE PAGESBeta

    Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-02-26

    We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be themore » inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less

  11. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    SciTech Connect

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-15

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size

  12. Magnetocaloric Materials and the Optimization of Cooling Power Density

    NASA Technical Reports Server (NTRS)

    Wikus, Patrick; Canavan, Edgar; Heine, Sarah Trowbridge; Matsumoto, Koichi; Numazawa, Takenori

    2014-01-01

    The magnetocaloric effect is the thermal response of a material to an external magnetic field. This manuscript focuses on the physics and the properties of materials which are commonly used for magnetic refrigeration at cryogenic temperatures. After a brief overview of the magnetocaloric effect and associated thermodynamics, typical requirements on refrigerants are discussed from a standpoint of cooling power density optimization. Finally, a compilation of the most important properties of several common magnetocaloric materials is presented.

  13. Influence of density on hyperspectral BRDF signatures of granular materials

    NASA Astrophysics Data System (ADS)

    Peck, Douglas S.; Schultz, Malachi; Bachmann, Charles M.; Ambeau, Brittany; Harms, Justin

    2015-05-01

    Recent hyperspectral measurements of composite granular sediments of varying densities have revealed phenomena that contradict what radiative transfer theory would suggest.5 In high-density sands where dominant constituents are translucent and supplementary, darker grains are present, bidirectional reflectance distribution function (BRDF) measurements of high density sediments showed reduced intensity when compared to lower density counterparts. It is conjectured that this is due to diminished multiple scattering from the darker particles which more optimally fill pore space as density increases. The goal of these experiments is to further expand upon these earlier results that were conducted primarily in the principal scattering plane and only at minimum and maximum densities. In the present study, the BRDF of granular composites is compared along a gradient of densities for optically contrasting materials. Systematic analysis of angular and material dependence will be used to develop better models for multiple scattering effects of the granular materials. The measurements in this experiment used the recently constructed, laboratory and field-deployable Goniometer of the Rochester Institute of Technology (GRIT), which measures BRDF for geometries covering 360 degrees in azimuth and 65 degrees in zenith. In contrast to the previous studies limited to the principal scattering plane, GRIT provides a full hemispherical BRDF measurement.

  14. Computational predictions of energy materials using density functional theory

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.

    2016-01-01

    In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.

  15. Effect of power density on shrinkage of dental resin materials.

    PubMed

    Oberholzer, Theunis G; Pameijer, Cornelis H; Grobler, Sias R; Rossouw, Roelof J

    2003-01-01

    This study compares volumetric changes and rates of shrinkage during different stages of polymerization of dental resin composites and compomers exposed to the same total energy by using two different combinations of power density and exposure duration. A hybrid composite and its equivalent flowable and a compomer and its equivalent flowable were exposed using a halogen curing unit set at 400 mW/cm2 for 40 seconds and 800 mW/cm2 for 20 seconds: delivering 16 J/cm2 in both cases. Volumetric changes were recorded every 0.5 seconds using a mercury dilatometer. Ten replications per test condition were performed and the data were subjected to ANOVA. Statistically significant differences in shrinkage values and rates among different power densities were determined by means of paired t-tests at a 95% confidence level. Significantly more shrinkage (p<0.05) was found for the higher filled materials, Z250 and Dyract AP, when higher power density was used. However, no significant differences were found between their flowable counterparts when exposed to various power densities. Of the four materials, only Dyract AP exhibited no significant difference in shrinkage rate when various power densities were used. All the other materials exhibited significantly higher rates (p<0.05) at the higher power density. PMID:14531610

  16. Density Effects in Cellular Automata Models of Granular Materials

    NASA Astrophysics Data System (ADS)

    Baxter, G. W.; Behringer, R. P.

    1996-11-01

    We have studied density waves in a two dimensional cellular automata model of the gravity-driven flow of ellipsoidal particles through a wedge-shaped hopper(G. W. Baxter and R. P. Behringer, PRA 42), 1017 (1990).. The density variations form above the apex of the hopper and move upward, opposite the grain motion, with a well defined velocity. The waves become more pronounced as they travel. Density waves and alignment of particles are competing effects. Nearest-neighbor interactions which lead to alignment of neighboring grains can destroy the density waves. The relationship of these results to previous studies of density waves in real granular materials will be discussed(G. W. Baxter, R. P. Behringer, T. Fagert, and G. A. Johnson, PRL 62), 2825 (1989)..

  17. In-situ probing of Low Density Porous Materials

    NASA Astrophysics Data System (ADS)

    Hawreliak, James

    2013-06-01

    The shock response of porous materials is of interest in High Energy Density Physics because the PdV heating from void closure allows off principle Hugoniot states for modeling many astrophysical processes. While continuum models exists of shockwave propagation in foams the relevant physical phenomena spans three different length scales: the micro-length scale defined by the pore size and length between solid structures in the foam (10 to 1000 nm), the shock front thickness which determines material and energy flow (0.1 to 100 nm), and the hydrodynamic length scale associated with the expanding spherical wave (>10 μm), all of which impact the shock response of the low density foam. With the advent of new HED experimental facilities for generating shockwaves at x-ray light sources this gives new tools for performing pump probe experiments to understand the microstructural response of low density materials. Currently, we have used x-ray radiograph to make Hugoniot EOS measurements the of shock compressed low density SiO2 and Carbon based foams. We will show recent result of measurements of experiments conducted on the Omega laser facility and discuss imaging shockwaves in low density foams on the soon to be commissioned DCS end station at APS and the MEC end station at LCLS. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in

  19. Effective thermal conductivity determination for low-density insulating materials

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, D. M.

    1978-01-01

    That nonlinear least squares can be used to determine effective thermal conductivity was demonstrated, and a method for assessing the relative error associated with these predicted values was provided. The differences between dynamic and static determination of effective thermal conductivity of low-density materials that transfer heat by a combination of conduction, convection, and radiation were discussed.

  20. Lunar Surface Material - Spacecraft Measurements of Density and Strength

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1969-01-01

    The relation of the density of the lunar surface layer to depth is probably best determined from spacecraft measurements of the bearing capacity as a function of depth. A comparison of these values with laboratory measurements of the bearing capacity of low-cohesion particulate materials as a function of the percentage of solid indicates that the bulk density at the lunar surface is about 1.1 grams per cubic centimeter and that it increases nearly linearly to about 1.6 grams per cubic centimeter at a depth of 5 centimeters.

  1. Molecular shield - An orbiting low-density materials laboratory

    NASA Technical Reports Server (NTRS)

    Melfi, L. T., Jr.; Outlaw, R. A.; Hueser, J. E.; Brock, F. J.

    1976-01-01

    Analysis of a molecular shield orbited at 200 km utilizes the kinetic theory of a drifting Maxwellian gas, applied to a hemispherical shell geometry containing internal sources. The molecular shield provides very low gas density conditions for materials experiments at low gravity, while the hemispherical geometry minimizes the internal surface/volume ratio. Deployment of the shield in orbit is described. Contributions to density by shield outgassing, by experiment outgassing, and by interaction with the orbiter are discussed separately. A jettisonable closure plate sealing the hemisphere minimizes any risk of experiment contamination during deployment.

  2. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    SciTech Connect

    Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-02-26

    We have investigated the description of excited state relaxation in naked and hydrated TiO2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO2 nanoparticles is predicted to be associated with a large Stokes’ shift.

  3. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-01

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing "reaction zones" during sedimentation of the colloids.

  4. Exploratory study of friction welds in Udimet 700 and TD-Nickel bar

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1971-01-01

    Friction welded butt joints were made in both Udimet 700 and TD-Nickel bar. Also, dissimilar metal friction welds were made between these materials. Friction welding of Udimet 700 shows great promise because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. The weld line was not detectable metallographically in the heat treated condition. Friction welding for TD-Nickel, however, holds little if any promise. TD-Nickel friction weldments could support only 9 percent as much stress as the base metal for a 10-hour stress-rupture life at 1090 C. Dissimilar Udimet 700/TD-Nickel friction welds could sustain only 15 percent as much stress as the TD-Nickel parent metal for a 10-hour rupture life at 930 C.

  5. High power densities from high-temperature material interactions

    SciTech Connect

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  6. Mixing device for materials with large density differences

    DOEpatents

    Gregg, D.W.

    1994-08-16

    An auger-tube pump mixing device is disclosed for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided. 2 figs.

  7. Advanced Porous Coating for Low-Density Ceramic Insulation Materials

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Churchward, Rex; Katvala, Victor; Stewart, David; Balter, Aliza

    1988-01-01

    The need for improved coatings on low-density reusable surface insulation (RSI) materials used on the space shuttle has stimulated research into developing tougher coatings. The processing of a new porous composite "coating" for RST called toughened unipiece fibrous insulation Is discussed. Characteristics including performance in a simulated high-speed atmospheric entry, morphological structure before and after this exposure, resistance to Impact, and thermal response to a typical heat pulse are described. It is shown that this coating has improved impact resistance while maintaining optical and thermal properties comparable to the previously available reaction-cured glass coating.

  8. Mixing device for materials with large density differences

    DOEpatents

    Gregg, David W.

    1994-01-01

    An auger-tube pump mixing device for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided.

  9. Image density property of optical information recording microcapsule material

    NASA Astrophysics Data System (ADS)

    Lai, Weidong; Li, Xiaowei; Li, Xinzheng; Fu, Guangsheng

    2009-05-01

    The microcapsules can act as novel optical functional material in which the optical recording substance such as color-forming substance, photoinitiator and prepolymer are encapsulated. In this paper, the microcapsules with average particle diameter of 300nm are prepared with interfacial polymerization method. The optical responding character of the microcapsule is analyzed based on IR spectra and image density technique. Results show that the microcapsule material encapsulated prepolymer TMPTA and photoinitiator Irgacure-ITX, TPO has thermal phase-change at 140°C, at which the penetrability of the microcapsule has the highest efficiency. With the increase of exposure time, the reduction in absorption intensities of the prepolymer TMPTA are observed at 1635cm-1 of C=C stretching and 898cm-1 of C-H stretching on the C=C molecular bond. Such a result can be ascribed to the double bond cleavage process of the prepolymer TMPTA is initiated by the optical-exposed photoinitiator, and superpolymer network is formed. The image density contrast between the unexposed and exposed microcapsule is enhanced with exposure time increased.

  10. Three-Dimensional, Nondestructive Imaging of Low Density Materials

    SciTech Connect

    Kinney, J.H.; Haupt, D.L.; Lemay, J.D.

    1999-10-29

    The goal of this study was to develop a three-dimensional imaging method for studies of deformation in low-density materials during loading, and to implement finite element solutions of the elastic equations based on the images. Specimens of silica-reinforced polysiloxane foam pads, 15 mm in diameter by 1 mm thick, were used for this study. The nominal pore density was 50%, and the pores approximated interconnected spheres. The specimens were imaged with microtomography at {approx}16{micro}m resolution. A rotating stage with micrometer driven compression allowed imaging of the foams during deformation with precise registration of the images. A finite element mesh, generated from the image voxels, was used to calculate the mechanical properties of the structure, and the results were compared with conventional mechanical testing. The foam exhibited significant nonlinear behavior with compressive loading. The finite-element calculations from the images, which were in excellent agreement with experimental data, suggested that nonlinear behavior in the load displacement curves arises from buckling of the cell walls during compression and not from any nonlinear properties of the base elastomer. High-resolution microtomography, coupled with efficient finite-element modeling, shows promise for improving our understanding of the deformation behavior of cellular materials.

  11. Abnormal grain growth in TD-nickel.

    NASA Technical Reports Server (NTRS)

    Petrovic, J. J.; Ebert, L. J.

    1972-01-01

    Characteristics of the coarse grain transformation occurring in TD-nickel 1 in. bar under certain conditions of deformation and annealing were examined. The transformation exhibits Avrami-type kinetics, with an activation energy of 250 kcal per mole. Characteristics of untransformed regions are like those of the as-received state. The transformed grain size increases with increasing deformation and decreasing annealing temperature. The coarse grain transformation is significantly different from primary recrystallization in pure nickel. Its characteristics cannot be rationalized in terms of primary recrystallization concepts, but may be explained in terms of an abnormal grain growth description. The coarse grain transformation in TD-nickel is abnormal grain growth rather than primary recrystallization. The analysis suggests an explanation for the effect of thermomechanical history on the deformation and annealing behavior of TD-nickel.

  12. Replacing critical rare earth materials in high energy density magnets

    NASA Astrophysics Data System (ADS)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  13. Improving the Accuracy of Excited-State Simulations of BODIPY and Aza-BODIPY Dyes with a Joint SOS-CIS(D) and TD-DFT Approach.

    PubMed

    Chibani, Siwar; Laurent, Adèle D; Le Guennic, Boris; Jacquemin, Denis

    2014-10-14

    BODIPY and aza-BODIPY dyes constitute two key families of organic dyes with applications in both materials science and biology. Previous attempts aiming to obtain accurate theoretical estimates of their optical properties, and in particular of their 0-0 energies, have failed. Here, using time-dependent density functional theory (TD-DFT), configuration interaction singles with a double correction [CIS(D)], and its scaled-opposite-spin variant [SOS-CIS(D)], we have determined the 0-0 energies as well as the vibronic shapes of both the absorption and emission bands of a large set of fluoroborates. Indeed, we have selected 47 BODIPY and 4 aza-BODIPY dyes presenting diverse chemical structures. TD-DFT yields a rather large mean signed error between the experimental and theoretical 0-0 energies with a systematic overshooting of the transition energies (by ca. 0.4 eV). This error is reduced to ca. 0.2 [0.1] eV when the TD-DFT 0-0 energies are corrected with vertical CIS(D) [SOS-CIS(D)] energies. For BODIPY and aza-BODIPY dyes, both CIS(D) and SOS-CIS(D) clearly outperform TD-DFT. The present computational protocol allows accurate data to be obtained for the most relevant properties, that is, 0-0 energies and optical band shapes. PMID:26588151

  14. Sodium pentazolate: A nitrogen rich high energy density material

    NASA Astrophysics Data System (ADS)

    Steele, Brad A.; Oleynik, Ivan I.

    2016-01-01

    Sodium pentazolates NaN5 and Na2N5, new high energy density materials, are discovered during first principles crystal structure search for the compounds of varying amounts of elemental sodium and nitrogen. The pentazole anion (N5-) is stabilized in the condensed phase by sodium Na+ cations at pressures exceeding 20 GPa, and becomes metastable upon release of pressure. The sodium azide (NaN3) precursor is predicted to undergo a chemical transformation above 50 GPa into sodium pentazolates NaN5 and Na2N5. The calculated Raman spectrum of NaN5 is in agreement with the experimental Raman spectrum of a previously unidentified substance appearing upon compression and heating of NaN3.

  15. Correlation of materials properties with the atomic density concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.

  16. Ammonia-(Dinitramido)boranes: High-Energy-Density Materials.

    PubMed

    Bélanger-Chabot, Guillaume; Rahm, Martin; Haiges, Ralf; Christe, Karl O

    2015-09-28

    Two ammonia-(dinitramido)boranes were synthesized by the reaction of dinitroamine with ammonia-borane. These compounds are the first reported examples of (dinitramido)boranes. Ammonia-mono(dinitramido)borane is a perfectly oxygen-balanced high-energy-density material (HEDM) composed of an ammonia-BH2 fuel group and a strongly oxidizing dinitramido ligand. Although it is thermally not stable enough for practical applications, its predicted specific impulse as a solid rocket propellant would be 333 s. Its predicted performance as an explosive matches that of pentaerythtritol tetranitrate (PETN) and significantly exceeds that of trinitrotoluene (TNT). Its structure was established by X-ray crystallography and vibrational and multinuclear NMR spectroscopy. Additionally, the over-oxidized ammoniabis(dinitramido)borane was detected by NMR spectroscopy. PMID:26276906

  17. Density functional study of silver defects in telluride thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Ryu, Byungki; Oh, Min-Wook; Park, Su-Dong

    2015-03-01

    Silver impurity in telluride thermoelectric materials forms various defect and impurity structures, such as AgSb rich nanoregion in Ag-Sb-Pb-Te, Ag2Te and metallic silver in PbTe. To understand the atomic, electronic, energetic, and diffusion properties of silver impurities in telluride systems, we have performed the density functional theory and density functional perturbation theory calculations of silver doped PbTe. Under Te and Ag rich condition, silver telluride impurity phase or Ag-dimer defects are expected to be easily formed. Under Te poor condition, silver point defects are calculated to be easily formed and they are more stable than native point defects of PbTe, implying that silver point defect might be the major dopant responsible for the carrier generation in PbTe. We also calculated the diffusion coefficient and diffusion length of silver point defect in PbTe. Based on the results, we discussed the electrical and thermoelectric properties of silver doped PbTe. This work was supported by the National Institute of Supercomputing and Network/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2014-C1-022).

  18. Designing Meaningful Density Functional Theory Calculations in Materials Science

    NASA Astrophysics Data System (ADS)

    Mattsson, A. E.

    2005-07-01

    Density functional theory (DFT) methods for calculating the quantum mechanical ground states of condensed matter systems are now a common and significant component of materials research. These methods are also increasingly used in Equation of State work, in particular in the warm dense matter regime. The growing importance of DFT reflects the development of sufficiently accurate functionals, efficient algorithms, and continuing improvements in computing capabilities. As the materials problems to which DFT is applied have become large and complex, so have the sets of calculations necessary to investigate a given problem. Highly versatile, powerful codes exist to serve the practitioner, but designing useful simulations is a complicated task, involving intricate manipulation of many variables, with many pitfalls for the unwary and the inexperienced. We give an overview of DFT and discuss several of the most important issues that go into designing a meaningful DFT calculation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Metallographic examination of TD-nickel base alloys. [thermal and chemical etching technique evaluation

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Petrovic, J. J.; Ebert, L. J.

    1975-01-01

    Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.

  20. Long-range correction for tight-binding TD-DFT

    NASA Astrophysics Data System (ADS)

    Humeniuk, Alexander; Mitrić, Roland

    2015-10-01

    We present two improvements to the tight-binding approximation of time-dependent density functional theory (TD-DFTB): First, we add an exact Hartree-Fock exchange term, which is switched on at large distances, to the ground state Hamiltonian and similarly to the coupling matrix that enters the linear response equations for the calculation of excited electronic states. We show that the excitation energies of charge transfer states are improved relative to the standard approach without the long-range correction by testing the method on a set of molecules from the database in Peach et al. [J. Chem. Phys. 128, 044118 (2008)] which are known to exhibit problematic charge transfer states. The degree of spatial overlap between occupied and virtual orbitals indicates where TD-DFTB and long-range corrected TD-DFTB (lc-TD-DFTB) can be expected to produce large errors. Second, we improve the calculation of oscillator strengths. The transition dipoles are obtained from Slater Koster files for the dipole matrix elements between valence orbitals. In particular, excitations localized on a single atom, which appear dark when using Mulliken transition charges, acquire a more realistic oscillator strength in this way. These extensions pave the way for using lc-TD-DFTB to describe the electronic structure of large chromophoric polymers, where uncorrected TD-DFTB fails to describe the high degree of conjugation and produces spurious low-lying charge transfer states.

  1. Long-range correction for tight-binding TD-DFT

    SciTech Connect

    Humeniuk, Alexander; Mitrić, Roland

    2015-10-07

    We present two improvements to the tight-binding approximation of time-dependent density functional theory (TD-DFTB): First, we add an exact Hartree-Fock exchange term, which is switched on at large distances, to the ground state Hamiltonian and similarly to the coupling matrix that enters the linear response equations for the calculation of excited electronic states. We show that the excitation energies of charge transfer states are improved relative to the standard approach without the long-range correction by testing the method on a set of molecules from the database in Peach et al. [J. Chem. Phys. 128, 044118 (2008)] which are known to exhibit problematic charge transfer states. The degree of spatial overlap between occupied and virtual orbitals indicates where TD-DFTB and long-range corrected TD-DFTB (lc-TD-DFTB) can be expected to produce large errors. Second, we improve the calculation of oscillator strengths. The transition dipoles are obtained from Slater Koster files for the dipole matrix elements between valence orbitals. In particular, excitations localized on a single atom, which appear dark when using Mulliken transition charges, acquire a more realistic oscillator strength in this way. These extensions pave the way for using lc-TD-DFTB to describe the electronic structure of large chromophoric polymers, where uncorrected TD-DFTB fails to describe the high degree of conjugation and produces spurious low-lying charge transfer states.

  2. First principles prediction of an insensitive high energy density material.

    PubMed

    Hirshberg, Barak; Denekamp, Chagit

    2013-10-28

    A new high performance yet insensitive explosive is proposed, based on an extensive computational study of tris(tetrazolyl)amine in the solid state and in the gas phase. The calculations for the solid state employ the PBE density functional with empirical dispersion correction while the gas phase calculations use the higher level of B3LYP and MP2. Two stable crystalline structures of tris(tertrazolyl)amine were located belonging to P1 and P21 space groups. The crystal structures obtained reveal that solid tris(tertrazolyl)amine is organized in layers with a very small interlayer spacing, due to π stacking, as well as significant inter and intra-molecular hydrogen bonding. Application of these results to the calculation of the detonation velocity and pressure indicate high performance for both phases, especially the P21 phase. At the same time the small value found for the interlayer spacing and the significant hydrogen bonding suggest relatively high stability. These results point to a promising new explosive material with a balance between high performance and insensitivity. PMID:24042364

  3. Applications of density functional theory in materials science and engineering

    NASA Astrophysics Data System (ADS)

    Alvarado, Manuel, Jr.

    Density Functional Theory (DFT) is a powerful tool that can be used to model various systems in materials science. Our research applies DFT to two problems of interest. First, an organic/inorganic complex dye system known as a Mayan pigment is modeled to determine chemical binding sites, verifying each model with physical data such as UV/Vis spectra. Preliminary studies on palygorskite-based mayan pigments (mayacrom blue, mayacrom purple) show excellent agreement with experimental studies when using a dimer dye geometry binding with tetrahedrally-coordinated aluminum impurity sites in palygorksite. This approach is applied to a sepiolite-based organic/inorganic dye system using thioindigo attached to a tetrahedral aluminum impurity site with an additional aluminum impurity site in close proximity to the binding site. As a second application of DFT, various grain orientations in beta-Sn are modeled under imposed strains in order to calculate elastic properties of this system. These calculations are intended to clarify discrepancies in published, experimental crystal compliance values.

  4. Electronic band structure of the layered compound Td-WTe2

    NASA Astrophysics Data System (ADS)

    Augustin, J.; Eyert, V.; Böker, Th.; Frentrup, W.; Dwelk, H.; Janowitz, C.; Manzke, R.

    2000-10-01

    We have studied the electronic structure of the layered compound Td-WTe2 experimentally using high-resolution angle-resolved photoelectron spectroscopy, and theoretically using density-functional based augmented spherical wave calculations. Comparison of the measured and calculated data shows in general good agreement. The theoretical results reveal the semimetallic as well as metallic character of Td-WTe2; the semimetallic character is due to a 0.5 eV overlap of Te 5p- and W 5d-like bands along Γ-Y, while the metallic character is due to two classical metallic bands. The rather low conductivity of Td-WTe2 is interpreted as resulting from a low density of states at the Fermi level.

  5. Electronic optical response of molecules in intense fields: comparison of TD-HF, TD-CIS, and TD-CIS(D) approaches.

    PubMed

    Schlegel, H Bernhard; Smith, Stanley M; Li, Xiaosong

    2007-06-28

    Time-dependent Hartree-Fock (TD-HF) and time-dependent configuration interaction (TD-CI) methods with Gaussian basis sets have been compared in modeling the response of hydrogen molecule, butadiene, and hexatriene exposed to very short, intense laser pulses (760 nm, 3 cycles). After the electric field of the pulse returns to zero, the molecular dipole continues to oscillate due to the coherent superposition of excited states resulting from the nonadiabatic excitation caused by the pulse. The Fourier transform of this residual dipole gives a measure of the nonadiabatic excitation. For low fields, only the lowest excited states are populated, and TD-CI simulations using singly excited states with and without perturbative corrections for double excitations [TD-CIS(D) and TD-CIS, respectively] are generally in good agreement with the TD-HF simulations. At higher field strengths, higher states are populated and the methods begin to differ significantly if the coefficients of the excited states become larger than approximately 0.1. The response of individual excited states does not grow linearly with intensity because of excited state to excited state transitions. Beyond a threshold in the field strength, there is a rapid increase in the population of many higher excited states, possibly signaling an approach to ionization. However, without continuum functions, the present TD-HF and TD-CI calculations cannot model ionization directly. The TD-HF and TD-CIS simulations are in good accord because the excitation energies obtained by linear response TD-HF [also known as random phase approximation (RPA)] agree very well with those obtained from singly excited configuration interaction (CIS) calculations. Because CIS excitation energies with the perturbative doubles corrections [CIS(D)] are on average lower than the CIS excitation energies, the TD-CIS(D) response is generally stronger than TD-CIS. PMID:17614540

  6. Method for measuring the density of lightweight materials

    DOEpatents

    Snow, Samuel G.; Giacomelli, Edward J.

    1980-01-01

    This invention relates to a nondestructive method for measuring the density of articles composed of elements having a low atomic number such as plastic and carbon composites. The measurement is accomplished by striking the article with a collimated beam of X radiation, simultaneously monitoring the radiation scattered and the radiation transmitted by the article, then relating the ratio of the radiation scattered to the radiation transmitted with the density of the article. The above method is insensitive to all variables except density.

  7. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  8. Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems

    NASA Technical Reports Server (NTRS)

    Pawar, A. V.; Tenney, D. R.

    1974-01-01

    The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.

  9. Modern trends in low-density materials for fusion

    NASA Astrophysics Data System (ADS)

    Orekhov, A. S.; Akunets, A. A.; Borisenko, L. A.; Gromov, A. I.; Merkuliev, Yu. A.; Pimenov, V. G.; Sheveleva, E. E.; Vasiliev, V. G.; Borisenko, N. G.

    2016-03-01

    Low-density targets continue to yield new experimental data and to put new unsolved questions for driver-plasma experiments. The experiments with such targets are presented in the paper by “Low-density targets that worked in direct and indirect experiments with laser and particle beams” by L.A. Borisenko et. al. ibid. Here we concentrate on nano structured and aerogel targets’ fabrication and characterization. These configurations establish certain standards for contemporary shot experiments.

  10. Low-Density High-Strength Foamed Materials

    NASA Technical Reports Server (NTRS)

    Wang, T.; Elleman, D.; Kendall, J. M., Jr.

    1984-01-01

    Molten bubbles of metal or plastic coalesce into strong, lightweight materials that look like solidified foam. Bubbles formed in compartment that receives molten material and compressed gas that fills bubbles. Compartment has matrix of nozzles. Leaving nozzles, bubbles fall into acoustic chamber and coalesce; then drop through funnel and are cast into desired shape by extrusion or molding. Materials used for construction, extruded into molds, sawed, nailed, and generally handled as wood.

  11. The role of adequate reference materials in density measurements in hemodialysis

    NASA Astrophysics Data System (ADS)

    Furtado, A.; Moutinho, J.; Moura, S.; Oliveira, F.; Filipe, E.

    2015-02-01

    In hemodialysis, oscillation-type density meters are used to measure the density of the acid component of the dialysate solutions used in the treatment of kidney patients. An incorrect density determination of this solution used in hemodialysis treatments can cause several and adverse events to patients. Therefore, despite the Fresenius Medical Care (FME) tight control of the density meters calibration results, this study shows the benefits of mimic the matrix usually measured to produce suitable reference materials for the density meter calibrations.

  12. Achieving tunable sensitivity in composite high-energy density materials

    NASA Astrophysics Data System (ADS)

    Rashkeev, Sergey; Tsyshevsky, Roman; Kuklja, Maija

    2015-06-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  13. Materials for high-density electronic packaging and interconnection

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  14. Dielectric properties of pharmaceutical materials relevant to microwave processing: effects of field frequency, material density, and moisture content.

    PubMed

    Heng, Paul W S; Loh, Z H; Liew, Celine V; Lee, C C

    2010-02-01

    The rising popularity of microwaves for drying, material processing and quality sensing has fuelled the need for knowledge concerning dielectric properties of common pharmaceutical materials. This article represents one of the few reports on the density and moisture content dependence of the dielectric properties of primary pharmaceutical materials and their relevance to microwave-assisted processing. Dielectric constants (epsilon') and losses (epsilon'') of 13 pharmaceutical materials were measured over a frequency range of 1 MHz-1 GHz at 23 +/- 1 degrees C using a parallel-electrode measurement system. Effects of field frequency, material density and moisture content on dielectric properties were studied. Material dielectric properties varied considerably with frequency. At microwave frequencies, linear relationships were established between cube-root functions of the dielectric parameters [symbols: see text] and density which enabled dielectric properties of materials at various densities to be estimated by regression. Moisture content was the main factor that contributed to the disparities in dielectric properties and heating capabilities of the materials in a laboratory microwave oven. The effectiveness of a single frequency density-independent dielectric function for moisture sensing applications was explored and found to be suitable within low ranges of moisture contents for a model material. PMID:19708060

  15. Correlation of materials properties with the atomic density concept

    NASA Technical Reports Server (NTRS)

    Bradstreet, S. W.

    1973-01-01

    Progress is described in developing, through mathematical expressions, values for the parameters which apparently determine the values of atomic density, melting point, and principal elastic constant for the alkali halides. This necessarily required the review and refinement of these data for the monohalides in general and for LiH. A more sensitive and dimensionless expression of the mass factor appears to have promise and a still more sensitive one is suggested for future study. A periodicity factor based on inert gas core configuration has been suggested to replace the atomic number previously used.

  16. Microwave Sensing of Density and Moisture in Granular Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of moisture measurement in grain and seed is discussed, and a brief history of the development of moisture sensing instruments, based on sensing of dielectric properties of these materials, is presented. Data are presented graphically on the permittivities or dielectric properties of...

  17. Method of altering the effective bulk density of solid material and the resulting product

    DOEpatents

    Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.

    1983-01-01

    A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.

  18. Oxidation of TD nickel at 1050 C and 1200 C as compared with three grades of nickel of different purity

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Grisaffe, S. J.; Deadmore, D. L.

    1972-01-01

    The isothermal oxidation of three nickels of different purity, Ni-200, Ni-270, and JM-Ni, was compared with that of TD-Ni in air at 1050 and 1200 C. The samples were oxidized as ground, as polished, or as annealed and polished. Weight change, metal loss, scale thickness, oxide morphology, and scale texture were determined. In degree of oxidation, TD-Ni was nearly the same as the higher purity materials, Ni-270 and JM-Ni; and less pure Ni-200 oxidized more than the others. However, in microstructure and scale texture the TD-Ni more closely resembled Ni-200. Grinding only charged the texture of the oxides of Ni_200 and TD-Ni.

  19. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  20. Modeling Excited States in TiO2 Nanoparticles: On the Accuracy of a TD-DFT Based Description

    PubMed Central

    2014-01-01

    We have investigated the suitability of Time-Dependent Density Functional Theory (TD-DFT) to describe vertical low-energy excitations in naked and hydrated titanium dioxide nanoparticles. Specifically, we compared TD-DFT results obtained using different exchange-correlation (XC) potentials with those calculated using Equation-of-Motion Coupled Cluster (EOM-CC) quantum chemistry methods. We demonstrate that TD-DFT calculations with commonly used XC potentials (e.g., B3LYP) and EOM-CC methods give qualitatively similar results for most TiO2 nanoparticles investigated. More importantly, however, we also show that, for a significant subset of structures, TD-DFT gives qualitatively different results depending upon the XC potential used and that only TD-CAM-B3LYP and TD-BHLYP calculations yield results that are consistent with those obtained using EOM-CC theory. Moreover, we demonstrate that the discrepancies for such structures originate from a particular combination of defects that give rise to charge-transfer excitations, which are poorly described by XC potentials that do not contain sufficient Hartree–Fock like exchange. Finally, we consider that such defects are readily healed in the presence of ubiquitously present water and that, as a result, the description of vertical low-energy excitations for hydrated TiO2 nanoparticles is nonproblematic. PMID:24795544

  1. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    PubMed

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work. PMID:27392135

  2. Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material

    NASA Astrophysics Data System (ADS)

    Yin, Leijun; Ning, Hao; Turkdogan, Sunay; Liu, Zhicheng; Nichols, Patricia L.; Ning, C. Z.

    2012-06-01

    Erbium-containing materials of long lifetime and high Er density are important for achieving strong luminescence and high optical gain in compact integrated photonics devices. We have systematically studied the lifetime and crystal quality as a function of growth conditions for an erbium compound that we recently reported, erbium chloride silicate (ECS). The lifetime for the best quality ECS nanowires can be as long as 540 μs, the longest for high-density Er-materials, representing a lifetime-density product as high as 8.7 × 1018 s cm-3. Such high density, long lifetime erbium materials can find many interesting applications such as compact lasers or amplifiers.

  3. Single-drop impact damage prediction for low density, coated ceramic materials. [rain erosion

    NASA Technical Reports Server (NTRS)

    Mustelier, D.

    1984-01-01

    A technique utilizing finite element analysis, liquid impact kinematics, and momentum theory is described and compared to single-drop impact test data performed on various configurations of coated ceramic material. The method correlates well with test data and is useful in predicting the single-drop impact damage velocity threshold for low-density, coated ceramic materials.

  4. Effective density and mass attenuation coefficient for building material in Brazil.

    PubMed

    Salinas, I C P; Conti, C C; Lopes, R T

    2006-01-01

    This paper presents values for density and mass attenuation coefficient of building materials commonly used in Brazil. Transmission measurements were performed to provide input information for simulations with MCNP4B code. The structure for the clay bricks was simulated as a mix of all material layers and an effective density determined. The mass attenuation coefficients were determined for the 50-3,000 keV gamma-ray energy range. A comparison with results for similar materials found in the literature showed good agreement. PMID:16257357

  5. Td (Tetanus and Diphtheria) Vaccine: What You Need to Know

    MedlinePlus

    VACCINE INFORMATION STATEMENT Td Vaccine (Tetanus and Diphtheria) What You Need to Know Many Vaccine Information Statements are available in Spanish and other languages. See www.immunize.org/vis Hojas de ...

  6. Development of forming and joining technology for TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1973-01-01

    Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.

  7. Molecular structure-optical property relationships of 1,3-bis (4-methoxyphenyl) prop-2-en-1-one: A DFT and TD-DFT investigation

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Aribi, I.; Ayachi, S.; Haj Said, A.; Alimi, K.

    2015-08-01

    Some fundamental properties of the 1,3-bis (4-methoxyphenyl) prop-2-en-1-one, as functional monomer, are measured as well as calculated. The combined results are used for modeling and predicting monomer structure-property relationships. Thus, theoretical calculations based on Density Functional Theory (DFT) and its Time-Dependent counterpart (TD-DFT) are performed to evaluate the vibrational frequencies [IR and Raman], magnetic shielding for nuclear magnetic resonance [1H and 13C NMR], electronic and optical properties of the studied material, respectively. The DFT/TD-DFT at B3LYP with 6-31G(d,p), 6-31G(d) and 3-21G(d) were employed to choose appropriate basis set that provides a more accurate molecular-property description. The simulated spectra are found to agree well, in shape, position, and relative intensity of peaks, with the available experimental measurements. In addition, frontier molecular orbitals, Mullikan charge and electron spin density distributions are carried out. Our results highlight the use of predictive calculations to provide an in-depth understanding evidence of the electrochemically-initiated monomer reactivity.

  8. A study on photon attenuation coefficients of different wood materials with different densities

    NASA Astrophysics Data System (ADS)

    Saritha, B.; Nageswara Rao, A. S.

    2015-12-01

    A study on the variation of linear attenuation coefficients with the densities of the wood samples is under taken. The soft wood and hard wood samples were collected from the forest area of Pakal in Warangal district. The linear and mass attenuation coefficients are measured using gamma ray spectrometry based on NaI (Tl) scintillation detector with energies of 662 KeV and 59.5 KeV respectively. The mass attenuation coefficient values measured from experiment and are compared with theoretical methods using XCOM program. The plots of density versus linear attenuation coefficient for different wood materials correspond to higher order polynomial are presented. It is observed that variation of linear attenuation coefficient depends on densities of materials. The Chloroxylon swietenia with more density has more linear attenuation coefficient at 59.5 KeV and 662 KeV. The variation in attenuation coefficient attributed to chemical composition of wood used in the experiment.

  9. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)

    NASA Astrophysics Data System (ADS)

    Saal, James E.; Kirklin, Scott; Aykol, Muratahan; Meredig, Bryce; Wolverton, C.

    2013-11-01

    High-throughput density functional theory (HT DFT) is fast becoming a powerful tool for accelerating materials design and discovery by the amassing tens and even hundreds of thousands of DFT calculations in large databases. Complex materials problems can be approached much more efficiently and broadly through the sheer quantity of structures and chemistries available in such databases. Our HT DFT database, the Open Quantum Materials Database (OQMD), contains over 200,000 DFT calculated crystal structures and will be freely available for public use at http://oqmd.org. In this review, we describe the OQMD and its use in five materials problems, spanning a wide range of applications and materials types: (I) Li-air battery combination catalyst/electrodes, (II) Li-ion battery anodes, (III) Li-ion battery cathode coatings reactive with HF, (IV) Mg-alloy long-period stacking ordered (LPSO) strengthening precipitates, and (V) training a machine learning model to predict new stable ternary compounds.

  10. Numerical solution for Nagumo's equation for the electron density in photorefractive materials

    NASA Astrophysics Data System (ADS)

    Magaña, Fernando

    2005-03-01

    We study the distribution of the electron density in a photorefractive material, using a set of nonlinear partial differential equations, that describes the physical response of photorefractive systems under inhomogeneous ilumination based on the band transport model, proposed by Kukhtarev et al. (Ferroelectrics, vol. 22, 949 (1979)). Assuming that the electron density only depends of x coordinate and taking a constant external electric field E in the same x coordinate we find that the electron density obeys a Nagumo's equation whose solution is soliton type.

  11. Influence of Surface Material on the BCl Density in Inductively Coupled Discharges

    SciTech Connect

    Blain, M.G.; Hamilton, T.W.; Hebner, G.A.

    1999-03-15

    The relative density of BCl radicals has been measured in a modified Applied Materials DPS metal etch chamber using laser-induced fluorescence. In plasmas containing mixtures of BCl{sub 3} with Cl{sub 2}, Ar and/or N{sub 2}, the relative BCl density was measured as a function of source and bias power, pressure, flow rate, BCl{sub 3}/Cl{sub 2} ratio and argon addition. To determine the influence of surface materials on the bulk plasma properties, the relative BCl density was measured using four different substrate types; aluminum, alumina, photoresist, and photoresist-patterned aluminum. In most cases, the relative BCl density was highest above photoresist-coated wafers and lowest above blanket aluminum wafers. The BCl density increased with increasing source power and the ratio of BCl{sub 3} to Cl{sub 2}, while the addition of N{sub 2} to a BCl{sub 3}/Cl{sub 2} plasma resulted in a decrease in BCl density. The BCl density was relatively insensitive to changes in the other plasma parameters.

  12. Robust determination of mass attenuation coefficients of materials with unknown thickness and density

    NASA Astrophysics Data System (ADS)

    Kurudirek, M.; Medhat, M. E.

    2014-07-01

    An alternative approach is used to measure normalized mass attenuation coefficients (µ/ρ) of materials with unknown thickness and density. The adopted procedure is based on the use of simultaneous emission of Kα and Kβ X-ray lines as well as gamma peaks from radioactive sources in transmission geometry. 109Cd and 60Co radioactive sources were used for the purpose of the investigation. It has been observed that using the simultaneous X- and/or gamma rays of different energy allows accurate determination of relative mass attenuation coefficients by eliminating the dependence of µ/ρ on thickness and density of the material.

  13. van der Waals Density Functional Theory vdW-DFq for Semihard Materials

    NASA Astrophysics Data System (ADS)

    Peng, Qing; de, Suvranu

    There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials includes energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability are mainly determined by the interactions between instantaneously induced dipoles, the so called London dispersion force or van der Waals force. It is challenging to accurately model the structural and mechanical properties of these semihard materials in the frame of density functional theory where the non-local correlation functionals are not well known. Here we propose a van der Waals density functional named vdW-DFq to accurately model the density and geometry of semihard materials. Using β-cyclotetramethylene tetranitramine as a prototype, we adjust the enhancement factor of the exchange energy functional with generalized gradient approximations. We find this method to be simple and robust over a wide tuning range when calibrating the functional on-demand with experimental data. With a calibrated value q = 1 . 05 , the proposed vdW-DFq method shows good performance in predicting the geometries of 11 common energetic material molecular crystals and 3 typical layered van der Waals crystals. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-13-1-0025.

  14. Modeling Excited States in TiO2 Nanoparticles: On the Accuracy of a TD-DFT Based Description

    SciTech Connect

    Berardo, Enrico; Hu, Hanshi; Shevlin, S. A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-03-11

    We have investigated the suitability of Time-Dependent Density Functional Theory (TD-DFT) to describe vertical low-energy excitations in naked and hydrated titanium dioxide nanoparticles through a comparison with results from Equation-of-Motion Coupled Cluster (EOM-CC) quantum chemistry methods. We demonstrate that for most TiO2 nanoparticles TD-DFT calculations with commonly used exchange-correlation (XC-)potentials (e.g. B3LYP) and EOM-CC methods give qualitatively similar results. Importantly, however, we also show that for an important subset of structures, TD-DFT gives qualitatively different results depending upon the XC-potential used and that in this case only TD-CAM-B3LYP and TD-BHLYP calculations yield results that are consistent with those obtained using EOM-CC theory. Moreover, we demonstrate that the discrepancies for such structures arise from a particular combination of defects, excitations involving which are charge-transfer excitations and hence are poorly described by XC-potentials that contain no or low fractions of Hartree-Fock like exchange. Finally, we discuss that such defects are readily healed in the presence of ubiquitously present water and that as a result the description of vertical low-energy excitations for hydrated TiO2 nanoparticles is hence non-problematic.

  15. Practical high-density shielding materials for medical linear accelerator rooms.

    PubMed

    Barish, R J

    1990-01-01

    High-energy linear accelerators are replacing lower energy units in radiation therapy centers. Radiation protection requirements necessitate expensive reconstruction of existing treatment rooms to accommodate these new machines. We describe two shielding materials: one made by embedding small pieces of scrap steel in cement, and the other made with cast iron in cement. Both materials produce high-density barriers at low cost using standard construction methods. PMID:2294072

  16. Effect of Temperature and Density Variations on Thermal Conductivity of Polystyrene Insulation Materials in Oman Climate

    NASA Astrophysics Data System (ADS)

    Khoukhi, M.; Tahat, M.

    2015-07-01

    The thermal and energy performance of buildings depends on the thermal characteristics of the building envelope and particularly on the thermal resistance of the insulation material used. The ability of a thermal insulation material to transmit heat in the presence of a temperature gradient is determined by its thermal conductivity. The thermal conductivity values of building insulation materials are generally given at 24°C according to ASTM standards. Actually, such a material when used in a building envelope is exposed to significant and continuous temperature changes, essentially due to the changes in outdoor temperature and solar radiation, especially in harsh climate. The main objective of this study is to investigate the relationship between the temperature and the thermal conductivity of polystyrene, which is widely employed as a building insulation material in Oman, at various densities, using the developed experimental setup based on the guarded hot plate method. The results show that higher temperatures lead to higher thermal conductivities and the lower is the material density, the higher is the thermal conductivity. The envelope-induced cooling load for a simple building is also calculated, and it is shown that a lesser cooling load is needed for a high-density insulation.

  17. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions.

    PubMed

    Li, Zhendong; Liu, Wenjian

    2016-01-12

    A benchmark set of 11 small radicals is set up to assess the performance of time-dependent density functional theory (TD-DFT) for the excited states of open-shell systems. Both the unrestricted (U-TD-DFT) and spin-adapted (X-TD-DFT) formulations of TD-DFT are considered. For comparison, the well-established EOM-CCSD (equation-of-motion coupled-cluster with singles and doubles) is also used. In total, 111 low-lying singly excited doublet states are accessed by all the three approaches. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as the benchmark, it is found that both U-TD-DFT and EOM-CCSD perform well for those states dominated by singlet-coupled single excitations (SCSE) from closed-shell to open-shell, open-shell to vacant-shell, or closed-shell to vacant-shell orbitals. However, for those states dominated by triplet-coupled single excitations (TCSE) from closed-shell to vacant-shell orbitals, both U-TD-DFT and EOM-CCSD fail miserably due to severe spin contaminations. In contrast, X-TD-DFT provides balanced descriptions of both SCSE and TCSE. As far as the functional dependence is concerned, it is found that, when the Hartree-Fock ground state does not suffer from the instability problem, both global hybrid (GH) and range-separated hybrid (RSH) functionals perform grossly better than pure density functionals, especially for Rydberg and charge-transfer excitations. However, if the Hartree-Fock ground state is instable or nearly instable, GH and RSH tend to underestimate severely the excitation energies. The SAOP (statistically averaging of model orbital potentials) performs more uniformly than any other density functionals, although it generally overestimates the excitation energies of valence excitations. Not surprisingly, both EOM-CCSD and adiabatic TD-DFT are incapable of describing excited states with substantial double excitation characters. PMID:26672389

  18. New Developments in Orbital-Free Density Functional Theory Enabling Simulations of Covalent Materials

    NASA Astrophysics Data System (ADS)

    Xia, Junchao

    Orbital-free (OF) density functional theory (DFT) is a powerful and numerically efficient first principles quantum mechanics method. Its application has contributed to understanding a diverse set of materials properties in recent decades. However, most previous studies were confined to simple metals. In this thesis, we focus on extending OFDFT to describe covalently-bonded materials and aiming for a balance between accuracy and efficiency. We first apply OFDFT to study diatomic molecules, with the Huang-Carter (HC) kinetic energy density functional (KEDF). OFDFT predicts reasonable equilibrium bond lengths, bond dissociation energies, and vibrational frequencies compared to Kohn-Sham (KS) DFT benchmarks. This work indicates significant progress of OFDFT in describing molecules. However, we find that the HC KEDF is computationally expensive and thus inapplicable for large-scale simulations. Consequently, we propose an electron density decomposition formalism for covalent materials. Based on local density information, the total density is decomposed into localized and delocalized electron densities, which are then described by different KEDF models separately. The resulting Wang--Govind--Carter-decomposition (WGCD) KEDF gives accurate properties for bulk semiconductors and isolated molecules. Furthermore, it offers far superior numerical efficiency compared to the previous HC KEDF. We then test the HC and WGCD KEDFs on Li-Si alloys and obtain accurate structures and bulk properties. The OFDFT Li adsorption energies on the Si(100) surface are also close to KSDFT values. OFDFT is thus promising to study mechanical properties of Li-Si alloys and the mixing mechanism during lithiation and delithiation processes. We next focus on single-point KEDFs for localized densities and pointwise quantities including the local kinetic energy density (KED) and the electron localization function (ELF). Based on a transferable correlation between the reduced density and the KED

  19. A Simple Method for Determination of the Density of Granular Materials

    ERIC Educational Resources Information Center

    Tsutsumanova, G. G.; Kirilov, K. M.; Russev, S. C.

    2012-01-01

    A simple experiment using low cost equipment for the determination of the density of granular materials, without immersing them in a liquid, is presented. It is based only on the ideal gas state equation, so it is a good experimental task for undergraduate and high school students. (Contains 2 tables and 5 figures.)

  20. Practical Microwave Meter for Sensing Moisture and Density in Granular Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low-cost microwave sensor for rapid and nondestructive sensing of bulk density and moisture content in granular and particulate materials has been built and tested. The sensor was made with inexpensive, off-the-shelf components and operates at 5.8 GHz. Three permittivity-based algorithms were us...

  1. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation

    PubMed Central

    Zhou, Xilin; Dong, Weiling; Zhang, Hao; Simpson, Robert E.

