Science.gov

Sample records for density spectral

  1. Difference of cross-spectral densities.

    PubMed

    Santarsiero, M; Piquero, G; de Sande, J C G; Gori, F

    2014-04-01

    Generally speaking, the difference between two cross-spectral densities (CSDs) does not represent a correlation function. We will furnish a sufficient condition so that such difference be a valid CSD. Using such a condition, we will show through some examples how new classes of CSDs can be generated. PMID:24686586

  2. The Spectral Density of a Difference of Spectral Projections

    NASA Astrophysics Data System (ADS)

    Pushnitski, Alexander

    2015-09-01

    Let H 0 and H be a pair of self-adjoint operators satisfying some standard assumptions of scattering theory. It is known from previous work that if belongs to the absolutely continuous spectrum of H 0 and H, then the difference of spectral projections in general is not compact and has non-trivial absolutely continuous spectrum. In this paper we consider the compact approximations of , given by where and is a smooth real-valued function which tends to as . We prove that the eigenvalues of concentrate to the absolutely continuous spectrum of as . We show that the rate of concentration is proportional to and give an explicit formula for the asymptotic density of these eigenvalues. It turns out that this density is independent of . The proof relies on the analysis of Hankel operators.

  3. Spectral density measurements of gyro noise

    NASA Technical Reports Server (NTRS)

    Truncale, A.; Koenigsberg, W.; Harris, R.

    1972-01-01

    Power spectral density (PSD) was used to analyze the outputs of several gyros in the frequency range from 0.01 to 200 Hz. Data were accumulated on eight inertial quality instruments. The results are described in terms of input angle noise (arcsec 2/Hz) and are presented on log-log plots of PSD. These data show that the standard deviation of measurement noise was 0.01 arcsec or less for some gyros in the passband from 1 Hz down 10 0.01 Hz and probably down to 0.001 Hz for at least one gyro. For the passband between 1 and 100 Hz, uncertainties in the 0.01 and 0.05 arcsec region were observed.

  4. Spectral density method to Anderson-Holstein model

    SciTech Connect

    Chebrolu, Narasimha Raju Chatterjee, Ashok

    2015-06-24

    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.

  5. Orbit spectral density versus stimulus identity and intensity

    NASA Astrophysics Data System (ADS)

    Lozowski, Andy G.

    2008-09-01

    A concept of orbit spectral density for a one-dimensional iterated function is presented. To compute orbit spectral density, a method of extracting low-order periodic orbits from the dynamical system defined by the iterated function is first used. All points of the dynamics are then partitioned among the periodic orbits according to a distance measure. Partition sizes estimate the density of trajectories around periodic orbits. Assigning these trajectory densities to the orbit indexes introduces the orbit spectral density. A practical computational example is presented in the context of a model olfactory system.

  6. A method of determining spectral dye densities in color films

    NASA Technical Reports Server (NTRS)

    Friederichs, G. A.; Scarpace, F. L.

    1977-01-01

    A mathematical analysis technique called characteristic vector analysis, reported by Simonds (1963), is used to determine spectral dye densities in multiemulsion film such as color or color-IR imagery. The technique involves examining a number of sets of multivariate data and determining linear transformations of these data to a smaller number of parameters which contain essentially all of the information contained in the original set of data. The steps involved in the actual procedure are outlined. It is shown that integral spectral density measurements of a large number of different color samples can be accurately reconstructed from the calculated spectral dye densities.

  7. Direct experimental determination of spectral densities of molecular complexes

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Brumer, Paul

    2014-11-01

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  8. Direct experimental determination of spectral densities of molecular complexes

    SciTech Connect

    Pachón, Leonardo A.; Brumer, Paul

    2014-11-07

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  9. Power spectral density of subsonic jet noise

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Yu, J. C.

    1985-01-01

    The power-spectrum density (PSD) of the far-field noise of a subsonic unheated axisymmetric jet is investigated by analysis of about 80 sets of published noise spectra and of spectra obtained using 12.7 and 25.4-mm-diameter compressed-air jets at exit velocities 66 and 104 m/s and 67 and 91 m/s, respectively, in the NASA Langley anechoic flow facility. The results are presented in tables and graphs and characterized in detail. Findings reported include Strouhal-number scaling of the PSD at theta = 30 deg or more, scaling with the product of the Helmholtz number and the Doppler factor at theta less than 30 deg, best collapse at source convection Mach number 0.5, variation of PSD amplitude as U to the 6.5th at theta = 90 deg, and no sharp PSD-amplitude variation at any critical Reynolds number.

  10. Spectral density of a Wishart model for nonsymmetric correlation matrices

    NASA Astrophysics Data System (ADS)

    Vinayak

    2013-10-01

    The Wishart model for real symmetric correlation matrices is defined as W=AAt, where matrix A is usually a rectangular Gaussian random matrix and At is the transpose of A. Analogously, for nonsymmetric correlation matrices, a model may be defined for two statistically equivalent but different matrices A and B as ABt. The corresponding Wishart model, thus, is defined as C=ABtBAt. We study the spectral density of C for the case when A and B are not statistically independent. The ensemble average of such nonsymmetric matrices, therefore, does not simply vanishes to a null matrix. In this paper we derive a Pastur self-consistent equation which describes spectral density of C at large matrix dimension. We complement our analytic results with numerics.

  11. Spectral density of the noncentral correlated Wishart ensembles

    NASA Astrophysics Data System (ADS)

    Vinayak

    2014-10-01

    Wishart ensembles of random matrix theory have been useful in modeling positive definite matrices encountered in classical and quantum chaotic systems. We consider nonzero means for the entries of the constituting matrix A which defines the correlated Wishart matrix as W =AA† , and refer to the ensemble of such Wishart matrices as the noncentral correlated Wishart ensemble (nc-CWE). We derive the Pastur self-consistent equation which describes the spectral density of nc-CWE at large matrix dimension.

  12. Earth formation density measurement from natural gamma ray spectral logs

    SciTech Connect

    Smith Jr., H. D.

    1985-07-02

    Naturally occurring gamma radiations from earth formations in the vicinity of a well borehole are detected and spectrally separated into six energy regions or bands. Borehole compensation techniques are applied to the gamma ray spectra and the attenuation coefficient /eta/ is determined as a result thereof. The attenuation coefficient is used along with predetermined borehole, casing and cement parameters to derive a measure of the density of the earth formations.

  13. Geometrical description in binary composites and spectral density representation

    SciTech Connect

    Tuncer, Enis

    2010-01-01

    In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities {var_epsilon}, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, {zeta} = ({var_epsilon}{sub e} - {var_epsilon}{sub m})({var_epsilon}{sub i} - {var_epsilon}{sub m}){sup -1}, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL) [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration

  14. Determining Ionospheric Irregularity Spectral Density Function from Japan GEONET

    NASA Astrophysics Data System (ADS)

    Lay, E. H.; Light, M. E.; Parker, P. A.; Carrano, C. S.; Haaser, R. A.

    2015-12-01

    Japan's GEONET GPS network is the densest GPS monitoring network in the world, with 1200+ receivers over the area of Japan. Measuring and calibrating the integrated total electron content (TEC) from each station has been done in many cases to provide detailed maps of ionospheric disturbances over Japan. We use TEC measurements from Japan's GEONET array to determine an empirically derived description of the 2-dimensional scale sizes of spatial irregularities above Japan. The contributions from various scale sizes will be included in a statistical description for the irregularity spectral density (ISD) function. We will compare the statistics of the spatial irregularities between calm and moderately scintillated conditions.

  15. Solar wind density spectra around the ion spectral break

    NASA Astrophysics Data System (ADS)

    Nemecek, Zdenek; Safrankova, Jana; Nemec, Frantisek; Prech, Lubomir; Pitna, Alexander; Chen, Christopher H. K.; Zastenker, Georgy N.

    2015-04-01

    The paper presents a large statistical analysis of ˜ 5800 frequency spectra of the solar wind density fluctuations in the range of 0.001-5 Hz (corresponding spatial scales 100-5×105 km). The analysis confirms that the spectrum consists of three segments divided by two breakpoints and that both breakpoint locations are controlled by the gyrostructure frequency, fg defined as a ratio of the solar wind bulk speed and thermal ion gyroradius. Each from three segments can be described by a power-law function with a spectral index where the first segment corresponding to the MHD scale is followed by a plateau, and the third segment can be associated with kinetic turbulence. As it follows from the statistics, the values of spectral indices depend on the density fluctuation level; its increasing level leads to steepening of each segment. The index -1.8 can be typically found at MHD scales and averaging of spectra in the frequency domain leads to the index of -8/3 at kinetic scales, whereas averaging in frequencies normalized to fg provides a value of -7/3.

  16. Solar Wind Density Spectra around the Ion Spectral Break

    NASA Astrophysics Data System (ADS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Pitňa, A.; Chen, C. H. K.; Zastenker, G. N.

    2015-04-01

    This paper presents a large statistical analysis of ≈ 5800 frequency spectra of the solar wind density fluctuations in the range 0.001-5 Hz (corresponding to spatial scales of 100-5 × 105 km). The analysis confirms that the spectrum consists of three segments divided by two breakpoints and that each of the segments can be described by a power-law function with a spectral index α. The first segment corresponds to MHD scales and is followed by a plateau, and the third segment can be associated with the kinetic range. The statistics show that the values of the spectral slopes depend on the density fluctuations; their increasing amplitude leads to a steepening of each segment. The index of -1.8 can typically be found at MHD scales and averaging of the spectra in the frequency domain leads to an index of -8/3 at kinetic scales, whereas averaging in frequencies normalized to the ion gyrostructure frequency, fg, defined as the ratio of the solar wind bulk speed and thermal ion gyroradius, provides a value of -7/3. Both breakpoint locations are controlled by the gyrostructure frequency.

  17. PSD computations using Welch's method. [Power Spectral Density (PSD)

    SciTech Connect

    Solomon, Jr, O M

    1991-12-01

    This report describes Welch's method for computing Power Spectral Densities (PSDs). We first describe the bandpass filter method which uses filtering, squaring, and averaging operations to estimate a PSD. Second, we delineate the relationship of Welch's method to the bandpass filter method. Third, the frequency domain signal-to-noise ratio for a sine wave in white noise is derived. This derivation includes the computation of the noise floor due to quantization noise. The signal-to-noise ratio and noise flood depend on the FFT length and window. Fourth, the variance the Welch's PSD is discussed via chi-square random variables and degrees of freedom. This report contains many examples, figures and tables to illustrate the concepts. 26 refs.

  18. Laser line shape and spectral density of frequency noise

    SciTech Connect

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-04-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise.

  19. Noise power spectral density of the Sundstrand QA-2000 accelerometer

    NASA Technical Reports Server (NTRS)

    Peters, Rex; Grindeland, David; Baugher, Charles R. (Editor)

    1990-01-01

    There are no good data on low frequency (less than 0.1 Hz) power spectral density (PSD) for the Q-Flex accelerometer. However, some preliminary stability measurements were made over periods of 12 to 24 hours and demonstrated stability less than 0.5 micro-g over greater than 12 hours. The test data appear to contain significant contributions from temperature variations at that level, so the true sensor contribution may be less than that. If what was seen could be construed as a true random process, it would correspond to about 0.1 micro-g rms over a bandwidth from 10(exp -5) Hz to about 1 Hz. Other studies of low frequency PSD in flexure accelerometers have indicated that material aging effects tend to approximate a first order Markhov process. If we combine such a model with the spectrum obtained at higher frequencies, it suggests the spectrum shown here as a conservative estimate of Q-Flex noise performance.

  20. Specification of optical components using the power spectral density function

    SciTech Connect

    Lawson, J.K.; Wolfe, C.R.; Manes, K.R.; Trenholme, J.B.; Aikens, D.M.; English, R.E. Jr.

    1995-06-20

    This paper describes the use of Fourier techniques to characterize the wavefront of optical components, specifically, the use of the power spectral density, (PSD), function. The PSDs of several precision optical components will be shown. Many of the optical components of interest to us have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. The wavefronts of components with non-circular apertures cannot be analyzed with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. Furthermore, Zernicke analysis is limited to treating low frequency wavefront aberrations; mid-spatial scale and high frequency error are expressed only as ``residuals.`` A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The PSD corresponds to the scattered intensity as a function of scattering angle in the wavefront and can be used to describe the intensity distribution at focus. The shape of a resultant wavefront or the focal spot of a complex multi-component laser system can be calculated and optimized using the PSDs of individual optical components which comprise it.

  1. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  2. On the joint spectral density of bivariate random sequences. Thesis Technical Report No. 21

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1995-01-01

    For univariate random sequences, the power spectral density acts like a probability density function of the frequencies present in the sequence. This dissertation extends that concept to bivariate random sequences. For this purpose, a function called the joint spectral density is defined that represents a joint probability weighing of the frequency content of pairs of random sequences. Given a pair of random sequences, the joint spectral density is not uniquely determined in the absence of any constraints. Two approaches to constraining the sequences are suggested: (1) assume the sequences are the margins of some stationary random field, (2) assume the sequences conform to a particular model that is linked to the joint spectral density. For both approaches, the properties of the resulting sequences are investigated in some detail, and simulation is used to corroborate theoretical results. It is concluded that under either of these two constraints, the joint spectral density can be computed from the non-stationary cross-correlation.

  3. A Variational Framework for Spectral Approximations of Kohn-Sham Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Cindy; Blesgen, Thomas; Bhattacharya, Kaushik; Ortiz, Michael

    2016-08-01

    We reformulate the Kohn-Sham density functional theory (KSDFT) as a nested variational problem in the one-particle density operator, the electrostatic potential and a field dual to the electron density. The corresponding functional is linear in the density operator and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, termed spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We prove convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain.

  4. Kinetic equations for a density matrix describing nonlinear effects in spectral line wings

    SciTech Connect

    Parkhomenko, A. I. Shalagin, A. M.

    2011-11-15

    Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.

  5. High spectral density transmission emulation using amplified spontaneous emission noise.

    PubMed

    Elson, Daniel J; Galdino, Lidia; Maher, Robert; Killey, Robert I; Thomsen, Benn C; Bayvel, Polina

    2016-01-01

    We demonstrate the use of spectrally shaped amplified spontaneous emission (SS-ASE) noise for wideband channel loading in the investigation of nonlinear transmission limits in wavelength-division multiplexing transmission experiments using Nyquist-spaced channels. The validity of this approach is explored through statistical analysis and experimental transmission of Nyquist-spaced 10 GBaud polarization-division multiplexing (PDM) quadrature phase-shift keying and PDM-16-ary quadrature amplitude modulation (QAM) channels, co-propagated with SS-ASE over single mode fiber. It is shown that this technique, which is simpler to implement than a fully modulated comb of channels, is valid for distances exceeding 240 km for PDM-16QAM with dispersion of 16 ps/nm/km, yields a good agreement with theory, and provides a conservative measure of system performance. PMID:26696160

  6. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    PubMed

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level. PMID:26915200

  7. Spectral Density of Laser Beam Scintillation in Wind Turbulence. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1997-01-01

    The temporal spectral density of the log-amplitude scintillation of a laser beam wave due to a spatially dependent vector-valued crosswind (deterministic as well as random) is evaluated. The path weighting functions for normalized spectral moments are derived, and offer a potential new technique for estimating the wind velocity profile. The Tatarskii-Klyatskin stochastic propagation equation for the Markov turbulence model is used with the solution approximated by the Rytov method. The Taylor 'frozen-in' hypothesis is assumed for the dependence of the refractive index on the wind velocity, and the Kolmogorov spectral density is used for the refractive index field.