    2015-01-01

    Oxygen-doped germanium telluride phase change materials are proposed for high temperature applications. Up to 8 at.% oxygen is readily incorporated into GeTe, causing an increased crystallisation temperature and activation energy. The rhombohedral structure of the GeTe crystal is preserved in the oxygen doped films. For higher oxygen concentrations the material is found to phase separate into GeO2 and TeO2, which inhibits the technologically useful abrupt change in properties. Increasing the oxygen content in GeTe-O reduces the difference in film thickness and mass density between the amorphous and crystalline states. For oxygen concentrations between 5 and 6 at.%, the amorphous material and the crystalline material have the same density. Above 6 at.% O doping, crystallisation exhibits an anomalous density change, where the volume of the crystalline state is larger than that of the amorphous. The high thermal stability and zero-density change characteristic of Oxygen-incorporated GeTe, is recommended for efficient and low stress phase change memory devices that may operate at elevated temperatures. PMID:26068587

  2. Density functional calculation for Li2CuSn as an electrode material for rechargeable batteries.

    PubMed

    Reshak, Ali Hussain; Ordóñez Ortíz, Diego Andrés

    2009-10-01

    The all electron full potential linearized augmented plane wave method has been used for an ab initio theoretical study of the band structure, density of states and electron charge density, and the spectral features of the linear and nonlinear optical susceptibilities for the host CuSn and Li(2)CuSn compounds. We have calculated the density of states at Fermi energy and the electronic specific heat coefficient (gamma). The total charge densities in the (100) and (110) planes were calculated. We noticed that inserting Li into CuSn leads to give two structures in the spectral features of the linear optical susceptibilities while the host compound gives only one structure. Insertion of Li into CuSn leads to breaking the symmetry resulting in noncentrosymmetric material. We have calculated the complex second-order nonlinear optical susceptibility tensor for the intercalated compound. PMID:19754092

  3. High density packing and interconnections for hybrid microelectronics: new trends in materials development

    NASA Astrophysics Data System (ADS)

    Jakubowska, Małgorzata

    2008-01-01

    Electronic devices, components, circuits and microsystems continue to become smaller, lighter, faster and less expensive. The progress in hybrid microelectronics, especially in high density packaging and interconnections, is very much dependent on the achievements in developing new electronic materials. The paper presents the state of art of thick film materials as well as the new developments carried in Hybrid Mirocircuits and Microsystems Laboratory, which was established in 2006 by Warsaw University of Technology, Department of Electronics and Information Technology and Institute of Electronic Materials Technology.

  4. Quantization of Td- and Oh-symmetric Skyrmions

    NASA Astrophysics Data System (ADS)

    Lau, P. H. C.; Manton, N. S.

    2014-06-01

    The geometrical construction of rational maps using a cubic grid has led to many new Skyrmion solutions, with baryon numbers up to 108. Energy spectra of some of the new Skyrmions are calculated here by semiclassical quantization. Quantization of the B=20 Td-symmetric Skyrmion, which is one of the newly found Skyrmions, is considered, and this leads to the development of a new approach to solving Finkelstein-Rubinstein constraints. Matrix equations are simplified by introducing a Cartesian version of angular momentum basis states, and the computations are easier. The quantum states of all Td-symmetric Skyrmions, constructed from the cubic grid, are classified into three classes, depending on the contribution of vertex points of the cubic grid to the rational maps. The analysis is extended to the larger symmetry group Oh. Quantum states of Oh-symmetric Skyrmions, constructed from the cubic grid, form a subset of the Td-symmetric quantum states.

  5. Using SpaceClaim/TD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    NASA Technical Reports Server (NTRS)

    Fabanich, William

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.

  6. Low-Dislocation-Density GaN from a Single Growth on a Textured Substrate

    SciTech Connect

    ASHBY,CAROL I.; WILLAN,CHRISTINE C.; HAN,JUNG; MISSERT,NANCY A.; PROVENCIO,PAULA P.; FOLLSTAEDT,DAVID M.; PEAKE,GREGORY M.; GRIEGO,LEONARDO

    2000-07-31

    The density of threading dislocations (TD) in GaN grown directly on flat sapphire substrates is typically greater than 10{sup 9}/cm{sup 2}. Such high dislocation densities degrade both the electronic and photonic properties of the material. The density of dislocations can be decreased by orders of magnitude using cantilever epitaxy (CE), which employs prepatterned sapphire substrates to provide reduced-dimension mesa regions for nucleation and etched trenches between them for suspended lateral growth of GaN or AlGaN. The substrate is prepatterned with narrow lines and etched to a depth that permits coalescence of laterally growing III-N nucleated on the mesa surfaces before vertical growth fills the etched trench. Low dislocation densities typical of epitaxial lateral overgrowth (ELO) are obtained in the cantilever regions and the TD density is also reduced up to 1 micrometer from the edge of the support regions.

  7. α MnMoO₄/graphene hybrid composite: high energy density supercapacitor electrode material.

    PubMed

    Ghosh, Debasis; Giri, Soumen; Moniruzzaman, Md; Basu, Tanya; Mandal, Manas; Das, Chapal Kumar

    2014-07-28

    A unique and cost effective hydrothermal procedure has been carried out for the synthesis of hexahedron shaped α MnMoO4 and its hybrid composite with graphene using three different weight percentages of graphene. Characterization techniques, such as XRD, Raman and FTIR analysis, established the phase and formation of the composite. The electrochemical characterization of the pseudocapacitive MnMoO4 and the MnMoO4/graphene composites in 1 M Na2SO4 displayed highest specific capacitances of 234 F g(-1) and 364 F g(-1), respectively at a current density of 2 A g(-1). Unlike many other pseudocapacitive electrode materials our prepared materials responded in a wide range of working potentials of (-)1 V to (+)1 V, which indeed resulted in a high energy density without substantial loss of power density. The highest energy densities of 130 Wh kg(-1) and 202.2 Wh kg(-1) were achieved, respectively for the MnMoO4 and the MnMoO4/graphene composite at a constant power delivery rate of 2000 W kg(-1). The synergistic effect of the graphene with the pseudocapacitive MnMoO4 caused an increased cycle stability of 88% specific capacitance retention after 1000 consecutive charge discharge cycles at 8 A g(-1) constant current density, which was higher than the virgin MnMoO4 with 84% specific capacitance retention. PMID:24921461

  8. Progress in High Power Density SOFC Material Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Sofie, Stephen W.; Setlock, John A.; Misra, Ajay K.

    2004-01-01

    Solid oxide fuel cell (SOFC) systems for aircraft applications require order of magnitude increase in specific power density and long life under aircraft operating conditions. Advanced SOFC materials and fabrication processes are being developed at NASA GRC to increase specific power density and durability of SOFC cell and stack. Initial research efforts for increasing specific power density are directed toward increasing the operating temperature for the SOFC system and reducing the weight of the stack. While significant research is underway to develop anode supported SOFC system operating at temperatures in the range of 650 - 850 C for ground power generation applications, such temperatures may not yield the power densities required for aircraft applications. For electrode-supported cells, SOFC stacks with power densities greater than 1.0 W/sq cm are favorable at temperatures in excess of 900 C. The performance of various commercial and developmental anode supported cells is currently being evaluated in the temperature range of 900 to 1000 C to assess the performance gains and materials reliability. The results from these studies will be presented. Since metal interconnects developed for lower temperature operation are not practical at these high temperatures, advanced perovskite based ceramic interconnects with high electronic conductivity and lower sintering temperatures are being developed. Another option for increasing specific power density of SOFC stacks is to decrease the stack weight. Since the interconnect contributes to a significant portion of the stack weight, considerable weight benefits can be derived by decreasing its thickness. Eliminating the gas channels in the interconnect by engineering the pore structure in both anode and cathode can offer significant reduction in thickness of the ceramic interconnect material. New solid oxide fuel cells are being developed with porous engineered electrode supported structures with a 10 - 20 micron thin

  9. Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature

    PubMed Central

    Maleki, Mohsen; Seguin, Brian; Fried, Eliot

    2013-01-01

    Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is modeling by a shell-like body with finite thickness. In this setting, the interface between the leaflets of a lipid bilayer is assumed to coincide with the mid-surface of the corresponding shell-like body. The three-dimensional deformation gradient is found to involve the curvature tensors of the mid-surface in the spontaneous and the deformed states, the deformation gradient of the mid-surface, and the transverse deformation. Attention is also given to the coherency of the leaflets and to the area compatibility of closed lipid bilayers (i.e., vesicles). A hyperelastic constitutive theory for lipid bilayers in the liquid phase is developed. In combination, the requirements of frame-indifference and material symmetry yield a representation for the energy density of a lipid bilayer. This representation shows that three scalar invariants suffice to describe the constitutive response of a lipid bilayer exhibiting in-plane fluidity and transverse isotropy. In addition to exploring the geometrical and physical properties of these invariants, fundamental constitutively-associated kinematical quantities are emphasized. On this basis, the effect on the energy density of assuming that the lipid bilayer is incompressible is considered. Lastly, a dimension reduction argument is used to extract an areal energy density per unit area from the three-dimensional energy density. This step explains the origin of spontaneous curvature in the areal energy density. Importantly, along with a standard contribution associated with the natural curvature of lipid bilayer, our analysis indicates that constitutive asymmetry between the leaflets of the lipid bilayer gives rise to

  10. Elevated temperature deformation of TD-nickel base alloys

    NASA Technical Reports Server (NTRS)

    Petrovic, J. J.; Kane, R. D.; Ebert, L. J.

    1972-01-01

    Sensitivity of the elevated temperature deformation of TD-nickel to grain size and shape was examined in both tension and creep. Elevated temperature strength increased with increasing grain diameter and increasing L/D ratio. Measured activation enthalpies in tension and creep were not the same. In tension, the internal stress was not proportional to the shear modulus. Creep activation enthalpies increased with increasing L/D ratio and increasing grain diameter, to high values compared with that of the self diffusion enthalpy. It has been postulated that two concurrent processes contribute to the elevated temperature deformation of polycrystalline TD-nickel: (1) diffusion controlled grain boundary sliding, and (2) dislocation motion.

  11. An improved diffusion welding technique for TD-NiCr

    NASA Technical Reports Server (NTRS)

    Holko, K. H.

    1973-01-01

    An improved diffusion welding technique has been developed for TD-NiCr sheet. In the most preferred form, the improved technique consists of diffusion welding 320-grit sanded plus chemically polished surfaces of unrecrystallized TD-NiCr at 760 C under 140 MN/m2 pressure for 1hr followed by postheating at 1180 C for 2hr. Compared to previous work, this improved technique has the advantages of shorter welding time, lower welding temperature, lower welding pressure, and a simpler and more reproducible surface preparation procedure. Weldments were made that had parent-metal creep-rupture shear strength at 1100 C.

  12. Expancel Foams: Fabrication and Characterization of a New Reduced Density Cellular Material for Structural Applications

    SciTech Connect

    L. Whinnery; S. Goods; B. Even

    2000-08-01

    This study was initiated to produce a low-density centering medium for use in experiments investigating the response of materials to shock-loading. While the main drivers for material selection were homogeneity, dimensional stability, performance and cost, other secondary requirements included fine cell size, the ability to manufacture 5--10 cm-sized parts and an extremely compressed development time. The authors chose a non-traditional methodology using a hollow, expandable, polymeric microballoon material system called Expancel{reg_sign}. These microballoons are made from a copolymer of polyacrylonitrile (PAN) and polymethacrylonitrile (PMAN) and use iso-pentane as the blowing agent. The average diameter (by volume) of the unexpanded powder is approximately 13 {micro}m, while the average of the expanded powder is 35--55 {micro}m, with a few large microballoons approaching 150--200 p.m. A processing method was developed that established a pre-mixed combination of unexpanded and expanded Expancel at a ratio such that the tap (or vibration) density of the mixed powders was the same as that desired of the final part. Upon heating above the tack temperature of the polymer, this zero-rise approach allowed only expansion of the unexpanded powder to fill the interstices between the pre-expanded balloons. The mechanical action of the expanding powder combined with the elevated processing temperature yielded flee-standing and mechanically robust parts. Although mechanical properties of these foams were not a key performance requirement, the data allowed for the determination of the best temperature to heat the samples. Processing the foam at higher temperatures enhanced both modulus and strength. The maximum allowable temperature was limited by dimensional stability and shrinkback considerations. Tomographic analysis of foam billets revealed very flat density profiles. Parts of any density between the low density expanded powder (approximately 0.013 g/cm{sup 3}) and the

  13. Isotope-specific detection of low density materials with mono-energetic (gamma)-rays

    SciTech Connect

    Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M J; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C J

    2009-03-16

    The first demonstration of isotope-specific detection of a low-Z, low density object, shielded by a high-Z and high density material using mono-energetic gamma-rays is reported. Isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of {sup 7}Li at 0.478 MeV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general and the confidence level obtained is shown to be superior to that yielded by conventional x-ray/{gamma}-ray techniques in these situations.

  14. Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials

    NASA Astrophysics Data System (ADS)

    Woll, K.; Bergamaschi, A.; Avchachov, K.; Djurabekova, F.; Gier, S.; Pauly, C.; Leibenguth, P.; Wagner, C.; Nordlund, K.; Mücklich, F.

    2016-01-01

    Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the key parameters that enables us to classify the Ru/Al system as new reactive material among other energetic systems. We finally found that Ru/Al exhibits the unusual integration of high energy density and ductility. For example, we measured reaction front velocities up to 10.9 (±0.33) ms-1 and peak reaction temperatures of about 2000 °C indicating the elevated energy density. To our knowledge, such high temperatures have never been reported in experiments for metallic multilayers. In situ experiments show the synthesis of a single-phase B2-RuAl microstructure ensuring improved ductility. Molecular dynamics simulations corroborate the transformation behavior to RuAl. This study fundamentally characterizes a Ru/Al system and demonstrates its enhanced properties fulfilling the identification requirements of a novel nanoscaled energetic material.

  15. Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials

    PubMed Central

    Woll, K.; Bergamaschi, A.; Avchachov, K.; Djurabekova, F.; Gier, S.; Pauly, C.; Leibenguth, P.; Wagner, C.; Nordlund, K.; Mücklich, F.

    2016-01-01

    Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the key parameters that enables us to classify the Ru/Al system as new reactive material among other energetic systems. We finally found that Ru/Al exhibits the unusual integration of high energy density and ductility. For example, we measured reaction front velocities up to 10.9 (±0.33) ms−1 and peak reaction temperatures of about 2000 °C indicating the elevated energy density. To our knowledge, such high temperatures have never been reported in experiments for metallic multilayers. In situ experiments show the synthesis of a single-phase B2-RuAl microstructure ensuring improved ductility. Molecular dynamics simulations corroborate the transformation behavior to RuAl. This study fundamentally characterizes a Ru/Al system and demonstrates its enhanced properties fulfilling the identification requirements of a novel nanoscaled energetic material. PMID:26822309

  16. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    NASA Technical Reports Server (NTRS)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  17. Thermal conductivity measurements of particulate materials: 5. Effect of bulk density and particle shape

    NASA Astrophysics Data System (ADS)

    Presley, Marsha A.; Christensen, Philip R.

    2010-07-01

    Thermal conductivities were measured with a line-heat source for three particulate materials with different particle shapes under low pressures of a carbon dioxide atmosphere and various bulk densities. Less than 2 μm kaolinite exhibited a general decrease in thermal conductivity with increasing bulk density. For the range of atmospheric pressures appropriate for Mars, a reduction in porosity of 24% decreased the thermal conductivity by 24%. Kaolinite manifests considerable anisotropy with respect to thermal conductivity. As the particles align the bulk thermal conductivity measured increasingly reflects the thermal conductivity of the short axis. When kyanite is crushed, it forms blady particles that will also tend to align with increasing bulk density. Without any intrinsic anisotropy, however, kyanite particles, like other particulates exhibit an increase in thermal conductivity with increasing bulk density. Under Martian atmospheric pressures, a reduction in porosity of 30% produces a 30% increase in thermal conductivity. Diatomaceous earth maintains a very low bulk density due to the highly irregular shape of the individual particles. A decrease in porosity of 17% produces an increase in thermal conductivity of 27%. The trends in thermal conductivity with bulk density, whether increasing or decreasing, are often not smooth. Whether oscillations in the trends presented in this paper and elsewhere have any physical significance or whether they are merely artifacts of the precision error is unclear. Clarification of this question may not be possible without higher-precision measurements from future laboratories and further development of theoretical modeling.

  18. Comparison of the acute toxicities of novel algicides, thiazolidinedione derivatives TD49 and TD53, to various marine organisms.

    PubMed

    Kim, Seong J; Yim, Eun C; Park, In T; Kim, Si W; Cho, Hoon

    2011-12-01

    Acute toxicity assessments of new algicides, thiazolidinedione derivatives TD49 and TD53, to the marine ecological system were conducted. The toxicity assessments were performed using two of the new International Organization for Standardization (ISO) standard methods employing Ulva pertusa Kjellman and three species representative of the marine ecological system, with the results compared by calculating the 50% effective concentration (EC50), 50% lethal concentration (LC50), no-observed-effect concentration (NOEC), and predicted-no-effect concentration (PNEC). In the acute toxicity assessment using the Kjellman, the EC50, NOEC, and PNEC of TD53 were 1.65 µM, 0.08 µM, and 1.65 nM, and those of TD49 were 0.18 µM, 0.63 µM, and 0.18 nM. In the assessments using Skeletonema costatum, Daphnia magna, and Paralichthys olivaceus fry, the EC50 or LC50 of TD53 were 1.53, 0.61, and 2.14 µM, respectively, indicating that D. magna was the most sensitive. The calculated NOEC and PNEC to D. magna were 0.25 µM and 6.10 nM, respectively. The LC50s (or EC50) of TD49 for the three species were 0.34, 0.68, and 0.58 µM. The NOEC and PNEC to S. costatum, the most sensitive species, were 0.2 µM and 3.4 nM, respectively. The slight difference in the chemical structures of the algicides caused significantly different sensitivities and specificities in the toxicities to the employed species. The results of the toxicity assessments showed that application concentrations for algiciding of red tide blooms were higher than the corresponding PNEC values. Therefore, we suggest that a formulization study of the algicides with high specificity should be conducted to reduce the surrounding ecological toxicity. PMID:21932297

  19. The thermal and mechanical properties of a low density elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1973-01-01

    Thermal and mechanical properties data were obtained for a low density elastomeric resin based ablation material with phenolic-glass honeycomb reinforcement. Data were obtained for the material in the charred and uncharred state. Ablation material specimens were charred in a laboratory furnace at temperatures in the range from 600 K to 1700 K to obtain char specimens representative of the ablation char layer formed during reentry. These specimens were then used to obtain effective thermal conductivity, heat capacity, porosity, and permeability data at the char formation temperature. This provided a boxing of the data which enables the prediction of the transient response of the material during ablation. Limited comparisons were made between the furnace charred specimens and specimens which had been exposed to simulated reentry conditions.

  20. Density functional theory for d- and f-electron materials and compounds

    DOE PAGESBeta

    Mattson, Ann E.; Wills, John M.

    2016-02-12

    Here, the fundamental requirements for a computationally tractable Density Functional Theory-based method for relativistic f- and (nonrelativistic) d-electron materials and compounds are presented. The need for basing the Kohn–Sham equations on the Dirac equation is discussed. The full Dirac scheme needs exchange-correlation functionals in terms of four-currents, but ordinary functionals, using charge density and spin-magnetization, can be used in an approximate Dirac treatment. The construction of a functional that includes the additional confinement physics needed for these materials is illustrated using the subsystem-functional scheme. If future studies show that a full Dirac, four-current based, exchange-correlation functional is needed, the subsystemmore » functional scheme is one of the few schemes that can still be used for constructing functional approximations.« less

  1. Non-Contact Measurement of Density and Thickness Variation in Dielectric Materials

    NASA Technical Reports Server (NTRS)

    Roth, Ron

    2009-01-01

    This non-contact, single-sided terahertz electromagnetic measurement and imaging method characterizes micro structural (e.g., spatially-lateral density) and thickness variation in dielectric (insulating) materials. This method was demonstrated for space shuttle external tank sprayed-on foam insulation and has been designed for use as an inspection method for current and future NASA thermal protection systems and other dielectric material inspection applications where no contact can be made with the sample due to fragility and it is impractical to use ultrasonic methods

  2. Anisotropic viscoelastic-viscoplastic continuum model for high-density cellulose-based materials

    NASA Astrophysics Data System (ADS)

    Tjahjanto, D. D.; Girlanda, O.; Östlund, S.

    2015-11-01

    A continuum material model is developed for simulating the mechanical response of high-density cellulose-based materials subjected to stationary and transient loading. The model is formulated in an infinitesimal strain framework, where the total strain is decomposed into elastic and plastic parts. The model adopts a standard linear viscoelastic solid model expressed in terms of Boltzmann hereditary integral form, which is coupled to a rate-dependent viscoplastic formulation to describe the irreversible plastic part of the overall strain. An anisotropic hardening law with a kinematic effect is particularly adopted in order to capture the complex stress-strain hysteresis typically observed in polymeric materials. In addition, the present model accounts for the effects of material densification associated with through-thickness compression, which are captured using an exponential law typically applied in the continuum description of elasticity in porous media. Material parameters used in the present model are calibrated to the experimental data for high-density (press)boards. The experimental characterization procedures as well as the calibration of the parameters are highlighted. The results of the model simulations are systematically analyzed and validated against the corresponding experimental data. The comparisons show that the predictions of the present model are in very good agreement with the experimental observations for both stationary and transient load cases.

  3. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials.

    PubMed

    Yin, Ping; Parrish, Damon A; Shreeve, Jean'ne M

    2015-04-15

    Diverse functionalization was introduced into the pyrazole framework giving rise to a new family of ternary hydrogen-bond induced high energy density materials. By incorporating extended cationic interactions, nitramine-based ionic derivatives exhibit good energetic performance and enhanced molecular stability. Performance parameters including heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. It is noteworthy to find that 5-nitramino-3,4-dinitropyrazole, 4, has a remarkable measured density of 1.97 g cm(-3) at 298 K, which is consistent with its crystal density (2.032 g cm(-3), 150 K), and ranks highest among azole-based CHNO compounds. Energetic evaluation indicates that, in addition to the molecular compound 4, some ionic derivatives, 9, 11, 12, 17, 19, and 22, also have high densities (1.83-1.97 g cm(-3)), excellent detonation pressures and velocities (P, 35.6-41.6 GPa; vD, 8880-9430 m s(-1)), as well as acceptable impact and friction sensitivities (IS, 4-30 J; FS, 40-240 N). These attractive features highlight the application potential of nitramino hydrogen-bonded interactions in the design of advanced energetic materials. PMID:25807076

  4. The contact density to characterize the mechanics of cohesive granular materials: application to snow microstructure modeling.

    NASA Astrophysics Data System (ADS)

    Gaume, Johan; Löwe, Henning

    2016-04-01

    Microstructural properties are essential to characterize the mechanics of loose and cohesive granular materials such as snow. In particular, mechanical properties and physical processes of porous media are often related to the volume fraction ν. Low-density microstructures typically allow for considerable structural diversity at a given volume fraction, leading to uncertainties in modeling approaches using ν-based parametrizations only. We have conducted discrete element simulations of cohesive granular materials with initial configurations which are drawn from Baxter's sticky hard sphere (SHS) model. This method allows to control independently the initial volume fraction ν and the average coordination number Z. We show that variations in elasticity and strength of the samples can be fully explained by the initial contact density C = νZ over a wide range of volume fractions and coordination numbers. Hence, accounting for the contact density C allows to resolve the discrepancies in particle based modeling between samples with similar volume fractions but different microstructures. As an application, we applied our method to the microstructure of real snow samples which have been imaged by micro-computed tomography and reconstructed using the SHS model. Our new approach opens a promising route to evaluate snow physical and mechanical properties from field measurements, for instance using the Snow Micro Penetrometer (SMP), by linking the penetration resistance to the contact density.

  5. 77 FR 60742 - Proposed Collection; Comment Request for TD 9178

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Internal Revenue Service Proposed Collection; Comment Request for TD 9178 AGENCY: Internal Revenue Service... assured of consideration. ADDRESSES: Direct all written comments to Yvette Lawrence, Internal Revenue... Christophe, (202) 622-3179, at Internal Revenue Service, room 6129, 1111 Constitution Avenue NW.,...

  6. Development and evaluation of the TD97 measles virus vaccine

    SciTech Connect

    Suzuki, K.; Morita, M.; Katoh, M.; Kidokoro, M.; Saika, S.; Yoshizawa, S.; Hashizume, S.; Horiuchi, K.; Okabe, N.; Shinozaki, T. )

    1990-11-01

    The TD97 strain vaccine virus was prepared from the Tanabe strain measles virus by low-temperature passages in primary cell cultures and ultraviolet (UV) mutagenesis. The TD97 strain exhibited the following characteristics: highly temperature sensitive, neither multiplying nor forming any plaques at 40 degrees C in Vero cells; genetically stable, maintaining high temperature sensitivity after ten successive passages in CE cells at 30 degrees C or 35 degrees C; and M proteins of this virus about 1 KD slower in mobility in SDS-PAGE than that of the Tanabe strain. The TD97 strain was further confirmed to be attenuated by an inoculation test into primate brain. In field trials, 752 healthy children were inoculated with a live virus vaccine prepared with this strain, and the following results were obtained: the seroconversion rate was 97% (517/533), and the average HI antibody titer was 2(5.2). An antibody-increasing effect was also observed in children who were initially seropositive. In children who seroconverted, the rates of fever were 15.7% (55/351) for 37.5 degrees C or higher and 4.0% (14/351) for 39 degrees C or higher. The rash rate was 7.7% (27/351), and the incidence of local reaction was 5.4% (19/351). The TD97 strain is thus considered to be suitable in use for an attenuated measles vaccine.

  7. TD-LTE maritime trunking communication system based on TVWS

    NASA Astrophysics Data System (ADS)

    Ren, Chunxiang; Chen, Xing; Li, Wanchao; Chen, Baodan

    2014-10-01

    This paper collects the measurement results of 470 MHZ-960MHZ spectrum in the coastal areas, and analyzes the characteristics of TV broadcast spectrum occupancy in the measurement region. Moreover, this article proposes construct the TD-LTE maritime trunking communication system using geolocation database, television database (TVDB) and cognitive radio (CR) technology.

  8. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability

    NASA Astrophysics Data System (ADS)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.

  9. In vivo low-density bone apposition on different implant surface materials.

    PubMed

    Braceras, I; De Maeztu, M A; Alava, J I; Gay-Escoda, C

    2009-03-01

    During osseointegration, new bone may be laid down on the implant surface and/or on the old bone surface; the former is known as contact osteogenesis and the latter as distance osteogenesis. Implant surface topography and material composition affect this process. The present study evaluates Ca and P apposition onto three different dental implant material surfaces (carbon monoxide (CO) ion implantation on Ti6Al4V, sand blasting and acid etching on commercially pure titanium and untreated Ti6Al4V) on the mandibles of beagles after healing periods of 3 and 6 months. Energy dispersive spectroscopy is useful for identifying low-density bone relative to surrounding mature bone, allowing for discrimination of the osteogenesis source. Low-density bone was only found at the apical end; there was none on the surface of untreated implants. Low-density bone arising from mature bone towards the implant at month 3 (i.e. distance osteogenesis) was only present on the CO ion implanted samples, due to the modification of the surface nano-topography and the chemistry and structure of the material. PMID:19200692

  10. On the density waves developed in gravity channel flows of granular materials

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Hwa; Tong, Ziquan

    2001-05-01

    This paper provides insight to the transient development of density waves generated in gravity-driven flows of granular materials. The evolution of three modes of dominant linear instabilities (predicted in a previous work by Wang, Jackson & Sundaresan 1997) is examined by FFT analysis. For the first symmetric density wave (SDW1) mode, the evolution is governed by the linear instability. The second symmetric density wave (SDW2) mode undergoes a few stages of temporal development; as a result, large particle clusters gradually degenerate into a series of smaller clusters in the flow direction. For the anti-symmetric (ASDW) mode, the corresponding particle distribution shows significant development in the direction perpendicular to the flow. The present study indicates that the wall roughness may affect the structure of the density waves, but these density waves need not be triggered by the wall roughness. All the three modes of instabilities reported in this work are of inertial nature and occur only when the particle particle collisions are significantly inelastic.

  11. Critical parameters governing energy density of Li-storage cathode materials unraveled by confirmatory factor analysis

    NASA Astrophysics Data System (ADS)

    Sohn, Kee-Sun; Han, Su Cheol; Park, Woon Bae; Pyo, Myoungho

    2016-03-01

    Despite extensive effort during the past few decades, a comprehensive understanding of the key variables governing the electrochemical properties of cathode materials in Li-ion batteries is still far from complete. To elucidate the critical parameters affecting energy density (ED) and capacity (Q) retention in layer and spinel cathodes, we data-mine the existing experimental data via confirmatory factor analysis (CFA) based on a structural equation model (SEM), which is a proven, versatile tool in understanding complex problems in the social science. The data sets are composed of 18 and 15 parameters extracted from 38 layer and 33 spinel compounds, respectively. CFA reveals the irrelevance of Q retention to all the parameters we adopt, but it also reveals the sensitive variations of ED with specific parameters. We validate the usefulness of CFA in material science and pinpointed critical parameters for high-ED cathodes, hoping to suggest a new insight in materials design.

  12. Brief Report: HIV Infection Is Associated With Worse Bone Material Properties, Independently of Bone Mineral Density.

    PubMed

    Güerri-Fernández, Robert; Molina, Daniel; Villar-García, Judit; Prieto-Alhambra, Daniel; Mellibovsky, Leonardo; Nogués, Xavier; González-Mena, Alicia; Guelar, Ana; Trenchs-Rodríguez, Marta; Herrera-Fernández, Sabina; Horcajada, Juan Pablo; Díez-Pérez, Adolfo; Knobel, Hernando

    2016-07-01

    Low bone mineral density (BMD) in HIV-infected individuals has been documented in an increasing number of studies. However, it is not clear whether it is the infection itself or the treatment that causes bone impairment. Microindentation measures bone material strength (Bone Material Strength index) directly. We recruited 85 patients, 50 infected with HIV and 35 controls. Median Bone Material Strength index was 84.5 (interquartile range 83-87) in HIV-infected patients and 90 (88.5-93) in controls (P < 0.001). No significant differences in BMD between cases and controls at any of the sites examined (total hip, femoral neck, and lumbar spine). HIV infection is associated with bone damage, independently of BMD. PMID:26910501

  13. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    PubMed Central

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-01-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics. PMID:26411932

  14. Scalable sub-micron patterning of organic materials toward high density soft electronics

    SciTech Connect

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong -Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun -Hi; Noh, Yong -Young; Yun Jaung, Jae; Kim, Yong -Hoon; Kyu Park, Sung

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  15. Scalable sub-micron patterning of organic materials toward high density soft electronics

    DOE PAGESBeta

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong -Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; et al

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  16. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-09-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  17. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics.

    PubMed

    Hafner, Jürgen

    2010-09-29

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures. PMID:21386539

  18. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    PubMed

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-01-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics. PMID:26411932

  19. Using SpaceClaimTD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    NASA Technical Reports Server (NTRS)

    Fabanich, William A., Jr.

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.

  20. Electronic Circular Dichroism of [16]Helicene With Simplified TD-DFT: Beyond the Single Structure Approach.

    PubMed

    Bannwarth, Christoph; Seibert, Jakob; Grimme, Stefan

    2016-05-01

    The electronic circular dichroism (ECD) spectrum of the recently synthesized [16]helicene and a derivative comprising two triisopropylsilyloxy protection groups was computed by means of the very efficient simplified time-dependent density functional theory (sTD-DFT) approach. Different from many previous ECD studies of helicenes, nonequilibrium structure effects were accounted for by computing ECD spectra on "snapshots" obtained from a molecular dynamics (MD) simulation including solvent molecules. The trajectories are based on a molecule specific classical potential as obtained from the recently developed quantum chemically derived force field (QMDFF) scheme. The reduced computational cost in the MD simulation due to the use of the QMDFF (compared to ab-initio MD) as well as the sTD-DFT approach make realistic spectral simulations feasible for these compounds that comprise more than 100 atoms. While the ECD spectra of [16]helicene and its derivative computed vertically on the respective gas phase, equilibrium geometries show noticeable differences, these are "washed" out when nonequilibrium structures are taken into account. The computed spectra with two recommended density functionals (ωB97X and BHLYP) and extended basis sets compare very well with the experimental one. In addition we provide an estimate for the missing absolute intensities of the latter. The approach presented here could also be used in future studies to capture nonequilibrium effects, but also to systematically average ECD spectra over different conformations in more flexible molecules. Chirality 28:365-369, 2016. © 2016 Wiley Periodicals, Inc. PMID:27071653

  1. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency. PMID:21693886

  2. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only)

    NASA Astrophysics Data System (ADS)

    Domain, C.; Olsson, P.; Becquart, C. S.; Legris, A.; Guillemoles, J. F.

    2008-02-01

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  3. Hierarchical structures of aligned carbon nanotubes as low-density energy-dissipative materials

    NASA Astrophysics Data System (ADS)

    Raney, Jordan R.

    Carbon nanotubes (CNTs) are known to have remarkable properties, such as a specific strength two orders of magnitude higher than that of steel. It has remained a challenge, however, to achieve useful bulk properties from CNTs. Toward that goal, here we develop low-density bulk materials (0.1-0.4 g cm-3) entirely or nearly entirely from CNTs. These consist of nominally-aligned arrays of CNTs that display a dissipative compressive response, with a notable stress-strain hysteresis. The compressive properties of CNT arrays are examined in detail. This analysis reveals interesting features in the mechanical response, such as strain localization (resulting from a gradient in physical properties along the height), recovery after compression, non-linear viscoelasticity, and behavior under repeated compression that depends on the strain of previous cycles (similar to the Mullins effect in rubbers). We observe that in compression the energy dissipation of these materials is more than 200 times that of polymeric foams of comparable density. Next, materials based on CNT arrays are studied as exemplary of hierarchical materials (materials with distinct structure at multiple length scales). Hierarchical materials have pushed the limits of traditional material tradeoffs (e.g., the typical trend that increased strength requires increased weight). Techniques are developed to separately vary the structure of CNT arrays at nanometer, micrometer, and millimeter length scales, and the effects on the bulk material response are examined. Structure can be modified during CNT synthesis, such as by varying the composition of the flow gas or by manipulating the input rate of chemical precursors; it can also be modified post-synthesis, e.g., by the in situ synthesis of nanoparticles in the interstices of the CNT arrays or by the assembly of multilayer structures of multiple CNT arrays connected by polymeric or metallic interlayers. Finally, a mathematical model is applied to capture the

  4. Evaluation of threading dislocation densities in In- and N-face InN

    SciTech Connect

    Gallinat, C. S.; Koblmueller, G.; Wu, Feng; Speck, J. S.

    2010-03-15

    The threading dislocation (TD) structure and density has been studied in In- and N-face InN films grown on GaN by plasma-assisted molecular beam epitaxy. The TD densities were determined by nondestructive x-ray diffraction rocking curve measurements in on-axis symmetric and off-axis skew symmetric geometries and calibrated by transmission electron microscopy measurements. TD densities were dominated by edge-type TDs with screw-component TDs accounting for less than 10% of the total TD density. A significant decrease in edge-type TD density was observed for In-face InN films grown at increasingly higher substrate temperatures. In-face InN films grown with excess In exhibited lower TD densities compared to films grown under N-rich conditions. The edge-type TD density of N-face InN films was independent of substrate temperature due to the higher allowable growth temperatures for N-face InN compared to In-face InN. TD densities in In-face InN also showed a strong dependence on film thickness. Films grown at a thickness of less than 1 {mu}m had higher TD densities compared with films grown thicker than 1 {mu}m. The lowest measured TD density for an In-face InN film was {approx}1.5x10{sup 10}/cm{sup 2} for 1 {mu}m thick films.

  5. The effective density of randomly moving electrons and related characteristics of materials with degenerate electron gas

    SciTech Connect

    Palenskis, V.

    2014-04-15

    Interpretation of the conductivity of metals, of superconductors in the normal state and of semiconductors with highly degenerate electron gas remains a significant issue if consideration is based on the classical statistics. This study is addressed to the characterization of the effective density of randomly moving electrons and to the evaluation of carrier diffusion coefficient, mobility, and other parameters by generalization of the widely published experimental results. The generalized expressions have been derived for various kinetic parameters attributed to the non-degenerate and degenerate electron gas, by analyzing a random motion of the single type carriers in homogeneous materials. The values of the most important kinetic parameters for different metals are also systematized and discussed. It has been proved that Einstein's relation between the diffusion coefficient and the drift mobility of electrons is held for any level of degeneracy if the effective density of randomly moving carriers is properly taken into account.

  6. Evolution of the local packing density in a sheared granular material

    NASA Astrophysics Data System (ADS)

    Umbanhowar, Paul; van Hecke, Martin; Sakaie, Ken

    2005-11-01

    The local particle packing density, η, in a bed of poppy seeds sheared in a vertical, split-bottom cylindrical container is measured using magnetic resonance imaging. Wide shear zones away from the wall are generated when a thin concentric disk at the bottom of the cylinder, and with radius less than the cylinder radius, is rotated slowly. Experiments reveal that, initially, a shear band forms at the outer edge of the disk which decreases in radius with decreasing depth. Material near the shear zone dilates with a corresponding decrease in η of about 15%. The radial extent of the dilated region increases approximately logarithmically with increasing rotation in shallow layers. In relatively deep layers, the shear zone is at first entirely below the free surface, but with further rotation grows vertically creating a low η core. We discuss the relation between the previously reported universal velocity profiles across the shear zone and the spatial and temporal evolution of the packing density.

  7. Nanoscale Tunable Strong Carrier Density Modulation of 2D Materials for Metamaterials and Other Tunable Optoelectronics

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Efetov, Dmitri; Shiue, Ren-Jye; Nanot, Sebastien; Hempel, Marek; Kong, Jing; Koppens, Frank; Englund, Dirk

    Strong spatial tunability of the charge carrier density at nanoscale is essential to many 2D-material-based electronic and optoelectronic applications. As an example, plasmonic metamaterials with nanoscale dimensions would make graphene plasmonics at visible and near-infrared wavelengths possible. However, existing gating techniques based on conventional dielectric gating geometries limit the spatial resolution and achievable carrier concentration, strongly restricting the available wavelength, geometry, and quality of the devices. Here, we present a novel spatially selective electrolyte gating approach that allows for in-plane spatial Fermi energy modulation of 2D materials of more than 1 eV (carrier density of n = 1014 cm-2) across a length of 2 nm. We present electrostatic simulations as well as electronic transport, photocurrent, cyclic voltammetry and optical spectroscopy measurements to characterize the performance of the gating technique applied to graphene devices. The high spatial resolution, high doping capacity, full tunability and self-aligned device geometry of the presented technique opens a new venue for nanoscale metamaterial engineering of 2D materials for complete optical absorption, nonlinear optics and sensing, among other applications.

  8. Some thermal and optical properties of a new transparent silica xerogel material with low density

    NASA Astrophysics Data System (ADS)

    Einarsrud, Mari-Ann; Farbrodt, Lucie E.; Haereid, Siv; Wittwer, Volker

    1992-11-01

    Monolithic silica aerogel is a transparent material with very low thermal conductivity. These properties make the material interesting for use as insulation in, for example, windows, solar collectors, and solar walls. To produce silica aerogel it is necessary to circumvent the high capillary forces working when the solvent is being removed from the gel structure during drying. Supercritical drying has successfully achieved this. However, supercritical drying with an alcohol might be a dangerous and expensive way to produce the aerogel material. In this work we have studied a new type of monolithic silica xerogels made without supercritical drying. The xerogels are produced by strengthening the gel structure before drying, and low densities in the range 0.42 - 0.73 g/cm3 have been obtained. Properties of this new type of silica xerogels have been compared to the properties of silica aerogel made by supercritical drying. Density, pore size, surface area, thermal conductivity, and optical transmittance are reported in this work and some application advantages are discussed.

  9. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials

    PubMed Central

    Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W.

    2013-01-01

    Among numerous active electrode materials, nickel hydroxide is a promising electrode in electrochemical capacitors. Nickel hydroxide research has thus far focused on the crystalline rather than the amorphous phase, despite the impressive electrochemical properties of the latter, which includes an improved electrochemical efficiency due to disorder. Here we demonstrate high-performance electrochemical supercapacitors prepared from amorphous nickel hydroxide nanospheres synthesized via simple, green electrochemistry. The amorphous nickel hydroxide electrode exhibits high capacitance (2,188 F g−1), and the asymmetric pseudocapacitors of the amorphous nickel hydroxide exhibit high capacitance (153 F g−1), high energy density (35.7 W h kg−1 at a power density of 490 W kg−1) and super-long cycle life (97% and 81% charge retentions after 5,000 and 10,000 cycles, respectively). The integrated electrochemical performance of the amorphous nickel hydroxide is commensurate with crystalline materials in supercapacitors. These findings promote the application of amorphous nanostructures as advanced electrochemical pseudocapacitor materials. PMID:23695688

  10. The Impact of Cathode Material and Shape on Current Density in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Song, Yang; Peng, Jianping; Di, Yuezhong; Wang, Yaowu; Li, Baokuan; Feng, Naixiang

    2016-02-01

    A finite element model was developed to determine the impact of cathode material and shape on current density in an aluminum electrolysis cell. For the cathode material, results show that increased electrical resistivity leads to a higher cathode voltage drop; however, the horizontal current is reduced in the metal. The horizontal current magnitude for six different cathode materials in decreasing order is graphitized, semi-graphitized, full graphitic, 50% anthracite (50% artificial graphite), 70% anthracite (30% artificial graphite), 100% anthracite. The modified cathode shapes with an inclined cathode surface, higher collector bar and cylindrical protrusions are intended to improve horizontal current and flow resistance. Compared to a traditional cathode, modified collector bar sizes of 70 mm × 230 mm and 80 mm × 270 mm can reduce horizontal current density component Jx by 10% and 19%, respectively, due to better conductivity of the steel. The horizontal current in the metal decreases with increase of cathode inclination. The peak value of Jx can be approximately reduced by 20% for a 2° change in inclination. Cylindrical protrusions lead to local horizontal current increase on their tops, but the average current is less affected and the molten metal is effectively slowed down.

  11. Phonon anharmonicity in bulk Td-MoTe2

    NASA Astrophysics Data System (ADS)

    Joshi, Jaydeep; Stone, Iris R.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Davydov, Albert V.; Vora, Patrick M.

    2016-07-01

    We examine anharmonic contributions to the optical phonon modes in bulk Td-MoTe2 through temperature-dependent Raman spectroscopy. At temperatures ranging from 100 K to 200 K, we find that all modes redshift linearly with temperature in agreement with the Grüneisen model. However, below 100 K, we observe nonlinear temperature-dependent frequency shifts in some modes. We demonstrate that this anharmonic behavior is consistent with the decay of an optical phonon into multiple acoustic phonons. Furthermore, the highest frequency Raman modes show large changes in intensity and linewidth near T ≈ 250 K that correlate well with the T d → 1 T ' structural phase transition. These results suggest that phonon-phonon interactions can dominate anharmonic contributions at low temperatures in bulk Td-MoTe2, an experimental regime that is currently receiving attention in efforts to understand Weyl semimetals.

  12. Present status and forecast of T&D facilities

    SciTech Connect

    Ko, In-Suk

    1994-12-31

    Before the end of the 1970s, because of our marvelous economic growth and industrial development we had made our best efforts to develop more power sources. But from the 1980s, KEPCO has invested for T&D facility of high quality and improved system reliability. The main considerations for T&D expansion are positive investment to improve facilities of the electric company, improvement of the quality of electrical equipment during manufacturing, and bettering the field construction of power facilities. In order to achieve the ultimate goal of supplying high quality electricity, we will try to improve cooperation between our domestic industries, and research institutes, and increase the exchange of international technology.

  13. Bit-Error-Rate Performance of a Gigabit Ethernet O-CDMA Technology Demonstrator (TD)

    SciTech Connect

    Hernandez, V J; Mendez, A J; Bennett, C V; Lennon, W J

    2004-07-09

    An O-CDMA TD based on 2-D (wavelength/time) codes is described, with bit-error-rate (BER) and eye-diagram measurements given for eight users. Simulations indicate that the TD can support 32 asynchronous users.

  14. Density Functional Theory applied to magnetic materials: Mn3O4 at different hybrid functionals

    NASA Astrophysics Data System (ADS)

    Ribeiro, R. A. P.; de Lazaro, S. R.; Pianaro, S. A.

    2015-10-01

    Antiferromagnetic Mn3O4 in spinel structure was investigated employing the Density Functional Theory at different hybrid functionals with default HF exchange percentage. Structural, electronic and magnetic properties were examined. Structural results were in agreement with experimental and Hartree-Fock results showing that the octahedral site was distorted by the Jahn-Teller effect, which changed the electron density distribution. Band-gap results for B3LYP and B3PW hybrid functionals were closer to the experimental when compared to PBE0. Mulliken Population Analysis revealed magnetic moments very close to ideal d4 and d5 electron configurations of Mn3+ and Mn2+, respectively. Electron density maps are useful to determine that oxygen atoms mediate the electron transfer between octahedral and tetrahedral clusters. Magnetic properties were investigated from theoretical results for exchange coupling constants. Intratetrahedral and tetra-octahedral interactions were observed to be antiferromagnetic, whereas, octahedral sites presented antiferromagnetic interactions in the same layer and ferromagnetic in adjacent layers. Results showed that only default B3LYP was successful to describe magnetic properties of antiferromagnetic materials in agreement with experimental results.

  15. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle. PMID:18503284

  16. Competition of density waves and quantum multicritical behavior in Dirac materials from functional renormalization

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.

    2016-03-01

    We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.

  17. A Noncontact Measurement Technique for the Density and Thermal Expansion Coefficient of Solid and Liquid Materials

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Thiessen, David B.; Rhim, Won-Kyu

    1996-01-01

    A noncontact measurement technique for the density and the thermal expansion refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2-3 mm diameter samples can be levitated, melted, and radiatively cooled in a vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045-1565 C. The result for the liquid phase density can be expressed by p = 8.848 + (6.730 x 10(exp -4)) x T (degC) g/cu cm within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by Beta=(9.419 x 10(exp -5)) - (7.165 x 10(exp -9) x T (degC)/K within 0.2% accuracy.

  18. Detonation shock dynamics calibration for pBX 9502 with temperature, density, and material lot variations

    SciTech Connect

    Hill, Larry G; Aslam, Tariq D

    2010-01-01

    We present a methodology for scaling the detonation shock dynamics D{sub n}[{kappa}] calibration function to accommodate variations in the HE starting material. We apply our model to the insensitive TATB-based explosive PBX 9502, for which we have enough front curvature rate stick data to characterize three material attributes: initial temperature T{sub 0}, nominal density {rho}{sub 0}, and manufacturing lot (representing different microstructures). A useful feature of the model is that it returns an absolute estimate for the reaction zone thickness, {delta}. Lacking demonstrated material metrics(s), we express microstructural variation indirectly, in terms of its effect on {delta}. This results in a D{sub n}[{kappa}] function that depends on T{sub 0}, {rho}{sub 0}, and {delta}. After examining the separate effects of each parameter on D{sub n}[{kappa}], we compute an arc geometry as a validation problem. We compare the calculation to a PBX 9502 arc experiment that was pressed from one of the calibrated HE lots. The agreement between the model and experiment is excellent. We compute worst, nominal, and best-performing material parameter combinations to show how much difference accrues throughout the arc.

  19. Novel high energy density materials: Synthesis by megabar hot pressing. LDRD final report

    SciTech Connect

    Lorenzana, H.E.; Yoo, C.S.; Lipp, M.; Barbee, T. III; McMahan, A.K.; Mailhiot, C.

    1996-04-01

    The goal of this work was to demonstrate proof-of-principle existence of a new class of high energy density materials (HEDMs). These proposed novel solids are derived from first and second row elements arranged in a uniform, three-dimensional network. Thus, every bond in these systems is energetic, in contrast to conventional energetic materials that store energy only within individual molecules. Recent predictions have suggested that a number of possible compounds including a polymeric form of nitrogen can be synthesized at high pressures and recovered metastably at ambient conditions. Specifically, polymeric nitrogen is predicted to have an energy density about three times that of a typical explosive. Such extended solid HEDMs offer dramatic new opportunities as explosives, monopropellants, or as environmentally clean fuels. The authors utilized the laser heated diamond anvil cell as the synthesis route for establishing proof-of-principle existence. They conducted high pressure studies of pure molecular nitrogen samples and completely revised the previously published equation-of-state. They also pursued studies of carbon monoxide, a compound that is isoelectronic with nitrogen and exhibits very similar high pressure phase transformations. Carbon monoxide polymerizes under pressure into a solid that can be recovered and may be energetic.

  20. Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material

    NASA Astrophysics Data System (ADS)

    Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad

    2016-06-01

    Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.

  1. 75 FR 49023 - Proposed Collection; Comment Request for Form TD F 90-22.1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... Internal Revenue Service Proposed Collection; Comment Request for Form TD F 90-22.1 AGENCY: Internal...(c)(2)(A)). Currently, the IRS is soliciting comments concerning Form TD F 90-22.1, Report of Foreign... INFORMATION: Title: Report of Foreign Bank and Financial Accounts. OMB Number: 1545-2038. Form Number: TD F...

  2. Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Spera, D. A.; Klima, S. J.

    1972-01-01

    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism.

  3. A vibrating razor blade machining tool for material removal on low- density foams

    SciTech Connect

    Hillyer, D.F. Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 {mu}m (0.001 in.) flatness are achieved over areas of 8.75 in.{sup 2} (2.5 {times} 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described. 20 figs.

  4. Solid-state and fusion resistance spot welding of TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1973-01-01

    By using specially processed TD-NiCr sheet in both 0.4-mm (0.015-in.) and 1.6-mm (0.062-in.) thicknesses and carefully selected welding procedures, solid state resistance spot welds were produced which, after postheating at 1200 C, were indistinguishable from the parent material. Stress-rupture shear tests of single-spot lap joints in 0.4-mm (0.015-in.) thick sheet showed that these welds were as strong as the parent material. Similar results were obtained in tensile-shear tests at room temperature and 1100 C and in fatigue tests. Conventional fusion spot welds in commercial sheet were unsatisfactory because of poor stress-rupture shear properties resulting from metallurgical damage to the parent material.

  5. A combined TD-DFT and spectroscopic investigation of the solute-solvent interactions of efavirenz

    NASA Astrophysics Data System (ADS)

    Jordaan, Maryam A.; Singh, Parvesh; Martincigh, Bice S.

    2016-03-01

    Efavirenz, commercially known as Sustiva® or Stocrin®, is a first-line antiretroviral treatment for HIV/AIDS. The clinical efficacy of efavirenz is, however, hindered by its solubility. We sought to investigate the solute-solvent effects of efavirenz by means of a combined qualitative study implementing UV-visible spectrophotometry, 1H NMR spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The UV spectrum displayed two main absorbance maxima, band I and band II at 246-260 and 291-295 nm, respectively. A general bathochromic shift was noticed from the non-polar solvent cyclohexane to the most polar solvent DMSO (≈ 13.69 nm) in band I and a smaller bathochromic (≈ 2.17 nm) and hyperchromic shift was observed in band II. We propose that these observations are due to the role of the amino (NH) and carbonyl (CO) functionalities which induce charge-transfer and intra- and inter-molecular hydrogen bonding. The aromatic and amine protons showed the most deshielded effects in the observed chemical shifts (δ) in the more polar DMSO-d6 solvent relative to CDCl3. The 1H NMR chemical shifts observed are due to the increased delocalization of the lone pair electrons of the amino nitrogen with increased polarity of the more polar DMSO solvent. The theoretical reproduction of the UV and 1H NMR spectra by means of TD-DFT is in good agreement with the experimental results.

  6. A combined TD-DFT and spectroscopic investigation of the solute-solvent interactions of efavirenz.

    PubMed

    Jordaan, Maryam A; Singh, Parvesh; Martincigh, Bice S

    2016-03-15

    Efavirenz, commercially known as Sustiva® or Stocrin®, is a first-line antiretroviral treatment for HIV/AIDS. The clinical efficacy of efavirenz is, however, hindered by its solubility. We sought to investigate the solute-solvent effects of efavirenz by means of a combined qualitative study implementing UV-visible spectrophotometry, (1)H NMR spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The UV spectrum displayed two main absorbance maxima, band I and band II at 246-260 and 291-295 nm, respectively. A general bathochromic shift was noticed from the non-polar solvent cyclohexane to the most polar solvent DMSO (≈13.69 nm) in band I and a smaller bathochromic (≈2.17 nm) and hyperchromic shift was observed in band II. We propose that these observations are due to the role of the amino (NH) and carbonyl (CO) functionalities which induce charge-transfer and intra- and inter-molecular hydrogen bonding. The aromatic and amine protons showed the most deshielded effects in the observed chemical shifts (δ) in the more polar DMSO-d6 solvent relative to CDCl3. The (1)H NMR chemical shifts observed are due to the increased delocalization of the lone pair electrons of the amino nitrogen with increased polarity of the more polar DMSO solvent. The theoretical reproduction of the UV and (1)H NMR spectra by means of TD-DFT is in good agreement with the experimental results. PMID:26773263

  7. Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wills, John M.

    2012-02-01

    The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  9. Optical studies of interstellar material in low density regions of the Galaxy

    NASA Technical Reports Server (NTRS)

    Sembach, K. R.; Danks, A. C.

    1994-01-01

    We analyze high-resolution Na I and Ca II interstellar absorption line data obtained in an earlier spectroscopic survey of 57 stars along extended sight lines through the Galactic disk and halo. We find that the Na I lines trace a diffuse cloudy medium and the CA II lines trace both the cloudy medium and a more extended (intercloud) medium. High latitude and interarm sight lines that do not cross spiral arms have clouds that are more diffuse on average than those along sight lines that cross spiral arms. Spiral structure may play an important role in determinating the average absorption properties along extended sight lines and/or interesting physical differences may exist between sight lines that cross spiral arms and those that do not. These might include a harder radiation field and/or higher electron tempertures along the high latitude and 'clean' interarm sight lines. On average, 10% of the Ca II column density occurs at velocities forbidden by the Galactic rotation law by more than 10 km/s. In contrast, only a small precentage of the Na I column density occurs at these velocites. The Ca II to Na I ratio increases by a factor of 15 over forbidden velocities from 0 to 50 km/s and rises rapidly thereafter. A two component model of the Ca II column density per unit velocity over the range l = 325 deg to 360 deg indicates that two distinct distributions exists, one with sigma = 8 km/s and one with sigma = 21 km/s. As much as 60% of the Ca II column density at forbidden velocities may be associated with the faster distribution, which we attribute to warm intercloud material. We estimate expontential scale heights of 0.4-0.5 kpc for the neutral gas traced by the E(B-V), Na I, and H I distributions along the low density sight lines, and we find that Ca II has a larger scale height of 0.8 kpc.

  10. Density functional theory calculations of photophysical properties of linear 2, 7-carbazole derivatives as solar cell materials

    NASA Astrophysics Data System (ADS)

    Liang, Dadong; Liu, Junbo; Kang, Lijuan; Jin, Ruifa; Tang, Shanshan

    2012-04-01

    A theoretical study has been performed to explore the optical and electronic properties on a series of linear 2, 7-carbazole derivative (PCDTBT) by introducing vinyl (v) as linkage and/or benzene (B) as end-capped group for solar cell materials. The PBE0/6-31G(d) method was employed to calculate the frontier molecular orbital (FMO) and energy gap of all derivatives. The values of energy gap change less than 0.28 eV depending on v as linkage and/or B as end-capped group. The absorption spectra was evaluated using the TD-PBE0/6-31 + G(d,p) level on the basis of the optimized geometries. The absorption spectrum has a red shift along with the increasing of molecular chain. The results of ionization potential (IP), electron affinity (EA), and reorganization energy (λ) reveal that, v as linkage and/or B as end-capped group both lead to the increase of charger transfer rates for PCDTBT. Moreover, v as linkage and/or B as end-capped group have slight effects on the stability property of PCDTBT.

  11. Procedure for accurate fabrication of tissue compensators with high-density material

    NASA Astrophysics Data System (ADS)

    Mejaddem, Younes; Lax, Ingmar; Adakkai K, Shamsuddin

    1997-02-01

    An accurate method for producing compensating filters using high-density material (Cerrobend) is described. The procedure consists of two cutting steps in a Styrofoam block: (i) levelling a surface of the block to a reference level; (ii) depth-modulated milling of the levelled block in accordance with pre-calculated thickness profiles of the compensator. The calculated thickness (generated by a dose planning system) can be reproduced within acceptable accuracy. The desired compensator thickness manufactured according to this procedure is reproduced to within 0.1 mm, corresponding to a 0.5% change in dose at a beam quality of 6 MV. The results of our quality control checks performed with the technique of stylus profiling measurements show an accuracy of 0.04 mm in the milling process over an arbitrary profile along the milled-out Styrofoam block.

  12. Reaction between Steel-Making Slag and Carbonaceous Materials While Mixing with High Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Hong, Lan; Sahajwalla, Veena

    2016-01-01

    Since the beginning of the extensive applications in numerous high temperature processes such as iron- and steel-making, coke-making etc. partly in the place of coke, the investigation into the reaction mechanism of waste plastics has become increasingly necessary. In this paper a fundamental study on the behavior of a typical component of waste plastics, high density polyethylene (HDPE), in a mixture with coke at a 1:1 ratio in mass base was conducted during the reaction with iron oxide in steel-making slag at 1823 K and was compared with coke and graphite. The reaction mechanism of carbonaceous materials was analyzed based on the contents of CO and CO2 in the off-gas monitored by an infrared (IR) gas analyzer. It is clear from the results that the reaction of HDPE and coke mixture with steel-making slag approached equilibrium of the Boudouard reaction more quickly and closely than coke or graphite.

  13. Equation of State Models for Low-Z Materials at High Energy Densities

    NASA Astrophysics Data System (ADS)

    Khishchenko, Konstantin V.

    2013-10-01

    Models of thermodynamic properties of materials over a wide range of parameters are necessary for numerical simulations of processes at high energy densities including mixing in fusion plasmas. Accuracy of calculation results is determined mainly by adequacy of equation of state (EOS) of a medium. In the present work, different wide-range EOS models for low-Z elements and compounds are considered, such as Thomas-Fermi or Hartree-Fock-Slater plasma models. A semiempirical model of thermodynamic potential free energy with taking into account polymorphic phase transformations, melting, evaporation and ionization is presented. EOS calculations are carried out for hydrogen, deuterium, lithium, beryllium, carbon and hydrocarbon compounds in a broad region of the phase diagram. Obtained results are compared with available data of experiments at high pressures and temperatures in shock and release waves.

  14. Transient electron density maps of ionic materials from femtosecond x-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Elsaesser, Thomas

    2014-05-01

    X-ray diffraction represents a key method for spatially resolving electron distributions in crystalline materials. So far, electron density maps have been derived from stationary diffraction patterns, providing detailed insight into the equilibrium charge distribution and crystal geometry. Functional processes in condensed matter are frequently connected with nonequilibrium excitations resulting in atomic motions and charge relocations on ultrashort time scales. Transient structures are resolved in space and time by novel x-ray diffraction methods with a femtosecond time resolution, giving access to the driving mechanisms and underlying interactions. In this talk, new results are presented on transient electron distributions of ionic materials mapped with the help of femtosecond x-ray powder diffraction. Experiments are based on a pump-probe approach in which an optical pulse initiates structural dynamics and a hard x-ray pulse from a synchronized laser-driven plasma source is diffracted from the excited powder sample. Such measurements reveal the interplay of lattice and charge motions in the photoexcited prototype material KDP (KH2PO4) which occur on distinctly different length scales. As a second topic, electron relocations induced by strong external optical fields will be discussed. This interaction mechanism allows for generating coherent superpositions of valence and conduction band quantum states and inducing fully reversible charge dynamics. While the materials LiBH4 and NaBH4 display electron relocations from the (BH4)- ions to the neighboring Li+ and Na+ ions, LiH exhibits an electron transfer from Li to H. The latter is a manifestation of electron correlations and in agreement with theoretical calculations.

  15. Calculation of radiation attenuation coefficients, effective atomic numbers and electron densities for some building materials.

    PubMed

    Damla, N; Baltas, H; Celik, A; Kiris, E; Cevik, U

    2012-07-01

    Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient (μ/ρ), effective atomic, numbers (Z(eff)), effective electron densities (N(e)) and photon interaction cross section (σ(a)) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. PMID:22128356

  16. Surface modified CFx cathode material for ultrafast discharge and high energy density

    DOE PAGESBeta

    Dai, Yang; Zhu, Yimei; Cai, Sendan; Wu, Lijun; Yang, Weijing; Xie, Jingying; Wen, Wen; Zheng, Jin-Cheng; Zheng, Yi

    2014-11-10

    Li/CFx primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CFx, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CFx. The modified CFx, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yielding a high-capacity performance andmore » an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.« less

  17. Surface modified CFx cathode material for ultrafast discharge and high energy density

    SciTech Connect

    Dai, Yang; Zhu, Yimei; Cai, Sendan; Wu, Lijun; Yang, Weijing; Xie, Jingying; Wen, Wen; Zheng, Jin-Cheng; Zheng, Yi

    2014-11-10

    Li/CFx primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CFx, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CFx. The modified CFx, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yielding a high-capacity performance and an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.

  18. Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach.

    PubMed

    Zhang, Yachao

    2014-12-01

    A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior. PMID:25481157

  19. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    SciTech Connect

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  20. Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling's rules revisited

    SciTech Connect

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2014-05-20

    number of the atom is determined uniquely independent of the asphericity and sizes of the atom. A power law connection established between the bond lengths and bond strengths for crystals and molecules is mirrored by a comparable power law connection between bond length and the accumulation of the electron density between bonded pairs of atoms, a connection that is consistent with Pauling's electroneutrality postulate that the charges of the atoms in an oxide are negligibly small. The connection indicates that a one-to-one correspondence exists between the accumulation between a pair of bonded atoms and the Pauling bond strength for M-O bonded interaction for all atoms of the periodic table. The connection provides a common basis for understanding the success of the manifold applications that have been made with the bond valence theory model together with the modeling of crystal structures, chemical zoning, leaching and cation transport in batteries and the like. We believe that the wide spread applications of the model in mineralogy and material science owes much of its success to the direct connection between bond strength and the quantum mechanical observable, the electron density distribution. Comparable power law expressions established for the bonded interactions for both crystals and molecules support Pauling's assertion that his second rule has significance for molecules as well as for crystals. A simple expression is found that provides a one to one connection between the accumulation of the electron density between bonded M and O atoms and the Pauling bond strength for all M atoms of the periodic table with ~ 95 % of the variation of the bond strength being explained in terms of a linear dependence on the accumulated electron density. Compelling evidence is presented that supports the argument that the Si-O bonded interactions for tiny siloxane molecules and silicate crystals are chemically equivalent.

  1. EFFECTS OF SURFACE AREA DENSITY OF ALUMINUM FOAMS ON THERMAL CONDUCTIVITY OF ALUMINUM FOAM-PHASE CHANGE MATERIAL COMPOSITES

    SciTech Connect

    Hong, Sung-tae; Herling, Darrell R.

    2007-07-01

    The effects of the surface area density of open-cell aluminum foams on the effective thermal conductivity of aluminum foam-phase change material (PCM) composites were investigated. Paraffin was selected as the PCM. The experimental results show that the effective thermal conductivity increases as the temperature increases. The experimental results suggest that the effective thermal conductivities can be different for different surface area densities of foams even though the relative densities of foams are similar. Therefore, for an accurate estimation of the effective thermal conductivity, a correlation including the surface area density effect is needed.

  2. Flight and ground tests of a very low density elastomeric ablative material

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.; Chapman, A. J., III

    1972-01-01

    A very low density ablative material, a silicone-phenolic composite, was flight tested on a recoverable spacecraft launched by a Pacemaker vehicle system; and, in addition, it was tested in an arc heated wind tunnel at three conditions which encompassed most of the reentry heating conditions of the flight tests. The material was composed, by weight, of 71 percent phenolic spheres, 22.8 percent silicone resin, 2.2 percent catalyst, and 4 percent silica fibers. The tests were conducted to evaluate the ablator performance in both arc tunnel and flight tests and to determine the predictability of the albator performance by using computed results from an existing one-dimensional numerical analysis. The flight tested ablator experienced only moderate surface recession and retained a smooth surface except for isolated areas where the char was completely removed, probably following reentry and prior to or during recovery. Analytical results show good agreement between arc tunnel and flight test results. The thermophysical properties used in the analysis are tabulated.

  3. Excited states of ladder-type π-conjugated dyes with a joint SOS-CIS(D) and PCM-TD-DFT approach.

    PubMed

    Chibani, Siwar; Laurent, Adèle D; Le Guennic, Boris; Jacquemin, Denis

    2015-05-28

    First-principle simulations aimed at accurately reproducing the excited state properties of a large series of ladder-type π-conjugated organic molecules containing heteroatoms (Si, S, B, O, and N) have been performed. In particular, time-dependent density functional theory (TD-DFT) calculations relying on several global and range-separated hybrid functionals have been carried out in conjunction with three variations of the polarizable continuum model (PCM), namely, the linear-response (LR), corrected linear-response (cLR), and state-specific (SS) approaches. For this series of molecules, similar to many borate derivatives, the cLR-PCM-TD-M06-2X approach can be used to reproduce the auxochromic effects that tune the 0-0 energies. However, TD-DFT yields rather large absolute deviations with respect to the experimental 0-0 energies. These systematic errors can be reduced by more than 0.1 eV when scaled opposite spin-configuration interaction singles with a double correction [SOS-CIS(D)] vertical calculations are combined to the PCM-TD-DFT results. This study demonstrates that such a "hybrid" scheme, where the geometrical and vibrational parameters, as well as the solvation effects, are determined with PCM-TD-DFT, whereas the transition energies are obtained with a wavefunction-based method, offers a useful compromise between accuracy and computational cost. PMID:25522826

  4. Polarizabilities and Other Properties of the td Muons Molecular Ion

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Drachman, Richard J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Wavefunctions of Hylleraas type were used earlier to calculate energy levels of muonic systems. Recently, we found in the case of the molecular ions H2+, D2+ and HD+ that it was necessary to include high powers of the internuclear distance in the Hylleraas functions to localize the nuclear motion when treating the ions as three-body systems without invoking the Born-Oppenheimer approximation. We try the same approach in a muonic system, td(mu-). Improved convergence is obtained for J = 0 and 1 states for shorter expansions when we use this type of generalized Hylleraas function, but as the expansion length increases the high powers are no longer useful. We obtain good energy values for the two lowest J = 0 and J = 1 states and compare them with the best earlier calculations. Expectation values are obtained for various operators, the Fermi contact parameters, and the permanent quadrupole moment. The cusp conditions are also calculated. The polarizability of the ground state is then calculated using second-order perturbation theory with intermediate J = 1 pseudostates. It should be possible to measure the polarizability by observing Rydberg states of atoms with td(mu-) acting as the nucleus.

  5. MCD spectroscopy and TD-DFT calculations of low symmetry subnaphthalocyanine analogs.

    PubMed

    Mack, John; Otaki, Tatsuya; Durfee, William S; Kobayashi, Nagao; Stillman, Martin J

    2014-07-01

    Magnetic circular dichroism (MCD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations are used to analyze the electronic structure and optical properties of low-symmetry subnaphthalocyanine analogs with AAB and ABB structures formed during mixed condensations of tetrafluorophthalonitrile and 2,3-naphthalenedicarbonitrile. The results demonstrate that trends observed in the properties of phthalocyanine analogs can be used to fine tune the optical properties so that the Q(0,0) bands lie in the red region, in a manner that does not significantly destabilize the highest occupied molecular orbital (HOMO) energy relative to that of the parent subphthalocyanine ligand. Attempts to study the spectroscopy of anion radical species proved unsuccessful, since they proved to be unstable. PMID:24507929

  6. X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material

    SciTech Connect

    Hammel, B.A.; Griswold, D.; Landen, O.L.; Perry, T.S.; Remington, B.A.; Miller, P.L.; Peyser, T.A.; Kilkenny, J.D. )

    1993-07-01

    Time resolved x-ray radiographic measurements at high photon energy ([similar to]7 keV) are used to observe radiation-driven shock propagation and interface motion in solid density plastic samples, produced by indirect drive on the Nova laser. Measurements of x-ray transmission through the shock compressed material are used to infer a density of approximately three times solid. In addition, by doping a section of a sample with high-[ital Z] material (Br) for radiographic contrast, the shocked particle velocity was measured by observing the motion of the interface between the doped and nondoped materials resulting from acceleration by a shock.

  7. Uplink Scheduling and Adjacent-Channel Coupling Loss Analysis for TD-LTE Deployment

    PubMed Central

    Yeo, Woon-Young; Moon, Sung Ho

    2014-01-01

    TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI. PMID:24707214

  8. Uplink scheduling and adjacent-channel coupling loss analysis for TD-LTE deployment.

    PubMed

    Yeo, Woon-Young; Moon, Sung Ho; Kim, Jae-Hoon

    2014-01-01

    TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI. PMID:24707214

  9. A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control.

    PubMed

    Wu, Ying; Lee, Yew; Jung, Seul-Gi; Kim, Minju; Eom, Chi-Yong; Kim, Si Wouk; Cho, Hoon; Jin, Eonseon

    2014-05-01

    Thiazolidinedione (TD) derivatives have been found to have an algicidal effect on harmful algal bloom microalgae. In this study, 75 TD derivatives were synthesized and analyzed for algicidal activity. Among these synthetic TDs, 18 TD derivatives showed specific algicidal activity on two strains belonging to the classes Raphidophyceae (Chattonella marina and Heterosigma akashiwo) and Dinophyceae (Cochlodinium polykrikoides). Two strains belonging to Bacillariophyceae (Navicula pelliculosa and Phaeodactylum EPV), one strain belonging to Dinophyceae (Amphidinium sp.), and a Eustigmatophycean microalga (Nannochloropsis oculata) showed less sensitivity to the TD derivatives than the other two phyla. The most reactive TD derivative, compound 2 (TD118), was selected and tested for morphological and physiological changes. TD118 effectively damaged the cell membrane of C. marina, H. akashiwo and C. polykrikoides. The O₂ evolution and photosystem II efficiency (F(v)/F(m)) of C. marina, H. akashiwo and C. polykrikoides were also severely reduced by TD118 treatment. Amphidinium sp., N. pelliculosa, Phaeodactylum EPV and N. oculata showed less reduction of O₂ evolution and the F(v)/F(m) by TD118. These results imply that the species-specific TD structure relationship may be due to structural and/or physiological differences among microalgal species. PMID:24374490

  10. See Also:Mechanics of Cohesive-frictional MaterialsCopyright © 2004 John Wiley & Sons, Ltd.Get Sample Copy

  11. Recommend to Your Librarian
  12. td> width="50%">
    • Save Title to My Profile
    • Set E-Mail Alert
    td>td> width="100"> E-MailPrinttd>
  1. Development of 3-dimensional time-dependent density functional theory and its application to gas diffusion in nanoporous materials.

    PubMed

    Liu, Yu

    2016-05-11

    I developed a novel time-dependent density functional theory (TDDFT) and applied it to complicated 3-dimensional systems for the first time. Superior to conventional TDDFT, the diffusion coefficient is modeled as a function of density profile, which is self-determined by the entropy scaling rule instead using an input parameter. The theory was employed to mimic gas diffusion in a nanoporous material. The TDDFT prediction on the transport diffusivity was reasonable compared to simulations. Moreover, the time-dependent density profiles gave an insight into the microscopic mechanism of the diffusion process. PMID:27121986

  2. Effects of the algicide, thiazolidinedione derivative TD49, on microbial communities in a mesocosm experiment.

    PubMed

    Son, Moonho; Baek, Seung Ho; Shin, Kyoungsoon; Choi, Keun-Hyung; Kim, Si Wouk; Ryu, Jaewon; Cho, Hoon; Jung, Seung Won; Chung, Ik Kyo; Kim, Young-Ok; Han, Myung-Soo

    2015-04-01

    We investigated the effects of the algicide thiazolidinedione derivative TD49 on microbial community in mesocosm experiments. The TD49 concentration exponentially decreased over time, with half-life of 3.5 h, following addition in the seawater (R2=0.98, P<0.001). Among microbial communities, heterotrophic bacteria and heterotrophic nanoflagellates (HNFs) grew well in all treatments following the addition of TD49. The abundance of HNFs lagged behind the increase in heterotrophic bacteria by 24 h in the 0.2 and 0.4 μM TD49 concentrations (R2=0.28, P<0.05), and by 48 h in the 0.6 and 1.0 μM TD49 concentrations (R2=0.30, P<0.05). This implies a strong concentration-dependent top-down effect of TD49 on microbial communities, with indications that the degradation of planktonic organisms, including the target alga, led to high heterotrophic bacteria concentrations, which in turn stimulated the population growth of predatory HNF. However, total ciliate numbers remained relatively low in the TD49 treatments relative to the control and blank groups, suggesting limited carbon flow from bacteria to these grazers even though the abundance of aloricate ciliates gradually increased toward the end of the experimental period, particularly at the high TD49 concentrations. TD49 appears to provide an environmentally safe approach to the control of harmful algal blooms (HABs) in aquatic ecosystems. PMID:25740687

  3. Crystal structure of MCM-70: A microporous material with high framework density.

    PubMed

    Dorset, Douglas L; Kennedy, Gordon J

    2005-07-28

    The crystal structure of the borosilicate MCM-70 (siliceous framework formula Si12O24) was determined from synchrotron powder diffraction data with the program FOCUS. The framework crystallizes in space group Pmn2(1), where a = 13.663, b = 4.779, c = 8.723 A, and forms 1D ellipsoidal 10-ring channels with the following dimensions: 5.0 x 3.1 A. Rietveld refinement of the model against synchrotron powder data from solvated material gives Rwp = 0.15, R(F2) = 0.11. In addition to the four tetrahedral sites and seven framework oxygens, one potassium position is found during this refinement. Because of the unreasonable geometry of five putative extraframework oxygen sites, another synchrotron pattern was obtained from a dehydrated specimen. A refinement in space group P1n1 (removing the mirror operation of Pmn2(1)), where a = 13.670, b = 4.781, c = 8.687 A, and beta = 90.24 degrees , verified that the previous framework geometry is preserved as well as the potassium position. One extraframework oxygen was located that would yield a reasonable K-O distance. The existence of potassium is verified by electron energy dispersive spectroscopic measurements as well as quantitative elemental analysis. (There are approximately 2.35 K sites per 12 Si in the unit cell.) It is likely that the constricted channels occlude KOH. 11B and 29Si MAS NMR measurements indicate a framework SiO2/B2O3 of approximately 40:1, which is consistent with a wavelength dispersive spectroscopic measurement. The silicate framework density is 2.10 gm/cm3. The resulting framework density for T sites, 21.1, is unusually high for a zeolite, just below the value for paracelsian (21.4) or scapolite (21.8), each of which also has a smallest four-ring loop. The 1H --> 29Si CP MAS measurements suggest sample heterogeneity, that is, a portion of the sample that is strongly coupled to hydrogen and efficiently cross polarizes and another portion that does not. PMID:16852743

  4. Phase Relations and Densities of Crustal Material Deeply Buried into the Mantle

    NASA Astrophysics Data System (ADS)

    Massonne, H.; Fockenberg, T.; Janitschke, M.

    2010-12-01

    To better approach the phase relations and corresponding densities of crustal material that is deeply buried into the mantle down to the transition zone, pseudosections were calculated for the P-T range 4-20 GPa and 600-1600°C in the system K2O-Na2O-CaO-FeO-MgO-Al2O3-SiO2-TiO2-H2O. These P-T pseudosections were obtained for various rock compositions typical for oceanic or continental crust among them are those of an S-type granite (G), a quartz-diorite (QD), a mid-ocean ridge basalt (MORB), a common pelite (P), an anatectic metapelite with restitic character (PR), and the averages of pelagic clay (APC) and upper continental crust (AUCC). For the calculation procedure, the PERPLE_X software package by Connolly and the thermodynamic data set by Holland and Powell, including corresponding solid-solution models, were used. To this data set, we have added thermodynamic data for stishovite, TiO2 with α-PbO2 structure, OH-topaz, phase egg, K-cymrite, Si-wadeite, K-hollandite, Na-hollandite, Na-pyroxene (NaPx), and Na-garnet (NaGt). The latter two phases with composition Na2MgSi5O12 were correspondingly included in four component solid-solution models for clinopyroxene and garnet. In addition, a new non-ideal solid-solution model for Na-K-hollandite was created. With these newly added thermodynamic data, the results of previous high-pressure experiments can be well reproduced. This concerns, for instance, the experiments in the system KAlSi3O8-NaAlSi3O8 by Yagi et al. on K-hollandite and its solid-solution towards Na-hollandite. Furthermore, the characteristics of MORB, studied by Okamoto and Maruyama in experiments up to 20 GPa, could be reproduced. In our study, NaPx and NaGt start to appear in the MORB composition above 7 GPa and reach maximum contents of 7 mol% of NaPx and 19 mol% of NaGt in pyroxene and garnet, respectively, at 14 GPa (1000-1400°C). At higher pressures, clinopyroxene widely disappears with only some nearly pure jadeite being left. Hollandite

  5. Role of excited states for the material gain and threshold current density in quantum wire intersubband laser structures

    NASA Astrophysics Data System (ADS)

    Herrle, Thomas; Haneder, Stephan; Wegscheider, Werner

    2006-05-01

    We calculated the material gain and the threshold current density for quantum wire intersubband laser structures. In quantum cascade laser devices with active regions of lower dimensionality a reduction of the nonradiative losses and consequently an increase in the material gain and a reduction of the threshold current density is predicted. In our calculations of the material gain and the threshold current density for a realistic quantum wire intersubband laser structure fabricated by the cleaved edge overgrowth (CEO) technique, however, it turns out that excited states formed in those structures even reduce the material gain compared to conventional quantum well cascade lasers. The threshold current density also turns out to be increased due to the reduced material gain on the one hand and due to a small optical confinement factor in such structures on the other hand. The main consequence for the design of such quantum wire laser structures is to avoid the formation of excited states to be able to benefit from the reduction of the dimensionality of the electron system in terms of reduced nonradiative losses.

  6. Density functional theory and Ab initio studies of vibrational spectroscopic (FT-IR, FT-Raman and UV) first order hyperpolarizabilities, NBO, HOMO-LUMO and TD-DFT analysis of the 1,2-Dihydropyrazolo (4,3-E) Pyrimidin-4-one

    NASA Astrophysics Data System (ADS)

    Ramachandran, G.; Muthu, S.; Uma Maheswari, J.

    2013-02-01

    Fourier transform Raman and Fourier transform infrared spectra of 1,2-Dihydropyrazolo (4,3-E) Pyrimidin-4-one were recorded in the regions 3500-100 cm-1 and 4000-400 cm-1 respectively in the solid phase. 1,2-Dihydropyrazolo (4, 3-E) Pyrimidin-4-one is used to treat hyperuricemia and its complication including chronic gout. The equilibrium geometry harmonic vibrational frequencies, infrared intensities and Raman intensities were calculated by Hartee Fock and density functional B3LYP methods with 6-31G (d, p) basis set, using Gaussian 03W program package on a Pentium IV/1.6 GHz personal computer. The thermodynamic functions of the title compound were also performed at the above methods and basis set. A detailed interpretation of the infrared and Raman spectra of 1,2-Dihydropyrazolo (4,3-E) Pyrimidin-4-one is reported. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis of the compound was recorded. The calculated HOMO and LUMO energies show that chemical activity of the molecule. The first order hyperpolarizability (β) of this novel molecular system and related properties of 1,2-Dihydropyrazolo (4,3-E) Pyrimidin-4-one are calculated using HF/6-31G (d, p) method on the finite field approach. The experimental spectra also coincide satisfactorily with those of theoretically constructed spectra.

  7. TU-F-18A-04: Use of An Image-Based Material-Decomposition Algorithm for Multi-Energy CT to Determine Basis Material Densities

    SciTech Connect

    Li, Z; Leng, S; Yu, L; McCollough, C

    2014-06-15

    Purpose: Published methods for image-based material decomposition with multi-energy CT images have required the assumption of volume conservation or accurate knowledge of the x-ray spectra and detector response. The purpose of this work was to develop an image-based material-decomposition algorithm that can overcome these limitations. Methods: An image-based material decomposition algorithm was developed that requires only mass conservation (rather than volume conservation). With this method, using multi-energy CT measurements made with n=4 energy bins, the mass density of each basis material and of the mixture can be determined without knowledge of the tube spectra and detector response. A digital phantom containing 12 samples of mixtures from water, calcium, iron, and iodine was used in the simulation (Siemens DRASIM). The calibration was performed by using pure materials at each energy bin. The accuracy of the technique was evaluated in noise-free and noisy data under the assumption of an ideal photon-counting detector. Results: Basis material densities can be estimated accurately by either theoretic calculation or calibration with known pure materials. The calibration approach requires no prior information about the spectra and detector response. Regression analysis of theoretical values versus estimated values results in excellent agreement for both noise-free and noisy data. For the calibration approach, the R-square values are 0.9960+/−0.0025 and 0.9476+/−0.0363 for noise-free and noisy data, respectively. Conclusion: From multi-energy CT images with n=4 energy bins, the developed image-based material decomposition method accurately estimated 4 basis material density (3 without k-edge and 1 with in the range of the simulated energy bins) even without any prior information about spectra and detector response. This method is applicable to mixtures of solutions and dissolvable materials, where volume conservation assumptions do not apply. CHM receives

  8. TD-DFT Insight into Photodissociation of Co-C Bond in Coenzyme B12

    NASA Astrophysics Data System (ADS)

    Kozlowski, Pawel; Liu, Hui; Kornobis, Karina; Lodowski, Piotr; Jaworska, Maria

    2013-12-01

    Coenzyme B12 (AdoCbl) is one of the most biologically active forms of vitamin B12, and continues to be a topic of active research interest. The mechanism of Co-C bond cleavage in AdoCbl, and the corresponding enzymatic reactions are however, not well understood at the molecular level. In this work, time-dependent density functional theory (TD-DFT) has been applied to investigate the photodissociation of coenzyme B12. To reduce computational cost, while retaining the major spectroscopic features of AdoCbl, a truncated model based on ribosylcobalamin (RibCbl) was used to simulate Co-C photodissociation. Equilibrium geometries of RibCbl were obtained by optimization at the DFT/BP86/TZVP level of theory, and low-lying excited states were calculated by TD-DFT using the same functional and basis set. The calculated singlet states, and absorption spectra were simulated in both the gas phase, and water, using the polarizable continuum model (PCM). Both spectra were in reasonable agreement with experimental data, and potential energy curves based on vertical excitations were plotted to explore the nature of Co-C bond dissociation. It was found that a repulsive 3(σCo-C → σ*Co-C) triplet state became dissociative at large Co-C bond distance, similar to a previous observation for methylcobalamin (MeCbl). Furthermore, potential energy surfaces (PESs) obtained as a function of both Co-CRib and Co-NIm distances, identify the S1 state as a key intermediate generated during photoexcitation of RibCbl, attributed to a mixture of a MLCT (metal-to-ligand charge transfer) and a σ bonding-ligand charge transfer (SBLCT) states.

  9. TD-DFT insight into photodissociation of the Co-C bond in coenzyme B12

    PubMed Central

    Liu, Hui; Kornobis, Karina; Lodowski, Piotr; Jaworska, Maria; Kozlowski, Pawel M.

    2014-01-01

    Coenzyme B12 (AdoCbl) is one of the most biologically active forms of vitamin B12, and continues to be a topic of active research interest. The mechanism of Co-C bond cleavage in AdoCbl, and the corresponding enzymatic reactions are however, not well understood at the molecular level. In this work, time-dependent density functional theory (TD-DFT) has been applied to investigate the photodissociation of coenzyme B12. To reduce computational cost, while retaining the major spectroscopic features of AdoCbl, a truncated model based on ribosylcobalamin (RibCbl) was used to simulate Co-C photodissociation. Equilibrium geometries of RibCbl were obtained by optimization at the DFT/BP86/TZVP level of theory, and low-lying excited states were calculated by TD-DFT using the same functional and basis set. The calculated singlet states, and absorption spectra were simulated in both the gas phase, and water, using the polarizable continuum model (PCM). Both spectra were in reasonable agreement with experimental data, and potential energy curves based on vertical excitations were plotted to explore the nature of Co-C bond dissociation. It was found that a repulsive 3(σCo−C → σ*Co−C) triplet state became dissociative at large Co-C bond distance, similar to a previous observation for methylcobalamin (MeCbl). Furthermore, potential energy surfaces (PESs) obtained as a function of both Co-CRib and Co-NIm distances, identify the S1 state as a key intermediate generated during photoexcitation of RibCbl, attributed to a mixture of a metal-to-ligand charge transfer (MLCT) and a σ bonding-ligand charge transfer (SBLCT) states. PMID:24790969

  10. Density functional theory based tight binding study on theoretical prediction of low-density nanoporous phases ZnO semiconductor materials

    NASA Astrophysics Data System (ADS)

    Tuoc, Vu Ngoc; Doan Huan, Tran; Viet Minh, Nguyen; Thi Thao, Nguyen

    2016-06-01

    Polymorphs or phases - different inorganic solids structures of the same composition usually have widely differing properties and applications, thereby synthesizing or predicting new classes of polymorphs for a certain compound is of great significance and has been gaining considerable interest. Herein, we perform a density functional theory based tight binding (DFTB) study on theoretical prediction of several new phases series of II-VI semiconductor material ZnO nanoporous phases from their bottom-up building blocks. Among these, three phases are reported for the first time, which could greatly expand the family of II- VI compound nanoporous phases. We also show that all these generally can be categorized similarly to the aluminosilicate zeolites inorganic open-framework materials. The hollow cage structure of the corresponding building block ZnkOk (k= 9, 12, 16) is well preserved in all of them, which leads to their low-density nanoporous and high flexibility. Additionally the electronic wide-energy gap of the individual ZnkOk is also retained. Our study reveals that they are all semiconductor materials with a large band gap. Further, this study is likely to be the common for II-VI semiconductor compounds and will be helpful for extending their range of properties and applications.

  11. The electronic excited states of a model organic endoperoxide: A comparison of TD-DFT and ab initio methods

    NASA Astrophysics Data System (ADS)

    Corral, Inés; González, Leticia

    2007-10-01

    The vertical excited spectrum of a model endoperoxide (cyclohexadieneendoperoxide) has been calculated using time dependent density functional theory (TD-DFT), resolution of the identity second order approximate coupled-cluster theory (RI-CC2), multiconfigurational complete active space self consistent field (CASSCF) and second order multi-state perturbation theory (MS-CASPT2). All theoretical methods predict the charge transfer πOO∗→πCC∗, and the πOO∗→σOO∗ excitation to be the lowest absorbing excited states. CASSCF optimized geometries for these states provide some hints about the photodissociation mechanisms as well as the emission spectrum of the molecule.

  12. Perfluorinated carboxylic acids in directly fluorinated high-density polyethylene material.

    PubMed

    Rand, Amy A; Mabury, Scott A

    2011-10-01

    Perfluorinated carboxylic acids (PFCAs) are ubiquitous in the environment and have been detected in human blood worldwide. One potential route is direct exposure to PFCAs through contact with polymers that have been fluorinated through a process referred to as direct fluorination. PFCAs are hypothesized to be reaction byproducts of direct fluorination when trace amounts of oxygen are present. The objective of this research was to investigate whether PFCAs could be measured in directly fluorinated high-density polyethylene (HDPE) bottles. PFCAs were quantified using Soxhlet extraction with methanol, followed by LC-MS/MS analysis. Total concentrations of PFCAs ranged from 8.5 ± 0.53 to 113 ± 2.5 ng/bottle (1 L), with the short-chain PFCAs, perfluoropropanoic, perfluorobutanoic, perfluoropentanoic, and perfluorohexanoic acids, being the dominant congeners observed. Relative PFCA concentrations varied depending on fluorination level. Structural isomers were detected using (19)F NMR and are hypothesized to have formed during the fluorination process; NMR data revealed the linear isomer typically comprised 55% of the examined sample. Internally branched, isopropyl branched, and t-butyl PFCA isomers of varying chain length were also identified. Electrochemical fluorination was previously thought to be the only source of branched PFCA isomers. The observation here of branched isomers suggests direct fluorination may be an additional source of exposure to these chemicals. The purpose of this study was to measure PFCAs in directly fluorinated material, serving as a previously unidentified source contributing to the environmental load of PFCAs, with potential for human exposure. PMID:21688793

  13. Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability.

    PubMed

    Nemiroski, Alex; Soh, Siowling; Kwok, Sen Wai; Yu, Hai-Dong; Whitesides, George M

    2016-02-01

    Magnetic levitation (MagLev) of diamagnetic or weakly paramagnetic materials suspended in a paramagnetic solution in a magnetic field gradient provides a simple method to measure the density of small samples of solids or liquids. One major limitation of this method, thus far, has been an inability to measure or manipulate materials outside of a narrow range of densities (0.8 g/cm(3) < ρ < 2.3 g/cm(3)) that are close in density to the suspending, aqueous medium. This paper explores a simple method-"tilted MagLev"-to increase the range of densities that can be levitated magnetically. Tilting the MagLev device relative to the gravitational vector enables the magnetic force to be decreased (relative to the magnetic force) along the axis of measurement. This approach enables many practical measurements over the entire range of densities observed in matter at ambient conditions-from air bubbles (ρ ≈ 0) to osmium and iridium (ρ ≈ 23 g/cm(3)). The ability to levitate, simultaneously, objects with a broad range of different densities provides an operationally simple method that may find application to forensic science (e.g., for identifying the composition of miscellaneous objects or powders), industrial manufacturing (e.g., for quality control of parts), or resource-limited settings (e.g., for identifying and separating small particles of metals and alloys). PMID:26722977

  14. Excited-state studies of polyacenes: A comparative picture using EOMCCSD, CR-EOMCCSD(T), range-separated (LR/RT)-TDDFT, TD-PM3 and TD-ZINDO

    SciTech Connect

    Lopata, Kenneth A.; Reslan, Randa; Kowalska, Malgorzata I.; Neuhauser, Daniel; Govind, Niranjan; Kowalski, Karol

    2011-11-08

    The low-lying excited states (L{sub a} and L{sub b}) of polyacenes from naphthalene to heptacene (N = 2-7) are studied using various time-dependent computational approaches. We perform high-level excited-state calculations using equation of motion coupled cluster with singles and doubles (EOMCCSD) and completely renormalized equation of motion coupled cluster with singles, doubles, and perturbative triples (CR-EOMCCSD(T)) and use these results to evaluate the performance of various range-separated exchange-correlation functionals within linearresponse (LR) and real-time (RT) time-dependent density functional theories (TDDFT). As has been reported recently, we find that the range-separated family of functionals address the well-documented TDDFT failures in describing these low-lying singlet excited states to a large extent and are as about as accurate as results from EOMCCSD on average. Real-time TDDFT visualization shows that the excited state charged densities are consistent with the predictions of the perimeter free electron orbital (PFEO) model. This corresponds to particle-on-a-ring confinement, which leads to the well-known red-shift of the excitations with acene length. We also use time-dependent semi-empirical methods like TD-PM3 and TD-ZINDO, which are capable of handling very large systems. Once re-parametrized to match the CR-EOMCCSD(T) results, TD-ZINDO becomes roughly as accurate as range-separated TDDFT, which opens the door to modeling systems such as large molecular assemblies.

  15. Learner Preferences for Varying Screen Densities Using Realistic Stimulus Materials with Single and Multiple Designs.

    ERIC Educational Resources Information Center

    Morrison, Gary R.; And Others

    1989-01-01

    Discussion of learner preferences for text densities on computer screen displays highlights two studies of college students that compared preferences for multiple or single screen presentations with high-, medium-, or low-density screens from an actual course using computer-assisted instruction. Results are analyzed, and further research needs are…

  16. Low-Density and High Porosity Hydrogen Storage Materials Built from Ultra-Light Elements. Final Scientific/Technical Report

    SciTech Connect

    Feng, Pingyun

    2014-01-10

    A number of significant advances have been achieved, opening up new opportunities for the synthetic development of novel porous materials and their energy-related applications including gas storage and separation and catalysis. These include lithium-based metal-organic frameworks, magnesium-based metal-organic frameworks, and high gas uptake in porous frameworks with high density of open donor sites.

  17. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  18. The interactive effects of pH, surface tension, and solution density for flotation systems for separation of equivalent-density materials: separation of ABS from HIPS

    SciTech Connect

    Karvelas, D.E.; Jody, B.J.; Pomykala, J.A.; Daniels, E.J.

    1996-07-01

    This paper presents the results of research being conducted at Argonne National Laboratory, to develop a cost-effective and environmentally acceptable process for the separation of high-value plastics from discarded household appliances. The process under development has separated high-purity (greater than 99.5%) acrylonitrile-butadiene-styrene (ABS) and high-impact polystyrene (HIPS) from commingled plastics generated by appliance-shredding and metal recovery operations. Plastics of similar densities, such as ABS and HIPS are further separated by using a chemical solution. By controlling the surface tension, the density and the temperature of the chemical solution, we are able to selectively float/separate plastics that have equivalent densities. In laboratory-scale tests, this technique has proven highly effective in recovering high-purity plastics materials from discarded household appliances and other obsolete durable goods. A pilot plant is under construction to demonstrate and assess the technical and economic performance of this process. In this paper, we examine the technical and economic issues that affect the recovery and separation of plastics and provide an update on Argonne`s plastics separation research and development activities.

  19. 75 FR 33891 - Proposed Collection; Comment Request for REG 209446-82 (TD 8852)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ...-209446-82 (TD 8852), Passthrough of Items of an S Corporation to its Shareholders (Sec. 1.1366-1). DATES... Corporation to its Shareholders. OMB Number: 1545-1613. Regulation Project Number: REG-209446-82 (TD 8852). Abstract: Section 1366 requires shareholders of an S corporation to take into account their pro rata...

  20. Analyses on the effect of hot spot density on material consumption rate

    NASA Astrophysics Data System (ADS)

    Levesque, G. A., Iv; Vitello, P.; Nichols, A. L., Iii; Tarver, C.; Willey, T.; Friedman, G.; Oppelstrup, T.

    2014-05-01

    There is an observed effect of an explosive's constituent grain size and density on its performance. At the mesoscale, it is the outward burning of hot spots that controls observed performance. While statistical hot spot models can integrate the mesoscale behaviour to macroscale simulations, it is unknown what the density of created hot spots is as a function of grain size and porosity. Simulating mesoscale hot spot distributions and varying hot spot density, we discuss the resultant performance as influenced by inter-pore distance and pore distribution.

  1. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section

    NASA Technical Reports Server (NTRS)

    Taflove, Allen; Umashankar, Korada R.

    1989-01-01

    Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.

  2. Tris(triazolo)benzene and its derivatives: high-density energetic materials.

    PubMed

    Thottempudi, Venugopal; Forohor, Farhad; Parrish, Damon A; Shreeve, Jean'ne M

    2012-09-24

    High-performance explosives: Tris(triazolo)benzene was synthesized and converted to its trinitro and trichloro derivatives (see scheme; R=NO(2), Cl). The heats of formation of this "high-nitrogen" compounds were calculated and combined with experimentally determined densities to determine detonation pressures and velocities. They exhibit high density, good thermal stability, high heats of formation, and moderate to good detonation properties. PMID:22945830

  3. Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods.