  8. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  9. Non Destructive Defect Detection by Spectral Density Analysis

    PubMed Central

    Krejcar, Ondrej; Frischer, Robert

    2011-01-01

    The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during the normal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can’t produce good results. Further the presented filter can choose relevant data from a huge group of data, which originate from applying FFT (Fast Fourier Transform). On the other hand, using this approach they can be subjected to analysis with the assistance of a neural network. If correct and high-quality starting data are provided to the initial network, we are able to analyze other samples and state in which condition a certain object is. The success rate of this approximation, based on our testing of the solution, is now 85.7%. With further improvement of the filter, it could be even greater. Finally it is possible to detect defective conditions or upcoming limiting states of examined objects/materials by using only one device which contains HW and SW parts. This kind of detection can provide significant financial savings in certain cases (such as continuous casting of iron where it could save hundreds of thousands of USD). PMID:22163742

  10. Spectral density of Cooper pairs in two level quantum dot-superconductors Josephson junction

    NASA Astrophysics Data System (ADS)

    Dhyani, A.; Rawat, P. S.; Tewari, B. S.

    2016-09-01

    In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  11. Generation of time histories with a specified auto spectral density, skewness, and kurtosis

    SciTech Connect

    Smallwood, D.O.

    1996-02-01

    Some dynamic environments are characterized by time histories that are not Gaussian. A more accurate simulation of these environments can be generated if a realization of a non Gaussian time history can be reproduced which has a specified auto spectral density (also called power spectral density) and a specified skewness and kurtosis (not necessarily the skewness and kurtosis of a Gaussian time history). The mean square of the waveform is reproduced if the spectrum is reproduced. Modern waveform reproduction techniques can be used to reproduce the realized waveform on an electrodynamic or electrohydraulic shaker. A method is presented for the generation of realizations of zero mean non Gaussian random time histories with a specified auto spectral density, skewness, and kurtosis. Kurtosis, defined in this paper as E[{chi}{sup 4}]/E{sup 2}[{chi}{sup 2}], greater than 3 can be realized. Realizations of the random process are generated with a generalization of shot noise.

  12. Matrix Methods for Estimating the Coherence Functions from Estimates of the Cross-Spectral Density Matrix

    DOE PAGESBeta

    Smallwood, D. O.

    1996-01-01

    It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.

  13. Probing the spectral density of the surface electromagnetic fields through scattering of waveguide photons

    PubMed Central

    Chen, Guang-Yin

    2016-01-01

    The spectral density of the metal-surface electromagnetic fields will be strongly modified in the presence of a closely-spaced quantum emitter. In this work, we propose a feasible way to probe the changes of the spectral density through the scattering of the waveguide photon incident on the quantum emitter. The variances of the lineshape in the transmission spectra indicate the coherent interaction between the emitter and the pseudomode resulting from all the surface electromagnetic modes. We further investigate the quantum coherence between the emitter and the pseudomode of the metal-dielectric interface. PMID:26860197

  14. On the use of the noncentral chi-square density function for the distribution of helicopter spectral estimates

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.

    1993-01-01

    A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.

  15. Power Spectral Density plots inside MRF spots made with a polishing abrasive-free MR fluid

    SciTech Connect

    DeGroote, J.E.; Marino, A.E.; Spencer, K.E.; Jacobs, S.D.

    2005-05-31

    We present power spectral density (PSD) data measured inside magnetorheological finishing (MRF) spots in orthogonal directions. MRF spots exhibit a distinct grooving pattern that varies for each fluid/material combination. This spot analysis may provide new insights on the material removal process. Issues associated with taking orthogonal PSD measurements are also discussed.

  16. Measurement of the electron density in a subatmospheric dielectric barrier discharge by spectral line shape

    SciTech Connect

    Dong Lifang; Qi Yuyan; Liu Weiyuan; Fan Weili

    2009-07-01

    The electron density in a subatmospheric dielectric barrier discharge by using argon spectral line shape is measured for the first time. With the gas pressure increasing in the range of 1x10{sup 4} Pa-6x10{sup 4} Pa, the line profiles of argon 696.54 nm are measured. An asymmetrical deconvolution procedure is applied to separate the Gaussian and Lorentzian profile from the measured spectral line. The gas temperature is estimated by using rotational temperature of N{sub 2}{sup +}. By subtracting the van der Waals broadening and partial Lorentzian instrumental broadening from the Lorentzian broadening, the Stark broadening is obtained and used to estimate the electron density. It is found that the electron density in dielectric barrier discharge increases with the increase in gas pressure.

  17. Spectral discrete probability density function of measured wind turbine noise in the far field.

    PubMed

    Ashtiani, Payam; Denison, Adelaide

    2015-01-01

    Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097

  18. Spectral Discrete Probability Density Function of Measured Wind Turbine Noise in the Far Field

    PubMed Central

    Ashtiani, Payam; Denison, Adelaide

    2015-01-01

    Of interest is the spectral character of wind turbine noise at typical residential set-back distances. In this paper, a spectral statistical analysis has been applied to immission measurements conducted at three locations. This method provides discrete probability density functions for the Turbine ONLY component of the measured noise. This analysis is completed for one-third octave sound levels, at integer wind speeds, and is compared to existing metrics for measuring acoustic comfort as well as previous discussions on low-frequency noise sources. PMID:25905097

  19. Daniell method for power spectral density estimation in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander

    2016-03-01

    An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.

  20. Daniell method for power spectral density estimation in atomic force microscopy.

    PubMed

    Labuda, Aleksander

    2016-03-01

    An alternative method for power spectral density (PSD) estimation--the Daniell method--is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion--the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum. PMID:27036781

  1. Quark spectral density and a strongly-coupled quark-gluon plasma.

    SciTech Connect

    Qin, S.; Chang, L.; Liu, Y.; Roberts, C. D.

    2011-07-13

    The maximum entropy method is used to compute the dressed-quark spectral density from the self-consistent numerical solution of a rainbow truncation of QCD's gap equation at temperatures above that for which chiral symmetry is restored. In addition to the normal and plasmino modes, the spectral function also exhibits an essentially nonperturbative zero mode for temperatures extending to 1.4-1.8 times the critical temperature, T{sub c}. In the neighborhood of T{sub c}, this long-wavelength mode contains the bulk of the spectral strength and as long as this mode persists, the system may fairly be described as a strongly-coupled state of matter.

  2. Computed lateral power spectral density response of conventional and STOL airplanes to random atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1974-01-01

    A method of computing the power spectral densities of the lateral response of airplanes to random atmospheric turbulence was adapted to an electronic digital computer. By use of this program, the power spectral densities of the lateral roll, yaw, and sideslip angular displacement of several conventional and STOL airplanes were computed. The results show that for the conventional airplanes, the roll response is more prominent than that for yaw or sideslip response. For the STOL airplanes, on the other hand, the yaw and sideslip responses were larger than the roll response. The response frequency of the STOL airplanes generally is higher than that for the conventional airplanes. This combination of greater sensitivity of the STOL airplanes in yaw and sideslip and the frequency at which they occur could be a factor causing the poor riding qualities of this class of airplanes.

  3. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan

    2011-11-15

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  4. Analytic representations of bath correlation functions for ohmic and superohmic spectral densities using simple poles

    SciTech Connect

    Ritschel, Gerhard; Eisfeld, Alexander

    2014-09-07

    We present a scheme to express a bath correlation function (BCF) corresponding to a given spectral density (SD) as a sum of damped harmonic oscillations. Such a representation is needed, for example, in many open quantum system approaches. To this end we introduce a class of fit functions that enables us to model ohmic as well as superohmic behavior. We show that these functions allow for an analytic calculation of the BCF using pole expansions of the temperature dependent hyperbolic cotangent. We demonstrate how to use these functions to fit spectral densities exemplarily for cases encountered in the description of photosynthetic light harvesting complexes. Finally, we compare absorption spectra obtained for different fits with exact spectra and show that it is crucial to take properly into account the behavior at small frequencies when fitting a given SD.

  5. Sum rules and spectral density flow in QCD and in superconformal theories

    NASA Astrophysics Data System (ADS)

    Costantini, Antonio; Delle Rose, Luigi; Serino, Mirko

    2014-11-01

    We discuss the signature of the anomalous breaking of the superconformal symmetry in N = 1 super Yang Mills theory and its manifestation in the form of anomaly poles. Moreover, we describe the massive deformations of the N = 1 theory and the spectral densities of the corresponding anomaly form factors. These are characterized by spectral densities which flow with the mass deformation and turn the continuum contributions from the two-particle cuts of the intermediate states into poles, with a single sum rule satisfied by each component. The poles can be interpreted as signaling the exchange of a composite axion/dilaton/dilatino (ADD) multiplet in the effective Lagrangian. We conclude that global anomalous currents characterized by a single flow in the perturbative picture always predict the existence of composite interpolating fields.

  6. Spectral density of velocity fluctuations under switching field conditions in graphene

    NASA Astrophysics Data System (ADS)

    Iglesias, J. M.; Martín, M. J.; Pascual, E.; Rengel, R.

    2016-05-01

    In this paper we present an analysis of the velocity fluctuations during transient regimes arising from an abrupt shift of the electric field in bulk monolayer graphene. For this purpose a material Ensemble Monte Carlo simulator is used to examine these fluctuations by means of the transient autocorrelation function and power spectral density. The evolution of these quantities as well as the non-stationary phenomena taking place during the transients is explained with a microscopic approach.

  7. Spectral density mapping at multiple magnetic fields suitable for (13)C NMR relaxation studies.

    PubMed

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of (15)N relaxation rates, introduce significant systematic errors when applied to (13)C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and (13)C frequencies can be obtained from data acquired at three magnetic fields for uniformly (13)C-labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions. PMID:27003380

  8. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  9. Spatially mapping the spectral density of a single C60 molecule

    SciTech Connect

    Lu, Xinghua; Grobis, M.; Khoo, K.H.; Louie, Steve G.; Crommie, M.F.

    2002-07-01

    We have used scanning tunneling spectroscopy to spatially map the energy-resolved local density of states of individual C60 molecules on the Ag(100) surface. Spectral maps were obtained for molecular states derived from the C60 HOMO, LUMO, and LUMO + 1 orbitals, revealing new details of the spatially inhomogeneous C60 local electronic structure. Spatial inhomogeneities are explained using ab initio pseudopotential density functional calculations. These calculations emphasize the need for explicitly including the C60-Ag interaction and STM tip trajectory to understand the observed C60 local electronic structure.

  10. Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Lock, James A.

    1992-01-01

    The use of molecular Rayleigh scattering for measurements of gas density and temperature is evaluated. The technique used is based on the measurement of the spectrum of the scattered light, where both temperature and density are determined from the spectral shape. Planar imaging of Rayleigh scattering from air using a laser light sheet is evaluated for ambient conditions. The Cramer-Rao lower bounds for the shot-noise limited density and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light can be analyzed to obtain density (or pressure) and temperature. Experimental results are presented for planar measurements taken in a heated air stream.

  11. Improvement of spectral density-based activation detection of event-related fMRI data.

    PubMed

    Ngan, Shing-Chung; Hu, Xiaoping; Tan, Li-Hai; Khong, Pek-Lan

    2009-09-01

    For event-related data obtained from an experimental paradigm with a periodic design, spectral density at the fundamental frequency of the paradigm has been used as a template-free activation detection measure. In this article, we build and expand upon this detection measure to create an improved, integrated measure. Such an integrated measure linearly combines information contained in the spectral densities at the fundamental frequency as well as the harmonics of the paradigm and in a spatial correlation function characterizing the degree of co-activation among neighboring voxels. Several figures of merit are described and used to find appropriate values for the coefficients in the linear combination. Using receiver-operating characteristic analysis on simulated functional magnetic resonance imaging (fMRI) data sets, we quantify and validate the improved performance of the integrated measure over the spectral density measure based on the fundamental frequency as well as over some other popular template-free data analysis methods. We then demonstrate the application of the new method on an experimental fMRI data set. Finally, several extensions to this work are suggested. PMID:19535208

  12. The spectral effect of the density irregularities on the scintillation index of transionospheric signals

    SciTech Connect

    Lyle, R.; Kuo, S.P.; Huang, J.

    1996-12-31

    The problem of wave propagation and scattering in the ionosphere is particularly important in the areas of communications, and remote sensing and detection. The ionospheric plasma can cause dispersion and spectral broadening of the transionospheric electromagnetic signals due to the presence of the density fluctuation whose effect on the signals received on ground is usually measured in terms of the Scintillation Index S{sub 4} based on the correlation properties of the wave. In the present work, an alternative approach is used to investigate the ionospheric scintillation problem. The authors model the irregularities in the ionosphere by a set of sinusoidal fluctuations, with each fluctuation in the set having a finite uniform spectral distribution and a random phase. Thus the scattering process in the ionosphere is deterministic for each individual scattering event from a single group of finite spectral width sinusoidal density variation. A quasi-particle theory is introduced to analyze the scattering event. It treats the wave as a distribution of quasi-particles in the space described by a Wigner distribution function (WDF). Multiple scattering effects is an intrinsic feature of the transport equation of the WDF. It is manifested by the variations of the quasi-particles distribution caused by collisions of the quasi-particles with the density irregularities.

  13. Eclipsing and density effects on the spectral behavior of Beta Lyrae binary system in the UV

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2010-01-01

    We analyze both long and short high resolution ultraviolet spectrum of Beta Lyrae eclipsing binary system observed with the International Ultraviolet Explorer (IUE) between 1980 and 1989. The main spectral features are P Cygni profiles originating from different environments of Beta Lyrae. A set of 23 Mg II k&h spectral lines at 2800 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H], have been identified and measured to determine their fluxes and widths. We found that there is spectral variability for these physical parameters with phase, similar to that found for the light curve [Kondo, Y., McCluskey, G.E., Jeffery, M.M.S., Ronald, S.P., Carolina, P.S. McCluskey, Joel, A.E., 1994. ApJ, 421, 787], which we attribute to the eclipse effects [Ak, H., Chadima, P., Harmanec, P., Demircan, O., Yang, S., Koubský, P., Škoda, P., Šlechta, M., Wolf, M., Božić, H., 2007. A&A, 463, 233], in addition to the changes of density and temperature of the region from which these lines are coming, as a result of the variability of mass loss from the primary star to the secondary [Hoffman, J.L., Nordsieck, K.H., Fox, G.K., 1998. AJ, 115, 1576; Linnell, A.P., Hubeny, I., Harmanec, P., 1998. ApJ, 509, 379]. Also we present a study of Fe II spectral line at 2600 Å, originating from the atmosphere of the primary star [Hack, M., 1980. IAUS, 88, 271H]. We found spectral variability of line fluxes and line widths with phase similar to that found for Mg II k&h lines. Finally we present a study of Si IV spectral line at 1394 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H]. A set of 52 Si IV spectral line at 1394 Å have been identified and measured to determine their fluxes and widths. Also we found spectral variability of these physical parameters with phase similar to that found for Mg II k&h and Fe II spectral lines.