    PubMed

    Momeni, Mohammad R; Brown, Alex

    2015-06-01

    The vertical excitation energies of 17 boron-dipyrromethene (BODIPY) core structures with a variety of substituents and ring sizes are benchmarked using time-dependent density functional theory (TD-DFT) with nine different functionals combined with the cc-pVTZ basis set. When compared to experimental measurements, all functionals provide mean absolute errors (mean AEs) greater than 0.3 eV, larger than the 0.1-0.3 eV differences typically expected from TD-DFT. Due to the high linear correlation of TD-DFT results with experiment, most functionals can be used to predict excitation energies if corrected empirically. Using the CAM-B3LYP functional, 0-0 transition energies are determined, and while the absolute difference is improved (mean AE = 0.478 eV compared to 0.579 eV), the correlation diminishes substantially (R(2) = 0.961 to 0.862). Two very recently introduced charge transfer (CT) indices, q(CT) and d(CT), and electron density difference (EDD) plots demonstrate that CT does not play a significant role for most of the BODIPYs examined and, thus, cannot be the source of error in TD-DFT. To assess TD-DFT methods, vertical excitation energies are determined utilizing TD-HF, configuration interaction CIS and CIS(D), equation of motion EOM-CCSD, SAC-CI, and Laplace-transform based local coupled-cluster singles and approximate doubles LCC2* methods. Moreover, multireference CASSCF and CASPT2 vertical excitation energies were also obtained for all species (except CASPT2 was not feasible for the four largest systems). The SAC-CI/cc-pVDZ, LCC2*/cc-pVDZ, and CASPT2/cc-pVDZ approaches are shown to have the smallest mean AEs of 0.154, 0.109, and 0.100 eV, respectively; the utility of the LCC2* approach is demonstrated for eight extended BODIPYs and aza-BODIPYs. We found that the problems with TD-DFT arise from difficulties in dealing with the differential electron correlation (as assessed by comparing CCS, CC2, LR-CCSD, CCSDR(T), and CCSDR(3) vertical excitation energies for

  4. Dental remains from Atapuerca-TD6 (Gran Dolina site, Burgos, Spain).

    PubMed

    Bermúdez de Castro, J M; Rosas, A; Nicolás, M E

    1999-01-01

    A descriptive and comparative study of the human dental remains recovered from level six (Aurora stratum) of the Gran Dolina (TD) site, Sierra de Atapuerca, northern Spain, is presented. The TD6 dental sample consists of two deciduous and 28 permanent teeth, belonging to a minimum of six individuals. Paleomagnetic analyses of the TD sequence suggest an age for the Aurora stratum of greater than 780 ka. The associated fossil macro- and micrommals are consistent with a date for the Atapuerca-TD6 hominids at the end of the Early Pleistocene. As a whole, the size of the TD6 teeth is large and comparable to that of the African Lower Pleistocene hominids. Most morphological dental traits are plesiomorphic for the genus Homo, whereas the shape analysis has revealed some size-related trends that differ from those seen in early Homo. Thus, the relative size increase of the maxillary and mandibular anterior teeth and buccolingual diameter of the first molars, the reduction of the third molars and lower canines, and the P(3)>P(4)size sequence are all characteristic of the population represented by the TD6 hominids. The morphological evidence suggests that the TD6 hominids are closer to African Lower and early Middle Pleistocene hominids than they are to European Middle Pleistocene hominids. However, some dental traits of the TD6 hominids, such as the expansion of the anterior teeth, the P(3)>P(4)size sequence, and the morphology of the lower canine also suggest an evolutionary continuity between the population represented by these hominids and the European Middle Pleistocene population. Furthermore, dental evidence indicates that the TD6 hominids are clearly distinct from Asian H. erectus. Dental evidence also suggests that the TD6 hominids could represent an evolutionary connection between H. ergaster and H. heidelbergensis. PMID:10496999

  5. Computational Design of Non-natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials.

    PubMed

    Inagaki, Taichi; Ishida, Toyokazu

    2016-09-14

    Thermal storage, a technology that enables us to control thermal energy, makes it possible to reuse a huge amount of waste heat, and materials with the ability to treat larger thermal energy are in high demand for energy-saving societies. Sugar alcohols are now one promising candidate for phase change materials (PCMs) because of their large thermal storage density. In this study, we computationally design experimentally unknown non-natural sugar alcohols and predict their thermal storage density as a basic step toward the development of new high performance PCMs. The non-natural sugar alcohol molecules are constructed in silico in accordance with the previously suggested molecular design guidelines: linear elongation of a carbon backbone, separated distribution of OH groups, and even numbers of carbon atoms. Their crystal structures are then predicted using the random search method and first-principles calculations. Our molecular simulation results clearly demonstrate that the non-natural sugar alcohols have potential ability to have thermal storage density up to ∼450-500 kJ/kg, which is significantly larger than the maximum thermal storage density of the present known organic PCMs (∼350 kJ/kg). This computational study suggests that, even in the case of H-bonded molecular crystals where the electrostatic energy contributes mainly to thermal storage density, the molecular distortion and van der Waals energies are also important factors to increase thermal storage density. In addition, the comparison between the three eight-carbon non-natural sugar alcohol isomers indicates that the selection of preferable isomers is also essential for large thermal storage density. PMID:27505107

  6. Density functional theory and pseudopotentials: A panacea for calculating properties of materials

    SciTech Connect

    Cohen, M.L. |

    1995-09-01

    Although the microscopic view of solids is still evolving, for a large class of materials one can construct a useful first-principles or ``Standard Model`` of solids which is sufficiently robust to explain and predict many physical properties. Both electronic and structural properties can be studied and the results of the first-principles calculations can be used to predict new materials, formulate empirical theories and simple formulae to compute material parameters, and explain trends. A discussion of the microscopic approach, applications, and empirical theories is given here, and some recent results on nanotubes, hard materials, and fullerenes are presented.

  7. Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: a connection between bond length, bond critical point properties, local energy densities, and bonded interactions.

    PubMed

    Gibbs, G V; Cox, D F; Rosso, K M; Ross, N L; Downs, R T; Spackman, M A

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, rho(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, rho(rc), the Laplacian, triangle down2rho(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of rho(rc) and triangle down2rho(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of rho(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the high-spin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the rho(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite

  8. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    SciTech Connect

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  9. Improving the orbital-free density functional theory description of covalent materials

    NASA Astrophysics Data System (ADS)

    Zhou, Baojing; Ligneres, Vincent L.; Carter, Emily A.

    2005-01-01

    The essential challenge in orbital-free density functional theory (OF-DFT) is to construct accurate kinetic energy density functionals (KEDFs) with general applicability (i.e., transferability). During the last decade, several linear-response (LR)-based KEDFs have been proposed. Among them, the Wang-Govind-Carter (WGC) KEDF, containing a density-dependent response kernel, is one of the most accurate that still affords a linear scaling algorithm. For nearly-free-electron-like metals such as Al and its alloys, OF-DFT employing the WGC KEDF produces bulk properties in good agreement with orbital-based Kohn-Sham (KS) DFT predictions. However, when OF-DFT, using the WGC KEDF combined with a recently proposed bulk-derived local pseudopotential (BLPS), was applied to semiconducting and metallic phases of Si, problems arose with convergence of the self-consistent density and energy, leading to poor results. Here we provide evidence that the convergence problem is very likely caused by the use of a truncated Taylor series expansion of the WGC response kernel. Moreover, we show that a defect in the ansatz for the first-order reduced density matrix underlying the LR KEDFs limits the accuracy of these KEDFs. By optimizing the two free parameters involved in the WGC KEDF, the two-body Fermi wave vector mixing parameter γ and the reference density ρ* used in the Taylor expansion, OF-DFT calculations with the BLPS can achieve semiquantitative results for nine phases of bulk silicon. These new parameters are recommended whenever the WGC KEDF is used to study nonmetallic systems.

  10. Density measurement of low- Z shocked material from monochromatic x-ray two-dimensional images

    NASA Astrophysics Data System (ADS)

    Benuzzi-Mounaix, A.; Loupias, B.; Koenig, M.; Ravasio, A.; Ozaki, N.; Rabec Le Gloahec, M.; Vinci, T.; Aglitskiy, Y.; Faenov, A.; Pikuz, T.; Boehly, T.

    2008-04-01

    An experiment on LULI 2000 laser devoted to density determination of shocked plastic from a two-dimensional monochromatic x-ray radiography is presented. A spherical quartz crystal was set to select the He-α line of vanadium at 2.382Å and perform the image of the main target. Rear side diagnostics were implemented to validate the new diagnostic. The density experimental results given by radiography are in good agreement with rear side diagnostics data and hydrodynamical simulations. The pressure regime into the plastic is 2 3Mbar , corresponding to a compression between 2.7 2.9.

  11. Density measurement of low- Z shocked material from monochromatic x-ray two-dimensional images.

    PubMed

    Benuzzi-Mounaix, A; Loupias, B; Koenig, M; Ravasio, A; Ozaki, N; Rabec le Gloahec, M; Vinci, T; Aglitskiy, Y; Faenov, A; Pikuz, T; Boehly, T

    2008-04-01

    An experiment on LULI 2000 laser devoted to density determination of shocked plastic from a two-dimensional monochromatic x-ray radiography is presented. A spherical quartz crystal was set to select the He-alpha line of vanadium at 2.382 A and perform the image of the main target. Rear side diagnostics were implemented to validate the new diagnostic. The density experimental results given by radiography are in good agreement with rear side diagnostics data and hydrodynamical simulations. The pressure regime into the plastic is 2-3 Mbar, corresponding to a compression between 2.7-2.9. PMID:18517682

  12. HoneySiC: a new optomechanical material for low-areal cost and density

    NASA Astrophysics Data System (ADS)

    Goodman, William A.

    2013-09-01

    One of the major problems perceived for deposited silicon carbide mirrors and structures is the cost associated with machining and lightweighting the material to the specifications of a drawing. Molded pedigrees of silicon carbide address these concerns by casting or molding a slurry and prefiring the slurry to make a consolidated and porous greenbody which is relatively soft and not very difficult to machine. The machined greenbody is then infiltrated with molten silicon in an exothermic process that yields a two phase reaction bonded silicon carbide material that must undergo a final machining step. Converted silicon carbide pedigrees machine a graphite or carbon/carbon precursor material to near net shape and then infiltrate the part with gaseous silicon monoxide or molten silicon to convert most or all of the carbon to silicon carbide. Some pedigrees are highly porous, while others may be dense and containing 2 or 3 different phases of material. We have created and demonstrated a new fiber reinforced silicon carbide material that combines the benefits of molding, infiltration and conversion processes. The resulting HoneySiC material requires a minimal amount of machining. HoneySiC material achieves lightweighting of 92% relative to bulk material and net production cost on the order of 38K per square meter (unpolished), less than half of NASA's goal of 100K per square meter.

  13. Fabrication of material and devices for very-high-density information storage. Report No. 1 (Final) January-December 1985

    SciTech Connect

    Kryder, M.H.; Thuel; Bowman; Huang

    1986-11-24

    An ion-beam-deposition system was purchased and utilized for research on magnetic materials and devices for high-density magnetic information storage. Initial work was carried out on the deposition of permalloy and the deposition of magnetic oxides. The work on permalloy revealed that ion-beam deposited materials generally had smaller grain size and lower coercivity than R.F. sputtered materials. This work is being continued with support from other sources. The work on magnetic oxides was begun with the deposition of cobalt ferrite. X-ray-diffraction measurements indicate the material deposited was amorphous and exhibited a hard axis of anisotropy perpendicular to the plane of the film. This work is also being continued with support from other sources.

  14. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  15. Equation of state for hydrogen-like materials with high energy densities

    NASA Astrophysics Data System (ADS)

    Gerasimov, Y. V.; Maslov, A. G.

    2016-07-01

    Solution of time-dependent Schrodinger equation for deuterium with high density and pulse impact on a system is described in the article. Result compared with experiments of shock compression of deuterium, made by RFNC-VNIIEF, Sandia and NOVA. The way of use of this solution in advanced railgun technologies is considered.

  16. Learner Preferences for Varying Screen Densities Using Realistic Stimulus Materials with Single and Multiple Screen Designs.

    ERIC Educational Resources Information Center

    Morrison, Gary R.; And Others

    Learner preferences for varying screen density levels were examined using multiple screen designs (high external validity) and single screen designs (high internal validity). Subjects were 23 graduate and 23 undergraduate student volunteers. When viewing multiple screens for each design in Study I, they indicated the highest preference for medium…

  17. Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy

    PubMed Central

    Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2014-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

  18. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    PubMed

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices. PMID:26720405

  19. Optical response of extended systems from time-dependent Hartree-Fock and time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Bernasconi, Leonardo; Webster, Ross; Tomić, Stanko; Harrison, Nicholas M.

    2012-05-01

    We describe a unified formulation of time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT) for the accurate and efficient calculation of the optical response of infinite (periodic) systems. The method is formulated within the linear-response approximation, but it can easily be extended to include higher-order response contributions, and, in TD-DFT, it can treat with comparable computational efficiency purely local, semi-local or fully non-local approximations for the ground-state exchange-correlation (XC) functional and for the response TD-DFT XC kernel in the adiabatic approximation. At variance with existing methods for computing excitation energies based on the diagonalisation of suitable coupling matrices, or on the inversion of a dielectric matrix, our approach exploits an iterative procedure similar to a standard self-consistent field calculation. This results in a particularly efficient treatment of the coupling of excitations at different k points in the Brillouin zone. As a consequence, our method has the potential to describe completely from first principles the optically induced formation of bound particle-hole pairs in wide classes of materials. This point is illustrated by computing the optical gaps of a series of representative bulk semiconductors, (non-spin polarised) oxides and ionic insulators.

  20. Constitutive expression of tdTomato protein as a cytotoxicity and proliferation marker for space radiation biology

    NASA Astrophysics Data System (ADS)

    Chishti, Arif A.; Hellweg, Christine E.; Berger, Thomas; Baumstark-Khan, Christa; Feles, Sebastian; Kätzel, Thorben; Reitz, Günther

    2015-01-01

    The radiation risk assessment for long-term space missions requires knowledge on the biological effectiveness of different space radiation components, e.g. heavy ions, on the interaction of radiation and other space environmental factors such as microgravity, and on the physical and biological dose distribution in the human body. Space experiments and ground-based experiments at heavy ion accelerators require fast and reliable test systems with an easy readout for different endpoints. In order to determine the effect of different radiation qualities on cellular proliferation and the biological depth dose distribution after heavy ion exposure, a stable human cell line expressing a novel fluorescent protein was established and characterized. tdTomato, a red fluorescent protein of the new generation with fast maturation and high fluorescence intensity, was selected as reporter of cell proliferation. Human embryonic kidney (HEK/293) cells were stably transfected with a plasmid encoding tdTomato under the control of the constitutively active cytomegalovirus (CMV) promoter (ptdTomato-N1). The stably transfected cell line was named HEK-ptdTomato-N1 8. This cytotoxicity biosensor was tested by ionizing radiation (X-rays and accelerated heavy ions) exposure. As biological endpoints, the proliferation kinetics and the cell density reached 100 h after irradiation reflected by constitutive expression of the tdTomato were investigated. Both were reduced dose-dependently after radiation exposure. Finally, the cell line was used for biological weighting of heavy ions of different linear energy transfer (LET) as space-relevant radiation quality. The relative biological effectiveness of accelerated heavy ions in reducing cellular proliferation peaked at an LET of 91 keV/μm. The results of this study demonstrate that the HEK-ptdTomato-N1 reporter cell line can be used as a fast and reliable biosensor system for detection of cytotoxic damage caused by ionizing radiation.

  1. High strain rate characterization of low-density low-strength materials

    NASA Astrophysics Data System (ADS)

    Sawas, Omar

    The Split Hopkinson Bar (SHB) is a reliable experimental technique for measuring high strain rate properties of high-strength, ductile materials. Attempts to apply the SHB in measurement on more compliant materials, such as polymers and foams, are limited by the maximum achievable strain and high noise-to-signal ratios. This work introduces an all-polymeric split Hopkinson bar (APSHB) experiment, which overcomes these limitations. The proposed method uses polymeric pressure bars to achieve a closer impedance match between the pressure bars and the specimen material, thus providing both low signal-to-noise ratio data and a longer input pulse for higher maximum strain. The APSHB requires very careful data reduction procedures because of the viscoelastic behavior of the incident and transmitter pressure bars. The APSHB produces high-quality stress-strain data for a variety of compliant materials, including polycarbonate, elastomer, polyurethane, and styrofoam.

  2. Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug Methotrexate

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.

    2010-09-01

    The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.

  3. High strain rate characterization of low-density low-strength materials

    NASA Astrophysics Data System (ADS)

    Sawas, O.; Brar, N. S.; Brockman, R. A.

    1998-07-01

    The Conventional Split Hopkinson Bar (CSHB) is a reliable experimental technique for measuring high strain rate properties of high-strength materials. Attempts to use the CSHB for similar measurements in more compliant materials, such as plastics and foams, are limited by the maximum achievable strain and high noise-to-signal ratios. This work introduces an all-polymeric split Hopkinson bar (APSHB) experiment, which overcomes these limitations. The proposed method uses polymeric pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials, thus providing both low noise-to-signal ratio data and a longer input pulse for higher maximum strain. Data reduction procedures for APSHB that account for the viscoelastic behavior of the pressure bars are presented. Comparing the high strain rate response of 1100 Al obtained from CSHB and APSHB validates these procedures. Stress-strain data at strain rates of 500-2000/s for polycarbonate, polyurethane foam, and styrofoam are presented.

  4. The employment of a high density plasma jet for the investigation of thermal protection materials

    NASA Astrophysics Data System (ADS)

    Kezelis, R.; Grigaitiene, V.; Levinskas, R.; Brinkiene, K.

    2014-05-01

    This paper describes the results of tests of thermal protection materials (TPM) at conditions that simulate the atmospheric re-entry of space vehicles, tested by means of a high velocity and enthalpy air plasma jet generated with a dc plasma torch. Such a high velocity and enthalpy air plasma jet allows us to investigate TPM by simulating heat flux values varying with time in accordance with real re-entry altitudes and trajectories. The main research interests include the measurements of plasma flow temperature and heat flux for the testing of materials used for thermal protection systems of space vehicles. The test results of investigations of light composite thermal protective system material and graphite are presented.

  5. A Highly Energetic N-Rich Metal-Organic Framework as a New High-Energy-Density Material.

    PubMed

    Zhang, Huabin; Zhang, Mingjian; Lin, Ping; Malgras, Victor; Tang, Jing; Alshehri, Saad M; Yamauchi, Yusuke; Du, Shaowu; Zhang, Jian

    2016-01-18

    Metal-organic framework (MOF)-based energetic material [Cu3 (MA)2 (N3 )3 ] (1; MA=melamine) was synthesized and structurally characterized (47.55 % N). The structural analysis revealed the existence of unusual multiwalled tubular channels and interweaving of single and double helical units in 1. The standard molar enthalpy of formation was found to be 1788.73 kJ mol(-1) , which is the highest value among previously reported MOF-based energetic materials. The calculated detonation properties showed that 1 can be used as a potential explosive. Sensitivity tests revealed that 1 is insensitive and thus can function as a high-energy-density material with a favorable level of safety. PMID:26663482

  6. High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas

    USGS Publications Warehouse

    Kazyak, David C.; Zydlewski, Joseph

    2012-01-01

    Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.

  7. Investigation of mud density and weighting materials effect on drilling fluid filter cake properties and formation damage

    NASA Astrophysics Data System (ADS)

    Fattah, K. A.; Lashin, A.

    2016-05-01

    Drilling fluid density/type is an important factor in drilling and production operations. Most of encountered problems during rotary drilling are related to drilling mud types and weights. This paper aims to investigate the effect of mud weight on filter cake properties and formation damage through two experimental approaches. In the first approach, seven water-based drilling fluid samples with same composition are prepared with different densities (9.0-12.0 lb/gal) and examined to select the optimum mud weight that has less damage. The second approach deals with investigating the possible effect of the different weighting materials (BaSO4 and CaCO3) on filter cake properties. High pressure/high temperature loss tests and Scanning Electron Microscopy (SEM) analyses were carried out on the filter cake (two selected samples). Data analysis has revealed that mud weigh of 9.5 lb/gal has the less reduction in permeability of ceramic disk, among the seven used mud densities. Above 10.5 ppg the effect of the mud weight density on formation damage is stabilized at constant value. Fluids of CaCO3-based weighting material, has less reduction in the porosity (9.14%) and permeability (25%) of the filter disk properties than the BaSO4-based fluid. The produced filter cake porosity increases (from 0.735 to 0.859) with decreasing of fluid density in case of drilling samples of different densities. The filtration loss tests indicated that CaCO3 filter cake porosity (0.52) is less than that of the BaSO4 weighted material (0.814). The thickness of the filter cake of the BaSO4-based fluid is large and can cause some problems. The SEM analysis shows that some major elements do occur on the tested samples (Ca, Al, Si, and Ba), with dominance of Ca on the expense of Ba for the CaCO3 fluid sample and vice versa. The less effect of 9.5 lb/gal mud sample is reflected in the well-produced inter-particle pore structure and relatively crystal size. A general recommendation is given to

  8. Investigation of mud density and weighting materials effect on drilling fluid filter cake properties and formation damage

    NASA Astrophysics Data System (ADS)

    Fattah, K. A.; Lashin, A.

    2016-05-01

    Drilling fluid density/type is an important factor in drilling and production operations. Most of encountered problems during rotary drilling are related to drilling mud types and weights. This paper aims to investigate the effect of mud weight on filter cake properties and formation damage through two experimental approaches. In the first approach, seven water-based drilling fluid samples with same composition are prepared with different densities (9.0-12.0 lb/gal) and examined to select the optimum mud weight that has less damage. The second approach deals with investigating the possible effect of the different weighting materials (BaSO4 and CaCO3) on filter cake properties. High pressure/high temperature loss tests and Scanning Electron Microscopy (SEM) analyses were carried out on the filter cake (two selected samples). Data analysis has revealed that mud weigh of 9.5 lb/gal has the less reduction in permeability of ceramic disk, among the seven used mud densities. Above 10.5 ppg the effect of the mud weight density on formation damage is stabilized at constant value. Fluids of CaCO3-based weighting material, has less reduction in the porosity (9.14%) and permeability (25%) of the filter disk properties than the BaSO4-based fluid. The produced filter cake porosity increases (from 0.735 to 0.859) with decreasing of fluid density in case of drilling samples of different densities. The filtration loss tests indicated that CaCO3 filter cake porosity (0.52) is less than that of the BaSO4 weighted material (0.814). The thickness of the filter cake of the BaSO4-based fluid is large and can cause some problems. The SEM analysis shows that some major elements do occur on the tested samples (Ca, Al, Si, and Ba), with dominance of Ca on the expense of Ba for the CaCO3 fluid sample and vice versa. The less effect of 9.5 lb/gal mud sample is reflected in the well-produced inter-particle pore structure and relatively crystal size. A general recommendation is given to

  9. NSP controls generation and T&D in single control center

    SciTech Connect

    Hansen, T.

    1995-11-01

    Northern States Power Co. (NSP) recently started using a new electric system control center that combines generation, transmission and distribution (T&D) in one location. This article describes the system.

  10. A Novel Reporter Rat Strain That Conditionally Expresses the Bright Red Fluorescent Protein tdTomato

    PubMed Central

    Igarashi, Hiroyuki; Koizumi, Kyo; Kaneko, Ryosuke; Ikeda, Keiko; Egawa, Ryo; Yanagawa, Yuchio; Muramatsu, Shin-ichi; Onimaru, Hiroshi; Ishizuka, Toru; Yawo, Hiromu

    2016-01-01

    Despite the strength of the Cre/loxP recombination system in animal models, its application in rats trails that in mice because of the lack of relevant reporter strains. Here, we generated a floxed STOP tdTomato rat that conditionally expresses a red fluorescent protein variant (tdTomato) in the presence of exogenous Cre recombinase. The tdTomato signal vividly visualizes neurons including their projection fibers and spines without any histological enhancement. In addition, a transgenic rat line (FLAME) that ubiquitously expresses tdTomato was successfully established by injecting intracytoplasmic Cre mRNA into fertilized ova. Our rat reporter system will facilitate connectome studies as well as the visualization of the fine structures of genetically identified cells for long periods both in vivo and ex vivo. Furthermore, FLAME is an ideal model for organ transplantation research owing to improved traceability of cells/tissues. PMID:27195805

  11. Earliest humans in Europe: The age of TD6 Gran Dolina, Atapuerca, Spain

    USGS Publications Warehouse

    Falgueres, Christophe; Bahain, J.-J.; Yokoyama, Y.; Arsuaga, J.L.; Bermudez de Castro, Jose Maria; Carbonell, E.; Bischoff, J.L.; Dolo, J.-M.

    1999-01-01

    Hominid remains found in 1994 from the stratified Gran Dolina karst-filling at the Atapuerca site in NE Spain were dated to somewhat greater than 780 ka based on palaeomagnetic measurements, making these the oldest known hominids in Europe (sensu stricto). We report new ESR and U-series results on teeth from four levels of the Gran Dolina deposit which confirm the palaeomagnetic evidence, and indicate that TD6 (from which the human remains have been recovered) dates to the end of the Early Pleistocene. The results for the other levels are consistent with estimates based mainly on microfaunal evidence, and suggest that TD8, TD10 and TD11 date to the Middle Pleistocene. (C) 1999 Academic Press.

  12. Infrared Spectroscopy of Spherical Top (Td) Molecules: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    DeVore, Thomas C.; Gallaher, Thomas N.

    1983-01-01

    Describes a physical chemistry experiment which uses group theory to help interpret the infrared spectrum of a polyatomic molecule with Td symmetry (spherical tops). Topics covered in the experiment: background information and theory, experimental procedures, and typical student results. (JN)

  13. A Novel Reporter Rat Strain That Conditionally Expresses the Bright Red Fluorescent Protein tdTomato.

    PubMed

    Igarashi, Hiroyuki; Koizumi, Kyo; Kaneko, Ryosuke; Ikeda, Keiko; Egawa, Ryo; Yanagawa, Yuchio; Muramatsu, Shin-Ichi; Onimaru, Hiroshi; Ishizuka, Toru; Yawo, Hiromu

    2016-01-01

    Despite the strength of the Cre/loxP recombination system in animal models, its application in rats trails that in mice because of the lack of relevant reporter strains. Here, we generated a floxed STOP tdTomato rat that conditionally expresses a red fluorescent protein variant (tdTomato) in the presence of exogenous Cre recombinase. The tdTomato signal vividly visualizes neurons including their projection fibers and spines without any histological enhancement. In addition, a transgenic rat line (FLAME) that ubiquitously expresses tdTomato was successfully established by injecting intracytoplasmic Cre mRNA into fertilized ova. Our rat reporter system will facilitate connectome studies as well as the visualization of the fine structures of genetically identified cells for long periods both in vivo and ex vivo. Furthermore, FLAME is an ideal model for organ transplantation research owing to improved traceability of cells/tissues. PMID:27195805

  14. Applicability of the Equation: dE = TdS - PdV

    ERIC Educational Resources Information Center

    Nash, Leonard K.

    1977-01-01

    Presents a detailed analysis of the thermodynamic equation dE = TdS - PdV to illustrate how chemistry teachers may present chemical potential by a route free from the terrors of partial derivatives. (MR)

  15. Photoexcited Nuclear Dynamics with Ab Initio Electronic Structure Theory: Is TD-DFT Ready For the Challenge?

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph

    In this talk, I will give a broad overview of our work in nonadiabatic dynamics, i.e. the dynamics of strongly coupled nuclear-electronic motion whereby the relaxation of a photo-excited electron leads to the heating up of phonons. I will briefly discuss how to model such nuclear motion beyond mean field theory. Armed with the proper framework, I will then focus on how to calculate one flavor of electron-phonon couplings, known as derivative couplings in the chemical literature. Derivative couplings are the matrix elements that couple adiabatic electronic states within the Born-Oppenheimer treatment, and I will show that these matrix elements show spurious poles using formal (frequency-independent) time-dependent density functional theory. To correct this TD-DFT failure, a simple approximation will be proposed and evaluated. Finally, time permitting, I will show some ab initio calculations whereby one can use TD-DFT derivative couplings to study electronic relaxation through a conical intersection.

  16. Optical Properties of Diarylethenes with TD-DFT: 0-0 Energies, Fluorescence, Stokes Shifts, and Vibronic Shapes.

    PubMed

    Chantzis, Agisilaos; Cerezo, Javier; Perrier, Aurélie; Santoro, Fabrizio; Jacquemin, Denis

    2014-09-01

    This contribution is an investigation of both the structures and optical properties of a set of 14 diverse, recently synthesized diarylethenes using Time-Dependent Density Functional Theory (TD-DFT) at the ωB97X-D/6-31G(d) level of theory. The linear response (LR) and state-specific (SS) versions of the Polarizable Continuum Model (PCM) have been adopted to account for the bulk solvation effects and their relative performances were critically accessed. It is shown, for the first time in the case of nontrivial diarylethenes, that TD-DFT provides good agreement between the experimental absorption-fluorescence crossing points (AFCPs) and their theoretical counterparts when a robust model accounting for both geometrical relaxation and vibrational corrections is used instead of the vertical approximation. On the other hand, the theoretical estimates for the Stokes shifts based on the vertical transition energies were found to be in disagreement with respect to experiment, prompting us to simulate the absorption/emission vibronic band shapes. It is proved that difficulties associated with the breakdown of the harmonic approximation in Cartesian coordinates exist for the investigated system, and we show how they can be at least partially overcome by means of a vertical approach including Duschinsky effects. Our results provide a valuable basis to rationalize the experimental vibronic structure of both emission and absorption bands and are expected to be a significant asset to the understanding of the optical properties of diarylethene derivatives. PMID:26588538

  17. Density Functional Theory Simulations Predict New Materials for Magnesium-Ion Batteries (Fact Sheet), NREL Highlights, Science

    SciTech Connect

    Not Available

    2011-10-01

    Multivalence is identified in the light element, B, through structure morphology. Boron sheets exhibit highly versatile valence, and the layered boron materials may hold the promise of a high-energy-density magnesium-ion battery. Practically, boron is superior to previously known multivalence materials, especially transition metal compounds, which are heavy, expensive, and often not benign. Based on density functional theory simulations, researchers at the National Renewable Energy Laboratory (NREL) have predicted a series of stable magnesium borides, MgB{sub x}, with a broad range of stoichiometries, 2 < x < 16, by removing magnesium atoms from MgB{sub 2}. The layered boron structures are preserved through an in-plane topological transformation between the hexagonal lattice domains and the triangular domains. The process can be reversibly switched as the charge transfer changes with Mg insertion/extraction. The mechanism of such a charge-driven transformation originates from the versatile valence state of boron in its planar form. The discovery of these new physical phenomena suggests the design of a high-capacity magnesium-boron battery with theoretical energy density 876 mAh/g and 1550 Wh/L.

  18. The role of the st313-td gene in virulence of Salmonella Typhimurium ST313.

    PubMed

    Herrero-Fresno, Ana; Wallrodt, Inke; Leekitcharoenphon, Pimlapas; Olsen, John Elmerdahl; Aarestrup, Frank M; Hendriksen, Rene S

    2014-01-01

    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02-03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313. PMID:24404174

  19. The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313

    PubMed Central

    Herrero-Fresno, Ana; Wallrodt, Inke; Leekitcharoenphon, Pimlapas; Olsen, John Elmerdahl; Aarestrup, Frank M.; Hendriksen, Rene S.

    2014-01-01

    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02–03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313. PMID:24404174

  20. TD-1792 versus Vancomycin for Treatment of Complicated Skin and Skin Structure Infections

    PubMed Central

    Potgieter, Peter D.; Li, Yu-Ping; Barriere, Steven L.; Churukian, Allan; Kingsley, Jeff; Corey, G. Ralph

    2012-01-01

    TD-1792 is a first-in-class glycopeptide-cephalosporin heterodimer that exhibits bactericidal activity against Gram-positive pathogens. We conducted a randomized, double-blind, active-control, phase II trial in patients with complicated skin and skin structure infections caused by suspected or confirmed Gram-positive organisms. Patients 18 to 65 years old were randomized to receive 7 to 14 days of either TD-1792 (2 mg/kg of body weight intravenously [i.v.] every 24 h [q24h]) or vancomycin (1 g i.v. q12h, with dosage regimens adjusted per site-specific procedures). A total of 197 patients were randomized and received at least one dose of study medication. Rates of clinical success at the test-of-cure evaluation were similar in all analysis populations. Among 170 clinically evaluable patients, cure rates were 91.7% and 90.7% in the TD-1792 and vancomycin groups, respectively (95% confidence interval [CI] of −7.9 to 9.7 for the difference). In microbiologically evaluable patients with methicillin-resistant Staphylococcus aureus at baseline (n = 75), cure rates were 94.7% in the TD-1792 group and 91.9% in the vancomycin group. Microbiological eradication of Gram-positive pathogens (n = 126) was achieved in 93.7% and 92.1% of patients in the TD-1792 and vancomycin groups, respectively. Seven patients were discontinued from study medication due to an adverse event (AE): 2 and 5 in the TD-1792 and vancomycin groups, respectively. AEs were of similar types and severities between the two groups, other than pruritus, which was more common in patients who received vancomycin. No patients in the TD-1792 group experienced a serious AE. This study supports further clinical development of TD-1792 in patients with Gram-positive infection. PMID:22869571

  1. Free-space reflection method for measuring moisture content and bulk density of particulate materials at microwave frequency.

    PubMed

    Li, Chenxiao; Han, Bing; Zhang, Tao

    2015-03-01

    A measurement system based on free-space reflection method is designed for simultaneous and independent determination of moisture content and bulk density of particulate materials. The proposed system consists of microwave cavity oscillator, horn antenna, slide rail, sample holder, mixer, and digital meter. Sand and rice with different moisture contents and bulk densities are chosen as samples. Calibration models for moisture content and bulk density are proposed according to the measurement of the position of the minimum of the traveling-standing wave and the ratio of the maximum-to-minimum field strength of the traveling-standing wave at different temperatures. The moisture constant, ranging from 0% to 24.6%, is obtained with a coefficient of determination (R(2)) greater than 0.982 and a standard error of prediction (SEP) value of less than 0.695%. The bulk density, ranging from 0.501 g/cm(3) to 1.822 g/cm(3), is determined with a R(2) ≥ 0.961 and a SEP value ranging from 0.0144 g/cm(3) to 0.0382 g/cm(3) for different samples. PMID:25832263

  2. Free-space reflection method for measuring moisture content and bulk density of particulate materials at microwave frequency

    NASA Astrophysics Data System (ADS)

    Li, Chenxiao; Han, Bing; Zhang, Tao

    2015-03-01

    A measurement system based on free-space reflection method is designed for simultaneous and independent determination of moisture content and bulk density of particulate materials. The proposed system consists of microwave cavity oscillator, horn antenna, slide rail, sample holder, mixer, and digital meter. Sand and rice with different moisture contents and bulk densities are chosen as samples. Calibration models for moisture content and bulk density are proposed according to the measurement of the position of the minimum of the traveling-standing wave and the ratio of the maximum-to-minimum field strength of the traveling-standing wave at different temperatures. The moisture constant, ranging from 0% to 24.6%, is obtained with a coefficient of determination (R2) greater than 0.982 and a standard error of prediction (SEP) value of less than 0.695%. The bulk density, ranging from 0.501 g/cm3 to 1.822 g/cm3, is determined with a R2 ≥ 0.961 and a SEP value ranging from 0.0144 g/cm3 to 0.0382 g/cm3 for different samples.

  3. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates.

    PubMed

    Tan, Dan; Wu, Qiong; Chen, Jin-Chun; Chen, Guo-Qiang

    2014-11-01

    The halophile Halomonas TD01 and its derivatives have been successfully developed as a low-cost platform for the unsterile and continuous production of chemicals. Therefore, to increase the genetic engineering stability of this platform, the DNA restriction/methylation system of Halomonas TD01 was partially inhibited. In addition, a stable and conjugative plasmid pSEVA341 with a high-copy number was constructed to contain a LacI(q)-Ptrc system for the inducible expression of multiple pathway genes. The Halomonas TD01 platform, was further engineered with its 2-methylcitrate synthase and three PHA depolymerases deleted within the chromosome, resulting in the production of the Halomonas TD08 strain. The overexpression of the threonine synthesis pathway and threonine dehydrogenase made the recombinant Halomonas TD08 able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV consisting of 4-6 mol% 3-hydroxyvalerate or 3 HV, from various carbohydrates as the sole carbon source. The overexpression of the cell division inhibitor MinCD during the cell growth stationary phase in Halomonas TD08 elongated its shape to become at least 1.4-fold longer than its original size, resulting in enhanced PHB accumulation from 69 wt% to 82 wt% in the elongated cells, further promoting gravity-induced cell precipitations that simplify the downstream processing of the biomass. The resulted Halomonas strains contributed to further reducing the PHA production cost. PMID:25217798

  4. TD-60 links RalA GTPase function to the CPC in mitosis

    PubMed Central

    Papini, Diana; Langemeyer, Lars; Abad, Maria A.; Kerr, Alastair; Samejima, Itaru; Eyers, Patrick A.; Jeyaprakash, A. Arockia; Higgins, Jonathan M. G.; Barr, Francis A.; Earnshaw, William C.

    2015-01-01

    TD-60 (also known as RCC2) is a highly conserved protein that structurally resembles the Ran guanine exchange factor (GEF) RCC1, but has not previously been shown to have GEF activity. TD-60 has a typical chromosomal passenger complex (CPC) distribution in mitotic cells, but associates with integrin complexes and is involved in cell motility during interphase. Here we show that TD-60 exhibits GEF activity, in vitro and in cells, for the small GTPase RalA. TD-60 or RalA depletion causes spindle abnormalities in prometaphase associated with abnormal centromeric accumulation of CPC components. TD-60 and RalA apparently work together to contribute to the regulation of kinetochore–microtubule interactions in early mitosis. Importantly, several mitotic phenotypes caused by TD-60 depletion are reverted by the expression of a GTP-locked mutant, RalA (Q72L). The demonstration that a small GTPase participates in the regulation of the CPC reveals a level of mitotic regulation not suspected in previous studies. PMID:26158537

  5. High-Pressure Preparation of High-Density Cu2ZnSnS4 Materials

    NASA Astrophysics Data System (ADS)

    Yi-Ming, Li; Li-Xia, Qiu; Zhan-Hui, Ding; Yong-Feng, Li; Bin, Yao; Zhen-Yu, Xiao; Pin-Wen, Zhu

    2016-07-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 10874178, 11074093, 61205038 and 11274135, the National Found for Fostering Talents of Basic Science under Grant No J1103202, the Ph.D. Programs Foundation of Ministry of Education of China under Grant No 20120061120011, the Open Project of State Key Laboratory of Superhard Materials of Jilin University, and the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University.

  6. Furazans with Azo Linkages: Stable CHNO Energetic Materials with High Densities, Highly Energetic Performance, and Low Impact and Friction Sensitivities.

    PubMed

    Qu, Yanyang; Zeng, Qun; Wang, Jun; Ma, Qing; Li, Hongzhen; Li, Haibo; Yang, Guangcheng

    2016-08-22

    Various highly energetic azofurazan derivatives were synthesized by simple and efficient chemical routes. These nitrogen-rich materials were fully characterized by FTIR spectroscopy, elemental analysis, multinuclear NMR spectroscopy, and high-resolution mass spectrometry. Four of them were further confirmed structurally by single-crystal X-ray diffraction. These compounds exhibit high densities, ranging from 1.62 g cm(-3) up to a remarkably high 2.12 g cm(-3) for nitramine-substituted azofurazan DDAzF (2), which is the highest yet reported for an azofurazan-based CHNO energetic compound and is a consequence of the formation of strong intermolecular hydrogen-bonding networks. From the heats of formation, calculated with Gaussian 09, and the experimentally determined densities, the energetic performances (detonation pressure and velocities) of the materials were ascertained with EXPLO5 v6.02. The results suggest that azofurazan derivatives exhibit excellent detonation properties (detonation pressures of 21.8-46.1 GPa and detonation velocities of 6602-10 114 m s(-1) ) and relatively low impact and friction sensitivities (6.0-80 J and 80-360 N, respectively). In particular, they have low electrostatic spark sensitivities (0.13-1.05 J). These properties, together with their high nitrogen contents, make them potential candidates as mechanically insensitive energetic materials with high-explosive performance. PMID:27439332

  7. New density functional approach for solid-liquid-vapor transitions in pure materials.

    PubMed

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-17

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories. PMID:25933321

  8. Scalable real space pseudopotential-density functional codes for materials applications

    NASA Astrophysics Data System (ADS)

    Chelikowsky, James R.; Lena, Charles; Schofield, Grady; Saad, Yousef; Deslippe, Jack; Yang, Chao

    2015-03-01

    Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs and clusters with and without spin polarization. Fully self-consistent solutions have been routinely obtained for systems with thousands of atoms. However, there are still systems where quantum mechanical accuracy is desired, but scalability proves to be a hindrance, such as large biological molecules or complex interfaces. We will present an overview of our work on new algorithms, which offer improved scalability by implementing another layer of parallelism, and by optimizing communication and memory management. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).

  9. New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials

    NASA Astrophysics Data System (ADS)

    Kocher, Gabriel; Provatas, Nikolas

    2015-04-01

    A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.

  10. Self-interaction-corrected local-spin-density calculations for rare earth materials

    SciTech Connect

    Svane, A.; Temmerman, W.M.; Szotek, Z.; Laegsgaard, J.; Winter, H.

    2000-04-20

    The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. In Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.

  11. Crystal structure of the high-energy-density material guanylurea dipicryl­amide

    PubMed Central

    Deblitz, Raik; Hrib, Cristian G.; Hilfert, Liane; Edelmann, Frank T.

    2014-01-01

    The title compound, 1-carbamoylguanidinium bis­(2,4,6-tri­nitro­phen­yl)amide [H2NC(=O)NHC(NH2)2]+[N{C6H2(NO2)3-2,4,6}2]− (= guanylurea dipicryl­amide), was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicryl­amide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicryl­amide anions. The crystal packing is dominated by an extensive network of N—H⋯O hydrogen bonds, resulting in a high density of 1.795 Mg m−3, which makes the title compound a potential secondary explosive. PMID:25249869

  12. A Study of Topological Insulator States of Half-Heusler Materials and the Momentum Density of Overdoped Cuprates

    NASA Astrophysics Data System (ADS)

    Al-Sawai, Wael M.

    We have applied first-principles calculations to investigate the topological insulator state of half-Heusler materials and the momentum density for overdoped cuprates. The specific topics addressed in this thesis are as follows. 1. Topological insulators are materials exhibiting a novel quantum state of matter; these insulators are characterized by a bulk excitation generated by the spin orbit interaction, and protected conducting states on their edge or surface. In this work we investigate in detail the electronic structure of a series of ternary half-Heusler compounds MM'X of MgAgAS-type with M = (Lu, La, Sc, Y) and M'X=(PtBi,AuPb,PdBi,PtSb,AuSn,NiBi,PdSb). The characteristic features of all half-Heusler compounds considered here are topological nontrivial semimetal, or nontrivial metal, or trivial insulator. The analysis of the relation among the band inversion strength (distance from the critical line), atomic number of constituents, and lattice constant could provide a methodology (a rule of thumb) to predict the topological order of hypothetical nonmagnetic half-Heusler compound more generally. 2. The bulk Fermi surface (FS) is observed in an overdoped ( x=0.3) single crystal of La2-xSrxCuO4 by using Compton scattering. A 2-D momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. The FS shows signs of a change topological of the FS found at lower doping. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and DFT simulations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either theory or experiment.

  13. Time-dependent density-functional tight-binding method with the third-order expansion of electron density

    SciTech Connect

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  14. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    PubMed

    Nishimoto, Yoshio

    2015-09-01

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well. PMID:26342360

  15. See Also:Mechanics of Cohesive-frictional MaterialsCopyright © 2004 John Wiley & Sons, Ltd.Get Sample Copy

  16. Recommend to Your Librarian
  17. td> width="50%">
    • Save Title to My Profile
    • Set E-Mail Alert
    td>td> width="100"> E-MailPrinttd>
  1. Molecular Design and Property Prediction for a Series of Novel Dicyclic Cyclotrimethylene Trinitramines (RDX) Derivatized as High Energy Density Materials.

    PubMed

    Shen, Cheng; Wang, Pengcheng; Lu, Ming

    2015-07-23

    Quantum chemistry calculations and thermodynamics methods were carried out to screen out novel high energy density materials (HEDMs) from several new derivatives with dicyclic structures of Cyclotrimethylene trinitramine (RDX). Their volumes, densities, heats of formation, detonation properties and impact sensitivities have been calculated with thermodynamics methods under DFT B3LYP 6-31++g (d, p) level and all of these compounds exhibit good performance as HEDMs. Especially, R4 has given outstanding values as a potential HEDM. Its crystal density (2.07 g/cm(3)), heat of detonation (1.67 kJ/g), detonation velocity (10051m/s), and detonation pressure (48.5 GPa) are even higher than those of CL-20 while its impact sensitivity (h50, 16 cm) remains a relative safety value. The results indicate that the derivative work in common explosives is a good strategy which can design novel HEDMs with high energetic properties and low sensitivity. And furthermore, some mature processes can be used to synthesize them. PMID:26132775

  2. [Co/Ni]-CoFeB hybrid free layer stack materials for high density magnetic random access memory applications

    NASA Astrophysics Data System (ADS)

    Liu, E.; Swerts, J.; Couet, S.; Mertens, S.; Tomczak, Y.; Lin, T.; Spampinato, V.; Franquet, A.; Van Elshocht, S.; Kar, G.; Furnemont, A.; De Boeck, J.

    2016-03-01

    Alternative free layer materials with high perpendicular anisotropy are researched to provide spin-transfer-torque magnetic random access memory stacks' sufficient thermal stability at critical dimensions of 20 nm and below. We demonstrate a high tunnel magetoresistance (TMR) MgO-based magnetic tunnel junction stack with a hybrid free layer design made of a [Co/Ni] multilayer and CoFeB. The seed material on which the [Co/Ni] multilayer is deposited determines its switching characteristics. When deposited on a Pt seed layer, soft magnetic switching behavior with high squareness is obtained. When deposited on a NiCr seed, the perpendicular anisotropy remains high, but the squareness is low and coercivity exceeds 1000 Oe. Interdiffusion of the seed material with the [Co/Ni] multilayers is found to be responsible for the different switching characteristics. In optimized stacks, a TMR of 165% and low resistance-area (RA) product of 7.0 Ω μm2 are attained for free layers with an effective perpendicular magnetic anisotropy energy of 1.25 erg/cm2, which suggests that the hybrid free layer materials may be a viable candidate for high density magnetic random access memory applications.

  3. Interaction of Treponema denticola TD-4, GM-1, and MS25 with human gingival fibroblasts.

    PubMed Central

    Weinberg, A; Holt, S C

    1990-01-01

    The adherence of Treponema denticola GM-1, TD-4, and MS25 to human gingival fibroblasts (HGFs) was studied to serve as an introduction to investigations into the interactions of these oral bacteria with human host cells. Under both aerobic (5% CO2) and anaerobic (85% N2 plus 10% H2 plus 5% CO2) environments, the interactions with the HGFs were such that strains GM-1 and MS25 were consistently more adherent than strain TD-4. Polyclonal antibodies to GM-1 inhibited GM-1 adherence by 70%, while MS25 and TD-4 showed differing degrees of cross-reactive inhibition, indicative of common but not identical epitopes on the surface of the three T. denticola strains. Pretreatment of the three strains with trypsin did not inhibit adherence; proteinase K did, however, inhibit this interaction by 80%. Trypsin pretreatment of the HGFs resulted in increases in adherence of 50 and 86% for GM-1 and MS25, respectively, while a decrease of 41% was noted for TD-4. Exposure of the T. denticola strains to sugars and lectin pretreatment of the HGFs implicated adherence mediation by mannose and galactose residues on the HGF surface. Periodate treatment of HGFs resulted in a 50% drop in adherence for GM-1 and MS25, but did not decrease that of TD-4. Addition of fetal bovine serum inhibited adherence of the three strains to differing degrees, with TD-4 being the most susceptible. Addition of purified fibronectin (100 micrograms/ml) resulted in greater than 50% inhibition in GM-1 and MS25 adherence, while a 25% increase occurred with TD-4. While strain differences were noted in some of the parameters studied, the results indicate two possibilities for T. denticola-HGF adherence: a lectinlike adhesin(s) on the T. denticola surface with affinity for galactose and mannose on the HGF surface, and a serum host factor(s) bridging T. denticola and HGFs. Images PMID:2160430

  4. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach.

    PubMed

    Barone, Vincenzo; Carnimeo, Ivan; Scalmani, Giovanni

    2013-04-01

    The Density Functional Tight Binding (DFTB) and Time Dependent DFTB (TD-DFTB) methods have been coupled with the Polarizable Continuum Model (PCM) of solvation, aiming to study spectroscopic properties for large systems in condensed phases. The calculation of the ground and the excited state energies, together with the analytical gradient and Hessian of the ground state energy, have been implemented in a fully analytical and computationally effective approach. After sketching the theoretical background of both DFTB and PCM, we describe the details of both the formalism and the implementation. We report a number of examples ranging from vibrational to electronic spectroscopy, and we identify the strengths and the limitations of the DFTB/PCM method. We also evaluate DFTB as a component in a hybrid approach, together with a more refined quantum mechanical (QM) method and PCM, for the specific case of anharmonic vibrational spectra. PMID:26583552

  5. Intramolecular photoinduced proton transfer in 2-(2‧-hydroxyphenyl)benzazole family: A TD-DFT quantum chemical study

    NASA Astrophysics Data System (ADS)

    Roohi, Hossein; Mohtamedifar, Nafiseh; Hejazi, Fahemeh

    2014-11-01

    In this work, intramolecular photoinduced proton transfer in 2-(2‧-hydroxyphenyl)benzazole family (HBO, HBI and HBT) was investigated using TD-DFT calculations at PBE1PBE/6-311++G(2d,2p) level of theory. The potential energy surfaces were employed to explore the proton transfer reactions in both states. In contrast to the ground state, photoexcitation from S0 state to S1 one encourages the operation of the excited-state intramolecular proton transfer process. Structural parameters, H-bonding energy, absorption and emission bands, vertical excitation and emission energies, oscillator strength, fluorescence rate constant, dipole moment, atomic charges and electron density at critical points were calculated. Molecular orbital analysis shows that vertical S0 → S1 transition in the studied molecules corresponds essentially to the excitation from HOMO (π) to LUMO (π∗). Our calculated results are in good agreement with the experimental observations.

  6. Design and Modeling of High Power Density Acoustic Transducer Materials for Autonomous Undersea Vehicles

    NASA Astrophysics Data System (ADS)

    Heitmann, Adam Arthur

    Advances in piezocrystal transducer materials technology has opened new avenues to impact the size, weight, and power consumption of sonar systems for deployment in autonomous undersea vehicles (AUVs). Although piezocrystals exhibit exceptional electromechanical properties, they have low ferroelectric Curie temperatures, small electrical coercivities, and exhibit temperature, electrical field, and/or stress induced phase transitions between ferroelectric phases with differing electromechanical properties. New piezocrystal materials are required that can provide the compositional tailoring capability needed to increase the Curie temperature and coercive field, ameliorate the deleterious effects of ferroelectric-ferroelectric phase transitions, and enable property optimization for specific transducer applications. Currently, new piezocrystal systems and compositions are selected almost exclusively by empirical 'make and measure' approaches guided by past experiences. These empirical processes can be time and labor intensive and as a result there exists only limited predictive capability for finding new piezocrystal compositions even in known piezocrystal systems. In this study we seek to develop a comprehensive phenomenological theory and a unified parameterization scheme applicable to binary and ternary ferroelectric solid solution systems in order to enable the accelerated development and characterization of new piezocrystal systems for optimized transducer performance. A modified form of the classical Ginzburg-Landau-Devonshire theory of weak first-order transitions is applied to perovskite-structured ferroelectric systems based on the ternary oxide compounds, barium titanate and lead titanate, which places special emphasis on the role played by the crystallographic anisotropy of polarization. It is shown that the theory produces excellent qualitative agreement with the experimentally measured phase diagram topologies, crystal lattice parameters, and

  7. A New Allotrope of Nitrogen as High-Energy Density Material.

    PubMed

    Greschner, Michael J; Zhang, Meng; Majumdar, Arnab; Liu, Hanyu; Peng, Feng; Tse, John S; Yao, Yansun

    2016-05-12

    A new allotrope of nitrogen in which the atoms are connected to form a novel N6 molecule is predicted to exist at ambient conditions. The N6 molecule is a charge-transfer complex with an open-chain structure containing both single and triple bonds. The charge transfer induces ionic characteristics in the intermolecular interactions and leads to a much higher cohesive energy for the predicted crystal compared to solid N2. The N6 solid is also more stable than a previously reported polymeric solid of nitrogen. Because of the kinetic stability of the molecules and strong intermolecular interactions, the N6 crystal is shown by metadynamics simulations to be dynamically stable around room temperature and to only dissociate to N2 molecules above 700 K. The N6 crystal can likely be synthesized under high-pressure high-temperature conditions, and the considerable metastability may allow for an ambient-pressure recovery of the crystal. Because of the large energy difference between the single and triple bonds, the dissociation of the N6 crystal is expected to release a large amount of energy, placing it among the most efficient energy materials known today. PMID:27088348

  8. Tomography of atomic number and density of materials using dual-energy imaging and the Alvarez and Macovski attenuation model

    NASA Astrophysics Data System (ADS)

    Paziresh, M.; Kingston, A. M.; Latham, S. J.; Fullagar, W. K.; Myers, G. M.

    2016-06-01

    Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073-2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127-135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260-1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and

  9. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water.

    PubMed

    Guzmán-Duque, Fernando L; Palma-Goyes, Ricardo E; González, Ignacio; Peñuela, Gustavo; Torres-Palma, Ricardo A

    2014-08-15

    Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode-electrolyte interaction. With BDD, the degradation pathway depends on i: If idensity (i(lim)), CV is mainly degraded by OH radicals, whereas if i>i(lim), generated oxidants play a major role in the CV elimination. When IrO2 was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na2SO4 on IrO2 seems to occur via IrO3; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na2SO4 electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO2. Thus, the IrO2/Cl(-) and BDD/SO4(2-) systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO4(2-) and IrO2/Cl(-) systems is favored at low and high current densities, respectively. PMID:24981674

  10. Hydrogen and related materials at high density: Physics, chemistry and planetary implications

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Mao, H. K.; Duffy, T. S.; Goncharov, A.; Vos, W.; Zha, C. S.; Eggert, J. H.; Li, M.; Hanfland, M.

    1994-01-01

    Recent studies of low-Z molecular materials including hydrogen to multimegabar pressures (less than 300 GPa) have uncovered a range of phenomena relevant to understanding the nature of the interiors of the outer planets and their satellites. Synchrotron x ray diffraction measurements (to 42 GPa) have been used to determine the crystal structure of the solid (hexagonal-close packed) and equation of state. Sound velocities in fluid and solid hydrogen (to 24 GPa) have been inverted to obtain elastic constants and aggregate bulk and shear moduli. In addition, an improved intermolecular potential has been determined which fits both static and shock-wave data. Use of the new potential for the molecular envelope of Jupiter suggests the need for major revisions of existing Jovian models or a reanalysis of reported free oscillations for the planet. Studies at higher pressures (greater than 100 GPa) reveal a sequence of pressure-induced symmetry-breaking transitions in molecular hydrogen, giving rise to three high-pressure phases (1, 2, and 3). Phase 1 is the rotationally disordered hcp phase which persists from low pressure to well above 100 GPa at high temperature (e.g., 300 K). Phase 2 is a low-temperature, high-pressure phase (transition at 100 GPa and 77 K in H2) with spectral features indicative of partial rotational ordering and crystallographic distortion. The transition to Phase 3 at 150 GPa is accompanied by a weakening of the molecular bond, gradual changes in orientational ordering, strong enhancement of the infrared intramolecular vibrational absorption, and strong intermolecular interactions similar to those of ambient-pressure network solids. Studies of the phase diagram reveal a triple point near 130 K and 160 GPa. Higher pressure measurements of vibrational spectra place a lower bound of approximately 250 GPa on the predicted transition pressure for dissociation of molecular hydrogen to form a monatomic metal.

  11. Resist and BARC outgassing measured by TD-GCMS: investigation during the exposure or the bake steps of the lithographic process

    NASA Astrophysics Data System (ADS)

    Tiron, Raluca; Sourd, Claire; Fontaine, Hervé; Cetre, Sylviane; Mortini, Bénédicte

    2007-02-01

    In this paper we develop a methodology in order to monitor the organic outgassing level of BARC and resist materials, during the exposure or bake steps of the lithographic process. We present two different approaches, both based on thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) techniques. First we used an indirect method to monitor the byproducts outgassed during the exposure step. Secondly we check with an in-situ measurement the outgassing behaviour as a function of bake conditions. These two approaches are illustrated using different resist and BARC formulations. Finally, TD-GC-MS technique is integrated in a largest outgassing evaluation protocol, and results obtained by this technique are correlated with other characterization methods such as TGA, FTIR and defectivity monitoring.

  12. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    SciTech Connect

    Sarapata, A.; Chabior, M.; Zanette, I.; Pfeiffer, F.; Cozzini, C.; Sperl, J. I.; Bequé, D.; Langner, O.; Coman, J.; Ruiz-Yaniz, M.

    2014-10-15

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between a monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.

  13. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging.

    PubMed

    Sarapata, A; Chabior, M; Cozzini, C; Sperl, J I; Bequé, D; Langner, O; Coman, J; Zanette, I; Ruiz-Yaniz, M; Pfeiffer, F

    2014-10-01

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between a monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials. PMID:25362404

  14. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Sarapata, A.; Chabior, M.; Cozzini, C.; Sperl, J. I.; Bequé, D.; Langner, O.; Coman, J.; Zanette, I.; Ruiz-Yaniz, M.; Pfeiffer, F.

    2014-10-01

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between a monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.

  15. High-energy density experiments on planetary materials using high-power lasers and X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ozaki, Norimasa

    2015-06-01

    Laser-driven dynamic compression allows us to investigate the behavior of planetary and exoplanetary materials at extreme conditions. Our high-energy density (HED) experiments for applications to planetary sciences began over five years ago. We measured the equation-of-state of cryogenic liquid hydrogen under laser-shock compression up to 55 GPa. Since then, various materials constituting the icy giant planets and the Earth-like planets have been studied using laser-driven dynamic compression techniques. Pressure-volume-temperature EOS data and optical property data of water and molecular mixtures were obtained at the planetary/exoplanetary interior conditions. Silicates and oxides data show interesting behaviors in the warm-dense matter regime due to their phase transformations. Most recently the structural changes of iron were observed for understanding the kinetics under the bcc-hcp transformation phenomena on a new HED science platform coupling power-lasers and the X-ray free electron laser (SACLA). This work was performed under the joint research project at the Institute of Laser Engineering, Osaka University. It was partially supported by a Grant-in-Aid for Scientific Research (Grant Nos. 20654042, 22224012, 23540556, and 24103507) and also by grants from the Core-to-Core Program of JSPS on International Alliance for Material Science in Extreme States with High Power Laser and XFEL, and the X-ray Free Electron Laser Priority Strategy Program of MEXT.

  16. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOEpatents

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0materials and their use in electrochemical devices are also described.

  17. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    NASA Astrophysics Data System (ADS)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. A tunneling current density model for ultra thin HfO2 high-k dielectric material based MOS devices

    NASA Astrophysics Data System (ADS)

    Maity, Niladri Pratap; Maity, Reshmi; Thapa, R. K.; Baishya, Srimanta

    2016-07-01

    In this paper, an analytical model for evaluation of tunneling current density of ultra thin MOS devices is presented. The impacts of the promising high-k dielectric material, HfO2 on the current density model have been carried out. In this work, improvement in the results is brought in by taking into account the barrier height lowering due to the image force effect. The considered voltage range is from 0 to ψ1/e i.e., 0 < V < ψ1/e, where ψ1 is the barrier height at the interface of metal and the oxide. Initially we are neglecting the image force effect for a MOS device consisting asymmetric barrier. Later, image force effect of ultra thin oxide layer has been introduced for practical potential barrier by superimposing the potential barrier on the trapezoidal barrier. Theoretical predictions are compared with the results obtained by the 2-D numerical device simulator ATLAS and published experimental results. Excellent agreements among the three are observed.

  19. Electrochemical oxidation of humic acid and sanitary landfill leachate: Influence of anode material, chloride concentration and current density.

    PubMed

    Fernandes, A; Santos, D; Pacheco, M J; Ciríaco, L; Lopes, A

    2016-01-15

    The influence of applied current density and chloride ion concentration on the ability of Ti/Pt/PbO2 and Ti/Pt/SnO2-Sb2O4 anodes for the electrochemical oxidation of humic acid and sanitary landfill leachate samples was assessed and compared with that of BDD anode. For the experimental conditions used, results show that both organic load and nitrogen removal rates increase with the applied current density and chloride ion concentration, although there is an optimum COD/[Cl-]0 ratio below which there is no further increase in COD removal. Metal oxide anodes present a similar performance to that of BDD, being the results obtained for Ti/Pt/PbO2 slightly better than for Ti/Pt/SnO2-Sb2O4. Contrary to BDD, Ti/Pt/PbO2 promotes lower nitrate formation and is the most suitable material for total nitrogen elimination. The importance of the optimum ratio of Cl-/COD/NH4 +initial concentrations is discussed. PMID:26410703

  20. Theoretical estimation of surface Debye temperature of nano structured material

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Bijan Kumar; Sarkar, A.

    2016-05-01

    The estimation of Debye temperature (TD) exploiting phonon is very important. In this work an attempt has been made to estimate TD for solids in a simple phenomenological approach. The ultimate goal is to estimate TD for nano structured material. The objective of this present work is to extend Debye model for nano-structured material and hence to extract the contribution to surface specific heat and surface Debye temperature. An empirical relation between TD and surface Debye temperature (TDS) is proposed. Lindemann melting criterion is also extended towards nano structure. The overall results obtained are compared and found to be in good agreement.

  1. Material Characterization and Computer Model Simulation of Low Density Polyurethane Foam Used in a Rodent Traumatic Brain Injury Model

    PubMed Central

    Zhang, Liying; Gurao, Manish; Yang, King H.; King, Albert I.

    2011-01-01

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou’s impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou’s impact device, has not been fully characterized. The foam used in Marmarou’s device was tested at seven strain rates ranging from quasi-static to dynamic (0.014 ~ 42.86 s−1) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114

  2. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.

    PubMed

    Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I

    2011-05-15

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114

  3. Theoretical analysis of an all-photonic multifunctional molecular logic device: Using TD-DFT//DFT to assess photochromic activity of multimeric photochrome

    NASA Astrophysics Data System (ADS)

    Belfon, Kellon A. A.; Gough, Jonathan D.

    2013-10-01

    The structures and properties of a single-molecule photochromic switch consisting of 3 photochromic moieties is investigated. Using time-dependent density functional theory (TD-DFT) we calculated the λmax within ± 30 nm (± 0.18 eV) and produced spectra that were similar. The charge-transfer (CT) character of the molecular orbitals (MO) was assessed via the overlap between the occupied and virtual orbitals (Λ diagnostic) and did not suffer from CT failure. The MOs were consistent with photochemically productive photochromes. The MO and their contribution to different excited states paralleled both the observed activity and observed inactivity of the photochrome.

  4. Density, magnetic properties and sound velocities of iron-rich materials at high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Gao, Lili

    Understanding the composition of Earth's inner core is crucial for revealing the mechanisms of core formation and the evolution of Earth. The presence of light elements in the Earth's inner core has been indicated in recent studies, based on the mismatch between the observed density of the inner core and the density of pure iron at relevant conditions. The nature and abundance of light element(s) are under debate, yet they are fundamental in understanding the formation and evolution of the Earth's core. Carbon has been considered a possible major light element candidate, besides hydrogen, oxygen, silicon and sulphur. In particular, Fe3C has been proposed to be the major component in the Earth's inner core in a previous thermodynamics study. However, the possibility of Fe3C being a major inner core component has been under debate in recent studies, largely due to our limited knowledge of the properties of Fe3C at extreme pressure and temperature (P-T) conditions. In this thesis work, I investigated the possibility of carbon as a principal light element in the inner core in the form of Fe3C. Considering the lack of direct accessibility to the inner core, the only way to test a carbon-rich inner core model is to compare the properties of iron-carbon compounds, including the density and sound velocities, with the observed values of inner core, e.g., the values in preliminary reference Earth model (PREM) determined using normal mode data and seismic travel time data. In this work, I studied the density, elasticity, sound velocity and magnetism of Fe3C using a series of experimental methods, including X-ray diffraction (XRD), nuclear resonant inelastic X-ray scattering (NRIXS), synchrotron Mossbauer spectroscopy (SMS) and conventional Mossbauer spectroscopy (CMS). The starting materials of (57Fe-enriched) Fe3C samples were synthesized using large-volume presses. The composition and purity of the samples were confirmed using high-resolution XRD and CMS methods. A magnetic

  5. Characterization of Yuhushiella sp. TD-032 from the Thar Desert and its antimicrobial activity.

    PubMed

    Ibeyaima, A; Rana, Jyoti; Dwivedi, Anuj; Gupta, Sanjay; Sharma, Sanjeev K; Saini, Narendra; Sarethy, Indira P

    2016-01-01

    During a screening program for antimicrobial compounds from underexplored habitats, a Gram-positive bacterium TD-032, was isolated from arid soil, Thar Desert (India), and analyzed for its morphological, physicochemical, and antimicrobial properties. The 16S ribosomal DNA (rDNA) sequence of the isolate was further studied for the novelty of γ-hyper variable region. TD-032 was grown in large-scale culture, and aqueous and organic solvent extracts analyzed for antimicrobial activity. Culture characteristics showed a lack of diffusible and melanoid pigments. The morphological features were pale yellow aerial mycelium colony color with brownish yellow substrate mycelium and leathery texture. The isolate could grow at 1% concentration of sodium chloride, temperature of 40°C, and a wide range of pH (7.0-12.0). An evaluation for extracellular enzymatic activities showed secretion of gelatinase(s), cellulase(s), and lipase(s). The γ-hyper variable region of 16S rDNA sequence of TD-032 showed 98.33% relatedness to Yuhushiella deserti, indicating a potential new species. Aqueous and ethyl acetate extracts showed antimicrobial activity against Gram-positive and Gram-negative bacteria inclusive clinical isolates. Inhibition of both test bacteria suggests that TD-032 produces a broad spectrum of antimicrobial substances. PMID:27144149

  6. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts.

    PubMed

    Villalba, María Leticia; Susana Sáez, Julieta; Del Monaco, Silvana; Lopes, Christian Ariel; Sangorrín, Marcela Paula

    2016-01-18

    Microbiological spoilage is a major concern throughout the wine industry, and control tools are limited. This paper addresses the identification and partial characterization of a new killer toxin from Torulaspora delbrueckii with potential biocontrol activity of Brettanomyces bruxellensis, Pichia guilliermondii, Pichia manshurica and Pichia membranifaciens wine spoilage. A panel of 18 different wine strains of T. delbrueckii killer yeasts was analysed, and the strain T. delbrueckii NPCC 1033 (TdKT producer) showed a significant inhibitory effect on the growth of all different spoilage yeasts evaluated. The TdKT toxin was then subjected to a partial biochemical characterization. Its estimated molecular weight was N30 kDa and it showed glucanase and chitinase enzymatic activities. The killer activity was stable between pH 4.2 and 4.8 and inactivated at temperature above 40 °C. Pustulan and chitin — but not other cell wall polysaccharides — prevented sensitive yeast cells from being killed by TdKT, suggesting that those may be the first toxin targets in the cell wall. TdKT provoked an increase in necrosis cell death after 3 h treatment and apoptotic cell death after 24 h showing time dependence in its mechanisms of action. Killer toxin extracts were active at oenological conditions, confirming their potential use as a biocontrol tool in winemaking. PMID:26513248

  7. Application of the FD-TD method to the electromagnetic modeling of patch antenna arrays

    SciTech Connect

    Pasik, M.F.; Aguirre, G.; Cangellaris, A.C.

    1996-01-10

    FD-TD method and the Berenger Perfectly Matched Layer (PML) absorbing condition are applied to the modeling of a 32-element patch array. Numerical results for the return loss at the array feed are presented and compared to measured results for the purpose of model validation.

  8. Characterization of Yuhushiella sp. TD-032 from the Thar Desert and its antimicrobial activity

    PubMed Central

    Ibeyaima, A.; Rana, Jyoti; Dwivedi, Anuj; Gupta, Sanjay; Sharma, Sanjeev K.; Saini, Narendra; Sarethy, Indira P.

    2016-01-01

    During a screening program for antimicrobial compounds from underexplored habitats, a Gram-positive bacterium TD-032, was isolated from arid soil, Thar Desert (India), and analyzed for its morphological, physicochemical, and antimicrobial properties. The 16S ribosomal DNA (rDNA) sequence of the isolate was further studied for the novelty of γ-hyper variable region. TD-032 was grown in large-scale culture, and aqueous and organic solvent extracts analyzed for antimicrobial activity. Culture characteristics showed a lack of diffusible and melanoid pigments. The morphological features were pale yellow aerial mycelium colony color with brownish yellow substrate mycelium and leathery texture. The isolate could grow at 1% concentration of sodium chloride, temperature of 40°C, and a wide range of pH (7.0–12.0). An evaluation for extracellular enzymatic activities showed secretion of gelatinase(s), cellulase(s), and lipase(s). The γ-hyper variable region of 16S rDNA sequence of TD-032 showed 98.33% relatedness to Yuhushiella deserti, indicating a potential new species. Aqueous and ethyl acetate extracts showed antimicrobial activity against Gram-positive and Gram-negative bacteria inclusive clinical isolates. Inhibition of both test bacteria suggests that TD-032 produces a broad spectrum of antimicrobial substances. PMID:27144149

  9. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors

    SciTech Connect

    Creager, W.N.

    1991-09-01

    The far infrared reflectance and conductivity of (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I and TaS{sub 3} have been measured to determine the origin of a huge infrared resonance that dominates the charge density wave (CDW) dynamics along with the pinned acoustic phason mode in the related materials (TaSe{sub 4}){sub 2}I and K{sub 0. 3}MoO{sub 3}. The measurements cover frequencies from 3 to 700cm{sup {minus}1} and the temperature range from 15K to 300K. In the niobium-doped alloys (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I, the size and frequency of the giant infrared mode remain nearly constant as the impurity concentration x is increased. For TaS{sub 3}, the pinned acoustic phason near 0.5cm{sup {minus}1} dominates {var epsilon}({omega}) and an additional small mode lies near 9cm{sup {minus}1}. The latter mode is much smaller than the infrared mode in other CDW materials. These results rule out several models of a generic infrared mode'' in CDW excitations. They are compared in detail to the predictions of a recent theory attributing the infrared mode to a bound collective mode localized at impurity sites within the crystal. The transmittance of K{sub 0.3}MoO{sub 3} has been measured at 1.2K with a strong dc electric field applied across the crystal. Under these conditions, the charge density wave depins abruptly and carries large currents with near-zero differential resistance. For some samples, the low-frequency transmittance is enhanced slightly when the CDW depins. The magnitude of the oxygen isotope effect in the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} has been determined by substitution of {sup 18}O for {sup 16}O. A series of cross-exchanges was performed on high-quality polycrystalline specimens to eliminate uncertainties due to sample heat treatments and sample inhomogeneities.

  10. A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons.

    PubMed

    Besser, Stefanie; Sicker, Marit; Marx, Grit; Winkler, Ulrike; Eulenburg, Volker; Hülsmann, Swen; Hirrlinger, Johannes

    2015-01-01

    GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type. PMID:26076353

  11. A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons

    PubMed Central

    Besser, Stefanie; Sicker, Marit; Marx, Grit; Winkler, Ulrike; Eulenburg, Volker; Hülsmann, Swen; Hirrlinger, Johannes

    2015-01-01

    GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type. PMID:26076353

  12. Assessment of TD-DFT and LF-DFT for study of d − d transitions in first row transition metal hexaaqua complexes

    SciTech Connect

    Vlahović, Filip; Perić, Marko; Zlatar, Matija; Gruden-Pavlović, Maja

    2015-06-07

    Herein, we present the systematic, comparative computational study of the d − d transitions in a series of first row transition metal hexaaqua complexes, [M(H{sub 2}O){sub 6}]{sup n+} (M{sup 2+/3+} = V {sup 2+/3+}, Cr{sup 2+/3+}, Mn{sup 2+/3+}, Fe{sup 2+/3+}, Co{sup 2+/3+}, Ni{sup 2+}) by the means of Time-dependent Density Functional Theory (TD-DFT) and Ligand Field Density Functional Theory (LF-DFT). Influence of various exchange-correlation (XC) approximations have been studied, and results have been compared to the experimental transition energies, as well as, to the previous high-level ab initio calculations. TD-DFT gives satisfactory results in the cases of d{sup 2}, d{sup 4}, and low-spin d{sup 6} complexes, but fails in the cases when transitions depend only on the ligand field splitting, and for states with strong character of double excitation. LF-DFT, as a non-empirical approach to the ligand field theory, takes into account in a balanced way both dynamic and non-dynamic correlation effects and hence accurately describes the multiplets of transition metal complexes, even in difficult cases such as sextet-quartet splitting in d{sup 5} complexes. Use of the XC functionals designed for the accurate description of the spin-state splitting, e.g., OPBE, OPBE0, or SSB-D, is found to be crucial for proper prediction of the spin-forbidden excitations by LF-DFT. It is shown that LF-DFT is a valuable alternative to both TD-DFT and ab initio methods.

  13. 75 FR 47893 - Proposed Collection; Comment Request for REG-111583-07, (T.D. 9405) (Final)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... Internal Revenue Service Proposed Collection; Comment Request for REG-111583-07, (T.D. 9405) (Final) AGENCY... regulations (REG-111583-07) (T.D. 9405), Employment Tax Adjustments. DATES: Written comments should be... and instructions should be directed to Elaine Christophe, (202) 622-3179, or at Internal...

  14. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus Spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...

  15. TD-DFT study of the light-induced spin crossover of Fe(III) complexes.

    PubMed

    Saureu, Sergi; de Graaf, Coen

    2016-01-14

    Two light-induced spin-crossover Fe(III) compounds have been studied with time-dependent density functional theory (TD-DFT) to investigate the deactivation mechanism and the role of the ligand-field states as intermediates in this process. The B3LYP* functional has previously shown its ability to accurately describe (light-induced) spin-crossover in Fe(II) complexes. Here, we establish its performance for Fe(III) systems using [Fe(qsal)2](+) (Hqsal = 2-[(8-quinolinylimino)methyl]phenol) and [Fe(pap)2](+) (Hpap = 2-(2-pyridylmethyleneamino)phenol) as test cases comparing the B3LYP* results to experimental information and to multiconfigurational wave function results. In addition to rather accurate high spin (HS) and low spin (LS) state geometries, B3LYP* also predicts ligand-to-metal charge transfer (LMCT) states with large oscillator strength in the energy range where the UV-VIS spectrum shows an intense absorption band, whereas optically allowed π-π* excitations on the ligands were calculated at higher energy. Subsequently, we have generated a two-dimensional potential energy surface of the HS and LS states varying the Fe-N and Fe-O distances. LMCT and metal centered (MC) excited states were followed along the approximate minimal energy path that connects the minima of the HS and LS on this surface. The (2)LMCT state has a minimum in the same region as the initial LS state, where we also observe a crossing with the intermediate spin (IS) state. Upon the expansion of the coordination sphere of the Fe(III) ion, the IS state crosses with the HS state and further expansion of the coordination sphere leads to the excited spin state trapping as observed in experiment. The calculation of the intersystem crossing rates reveals that the deactivation from (2)LMCT → IS → HS competes with the (2)LMCT → IS → LS pathway, in line with the low efficiency encountered in experiments. PMID:26660866

  16. Analysis of defect structure in silicon. Effect of grain boundary density on carrier mobility in UCP material

    NASA Technical Reports Server (NTRS)

    Dunn, J.; Stringfellow, G. B.; Natesh, R.

    1982-01-01

    The relationships between hole mobility and grain boundary density were studied. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using a quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

  17. Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study

    NASA Astrophysics Data System (ADS)

    Li, Meng; Liu, Yue-Jie; Zhao, Jing-xiang; Wang, Xiao-guang

    2015-08-01

    Recently, the Si/graphene hybrid composites have attracted considerable attention due to their potential application for Li-ion batteries. How to effectively anchor Si clusters to graphene substrates to ensure their stability is an important factor to determine their performance for Li-ion batteries. In the present work, we have performed comprehensive density functional theory (DFT) calculations to investigate the geometric structures, stability, and electronic properties of the deposited Si clusters on defective graphenes as well as their potential applications for Li-ion batteries. The results indicate that the interfacial bonding between these Si clusters with the pristine graphene is quietly weak with a small adsorption energy (<-0.21 eV). Due to the presence of vacancy site, the binding strength of Si clusters on defective graphene is much stronger than that of pristine one, accompanying with a certain amount of charge transfer from Si clusters to graphene substrates. Moreover, the ability of Si/graphene hybrids for Li uptake is studied by calculating the adsorption of Li atoms. We find that both graphenes and Si clusters in the Si/graphene composites preserve their Li uptake ability, indicating that graphenes not only server as buffer materials for accommodating the expansion of Si cluster, but also provide additional intercalation sites for Li.

  18. Ti(N5)4 as a Potential Nitrogen-Rich Stable High-Energy Density Material.

    PubMed

    Choi, Changhyeok; Yoo, Hae-Wook; Goh, Eun Mee; Cho, Soo Gyeong; Jung, Yousung

    2016-06-23

    We have studied molecular structures and kinetic stabilities of M(N5)3 (M = Sc, Y) and M(N5)4 (M = Ti, Zr, Hf) complexes theoretically. All of these compounds are found to be stable with more than a 13 kcal/mol of kinetic barrier. In particular, Ti(N5)4 showed the largest dissociation energy of 173.0 kcal/mol and thermodynamic stability. This complex had a high nitrogen content (85% by weight), and a significantly high nitrogen to metal ratio (20:1) among the neutral M(N5)n species studied here and in the literature. Ti(N5)4 is thus forecasted to be a good candidate for a nitrogen-rich high-energy density material (HEDM). We reveal in further detail using ab initio molecular dynamics simulations that the dissociation pathways of M(N5)n involve the rearrangements of the bonding configurations before dissociation. PMID:27266258

  19. Stabilization of diketo tautomer of curcumin by premicellar anionic surfactants: UV-Visible, fluorescence, tensiometric and TD-DFT evidences

    NASA Astrophysics Data System (ADS)

    Dutta, Anisha; Boruah, Bornali; Manna, Arun K.; Gohain, Biren; Saikia, Palash M.; Dutta, Robin K.

    2013-03-01

    A newly observed UV band of aqueous curcumin, a biologically important molecule, in presence of anionic surfactants, viz., sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and sodium dodecylsulfonate (SDSN) in buffered aqueous solutions has been studied experimentally and theoretically. The 425 nm absorption band of curcumin disappears and a new UV-band is observed at 355 nm on addition of the surfactants in the submicellar concentration range which is reversed as the surfactant concentration approaches the critical micelle concentration (CMC). The observed spectral absorption, fluorescence intensity and surface tension behavior, under optimal experimental conditions of submicellar concentration ranges of the surfactants in the pH range of 2.00-7.00, indicate that the new band is due to the β-diketo tautomer of curcumin stabilized by interactions between curcumin and the anionic surfactants. The stabilization of the diketo tautomer by submicellar anionic surfactants described here as well as by submicellar cationic surfactant, reported recently, is unique as this is the only such behavior observed in presence of submicellar surfactants of both charge types. The experimental results are in good agreement with the theoretical calculations using ab initio density functional theory combined with time dependent density functional theory (TD-DFT) calculations.

  20. The finite-difference time-domain (FD-TD) method for electromagnetic scattering and interaction problems

    NASA Technical Reports Server (NTRS)

    Taflove, A.; Umashankar, K. R.

    1987-01-01

    The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.

  1. The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency

    PubMed Central

    Emani, Maheswara Reddy; Närvä, Elisa; Stubb, Aki; Chakroborty, Deepankar; Viitala, Miro; Rokka, Anne; Rahkonen, Nelly; Moulder, Robert; Denessiouk, Konstantin; Trokovic, Ras; Lund, Riikka; Elo, Laura L.; Lahesmaa, Riitta

    2015-01-01

    Summary The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs) and provide insights into the interactome network constructed in human pluripotent cells. Our data reveal that L1TD1 has an important role in RNA splicing, translation, protein traffic, and degradation. L1TD1 interacts with multiple stem-cell-specific proteins, many of which are still uncharacterized in the context of development. Further, we show that L1TD1 is a part of the pluripotency interactome network of OCT4, SOX2, and NANOG, bridging nuclear and cytoplasmic regulation and highlighting the importance of RNA biology in pluripotency. PMID:25702638

  2. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials.

    PubMed

    Yin, Ping; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-01-19

    Nitrogen-rich heterocycles represent a unique class of energetic frameworks featuring high heats of formation and high nitrogen content, which have generated considerable research interest in the field of high energy density materials (HEDMs). Although traditional C-functionalization methodology of aromatic hydrocarbons has been fully established, studies on N-functionalization strategies of nitrogen-containing heterocycles still have great potential to be exploited by virtue of forming diverse N-X bonds (X = C, N, O, B, halogen, etc.), which are capable of regulating energy performance and the stability of the resulting energetic compounds. In this sense, versatile N-functionalization of N-heterocyclic frameworks offers a flexible strategy to meet the requirements of developing new-generation HEDMs. In this Account, the role of strategic N-functionalization in designing new energetic frameworks, including the formation of N-C, N-N, N-O, N-B and N-halogen bonds, is emphasized. In the family of N-functionalized HEDMs, energetic derivatives, by virtue of forming N-C bonds, are the most widely used type due to the good nucleophilic capacity of most heterocyclic backbones. Although introduction of carbon tends to decrease energetic performance, significant improvement in material sensitivity makes this strategy attractive for safety concerns. More importantly, most "explosophores" can be readily introduced into the N-C linkage, thus providing a promising route to various HEDMs. Formation of additional N-N bonds typically gives rise to higher heats of formation, implying the potential enhancement in detonation performance. In many cases, the increased hydrogen bonding interactions within N-N functionalized heterocycles also improve thermal stability accordingly. Introduction of a single N,N'-azo bridge into several azole moieties leads to an extended nitrogen chain, demonstrating a new strategy for designing high-nitrogen compounds. The strategy of N-O functionalization

  3. Development of a material sparing bulk density test comparable to a standard USP method for use in early development of API's.

    PubMed

    Hughes, Helen; Leane, Michael M; Tobyn, Michael; Gamble, John F; Munoz, Santiago; Musembi, Pauline

    2015-02-01

    Bulk density can be a key indicator of performance, and may influence choice of formulation route of materials in pharmaceutical development. During early development, the cost of API's can be expensive and the availability of material for powder property analysis is limited. The aim of this work was to investigate a suitable small-scale, low material requirement, bulk density test which would provide comparable data to the recommended large volume USP test. Materials with a range of morphological characteristics typically seen in the pharmaceutical industry were assessed to ensure that methods were suitably robust. It was found that the USP II "low volume" test does not give equivalent results to other tests in the USP, across the range of materials. An alternative test based on the FT4 powder rheometer at a scale of 25 mL gave results equivalent to the large volume USP I standard test. The use of smaller 10-mL methods was also found to give acceptable results for materials that were considered well-behaved but were more variable with difficult to handle materials with low bulk density. PMID:25233802

  4. Comprehensive DFT and TD-DFT Studies on the Photophysical Properties of 5,6-Dichloro-1,3-Bis(2-Pyridylimino)-4,7-Dihydroxyisoindole: A New Class of ESIPT Fluorophore.

    PubMed

    Kataria, Santosh; Rhyman, Lydia; Ramasami, Ponnadurai; Sekar, Nagaiyan

    2016-09-01

    Hanson et al. [Org. Lett., 2011] reported the absorption and emission spectrum of 5,6-dichloro-1,3-bis(2-pyridylimino)-4,7-dihydroxyisoindole but the excited-state intramolecular proton transfer (ESIPT) process was not investigated. The photo-physical behaviour of 5,6-dichloro-1,3-bis(2-pyridylimino)-4,7-dihydroxyisoindole was studied using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The functional used was B3LYP and 6-31G(d) was the basis set for all the atoms. All the ten tautomers were studied for the absorption and emission properties. It is found that the tautomer where hydroxyl groups are syn to nitrogen of isoindoline ring is most stable and thus, responsible for the ESIPT process. The computed absorption and emission values of tautomers using TD-DFT are in good agreement with those obtained experimentally. PMID:27455833

  5. Experimental and CIS, TD-DFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes

    NASA Astrophysics Data System (ADS)

    Teimouri, Abbas; Chermahini, Alireza Najafi; Taban, Keivan; Dabbagh, Hossein A.

    2009-03-01

    The detailed experimental and computational analysis [Hartree-Fock (HF), Time-Dependent Density-Functional Theory (TD-DFT) and Second-Order Møller-Plesset Perturbation Theory (PM2) levels of theory at standard 6-31G* basis set] of structure, infrared spectra and visible spectra of azo dyes are investigated. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculated values. The geometry optimization yields a planar conformation for phenyl rings with azo moiety. The energy and oscillator strength calculated by Configuration Interaction Singles (CIS) complements the Time-Dependent Density-Functional Theory (TD-DFT) results and the experimental findings. Unfortunately, PM2 method could not predict vibrational frequencies and visible spectra of the azo dyes under conditions of this investigation.

  6. Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.; Taylor, R. E.

    1973-01-01

    Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.

  7. The Efficiency of Delone Coverings of the Canonical Tilings T^*(A4) and T}(*(D_6)) -> T^*(D6)

    NASA Astrophysics Data System (ADS)

    Papadopolos, Zorka; Kasner, Gerald

    This chapter is devoted to the coverings of the two quasiperiodic canonical tilings T^*(A4) and T}(*(D_6)) equiv {cal T}(*(2F)) -> T^*(D6) T^*(2F), obtained by projection from the root lattices A4 and D6, respectively. In the first major part of this chapter, in Sect. 5.2, we shall introduce a Delone covering C^sT^*(A4) of the 2-dimensional decagonal tiling T^*(A4). In the second major part of this chapter, Sect. 5.3, we summarize the results related to the Delone covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6), T}(*(D_6)}) -> CT^*(D6) and determine the zero-, single-, and double- deckings and the resulting thickness of the covering. In the conclusions section, we give some suggestions as to how the definition of the Delone covering might be changed in order to reach some real (full) covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6). In Section 5.2 the definition of the Delone covering is also changed in order to avoid an unnecessary large thickness of the covering.

  8. A G protein-coupled receptor (GPCR) in red: live cell imaging of the kappa opioid receptor-tdTomato fusion protein (KOPR-tdT) in neuronal cells

    PubMed Central

    Huang, Peng; Chiu, Yi-Ting; Chen, Chongguang; Wang, Yujun; Liu-Chen, Lee-Yuan

    2013-01-01

    Introduction In contrast to green fluorescent protein and variants (GFPs), red fluorescent proteins (RFPs) have rarely been employed for generation of GPCR fusion proteins, likely because of formation of aggregates and cell toxicity of some RFPs. Among all the RFPs available, tdTomato (tdT), one of the non-aggregating RFP, has the highest brightness score (about 3 times that of eGFP) and unsurpassed photostability. Methods We fused tdT to the KOPR C-terminus. The KOPR-tdT cDNA construct was transfected into Neuro2A mouse neuroblastoma cell line (Neuro2A cells) and rat cortical primary neurons for characterization of pharmacological properties and imaging studies on KOPR trafficking. Results KOPR-tdT retained KOPR properties (cell surface expression, ligand binding, agonist-induced signaling and internalization) when expressed in Neuro2A cells and rat primary cortical neurons. Live cell imaging of KOPR-tdT enables visualization of time course of agonist-induced internalization of KOPR in real time for 60 min, without photobleaching and apparent cell toxicity. U50,488H-induced KOPR internalization occurred as early as 4 min and plateaued at about 30 min. A unique pattern of internalized KOPR in processes of primary neurons was induced by U50,488H. Discussion tdT is an alternative to, or even a better tool than, GFPs for fusing to GPCR for trafficking studies, because tdT has higher brightness and thus better resolution and less photobleaching problems due to reduced laser power used. It also has advantages associated with its longer-wavelength emission including spectral separation from autofluorescence and GFPs, reduced cell toxicity the laser may impose, and greater tissue penetration. These advantages of tdT over GPFs may be critical for live cell imaging studies of GPCRs in vitro and for studying GPCRs in vivo because of their low abundance. PMID:23856011

  9. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  10. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  11. TD-LTE Wireless Private Network QoS Transmission Protection

    NASA Astrophysics Data System (ADS)

    Zhang, Jianming; Cheng, Chao; Wu, Zanhong

    With the commencement of construction of the smart grid, the demand power business for reliability and security continues to improve, the reliability transmission of power TD-LTE Wireless Private Network are more and more attention. For TD-LTE power private network, it can provide different QoS services according to the user's business type, to protect the reliable transmission of business. This article describes in detail the AF module of PCC in the EPC network, specifically introduces set up AF module station and QoS mechanisms in the EPS load, fully considers the business characteristics of the special power network, establishing a suitable architecture for mapping QoS parameters, ensuring the implementation of each QoS business. Through using radio bearer management, we can achieve the reliable transmission of each business on physical channel.

  12. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation

  13. A new early Pleistocene hominin mandible from Atapuerca-TD6, Spain.

    PubMed

    Bermúdez de Castro, José María; Pérez-González, Alfredo; Martinón-Torres, María; Gómez-Robles, Aida; Rosell, Jordi; Prado, Leyre; Sarmiento, Susana; Carbonell, Eudald

    2008-10-01

    We present the description of a new mandibular specimen, ATD6-113, recovered in 2006 from the TD6 level of the Gran Dolina cave site in Sierra de Atapuerca, northern Spain. A detailed study of the lithostratigraphy of the top sequence of this level, the section from where all human remains have been recovered so far, is also presented. We have observed that the hominin stratum, previously defined as Aurora Stratum, represents a condensed deposit of at least six layers, which could not be distinguished in the test pit made in 1994-95. Therefore, the human fossil remains were probably deposited during a discrete and undetermined time period. The new mandibular fragment exhibits a very similar morphology to that of the most complete specimen, ATD6-96, which was recovered in 2003 from a different layer. This suggests that both specimens represent the same biological population. The two mandibles, as well as the small mandibular fragment ATD6-5 (which constitutes part of the holotype of Homo antecessor), present a morphological pattern clearly derived with regard to that of the African early Homo specimens usually included in H. habilis and H. rudolfensis, the mandibles D211 and D2735 from Dmanisi, and most of the early Pleistocene mandibles from Sangiran. The TD6 mandibles also exhibit some derived features with regard to the African early Pleistocene specimens included in H. ergaster (or African H. erectus). Thus, the TD6 hominins seem to represent a lineage different from other African and Asian lineages, although some (metric in particular) similarities with Chinese middle Pleistocene mandibles are noted. Interestingly, none of the apomorphic mandibular features of the European middle and early late Pleistocene hominins are present in the TD6 mandibles. PMID:18657300

  14. Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice.

    PubMed

    Zhang, Y D; Zheng, J; Liang, Z K; Liang, Y L; Peng, Z H; Wang, C L

    2015-01-01

    Grain size is an important trait that directly influences the yield of rice. Validation and evaluation of grain genes is important in rice genetic studies and for breeding. In a population of 240 recombinant inbred lines (RILs) derived from a cross between an extra-large grain japonica variety TD70 and a small grain indica variety Kasalath, we mapped 19 QTLs controlling grain traits. These QTLs included six cloned grain genes, namely, GW2, GS3, qSW5, qGL3, GS5, and GW8. All of the alleles with the optimal effects on grain size came from TD70, the variety with extra-large grains. To verify these gene loci, we cloned and sequenced GW2, GS3, GW5 (qSW5), qGL3, GS5, GW8, and TGW6 in TD70 and Kasalath, and found several functional polymorphisms in the sequences of the genes. New functional markers for the cloned genes were designed to identify parents and RILs. The contributions of these polymorphisms to the improvement in rice grain size traits were evaluated. Our results indicate that at least six functional polymorphisms have additive effects on grain shape and that one non-functional polymorphism in TGW6 affects grain shape in TD70. The newly designed markers will be useful in further studies to identify functional grain genes. Our findings provide insight into the control of grain size in rice, and they will be of value for improving rice grain yield. PMID:26600549

  15. A baseband LPF for GSM, TD-SCDMA and WCDMA multi-mode transmitters

    NASA Astrophysics Data System (ADS)

    Yongchang, Yu; Kefeng, Han; Lifang, Wang; Xi, Tan; Hao, Min

    2011-02-01

    This paper describes a low-pass reconfigurable baseband filter for GSM, TD-SCDMA and WCDMA multi-mode transmitters. To comply with 3GPP emission mask and limit TX leakage at the RX band, the out-of-band noise performance is optimized. Due to the distortion caused by the subthreshold leakage current of the switches used in capacitor array, a capacitor bypass technique is proposed to improve the filter's linearity. An automatic frequency tuning circuit is adopted to compensate the cut-off frequency variation. Simulation results show that the filter achieves an in-band input-referred third-order intercept point (IIP3) of 47 dBm at 1.2-V power supply and the out-of-band noise can meet TX SAW-less requirement for WCDMA & TD-SCDMA. The baseband filter incorporates -40 to 0 dB programmable gain control that is accurately variable in 0.5 dB steps. The filter's cut-off frequency can be reconfigured for GSM/TD-SCDMA/WCDMA multi-mode transmitter. The implemented baseband filter draws 3.6 mA from a 1.2-V supply in a 0.13 μm CMOS process.

  16. Excited-State Dipole and Quadrupole Moments: TD-DFT versus CC2.

    PubMed

    Jacquemin, Denis

    2016-08-01

    The accuracies of the excited-state dipole and quadrupole moments obtained by TD-DFT are assessed by considering 16 different exchange-correlation functionals and more than 30 medium and large molecules. Except for excited-state presenting a significant charge-transfer character, a relatively limited dependency on the nature of the functional is found. It also turns out that while DFT ground-state dipole moments tend to be too large, the reverse trend is obtained for their excited-state counterparts, at least when hybrid functionals are used. Consequently, the TD-DFT excess dipole moments are often too small, an error that can be fortuitously corrected for charge-transfer transition by selecting a pure or a hybrid functional containing a small share of exact exchange. This error-cancelation phenomena explains the contradictory conclusions obtained in previous investigations. Overall, the largest correlation between CC2 and TD-DFT excess dipoles is obtained with M06-2X, but at the price of a nearly systematic underestimation of this property by ca. 1 D. For the excess quadrupole moments, the average errors are of the order of 0.2-0.6 D·Å for the set of small aromatic systems treated. PMID:27385324

  17. BK/TD models for analyzing in vitro impedance data on cytotoxicity.

    PubMed

    Teng, S; Barcellini-Couget, S; Beaudouin, R; Brochot, C; Desousa, G; Rahmani, R; Pery, A R R

    2015-06-01

    The ban of animal testing has enhanced the development of new in vitro technologies for cosmetics safety assessment. Impedance metrics is one such technology which enables monitoring of cell viability in real time. However, analyzing real time data requires moving from static to dynamic toxicity assessment. In the present study, we built mechanistic biokinetic/toxicodynamic (BK/TD) models to analyze the time course of cell viability in cytotoxicity assay using impedance. These models account for the fate of the tested compounds during the assay. BK/TD models were applied to analyze HepaRG cell viability, after single (48 h) and repeated (4 weeks) exposures to three hepatotoxic compounds (coumarin, isoeugenol and benzophenone-2). The BK/TD models properly fit the data used for their calibration that was obtained for single or repeated exposure. Only for one out of the three compounds, the models calibrated with a single exposure were able to predict repeated exposure data. We therefore recommend the use of long-term exposure in vitro data in order to adequately account for chronic hepatotoxic effects. The models we propose here are capable of being coupled with human biokinetic models in order to relate dose exposure and human hepatotoxicity. PMID:25827406

  18. Excited-State Dipole and Quadrupole Moments: TD-DFT versus CC2

    PubMed Central

    2016-01-01

    The accuracies of the excited-state dipole and quadrupole moments obtained by TD-DFT are assessed by considering 16 different exchange-correlation functionals and more than 30 medium and large molecules. Except for excited-state presenting a significant charge-transfer character, a relatively limited dependency on the nature of the functional is found. It also turns out that while DFT ground-state dipole moments tend to be too large, the reverse trend is obtained for their excited-state counterparts, at least when hybrid functionals are used. Consequently, the TD-DFT excess dipole moments are often too small, an error that can be fortuitously corrected for charge-transfer transition by selecting a pure or a hybrid functional containing a small share of exact exchange. This error-cancelation phenomena explains the contradictory conclusions obtained in previous investigations. Overall, the largest correlation between CC2 and TD-DFT excess dipoles is obtained with M06-2X, but at the price of a nearly systematic underestimation of this property by ca. 1 D. For the excess quadrupole moments, the average errors are of the order of 0.2–0.6 D·Å for the set of small aromatic systems treated. PMID:27385324

  19. High-fidelity multiphysics simulation of BWR assembly with coupled TORT-TD/CTF

    SciTech Connect

    Magedanz, J.; Perin, Y.; Avramova, M.; Pautz, A.; Puente-Espel, F.; Seubert, A.; Sureda, A.; Velkov, K.; Zwermann, W.