  14. Empirical relaxation function and spectral density for underdamped vibrations at low temperatures

    NASA Astrophysics Data System (ADS)

    Toutounji, Mohamad

    2009-03-01

    A new relaxation function which accounts for electronic dephasing (electronic phase loss and excited state lifetime) is presented, whose applicability for underdamped motion at low temperatures is examined in detail. This new empirical relaxation function φ(t ) yields linear and nonlinear spectral/temporal profiles that render accurate dephasing time in the underdamped regime. The relaxation function φ(t ) is normally expressed in terms of the coupling functions Mj' and Mj″ on which the time evolution of the vibrational modes in question depends. The corresponding spectral density, which is a central quantity in probing dynamics, is derived and compared to that of the multimode Brownian oscillator model. Derivation and discussion of the new position and momentum autocorrelation functions in terms of our new spectral density are presented. While the position autocorrelation function plays a key role in representing solvation structure in polar or nonpolar medium, the momentum correlation function projects out the molecular vibrational motion. The Liouville space generating function (LGF) for harmonic and anharmonic systems is expressed in terms of our new empirical φ(t ) and spectral density, leading to more physical observation. Several statistical quantities are derived from the position and momentum correlation function, which in turn contribute to LGF. Model calculations reflecting the infinite population decay in the low temperature limit in linear and nonlinear spectroscopic signals are presented. The herein quantum dipole moment correlation function is compared to that derived in [M. Toutounji, J. Chem. Phys. 118, 5319 (2003)] using mixed quantum-classical dynamics framework, yielding reasonable results, in fact identical at higher temperatures. The results herein are found to be informative, useful, and consistent with experiments.

  15. Empirical relaxation function and spectral density for underdamped vibrations at low temperatures.

    PubMed

    Toutounji, Mohamad

    2009-03-01

    A new relaxation function which accounts for electronic dephasing (electronic phase loss and excited state lifetime) is presented, whose applicability for underdamped motion at low temperatures is examined in detail. This new empirical relaxation function phi(t) yields linear and nonlinear spectral/temporal profiles that render accurate dephasing time in the underdamped regime. The relaxation function phi(t) is normally expressed in terms of the coupling functions M(j) (') and M(j) (") on which the time evolution of the vibrational modes in question depends. The corresponding spectral density, which is a central quantity in probing dynamics, is derived and compared to that of the multimode Brownian oscillator model. Derivation and discussion of the new position and momentum autocorrelation functions in terms of our new spectral density are presented. While the position autocorrelation function plays a key role in representing solvation structure in polar or nonpolar medium, the momentum correlation function projects out the molecular vibrational motion. The Liouville space generating function (LGF) for harmonic and anharmonic systems is expressed in terms of our new empirical phi(t) and spectral density, leading to more physical observation. Several statistical quantities are derived from the position and momentum correlation function, which in turn contribute to LGF. Model calculations reflecting the infinite population decay in the low temperature limit in linear and nonlinear spectroscopic signals are presented. The herein quantum dipole moment correlation function is compared to that derived in [M. Toutounji, J. Chem. Phys. 118, 5319 (2003)] using mixed quantum-classical dynamics framework, yielding reasonable results, in fact identical at higher temperatures. The results herein are found to be informative, useful, and consistent with experiments. PMID:19275403

  16. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    DOE PAGESBeta

    Smallwood, David O.

    1997-01-01

    The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less

  17. Spatio-spectral filters for low-density surface electromyographic signal classification.

    PubMed

    Huang, Gan; Zhang, Zhiguo; Zhang, Dingguo; Zhu, Xiangyang

    2013-05-01

    In this paper, we proposed to utilize a novel spatio-spectral filter, common spatio-spectral pattern (CSSP), to improve the classification accuracy in identifying intended motions based on low-density surface electromyography (EMG). Five able-bodied subjects and a transradial amputee participated in an experiment of eight-task wrist and hand motion recognition. Low-density (six channels) surface EMG signals were collected on forearms. Since surface EMG signals are contaminated by large amount of noises from various sources, the performance of the conventional time-domain feature extraction method is limited. The CSSP method is a classification-oriented optimal spatio-spectral filter, which is capable of separating discriminative information from noise and, thus, leads to better classification accuracy. The substantially improved classification accuracy of the CSSP method over the time-domain and other methods is observed in all five able-bodied subjects and verified via the cross-validation. The CSSP method can also achieve better classification accuracy in the amputee, which shows its potential use for functional prosthetic control. PMID:23385330

  18. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    SciTech Connect

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-25

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution ({lambda}/{Delta}{lambda} >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  19. Lineshape, linewidth and spectral density of parametric x-radiation at low electron energy in diamond

    SciTech Connect

    Freudenberger, J.; Genz, H.; Morokhovskii, V.V.; Richter, A.; Morokhovskii, V.L.; Nething, U.; Zahn, R.; Sellschop, J.P.

    1997-01-01

    Applying an absorber technique, the experimental shape and width of a parametric x-radiation line has been determined. The 9 keV radiation was produced by bombarding a diamond crystal of 55 {mu}m thickness with electrons of 6.8 MeV. The variance of the spectral line distribution was found to depend on the tilt angle of the crystal and to have a magnitude of {sigma}=51 eV. Simulations based on a Monte Carlo method exhibit that the observed variance is mainly influenced by multiple scattering of electrons passing through the crystal ({approx}43 eV) and the finite detector opening ({approx}18 eV), leaving for the intrinsic linewidth a value of the order of 1 eV. The spectral density of the line was found to be J{approx}10{sup {minus}7} photons/(electron{times}sr{times}eV). {copyright} {ital 1997 American Institute of Physics.}

  20. Effect of atomic density on propagation and spectral property of femtosecond chirped Gaussian pulses

    NASA Astrophysics Data System (ADS)

    Wang, Zhendong; Gao, Feng

    2015-05-01

    We theoretically investigate the effect of the atomic densities N on propagation and spectral property of femtosecond chirped Gaussian pulse in a three-level Λ-type atomic medium by using the numerical solution of the full Maxwell- Bloch equations. It is shown that, when the positive chirped pulse with area 3π, propagate in the medium with smaller N, pulse splitting doesn't occur and many small oscillations at the trailing edge of the pulse appear, in addition, the level |2< population ρ22 of the pulse exhibits an oscillation feature with time evolution, moreover, the spectral component near the central frequency of the pulse shows an oscillation characteristic too, and the propagation and spectral property of the negative chirped 3π pulse is very similar to that of the positive chirped 3π pulse. For the positive chirped 3π pulse pulses, propagate in the medium with larger N, pulse splitting also doesn't occur but many small oscillations both at leading edge and the trailing edge of the pulse appear, and the population ρ22 of the pulse only exhibits an scarcely oscillation feature with time evolution, at the same time many oscillations both in blue shift and red shift components of the pulse appear but the spectral component near the central frequency of the pulse oscillate more severely, and the propagation and spectral property of the negative chirped 3π pulse is very similar to that of the positive chirped 3π pulse, but comparing with the case of the negative chirped 3π pulse, the propagation of the positive chirped 3π pulse is delayed at the same distance and the delayed time becomes longer with the distance increasing.

  1. Planckian Power Spectral Densities from Human Calves during Posture Maintenance and Controlled Isometric Contractions

    PubMed Central

    Lugo, J. E.

    2015-01-01

    Background The relationship between muscle anatomy and physiology and its corresponding electromyography activity (EMGA) is complex and not well understood. EMGA models may be broadly divided in stochastic and motor-unit-based models. For example, these models have successfully described many muscle physiological variables such as the value of the muscle fiber velocity and the linear relationship between median frequency and muscle fiber velocity. However they cannot explain the behavior of many of these variables with changes in intramuscular temperature, or muscle PH acidity, for instance. Here, we propose that the motor unit action potential can be treated as an electromagnetic resonant mode confined at thermal equilibrium inside the muscle. The motor units comprising the muscle form a system of standing waves or modes, where the energy of each mode is proportional to its frequency. Therefore, the power spectral density of the EMGA is well described and fit by Planck’s law and from its distribution we developed theoretical relationships that explain the behavior of known physiological variables with changes in intramuscular temperature or muscle PH acidity, for instance. Methods EMGA of the calf muscle was recorded during posture maintenance in seven participants and during controlled isometric contractions in two participants. The power spectral density of the EMGA was then fit with the Planckian distribution. Then, we inferred nine theoretical relationships from the distribution and compared the theoretically derived values with experimentally obtained values. Results The power spectral density of EMGA was fit by Planckian distributions and all the theoretical relationships were validated by experimental results. Conclusions Only by considering the motor unit action potentials as electromagnetic resonant modes confined at thermal equilibrium inside the muscle suffices to predict known or new theoretical relationships for muscle physiological variables that

  2. Tera-scalable Algorithms for Variable-Density Elliptic Hydrodynamics with Spectral Accuracy

    SciTech Connect

    Cook, A W; Cabot, W H; Welcome, M L; Williams, P L; Miller, B J; de Supinski, B R; Yates, R K

    2005-04-13

    A hybrid spectral/compact solver for variable-density viscous incompressible flow is described. Parallelization strategies for the FFTs and band-diagonal matrices are discussed and compared. Transpose methods are found to be highly competitive with direct block parallel methods when the problem is scaled to tens of thousands of processors. Various mapping strategies for the IBM BlueGene/L torus configuration of processors are explored. By optimizing the communication, we have achieved virtually perfect scaling to 32768 nodes. Furthermore, communication rates come very close to the theoretical peak speed of the BlueGene/L network with sustained computation in the TeraFLOPS range.

  3. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  4. Intrinsic temperature-dependent evolutions in the electron-boson spectral density obtained from optical data

    PubMed Central

    Hwang, Jungseek

    2016-01-01

    We investigate temperature smearing effects on the electron-boson spectral density function (I2χ(ω)) obtained from optical data using a maximum entropy inversion method. We start with two simple model input I2χ(ω), calculate the optical scattering rates at selected temperatures using the model input spectral density functions and a generalized Allen’s formula, then extract back I2χ(ω) at each temperature from the calculated optical scattering rate using the maximum entropy method (MEM) which has been used for analysis of optical data of high-temperature superconductors including cuprates, and finally compare the resulting I2χ(ω) with the input ones. From this approach we find that the inversion process can recover the input I2χ(ω) almost perfectly when the quality of fits is good enough and also temperature smearing (or thermal broadening) effects appear in the I2χ(ω) when the quality of fits is not good enough. We found that the coupling constant and the logarithmically averaged frequency are robust to the temperature smearing effects and/or the quality of fits. We use these robust properties of the two quantities as criterions to check whether experimental data have intrinsic temperature-dependent evolutions or not. We carefully apply the MEM to two material systems (one optimally doped and the other underdoped cuprates) and conclude that the I2χ(ω) extracted from the optical data contain intrinsic temperature-dependent evolutions. PMID:27029840

  5. Anomalous diffusion in nonhomogeneous media: Power spectral density of signals generated by time-subordinated nonlinear Langevin equations

    NASA Astrophysics Data System (ADS)

    Kazakevičius, R.; Ruseckas, J.

    2015-11-01

    Subdiffusive behavior of one-dimensional stochastic systems can be described by time-subordinated Langevin equations. The corresponding probability density satisfies the time-fractional Fokker-Planck equations. In the homogeneous systems the power spectral density of the signals generated by such Langevin equations has power-law dependency on the frequency with the exponent smaller than 1. In this paper we consider nonhomogeneous systems and show that in such systems the power spectral density can have power-law behavior with the exponent equal to or larger than 1 in a wide range of intermediate frequencies.

  6. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-01-01

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.

  7. Two dimensional power spectral density measurements of X-rayoptics with the Micromap interferometric microscope

    SciTech Connect

    Yashchuk, Valeriy V.; Franck, Andrew D.; Irick Steve C.; Howells,Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.

    2005-05-12

    A procedure and software have been developed to transform the area distribution of the residual surface heights available from the measurement with the Micromap interferometric microscope into a two-dimensional (2D) power spectral density (PSD) distribution of the surface height. The procedure incorporates correction of one of the spectral distortions of the PSD measurement. The distortion appears as a shape difference between the tangential and sagittal PSD spectra deduced from the 2D PSD distribution for an isotropic surface. A detailed investigation of the origin of the anisotropy was performed, and a mathematical model was developed and used to correct the distortion. The correction employs a modulation transfer function (MTF) of the detector deduced analytically based on an experimentally confirmed assumption about the origin of the anisotropy due to the asymmetry of the read-out process of the instrument's CCD camera. The correction function has only one free parameter, the effective width of the gate-shaped apparatus function which is the same for both directions. The value of the parameter, equal to 1.35 pixels, was found while measuring the 2D PSD distribution of the instrument self-noise, independent of spatial frequency. The effectiveness of the developed procedure is demonstrated with a number of PSD measurements with different X-ray optics including mirrors and a grating.

  8. Holographic vector mesons from spectral functions at finite baryon or isospin density

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2008-02-15

    We consider gauge/gravity duality with flavor for the finite-temperature field theory dual of the AdS-Schwarzschild black hole background with embedded D7-brane probes. In particular, we investigate spectral functions at finite baryon density in the black hole phase. We determine the resonance frequencies corresponding to meson-mass peaks as function of the quark mass over temperature ratio. We find that these frequencies have a minimum for a finite value of the quark mass. If the quotient of quark mass and temperature is increased further, the peaks move to larger frequencies. At the same time the peaks narrow, in agreement with the formation of nearly stable vector meson states which exactly reproduce the meson-mass spectrum found at zero temperature. We also calculate the diffusion coefficient, which has finite value for all quark mass to temperature ratios, and exhibits a first-order phase transition. Finally we consider an isospin chemical potential and find that the spectral functions display a resonance peak splitting, similar to the isospin meson-mass splitting observed in effective QCD models.

  9. Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Meyer, Renate; Christensen, Nelson

    2015-09-01

    The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.

  10. Analysis of power spectral density as a performance metric for TMT M3

    NASA Astrophysics Data System (ADS)

    Yang, Fei; An, Qi-Chang; Wang, Fu-Guo; Liu, Xiang-Yi

    2014-09-01

    We investigate a new metric power spectral density (PSD),for characterizing the performance of seeing-limited large telescope such as thirty meter telescope(TMT ). As the PSD is directly related to the performance of the atmosphere which plays an important role in ground based facilities, it represents the efficiency lose due to mid and high-spatial frequency components in observing time. The metric also properly counts for the optic error of the mirror itself such as the deviations from a perfect surface, and metrology measurement errors .The metric can multiply all the errors which differentiates from the traditional ones, such as RMS. We also numerically confirm this feature for Karman model atmosphere error multiplied with the sample of our vendor and the TMT M3.Additonaly, we discuss other pertinent feature of the PSD, including its relationship to Zernike aberration ,and RMS of wave front errors.

  11. Speckle Noise in Bar-Code Scanning Systems -Power Spectral Density and SNR

    NASA Astrophysics Data System (ADS)

    Marom, Emanuel; KrěIć-Juri, SǎA.; Bergstein, Leonard

    2003-01-01

    Laser-based flying-spot scanners are strongly affected by speckle that is intrinsic to coherent illumination of diffusing targets. In such systems information is usually extracted by processing the derivative of a photodetector signal that results from collecting over the detector's aperture the scattered light of a laser beam scanning a bar code. Because the scattered light exhibits a time-varying speckle pattern, the signal is corrupted by speckle noise. In this paper we investigate the power spectral density and total noise power of such signals. We also analyze the influence of speckle noise on edge detection and derive estimates for a signal-to-noise ratio when a laser beam scans different sequences of edges. The theory is illustrated by applying the results to Gaussian scanning beams for which we derive closed form expressions.

  12. Effects of motor programming on the power spectral density function of finger and wrist movements.

    PubMed

    Van Galen, G P; Van Doorn, R R; Schomaker, L R

    1990-11-01

    Power spectral density analysis was applied to the frequency content of the acceleration signal of pen movements in line drawing. The relative power in frequency bands between 1 and 32 Hz was measured as a function of motoric and anatomic task demands. Results showed a decrease of power at the lower frequencies (1-4 Hz) of the spectrum and an increase in the middle (9-12 Hz), with increasing motor demands. These findings evidence the inhibition of visual control and the disinhibition of physiological tremor under conditions of increased programming demands. Adductive movements displayed less power than abductive movements in the lower end of the spectrum, with a simultaneous increase at the higher frequencies. The relevance of the method for the measurement of neuromotor noise as a possible origin of delays in motor behavior is discussed. PMID:2148590

  13. Reliability of the power spectral density for photoplethysmography under a pulsed magnetic field stimulus

    NASA Astrophysics Data System (ADS)

    Lee, Jinyong; Lee, Hyun Sook; Kim, Sunghyun; Hwang, Do Guwn

    2012-05-01

    We have compared the aging index of the second derivatives of photoplethysmography (PPG) with the power spectral density (PSD) from PPG signals to investigate the effect of a strong pulsed electromagnetic field (PEMF) on the improvement of vascularization in the capillary vessels of the finger. The PEMF stimulator was composed of an elliptical coil of 10 turns and 12 cm × 5 cm, and its maximum field and transition time were 0.48 T and 0.102 ms, respectively. It is not easy to analyze the stimulus effect of blood vessel from raw signals of PPG, and aging index of vascularization from the second derivatives of PPG. A PSD analysis in the frequency domain was introduced to reduce artifacts due to change in the posture of the subjects, the environment, acoustic noise, etc. For ages in the 50s, the PSD analysis before and after PEMF stimulus was rather more reliable than the second derivatives of the PPG.

  14. Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.

    2009-12-01

    arrays. The radial diffusion coefficient can be given from the magnetic field power spectral density as a function of L, frequency (f) and m-number (m) in the Pc 5 frequency range during the REE related magnetic storms [see Brautigam et al., 2005]. We can fit Pc 5 power spectral density (L, f, m) using the ULTIMA data. The m-number of global Pc 5 pulsation on the ground is found to be almost less than 5. This is consistent with m-number required in the radial diffusion theory by Elkington et al. [1999, 2003]. We will compare the observationally estimated diffusion coefficient with theoretical diffusion coefficient [e.g. Elkington et al., 2006], and discuss adequacy of our diffusion coefficient.

  15. Power spectral density of velocity fluctuations estimated from phase Doppler data

    NASA Astrophysics Data System (ADS)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  16. Spectral methods for the equations of classical density-functional theory: relaxation dynamics of microscopic films.

    PubMed

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2012-03-28

    We propose a numerical scheme based on the Chebyshev pseudo-spectral collocation method for solving the integral and integro-differential equations of the density-functional theory and its dynamic extension. We demonstrate the exponential convergence of our scheme, which typically requires much fewer discretization points to achieve the same accuracy compared to conventional methods. This discretization scheme can also incorporate the asymptotic behavior of the density, which can be of interest in the investigation of open systems. Our scheme is complemented with a numerical continuation algorithm and an appropriate time stepping algorithm, thus constituting a complete tool for an efficient and accurate calculation of phase diagrams and dynamic phenomena. To illustrate the numerical methodology, we consider an argon-like fluid adsorbed on a Lennard-Jones planar wall. First, we obtain a set of phase diagrams corresponding to the equilibrium adsorption and compare our results obtained from different approximations to the hard sphere part of the free energy functional. Using principles from the theory of sub-critical dynamic phase field models, we formulate the time-dependent equations which describe the evolution of the adsorbed film. Through dynamic considerations we interpret the phase diagrams in terms of their stability. Simulations of various wetting and drying scenarios allow us to rationalize the dynamic behavior of the system and its relation to the equilibrium properties of wetting and drying. PMID:22462841

  17. Density and atomic number measurements with spectral x-ray attenuation method

    NASA Astrophysics Data System (ADS)

    Heismann, B. J.; Leppert, J.; Stierstorfer, K.

    2003-08-01

    X-ray attenuation measurements are widely used in medical and industrial applications. The usual results are one- to three-dimensional representations of the attenuation coefficient μ(r). In this paper, we present the ρZ projection algorithm for obtaining the density ρ(r) and atomic number Z(r) with an energy-resolving x-ray method. As input data the algorithm uses at least two measurements μ1,μ2,… with different spectral weightings of the source spectrum S(E) and/or detector sensitivity D(E). Analytically, ρ is a function of μ1-cμ2, c=const, and Z is a function of μ1/μ2. The full numerical treatment yields ρ(μ1,μ2) and Z(μ1,μ2) with S(E) and D(E) as commutative parametric functions. We tested the method with dual-energy computed tomography measurements of an organic sample and a set of chemical solutions with predefined ρ and Z. The resulting images show ρ and Z as complementary information: The density ρ reflects the morphology of the objects, whereas the atomic number Z=number of electrons/atom describes the material distribution. For our experimental setup we obtain an absolute precision of 0.1 for Z and 20 mg/cm3 for ρ. The ρZ projection can potentially lead to these classes of quantitative information for various scientific, industrial, and medical applications.

  18. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, Andrew M.; Nome, Rene A.; Scherer, Norbert F.

    2007-11-01

    The experimental design and theoretical description of a novel five-pulse laser spectroscopy is presented with an application to a pyridinium charge transfer complex in acetonitrile and methanol. In field-resolved polarizability response spectroscopy (PORS), an electronically resonant laser pulse first excites a solvated chromophore (reactant) and off-resonant Raman spectra of the resulting nuclear motions are measured as a function of the reaction time. The present apparatus differs from our earlier design by performing the Raman probe measurement (with fixed pulse delays) in the frequency domain. In addition, the full electric fields of the signals are measured by spectral interferometry to separate nonresonant and Raman responses. Our theoretical model shows how the PORS signal arises from nuclear motions that are displaced/driven by the photoinduced reaction. The field-resolved off-resonant (of the solute's electronic transitions) probing favors detection of solvent (as opposed to solute) dynamics coupled to the reaction. The sign of the signal represents the relative strengths of polarization responses associated with the ground and photoexcited solutions. Signatures of nonresonant and PORS signal contributions to the experimental results are analyzed with numerical calculations based on a theoretical model we have developed for reaction-induced PORS. Our model identifies two mechanisms of PORS signal generation: (i) structural relaxation induced resonance; (ii) dephasing induced resonance. In the charge transfer reaction investigated, the solvent-dependent and time-evolving (solvent) polarizability spectral density (PSD) is readily obtained. The general trend of an initial broadband inertial nuclear response followed by a decrease in the linewidth of the PSD establishes that the measured PSD is inconsistent with the approximation of a linear response. Furthermore, the explicit time evolution of the PSD is important for properly describing solvent control of

  19. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy

    SciTech Connect

    Moran, Andrew M.; Nome, Rene A.; Scherer, Norbert F.

    2007-11-14

    The experimental design and theoretical description of a novel five-pulse laser spectroscopy is presented with an application to a pyridinium charge transfer complex in acetonitrile and methanol. In field-resolved polarizability response spectroscopy (PORS), an electronically resonant laser pulse first excites a solvated chromophore (reactant) and off-resonant Raman spectra of the resulting nuclear motions are measured as a function of the reaction time. The present apparatus differs from our earlier design by performing the Raman probe measurement (with fixed pulse delays) in the frequency domain. In addition, the full electric fields of the signals are measured by spectral interferometry to separate nonresonant and Raman responses. Our theoretical model shows how the PORS signal arises from nuclear motions that are displaced/driven by the photoinduced reaction. The field-resolved off-resonant (of the solute's electronic transitions) probing favors detection of solvent (as opposed to solute) dynamics coupled to the reaction. The sign of the signal represents the relative strengths of polarization responses associated with the ground and photoexcited solutions. Signatures of nonresonant and PORS signal contributions to the experimental results are analyzed with numerical calculations based on a theoretical model we have developed for reaction-induced PORS. Our model identifies two mechanisms of PORS signal generation: (i) structural relaxation induced resonance; (ii) dephasing induced resonance. In the charge transfer reaction investigated, the solvent-dependent and time-evolving (solvent) polarizability spectral density (PSD) is readily obtained. The general trend of an initial broadband inertial nuclear response followed by a decrease in the linewidth of the PSD establishes that the measured PSD is inconsistent with the approximation of a linear response. Furthermore, the explicit time evolution of the PSD is important for properly describing solvent control of

  20. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Off-axis EIRP spectral density limits for....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a....209(a) and (b), and/or the proposed power density levels are in excess of those specified in §...

  1. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Off-axis EIRP spectral density limits for....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a....209(a) and (b), and/or the proposed power density levels are in excess of those specified in §...

  2. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Off-axis EIRP spectral density limits for....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a....209(a) and (b), and/or the proposed power density levels are in excess of those specified in §...

  3. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Off-axis EIRP spectral density limits for....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a....209(a) and (b), and/or the proposed power density levels are in excess of those specified in §...

  4. Rocket experiments for spectral estimation of electron density fine structure in the auroral and equatorial ionosphere and preliminary results

    NASA Technical Reports Server (NTRS)

    Tomei, B. A.; Smith, L. G.

    1986-01-01

    Sounding rockets equipped to monitor electron density and its fine structure were launched into the auroral and equatorial ionosphere in 1980 and 1983, respectively. The measurement electronics are based on the Langmuir probe and are described in detail. An approach to the spectral analysis of the density irregularities is addressed and a software algorithm implementing the approach is given. Preliminary results of the analysis are presented.

  5. Crosscheck of different techniques for two dimensional power spectral density measurements of x-ray optics

    SciTech Connect

    Yashchuk, Valeriy V.; Irick, Steve C.; Gullikson, Eric M.; Howells, Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi, Farhad; Warwick, Tony

    2005-07-12

    The consistency of different instruments and methods for measuring two-dimensional (2D) power spectral density (PSD) distributions are investigated. The instruments are an interferometric microscope, an atomic force microscope (AFM) and the X-ray Reflectivity and Scattering experimental facility, all available at Lawrence Berkeley National Laboratory. The measurements were performed with a gold-coated mirror with a highly polished stainless steel substrate. It was shown that these three techniques provide essentially consistent results. For the stainless steel mirror, an envelope over all measured PSD distributions can be described with an inverse power-law PSD function. It is also shown that the measurements can be corrected for the specific spatial frequency dependent systematic errors of the instruments. The AFM and the X-ray scattering measurements were used to determine the modulation transfer function of the interferometric microscope. The corresponding correction procedure is discussed in detail. Lower frequency investigation of the 2D PSD distribution was also performed with a long trace profiler and a ZYGO GPI interferometer. These measurements are in some contradiction, suggesting that the reliability of the measurements has to be confirmed with additional investigation. Based on the crosscheck of the performance of all used methods, we discuss the ways for improving the 2D PSD characterization of X-ray optics.

  6. THE FIRST HARD X-RAY POWER SPECTRAL DENSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Shimizu, T. Taro; Mushotzky, Richard F.

    2013-06-10

    We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of {approx} - 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

  7. 2D Spatial Frequency Considerations in Comparing 1D Power Spectral Density Measurements

    SciTech Connect

    Takacs, P.Z.; Barber, S.; Church, E.L.; Kaznatcheev, K.; McKinney, W.R.; Yashchuk, V.Y.

    2010-06-14

    The frequency footprint of ID and 2D profiling instruments needs to be carefully considered in comparing ID surface roughness spectrum measurements made by different instruments. Contributions from orthogonal direction frequency components can not be neglected. The use of optical profiling instruments is ubiquitous in the measurement of the roughness of optical surfaces. Their ease-of-use and non-contact measurement method found widespread use in the optics industry for measuring the quality of delicate optical surfaces. Computerized digital data acquisition with these instruments allowed for quick and easy calculation of surface roughness statistics, such as root-mean-square (RMS) roughness. The computing power of the desktop computer allowed for the rapid conversion of spatial domain data into the frequency domain, enabling the application of sophisticated signal processing techniques to be applied to the analysis of surface roughness, the most powerful of which is the power spectral density (PSP) function. Application of the PSD function to surface statistics introduced the concept of 'bandwidth-limited' roughness, where the value of the RMS roughness depends critically upon the spatial frequency response of the instrument. Different instruments with different spatial frequency response characteristics give different answers when measuring the same surface.

  8. Analysis of the time series of the EEG frequency spectra and of EEG spectral power densities.

    PubMed

    Dvorák, J; Formánek, J; Kubát, J; Plevová, J; Vanícková, M; Fires, M; Andél, J; Cipra, T; Tomásek, L; Prásková, Z; Holoubková, E; Fabián, Z

    1981-06-01

    Some examples of the use of the principal component model for the economic description of the structure of the multiple time series and for the data reduction in the quantitative EEG studies are presented. The broad-band EEG frequency spectra were measured with the use of an electronic system designed by J. Dvorák. The EEG spectral power densities were computed via the discrete Fourier Transform (namely FFT) algorithm. The estimated two or three first principal components account for the major part of the total variance of individual EEG variables: The results hold for the used elementary epoch of measurement, i.e. 5 sec. - With the use of the algorithms and FORTRAN IV programs developed by J. Andĕl, T. Cipra and L. Tomásek a data reduction by a factor of 1:2000 can be achieved without any substantial loss of biological information. - The described methods help to obtain a better insight into the structure of the data and represent a powerful tool for data reduction at least in a certain class of experimental EEG studies (experimental toxicology, pharmacology, experimental neurology). PMID:7270023

  9. Evaluation of localized muscle fatigue using power spectral density analysis of the electromyogram

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.