    2012-07-01

    This paper describes the application of the coupled codes TORT-TD and CTF to the pin-by-pin modeling of a BWR fuel assembly with thermal-hydraulic feedback. TORT-TD, developed at GRS, is a time-dependent three dimensional discrete ordinates code. CTF is the PSU's improved version of the subchannel code COBRA-TF, which uses a two-fluid, three-field model to represent two-phase flow with entrained droplets, and is commonly applied to evaluate LWR safety margins. The coupled codes system TORT-TD/CTF, already applied to several PWR cases involving MOX, was adapted from PWR to BWR applications. The purpose of the research described in this paper is to verify the coupling for modeling two-phase flow at the pin cell level. Using an ATRIUM-10 assembly, the system's steady-state capabilities were tested on two cases: one without control blade insertion and another with partially inserted blades. The influence of the neutron absorber on local axial and radial parameters is presented. The description of an inlet flow reduction transient is an example for the time-dependent capability of the coupled system. (authors)

  20. Quantitative determination of smoke and toxic product potential of materials with the AMINCO (registered) NBS smoke density chamber

    NASA Technical Reports Server (NTRS)

    Greenberg, S.

    1975-01-01

    Quantitative measurements of smoke obscuration produced by standard area samples under high energy pyrolysis both with and without an ignition source, using a collimated vertical light beam in conjunction with an ultra-linear photomultiplier microphotometer are obtainable with the smoke density chamber. Results are expressed in dimensionless specific optical density permitting usage calculations in accordance with a geometric relationship.

  1. A material-sparing method for simultaneous determination of true density and powder compaction properties--aspartame as an example.

    PubMed

    Sun, Changquan Calvin

    2006-12-01

    True density results for a batch of commercial aspartame are highly variable when helium pycnometry is used. Alternatively, the true density of the problematic aspartame lot was obtained by fitting tablet density versus pressure data. The fitted true density was in excellent agreement with that predicted from single crystal structure. Tablet porosity was calculated from the true density and tablet apparent density. After making the necessary measurements for calculating tablet apparent density, the breaking force of each intact tablet was measured and tensile strength was calculated. With the knowledge of compaction pressure, tablet porosity and tensile strength, powder compaction properties were characterized using tabletability (tensile strength versus pressure), compactibility (tensile strength versus porosity), compressibility (porosity versus pressure) and Heckel analysis. Thus, a wealth of additional information on the compaction properties of the powder was obtained through little added work. A total of approximately 4 g of powder was used in this study. Depending on the size of tablet tooling, tablet thickness and true density, 2-10 g of powder would be sufficient for characterizing most pharmaceutical powders. PMID:16926076

  2. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  3. Testing of SRS and RFETS Nylon Bag Material

    SciTech Connect

    Laurinat, J.E.

    1998-11-03

    This report compares the effects of radiation and heating on nylon bagout materials used at the Savannah River Site (SRS) and the Rocky Flats Environmental Technology Site (RFETS). Recently, to simplify the processing of sand, slag, and crucible (SS and C), FB-Line has replaced the low-density polyethylene (LDPE) and polyvinyl chloride (PVC) bags normally used to package cans of plutonium-bearing material with nylon bags. LDPE and PVC are not soluble in the nitric acid dissolver solution used in F-Canyon, so cans bagged using these materials had to be repackaged before they were added to the dissolver. Because nylon dissolves in nitric acid, cans bagged in nylon can be charged to the F-Canyon dissolvers without repackaging, thereby reducing handling requirements and personnel exposure. As part of a program to process RFETS SS and C at SRS, RFETS has also begun to use a nylon bagout material. The RFETS bag materials is made from a copolymer of nylon 6 and nylon 6.9, while the SRS material is made from a nylon 6 monomer. In addition, the SRS nylon has an anti-static agent added. The RFETS nylon is slightly softer than the SRS nylon, but does not appear to be as resistant to flex cracks initiated by contact with sharp corners of the inner can containing the SS and C.2 FB-Line Operations has asked for measurement of the effects of radiation and heating on these materials. Specifically, they have requested a comparison of the material properties of the plastics before and after irradiation, a measurement of the amount of outgassing when the plastics are heated, and a calculation of the amount of radiolytic gas generation. Testing was performed on samples taken from material that is currently used in FB-Line (color coded orange) and at RFETS. The requested tests are the same tests previously performed on the original and replacement nylon and LDPE bag materials.3,4,5. To evaluate the effect of irradiation on material properties, tensile stresses and elongations to break

  4. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    NASA Astrophysics Data System (ADS)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  5. Emergent molecular theory of initiation of detonation: the effect of molecular and crystal structure on thermal stability of high density energy materials

    NASA Astrophysics Data System (ADS)

    Kukla, Maija; Tsyshevsky, Roman; Sharia, Onise

    The sensitivity to detonation initiation of high density energy materials along with their performance are two most important criteria for choosing the best material for explosive formulations, booster engines, detonators, etc. After numerous experimental and theoretical attempts to develop a single parameter describing sensitivity of different classes of energetic materials, one concludes that the complexity of physical and chemical explosive properties cannot be trivialized. We report here the results of our theoretical and computational studies of thermal decomposition mechanisms and kinetics of five classes of EM: pentaerythritol tetranitrate (PETN), nitramine cyclotetramethylene-tetranitramine (HMX), diamino-dinitroethene (DADNE), bis-(nitrofurazano)-furoxane (BNFF) and benchmark triamino-trinitrobenzene (TATB). Our modeling reveals how the thermal stability depends on the molecular structure of the material and how the crystal structure may additionally hinder or catalyze decomposition reactions. We will also discuss an effect of crystalline defects on sensitivity and performance of materials.

  6. Effect of Phonotactic Probability and Neighborhood Density on Word-Learning Configuration by Preschoolers with Typical Development and Specific Language Impairment

    ERIC Educational Resources Information Center

    Gray, Shelley; Pittman, Andrea; Weinhold, Juliet

    2014-01-01

    Purpose: In this study, the authors assessed the effects of phonotactic probability and neighborhood density on word-learning configuration by preschoolers with specific language impairment (SLI) and typical language development (TD). Method: One hundred thirty-one children participated: 48 with SLI, 44 with TD matched on age and gender, and 39…

  7. Stopped-Flow Enantioselective HPLC-CD Analysis and TD-DFT Stereochemical Characterization of Methyl Trans-3-(3,4-Dimethoxyphenyl)Glycidate.

    PubMed

    Tedesco, Daniele; Fabini, Edoardo; Barbakadze, Vakhtang; Merlani, Maia; Zanasi, Riccardo; Chankvetadze, Bezhan; Bertucci, Carlo

    2015-12-01

    Caffeic acid-derived polyethers are a class of natural products isolated from the root extracts of comfrey and bugloss, which are endowed with intriguing pharmacological properties as anticancer agents. The synthesis of new polyether derivatives is achieved through ring-opening polymerization of chiral 2,3-disubstituted oxiranes, whose absolute configurations define the overall stereochemistry of the produced polymer. The absolute stereochemistry of one of these building blocks, methyl trans-3-(3,4-dimethoxy-phenyl)glycidate (3), was therefore characterized by the combination of enantioselective high-performance liquid chromatography (HPLC), electronic circular dichroism (ECD) spectroscopy, and time-dependent density functional theory (TD-DFT) calculations. Initial efforts aiming at the isolation of enantiomers by means of a standard preparative HPLC protocol followed by offline ECD analysis failed due to unexpected degradation of the samples after collection. The stopped-flow HPLC-CD approach, by which the ECD spectra of enantiomers are measured online with the HPLC system, was applied to overcome this issue and allowed a fast, reliable, and chemical-saving analysis, while avoiding the risks of sample degradation during the collection and processing of enantiomeric fractions. Subsequent TD-DFT calculations identified ( as the first eluted enantiomeric fraction on the Lux Cellulose-2 column, therefore achieving a full stereochemical characterization of the chiral oxirane under investigation. PMID:26448200

  8. DFT and TD-DFT study on geometries, electronic structures and electronic absorption of some metal free dye sensitizers for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohr, T.; Aroulmoji, V.; Ravindran, R. Samson; Müller, M.; Ranjitha, S.; Rajarajan, G.; Anbarasan, P. M.

    2015-01-01

    The geometries, electronic structures, polarizabilities and hyperpolarizabilities of 2-hydroxynaphthalene-1,4-dione (henna1), 3-(5-((1E)-2-(1,4-dihydro-1,4-dioxonaphthalen-3-yloxy) vinyl) thiophen-2-yl)-2-isocyanoacrylic acid (henna2) and anthocyanin dye sensitizers were studied based on density functional theory (DFT) using the hybrid functional B3LYP. The Ultraviolet-Visible (UV-Vis) spectrum was investigated by using a hybrid method which combines the properties and dynamics of many-body in the presence of time-dependent (TD) potentials, i.e. TDSCF-DFT (B3LYP). Features of the electronic absorption spectrum in the visible and near-UV regions were plotted and assigned based on TD-DFT calculations. Due to the absorption, bands of the metal-organic compound are n → π* present. The calculated results suggest that the three lowest energy excited states of the investigated dye sensitizers are due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer is owing to an electron injection process from excited dye to the semiconductor's conduction band. The role of linking the henna1 dye with a carboxylic acid via a thiophene bridge was analyzed. The results are that using a stronger π-conjugate bridge as well as a strong donator and acceptor group enhances the efficiency.

  9. Conformational flexibility and absolute stereochemistry of (3R)-3-hydroxy-4-aryl-β-lactams investigated by chiroptical properties and TD-DFT calculations.

    PubMed

    Tedesco, Daniele; Zanasi, Riccardo; Guerrini, Andrea; Bertucci, Carlo

    2012-09-01

    The effect of conformational flexibility on the chiroptical properties of a series of synthetic (3R)-3-hydroxy-4-aryl-β-lactams of known stereochemistry (1-6) was investigated by means of electronic circular dichroism (ECD) measurements and time-dependent density functional theory (TD-DFT) calculations. The application of the β-lactam sector rules allowed a correct stereochemical characterization of these compounds, with the exception of a thienyl-substituted derivative (cis-). TD-DFT calculations yielded accurate predictions of experimental ECD spectra and [α](D) values, allowing us to assign the correct absolute configuration to all the investigated compounds. A detailed analysis of the β-lactam ring equilibrium geometry on optimized conformers identified regular patterns for the arrangement of atoms around the amide chromophore, confirming the validity of the β-lactam sector rules. However, relevant variations in theoretical chiroptical properties were found for compounds bearing a heterocyclic substituent at C4 or a phenyl substituent at C3, whose conformers deviate from these regular geometric patterns. This behavior explains the failure of the β-lactam sector rules in cis-. This study showed the importance of conformational flexibility for the determination of chiroptical properties and highlighted the strengths and weaknesses of the different methods for the stereochemical characterization of chiral molecules in solution. PMID:22544665

  10. Effect of tetanus-diphtheria (Td) vaccine on immune response to hepatitis B vaccine in healthy individuals with insufficient immune response

    PubMed Central

    Salehi, Maryam; Haghighat, Abbas; Salehi, Hassan; Taleban, Roya; Salehi, Marzieh; Kalbasi, Nader; Moafi, Mohammad; Salehi, Mohammad Mahdi

    2015-01-01

    Background: Hepatitis B virus (HBV) fails to produce appropriate immune responses in some healthy individuals; thus, different strategies have been adopted to promote immune responses. The current study aimed at evaluating the efficacy of HBV vaccine coadministered with tetanus-diphtheria (Td) vaccine compared with HBV vaccine in healthy individuals through measuring hepatitis B surface antibody (HBsAb) levels. Materials and Methods: This was a randomized controlled clinical trial, which was implemented in Isfahan, Isfahan Province (Iran) in 2013. One hundred and forty healthy individuals, whose HBsAb titers were less than 10 IU/L were recruited. The subjects were randomly assigned to either in intervention or control trials. The control group received 40 μg of recombinant HBV vaccines intramuscularly injected at 0, 1, and 6 months; however, the intervention group was simultaneously vaccinated by Td with the first dose of HBV vaccine. HBV antibody levels (titer) were measured before the vaccination and 6 months after the last vaccination. Results: Antibody titers of the subjects in the intervention and control groups increased from 5.07 ± 2.9 IU/L to 744.45 ± 353.07 IU/L and from 4.45 ± 3.4 IU/L to 589.94 ± 353 IU/L, respectively (both P < 0.001). Also, the mean difference of antibody titer was significantly different between the two groups (P = 0.011). Conclusion: Td vaccination can be applied as a feasible approach to promote efficient and persistent immunity in healthy individuals with insufficient HBsAb titers. PMID:26929760

  11. Density variations and anomalies in palladium compacts

    SciTech Connect

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  12. Density variations and anomalies in palladium compacts

    SciTech Connect

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  13. Users manual and modeling improvements for axial turbine design and performance computer code TD2-2

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.

  14. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    PubMed

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants. PMID:25703105

  15. Flour Quality and Related Molecular Characterization of High Molecular Weight Glutenin Subunit Genes from Wild Emmer Wheat Accession TD-256.

    PubMed

    Zhang, Da-Le; He, Ting-Ting; Liang, Hui-Hui; Huang, Lu-Yu; Su, Ya-Zhong; Li, Yu-Ge; Li, Suo-Ping

    2016-06-22

    To clarify the effect of high molecular weight glutenin subunit (HMW-GS) from wild emmer wheat on flour quality, which has the same mobility as that from common wheat, the composition and molecular characterization of HMW-GS from wild emmer wheat accession TD-256, as well as its flour quality, were intensively analyzed. It is found that the mobilities of Glu-A1 and Glu-B1 subunits from TD-256 are consistent with those of bread wheat cv. 'XiaoYan 6'. Nevertheless, dough rheological properties of TD-256 reveal its poor flour quality. In the aspect of molecular structure from HMW-GS, only two conserved cysteine residues can be observed in the deduced protein sequence of 1Bx14* from TD-256, while most Glu-1Bx contain four conserved cysteine residues. In addition, as can be predicted from secondary structure, the quantity both of α-helixes and their amino acid residues of the subunits from TD-256 is fewer than those of common wheat. Though low molecular weight glutenin subunit (LMW-GS) and gliadin can also greatly influence flour quality, the protein structure of the HMW-GS revealed in this work can partly explain the poor flour quality of wild emmer accession TD-256. PMID:27243935

  16. Multi-configuration time-dependent density-functional theory based on range separation.

    PubMed

    Fromager, Emmanuel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2013-02-28

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration-Self-Consistent Field (MCSCF) treatment with an adiabatic short-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H2, Be, and ferrocene, considering both short-range local density (srLDA) and generalized gradient (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)], the description of both the 1(1)D doubly-excited state in Be and the 1(1)Σu(+) state in the stretched H2 molecule are improved, although the latter is still significantly underestimated. Exploratory TD-MC-srDFT/GGA calculations for ferrocene yield in general excitation energies at least as good as TD-DFT using the Coulomb attenuated method based on the three-parameter Becke-Lee-Yang-Parr functional (TD-DFT/CAM-B3LYP), and superior to wave-function (TD-MCSCF, symmetry adapted cluster-configuration interaction) and TD-DFT results based on LDA, GGA, and hybrid functionals. PMID:23464134

  17. Phase stability of transition metal dichalcogenide by competing ligand field stabilization and charge density wave

    NASA Astrophysics Data System (ADS)

    C, Santosh K.; Zhang, Chenxi; Hong, Suklyun; Wallace, Robert M.; Cho, Kyeongjae

    2015-09-01

    Transition metal dichalcogenides (TMDs) have been investigated extensively for potential application as device materials in recent years. TMDs are found to be stable in trigonal prismatic (H), octahedral (T), or distorted octahedral (Td) coordination of the transition metal. However, the detailed understanding of stabilities of TMDs in a particular phase is lacking. In this work, the detailed TMD phase stability using first-principles calculations based on density functional theory (DFT) has been investigated to clarify the mechanism of phase stabilities of TMDs, consistent with the experimental observation. Our results indicate that the phase stability of TMDs can be explained considering the relative strength of two competing mechanisms: ligand field stabilization of d-orbitals corresponding to transition metal coordination geometry, and charge density wave (CDW) instability accompanied by a periodic lattice distortion (PLD) causing the phase transition in particular TMDs.

  18. Elucidation of the new generation fluorescent protein tdTomato for space related radiobiological research

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther

    Astronauts in space are exposed to a potentially harmful radiation field, which does not exist in its quality and quantity on earth. Radiation exposure in space can lead to delayed or acute health effects. A successful long-term space mission requires better risk estimation and development of appropriate countermeasures, therefore study of the cellular radiation response is necessary. Ionizing radiation can provoke active cellular responses (cell cycle arrest, DNA repair, apoptosis or other forms of cell type). Exposure to ionizing radiation also activates various signaling pathways in human cells. In the cellular radiation-response, two pivotal signal transduction pathways have to be comprehensively studied i.e. the p53-pathway and NF-κB-pathway. Discovery of fluorescent proteins has revolutionized biological research by making it possible to carry out functional studies in living cells and understanding complex signaling pathways. Previously the green fluorescent proteins EGFP and d2EGFP were used for signaling pathway studies. In this work the new red fluorescent protein tdTomato will be used for comprehensive investigation of NF-κB and other transcription factor activation after exposure of human cells to ionizing radiation (X-rays, heavy ions; space conditions). tdTomato has many advantages over EGFP because of its high fluorescence signals and a better signal/noise ratio in human cells. The previously constructed reporter system with d2EGFP was used to evaluate NF-kB activation after exposure to heavy ion particles of different biological effectiveness. The sensitivity threshold of this system was determined to be 2 particle traversals per cell nucleus. In the current study a more sensitive reporter assay will be constructed using a GAL4-VP16 turbo system that comprises a receptor plasmid and a reporter plasmid. This reporter assay will be designed and constructed with tdTomato and evaluation will be done with different molecular techniques.

  19. The TD6 (Aurora Stratum) hominid site. Final remarks and new questions.

    PubMed

    Bermúdez de Castro, J M; Carbonell, E; Cáceres, I; Díez, J C; Fernández-Jalvo, Y; Mosquera, M; Ollé, A; Rodríguez, J; Rodríguez, X P; Rosas, A; Rosell, J; Sala, R; Vergés, J M; van der Made, J

    1999-01-01

    The study of the faunal and lithic assemblage (including almost a hundred human fossil remains) recovered from the Aurora stratum-TD6 level of the Lower Pleistocene cave site of Gran Dolina (Sierra de Atapuerca, Spain) has allowed us to answer some important questions concerning the debate about the earliest evidence for human occupation of Europe. However, it has also started new discussions about some geographical, ecological, and economic aspects of this earliest occupation. The nature (definitive or ephemeral) of the first occupation, as well as the model for the arrival of the Acheulean (Mode 2) in Europe are also issues for discussion. PMID:10497004

  20. 150t/d PP project of NEDOL process and design of reactor, catalyst facilities

    SciTech Connect

    Miyamori, Hideharu; Kobayashi, Masatoshi

    1995-12-31

    The development of coal liquefaction technology in Japan is being undertaken as one of the New Sunshine Program of Ministry of International Trade and Industry (MITI). Nippon Coal Oil Co., Ltd. (NCOL) has been commissioned by NEDO (New Energy and Industrial Technology Development Organization, which is playing a central role in this program) to design, construct and conduct operation researches on the 150t/d bituminous coal liquefaction pilot plant of NEDOL process. The pilot plant design and some technical topics such as design of reactor and liquefaction catalyst are presented in this report.

  1. Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application

    NASA Astrophysics Data System (ADS)

    Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Zhu, Min; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin

    2012-10-01

    Carbon-doped Ge2Sb2Te5 material is proposed for high-density phase-change memories. The carbon doping effects on electrical and structural properties of Ge2Sb2Te5 are studied by in situ resistance and x-ray diffraction measurements as well as optical spectroscopy. C atoms are found to significantly enhance the thermal stability of amorphous Ge2Sb2Te5 by increasing the degree of disorder of the amorphous phase. The reversible electrical switching capability of the phase-change memory cells is improved in terms of power consumption with carbon addition. The endurance of ˜2.1 × 104 cycles suggests that C-doped Ge2Sb2Te5 film will be a potential phase-change material for high-density storage application.

  2. A Quantitative Study on Packing Density and Pozzolanic Activity of Cementitious Materials Based on the Compaction Packing Model

    NASA Astrophysics Data System (ADS)

    Gong, Jianqing; Chou, Kai; Huang, Zheng Yu; Zhao, Minghua

    2014-08-01

    A brief introduction to the theoretical basis of compaction packing model (CPM) and an over-view of the principle of the specific strength method provided the starting point of this study. Then, research on quantitative relations was carried out to find the correlation between the contribution rate of the pozzolanic activity and the contribution value of packing density when CPM was applied to fine powder mixture systems. The concept of the contribution value of the packing density being in direct correspondence with the contribution rate was proved by the compressive strength results and SEM images. The results indicated that the variation rule of the contribution rate of the pozzolanic activity is similar to that of the contribution value of packing density as calculated by CPM. This means the contribution value of the packing density could approximately simulate the change tendency of the contribution rate of the pozzolanic activity, which is of significant value for the future of mix designs for high and ultra-high performance concrete.

  3. Synthesis, characterization and electrochemical performance of high-density aluminum substituted α-nickel hydroxide cathode material for nickel-based rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Li, Jing; Shangguan, Enbo; Guo, Dan; Tian, Meng; Wang, Yanbin; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang

    2014-12-01

    Positive electrode active materials, Al-substituted α-Ni(OH)2, with a high tap-density and high performance for alkaline nickel-based rechargeable batteries have successfully been synthesized using a polyacrylamide (PAM) assisted two-step drying method and subsequent hydrothermal treatment at 140 °C for 2 h. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), laser particle size analysis, tap-density measurement, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge test are used to characterize the physical and electrochemical properties of the synthesized material. The tap-density of the resulting powders reaches 1.84 g cm-3, which is significantly higher than that of α-Ni(OH)2 powders obtained by the conventional co-precipitation (CCP) and hydrothermal (HT) methods. Compared with commercial spherical β-Ni(OH)2, the resulting sample is electrochemically more active, providing discharge capacities of 315.0 and 255.2 mAh g-1, and volume capacities of 579.6 and 469.6 mAh cm-3 at rates of 0.2 C and 5 C, respectively. It is also found that although the hydrothermal treatment has a slight negative effect on the tap-density, it can improve the crystallinity of α-Ni(OH)2 and promote the anion exchange of NO3- by OH-, resulting in a much better electrochemical performance.

  4. Theoretical and numerical assessments of spin-flip time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Li, Zhendong; Liu, Wenjian

    2012-01-01

    Spin-flip time-dependent density functional theory (SF-TD-DFT) with the full noncollinear hybrid exchange-correlation kernel and its approximate variants are critically assessed, both formally and numerically. As demonstrated by the ethylene torsion and the C2v ring-opening of oxirane, SF-TD-DFT is very useful for describing nearly degenerate situations. However, it may occasionally yield unphysical results. This stems from the noncollinear form of the generalized gradient approximation, which becomes numerically instable in the presence of spin-flip excitations from the closed- to vacant-shell orbitals of an open-shell reference. To cure this defect, a simple modification, dubbed as ALDA0, is proposed in the spirit of adiabatic local density approximation (ALDA). It is applicable to all kinds of density functionals and yields stable results without too much loss of accuracy. In particular, the combination of ALDA0 with the Tamm-Dancoff approximation is a promising tool for studying global potential energy surfaces. In addition to the kernel problem, SF-TD-DFT is also rather sensitive to the choice of reference states, as demonstrated by the spin multiplet states of closed-shell molecules of H2O, CH2O, and C2H4. Surprisingly, SF-TD-DFT with pure density functionals may also fail for valance excitations with large orbital overlaps, at variance with the spin-conserving counterpart (SC-TD-DFT). In this case, the inclusion of a large amount of Hartree-Fock exchange is mandatory for quantitative results. Nonetheless, for spatially degenerate cases such as CF, CH, and NH+, SF-TD-DFT is more advantageous than SC-TD-DFT, unless the latter is also space adapted. These findings are very instructive for future development and applications of TD-DFT.

  5. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors.

    PubMed

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M P

    2013-01-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg⁻¹ and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li₄Ti₅O₁₂ anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors. PMID:24141527

  6. The Role of Charge Density and Hydrophobicity on the Biocidal Properties of Self-Protonable Polymeric Materials.

    PubMed

    Matrella, Simona; Vitiello, Carmela; Mella, Massimo; Vigliotta, Giovanni; Izzo, Lorella

    2015-07-01

    Intrinsic antimicrobial thermoplastic A(BC)n copolymers (n = 1, 2, 4), where A was poly(ethylene glycol) (PEG), BC was a random chain of methylmethacrylate (MMA), and alkyl-aminoethyl methacrylate (AAEMA), were synthesized and the antimicrobial activity and hemolyticity were evaluated on plaques obtained by casting as a function of the architecture, the N-substituent groups of the AAEMAs (methyl, ethyl, isopropyl, and tert-butyl groups) and the hydrophobic/charge density balance. Antimicrobial effectiveness and efficiency is controlled by the surface charge density and by the influence of N-alkyl groups on the surface morphology. Also interestingly, it is the absence of hemolitytic activity in all copolymers. In presence of Escherichia coli, the A(BC)2 copolymer with 40% of N-methyl groups is the most efficient, killing 91% of the bacteria already after 1.5 h. PMID:25781420

  7. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    PubMed Central

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-01-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg−1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors. PMID:24141527

  8. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    NASA Astrophysics Data System (ADS)

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-10-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg-1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors.

  9. Early Pleistocene human humeri from the Gran Dolina-TD6 site (Sierra de Atapuerca, Spain).

    PubMed

    Bermúdez de Castro, José María; Carretero, José Miguel; García-González, Rebeca; Rodríguez-García, Laura; Martinón-Torres, María; Rosell, Jordi; Blasco, Ruth; Martín-Francés, Laura; Modesto, Mario; Carbonell, Eudald

    2012-04-01

    In this report, we present a morphometric comparative study of two Early Pleistocene humeri recovered from the TD6 level of the Gran Dolina cave site in Sierra de Atapuerca, northern Spain. ATD6-121 belongs to a child between 4 and 6 years old, whereas ATD6-148 corresponds to an adult. ATD6-148 exhibits the typical pattern of the genus Homo, but it also shows a large olecranon fossa and very thin medial and lateral pillars (also present in ATD6-121), sharing these features with European Middle Pleistocene hominins, Neandertals, and the Bodo Middle Pleistocene humerus. The morphology of the distal epiphysis, together with a few dental traits, suggests a phylogenetic relationship between the TD6 hominins and the Neandertal lineage. Given the older geochronological age of these hominins (ca. 900 ka), which is far from the age estimated by palaeogenetic studies for the population divergence of modern humans and Neandertals (ca. 400 ka), we suggest that this suite of derived "Neandertal" features appeared early in the evolution of the genus Homo. Thus, these features are not "Neandertal" apomorphies but traits which appeared in an ancestral and polymorphic population during the Early Pleistocene. PMID:22328492

  10. TD-GC-MS Investigation of the VOCs Released from Blood Plasma of Dogs with Cancer

    PubMed Central

    Selyanchyn, Roman; Nozoe, Takuma; Matsui, Hidetaka; Kadosawa, Tsuyoshi; Lee, Seung-Woo

    2013-01-01

    An analytical TD-GC-MS method was developed and used for the assessment of volatile organic compounds (VOCs) released from the blood plasma of dogs with/without cancer. VOCs released from 40 samples of diseased blood and 10 control samples were compared in order to examine the difference between both sample groups that were showing qualitatively similar results independent from the disease’s presence. However, mild disturbances in the spectra of dogs with cancer in comparison with the control group were observed, and six peaks (tentatively identified by comparison with mass spectral library as hexanal, octanal, toluene, 2-butanone, 1-octen-3-ol and pyrrole) revealed statistically significant differences between both sample groups, thereby suggesting that these compounds are potential biomarkers that can be used for cancer diagnosis based on the blood plasma TD-GC-MS analysis. Statistical comparison with the application of principal component analysis (PCA) provided accurate discrimination between the cancer and control groups, thus demonstrating stronger biochemical perturbations in blood plasma when cancer is present. PMID:26835668

  11. High power densities from high-temperature materials interactions. [thermionic energy conversion and metallic fluid heat pipes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1981-01-01

    Thermionic energy converters and metallic-fluid heat pipes are well suited to serve together synergistically. The two operating cycles appear as simple and isolated as their material problems seem forebodingly deceptive and complicated. Simplified equations verify material properties and interactions as primary influences on the operational effectiveness of both. Each experiences flow limitations in thermal emission and vaporization because of temperature restrictions redounding from thermophysicochemical stability considerations. Topics discussed include: (1) successful limitation of alkali-metal corrosion; (2) protection against external hot corrosive gases; (3) coping with external and internal vaporization; (4) controlling interfacial reactions and diffusion; and (5) meeting other thermophysical challenges; expansion matches and creep.

  12. An analysis of the impact of native oxide, surface contamination and material density on total electron yield in the absence of surface charging effects

    NASA Astrophysics Data System (ADS)

    Iida, Susumu; Ohya, Kaoru; Hirano, Ryoichi; Watanabe, Hidehiro

    2016-10-01

    The effects of the presence of a native oxide film or surface contamination as well as variations in material density on the total electron yield (TEY) of Ru and B4C were assessed in the absence of any surface charging effect. The experimental results were analyzed using semi-empirical Monte Carlo simulations and demonstrated that a native oxide film increased the TEY, and that this effect varied with film thickness. These phenomena were explained based on the effect of the backscattered electrons (BSEs) at the interface between Ru and RuO2, as well as the lower potential barrier of RuO2. Deviations in the material density from the theoretical values were attributed to the film deposition procedure based on fitting simulated TEY curves to experimental results. In the case of B4C, the TEY was enhanced by the presence of a 0.8-nm-thick surface contamination film consisting of oxygenated hydrocarbons. The effect of the low potential barrier of the contamination film was found to be significant, as the density of the B4C was much lower than that of the Ru. Comparing the simulation parameters generated in the present work with Joy's database, it was found that the model and the input parameters used in the simulations were sufficiently accurate.

  13. Creation and clustering of Frenkel defects at high density of electronic excitations in wide-gap materials

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Schwartz, K.; Savikhin, F.; Shablonin, E.; Shugai, A.; Vasil'chenko, E.

    2012-04-01

    A complex nature of the dependence of the intensity of intrinsic or impurity emission on the excitation density by single electron pulses is determined by the existence or absence of self-trapped holes and/or excitons in ZnS, BaF2, MgO, BeO and Al2O3. A powerful electron (300 keV) or ion (Au, U, ∼2 GeV) irradiation of pure and doped LiF, MgO and Al2O3 crystals induces the optical absorption, certain high-temperature annealing stages of which appear only under high LET conditions. Swift-ion-irradiation causes drastic changes in the spectrum of fundamental reflection of LiF, especially in the region of the exciton resonance. The irradiation providing high density of electronic excitations (LET > 20 keV/nm) leads not only to the creation of stable Frenkel defects but also to the excitation of a whole group of crystal ions, thus, causing the creation of bivacancies, lithium and fluorine interstitials as well as their associations/clusters.

  14. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    NASA Astrophysics Data System (ADS)

    Shay, Dennis P.

    The maximum electrostatic energy density of a capacitor is a function of the relative permittivity (epsilonr) and the square of the dielectric breakdown strength (Eb). Currently, state-of-the art high temperature (>200 °C), SiC-based power electronics utilize CaZrO3-rich NP0/C0G-type capacitors, which have low relative permittivities of epsilonr ˜ 30-40, high breakdown strengths (> 1.0 MV/cm), and are chosen for their minimal change in energy storage with temperature. However, with operating temperatures exceeding the rated temperatures for such capacitors, there is an opportunity to develop new dielectric ceramics having higher energy densities and volumetric efficiencies at high temperatures (>200 °C) by utilizing higher permittivity dielectrics while maintaining high breakdown strengths via doping. The solid solution behavior of was characterized in order to determine the optimal composition for balancing permittivity and dielectric breakdown strength to obtain high energy densities at elevated temperatures. Characterization by X-ray diffraction (XRD) showed Vegard's law behavior across the solid solution with minimal 2nd phases. To determine a Ca(TixZr1-x)O3 composition that will also minimize electronic or band conduction, the optical properties of the Ca(TixZr1-x)O3 solid solution were investigated to identify a composition on the CaTiO3 - rich end of the solid solution with a large band gap. Both ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis) and spectroscopic ellipsometry were utilized to determine the Ca(TixZr1-x)O3 band gaps and optical properties. The resistivity at 250 °C scaled with the band gap energy across the solid solution. Comparing the current-voltage (I--V) behavior at 250 °C for Ca(Tix-yMnyZr0.2)O3 (CTZ + Mn) where x = 0.7, 0.8, 0.9, and y = 0.005, it was found that the Ca(Ti 0.795Mn0.005Zr0.2)O3 composition showed the lowest current density and a decrease in current density of 5 orders of magnitude compared to the un

  15. Determination of VOSCs in sewer headspace air using TD-GC-SCD.

    PubMed

    Wang, Bei; Sivret, Eric C; Parcsi, Gavin; Stuetz, Richard M

    2015-05-01

    The management of odorous emissions from sewer networks has become an important issue for sewer operators resulting in the need to better understand the composition of volatile organic sulfur compounds (VOSCs). In order to characterise the composition of such malodorous emissions, a method based on thermal desorption (TD) and gas chromatography coupled to sulfur chemiluminescence detector (GC-SCD) has been developed to determine a broader range of VOSCs, hydrogen sulfide (H2S), methanethiol (MeSH), ethanethiol (EtSH), dimethyl sulfide (DMS), carbon disulfide (CS2), ethylmethyl sulfide (EMS), 1-butanethiol (1-BuSH), dimethyl disulfide (DMDS), diethyl disulfide (DEDS), and dimethyl trisulfide (DMTS). Parameters affecting the chromatographic behaviour of the target compounds were studied (e.g., temperature program, carrier gas velocity) as well as the experimental conditions affecting the adsorption/desorption process (temperature, flow and time). Optimised extraction of VOSCs samples was achieved under adsorption temperatures of less than -20°C, and a desorption flow rate of ~6 ml/min. Active collection on the cold trap enabled a small gas volume of 50-100ml to be sampled for all analytes without breakthrough. Calibration curves were derived at different TD loading volumes with determined linearity ranging between 0.09 ng and 60.1 ng. The method detection limits (MDLs) were in the range of 0.10-5.26 μg/m(3) with TD recoveries higher than 66% and reproducibility (relative standard deviation values) between 1.8% and 6.1% being obtained for all compounds. The VOSCs characterisation at different sewerage collection sites in Sydney, Australia (for seasonal, weekly and diurnal) showed that six of the ten targeted compounds were consistently detected at all sample events. Diurnal patterns of VOSCs investigated were clearly observed with the highest concentration occurring after 12 pm (noon) for H2S and MeSH. The consecutive 5 day analysis showed no significant difference

  16. Dynamic impact response of high-density square honeycombs made of TRIP steel and TRIP matrix composite material

    NASA Astrophysics Data System (ADS)

    Ehinger, D.; Krüger, L.; Krause, S.; Martin, U.; Weigelt, C.; Aneziris, C. G.

    2012-08-01

    Two designs of square-celled metallic honeycomb structures fabricated by a modified extrusion technology based on a powder feedstock were investigated. The strength and ductility of these cellular materials are achieved by an austenitic CrNi (AISI 304) steel matrix particle reinforced by an MgO partially-stabilized zirconia building up their cell wall microstructure. Similar to the mechanical behaviour of the bulk materials, the strengthening mechanism and the martensitic phase transformations in the cell walls are affected by the deformation temperature and the nominal strain rate. The microstructure evolution during quasi-static and dynamic impact compression up to high strain rates of 103 1/s influences the buckling and failure behaviour of the honeycomb structures. In contrast to bending-dominated quasi-isotropic networks like open-celled metal foams, axial compressive loading to the honeycomb's channels causes membrane stretching as well as crushing of the vertical cell node elements and cell walls. The presented honeycomb materials differ geometrically in their cell wall thickness-to-cell size-ratio. Therefore, the failure behaviour is predominantly controlled by global buckling and torsional-flexural buckling, respectively, accompanied by plastic matrix flow and strengthening of the cell wall microstructure.

  17. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation.

    PubMed

    Zhang, Rui; Newhauser, Wayne D

    2009-03-21

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material. PMID:19218739

  18. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    PubMed Central

    Zhang, Rui; Newhauser, Wayne D

    2014-01-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg–Kleeman rule (BK), the Bethe–Bloch equation (BB) or an empirical version of the Bethe–Bloch equation (EBB). Alternative approaches were developed for targets that were ‘radiologically thin’ or ‘thick’. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material. PMID:19218739

  19. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Newhauser, Wayne D.

    2009-03-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.

  20. An improved model to estimate trapping parameters in polymeric materials and its application on normal and aged low-density polyethylenes

    NASA Astrophysics Data System (ADS)

    Liu, Ning; He, Miao; Alghamdi, Hisham; Chen, George; Fu, Mingli; Li, Ruihai; Hou, Shuai

    2015-08-01

    Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomes much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing.

  1. An improved model to estimate trapping parameters in polymeric materials and its application on normal and aged low-density polyethylenes

    SciTech Connect

    Liu, Ning He, Miao; Alghamdi, Hisham; Chen, George; Fu, Mingli; Li, Ruihai; Hou, Shuai

    2015-08-14

    Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomes much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing.

  2. Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density.

    PubMed

    Zhu, Liang; Liu, Yu; Su, Chao; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-08-01

    We have synthesized and characterized perovskite-type SrCo0.9 Nb0.1 O3-δ (SCN) as a novel anion-intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm(-3) (and gravimetric capacitance of ca. 773.6 F g(-1) ) at a current density of 0.5 A g(-1) while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg(-1) with robust long-term stability. PMID:27363300

  3. Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2014-09-01

    Effective atomic numbers, Zeff, and electron densities, neff, are convenient parameters used to characterise the radiation response of a multi-element material in many technical and medical applications. Accurate values of these physical parameters provide essential data in medical physics. In the present study, the effective atomic numbers and electron densities have been calculated for some human tissues and dosimetric materials such as Adipose Tissue (ICRU-44), Bone Cortical (ICRU-44), Brain Grey/White Matter (ICRU-44), Breast Tissue (ICRU-44), Lung Tissue (ICRU-44), Soft Tissue (ICRU-44), LiF TLD-100H, TLD-100, Water, Borosilicate Glass, PAG (Gel Dosimeter), Fricke (Gel Dosimeter) and OSL (Aluminium Oxide) using mean photon energies, Em, of various radiation sources. The used radiation sources are Pd-103, Tc-99, Ra-226, I-131, Ir-192, Co-60, 30 kVp, 40 kVp, 50 kVp (Intrabeam, Carl Zeiss Meditec) and 6 MV (Mohan-6 MV) sources. The Em values were then used to calculate Zeff and neff of the tissues and dosimetric materials for various radiation sources. Different calculation methods for Zeff such as the direct method, the interpolation method and Auto-Zeff computer program were used and agreements and disagreements between the used methods have been presented and discussed. It has been observed that at higher Em values agreement is quite satisfactory (Dif.<5%) between the adopted methods.

  4. Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory

    NASA Astrophysics Data System (ADS)

    Shimojo, F.; Ohmura, S.; Nakano, A.; Kalia, R. K.; Vashishta, P.

    2011-05-01

    A linear-scaling algorithm based on a divide-and-conquer (DC) scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations.

  5. Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory

    NASA Astrophysics Data System (ADS)

    Shimojo, F.; Ohmura, S.; Nakano, A.; Kalia, R. K.; Vashishta, P.

    2011-05-01

    A linear-scaling algorithm based on a divide-and-conquer (DC) scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations

  6. Electronic spectroscopy of HRe(CO) 5: a CASSCF/CASPT2 and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Bossert, J.; Ben Amor, N.; Strich, A.; Daniel, C.

    2001-07-01

    The low-lying excited states of HRe(CO) 5 have been calculated at the CASSCF/CASPT2 and TD-DFT level of theory using relativistic effective core potentials (ECP) or ab initio model potentials (AIMP). The theoretical absorption spectrum is compared to the experimental one. Despite the similarity between the experimental absorption spectra of HMn(CO) 5 and HRe(CO) 5 in the UV/visible energy domain it is shown that the assignment differs significantly between the two molecules. The low-lying excited states of HRe(CO) 5 correspond to 5d→π *CO excitations whereas the spectrum of HMn(CO) 5 consists mainly of 3d→3d and 3d→ σ*Mn-H excitations. If the CASPT2 and TD-DFT results are quite comparable for the lowest excited states, the upper part assignment is more problematic with the TD-DFT method.

  7. Pressureless sintering of MoSi{sub 2} materials

    SciTech Connect

    Scholl, R.; Juengling, T.; Kieback, B.

    1995-07-01

    Various powder mixtures were prepared by a modified mechanical alloying technique. Starting from elemental Mo-, Si and C-powders the influence of milling conditions on phase formation during the milling process and the subsequent beat treatment was investigated. Phase formation during sintering and sintering kinetics of activated starting mixtures were studied by differential scanning calorimetry (DSC), thermal graphimetry (TG), X-ray diffraction (XRD) and dilatometry. The results show that phase formation during milling or sintering strongly depends on milling conditions. Optimized powder mixtures of single phase and reinforced molybdenum silicides show high densities up to 98.5% TD by pressureless sintering in various atmospheres. Full density is possible by post-HIP because the samples show only closed porosity. The microstructure was studied in dependence of sintering parameters. The level of impurities, i.e. C, O{sub 2} was determined. Hardness, fracture toughness and bending strength were measured for single phase and particle reinforced materials.

  8. Toward the Standardization of Biochar Analysis: The COST Action TD1107 Interlaboratory Comparison.

    PubMed

    Bachmann, Hans Jörg; Bucheli, Thomas D; Dieguez-Alonso, Alba; Fabbri, Daniele; Knicker, Heike; Schmidt, Hans-Peter; Ulbricht, Axel; Becker, Roland; Buscaroli, Alessandro; Buerge, Diane; Cross, Andrew; Dickinson, Dane; Enders, Akio; Esteves, Valdemar I; Evangelou, Michael W H; Fellet, Guido; Friedrich, Kevin; Gasco Guerrero, Gabriel; Glaser, Bruno; Hanke, Ulrich M; Hanley, Kelly; Hilber, Isabel; Kalderis, Dimitrios; Leifeld, Jens; Masek, Ondrej; Mumme, Jan; Carmona, Marina Paneque; Calvelo Pereira, Roberto; Rees, Frederic; Rombolà, Alessandro G; de la Rosa, José Maria; Sakrabani, Ruben; Sohi, Saran; Soja, Gerhard; Valagussa, Massimo; Verheijen, Frank; Zehetner, Franz

    2016-01-20

    Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future. PMID:26693953

  9. Measurement of B \\to X \\gamma Decays and Determination of |V_{td}/V_{ts}|

    SciTech Connect

    Collaboration, The BABAR; Aubert, B.

    2008-08-05

    Using a sample of 383 million B{bar B} events collected by the BABAR experiment, they measure sums of seven exclusive final states B {yields} X{sub d(s)}{gamma}, where X{sub d}(X{sub s}) is a non-strange (strange) charmless hadronic system in the mass range 0.6-1.8 GeV/c{sup 2}. After correcting for unmeasured decay modes in this mass range, they obtain a branching fraction for b {yields} d{gamma} of (7.2 {+-} 2.7(stat.) {+-} 2.3(syst.)) x 10{sup -6}. Taking the ratio of X{sub d} to X{sub s} they find {Lambda}(b {yields} d{gamma})/{Lambda}(b {yields} s{gamma}) = 0.033 {+-} 0.013(stat.) {+-} 0.009(syst.), from which they determine |V{sub td}/V{sub ts}| = 0.177 {+-} 0.043.

  10. Visualizing Bdellovibrio bacteriovorus by Using the tdTomato Fluorescent Protein.

    PubMed

    Mukherjee, Somdatta; Brothers, Kimberly M; Shanks, Robert M Q; Kadouri, Daniel E

    2016-03-01

    Bdellovibrio bacteriovorus is a Gram-negative bacterium that belongs to the delta subgroup of proteobacteria and is characterized by a predatory life cycle. In recent years, work has highlighted the potential use of this predator to control bacteria and biofilms. Traditionally, the reduction in prey cells was used to monitor predation dynamics. In this study, we introduced pMQ414, a plasmid that expresses the tdTomato fluorescent reporter protein, into a host-independent strain and a host-dependent strain of B. bacteriovorus 109J. The new construct was used to conveniently monitor predator proliferation in real time, in different growth conditions, in the presence of lytic enzymes, and on several prey bacteria, replicating previous studies that used plaque analysis to quantify B. bacteriovorus. The new fluorescent plasmid also enabled us to visualize the predator in liquid cultures, in the context of a biofilm, and in association with human epithelial cells. PMID:26712556

  11. State-of-technology for joining TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.; Gyorgak, C. A.

    1972-01-01

    At the current state-of-technology there are many joining processes that can be used to make sound welds in TD-NiCr sheet. Some of these that are described in this report are electron beam welding, gas-tungsten arc welding, diffusion welding, resistance spot welding, resistance seam welding, and brazing. The strengths of the welds made by the various processes show considerable variation, especially at elevated temperatures. Most of the fusion welding processes tend to give weak welds at elevated temperatures (with the exception of fusion-type resistance spotwelds). However, solid-state welds have been made with parent metal properties. The process used for a specific application will be dictated by the specific joint requirements. In highly stressed joints at elevated temperatures, one of the solid-state processes, such as DFW, RSW (solid-state or fusion), and RSEW, offer the most promise.

  12. 3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D

    SciTech Connect

    Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.

    2012-07-01

    As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)

  13. Research on an estimation method of DOA for wireless location based on TD-SCDMA

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Luo, Yuan; Cheng, Shi-xin

    2004-03-01

    To meet the urgent need of personal communication and hign-speed data services,the standardization and products development for International Mobile Telecommunication-2000 (IMT-2000) have become a hot point in wordwide. The wireless location for mobile terminals has been an important research project. Unlike GPS which is located by 24 artificial satellities, it is based on the base-station of wireless cell network, and the research and development of it are correlative with IMT-2000. While the standard for the third generation mobile telecommunication (3G)-TD-SCDMA, which is proposed by China and the intellective property right of which is possessed by Chinese, is adopted by ITU-T at the first time, the research for wireless location based on TD-SCDMA has theoretic meaning, applied value and marketable foreground. First,the basic principle and method for wireless location, i.e. Direction of Angle(DOA), Time of Arrival(TOA) or Time Difference of Arrival(TDOA), hybridized location(TOA/DOA,TDOA/DOA,TDOA/DOA),etc. is introduced in the paper. So the research of DOA is very important in wireless location. Next, Main estimation methods of DOA for wireless location, i.e. ESPRIT, MUSIC, WSF, Min-norm, etc. are researched in the paper. In the end, the performances of DOA estimation for wireless location based on mobile telecommunication network are analyzed by the research of theory and simulation experiment and the contrast algorithms between and Cramer-Rao Bound. Its research results aren't only propitious to the choice of algorithms for wireless location, but also to the realization of new service of wireless location .