    1974-01-01

    Surface electromyograms (EMGs) taken from three upper torso muscles during a push-pull task were analyzed by a power spectral density technique to determine the operational feasibility of the technique for identifying changes in the EMGs resulting from muscular fatigue. The EMGs were taken from four subjects under two conditions (1) in shirtsleeves and (2) in a pressurized space suit. This study confirmed that frequency analysis of dynamic muscle activity is capable of providing reliable data for many industrial applications where fatigue may be of practical interest. The results showed significant effects of the pressurized space suit on the pattern of shirtsleeve fatigue responses of the muscles. The data also revealed (1) reliable differences between muscles in fatigue-induced responses to various locations in the reach envelope at which the subjects were required to perform the push-pull exercise and (2) the differential sensitivity of muscles to the various reach positions in terms of fatigue-related shifts in EMG power.

  10. Comparison of the STA/LTA and power spectral density methods for microseismic event detection

    NASA Astrophysics Data System (ADS)

    Vaezi, Yoones; Van der Baan, Mirko

    2015-12-01

    Robust event detection and picking is a prerequisite for reliable (micro-) seismic interpretations. Detection of weak events is a common challenge among various available event detection algorithms. In this paper we compare the performance of two event detection methods, the short-term average/long-term average (STA/LTA) method, which is the most commonly used technique in industry, and a newly introduced method that is based on the power spectral density (PSD) measurements. We have applied both techniques to a 1-hr long segment of the vertical component of some raw continuous data recorded at a borehole geophone in a hydraulic fracturing experiment. The PSD technique outperforms the STA/LTA technique by detecting a higher number of weak events while keeping the number of false alarms at a reasonable level. The time-frequency representations obtained through the PSD method can also help define a more suitable bandpass filter which is usually required for the STA/LTA method. The method offers thus much promise for automated event detection in industrial, local, regional and global seismological data sets.

  11. X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.

    2003-01-01

    By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.

  12. Broadening of the Spectral Atomic Lines Analysis in High Density Argon Corona Plasma by Using Voigt Profile

    NASA Astrophysics Data System (ADS)

    Nur, M.; Bonifaci, N.; Denat, A.; Atrazhev, V. M.

    2015-06-01

    Studies of spectrum emission from high density argon plasma corona has been done. The analysis of the boardening of spectral atomic lines of Ar-I profile has been curried out by using an empirical approximation based on a Voigt profile. Full-width at half-maximum (FWHM) of the spectral-lines of 763.5 nm has been determined from atmospheric pressure until liquid state. The study liquid argon was curried out in a variation of temperature from K to 151.2 K and hydrostatics pressure from 2.1 MPa to 6.4 MPa. These pressure gives the densities N∞ (i.e. density very far from ionization zone) a variation from 1.08 1022 to 2.11 1022 cm-3. FWHM of Voigt approximation (Wv) of the line 763,5 nm of 'Ar I for: the emission lamp very low pressure (Wv = 0,160 nm) and our corona discharge at a pressure of MPa (Wv = 0,67 nm) and at a pressure of 9,5 MPa (Wv = 1,16 nm). In gas, corona plasma has been generated from 0.1 MPa to 9.5 MPa. We found that the broadening spectral line increase by increasing densities both for. the spectral-lines of 763.5 nm and 696.5 nm. We concluded that broadening of spectrum cause of Van der Waals force.

  13. Multiple characteristics analysis of Alzheimer's electroencephalogram by power spectral density and Lempel-Ziv complexity.

    PubMed

    Liu, Xiaokun; Zhang, Chunlai; Ji, Zheng; Ma, Yi; Shang, Xiaoming; Zhang, Qi; Zheng, Wencheng; Li, Xia; Gao, Jun; Wang, Ruofan; Wang, Jiang; Yu, Haitao

    2016-04-01

    To investigate the electroencephalograph (EEG) background activity in patients with Alzheimer's disease (AD), power spectrum density (PSD) and Lempel-Ziv (LZ) complexity analysis are proposed to extract multiple effective features of EEG signals from AD patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared with the control group, the relative PSD of AD group is significantly higher in the theta frequency band while lower in the alpha frequency bands. In order to explore the nonlinear information, Lempel-Ziv complexity (LZC) and multi-scale LZC is further applied to all electrodes for the four frequency bands. Analysis results demonstrate that the group difference is significant in the alpha frequency band by LZC and multi-scale LZC analysis. However, the group difference of multi-scale LZC is much more remarkable, manifesting as more channels undergo notable changes, particularly in electrodes O1 and O2 in the occipital area. Moreover, the multi-scale LZC value provided a better classification between the two groups with an accuracy of 85.7 %. In addition, we combine both features of the relative PSD and multi-scale LZC to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature, reaching 91.4 %. The obtained results show that analysis of PSD and multi-scale LZC can be taken as a potential comprehensive measure to distinguish AD patients from the normal controls, which may benefit our understanding of the disease. PMID:27066150

  14. Estimating respiratory and heart rates from the correntropy spectral density of the photoplethysmogram.

    PubMed

    Garde, Ainara; Karlen, Walter; Ansermino, J Mark; Dumont, Guy A

    2014-01-01

    The photoplethysmogram (PPG) obtained from pulse oximetry measures local variations of blood volume in tissues, reflecting the peripheral pulse modulated by heart activity, respiration and other physiological effects. We propose an algorithm based on the correntropy spectral density (CSD) as a novel way to estimate respiratory rate (RR) and heart rate (HR) from the PPG. Time-varying CSD, a technique particularly well-suited for modulated signal patterns, is applied to the PPG. The respiratory and cardiac frequency peaks detected at extended respiratory (8 to 60 breaths/min) and cardiac (30 to 180 beats/min) frequency bands provide RR and HR estimations. The CSD-based algorithm was tested against the Capnobase benchmark dataset, a dataset from 42 subjects containing PPG and capnometric signals and expert labeled reference RR and HR. The RR and HR estimation accuracy was assessed using the unnormalized root mean square (RMS) error. We investigated two window sizes (60 and 120 s) on the Capnobase calibration dataset to explore the time resolution of the CSD-based algorithm. A longer window decreases the RR error, for 120-s windows, the median RMS error (quartiles) obtained for RR was 0.95 (0.27, 6.20) breaths/min and for HR was 0.76 (0.34, 1.45) beats/min. Our experiments show that in addition to a high degree of accuracy and robustness, the CSD facilitates simultaneous and efficient estimation of RR and HR. Providing RR every minute, expands the functionality of pulse oximeters and provides additional diagnostic power to this non-invasive monitoring tool. PMID:24466088

  15. Coherent WDM, toward > 1 bit/s/Hz information spectral density

    NASA Astrophysics Data System (ADS)

    Ellis, Andrew D.; Gunning, Fatima C.

    2005-06-01

    Many approaches to achieving high information spectral density (ISD), have been reported recently. The standard non-return-to-zero (NRZ) format, which offers a base line performance around 0.4 bit/s/Hz, may be enhanced using a variety of techniques, including: pre-filtering within the transmitter, multi-level modulation formats and polarisation interleaving or multiplexing. These techniques either increase the information per channel (multi-level formats and polarization multiplexing) or minimise interferometric cross talk (pre-filtering and polarisation interleaving) and result in ISDs around 0.8 bit/s/Hz. Combinations of these techniques have been used to provide ISDs of up to 1.6 bit/s/Hz. In this paper we propose a new technique, which we call Coherent WDM (CoWDM), to increase the ISD of NRZ binary coded signals in a single polarisation from 0.4 to 1 bit/s/Hz whilst simultaneously eliminating the need for pre-filters within the transmitter. Phase control within the transmitter is used to achieve precise control of interferometric cross talk. This allows the use of stronger demultiplexing filters at the receiver, and provides optimum performance when the bit rate equals the channel spacing, giving an ISD of 1 bit/s/Hz. This interference control may be achieved by controlling the phase of each laser individually with optical phase locked loops, or by replacing the typical bank of lasers with one or more coherent comb sources, and encoding data using an array of modulators that preserves this relative optical phase. Since optical filtering is not required in the transmitter, stronger optical filters may be used to demultiplex the individual WDM channels at the receiver, further reducing cross talk.

  16. Three-dimensional turbulent bottom density currents from a high-order nonhydrostatic spectral element model.

    SciTech Connect

    Ozgokmen, T.; Fischer, P.; Duan, J.; Iliescu, T.; Mathematics and Computer Science; Univ. of Miami; IIT; Virginia Polytechnic Inst. and State Univ.

    2004-09-01

    Overflows are bottom gravity currents that supply dense water masses generated in high-latitude and marginal seas into the general circulation. Oceanic observations have revealed that mixing of overflows with ambient water masses takes place over small spatial and time scales. Studies with ocean general circulation models indicate that the strength of the thermohaline circulation is strongly sensitive to representation of overflows in these models. In light of these results, overflow-induced mixing emerges as one of the prominent oceanic processes. In this study, as a continuation of an effort to develop appropriate process models for overflows, nonhydrostatic 3D simulations of bottom gravity are carried out that would complement analysis of dedicated observations and large-scale ocean modeling. A parallel high-order spectral-element Navier-Stokes solver is used as the basis of the simulations. Numerical experiments are conducted in an idealized setting focusing on the startup phase of a dense water mass released at the top of a sloping wedge. Results from 3D experiments are compared with results from 2D experiments and laboratory experiments, based on propagation speed of the density front, growth rate of the characteristic head at the leading edge, turbulent overturning length scales, and entrainment parameters. Results from 3D experiments are found to be in general agreement with those from laboratory tank experiments. In 2D simulations, the propagation speed is approximately 20% slower than that of the 3D experiments and the head growth rate is 3 times as large, Thorpe scales are 1.3-1.5 times as large, and the entrainment parameter is up to 2 times as large as those in the 3D experiments. The differences between 2D and 3D simulations are entirely due to internal factors associated with the truncation of the Navier-Stokes equations for 2D approximation.

  17. Infrared spectral density of H-bonds within the strong anharmonic coupling theory: Indirect relaxation effect

    NASA Astrophysics Data System (ADS)

    Rekik, Najeh; Issaoui, Noureddine; Ghalla, Houcine; Oujia, Brahim; Wójcik, Marek J.

    2007-11-01

    The IR spectral density (SD) of the high frequency stretching mode of H-bonded complexes involving both the intrinsic anharmonicity of the fast and slow mode, together with direct and indirect relaxations is studied within the linear response theory. For this aim, we extend a quantum non-adiabatic treatment of H-bonds involving intrinsic anharmonicity of the fast mode [N. Rekik, A. Velescu, P. Blaise, O. Henri-Rousseau, Chem. Phys. 273 (2001) 11.] which is described by an asymmetric double well potential by accounting for the anharmonicity of the slow mode and the indirect relaxation. In addition, the repulsive potential intervening in the asymmetric double well potential is described by the sum of three Gaussian whereas in the previous model, only one Gaussian was taken into account. The anharmonic coupling between the high frequency X-H→…Y and the low frequency X←-H…Y→ modes is treated inside the strong anharmonic coupling theory. The relaxation of the fast mode (direct damping) and of the H-bond bridge (indirect damping) is incorporated by aid of our previous results [N. Rekik, B.Ouari, P. Blaise, O. Henri-Rousseau, J. Mol. Struc. (Theochem.) 687 (2004) 125-133.]. The IR SD is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The numerical calculation shows that the indirect damping plays a specific role in the features of the lineshapes of hydrogen bonds systems by favouring more the fine structure of the low frequency tail than that of the high frequency one.

  18. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Aikens, David M.; Wolfe, C. Robert; Lawson, Janice K.

    1995-08-01

    In the second half of the 1990's, LLNL and others will be designing and beginning construction of the National Ignition Facility. This new laser will be capable of producing the worlds first controlled fusion ignition and burn, completing a vital milestone on the path of Fusion Energy. This facility will use more than 7,000 optical components, most of which have a rectangular aperture, which measure greater than 600 mm on the diagonal. In order to optimize the performance versus cost of the laser system, we have determined that specifications based on the Power Spectral Density (PSD) functions are the most effective for controlling mid-spatial wavelength errors. The draft optics specifications based on a combination of PSD and conventional roughness and P-V requirements are presented, with a discussion of their origins. The emphasis is on the application of a PSD function for transmitted wavefront optical specifications, and the benefits thereof. The PSD function is the most appropriate way to characterize transmitted wavefront errors with spatial frequencies ranging from several centimeters to a few hundred nanometers, with amplitudes in the (lambda) /100 regime. Such errors are commonly generated by cost effective, deterministic finishing technologies, and can be damaging to the laser, as well as causing unnecessary energy loss and inability to focus, in a high energy laser application. In addition, periodic errors can occur as a result of errors at other steps in the fabrication process, such as machine vibration in a fixed abrasive step, or material homogeneity ripple. The control of such errors will be essential to the construction of future high energy lasers.

  19. Collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2011-11-30

    Using the eikonal approximation, we have calculated effective collision frequencies in density-matrix kinetic equations describing nonlinear effects in the wings of spectral lines. We have established the relation between the probabilities of absorption and stimulated emission and the characteristics of the radiation and elementary scattering event. The example of the power interaction potential shows that quantum mechanical calculation of the collision frequencies in the eikonal approximation and previously known spectral line wing theory give similar results for the probability of radiation absorption.

  20. Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes

    SciTech Connect

    Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.

  1. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.; Papadakis, I. E.; Epitropakis, A.; Pecháček, T.; Dovčiak, M.; McHardy, I. M.

    2016-09-01

    We present the results of a detailed study of the X-ray power spectral density (PSD) functions of 12 X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5-7 keV (iron line) and 0.5-1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power-law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We do not find any significant features in the best-fitting BPL model residuals either in individual PSDs in the iron band, soft and full band (0.3-10 keV) or in the average PSD residuals of the brightest and more variable sources (with similar black hole mass estimates). The typical amplitude of the soft and full-band residuals is around 3-5 per cent. It is possible that the expected general relativistic effects are not detected because they are intrinsically lower than the uncertainty of the current PSDs, even in the strong relativistic case in which X-ray reflection occurs on a disc around a fast rotating black hole having an X-ray source very close above it. However, we could place strong constrains to the X-ray reflection geometry with the current data sets if we knew in advance the intrinsic shape of the X-ray PSDs, particularly its high-frequency slope.

  2. Reference spectral signature selection using density-based cluster for automatic oil spill detection in hyperspectral images.

    PubMed

    Liu, Delian; Zhang, Jianqi; Wang, Xiaorui

    2016-04-01

    Reference spectral signature selection is a fundamental work for automatic oil spill detection. To address this issue, a new approach is proposed here, which employs the density-based cluster to select a specific spectral signature from a hyperspectral image. This paper first introduces the framework of oil spill detection from hyperspectral images, indicating that detecting oil spill requires a reference spectral signature of oil spill, parameters of background, and a target detection algorithm. Based on the framework, we give the new reference spectral signature selection approach in details. Then, we demonstrate the estimation of background parameters according to the reflectance of seawater in the infrared bands. Next, the conventional adaptive cosine estimator (ACE) algorithm is employed to achieve oil spill detection. Finally, the proposed approach is tested via several practical hyperspectral images that are collected during the Horizon Deep water oil spill. The experimental results show that this new approach can automatically select the reference spectral signature of oil spills from hyperspectral images and has high detection performance. PMID:27137031

  3. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NASA Astrophysics Data System (ADS)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  4. A new method to predict the evolution of the power spectral density for a finite-amplitude sound wave

    NASA Astrophysics Data System (ADS)

    Menounou, Penelope; Blackstock, David T.

    2004-02-01

    A method to predict the effect of nonlinearity on the power spectral density of a plane wave traveling in a thermoviscous fluid is presented. As opposed to time-domain methods, the method presented here is based directly on the power spectral density of the signal, not the signal itself. The Burgers equation is employed for the mathematical description of the combined effects of nonlinearity and dissipation. The Burgers equation is transformed into an infinite set of linear equations that describe the evolution of the joint moments of the signal. A method for solving this system of equations is presented. Only a finite number of equations is appropriately selected and solved by numerical means. For the method to be applied all appropriate joint moments must be known at the source. If the source condition has Gaussian characteristics (it is a Gaussian noise signal or a Gaussian stationary and ergodic stochastic process), then all the joint moments can be computed from the power spectral density of the signal at the source. Numerical results from the presented method are shown to be in good agreement with known analytical solutions in the preshock region for two benchmark cases: (i) sinusoidal source signal and (ii) a Gaussian stochastic process as the source condition.

  5. Border collision bifurcations and power spectral density of chaotic signals generated by one-dimensional discontinuous piecewise linear maps

    NASA Astrophysics Data System (ADS)

    Feltekh, Kais; Jemaa, Zouhair Ben; Fournier-Prunaret, Danièle; Belghith, Safya

    2014-08-01

    Recently, many papers have appeared which study the power spectral density (PSD) of signals issued from some specific maps. This interest in the PSD is due to the importance of frequency in the telecommunications and transmission security. With the large number of wireless systems, the availability of frequencies for transmission and reception is increasingly uncommon for wireless communications. Also, guided media have limitations related to the bandwidth of a signal. In this paper, we investigate some properties associated to the border-collision bifurcations in a one-dimensional piecewise-linear map with three slopes and two parameters. We derive analytical expressions for the autocorrelation sequence, power spectral density (PSD) of chaotic signals generated by our piecewise-linear map. We prove the existence of strong relation between different types of the power spectral density (low-pass, high-pass or band-stop) and the parameters. We also find a relation between the type of spectrum and the order of attractive cycles which are located after the border collision bifurcation between chaos and cycles.

  6. Effective spectral densities for system-environment dynamics at conical intersections: S2- S1 conical intersection in pyrazine

    NASA Astrophysics Data System (ADS)

    Martinazzo, Rocco; Hughes, Keith H.; Martelli, Fausto; Burghardt, Irene

    2010-11-01

    A recently developed effective-mode representation is employed to characterize the influence of a multi-dimensional environment on the S2- S1 conical intersection in pyrazine, taken as a paradigm case of high-dimensional dynamics at a conical intersection. We consider a simplified model by which four modes are strongly coupled to the electronic subsystem while a number of weakly coupled tuning modes, inducing energy gap fluctuations, are sampled from a spectral density. The latter is approximated by a series of simplified spectral densities which can be cast into a continued-fraction form, as previously demonstrated in Hughes et al. (K.H. Hughes, C.D. Christ, I. Burghardt, J. Chem. Phys. 131 (2009) 124108). In the time domain, the hierarchy of spectral densities translates to truncated effective-mode chains with a Markovian or quasi-Markovian (Rubin type) closure. A sequential deconvolution procedure is employed to generate this chain representation. The implications for the ultrafast dynamics and its representation in terms of reduced-dimensional models are discussed.

  7. Measurements of the number density of water molecules in plasma by using a combined spectral-probe method

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.; Afonin, O. N.; Antipenkov, A. B.

    2015-09-01

    A novel method for measuring the number density of water molecules in low-temperature plasma is developed. The absolute intensities of rotational lines of the (0,0) band of the OH( A 2Σ- X 2П) transition are used. Lines with sufficiently large rotational quantum numbers referring to the so-called "hot" group of molecules produced by electron-impact dissociative excitation of water molecules are chosen for measurements. The excitation rate of a process with a known cross section is determined by measuring the parameters of plasma electrons by means of the probe method. The measured number densities of molecules are compared with those in the initial plasma-forming mixture. The time evolution of the particle densities in plasma is investigated. The problems of the sensitivity and applicability of the absolute spectral method are considered.

  8. An Investigation of the Overlap Between the Statistical Discrete Gust and the Power Spectral Density Analysis Methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    The results of a NASA investigation of a claimed Overlap between two gust response analysis methods: the Statistical Discrete Gust (SDG) Method and the Power Spectral Density (PSD) Method are presented. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented for several different airplanes at several different flight conditions indicate that such an Overlap does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  9. An investigation of the 'Overlap' between the Statistical-Discrete-Gust and the Power-Spectral-Density analysis methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    This paper presents the results of a NASA investigation of a claimed 'Overlap' between two gust response analysis methods: the Statistical Discrete Gust (SDG) method and the Power Spectral Density (PSD) method. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented in this paper for several different airplanes at several different flight conditions indicate that such an 'Overlap' does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  10. Spectral function of the two-dimensional Hubbard model: A density matrix renormalization group plus cluster perturbation theory study

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Feiguin, Adrian E.

    2016-02-01

    We study the spectral function of the two-dimensional Hubbard model using cluster perturbation theory, and a density matrix renormalization group as a cluster solver. We reconstruct the two-dimensional dispersion at and away from half-filling using 2 ×L ladders, with L up to 80 sites, yielding results with unprecedented resolution in excellent agreement with quantum Monte Carlo. The main features of the spectrum can be described with a mean-field dispersion, with kinks and pseudogap traced back to scattering between spin and charge degrees of freedom.

  11. Spectral density affects the intelligibility of tone-vocoded speech: Implications for cochlear implant simulations.

    PubMed

    Rosen, Stuart; Zhang, Yue; Speers, Kathryn

    2015-09-01

    For small numbers of channels, tone vocoders using low envelope cutoff frequencies are less intelligible than noise vocoders, even though the noise carriers introduce random fluctuations into the crucial envelope information. Here it is shown that using tone carriers with a denser spectrum improves performance considerably over typical tone vocoders, at least equaling, and often surpassing, the performance possible with noise vocoders. In short, the spectral sparseness of tone vocoded sounds for low channel numbers, separate from the degradations introduced by using only a small number of channels, is an important limitation on the intelligibility of tone-vocoded speech. PMID:26428833

  12. Power spectral density estimation by spline smoothing in the frequency domain

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Thompson, J. R.

    1972-01-01

    An approach, based on a global averaging procedure, is presented for estimating the power spectrum of a second order stationary zero-mean ergodic stochastic process from a finite length record. This estimate is derived by smoothing, with a cubic smoothing spline, the naive estimate of the spectrum obtained by applying FFT techniques to the raw data. By means of digital computer simulated results, a comparison is made between the features of the present approach and those of more classical techniques of spectral estimation.

  13. Power spectral density estimation by spline smoothing in the frequency domain.

    NASA Technical Reports Server (NTRS)

    De Figueiredo, R. J. P.; Thompson, J. R.

    1972-01-01

    An approach, based on a global averaging procedure, is presented for estimating the power spectrum of a second order stationary zero-mean ergodic stochastic process from a finite length record. This estimate is derived by smoothing, with a cubic smoothing spline, the naive estimate of the spectrum obtained by applying Fast Fourier Transform techniques to the raw data. By means of digital computer simulated results, a comparison is made between the features of the present approach and those of more classical techniques of spectral estimation.-

  14. Optimization of spectral sensitivities of mosaic five-band camera for estimating chromophore densities from skin images including shading and surface reflections

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Akaho, Rina; Maita, Chikashi; Sugawara, Mai; Tsumura, Norimichi

    2016-06-01

    In this paper, the spectral sensitivities of a mosaic five-band camera were optimized using a numerical skin phantom to perform the separation of chromophore densities, shading and surface reflection. To simulate the numerical skin phantom, the spectral reflectance of skin was first calculated by Monte Carlo simulation of photon migration for different concentrations of melanin, blood and oxygen saturation levels. The melanin and hemoglobin concentration distributions used in the numerical skin phantom were obtained from actual skin images by independent component analysis. The calculated components were assigned as concentration distributions. The spectral sensitivities of the camera were then optimized using a nonlinear technique to estimate the spectral reflectance for skin separation. In this optimization, the spectral sensitivities were assumed to be normally distributed, and the sensor arrangement was identical to that of a conventional mosaic five-band camera. Our findings demonstrated that spectral estimation could be significantly improved by optimizing the spectral sensitivities.

  15. Optimization of spectral sensitivities of mosaic five-band camera for estimating chromophore densities from skin images including shading and surface reflections

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Akaho, Rina; Maita, Chikashi; Sugawara, Mai; Tsumura, Norimichi

    2016-02-01

    In this paper, the spectral sensitivities of a mosaic five-band camera were optimized using a numerical skin phantom to perform the separation of chromophore densities, shading and surface reflection. To simulate the numerical skin phantom, the spectral reflectance of skin was first calculated by Monte Carlo simulation of photon migration for different concentrations of melanin, blood and oxygen saturation levels. The melanin and hemoglobin concentration distributions used in the numerical skin phantom were obtained from actual skin images by independent component analysis. The calculated components were assigned as concentration distributions. The spectral sensitivities of the camera were then optimized using a nonlinear technique to estimate the spectral reflectance for skin separation. In this optimization, the spectral sensitivities were assumed to be normally distributed, and the sensor arrangement was identical to that of a conventional mosaic five-band camera. Our findings demonstrated that spectral estimation could be significantly improved by optimizing the spectral sensitivities.

  16. A spectral scheme for Kohn–Sham density functional theory of clusters

    SciTech Connect

    Banerjee, Amartya S. Elliott, Ryan S. James, Richard D.

    2015-04-15

    Starting from the observation that one of the most successful methods for solving the Kohn–Sham equations for periodic systems – the plane-wave method – is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn–Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn–Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  17. A spectral scheme for Kohn-Sham density functional theory of clusters

    NASA Astrophysics Data System (ADS)

    Banerjee, Amartya S.; Elliott, Ryan S.; James, Richard D.

    2015-04-01

    Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems - the plane-wave method - is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.

  18. Three-dimensional density interface inversion of gravity anomalies in the spectral domain

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Meng, Xiaohong; Chen, Zhaoxi; Zhang, Sheng

    2014-06-01

    Based on the Fourier transform, the Parker-Oldenburg algorithm in the frequency domain was extended for the three-dimensional case where the density changes with depth. From this, a gravity interface inversion formula was derived in which the assumed density can be varied laterally and vertically. Iterative convergence is assured by fixing a particular depth as the datum plane below the surface to reduce the interface fluctuation. The results of an example set of synthetic gravity data indicate that the proposed method gives high precision and rapid convergence, with high practical value for the inversion of density interfaces. This method was also used to determine the Moho depth beneath northern China. The results were confirmed by seismic sounding data. Differences between seismic sounding data and inverted depth were insignificant and were in the range of -0.92-1.67 km.

  19. A comprehensive account of spectral, Hartree Fock, and Density Functional Theory studies of 2-chlorobenzothiazole

    NASA Astrophysics Data System (ADS)

    Daswani, Ujla; Sharma, Pratibha; Kumar, Ashok

    2015-01-01

    Benzothiazole moiety is found to play an important role in medicinal chemistry with a wide range of pharmacological activities. Herein, a simple, benzothiazole derivative viz., 2-chlorobenzothiazole (2CBT) has been analyzed. The spectroscopic properties of the target compound were examined by FT-IR (4400-450 cm-1), FT-Raman (4000-50 cm-1), and NMR techniques. The 1H and 13C NMR spectra were recorded in DMSO. Theoretical calculations were performed by ab initio Hartree Fock and Density Functional Theory (DFT)/B3LYP method using varied basis sets combination. The scaled B3LYP/6-311++G(d,p) results precisely complements with the experimental findings. Electronic absorption spectra along with energy and oscillator strength were obtained by TDDFT method. Atomic charges have also been reported. Total density isosurface and total density mapped with electrostatic potential surface (MESP) has been shown.

  20. Evaluation of techniques for estimating the power spectral density of RR-intervals under paced respiration conditions.

    PubMed

    Schaffer, Thorsten; Hensel, Bernhard; Weigand, Christian; Schüttler, Jürgen; Jeleazcov, Christian

    2014-10-01

    Heart rate variability (HRV) analysis is increasingly used in anaesthesia and intensive care monitoring of spontaneous breathing and mechanical ventilated patients. In the frequency domain, different estimation methods of the power spectral density (PSD) of RR-intervals lead to different results. Therefore, we investigated the PSD estimates of fast Fourier transform (FFT), autoregressive modeling (AR) and Lomb-Scargle periodogram (LSP) for 25 young healthy subjects subjected to metronomic breathing. The optimum method for determination of HRV spectral parameters under paced respiration was identified by evaluating the relative error (RE) and the root mean square relative error (RMSRE) for each breathing frequency (BF) and spectral estimation method. Additionally, the sympathovagal balance was investigated by calculating the low frequency/high frequency (LF/HF) ratio. Above 7 breaths per minute, all methods showed a significant increase in LF/HF ratio with increasing BF. On average, the RMSRE of FFT was lower than for LSP and AR. Therefore, under paced respiration conditions, estimating RR-interval PSD using FFT is recommend. PMID:23508826

  1. Effective bridge spectral density for long-range biological energy and charge transfer

    NASA Astrophysics Data System (ADS)

    Kühn, Oliver; Rupasov, Valery; Mukamel, Shaul

    1996-04-01

    The role of medium-induced relaxation of intermediate (bridge) sites in energy and charge transfer processes in molecular aggregates of arbitrary size and geometry is explored by means of Green's function techniques. The coupling of electronic and (solvent and intramolecular) nuclear degrees of freedom is incorporated using the Brownian oscillator model, which allows an exact calculation of the necessary two-point and four-point correlation functions of exciton operators. The signatures of energy transfer and spectral diffusion in time- and frequency-resolved fluorescence spectroscopy are studied. A unified expression for the frequency-dependent transfer rate is derived, which interpolates between the sequential and superexchange limits. Numerical results and a Liouville space pathway analysis for a donor-acceptor system coupled through a single bridge molecule are presented.