  14. DYNAMICAL SPIN SUSCEPTIBILITY IN THE TD-LDA AND QSGW APPROXIMATIONS

    SciTech Connect

    SCHILFGAARDE, MARK VAN; KOTANI, TAKAO

    2012-10-15

    Abstract. This project was aimed at building the transverse dynamical spin susceptibility with the TD-LDA and the recently-developed Quasparticle Self-Consisent Approximations, which determines an optimum quasiparticle picture in a self-consistent manner within the GW approximation. Our main results were published into two papers, (J. Phys. Cond. Matt. 20, 95214 (2008), and Phys. Rev. B83, 060404(R) (2011). In the first paper we present spin wave dispersions for MnO, NiO, and -MnAs based on quasiparticle self-consistent GW approximation (QSGW). For MnO and NiO, QSGW results are in rather good agreement with experiments, in contrast to the LDA and LDA+U descriptions. For -MnAs, we find a collinear ferromagnetic ground state in QSGW, while this phase is unstable in the LDA. In the second, we apply TD-LDA to the CaFeAs2 the first attempt the first ab initio calculation of dynamical susceptibililty in a system with complex electronic structure Magnetic excitations in the striped phase of CaFe2As2 are studied as a function of local moment amplitude. We find a new kind of excitation: sharp resonances of Stoner-like (itinerant) excitations at energies comparable to the ´eel temperature, originating largely from a narrow band of Fe d states near the Fermi level, and coexisting with more conventional (localized) spin waves. Both kinds of excitations can show multiple branches, highlighting the inadequacy of a description based on a localized spin model.

  15. A luminescence switch-on probe for terminal deoxynucleotidyl transferase (TdT) activity detection by using an iridium(III)-based i-motif probe.

    PubMed

    Lu, Lihua; Wang, Modi; Liu, Li-Juan; Wong, Chun-Yuen; Leung, Chung-Hang; Ma, Dik-Lung

    2015-06-21

    An iridium(III) complex exhibiting higher responce towards i-motif DNA over dsDNA and ssDNA was employed for the construction of a TdT activity detection platform. The assay exhibited a linear signal enhancement for TdT in the concentration range of 0 to 8 U mL(-1), and the limit of detection for TdT was 0.25 U mL(-1). PMID:25999030

  16. In Vitro Activity of TD-1792, a Multivalent Glycopeptide-Cephalosporin Antibiotic, against 377 Strains of Anaerobic Bacteria and 34 Strains of Corynebacterium Species

    PubMed Central

    Citron, Diane M.; Warren, Yumi A.; Goldstein, Ellie J. C.

    2012-01-01

    TD-1792 is a multivalent glycopeptide-cephalosporin heterodimer antibiotic with potent activity against Gram-positive bacteria. We tested TD-1792 against 377 anaerobes and 34 strains of Corynebacterium species. Against nearly all Gram-positive strains, TD-1792 had an MIC90 of 0.25 μg/ml and was typically 3 to 7 dilutions more active than vancomycin and daptomycin. PMID:22290981

  17. A density functional study on properties of a Cu3Zn material and CO adsorption onto its surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Qian-Lin; Duan, Xiao-Xuan; Liu, Bei; Wei, An-Qing; Liu, Sheng-Long; Wang, Qi; Liang, Yan-Ping; Ma, Xiao-Hua

    2016-02-01

    Prior experimental and theoretical efforts have provided strong evidence that the formation of α-brass such as Cu3Zn alloys in Cu/ZnO/Al2O3 CO2/CO hydrogenation catalysts enhances dramatically the catalytic activity toward methanol synthesis. In this work, a density functional theory (DFT) slab model has been adopted to get information concerning the bulk and surface properties of DO23-like Cu3Zn and to explore CO molecular adsorption, which will help pave the way to future rationalization of the impact of surface alloying on Cu/ZnO-based catalysis for CO2 and CO hydrogenations. Our calculations imply that the bulk modulus and cohesive energy of the binary solid solution lie between the corresponding ones for the individual components, but only the former quantity equals its composition weighted average. From the DFT-computed surface energies, the stability of Cu3Zn surfaces was predicted to be reinforced in the sequence (1 1 0) < (1 0 1) < (1 1 1) < (1 0 0) = (0 0 1) < (2 1 4) < (1 1 4), which can be interpreted as sensitive to the density change of surface dangling bonds. The downward shifts in the C-O stretch frequency measured experimentally over methanol synthesis catalysts at successively elevated reduction temperatures were correctly reproduced by the present simulation for the adsorption of CO to take place at Cu3Zn(1 1 4), Cu3Zn(2 1 4) and, as a reference, Cu(1 1 1). This agreement confirms the total energy results that indicate that the flat (1 1 4) and stepped (2 1 4) facets are the most stable and abundant ones in the Cu3Zn particles formed. It was found that a subtle compromise between the cost of fragment distortions and the large stabilization due to molecule-surface interaction is the way to control and optimize the reactivity of the Cu-based alloy to CO chemisorption. Intriguingly, electronic structure evaluation reveals that as far as all the alloy surfaces under scrutiny are concerned, a layer of CO brought a decrease, not an increase, in work

  18. Effect of the π Bridge and Acceptor on Intramolecular Charge Transfer in Push-Pull Cationic Chromophores: An Ultrafast Spectroscopic and TD-DFT Computational Study.

    PubMed

    Carlotti, Benedetta; Benassi, Enrico; Barone, Vincenzo; Consiglio, Giuseppe; Elisei, Fausto; Mazzoli, Alessandra; Spalletti, Anna

    2015-05-18

    Three (donor-π-acceptor)(+) systems with a methyl pyridinium or quinolinium as the electron-deficient group, a dimethyl amino as the electron-donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD-DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited-state optimized geometries (planar in low-polarity media and twisted in high-polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials. PMID:25728627

  19. FD-TD modeling of 2-D dielectric waveguides for propagation and scattering of femtosecond optical solitons

    NASA Technical Reports Server (NTRS)

    Joseph, Rose; Goorjian, Peter; Taflove, Allen

    1993-01-01

    Experimentalists have produced all-optical switches capable of 100-fs responses. To adequately model such switches, nonlinear effects in optical materials (both instantaneous and dispersive) must be included. In principle, the behavior of electromagnetic fields in nonlinear dielectrics can be determined by solving Maxwell's equations subject to the assumption that the electric polarization has a nonlinear relation to the electric field. However, until our previous work, the resulting nonlinear Maxwell's equations have not been solved directly. Rather, approximations have been made that result in a class of generalized nonlinear Schrodinger equations (GNLSE) that solve only for the envelope of the optical pulses. In this paper, we present first-time calculations from the vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional systems of dielectric waveguides exhibiting the Kerr and Raman quantum effects. We use the finite-difference time-domain (FD-TD) method in an extension of our 1-D work. There, in a fundamental innovation, we treated the linear and nonlinear convolutions for the electric polarization as new dependent variables. By differentiating these convolutions in the time domain, we derived an equivalent system of coupled, nonlinear second-order ODE's. These equations together with Maxwell's equations form the system that is solved to determine the electromagnetic fields in inhomogeneous nonlinear dispersive media. Backstorage in time is limited to only that needed by the time-integration algorithm for the ODE's, rather than that needed to store the time-history of the kernel functions of the convolutions (1000-10,000 time steps). Thus, a 2-D nonlinear optics model from Maxwell's equations is now feasible.

  20. Benchmarking density functional perturbation theory to enable high-throughput screening of materials for dielectric constant and refractive index

    NASA Astrophysics Data System (ADS)

    Petousis, Ioannis; Chen, Wei; Hautier, Geoffroy; Graf, Tanja; Schladt, Thomas D.; Persson, Kristin A.; Prinz, Fritz B.

    2016-03-01

    We demonstrate a high-throughput density functional perturbation theory (DFPT) methodology capable of screening compounds for their dielectric properties. The electronic and ionic dielectric tensors are calculated for 88 compounds, where the eigenvalues of the total dielectric tensors are compared with single crystal and polycrystalline experimental values reported in the literature. We find that GGA/PBE has a smaller mean average deviation from experiments (MARD=16.2 %) when compared to LDA. The prediction accuracy of DFPT is lowest for compounds that exhibit complex structural relaxation effects (e.g., octahedra rotation in perovskites) and/or strong anharmonicity. Despite some discrepancies between DFPT results and reported experimental values, the high-throughput methodology is found to be useful in identifying interesting compounds by ranking. This is demonstrated by the high Spearman correlation factor (ρ =0.92 ). Finally, we demonstrate that DFPT provides a good estimate for the refractive index of a compound without calculating the frequency dependence of the dielectric matrix (MARD=5.7 %).

  1. Enhanced reactivity of nanoenergetic materials: A first-principles molecular dynamics study based on divide-and-conquer density functional theory

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2009-07-01

    Integration of nanowires and nanoparticles of energetic materials into semiconducting structures is giving birth to "nanoenergetics-on-a-chip" technology. Understanding and controlling the reactions of nanoenergetic materials pose a theoretical challenge for combining quantum-mechanical accuracy with large scales to capture nanostructural effects. Recent developments in linear-scaling density functional theory have set a stage for first-principles molecular dynamics simulation of thermite reaction at an Al /Fe2O3 interface. Here, we report the finding of a concerted metal-oxygen flip mechanism that enhances mass diffusion and reaction rate at the interface. This mechanism leads to two-stage reactions, which may explain recent experimental observation in thermite nanowire arrays.

  2. Abrasion of restorative materials by toothaste.

    PubMed

    Heath, J R; Wilson, H J

    1976-04-01

    The procedure developed in this investigation is suitable for determining the abrasion resistance of restorative materials to toothbrush/dentifrice abrasion. Ideally, a restoration should have an abrasion resistance similar to that of enamel. Of the materials tested, gold was the only one that wore slightly less than enamel, whilst amalgam wore almost twice as quickly. The silicate material and composites (excluding TD.71) wear away 2-4 times faster than enamel. TD.71 and especially the unfilled resin exhibited very high rates of abrasion. After prolonged toothbrush/dentifrice abrasion, the surfaces of gold and amalgam were considerably smoother than those of the silicate and composite materials. PMID:1066445

  3. Silicon-germanium/gallium phosphide material in high power density thermoelectric modules. Final report, February 1980--September 1981

    SciTech Connect

    Not Available

    1981-12-31

    This is the final report of work on the characterization of an improved Si-Ge alloy and the fabrication of thermoelectric devices. The improved Si-Ge alloy uses a small addition of GaP in n- and p- type 80 at.% Si-20 at.% Ge; this addition reduces the thermal conductivity, thereby increasing its figure of merit and conversion efficiency. The thermoelectric devices fabricated include multicouples intended for use in Radioisotope Thermoelectric Generators (RTGs) and ring-type modules intended for use with nuclear reactor heat sources. This report summarizes the effort in the material as well as the device areas and discusses individual phases of each area. Results should form basis for further effort.

  4. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. PMID:26301463

  5. Absorption Spectroscopy, Emissive Properties, and Ultrafast Intersystem Crossing Processes in Transition Metal Complexes: TD-DFT and Spin-Orbit Coupling.

    PubMed

    Daniel, Chantal

    2016-01-01

    Absorption spectroscopy, emissive properties, and ultrafast intersystem crossing processes in transition metal complexes are discussed in the light of recent developments in time-dependent density functional theory (TD-DFT), spin-orbit coupling (SOC) effects, and non-adiabatic excited states dynamics. Methodological highlights focus on spin-orbit and vibronic couplings and on the recent strategies available for simulating ultra-fast intersystem crossings (ISC).The role of SOC in the absorption spectroscopy of third-row transition metal complexes is illustrated by two cases studies, namely Ir(III) phenyl pyridine and Re(I) carbonyl bipyridine complexes.The problem of luminescence decay in third-row transition metal complexes handled by TD-DFT linear and quadratic response theories including SOC is exemplified by three studies: (1) the phosphorescence of Ir(III) complexes from the lowest triplet state; (2) the emissive properties of square planar Pt(II) complexes with bidentate and terdentate ligands characterized by low-lying metal-to-ligand-charge-transfer (MLCT) and metal-centered (MC) states; and (3) the ultra-fast luminescence decay of Re(I) carbonyl bipyridine halides via low-lying singlet and triplet charge transfer states delocalized over the bipyridine and the halide ligands.Ultrafast ISC occurring in spin crossover [Fe (bpy)3]2+, in [Ru (bpy)3]2+, and [Re (Br)(CO)3(bpy] complexes are deciphered thanks to recent developments based on various approaches, namely non-radiative rate theory within the Condon approximation, non-adiabatic surface hopping molecular dynamics, and quantum wave packet dynamics propagation. PMID:26129697

  6. An investigation of the magnetic field of Transient Disturbances (TD) at the Earth's orbit, and a determination of solar sources of TD from their characteristics at R = 1 AU

    NASA Technical Reports Server (NTRS)

    Fainshtein, V. .G.; Kaigorodov, A. P.

    1995-01-01

    We have investigated and intercompared the typical features of the magnetic field of two types of solar wind transient disturbances with shock waves: the shock wave is accompanied by a magnetic cloud (MC), and the shock wave is followed by a region with bidirectional solar wind electron heat flux (BEHF), with no MC present. In this case, a separate study was made of the field features in two typical TD structures: in the region of impact-compressed solar wind between the shock wave and MC or BEHF, as well as in MC and BEHF. The study has provided new results on the influence of the ambient SW upon the TD magnetic field and the relationship between fields in various TD structures. A new test for the existence of interplanetary magnetic field draping around MC and BEHF is proposed and verified. It is concluded that the magnetic field configuration around MC is more adequately consistent with the concept of magnetic line draping than is the case around BEHF Two methods are proposed to infer the location of solar sources of TD from their characteristics at R = 1 AU.

  7. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Matthias; Bohlen, Oliver; Roscher, Michael A.; Bäker, Bernard

    2011-05-01

    Current density distributions and local state of charge (SoC) differences that are caused by temperature gradients inside actively cooled Li-ion battery cells are discussed and quantified. As an example, a cylindrical Li-ion cell with LiFePO4 as cathode material (LiFePO4-cell) is analyzed in detail both experimentally and by means of spatial electro-thermal co-simulations. The reason for current density inhomogeneities is found to be the local electrochemical impedance varying with temperature in different regions of the jelly roll. For the investigated cell, high power cycling and the resulting temperature gradient additionally cause SoC-gradients inside the jelly roll. The local SoCs inside one cell diverge firstly because of asymmetric current density distributions during charge and discharge inside the cell and secondly because of the temperature dependence of the local open circuit potential. Even after long relaxation periods, the SoC distribution in cycled LiFePO4-cells remains inhomogeneous across the jelly roll as a result of hysteresis in the open circuit voltage. The occurring thermal electrical inhomogeneities are expected to influence local aging differences and thus, global cell aging. Additionally the occurrence of inhomogeneous current flow and SoC-development inside non-uniformly cooled battery packs of parallel connected LiFePO4-cells is measured and discussed.

  8. Development of a low-adiabat drive for material science experiments on NIF using release and recompression of low density organic foams

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; Prisbrey, Shon T.; Park, Hye-Sook; Benedetti, L. Robin; Huntington, Channing; McNaney, James; Smith, Ray; Panas, Cynthia; Cook, Angela; Remington, Bruce; Arsenlis, Tom; Graham, Peter

    2015-11-01

    A series of experiments were performed on NIF to develop a planar, 3-shock, low-adiabat drive for material science experiments. Physics samples (Ta, Pb, etc.) are loaded to 3-4 Mbar while staying well below the melt temperature. X-ray ablation from an indirect drive launches a strong (~ 50 Mbar), decaying shock through a precision fabricated ``reservoir,'' consisting of a CH ablator, followed by layers of Al, CH(18.75%I), ~ 375 mg/cc carbonized resorcinol formaldehyde foam, and a final layer of low density (10-35) mg/cc foam. As the releasing reservoir stagnates on a Ta drive plate, VISAR is used to measures the resulting compression waves. The lowest density reservoir layer is responsible for the leading shock and induces the most entropy during the drive. LLNL has developed a new, low-density foam called JX6 (C20H30) for the purpose of controlling the leading shock. We will describe a series of experiments done on NIF to test the combined release and recompression properties of JX6 and to develop a new, lower-adiabat drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. Density functional theory study on oxygen adsorption in LaSrCoO 4: An extended cathode material for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Chen, Gang; Wu, Kai; Cheng, Yonghong; Peng, Bo; Guo, Jiaojiao; Jiang, Yizhe

    2012-01-01

    Solid oxide fuel cell (SOFC) is one of the most promising technologies for a clean and secure source of energy in future due to its high energy efficiency and outstanding fuel flexibility. The search for new materials operating at low-temperature in order to make SOFCs economically competitive is a great challenge facing us today. In this report, atomistic computer simulation based on density functional theory (DFT) has been used to predict the formation of oxygen vacancy and the strong oxygen adsorption kinetics mechanisms in LaSrCoO4. The optimal adsorption configurations as well as the adsorption energies for oxygen molecule adsorption on various sites of LaSrCoO4 (0 1 0) surface were derived. Furthermore, a strong hybridization between Co and O and shorter Co-O bond length for molecular adsorption were obtained by analysis of density of states. The calculated results imply that LaSrCoO4 could serve as possible cathode material due to its low formation and migration energies of oxygen vacancies.

  10. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    SciTech Connect

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-16

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al{sub 2}O{sub 3}, C{sub 27}H{sub 46}O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  11. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    NASA Astrophysics Data System (ADS)

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-01

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al2O3, C27H46O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30 kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  12. TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp. durum)

    PubMed Central

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Pirrello, Julien; Bernadac, Anne; Ghorbel, Abdelwahed; Bouzayen, Mondher

    2015-01-01

    Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues toward understanding the mechanisms underlying the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in 2 durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the 2 contrasted wheat genotypes. The data confirm that GR and OR are 2 contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the 2 genotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties. PMID:26338450

  13. Study of the binding mechanism between aptamer GO18-T-d and gonyautoxin 1/4 by molecular simulation.

    PubMed

    Gao, Shunxiang; Hu, Bo; Zheng, Xin; Liu, Dejing; Sun, Mingjuan; Qin, Jiaxiang; Zhou, Hao; Jiao, Binghua; Wang, Lianghua

    2016-08-24

    GTX1/4 can induce the formation of an antiparallel G-quadruplex structure in aptamer GO18-T-d and combine steadily in the groove at the top of the G-quadruplex structure. The complex structures and special induced fit mechanism between aptamer and small molecules provide a reference for aptamer development in molecular diagnostics and therapeutic application. PMID:27118106

  14. TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp. durum).

    PubMed

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Pirrello, Julien; Bernadac, Anne; Ghorbel, Abdelwahed; Bouzayen, Mondher

    2015-01-01

    Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues toward understanding the mechanisms underlying the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in 2 durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the 2 contrasted wheat genotypes. The data confirm that GR and OR are 2 contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the 2 genotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties. PMID:26338450

  15. Gasification advanced research and technology development (AR and TD) cross-cut meeting and review. [US DOE supported

    SciTech Connect

    Not Available

    1981-01-01

    The US Department of Energy gasification advanced research and technology development (AR and TD) cross-cut meeting and review was held June 24 to 26, 1981, at Germantown, Maryland. Forty-eight papers from the proceedings have been entered individually into EDB and ERA. (LTN)

  16. Study on Hydrogen Storage Materials

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun

    2016-09-01

    Complex hydrides have been heavily investigated as a hydrogen storage material, particularly for future vehicular applications. The present major problem of such complex hydrides is their relatively high hydrogen desorption temperature (Td). In order to find a predominant parameter for determining Td, we have investigated internal nuclear magnetic fields in several complex hydrides, such as, lithium and sodium alanates, borohydrides, and magnesium hydrides, with a muon spin rotation and relaxation (μ+SR) technique. At low temperatures, the μ+SR spectrum obtained in a zero external field (ZF) exhibits a clear oscillation due to the formation of a three spin 1/2 system, HμH, besides Mg(BH4)2 and Sc(BH4)2. Such oscillatory signal becomes weaker and weaker with increasing temperature, and finally disappears above around room temperature. However, the volume fraction of the HμH signal to the whole asymmetry at 5 K is found to be a good indicator for Td in borohydrides. At high temperatures, on the contrary, the ZF-spectrum for MgH2 shows a Kubo-Toyabe like relaxation due to a random nuclear magnetic field of 1H. Such nuclear magnetic field becomes dynamic well below Td in the milled MgH2, indicating a significant role on H-diffusion in solids for determining Td.

  17. Folding of the td pre-RNA with the help of the RNA chaperone StpA.

    PubMed

    Mayer, O; Waldsich, C; Grossberger, R; Schroeder, R

    2002-11-01

    The td group I intron is inserted in the reading frame of the thymidylate synthase gene, which is mainly devoid of structural elements. In vivo, translation of the pre-mRNA is required for efficient folding of the intron into its splicing-competent structure. The ribosome probably resolves exon-intron interactions that interfere with splicing. Uncoupling splicing from translation, by introducing a non-sense codon into the upstream exon, reduces the splicing efficiency of the mutant pre-mRNA. Alternatively to the ribosome, co-expression of genes that encode proteins with RNA chaperone activity promote folding of the td pre-mRNA in vivo. These proteins also efficiently accelerate folding of the td pre-mRNA in vitro. In order to understand the mechanism of action of RNA chaperones, we probed the impact of the RNA chaperone StpA on the structure of the td intron in vivo and compared it with that of the well characterized Cyt-18 protein, which is a group-I-intron-specific splicing factor. We found that the two proteins have opposite effects on the structure of the td intron. While StpA loosens the three-dimensional structure, Cyt-18 tightens it up. Furthermore, mutations that destabilize the intron structure render the mutants sensitive to StpA, whereas splicing of these mutants is rescued by Cyt-18. Our results provide direct evidence for protein-induced conformational changes within a catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the stabilization of the native three-dimensional structure. PMID:12440999

  18. Spin Projection of Empty Partial Density of States by Resonant X-ray Scattering (RXS): Application to Materials with Different Magnetic Ordering

    SciTech Connect

    Draeger, Guenter; Machek, Pavel

    2003-01-24

    We report the first experimental spin projections of empty partial density of states in antiferromagnetic NiO and CuO, paramagnetic MnO and in ferrimagnetic Dy3Fe5O12 by means of resonant X-ray scattering (RXS). Resolving resonantly scattered K{alpha}1,2 , K{beta}1,3 , L{alpha}1 and L1 core line spectra into their spin-up and spin-down components the spin character of the dipole- and quadrupole-excited conduction band states can quantitatively be analyzed. Since the method employs spin conservation in the RXS process and local spin references, it needs neither circularly polarized radiation nor sample magnetization for measuring the spectra. Hence, antiferro- and paramagnetic materials can be investigated as well. In the paper, the basic idea of the novel method, its experimental realization and the data treatment are reported including the spectra decomposition into the spin-up and spin-down components by using Principal Component Analysis (PCA). New and unambiguous results will be presented providing the opportunity to verify experimentally the results of spin-dependent (LSDA+U) calculations. So we argue the new spectroscopy complements X-ray magnetic dichroism, which is silent for antiferro- and paramagnetic materials. In fact, the novel method gives insight into the spin polarization of conduction band states in correlated materials, independently on their magnetic ordering.

  19. Tight-binding approximations to time-dependent density functional theory - A fast approach for the calculation of electronically excited states.

    PubMed

    Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB. PMID:27179467

  20. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    NASA Astrophysics Data System (ADS)

    Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-05-01

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  1. Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Tenney, D. R.; Herring, H. W.

    1975-01-01

    Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.

  2. Development of the Brican TD100 Small Uas and Payload Trials

    NASA Astrophysics Data System (ADS)

    Eggleston, B.; McLuckie, B.; Koski, W. R.; Bird, D.; Patterson, C.; Bohdanov, D.; Liu, H.; Mathews, T.; Gamage, G.

    2015-08-01

    The Brican TD100 is a high performance, small UAS designed and made in Brampton Ontario Canada. The concept was defined in late 2009 and it is designed for a maximum weight of 25 kg which is now the accepted cut-off defining small civil UASs. A very clean tractor propeller layout is used with a lightweight composite structure and a high aspect ratio wing to obtain good range and endurance. The design features and performance of the initial electrically powered version are discussed and progress with developing a multifuel engine version is described. The system includes features enabling operation beyond line of sight (BLOS) and the proving missions are described. The vehicle has been used for aerial photography and low cost mapping using a professional grade Nikon DSLR camera. For forest fire research a FLIR A65 IR camera was used, while for georeferenced mapping a new Applanix AP20 system was calibrated with the Nikon camera. The sorties to be described include forest fire research, wildlife photography of bowhead whales in the Arctic and surveys of endangered caribou in a remote area of Labrador, with all these applications including the DSLR camera.

  3. Monitoring intermediate folding states of the td group I intron in vivo

    PubMed Central

    Waldsich, Christina; Masquida, Benoît; Westhof, Eric; Schroeder, Renée

    2002-01-01

    Group I introns consist of two major structural domains, the P4-P6 and P3-P9 domains, which assemble through interactions with peripheral extensions to fold into an active ribozyme. To assess group I intron folding in vivo, we probed the structure of td wild-type and mutant introns using dimethyl sulfate. The results suggest that the majority of the intron population is in the native state in accordance with the current structural model, which was refined to include two novel tertiary contacts. The importance of the loop E motif in the P7.1-P7.2 extension in assisting ribozyme folding was deduced from modeling and mutational analyses. Destabilization of stem P6 results in a deficiency in tertiary structure formation in both major domains, while weakening of stem P7 only interferes with folding of the P3-P9 domain. The different impact of mutations on the tertiary structure suggests that they interfere with folding at different stages. These results provide a first insight into the structure of folding intermediates and suggest a putative order of events in a hierarchical folding pathway in vivo. PMID:12356744

  4. An Early Pleistocene hominin mandible from Atapuerca-TD6, Spain

    PubMed Central

    Carbonell, E.; Bermúdez de Castro, J. M.; Arsuaga, J. L.; Allue, E.; Bastir, M.; Benito, A.; Cáceres, I.; Canals, T.; Díez, J. C.; van der Made, J.; Mosquera, M.; Ollé, A.; Pérez-González, A.; Rodríguez, J.; Rodríguez, X. P.; Rosas, A.; Rosell, J.; Sala, R.; Vallverdú, J.; Vergés, J. M.

    2005-01-01

    We present a mandible recovered in 2003 from the Aurora Stratum of the TD6 level of the Gran Dolina site (Sierra de Atapuerca, northern Spain). The specimen, catalogued as ATD6-96, adds to the hominin sample recovered from this site in 1994–1996, and assigned to Homo antecessor. ATD6-96 is the left half of a gracile mandible belonging to a probably female adult individual with premolars and molars in place. This mandible shows a primitive structural pattern shared with all African and Asian Homo species. However, it is small and exhibits a remarkable gracility, a trait shared only with the Early and Middle Pleistocene Chinese hominins. Furthermore, none of the mandibular features considered apomorphic in the European Middle and Early Upper Pleistocene hominin lineage are present in ATD6-96. This evidence reinforces the taxonomic identity of H. antecessor and is consistent with the hypothesis of a close relationship between this species and Homo sapiens. PMID:15824320

  5. Study of B to X \\gamma Decays and Determination of |V_{td}/V_{ts}|

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-22

    Using a sample of 471 million B{bar B} events collected with the BABAR detector, we study the sum of seven exclusive final states B {yields} X{sub s(d){gamma}}, where X{sub s(d)} is a strange (non-strange) hadronic system with a mass of up to 2.0 GeV/c{sup 2}. After correcting for unobserved decay modes, we obtain a branching fraction for b {yields} d{gamma} of (9.2 {+-} 2.0(stat.) {+-} 2.3(syst.)) x 10{sup -6} in this mass range, and a branching fraction for b {yields} s{gamma} of (23.0 {+-} 0.8(stat.) {+-} 3.0(syst.)) x 10{sup -5} in the same mass range. We find {Beta}(b{yields}d{gamma})/{Beta}(b{yields}s{gamma}) = 0.040 {+-} 0.009(stat.) {+-} 0.010(syst.), from which we determine |V{sub td}/V{sub ts}| = 0.199 {+-} 0.022(stat.) {+-} 0.024(syst.) {+-} 0.002(th.).

  6. System accuracy evaluation of the GlucoRx nexus voice TD-4280 blood glucose monitoring system.

    PubMed

    Khan, Muhammad; Broadbent, Keith; Morris, Mike; Ewins, David; Joseph, Franklin

    2014-01-01

    Use of blood glucose (BG) meters in the self-monitoring of blood glucose (SMBG) significantly lowers the risk of diabetic complications. With several BG meters now commercially available, the International Organization for Standardization (ISO) ensures that each BG meter conforms to a set degree of accuracy. Although adherence to ISO guidelines is a prerequisite for commercialization in Europe, several BG meters claim to meet the ISO guidelines yet fail to do so on internal validation. We conducted a study to determine whether the accuracy of the GlucoRx Nexus TD-4280 meter, utilized by our department for its cost-effectiveness, complied with ISO guidelines. 105 patients requiring laboratory blood glucose analysis were randomly selected and reference measurements were determined by the UniCel DxC 800 clinical system. Overall the BG meter failed to adhere to the ≥95% accuracy criterion required by both the 15197:2003 (overall accuracy 92.4%) and 15197:2013 protocol (overall accuracy 86.7%). Inaccurate meters have an inherent risk of over- and/or underestimating the true BG concentration, thereby risking patients to incorrect therapeutic interventions. Our study demonstrates the importance of internally validating the accuracy of BG meters to ensure that its accuracy is accepted by standardized guidelines. PMID:25374434

  7. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  8. An Accurate Quartic Force Field, Fundamental Frequencies, and Binding Energy for the High Energy Density Material T(d)N4

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The CCSD(T) method has been used to compute a highly accurate quartic force field and fundamental frequencies for all N-14 and N-15 isotopomers of the high energy density material T(sub d)N(sub 4). The computed fundamental frequencies show beyond doubt that the bands observed in a matrix isolation experiment by Radziszewski and coworkers are not due to different isotopomers of T(sub d)N(sub 4). The most sophisticated thermochemical calculations to date yield a N(sub 4) -> 2N(sub 2) heat of reaction of 182.22 +/- 0.5 kcal/mol at 0 K (180.64 +/- 0.5 at 298 K). It is hoped that the data reported herein will aid in the ultimate detection of T(sub d)N(sub 4).

  9. Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC

    NASA Astrophysics Data System (ADS)

    Cockayne, Eric; Nelson, Eric B.

    2015-07-01

    Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.

  10. Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC.

    PubMed

    Cockayne, Eric; Nelson, Eric B

    2015-07-14

    Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites. PMID:26178120

  11. Efficient Reduction of CO2 to CO with High Current Density Using in Situ or ex Situ Prepared Bi-Based Materials

    PubMed Central

    2015-01-01

    The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth–carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi3+ precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25–30 mA/cm2 and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1–0.5 mmol·cm–2·h–1 at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm2. This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel. PMID:24783975

  12. Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials.

    PubMed

    Medina-Ramos, Jonnathan; DiMeglio, John L; Rosenthal, Joel

    2014-06-11

    The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth-carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi(3+) precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25-30 mA/cm(2) and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1-0.5 mmol·cm(-2)·h(-1) at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm(2). This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel. PMID:24783975

  13. Real-Time TD-DFT with Classical Ion Dynamics: Methodology and Applications.

    PubMed

    Kolesov, Grigory; Grånäs, Oscar; Hoyt, Robert; Vinichenko, Dmitry; Kaxiras, Efthimios

    2016-02-01

    We present a method for real-time propagation of electronic wave functions, within time-dependent density functional theory (RT-TDDFT), coupled to ionic motion through mean-field classical dynamics. The goal of our method is to treat large systems and complex processes, in particular photocatalytic reactions and electron transfer events on surfaces and thin films. Due to the complexity of these processes, computational approaches are needed to provide insight into the underlying physical mechanisms and are therefore crucial for the rational design of new materials. Because of the short time step required for electron propagation (of order ∼10 attoseconds), these simulations are computationally very demanding. Our methodology is based on numerical atomic-orbital-basis sets for computational efficiency. In the computational package, to which we refer as TDAP-2.0 (Time-evolving Deterministic Atom Propagator), we have implemented a number of important features and analysis tools for more accurate and efficient treatment of large, complex systems and time scales that reach into a fraction of a picosecond. We showcase the capabilities of our method using four different examples: (i) photodissociation into radicals of opposite spin, (ii) hydrogen adsorption on aluminum surfaces, (iii) optical absorption of spin-polarized organic molecule containing a metal ion, and (iv) electron transfer in a prototypical dye-sensitized solar cell. PMID:26680129

  14. Gardenia oil increases estradiol levels and bone material density by a mechanism associated with upregulation of COX-2 expression in an ovariectomized rat model

    PubMed Central

    LI, BAOLI; ZHANG, YONGLI; SHI, BINGYIN; CHEN, YAHUI; ZHANG, ZHENGXIANG; LIU, TAO

    2013-01-01

    This study aimed to determine the effects and mechanisms of gardenia oil on bone density and bone biomechanics in ovariectomized female rats. An ovariectomized rat model was established and the rats were administered various doses of gardenia oil. Rats administered diethylstilbestrol or saline served as the positive and the untreated controls, respectively. All rats received the same surgery, with the exception of the ovariectomy in the sham group. The levels of serum 17β-estradiol, follicle-stimulating hormone, luteinizing hormone, alkaline phosphatase (ALP) and calcium, and the bone material density (BMD), maximum stress and maximum strain were determined. The expression of COX-2 was also determined by immunoblotting and quantitative PCR (qPCR). Gardenia oil increased the serum levels of 17β-estradiol, the BMD, and the maximum stress and maximum strain of bones. The levels of COX-2 protein and COX-2 mRNA were significantly increased in the gardenia oil-treated rats. In conclusion, gardenia oil increases estradiol levels and BMD in an ovariectomized rat model. The effects of gardenia oil are associated with upregulation of the expression of COX-2. PMID:24137227

  15. Positive Selection and Multiple Losses of the LINE-1-Derived L1TD1 Gene in Mammals Suggest a Dual Role in Genome Defense and Pluripotency

    PubMed Central

    Yang, Lei; Neme, Rafik; Wichman, Holly A.; Malik, Harmit S.

    2014-01-01

    Mammalian genomes comprise many active and fossilized retroelements. The obligate requirement for retroelement integration affords host genomes an opportunity to ‘domesticate’ retroelement genes for their own purpose, leading to important innovations in genome defense and placentation. While many such exaptations involve retroviruses, the L1TD1 gene is the only known domesticated gene whose protein-coding sequence is almost entirely derived from a LINE-1 (L1) retroelement. Human L1TD1 has been shown to play an important role in pluripotency maintenance. To investigate how this role was acquired, we traced the origin and evolution of L1TD1. We find that L1TD1 originated in the common ancestor of eutherian mammals, but was lost or pseudogenized multiple times during mammalian evolution. We also find that L1TD1 has evolved under positive selection during primate and mouse evolution, and that one prosimian L1TD1 has ‘replenished’ itself with a more recent L1 ORF1 from the prosimian genome. These data suggest that L1TD1 has been recurrently selected for functional novelty, perhaps for a role in genome defense. L1TD1 loss is associated with L1 extinction in several megabat lineages, but not in sigmodontine rodents. We hypothesize that L1TD1 could have originally evolved for genome defense against L1 elements. Later, L1TD1 may have become incorporated into pluripotency maintenance in some lineages. Our study highlights the role of retroelement gene domestication in fundamental aspects of mammalian biology, and that such domesticated genes can adopt different functions in different lineages. PMID:25211013

  16. Studies of Yttrium BARIUM(2) COPPER(3) OXYGEN(7 - Materials and Layered Thin Films: Their Growth and Interdiffusion Behavior, Fermi Edge Density, and the Oxygen Depletion Problem

    NASA Astrophysics Data System (ADS)

    Chen, Li-Mei

    In 1987, Paul Chu and his colleagues discovered the high-T_{c} YBa_2Cu_3O _{7-x} (1-2-3) superconductor (HTSC). The most important research still needed on this system from a scientific point of view is to get insight into the superconducting mechanism of this new material. Using these materials in the foof films seems the most realistic for widespread application. Therefore, research in this thesis on these HTSC materials have been carried out in four parts: (1) the oxygen depletion problem, (2) Fermi density of state, (3) interdiffusion behavior and (4) multilayer growth. HTSC thin films were successfully made by either ion beam deposition or R-F magnetron sputtering at the EIC Laboratory in Massachusetts. C-axis oriented epitaxial HTSC thin films were deposited onto MgO, YSZ and sapphire. A variety of different buffer layers were also deposited onto the above-mentioned substrates to try to effectuate the elimination the interaction between the substrates and the HTSC thin films. For further interdiffusion behavior studies, the above mentioned buffer layers were also deposited in a superconductor-insulator-superconductor (S-I-S) geometry. This geometry is one employed in Josephson junctions which are the key elements of superconductive electronics. We have also studied the behavior of select HTSC ceramic systems during changes in atmospheric conditions. A four-point probe was used to measure the HTSC ceramic transition temperature. From these results, we found that in the presence of an ambient oxygen background equivalent to several torr at room temperature, the HTSC materials produced a metallic R vs. T behavior with T_0 (onset) of ~103 K and T _{c} of ~ 91 K. Lowering the oxygen pressure, followed by repeated temperature cycling, produced a continuous reduction in T_{c} to value ~60 K. Reintroduction of various dose O_2 or air immediately increased the T_{c}, with apparent total restoration to the optimal resistance values at ~5 torr to 12 torr. A finite Fermi

  17. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ng, H. W.; Gates, B. D.; Menon, C.

    2014-07-01

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR.

  18. Material Modeling of 6000 Series Aluminum Alloy Sheets with Different Density Cube Textures and Effect on the Accuracy of Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Yanaga, Daisaku; Kuwabara, Toshihiko; Uema, Naoyuki; Asano, Mineo

    2011-08-01

    Biaxial tensile tests of 6000 series aluminum alloy sheet with different density cube textures were carried out using cruciform specimens similar to that developed by one of the authors [Kuwabara, T. et al., J. Material Process. Technol., 80/81(1998), 517-523.]. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. Successive contours of plastic work in stress space and the directions of plastic strain rates were precisely measured and compared with those calculated using selected yield functions. The Yld2000-2d yield functions with exponents of 12 and 6 [Barlat, F. et al., Int. J. Plasticity 19 (2003), 1297-1319] are capable of reproducing the general trends of the work contours and the directions of plastic strain rates observed for test materials with high and low cube textures, respectively. Hydraulic bulge tests were also conducted and the variation of thickness strain along the meridian direction of the bulged specimen was compared with that calculated using finite element analysis (FEA) based on the Yld2000-2d yield functions with exponents of 12 and 6. The differences of cube texture cause significant differences in the strain distributions of the bulged specimens, and the FEA results calculated using the Yld2000-2d yield functions show good agreement with the measurement results.

  19. Effects of magnetic flux density and substrate bias voltage on Ni films prepared on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma

    SciTech Connect

    Koda, Tatsunori; Toyota, Hiroshi

    2014-03-15

    The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S} = −40 V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C} = 0, 3, and 5 mT was 88.2, 95.4, and 104.4 nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities of I(111)/I(200) increased with V{sub S}. For V{sub S} = −40 V and B{sub C} = 3 mT, a film resistivity ρ of 8.96 × 10{sup −6} Ω cm was observed, which is close to the Ni bulk value of 6.84 × 10{sup −6} Ω cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.

  20. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars.

    PubMed

    Li, Y; Ng, H W; Gates, B D; Menon, C

    2014-07-18

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR. PMID:24971845

  1. Optogenetic activation of zebrafish somatosensory neurons using ChEF-tdTomato.

    PubMed

    Palanca, Ana Marie S; Sagasti, Alvaro

    2013-01-01

    Larval zebrafish are emerging as a model for describing the development and function of simple neural circuits. Due to their external fertilization, rapid development, and translucency, zebrafish are particularly well suited for optogenetic approaches to investigate neural circuit function. In this approach, light-sensitive ion channels are expressed in specific neurons, enabling the experimenter to activate or inhibit them at will and thus assess their contribution to specific behaviors. Applying these methods in larval zebrafish is conceptually simple but requires the optimization of technical details. Here we demonstrate a procedure for expressing a channelrhodopsin variant in larval zebrafish somatosensory neurons, photo-activating single cells, and recording the resulting behaviors. By introducing a few modifications to previously established methods, this approach could be used to elicit behavioral responses from single neurons activated up to at least 4 days post-fertilization (dpf). Specifically, we created a transgene using a somatosensory neuron enhancer, CREST3, to drive the expression of the tagged channelrhodopsin variant, ChEF-tdTomato. Injecting this transgene into 1-cell stage embryos results in mosaic expression in somatosensory neurons, which can be imaged with confocal microscopy. Illuminating identified cells in these animals with light from a 473 nm DPSS laser, guided through a fiber optic cable, elicits behaviors that can be recorded with a high-speed video camera and analyzed quantitatively. This technique could be adapted to study behaviors elicited by activating any zebrafish neuron. Combining this approach with genetic or pharmacological perturbations will be a powerful way to investigate circuit formation and function. PMID:23407374

  2. Comparison of Stretching Force Constants in Symmetry Coordinates between Td and C3v Point Groups

    NASA Astrophysics Data System (ADS)

    Julian, Maureen M.

    1999-05-01

    In this paper we consider what happens to the force constants of a silicate moiety (SiO4) when the length of one of its bonds is changed. This situation exists in the molecule O3SiObrSiO3, where Obr is the bridging oxygen atom connecting the two SiO3 moieties. The problem is to present a set of force constants such that when the structure of the more symmetric molecule is perturbed, the relevant force constants are also perturbed. Algebraic expressions are derived for the stretching force constants of SiO4 (tetrahedral point group Td) and ObrSiO3 (point group C3v) in symmetry coordinates. This paper is addressed to students and researchers in applied group theory who wish to compare force constants between similar molecules. We assume the reader has some familarity with the group theoretical methods presented by Wilson et al. (Wilson, E. B. Jr.; Decius, J. C.; Cross, P. C. Molecular Vibrations; Dover: New York, 1980). We cannot apply Wilson's method for obtaining symmetry coordinates from internal coordinates directly, as we demonstrate. Instead we must start with the irreducible representations of the symmetries of the moiety with the higher symmetry and then reduce them to the representations of the symmetries of the moiety with the lower symmetry. The symmetry coordinates are calculated for each species in order to factor the secular equation. The matrix representations of the generators of these point groups are a function of the specific symmetry coordinates. Finally, the symmetry coordinates are applied to the force constant matrix and the algebraic results are compared.

  3. Stent segmentation in IOCT-TD images using gradient combination and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Cardona Cardenas, Diego A.; Cardoso Moraes, Matheus; Furuie, Sérgio S.

    2015-01-01

    In 2010, cardiovascular disease (CVD) caused 33% of the total deaths in Brazil. Modalities such as Intravascular Optical Coherent Tomography (IOCT) provides coronary in vivo for detecting and monitoring the progression of CVDs. Specifically, this type of modality is widely used in neo-intima post stent re-stenosis investigation. Computational methods applied to IOCT images can render objective structure information, such as areas, perimeters, etc., allowing more accurate diagnostics. However, the variety of methods in the literature applied in IOCT is still small compared to other related modalities. Therefore, we propose a stent segmentation approach based on extracted features by gradient operations, and Mathematical Morphology. The methodology can be summarized as following: the lumen is segmented and the contrast stretching is generated, both to be used as auxiliary information. Second, the edges of objects were obtained by gradient computation. Next, a stent extractor finds and select relevant stent information. Finally, an interpolation procedure followed by morphological operations ends the segmentation. To evaluate the method, 160 images from pig coronaries were segmented and compared to their gold standards, the images were acquired after 30, 90 and 180 days of stent implantation. The proposed approach present good accuracy of True Positive (TP(%)) = 96.51±5.10, False Positive (FP(%)) = 6.09±5.32 , False Negative (FN(%)) = 3.49±5.10. Conclusion, the good results and the low complexity encourage the use and continuous evolution of current approach. However, only images of IOCT-TD technology were evaluated; therefore, further investigations should adapt this approach to work with IOCT-FD technology as well.

  4. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models.

    PubMed

    Teng, S; Tebby, C; Barcellini-Couget, S; De Sousa, G; Brochot, C; Rahmani, R; Pery, A R R

    2016-08-15

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro - in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. PMID:27317371

  5. A semi-mechanistic integrated toxicokinetic–toxicodynamic (TK/TD) model for arsenic(III) in hepatocytes

    PubMed Central

    Stamatelos, Spyros K.; Androulakis, Ioannis P.; Kong, Ah-Ng Tony; Georgopoulos, Panos G.

    2014-01-01

    Background A systems engineering approach is presented for describing the kinetics and dynamics that are elicited upon arsenic exposure of human hepatocytes. The mathematical model proposed here tracks the cellular reaction network of inorganic and organic arsenic compounds present in the hepatocyte and analyzes the production of toxicologically potent by-products and the signaling they induce in hepatocytes. Methods and results The present modeling effort integrates for the first time a cellular-level semi-mechanistic toxicokinetic (TK) model of arsenic in human hepatocytes with a cellular-level toxicodynamic (TD) model describing the arsenic-induced reactive oxygen species (ROS) burst, the antioxidant response, and the oxidative DNA damage repair process. The antioxidant response mechanism is described based on the Keap1-independent Nuclear Factor-erythroid 2-related factor 2 (Nrf2) signaling cascade and accounts for the upregulation of detoxifying enzymes. The ROS-induced DNA damage is simulated by coupling the TK/TD formulation with a model describing the multistep pathway of oxidative DNA repair. The predictions of the model are assessed against experimental data of arsenite-induced genotoxic damage to human hepatocytes; thereby capturing in silico the mode of the experimental dose–response curve. Conclusions The integrated cellular-level TK/TD model presented here provides significant insight into the underlying regulatory mechanism of Nrf2-regulated antioxidant response due to arsenic exposure. While computational simulations are in a fair good agreement with relevant experimental data, further analysis of the system unravels the role of a dynamic interplay among the feedback loops of the system in controlling the ROS upregulation and DNA damage response. This TK/TD framework that uses arsenic as an example can be further extended to other toxic or pharmaceutical agents. PMID:23069314

  6. Letdown valve (anti eroded type for slurry use) on 150 t/d coal liquefaction pilot plant

    SciTech Connect

    Kamada, Mitsushi; Kobayashi, Masatoshi; Yoshida, Haruhiko; Yamagiwa, Hisashi

    1999-07-01

    The letdown valve developed by NEDO has been tested on the 150 t/d coal liquefaction pilot plant using the NEDOL process for more than 6,000 hours of on-coal operation. Several factors affecting the damage of the letdown valve that handled a fluid containing coal-derived oil, catalyst and residue including ash have been evaluated. The countermeasure for the damage has been studied to develop an advanced letdown valve to be used demonstration plant.

  7. Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses.

    PubMed

    Kaouthar, Feki; Ameny, Farhat-Khemakhem; Yosra, Kamoun; Walid, Saibi; Ali, Gargouri; Faiçal, Brini

    2016-07-01

    In plant cells, the manganese superoxide dismutase (Mn-SOD) plays an elusive role in the response to oxidative stress. In this study, we describe the isolation and functional characterization of a novel Mn-SOD from durum wheat (Triticum turgidum L. subsp. Durum), named TdMnSOD. Molecular phylogeny analysis showed that the durum TdMnSOD exhibited high amino acids sequence identity with other Mn-SOD plants. The three-dimensional structure showed that TdMnSOD forms a homotetramer and each subunit is composed of a predominantly α-helical N-terminal domain and a mixed α/β C-terminal domain. TdMnSOD gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdMnSOD enhances tolerance of the transformed yeast cells to salt, osmotic, cold and H2O2-induced oxidative stresses. Moreover, the analysis of TdMnSOD transgenic Arabidopsis plants subjected to different environmental stresses revealed low H2O2 and high proline levels as compared to the wild-type plants. Compared with the non-transformed plants, an increase in the total SOD and two other antioxidant enzyme activities including catalase (CAT) and peroxidases (POD) was observed in the three transgenic lines subjected to abiotic stress. Taken together, these data provide evidence for the involvement of durum wheat TdMnSOD in tolerance to multiple abiotic stresses in crop plants. PMID:27152457

  8. Effectiveness of rifaximin and fluoroquinolones in preventing travelers’ diarrhea (TD): a systematic review and meta-analysis

    PubMed Central

    2012-01-01

    Background Recent developments related to a safe and effective nonabsorbable antibiotic, rifaximin, and identification of postinfectious irritable bowel syndrome as a frequent sequela call for a need to reconsider the value of primary prevention of traveler’s diarrhea (TD) with antibiotics. Methods Randomized, placebo-controlled, double-blind studies evaluating the effectiveness and safety of rifaximin or a fluoroquinolone chemoprophylaxis against TD were pooled using a random effects model and assessed for heterogeneity. Results The nine studies (four rifaximin and five fluoroquinolone) included resulted in pooled relative risk estimates of 0.33 (95% CI = 0.24–0.45, I2 = 3.1%) and 0.12 (95% CI = 0.07–0.20, I2 =0.0%), respectively. Similar rates of treatment emergent adverse events were found between antibiotic and placebo groups. Conclusions This meta-analysis supports the effectiveness of antibiotics in preventing TD. However, further studies that include prevention of secondary chronic health outcomes among travelers to different geographic regions, and a formal risk-benefit analysis for antibiotic chemoprophylaxis, are needed. PMID:22929178

  9. New foot remains from the Gran Dolina-TD6 Early Pleistocene site (Sierra de Atapuerca, Burgos, Spain).

    PubMed

    Pablos, Adrián; Lorenzo, Carlos; Martínez, Ignacio; Bermúdez de Castro, José María; Martinón-Torres, María; Carbonell, Eudald; Arsuaga, Juan Luis

    2012-10-01

    This paper presents and describes new foot fossils from the species Homo antecessor, found in level TD6 of the site of Gran Dolina (Sierra de Atapuerca, Burgos, Spain). These new fossils consist of an almost complete left talus (ATD6-95) and the proximal three-quarters of a right fourth metatarsal (ATD6-124). The talus ATD6-95 is tentatively assigned to Hominin 10 of the TD6 sample, an adult male specimen with which the second metatarsal ATD6-70+107 (already published) is also tentatively associated. Analysis of these fossils and other postcranial remains has made possible to estimate a stature similar to those of the specimens from the Middle Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). The morphology of the TD6 metatarsals does not differ significantly from that of modern humans, Neanderthals and the specimens from Sima de los Huesos. Talus ATD6-95, however, differs from the rest of the comparative samples in being long and high, having a long and wide trochlea, and displaying a proportionally short neck. PMID:22921478

  10. Modeling trophic resource availability for the first human settlers of Europe: the case of Atapuerca TD6.

    PubMed

    Rodríguez-Gómez, Guillermo; Rodríguez, Jesús; Martín-González, Jesús Ángel; Goikoetxea, Idoia; Mateos, Ana

    2013-06-01

    Food resource availability strongly influences the survival opportunities of all organisms. The effect of animal food resource availability on the survival and dispersal of hominin populations is hotly debated. In this article, we present a mathematical model that provides estimations of the maximum and minimum available resources for secondary consumers in a palaeocommunity. This model provides insights into the intensity of competition and the available niche space for hominins in Europe during the early Galerian (1.2-0.8 Ma). Published data from the Atapuerca TD6 assemblage were used in combination with the model to investigate trophic dynamics and resource availability for a Homo antecessor population 800,000 years ago. The effect on our results of the possible presence at Atapuerca of some large carnivores not recorded in the fossil assemblage is also evaluated. Results indicate the existence of a rich ecosystem at Atapuerca at the end of the Early Pleistocene. Secondary production was abundant enough to maintain a hunter-gatherer population and a rich carnivore guild more diverse than that recorded in the TD6 assemblage. Based on these results, the practice of cannibalism by H. antecessor cannot be explained by a long-term scarcity of resources. High food availability at TD6 implies a low to moderate level of competition for resources between carnivores and humans. According to this interpretation, an empty niche for a highly carnivorous omnivore existed in Europe during the early Galerian, and it was successfully exploited by Homo. PMID:23541385

  11. Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences

    PubMed Central

    Prönneke, Alvar; Scheuer, Bianca; Wagener, Robin J.; Möck, Martin; Witte, Mirko; Staiger, Jochen F.

    2015-01-01

    Neocortical GABAergic interneurons have a profound impact on cortical circuitry and its information processing capacity. Distinct subgroups of inhibitory interneurons can be distinguished by molecular markers, such as parvalbumin, somatostatin, and vasoactive intestinal polypeptide (VIP). Among these, VIP-expressing interneurons sparked a substantial interest since these neurons seem to operate disinhibitory circuit motifs found in all major neocortical areas. Several of these recent studies used transgenic Vip-ires-cre mice to specifically target the population of VIP-expressing interneurons. This makes it necessary to elucidate in detail the sensitivity and specificity of Cre expression for VIP neurons in these animals. Thus, we quantitatively compared endogenous tdTomato with Vip fluorescence in situ hybridization and αVIP immunohistochemistry in the barrel cortex of VIPcre/tdTomato mice in a layer-specific manner. We show that VIPcre/tdTomato mice are highly sensitive and specific for the entire population of VIP-expressing neurons. In the barrel cortex, approximately 13% of all GABAergic neurons are VIP expressing. Most VIP neurons are found in layer II/III (∼60%), whereas approximately 40% are found in the other layers of the barrel cortex. Layer II/III VIP neurons are significantly different from VIP neurons in layers IV–VI in several morphological and membrane properties, which suggest layer-dependent differences in functionality. PMID:26420784

  12. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.

    PubMed

    El-Shishtawy, Reda M; Elroby, Shaaban A; Asiri, Abdullah M; Müllen, Klaus

    2016-01-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1-SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (-4.26 eV) of the conduction band of TiO₂ nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO₂ in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices. PMID:27043556

  13. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    PubMed Central

    El-Shishtawy, Reda M.; Elroby, Shaaban A.; Asiri, Abdullah M.; Müllen, Klaus

    2016-01-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV) of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices. PMID:27043556

  14. First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels

    NASA Astrophysics Data System (ADS)

    Li, Zhendong; Liu, Wenjian

    2014-07-01

    Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, particle-hole/particle-particle random phase approximation, and time-dependent density functional theory/Hartree-Fock levels of theory. Note that, to get the Pulay terms arising from the derivatives of basis functions, the standard response theory designed for electronic perturbations has to be extended to nuclear derivatives. The results are further recast into a Lagrangian form that is similar to that for excited-state energy gradients and allows to use atomic orbital based direct algorithms for large molecules.

  15. Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores.

    PubMed

    Basile, Franco; Zhang, Shaofeng; Shin, Yong-Seung; Drolet, Barbara

    2010-04-01

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry (MS) are coupled and used for the rapid analysis of Bacillus subtilis spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile compounds and/or pyrolysis products with soft-ionization MS detection. In the AP-TD/ESI-MS approach, an electrospray solvent plume was used as the ionization vehicle of thermally desorbed neutrals at atmospheric pressure prior to mass spectrometric analysis using a quadrupole ion trap mass spectrometer. The approach is quantitative with the volatile standard dimethyl methylphosphonate (DMMP) and with the use of an internal standard (diethyl methylphosphonate, DEMP). A linear response was obtained as tested in the 1-50 ppm range (R(2) = 0.991) with a standard error of the estimate of 0.193 (0.9% RSD, n = 5). Bacterial spores were detected by performing pyrolysis in situ methylation with the reagent tetramethylammonium hydroxide (TMAH) for the detection of the bacterial spore biomarker dipicolinic acid (DPA) as the dimethylated derivative (2Me-DPA). This approach allowed spore detection even in the presence of growth media in crude lyophilized samples. Repetitive analyses could be performed with a duty cycle of less than 5 min total analysis time (including sample loading, heating and data acquisition). This strategy proved successful over other direct ambient MS approaches like DESI-MS and AP-TD/ESI-MS without the in situ derivatization step to detect the dipicolinic acid biomarker from spores. A detection limit for the dimethylated DPA biomarker was estimated at 1 ppm (equivalent to 0.01 mug of DPA deposited in the thermal desorption tube), which corresponded to a calculated detection limit of 10(5) spores deposited or 0.1% by weight spore composition in solid samples (assuming a 1 mg sample size). The AP-TD/ESI source used in conjunction with the in situ

  16. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  17. DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application

    NASA Astrophysics Data System (ADS)

    Dulski, Mateusz; Kempa, Marta; Kozub, Patrycja; Wójcik, Justyna; Rojkiewicz, Marcin; Kuś, Piotr; Szurko, Agnieszka; Ratuszna, Alicja; Wrzalik, Roman

    2013-03-01

    Spectral characteristics study of meso-tetraphenylporphyrin derivatives (TPP1 and TPP2) used as photosensitizers for utilization in photodynamic therapy (PDT) has been performed by density functional theory (DFT) and time dependent DFT (TD-DFT) calculations at B3LYP/6-31G(d) level of theory using PCM solvation model. The geometrical parameters of porphyrins have been studied for ground and excited-state geometry to deduce the influence of various substituents as well as solvent effect on the deformation of porphyrin ring. Two theoretical approaches - linear response (LR) and external iteration (EI) - have been performed to replicate absorption and fluorescence emission spectra. Experimental and theoretical investigations have shown that EI method reproduces the absorption energies very well for both singlet-singlet and triplet-triplet transitions, whereas the LR approach is more coherent with experimental fluorescence emission spectra. Spectral features and HOMO-LUMO band gap analysis have shown that TPP1 can be more useful in PDT. Calculations have revealed that two the highest occupied and two the lowest unoccupied molecular orbitals are responsible for the Q-band absorption and are located mainly on the porphyrin ring. In order to verify the substituent effect on the activity of tested compounds in their ground and excited states, the molecular electrostatic potential surfaces have been analyzed.

  18. Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics.

    PubMed

    Alaraby Salem, M; Brown, Alex

    2015-10-14

    Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool characterized by deep tissue penetration and little damage. However, two-photon spectroscopy has lower sensitivity than one-photon microscopy alternatives and hence a protein with a large two-photon absorption cross-section is needed. We use time-dependent density functional theory (TD-DFT) at the B3LYP/6-31+G(d,p) level of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the green fluorescent protein (GFP) chromophore with a non-canonical amino acid. A proposed chromophore with a nitro substituent was found to have a large two-photon absorption cross-section (29 GM) compared to other fluorescent protein chromophores as determined at the same level of theory. Classical molecular dynamics are then performed on a nitro-modified fluorescent protein to test its stability and study the effect of the conformational flexibility of the chromophore on its two-photon absorption cross-section. The theoretical results show that the large cross-section is primarily due to the difference between the permanent dipole moments of the excited and ground states of the nitro-modified chromophore. This large difference is maintained through the various conformations assumed by the chromophore in the protein cavity. The nitro-derived protein appears to be very promising as a two-photon absorption probe. PMID:26370051

  19. Multiple density layered insulator

    DOEpatents

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  20. Multiple density layered insulator

    DOEpatents

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  1. Improvement in Hole-Transport Property of Fullerene Materials by Hydrogenation: A Density Functional Theory Study on Fullerene Hydride C60H4

    NASA Astrophysics Data System (ADS)

    Tokunaga, Ken; Kawabata, Hiroshi; Matsushige, Kazumi

    2008-05-01

    The novel and convenient method for improving the hole-transport property of fullerene C60 [K. Tokunaga et al.: Jpn. J. Appl. Phys. 47 (2008) 1089], that is the hydrogenation of C60, was extended to fullerene hydride C60H4. On the basis of Marcus theory, the reorganization energy (λ) and the hole-transfer rate constant (kht) of nine isomers were calculated by the density functional theory [B3LYP/6-311G(d)], assuming that the electronic coupling (HAB) was the same as that of C60. Almost all isomers of C60H4 have smaller λ and larger kht than C60. This originates from the fact that the hydrogenation results in the localization of a part of the injected carrier on the added H atoms. Remarkably, isomer 1, the major product of C60H4, has the smallest λ (83 meV) which is over 50% less than C60, and its kht is 3.28 times as large as that of C60. It was also found that isomers with the delocalized distribution of the highest occupied molecular orbital (HOMO) tend to have smaller λ, so that the hydrogenation which leaves the uniformity of the HOMO distribution of the original C60 is very effective for the improvement. It gives a clear guideline for the theoretical design of useful materials, and could open a way to the engineering of organic devices.

  2. The evolution of solid density within a thermal explosion. I. Proton radiography of pre-ignition expansion, material motion, and chemical decomposition

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2012-05-01

    We report proton transmission images obtained during direct heating of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) prior to the ignition of a thermal explosion. We describe the application of proton radiography using the 800 MeV proton accelerator at Los Alamos National Laboratory to obtain transmission images in these thermal explosion experiments. We have obtained images at two spatial magnifications and viewing both the radial and the transverse axes of a solid cylindrical sample encased in aluminum. During heating we observe the slow evolution of proton transmission through the samples, with particular detail during material flow associated with the HMX β-δ phase transition. We also directly observe the loss of solid density to decomposition associated with elevated temperatures in the volume defining the ignition location in these experiments. We measure a diameter associated with this volume of 1-2 mm, in agreement with previous estimations of the diameter using spatially resolved fast thermocouples.

  3. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Zhou, Xufeng; Cao, Hailiang; Wang, Guohua; Liu, Zhaoping

    2014-07-01

    A simple method has been developed to prepare graphene/activated carbon (AC) nanosheet composite as high-performance electrode material for supercapacitor. Glucose solution containing dispersed graphite oxide (GO) sheets is hydrothermally carbonized to form a brown char-like intermediate product, and finally converts to porous nanosheet composite by two-step chemical activation using KOH. In this composite, a layer of porous AC coats on graphene to from wrinkled nanosheet structure, with length of several micrometers and thickness of tens of nanometer. The composite has a relatively high packing density of ˜0.3 g cm-3 and large specific surface area of 2106 m2 g-1, as well as containing plenty of mesopores. It exhibits specific capacitance up to 210 F g-1 in aqueous electrolyte and 103 F g-1 in organic electrolyte, respectively, and the specific capacitance decreases by only 5.3% after 5000 cycles. These results indicate that the porous graphene/AC nanosheet composite prepared by hydrothermal carbonization and chemical activation can be applied for high performance supercapacitors.

  4. The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses

    NASA Astrophysics Data System (ADS)

    Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart

    2012-01-01

    This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.

  5. On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments.

    PubMed

    Ziegler, Tom; Seth, Michael; Krykunov, Mykhaylo; Autschbach, Jochen; Wang, Fan

    2009-04-21

    It is shown that it is possible to derive the basic eigenvalue equation of adiabatic time-dependent density functional theory within the Tamm-Dancoff approximation (TD-DFT/TD) from a variational principle. The variational principle is applied to the regular Kohn-Sham formulation of DFT energy expression for a single Slater determinant and leads to the same energy spectrum as TD-DFT/TD. It is further shown that this variational approach affords the same electric and magnetic transition moments as TD-DFT/TD. The variational scheme can also be applied without the Tamm-Dancoff approximation. Practical implementations of TD-DFT are limited to second order response theory which introduces errors in transition energies for charge transfer and Rydberg excitations. It is indicated that higher order terms can be incorporated into the variational approach. It is also discussed how the current variational method is related to traditional DFT schemes based on variational principles such as DeltaSCF-DFT, and how they can be combined. PMID:19388731

  6. Technical Note: Exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials

    SciTech Connect

    Saito, Masatoshi; Tsukihara, Masayoshi

    2014-07-15

    Purpose: For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted CT number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide ρ{sub e} range. The purpose of this study is to address the limitations of the conversion method with respect to atomic number (Z) by elucidating the role of partial photon interactions in the ΔHU–ρ{sub e} conversion process. Methods: The authors performed numerical analyses of the ΔHU–ρ{sub e} conversion for 105 human body tissues, as listed in ICRU Report 46, and elementary substances with Z = 1–40. Total and partial attenuation coefficients for these materials were calculated using the XCOM photon cross section database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80–140 kV/Sn under well-calibrated and poorly calibrated conditions. Results: The accuracy of the resultant calibrated electron density,ρ{sub e}{sup cal}, for the ICRU-46 body tissues fully satisfied the IPEM-81 tolerance levels in radiotherapy treatment planning. If a criterion of ρ{sub e}{sup cal}/ρ{sub e} − 1 is assumed to be within ±2%, the predicted upper limit of Z applicable for the ΔHU–ρ{sub e} conversion under the well-calibrated condition is Z = 27. In the case of the poorly calibrated condition, the upper limit of Z is approximately 16. The deviation from the ΔHU–ρ{sub e} linearity for higher Z substances is mainly caused by the anomalous variation in the photoelectric-absorption component. Conclusions: Compensation among the three partial components of the photon interactions provides for sufficient linearity of the ΔHU–ρ{sub e} conversion to be applicable for most human tissues even for poorly conditioned scans in which there exists a large variation of effective x

  7. Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti:Sa systems (EDP-TD).

    PubMed

    Chvykov, Vladimir; Nagymihaly, Roland S; Cao, Huabao; Kalashnikov, Mikhail; Osvay, Karoly

    2016-02-22

    Combination of the scheme of extraction during pumping (EDP) and the Thin Disk (TD) technology is presented to overcome the limitations associated with thermal cooling of crystal and transverse amplified spontaneous emission in high average power laser systems based on Ti:Sa amplifiers. The optimized design of high repetition rate 1-10 PW Ti:Sapphire EDP-TD power amplifiers are discussed, including their thermal dynamic behavior. PMID:26907029

  8. Absence of Change in Total Daily Energy Expenditure (EE(sub TD)) in Young and Mature Rats During 14 Days of Hypergravity

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Moran, M. M.; Stein, T. P.; Hoban-Higgins, T. M.; Fuller, P.; Fuller, C. A.; Dalton, Bonnie P. (Technical Monitor)

    1999-01-01

    Effect of age on the response of EE(sub TD) to an increase in gravity was assessed in young (Y; 1.5 month old) and mature (M; 8 month old) Sprague-Dawley rats. Rats were implanted with transmitters to monitor activity, and metabolism was determined by the double labeled water technique. Daily food intake was measured. For each age, rats (n=8 per treatment) were exposed to centrifugation at 2G, or remained at 1G. There was a difference in EE(sub TD) between age groups, 182 plus or minus 11 and 143 plus or minus 5 kcal/kg/day in Y and M, respectively. This difference was attributed in part to a lower activity level in M animals, 48% of Y rats. After day 6 there was no effect on EE(sub TD) of exposure to 2G, or on food intake per 100g BW. Prior studies show a 20% increase in resting EE with hypergravity. In our study the level of activity was reduced to 41% of 1G in both age groups during 2G. For Y at 1G resting EE accounted for 78% of the EE(sub TD) and activity 22%, while at 2G resting EE was 96% of EE(sub TD) and activity 4%. M rats had similar changes. Independent of age, with exposure to hypergravity EE(sub TD) is maintained by behavioral changes.

  9. Density on Dry Land.

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Crockett, Cynthia D.; Sadler, Philip M.

    2003-01-01

    Presents activities to dispel student misconceptions about density, particularly as it applies to buoyancy. Finds that misconceptions fall under three categories: (1) size; (2) shape; and (3) material. (NB)

  10. The Interface between Neighborhood Density and Optional Infinitives: Normal Development and Specific Language Impairment

    ERIC Educational Resources Information Center

    Hoover, Jill R.; Storkel, Holly L.; Rice, Mabel L.

    2012-01-01

    The effect of neighborhood density on optional infinitives was evaluated for typically developing (TD) children and children with Specific Language Impairment (SLI). Forty children, twenty in each group, completed two production tasks that assessed third person singular production. Half of the sentences in each task presented a dense verb, and…

  11. Synthesis, characterization, and properties of peroxo-based oxygen-rich compounds for potential use as greener high energy density materials

    NASA Astrophysics Data System (ADS)

    Gamage, Nipuni-Dhanesha Horadugoda

    One main aspect of high energy density material (HEDM) design is to obtain greener alternatives for HEDMs that produce toxic byproducts. Primary explosives lead azide, lead styphnate, and mercury fulminate contain heavy metals that cause heavy metal poisoning. Leaching of the widely used tertiary explosive NH4ClO4 into groundwater has resulted in human exposure to ClO4-- ions, which cause disruptions of thyroid related metabolic pathways and even thyroid cancer. Many research efforts to find replacements have gained little success. Thus, there is a need for greener HEDMs. Peroxo-based oxygen-rich compounds are proposed as a potential new class of greener HEDMs due to the evolution of CO2 and/or CO, H2O, and O 2 as the main decomposition products. Currently, triacetone triperoxide (TATP), diacetone diperoxide (DADP), hexamethylene triperoxide diamine (HMTD), and methyl ethyl ketone peroxide (MEKP) are the only well-studied highly energetic peroxides. However, due to their high impact and friction sensitivities, low thermal stabilities, and low detonation velocities they have not found any civil or military HEDM applications. In this dissertation research, we have synthesized and fully characterized four categories of peroxo-based compounds: tert-butyl peroxides, tert-butyl peroxy esters, hydroperoxides, and peroxy acids to perform a systematic study of their sensitivities and the energetic properties for potential use as greener HEDMs. tert-Butyl peroxides were not sensitive to impact, friction, or electrostatic spark. Hence, tert-butyl peroxides can be described as fairly safe peroxo-based compounds to handle. tert-Butyl peroxy esters were all surprisingly energetic (4896--6003 m/s), despite the low oxygen and nitrogen contents. Aromatic tert -butyl peroxy esters were much lower in impact and friction sensitivities with respect to the known peroxo-based explosives. These are among the first low sensitivity peroxo-based compounds that can be categorized as secondary

  12. Table-top Generation and Spectroscopic Study of ~10 TPa High-Energy Density Materials with C60 Hypervelocity (v ~ 100 km/s) Impact

    NASA Astrophysics Data System (ADS)

    Bae, Young

    2013-06-01

    Intense bursts of soft x-rays were discovered by Bae et al. in hypervelocity (v ~ 100 km/s) impact of bio and water nanoparticles at the Brookhaven National Lab (BNL) in 1994. In the experiment, the nanoparticles were directly impacted on and detected by Si particle detectors that also detected the soft x-rays. Energy deposition measurements through thin films revealed that the impact generated pressures were ~10 TPa, and the photon energies in the range of 75-100 eV for Si targets. The conversion efficiency from the kinetic energy to the radiation energy was unexpectedly high, ~38%, which was attributed to Dicke Superradiance of collective quantum states in High-Energy Density Materials (HEDM), Metastable Innershell Molecular States (MIMS). This talk presents recent experimental results obtained in a table-top apparatus completely different from and orders of magnitude smaller than that at BNL. In the new setup, hypervelocity (v 100 km/s) C60+ ions impacted on Al targets, and the impact generated soft x-rays were detected off-axis and analyzed using three Si photodiode detectors with selective energy response curves. The photon energy was determined to be ~70 eV with the kinetic-energy to photon-energy conversion efficiency of ~35% in confirmation of the results by Bae et al. at BNL. The present results demonstrate a new way of generation and spectroscopic study of HEDM with pressures exceeding 10 TPa, and show the pathway to scaling up the soft x-ray generation method for a wide range of applications from lithography to inertial fusion. This work was supported by DTRA under the contract HDTRA1-12-C-0094.

  13. Mass Flux Stability at the T_d Conductance Transition in Solid ^3He-^4He Mixtures

    NASA Astrophysics Data System (ADS)

    Vekhov, Yegor; Hallock, R. B.

    2016-05-01

    Measurements of the ^4He mass flux through a cell filled with solid ^3He-^4He mixtures in the ^3He concentration range 0.17-220 ppm have demonstrated a reversible dramatic decrease in the flux on cooling through a concentration-dependent temperature T_d, close to the mixture phase separation temperature. For low ^3He concentrations, the flux change transition is complete within 2 mK. We report on the stability of the flux for fixed temperatures in this transition region.

  14. DFT and TD-DFT computation of charge transfer complex between o-phenylenediamine and 3,5-dinitrosalicylic acid

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Alam, Mohammad Jane; Zulkarnain, Faizan, Mohd.; Ahmad, Afaq; Ahmad, Shabbir

    2016-05-01

    DFT and TD-DFT studies of o-phenylenediamine (PDA), 3,5-dinitrosalicylic acid (DNSA) and their charge transfer complex have been carried out at B3LYP/6-311G(d,p) level of theory. Molecular geometry and various other molecular properties like natural atomic charges, ionization potential, electron affinity, band gap, natural bond orbital (NBO) and frontier molecular analysis have been presented at same level of theory. Frontier molecular orbital and natural bond orbital analysis show the charge delocalization from PDA to DNSA.

  15. Relation of structure to mechanical properties of thin thoria dispersion strengthened nickel-chromium (TD-NiCr alloy sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1975-01-01

    A study of the relation between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties depend primarily on the grain aspect ratio and sheet thickness. In general, the strength properties increased with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures. A threshold stress for creep appears to exist. Even small amounts of prior creep deformation at elevated temperatures can produce severe creep damage.

  16. TD-DFT study on electron transfer mobility and intramolecular hydrogen bond of substituted indigo derivatives

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Li, Hui; Yang, Yonggang; Li, Donglin; Liu, Yufang

    2015-10-01

    The density functional theory (DFT) and time-dependent density functional theory (TDDFT) method were carried out to investigate the ground and excited states of indigo and its derivative molecules. The results demonstrate that the intramolecular hydrogen bond I is weakened and the intramolecular hydrogen bond II is strengthened upon photo-excitation to the S1 state. In the absorption spectra, the substitution at R4R4, of indigo causes a significant redshift. In addition, the halogen substitution obviously increases the electron transfer mobility of indigo. It is proved that the halogen substitution may be a new method to design high performance organic semiconductors.

  17. Synthesis, characterization, and properties of peroxo-based oxygen-rich compounds for potential use as greener high energy density materials

    NASA Astrophysics Data System (ADS)

    Gamage, Nipuni-Dhanesha Horadugoda

    One main aspect of high energy density material (HEDM) design is to obtain greener alternatives for HEDMs that produce toxic byproducts. Primary explosives lead azide, lead styphnate, and mercury fulminate contain heavy metals that cause heavy metal poisoning. Leaching of the widely used tertiary explosive NH4ClO4 into groundwater has resulted in human exposure to ClO4-- ions, which cause disruptions of thyroid related metabolic pathways and even thyroid cancer. Many research efforts to find replacements have gained little success. Thus, there is a need for greener HEDMs. Peroxo-based oxygen-rich compounds are proposed as a potential new class of greener HEDMs due to the evolution of CO2 and/or CO, H2O, and O 2 as the main decomposition products. Currently, triacetone triperoxide (TATP), diacetone diperoxide (DADP), hexamethylene triperoxide diamine (HMTD), and methyl ethyl ketone peroxide (MEKP) are the only well-studied highly energetic peroxides. However, due to their high impact and friction sensitivities, low thermal stabilities, and low detonation velocities they have not found any civil or military HEDM applications. In this dissertation research, we have synthesized and fully characterized four categories of peroxo-based compounds: tert-butyl peroxides, tert-butyl peroxy esters, hydroperoxides, and peroxy acids to perform a systematic study of their sensitivities and the energetic properties for potential use as greener HEDMs. tert-Butyl peroxides were not sensitive to impact, friction, or electrostatic spark. Hence, tert-butyl peroxides can be described as fairly safe peroxo-based compounds to handle. tert-Butyl peroxy esters were all surprisingly energetic (4896--6003 m/s), despite the low oxygen and nitrogen contents. Aromatic tert -butyl peroxy esters were much lower in impact and friction sensitivities with respect to the known peroxo-based explosives. These are among the first low sensitivity peroxo-based compounds that can be categorized as secondary

  18. Advanced Research and Technology Development Fossil Energy Materials Program. Quarterly progress report ending June 30, 1984

    SciTech Connect

    Not Available

    1984-08-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating subcontractor organizations. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982 to 1986, in which projects are organized according to fossil energy technologies. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  19. TdT is required for the establishment of private virus-specific CD8+ TCR repertoires and facilitates optimal CTL responses1

    PubMed Central

    Kedzierska, Katherine; Thomas, Paul G.; Venturi, Vanessa; Davenport, Miles P.; Doherty, Peter C.; Turner, Stephen J.; La Gruta, Nicole L.

    2008-01-01

    Virus-immune CD8+ TCR repertoires specific for particular peptide-MHC class I complexes may be substantially shared between (public), or unique to, individuals (private). Since public TCRs can show reduced terminal deoxynucleotidyl transferase (TdT)-mediated N-region additions, we analysed how TdT shapes the heavily public (to DbNP366) and essentially private (to DbPA224) CTL repertoires generated following influenza A virus infection of C57Bl/6 (B6, H2b) mice. The DbNP366-specific CTL response was virtually clonal in TdT−/− B6 animals, with one of the three public clonotypes prominent in the wt response consistently dominating the TdT−/− set. Furthermore, this massive narrowing of TCR selection for DbNP366 reduced the magnitude of DbNP366-specific CTL response in the virus-infected lung. Conversely, the DbPA224-specific responses remained comparable in both magnitude and TCR diversity within individual TdT−/− and wt mice. However, the extent of TCR diversity across the total population was significantly reduced, with the consequence that the normally private wt DbPA224-specific repertoire was now substantially public across the TdT−/− mouse population. The overall conclusion is thus that the role of TdT in ensuring enhanced diversity and the selection of private TCR repertoires promotes optimal CD8+ T cell immunity, both within individuals and across the species as a whole. PMID:18684946

  20. Identification of a Protein Network Interacting with TdRF1, a Wheat RING Ubiquitin Ligase with a Protective Role against Cellular Dehydration1[C][W

    PubMed Central

    Guerra, Davide; Mastrangelo, Anna Maria; Lopez-Torrejon, Gema; Marzin, Stephan; Schweizer, Patrick; Stanca, Antonio Michele; del Pozo, Juan Carlos; Cattivelli, Luigi; Mazzucotelli, Elisabetta

    2012-01-01

    Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known. In this work, we characterized durum wheat (Triticum durum) RING Finger1 (TdRF1) as a durum wheat nuclear ubiquitin ligase. Moreover, its barley (Hordeum vulgare) homolog was shown to protect cells from dehydration stress. A protein network interacting with TdRF1 has been defined. The transcription factor WHEAT BEL1-TYPE HOMEODOMAIN1 (WBLH1) was degraded in a TdRF1-dependent manner through the 26S proteasome in vivo, the mitogen-activated protein kinase TdWNK5 [for Triticum durum WITH NO LYSINE (K)5] was able to phosphorylate TdRF1 in vitro, and the RING-finger protein WHEAT VIVIPAROUS-INTERACTING PROTEIN2 (WVIP2) was shown to have a strong E3 ligase activity. The genes coding for the TdRF1 interactors were all responsive to cold and/or dehydration stress, and a negative regulative function in dehydration tolerance was observed for the barley homolog of WVIP2. A role in the control of plant development was previously known, or predictable based on homology, for wheat BEL1-type homeodomain1(WBLH1). Thus, TdRF1 E3 ligase might act regulating the response to abiotic stress and remodeling plant development in response to environmental constraints. PMID:22167118

  1. An in vitro investigation of the cardiovascular effects of the 5-HT(4) receptor selective agonists, velusetrag and TD-8954.

    PubMed

    Beattie, D T; Higgins, D L; Ero, M P; Amagasu, S M; Vickery, R G; Kersey, K; Hopkins, A; Smith, J A M

    2013-01-01

    The 5-HT(4) receptor agonists, and gastrointestinal (GI) prokinetic agents, cisapride and tegaserod, lack selectivity for the 5-HT(4) receptor. Cisapride is a potent human ether-à-go-go-related gene (hERG) potassium channel inhibitor while cisapride and tegaserod have significant affinity for 5-HT(1) and 5-HT(2) receptor subtypes. Marketing of both compounds was discontinued due to cardiovascular concerns (cardiac arrhythmias with cisapride and ischemic events with tegaserod). The reported association of tegaserod with ischemia has been postulated to involve coronary artery constriction or augmentation of platelet aggregation. This in vitro study investigated the effects of two of the new generation of highly selective 5-HT(4) receptor agonists, velusetrag and TD-8954, on canine, porcine and human coronary artery tone, human platelet aggregation and hERG potassium channel conductance. No significant off-target actions of velusetrag or TD-8954 were identified in these, and prior, studies. While cisapride inhibited potently the hERG channel currents, tegaserod failed to affect platelet aggregation, and had only a small contractile effect on the canine coronary artery at high concentrations. Tegaserod inhibited the 5-HT-induced contractile response in the porcine coronary artery. New generation 5-HT(4) receptor agonists hold promise for the treatment of patients suffering from GI motility disorders with a reduced cardiovascular risk. PMID:23201772

  2. Visualization of electronic density

    DOE PAGESBeta

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  3. Theoretical assessment of the selective fluorescence quenching of 1-amino-8-naphthol-3,6-disulfonic acid (H-Acid) complexes with Zn(2+), Cd(2+), and Hg(2+): A DFT and TD-DFT study.

    PubMed

    Zarabadi-Poor, Pezhman; Barroso-Flores, Joaquín

    2014-12-26

    Density functional theory (DFT) and time-dependent (TD)-DFT calculations at the PBE0/6-31++G** aug-cc-PVDZ (along with corresponding ECP for metal ions) level of theory were carried out to investigate the differences in structure, bonding, and fluorescence behavior of 1-amino-8-naphthol-3,6-disulfonic acid (H-acid) (1) when coordinated to Zn(2+) (2), Cd(2+) (3), and Hg(2+) (4) in a simulated continuous aqueous media (PCM). Ground and excited state calculations were performed on all compounds in order to gain insight on their bonding properties, as well as on their photochemical behavior, since we previously reported that complexation of Hg(2+) quenches the fluorescence properties of ligand (1), while at the same time exhibits a different coordination pattern than the two other remaining complexes. Changes in the excited states' radiative lifetime upon coordination to different metals account for this selective quenching. PMID:25479191

  4. Template-Assisted Direct Growth of 1 Td/in(2) Bit Patterned Media.

    PubMed

    Yang, En; Liu, Zuwei; Arora, Hitesh; Wu, Tsai-Wei; Ayanoor-Vitikkate, Vipin; Spoddig, Detlef; Bedau, Daniel; Grobis, Michael; Gurney, Bruce A; Albrecht, Thomas R; Terris, Bruce

    2016-07-13

    We present a method for growing bit patterned magnetic recording media using directed growth of sputtered granular perpendicular magnetic recording media. The grain nucleation is templated using an epitaxial seed layer, which contains Pt pillars separated by amorphous metal oxide. The scheme enables the creation of both templated data and servo regions suitable for high density hard disk drive operation. We illustrate the importance of using a process that is both topographically and chemically driven to achieve high quality media. PMID:27295317

  5. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  6. PRODUCTION PROCESS MONITORING OF MULTILAYERED MATERIALS USING TIME-DOMAIN TERAHERTZ GAUGES

    SciTech Connect

    Zimdars, David; Duling, Irl; Fichter, Greg; White, Jeffrey

    2010-02-22

    The results of both a laboratory and factory trial of a time-domain terahertz (TD-THz) multi-layer gauge for on-line process monitoring are presented. The TD-THz gauge is demonstrated on a two layer laminated plastic insulation material. The TD-THz gauge simultaneously measured the total and the individual layer thicknesses. Measurements were made while transversely scanning across a 12 foot wide sheet extruded at high speed in a factory environment. The results were analyzed for precision, accuracy, and repeatability; and demonstrated that the TD-THz gauge performed in an equivalent or superior manner to existing ionizing radiation gauges (which measure only one layer). Many dielectric materials (e.g., plastic, rubber, paper, paint) are transparent to THz pulses, and the measurement of a wide range of samples is possible.

  7. Production Process Monitoring of Multilayered Materials Using Time-Domain Terahertz Gauges

    NASA Astrophysics Data System (ADS)

    Zimdars, David; Duling, Irl; Fichter, Greg; White, Jeffrey

    2010-02-01

    The results of both a laboratory and factory trial of a time-domain terahertz (TD-THz) multi-layer gauge for on-line process monitoring are presented. The TD-THz gauge is demonstrated on a two layer laminated plastic insulation material. The TD-THz gauge simultaneously measured the total and the individual layer thicknesses. Measurements were made while transversely scanning across a 12 foot wide sheet extruded at high speed in a factory environment. The results were analyzed for precision, accuracy, and repeatability; and demonstrated that the TD-THz gauge performed in an equivalent or superior manner to existing ionizing radiation gauges (which measure only one layer). Many dielectric materials (e.g., plastic, rubber, paper, paint) are transparent to THz pulses, and the measurement of a wide range of samples is possible.

  8. Quantum lattice fluctuations in a 1-dimensional charge-density-wave material: Luminescence and resonance Raman studies of an MX solid

    SciTech Connect

    Long, F.H.; Love, S.P.; Swanson, B.I.

    1993-01-01

    Luminescence spectra, both emission and excitation, and the excitation dependence of the resonance Raman (RR) spectra were measured for a 1-dimensional charge-density-wave solid, [Pt(L)[sub 2]Cl[sub 2

  9. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

    PubMed

    Moral, M; Muccioli, L; Son, W-J; Olivier, Y; Sancho-García, J C

    2015-01-13

    New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet-triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet-triplet transition. Finally, we quantitatively correlate the singlet-triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies. PMID:26574215

  10. Expedient synthesis of novel pregnane-NSAIDs prodrugs, XRD, stereochemistry of their C-20 derivatives by circular dichroism, conformational analysis, their DFT and TD-DFT studies

    NASA Astrophysics Data System (ADS)

    Singh, Ranvijay Pratap; Sharma, Sonia; Kant, Rajni; Amandeep; Singh, Praveer; Sethi, Arun

    2016-02-01

    Four novel pregnane-NSAIDs prodrugs 3β-(2-(6-methoxynaphthalene-2yl) propionoxy)-16α-methoxy-pregn-5-ene-20-one (3), 16α-methoxy-pregn-5-ene-20-one-3yl-2(4-iso butyl phenyl) propanoate (4), 3β-(2-(6-methoxynaphthalene-2yl) propionoxy) 20-hydroxy-16α-methoxy-pregn-5-ene (5) and 20-hydroxy-16α-methoxy-pregn-5-ene-20-one-3yl-2(4-iso butyl phenyl) propanoate (6) have been synthesized. They were analyzed experimentally by spectroscopic techniques like 1H, 13C NMR, FT-IR, UV-visible spectroscopy, mass spectrometry and correlated by theoretical calculations. The structure and conformations of 3 was established by single crystal X-ray diffraction, which crystallized in orthorhombic form having P212121 space group. Absolute configuration of C-20 hydroxy derivatives 5 and 6 was established by circular dichroism (CD) analysis. Conformational analysis of 5 was carried out to determine the most stable conformation. The electronic properties, such as frontier orbitals, band gap energies, oscillator strength and wavelength have been calculated using time dependent density functional theory (TD-DFT). The vibrational wavenumbers have been calculated using DFT method and assigned with the help of potential energy distribution (PED). Global and local reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule. First hyperpolarizability (β0) of synthesized compounds has been computed to evaluate non-linear optical (NLO) response. Molecular electrostatic potential (MEP) for synthesized compounds have also been determined to check their electrophilic or nucleophilic reactivity as well as reaction path.

  11. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2.

    PubMed

    Jana, Manoj K; Singh, Anjali; Late, Dattatray J; Rajamathi, Catherine R; Biswas, Kanishka; Felser, Claudia; Waghmare, Umesh V; Rao, C N R

    2015-07-22

    The recent discovery of non-saturating giant positive magnetoresistance has aroused much interest in Td-WTe(2). We have investigated structural, electronic and vibrational properties of bulk and few-layer Td-WTe(2) experimentally and theoretically. Spin-orbit coupling is found to govern the semi-metallic character of Td-WTe(2) and its structural link with the metallic 1 T form provides an understanding of its structural stability. There is a metal-to-insulator switch-over in the electrical conductivity and a change in the sign of the Seebeck coefficient around 373 K. Lattice vibrations of Td-WTe(2) have been analyzed using first-principles calculations. Out of the 33 possible zone-center Raman active modes, five distinct Raman bands are observed around 112, 118, 134, 165 and 212 cm(-1) in bulk Td-WTe(2). Based on symmetry analysis and calculated Raman tensors, we assign the intense bands at 165 cm(-1) and 212 cm(-1) to the A'(1)and A''(1) modes, respectively. Most of the Raman bands stiffen with decreasing thickness, and the ratio of the integrated intensities of the A''(1) to A'(1) bands decreases in the few-layer sample, while all the bands soften in both the bulk and few-layer samples with increasing temperature. PMID:26102263

  12. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2

    NASA Astrophysics Data System (ADS)

    Jana, Manoj K.; Singh, Anjali; Late, Dattatray J.; Rajamathi, Catherine R.; Biswas, Kanishka; Felser, Claudia; Waghmare, Umesh V.; Rao, C. N. R.

    2015-07-01

    The recent discovery of non-saturating giant positive magnetoresistance has aroused much interest in Td-WTe2. We have investigated structural, electronic and vibrational properties of bulk and few-layer Td-WTe2 experimentally and theoretically. Spin-orbit coupling is found to govern the semi-metallic character of Td-WTe2 and its structural link with the metallic 1 T form provides an understanding of its structural stability. There is a metal-to-insulator switch-over in the electrical conductivity and a change in the sign of the Seebeck coefficient around 373 K. Lattice vibrations of Td-WTe2 have been analyzed using first-principles calculations. Out of the 33 possible zone-center Raman active modes, five distinct Raman bands are observed around 112, 118, 134, 165 and 212 cm-1 in bulk Td-WTe2. Based on symmetry analysis and calculated Raman tensors, we assign the intense bands at 165 cm-1 and 212 cm-1 to the A1\\prime and A1\\prime\\prime modes, respectively. Most of the Raman bands stiffen with decreasing thickness, and the ratio of the integrated intensities of the A1\\prime\\prime to A1\\prime bands decreases in the few-layer sample, while all the bands soften in both the bulk and few-layer samples with increasing temperature.

  13. FD-TD numerical simulation of an entire lightning strike on the C160 aircraft

    NASA Technical Reports Server (NTRS)

    Alliot, J. C.; Grando, J.; Muller, J. D.; Ferrieres, X.

    1991-01-01

    Experimental transient electromagnetic field measurements were performed on a Transall C160 aircraft during in-flight lightning strikes. The data allow a test of the predictive capabilities of a three dimensional time domain finite difference code (ALICE) developed at ONERA in order to investigate lightning-aircraft interactions. Using a transfer function technique in the 3D code, it is shown that a bi-leader attached to an aircraft can be simulated by a linear model, and so the electromagnetic fields can be calculated anywhere on the vehicle. Comparison of experimental and numerical results were made for several lightning strikes. Skin current density and electromagnetic field distributions are discussed in detail.

  14. Density Visualization

    ERIC Educational Resources Information Center

    Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A.

    2006-01-01

    Metal rods of high purity for many elements are now commercially available and may be used to construct a display of relative densities. We have constructed a display with nine metal rods (Mg, Al, Ti, V, Fe, Cu, Ag, Pb, and W) of equal mass whose densities vary from 1.74 to 19.3 g cm[superscript -3]. The relative densities of the metals may be…

  15. Merging Features from Green's Functions and Time Dependent Density Functional Theory: A Route to the Description of Correlated Materials out of Equilibrium?

    NASA Astrophysics Data System (ADS)

    Hopjan, M.; Karlsson, D.; Ydman, S.; Verdozzi, C.; Almbladh, C.-O.

    2016-06-01

    We propose a description of nonequilibrium systems via a simple protocol that combines exchange-correlation potentials from density functional theory with self-energies of many-body perturbation theory. The approach, aimed to avoid double counting of interactions, is tested against exact results in Hubbard-type systems, with respect to interaction strength, perturbation speed and inhomogeneity, and system dimensionality and size. In many regimes, we find significant improvement over adiabatic time dependent density functional theory or second Born nonequilibrium Green's function approximations. We briefly discuss the reasons for the residual discrepancies, and directions for future work.

  16. Merging Features from Green's Functions and Time Dependent Density Functional Theory: A Route to the Description of Correlated Materials out of Equilibrium?

    PubMed

    Hopjan, M; Karlsson, D; Ydman, S; Verdozzi, C; Almbladh, C-O

    2016-06-10

    We propose a description of nonequilibrium systems via a simple protocol that combines exchange-correlation potentials from density functional theory with self-energies of many-body perturbation theory. The approach, aimed to avoid double counting of interactions, is tested against exact results in Hubbard-type systems, with respect to interaction strength, perturbation speed and inhomogeneity, and system dimensionality and size. In many regimes, we find significant improvement over adiabatic time dependent density functional theory or second Born nonequilibrium Green's function approximations. We briefly discuss the reasons for the residual discrepancies, and directions for future work. PMID:27341247

  17. Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer

    SciTech Connect

    Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.; Govind, Niranjan; Neuhauser, Daniel

    2012-12-14

    We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offer a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.

  18. The solvatochromic, spectral, and geometrical properties of nifenazone: a DFT/TD-DFT and experimental study.

    PubMed

    Bani-Yaseen, Abdulilah Dawoud; Al-Balawi, Mona

    2014-08-01

    The solvatochromic, spectral, and geometrical properties of nifenazone (NIF), a pyrazole-nicotinamide drug, were experimentally and computationally investigated in several neat solvents and in hydro-organic binary systems such as water-acetonitrile and water-dioxane systems. The bathochromic spectral shift observed in NIF absorption spectra when reducing the polarity of the solvent was correlated with the orientation polarizability (Δf). Unlike aprotic solvents, a satisfactory correlation between λ(max) and Δf was determined (linear correlation of regression coefficient, R, equal to 0.93) for polar protic solvents. In addition, the medium-dependent spectral properties were correlated with the Kamlet-Taft solvatochromic parameters (α, β, and π*) by applying a multiple linear regression analysis (MLRA). The results obtained from this analysis were then employed to establish MLRA relationships for NIF in order to estimate the spectral shift in different solvents, which in turn exhibited excellent correlation (R > 0.99) with the experimental values of ν(max). Density functional theory (DFT) and time-dependent DFT theory calculations coupled with the integral equation formalism-polarizable continuum model (IEF-PCM) were performed to investigate the solvent-dependent spectral and geometrical properties of NIF. The calculations showed good and poor agreements with the experimental results using the CAM-B3LYP and B3LYP functionals, respectively. Experimental and theoretical results confirmed that the chemical properties of NIF are strongly dependent on the polarity of the chosen medium and its hydrogen bonding capability. This in turn supports the hypothesis of the delocalization of the electron density within the pyrazole ring of NIF. PMID:24954054

  19. Observations on the relationship of structure to the mechanical properties of thin TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1976-01-01

    A study of the relationship between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties are dependent on grain aspect ratio and sheet thickness. In general, the strength properties increase with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures (not less than 1144 K). Significant creep damage as determined by subsequent tensile testing at room temperature occurs after very small amounts (less than 0.1%) of prior creep deformation over the temperature range 1144-1477 K. A threshold stress for creep appears to exist. Creep exposure below the threshold stress at T not less than 1366 K results in almost full retention of room temperature tensile properties.

  20. Teaching of the subject "density difference caused by salinity", one of the reasons that plays role in the occurrence of currents in straits, seas and oceans by the use of a teaching material

    NASA Astrophysics Data System (ADS)

    Gumussoy, Verim

    2015-04-01

    Large masses of moving water in seas and oceans are called currents. Root causes of currents are steady winds that occur due to the global atmospheric system and the density differences caused by different heat and salinity levels of water masses. Different feeding and evaporation characteristics of seas and oceans result in salinity and density levels. As a result, subsurface currents occur in straits where seas with different salinity and density levels meet and in the nearby seas. The Bosporus in Istanbul where I live and the school I am working at is has these subsurface currents. In the Black Sea where the rivers the Danube, Dnieper, Don, Yesilirmak, Kizilirmak and Sakarya flow into and the evaporation level is less due to the latitude effect, salinity level is less compared to Marmara and Aegean Seas. As Marmara Sea has higher salt amount than Black Sea, there is a great density difference between these two seas. Marmara Sea has a higher concentration of salt and therefore a higher density than Black Sea. And this leads to occurrence of subsurface currents in the Bosporus. I get my students to carry out a small demonstration to help them understand the occurrence of ocean currents and currents in the seas and the Bosporus by the use of a material. We need very simple materials to carry out this demonstration. These are an aquarium, a bowl, water, salt, dye and a mixer. The demonstration is carried out as follows: we put water, salt and dye in the bowl and mix it well. The salt will increase the density of the water and the dye will help distinguish the salty water. Then we put tap water half way to the aquarium and pour the mixture in the bowl to the aquarium slowly. As a result, the colored salty water sinks down due to its higher density, setting an example of a subsurface current. Natural events occur in very long periods by great dynamic systems, making understanding of them difficult. It is important to use different kinds of materials that address to