  2. Dynamics of supercritical methanol of varying density from first principles simulations: Hydrogen bond fluctuations, vibrational spectral diffusion, and orientational relaxation

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek Kumar; Chandra, Amalendu

    2013-06-01

    A first principles study of the dynamics of supercritical methanol is carried out by means of ab initio molecular dynamics simulations. In particular, the fluctuation dynamics of hydroxyl stretch frequencies, hydrogen bonds, dangling hydroxyl groups, and orientation of methanol molecules are investigated for three different densities at 523 K. Apart from the dynamical properties, various equilibrium properties of supercritical methanol such as the local density distributions and structural correlations, hydrogen bonding aspects, frequency-structure correlations, and dipole distributions of methanol molecules are also investigated. In addition to the density dependence of various equilibrium and dynamical properties, their dependencies on dispersion interactions are also studied by carrying out additional simulations using a dispersion corrected density functional for all the systems. It is found that the hydrogen bonding between methanol molecules decreases significantly as we move to the supercritical state from the ambient one. The inclusion of dispersion interactions is found to increase the number of hydrogen bonds to some extent. Calculations of the frequency-structure correlation coefficient reveal that a statistical correlation between the hydroxyl stretch frequency and the nearest hydrogen-oxygen distance continues to exist even at supercritical states of methanol, although it is weakened with increase of temperature and decrease of density. In the supercritical state, the frequency time correlation function is found to decay with two time scales: One around or less than 100 fs and the other in the region of 250-700 fs. It is found that, for supercritical methanol, the times scales of vibrational spectral diffusion are determined by an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation of methanol molecules and the roles of these various components are found to vary with density of the supercritical solvent. Effects

  3. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-02-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s-1. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  4. Core and wing densities of asymmetric coronal spectral profiles: Implications for the mass supply of the solar corona

    SciTech Connect

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R. E-mail: james.a.klimchuk@nasa.gov

    2014-02-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s{sup –1}. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  5. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-01-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  6. Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions.

    PubMed

    Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G

    2015-11-01

    Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively. PMID:26722961

  7. Breather turbulence versus soliton turbulence: Rogue waves, probability density functions, and spectral features.

    PubMed

    Akhmediev, N; Soto-Crespo, J M; Devine, N

    2016-08-01

    Turbulence in integrable systems exhibits a noticeable scientific advantage: it can be expressed in terms of the nonlinear modes of these systems. Whether the majority of the excitations in the system are breathers or solitons defines the properties of the turbulent state. In the two extreme cases we can call such states "breather turbulence" or "soliton turbulence." The number of rogue waves, the probability density functions of the chaotic wave fields, and their physical spectra are all specific for each of these two situations. Understanding these extreme cases also helps in studies of mixed turbulent states when the wave field contains both solitons and breathers, thus revealing intermediate characteristics. PMID:27627303

  8. Power Spectral Density of Fluctuations of Bulk and Thermal Speeds in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-07-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s‑1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are ‑1.43 and ‑1.38, respectively, whereas they are ‑3.08 and ‑2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  9. Superconformal sum rules and the spectral density flow of the composite dilaton (ADD) multiplet in =1 theories

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Costantini, Antonio; Rose, Luigi Delle; Serino, Mirko

    2014-06-01

    We discuss the signature of the anomalous breaking of the superconformal symmetry in = 1 super Yang Mills theory, mediated by the Ferrara-Zumino hypercurrent () with two vector () supercurrents () and its manifestation in the anomaly action, in the form of anomaly poles. This allows to investigate in a unified way both conformal and chiral anomalies. The analysis is performed in parallel to the Standard Model, for comparison. We investigate, in particular, massive deformations of the = 1 theory and the spectral densities of the anomaly form factors which are extracted from the components of this correlator. In this extended framework it is shown that all the anomaly form factors are characterized by spectral densities which flow with the mass deformation. In particular, the continuum contributions from the two-particle cuts of the intermediate states turn into poles in the zero mass limit, with a single sum rule satisfied by each component. Non anomalous form factors, instead, in the same anomalous correlators, are characterized by non-integrable spectral densities. These tend to uniform distributions as one moves towards the conformal point, with a clear dual behaviour. As in a previous analysis of the dilaton pole of the Standard Model, also in this case the poles can be interpreted as signaling the exchange of a composite dilaton/axion/dilatino (ADD) multiplet in the effective Lagrangian. The pole-like behaviour of the anomaly form factors is shown to be a global feature of the correlators, present at all energy scales, due to the sum rules. A similar behaviour is shown to be present in the Konishi current, which identifies additional composite states. We conclude that global anomalous currents characterized by a single flow in the perturbative picture always predict the existence of composite interpolating fields. In case of gauging of these currents, as in superconformal theories coupled to gravity, we show that the cancellation of the corresponding anomalies

  10. Electroencephalographic Power Spectral Density Profile of the Orexin Receptor Antagonist Suvorexant in Patients with Primary Insomnia and Healthy Subjects

    PubMed Central

    Ma, Junshui; Svetnik, Vladimir; Snyder, Ellen; Lines, Christopher; Roth, Thomas; Herring, W. Joseph

    2014-01-01

    Study Objectives: Suvorexant, an orexin receptor antagonist, improves sleep in healthy subjects (HS) and patients with insomnia. We compared the electroencephalographic (EEG) power spectral density (PSD) profile of suvorexant with placebo using data from a phase 2 trial in patients with insomnia. We also compared suvorexant's PSD profile with the profiles of other insomnia treatments using data from 3 HS studies Design: Phase 2 trial—randomized, double-blind, two-period (4 w per period) crossover. HS studies—randomized, double-blind, crossover. Setting: Sleep laboratories. Participants: Insomnia patients (n = 229) or HS (n = 124). Interventions: Phase 2 trial—suvorexant 10 mg, 20 mg, 40 mg, 80 mg, placebo; HS study 1—suvorexant 10 mg, 50 mg, placebo; HS study 2— gaboxadol 15 mg, zolpidem 10 mg, placebo; HS study 3—trazodone 150 mg, placebo. Measurements and Results: The PSD of the EEG signal at 1–32 Hz of each PSG recording during nonrapid eye movement (NREM) and rapid eye movement (REM) sleep were calculated. The day 1 and day 28 PSD profiles of suvorexant at all four doses during NREM and REM sleep in patients with insomnia were generally flat and close to 1.0 (placebo) at all frequencies. The day 1 PSD profile of suvorexant in HS was similar to that in insomnia patients. In contrast, the other three drugs had distinct PSD profiles in HS that differed from each other. Conclusions: Suvorexant at clinically effective doses had limited effects on power spectral density compared with placebo in healthy subjects and in patients with insomnia, in contrast to the three comparison insomnia treatments. These findings suggest the possibility that antagonism of the orexin pathway might lead to improvements in sleep without major changes in the patient's neurophysiology as assessed by electroencephalographic. Citation: Ma J, Svetnik V, Snyder E, Lines C, Roth T, Herring WJ. Electroencephalographic power spectral density profile of the orexin receptor antagonist

  11. Investigations of the Low Frequency Spectral Density of Cytochrome c upon Equilibrium Unfolding

    PubMed Central

    Sun, Yuhan; Karunakaran, Venugopal; Champion, Paul M.

    2013-01-01

    The equilibrium unfolding process of ferric horse heart cytochrome c (cyt c), induced by guanidinium hydrochloride (GdHCl), was studied using UV-vis absorption spectroscopy, resonance Raman spectroscopy and vibrational coherence spectroscopy (VCS). The unfolding process was successfully fit using a three-state model35 which included the fully folded (N) and unfolded (U) states, along with an intermediate (I) assigned to a Lys bound heme. The VCS spectra revealed for the first time several low frequency heme modes that are sensitive to cytochrome c unfolding: γa (~50 cm−1), γb (~80cm−1), γc (~100cm−1), and vs(His-Fe-His) at 205 cm−1. These out-of-plane modes have potential functional relevance and are activated by protein-induced heme distortions. The free energies for the N-I and the I-U transitions at pH 7.0 and 20°C were found to be 4.6 kcal/M and 11.6 kcal/M, respectively. Imidazole was also introduced to replace the methionine ligand so the unfolding can be modeled as a two-state system. The intensity of the mode γb~80 cm−1 remains nearly constant during the unfolding process, while the amplitudes of the other low frequency modes track with spectral changes observed at higher frequency. This confirms that the heme deformation changes are coupled to the protein tertiary structural changes that take place upon unfolding. These studies also reveal that damping of the coherent oscillations depends sensitively on the coupling between heme and the surrounding water solvent. PMID:23863217

  12. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.

    PubMed

    Chandrasekaran, Suryanarayanan; Aghtar, Mortaza; Valleau, Stéphanie; Aspuru-Guzik, Alán; Kleinekathöfer, Ulrich

    2015-08-01

    Studies on light-harvesting (LH) systems have attracted much attention after the finding of long-lived quantum coherences in the exciton dynamics of the Fenna-Matthews-Olson (FMO) complex. In this complex, excitation energy transfer occurs between the bacteriochlorophyll a (BChl a) pigments. Two quantum mechanics/molecular mechanics (QM/MM) studies, each with a different force-field and quantum chemistry approach, reported different excitation energy distributions for the FMO complex. To understand the reasons for these differences in the predicted excitation energies, we have carried out a comparative study between the simulations using the CHARMM and AMBER force field and the Zerner intermediate neglect of differential orbital (ZINDO)/S and time-dependent density functional theory (TDDFT) quantum chemistry methods. The calculations using the CHARMM force field together with ZINDO/S or TDDFT always show a wider spread in the energy distribution compared to those using the AMBER force field. High- or low-energy tails in these energy distributions result in larger values for the spectral density at low frequencies. A detailed study on individual BChl a molecules in solution shows that without the environment, the density of states is the same for both force field sets. Including the environmental point charges, however, the excitation energy distribution gets broader and, depending on the applied methods, also asymmetric. The excitation energy distribution predicted using TDDFT together with the AMBER force field shows a symmetric, Gaussian-like distribution. PMID:26156758

  13. Spectral Features in Laser Driven Proton Acceleration from Cylindrical Solid-density Hydrogen Jets

    NASA Astrophysics Data System (ADS)

    Curry, Chandra; Gauthier, Maxence; Mishra, Rohini; Kim, Jongjin; Goede, Sebastian; Propp, Adrienne; Fiuza, Frederico; Glenzer, Siegfried H.; Williams, Jackson; Ruby, John; Goyon, Clement; Pak, Art E.; Kerr, Shaun; Tsui, Ying Y.; Ramakrishna, Bhuvanesh; Aurand, Bastian; Willi, Oswald; Roedel, Christian

    2015-11-01

    The generation of monoenergetic proton beams by ultrashort high-intensity laser-plasma interactions is of great interest for applications such as stopping power measurements, fast ignition laser confinement fusion, and ion beam therapy. In general, the commonly used mechanism of target normal sheath acceleration (TNSA) does not provide the required energy spread or maximum proton energy. Here we study alternative acceleration mechanisms, which have been identified in particle in cell (PIC) simulations, to overcome the limitations of TNSA. Using the Titan laser system at the Lawrence Livermore National Laboratory, we investigate proton acceleration from wire targets and a cryogenic solid-density hydrogen jet. Due to the cylindrical geometry, TNSA is suppressed allowing other accelerations mechanisms to become observable. Quasi-monoenergetic features in laser-forward direction are observed in the proton spectrum indicating radiation-pressure-driven acceleration mechanisms. Our experimental results are accompanied by supporting PIC simulations.

  14. 5 to 160 keV continuous-wave x-ray spectral energy distribution and energy flux density measurements

    SciTech Connect

    Tallon, R.W.; Koller, D.C.; Pelzl, R.M.; Pugh, R.D.; Bellem, R.D. . Microelectronics and Photonics Research Branch)

    1994-12-01

    In 1991, the USAF Phillips Laboratory Microelectronics and Photonics Research Branch installed a low energy x-ray facility (LEXR) for use in microelectronics radiation-effects analysis and research. Techniques developed for measuring the x-ray spectral energy distribution (differential intensity) from a tungsten-target bremsstrahlung x-ray source are reported. Spectra with end-point energies ranging from 20 to 160 keV were recorded. A separate effort to calibrate the dosimetry for the Phillips Laboratory low-energy x-ray facility established a need to know the spectral energy distributions at some point within the facility (previous calibration efforts had relies on spectra obtained from computer simulations). It was discovered that the primary discrepancy between the simulated and measured spectra was in the L- K-line data. The associated intensity (energy flux density) of the measured distributions was found to be up to 30% higher. Based on the measured distributions, predicted device responses were within 10% of the measured response as compared to about 30% accuracy obtained with simulated distributions.

  15. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    NASA Astrophysics Data System (ADS)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  16. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    SciTech Connect

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  17. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    SciTech Connect

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  18. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  19. Internal Characteristics of Phobos and Deimos from Spectral Properties and Density: Relationship to Landforms and Comparison with Asteroids

    NASA Technical Reports Server (NTRS)

    Murchie, S. L.; Fraeman, A. A.; Arvidson, R. E.; Rivkin, A. S.; Morris, R. V.

    2013-01-01

    Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters >1.3 body radii in diameter suggesting a porous, compressible interior.

  20. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  1. Minimum data requirement for neural networks based on power spectral density analysis.

    PubMed

    Deng, Jiamei; Maass, Bastian; Stobart, Richard

    2012-04-01

    One of the most critical challenges ahead for diesel engines is to identify new techniques for fuel economy improvement without compromising emissions regulations. One technique is the precise control of air/fuel ratio, which requires the measurement of instantaneous fuel consumption. Measurement accuracy and repeatability for fuel rate is the key to successfully controlling the air/fuel ratio and real-time measurement of fuel consumption. The volumetric and gravimetric measurement principles are well-known methods for measurement of fuel consumption in internal combustion engines. However, the fuel flow rate measured by these methods is not suitable for either real-time control or real-time measurement purposes because of the intermittent nature of the measurements. This paper describes a technique that can be used to find the minimum data [consisting of data from just 2.5% of the non-road transient cycle (NRTC)] to solve the problem concerning discontinuous data of fuel flow rate measured using an AVL 733S fuel meter for a medium or heavy-duty diesel engine using neural networks. Only torque and speed are used as the input parameters for the fuel flow rate prediction. Power density analysis is used to find the minimum amount of the data. The results show that the nonlinear autoregressive model with exogenous inputs could predict the particulate matter successfully with R(2) above 0.96 using 2.5% NRTC data with only torque and speed as inputs. PMID:24805042

  2. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.; Papadakis, I. E.; Epitropakis, A.; Pecháček, T.; Dovčiak, M.; McHardy, I. M.

    2016-06-01

    We present the results of a detailed study of the X-ray power spectra density (PSD) functions of twelve X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5 - 7 keV (iron line) and 0.5 - 1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We do not find any significant features in the best-fitting BPL model residuals either in individual PSDs in the iron band, soft and full band (0.3 - 10 keV) or in the average PSD residuals of the brightest and more variable sources (with similar black hole mass estimates). The typical amplitude of the soft and full-band residuals is around 3 - 5 per cent. It is possible that the expected general relativistic effects are not detected because they are intrinsically lower than the uncertainty of the current PSDs, even in the strong relativistic case in which X-ray reflection occurs on a disc around a fast rotating black hole having an X-ray source very close above it. However, we could place strong constrains to the X-ray reflection geometry with the current data sets if we knew in advance the intrinsic shape of the X-ray PSDs, particularly its high frequency slope.

  3. Changes in EEG power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task.

    PubMed

    Cona, Filippo; Zavaglia, Melissa; Astolfi, Laura; Babiloni, Fabio; Ursino, Mauro

    2009-01-01

    Knowledge of brain connectivity is an important aspect of modern neuroscience, to understand how the brain realizes its functions. In this work, neural mass models including four groups of excitatory and inhibitory neurons are used to estimate the connectivity among three cortical regions of interests (ROIs) during a foot-movement task. Real data were obtained via high-resolution scalp EEGs on two populations: healthy volunteers and tetraplegic patients. A 3-shell Boundary Element Model of the head was used to estimate the cortical current density and to derive cortical EEGs in the three ROIs. The model assumes that each ROI can generate an intrinsic rhythm in the beta range, and receives rhythms in the alpha and gamma ranges from other two regions. Connectivity strengths among the ROIs were estimated by means of an original genetic algorithm that tries to minimize several cost functions of the difference between real and model power spectral densities. Results show that the stronger connections are those from the cingulate cortex to the primary and supplementary motor areas, thus emphasizing the pivotal role played by the CMA_L during the task. Tetraplegic patients exhibit higher connectivity strength on average, with significant statistical differences in some connections. The results are commented and virtues and limitations of the proposed method discussed. PMID:19584939

  4. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    SciTech Connect

    Gubler, Philipp; Yamamoto, Naoki; Hatsuda, Tetsuo; Nishida, Yusuke

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  5. Detection of Electrographic Seizures by Critical Care Providers Using Color Density Spectral Array After Cardiac Arrest is Feasible

    PubMed Central

    Topjian, Alexis A; Fry, Michael; Jawad, Abbas F.; Herman, Susan T; Nadkarni, Vinay M.; Ichord, Rebecca; Berg, Robert A; Dlugos, Dennis J.; Abend, Nicholas S.

    2014-01-01

    Objective To determine the accuracy and reliability of electroencephalographic seizure detection by critical care providers using color density spectral array (CDSA) electroencephalography (EEG). Participants Critical care providers (attending physicians, fellow trainees and nurses.) Interventions A standardized powerpoint CDSA tutorial followed by classification of 200 CDSA images as displaying seizures or not displaying seizures. Measurements and Main Results Using conventional EEG recordings obtained from patients who underwent EEG monitoring after cardiac arrest, we created 100 CDSA images, 30% of which displayed seizures. The gold standard for seizure category was electroencephalographer determination from the full montage conventional EEG. Participants did not have access to the conventional EEG tracings. After completing a standardized CDSA tutorial, images were presented to participants in duplicate and in random order. Twenty critical care physicians (12 attendings and 8 fellows) and 19 critical care nurses classified the CDSA images as having any seizure(s) or no seizures. The 39 critical care providers had a CDSA seizure detection sensitivity of 70% [95% CI: 67%, 73%], specificity of 68% [95% CI: 67%, 70%], positive predictive value of 46%, and negative predictive value of 86%. The sensitivity of CDSA detection of status epilepticus was 72% [95% CI: 69%, 74%]. Conclusion Determining which post-cardiac arrest patients experience electrographic seizures by critical care providers is feasible after a brief training. There is moderate sensitivity for seizure and status epilepticus detection and a high negative predictive value. PMID:25651050

  6. Nanoscale measurement of the power spectral density of surface roughness: how to solve a difficult experimental challenge

    PubMed Central

    2012-01-01

    In this study, we show that the correct determination of surface morphology using scanning force microscopy (SFM) imaging and power spectral density (PSD) analysis of the surface roughness is an extremely demanding task that is easily affected by experimental parameters such as scan speed and feedback parameters. We present examples were the measured topography data is significantly influenced by the feedback response of the SFM system and the PSD curves calculated from this experimental data do not correspond to that of the true topography. Instead, either features are "lost" due to low pass filtering or features are "created" due to oscillation of the feedback loop. In order to overcome these serious problems we show that the interaction signal (error signal) can be used not only to quantitatively control but also to significantly improve the quality of the topography raw data used for the PSD analysis. In particular, the calibrated error signal image can be used in combination with the topography image in order to obtain a correct representation of surface morphology ("true" topographic image). From this "true" topographic image a faithful determination of the PSD of surface morphology is possible. The corresponding PSD curve is not affected by the fine-tuning of feedback parameters, and allows for much faster image acquisition speeds without loss of information in the PSD curve. PMID:22397728

  7. Gaussian regression and power spectral density estimation with missing data: The MICROSCOPE space mission as a case study

    NASA Astrophysics Data System (ADS)

    Baghi, Quentin; Métris, Gilles; Bergé, Joël; Christophe, Bruno; Touboul, Pierre; Rodrigues, Manuel

    2016-06-01

    We present a Gaussian regression method for time series with missing data and stationary residuals of unknown power spectral density (PSD). The missing data are efficiently estimated by their conditional expectation as in universal Kriging based on the circulant approximation of the complete data covariance. After initialization with an autoregressive fit of the noise, a few iterations of estimation/reconstruction steps are performed until convergence of the regression and PSD estimates, in a way similar to the expectation-conditional-maximization algorithm. The estimation can be performed for an arbitrary PSD provided that it is sufficiently smooth. The algorithm is developed in the framework of the MICROSCOPE space mission whose goal is to test the weak equivalence principle (WEP) with a precision of 10-15. We show by numerical simulations that the developed method allows us to meet three major requirements: to maintain the targeted precision of the WEP test in spite of the loss of data, to calculate a reliable estimate of this precision and of the noise level, and finally to provide consistent and faithful reconstructed data to the scientific community.

  8. Theoretical infrared spectral density of H-bonds in liquid and gas phases: Anharmonicities and dampings effects

    NASA Astrophysics Data System (ADS)

    Rekik, Najeh; Oujia, Brahim; Wójcik, Marek J.

    2008-09-01

    The main purpose of the present paper is to show how both anharmonicities of the fast and the slow modes, multiple Fermi resonances and damping mechanisms introduced within the strong anharmonic coupling theory, are susceptible to explain some analogies in the infrared spectra of hydrogen bonded systems, when passing from the condensed to the gas phase. The high-frequency mode X-H→⋯Y described by double well potential is supposed to be anharmonically coupled to the H-bond stretching mode X←-H⋯Y→ described by Morse potential and to first overtones of some bending modes through Fermi resonances. The relaxation of the fast and bending modes and of the H-bond bridge is incorporated by aid of previous results [N. Rekik, B. Ouari, P. Blaise, O. Henri-Rousseau, J. Mol. Struct. 687 (2004) 125]. The spectral density is obtained as the Fourier transform of the autocorrelation function of the dipole moment operator within linear response theory. Numerical results show that mixing of all these effects results in a broad and complicated structure and expects to provide efficient energy relaxation pathways by using large dampings parameters for the condensed phase and weaker dampings for the gas one.

  9. Longitudinal relaxation in dipole-coupled homonuclear three-spin systems: Distinct correlations and odd spectral densities

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2015-12-01

    A system of three dipole-coupled spins exhibits a surprisingly intricate relaxation behavior. Following Hubbard's pioneering 1958 study, many authors have investigated different aspects of this problem. Nevertheless, on revisiting this classic relaxation problem, we obtain several new results, some of which are at variance with conventional wisdom. Most notably from a fundamental point of view, we find that the odd-valued spectral density function influences longitudinal relaxation. We also show that the effective longitudinal relaxation rate for a non-isochronous three-spin system can exhibit an unusual inverted dispersion step. To clarify these and other issues, we present a comprehensive theoretical treatment of longitudinal relaxation in a three-spin system of arbitrary geometry and with arbitrary rotational dynamics. By using the Liouville-space formulation of Bloch-Wangsness-Redfield theory and a basis of irreducible spherical tensor operators, we show that the number of relaxation components in the different cases can be deduced from symmetry arguments. For the isochronous case, we present the relaxation matrix in analytical form, whereas, for the non-isochronous case, we employ a computationally efficient approach based on the stochastic Liouville equation.

  10. Longitudinal relaxation in dipole-coupled homonuclear three-spin systems: Distinct correlations and odd spectral densities

    SciTech Connect

    Chang, Zhiwei; Halle, Bertil

    2015-12-21

    A system of three dipole-coupled spins exhibits a surprisingly intricate relaxation behavior. Following Hubbard’s pioneering 1958 study, many authors have investigated different aspects of this problem. Nevertheless, on revisiting this classic relaxation problem, we obtain several new results, some of which are at variance with conventional wisdom. Most notably from a fundamental point of view, we find that the odd-valued spectral density function influences longitudinal relaxation. We also show that the effective longitudinal relaxation rate for a non-isochronous three-spin system can exhibit an unusual inverted dispersion step. To clarify these and other issues, we present a comprehensive theoretical treatment of longitudinal relaxation in a three-spin system of arbitrary geometry and with arbitrary rotational dynamics. By using the Liouville-space formulation of Bloch-Wangsness-Redfield theory and a basis of irreducible spherical tensor operators, we show that the number of relaxation components in the different cases can be deduced from symmetry arguments. For the isochronous case, we present the relaxation matrix in analytical form, whereas, for the non-isochronous case, we employ a computationally efficient approach based on the stochastic Liouville equation.

  11. Exact vs. asymptotic spectral densities in the Garg-Onuchic-Ambegaokar charge transfer model and its effect on Fermi's golden rule rate constants

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Geva, Eitan

    2016-01-01

    The Garg-Onuchic-Ambegaokar model [J. Chem. Phys. 83, 4491 (1985)] has been used extensively for benchmarking methods aimed at calculating charge transfer rates. Within this model, the donor and acceptor diabats are described as shifted parabolas along a single primary mode, which is bilinearly coupled to a harmonic bath consisting of secondary modes, characterized by an Ohmic spectral density with exponential cutoff. Rate calculations for this model are often performed in the normal mode representation, with the corresponding effective spectral density given by an asymptotic expression derived at the limit where the Ohmic bath cutoff frequency is much larger than the primary mode frequency. We compare Fermi's golden rule rate constants obtained with the asymptotic and exact effective spectral densities. We find significant deviations between rate constants obtained from the asymptotic spectral density and those obtained from the exact one in the deep inverted region. Within the range of primary mode frequencies commonly employed, we find that the discrepancies increase with decreasing temperature and with decreasing primary mode frequency.

  12. Analysis of multi-layered films. [determining dye densities by applying a regression analysis to the spectral response of the composite transparency

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Voss, A. W.

    1973-01-01

    Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.

  13. Integration of the Two-Dimensional Power Spectral Density into Specifications for the X-ray Domain -- Problems and Opportunities

    SciTech Connect

    McKinney, Wayne R.; Howells, M. R.; Yashchuk, V. V.

    2008-09-30

    An implementation of the two-dimensional statistical scattering theory of Church and Takacs for the prediction of scattering from x-ray mirrors is presented with a graphical user interface. The process of this development has clarified several problems which are of significant interest to the synchrotron community. These problems have been addressed to some extent, for example, for large astronomical telescopes, and at the National Ignition Facility for normal incidence optics, but not in the synchrotron community for grazing incidence optics. Since it is based on the Power Spectral Density (PSD) to provide a description of the deviations from ideal shape of the surface, accurate prediction of the scattering requires an accurate estimation of the PSD. Specifically, the spatial frequency range of measurement must be the correct one for the geometry of use of the optic--including grazing incidence and coherence effects, and the modifications to the PSD of the Optical Transfer Functions (OTF) of the measuring instruments must be removed. A solution for removal of OTF effects has been presented previously, the Binary Pseudo-Random Grating. Typically, the frequency range of a single instrument does not cover the range of interest, requiring the stitching together of PSD estimations. This combination generates its own set of difficulties in two dimensions. Fitting smooth functions to two dimensional PSDs, particularly in the case of spatial non-isotropy of the surface, which is often the case for optics in synchrotron beam lines, can be difficult. The convenient, and physically accurate fractal for one dimension does not readily transfer to two dimensions. Finally, a completely statistical description of scattering must be integrated with a deterministic low spatial frequency component in order to completely model the intensity near the image. An outline for approaching these problems, and our proposed experimental program is given.

  14. Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO): overview of the field campaigns

    NASA Astrophysics Data System (ADS)

    Thiel, S.; Ammannato, L.; Bais, A.; Bandy, B.; Blumthaler, M.; Bohn, B.; Engelsen, O.; Gobbi, G. P.; Gröbner, J.; Jäkel, E.; Junkermann, W.; Kazadzis, S.; Kift, R.; Kjeldstad, B.; Kouremeti, N.; Kylling, A.; Mayer, B.; Monks, P. S.; Reeves, C. E.; Schallhart, B.; Scheirer, R.; Schmidt, S.; Schmitt, R.; Schreder, J.; Silbernagl, R.; Topaloglou, C.; Thorseth, T. M.; Webb, A. R.; Wendisch, M.; Werle, P.

    2008-03-01

    Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK) and Lower Bavaria (Germany) combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UVSPEC and the three-dimensional radiation transfer model MYSTIC. During both campaigns the spectral actinic flux density was measured at several locations at ground level and in the air by up to four different aircraft. This allows the comparison of measured and simulated actinic radiation profiles. In addition satellite data were used to complete the information of the three dimensional input data set for the simulation. A three-dimensional simulation of actinic flux density data under cloudy sky conditions requires a realistic simulation of the cloud field to be used as an input for the 3-D radiation transfer model calculations. Two different approaches were applied, to derive high- and low-resolution data sets, with a grid resolution of about 100 m and 1 km, respectively. The results of the measured and simulated radiation profiles as well as the results of the ground based measurements are presented in terms of photolysis rate profiles for ozone and nitrogen dioxide. During both campaigns all spectroradiometer systems agreed within ±10% if mandatory corrections e.g. stray light correction were applied. Stability changes of the systems were below 5% over the 4 week campaign periods and negligible over a few days. The J(O1D) data of the single monochromator systems can be

  15. Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO): overview of the field campaigns

    NASA Astrophysics Data System (ADS)

    Thiel, S.; Ammannato, L.; Bais, A.; Bandy, B.; Blumthaler, M.; Bohn, B.; Engelsen, O.; Gobbi, G. P.; Gröbner, J.; Jäkel, E.; Junkermann, W.; Kazadzis, S.; Kift, R.; Kjeldstad, B.; Kouremeti, N.; Kylling, A.; Mayer, B.; Monks, P. S.; Reeves, C. E.; Schallhart, B.; Scheirer, R.; Schmidt, S.; Schmitt, R.; Schreder, J.; Silbernagl, R.; Topaloglou, C.; Thorseth, T. M.; Webb, A. R.; Wendisch, M.; Werle, P.

    2007-09-01

    Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK) and Lower Bavaria (Germany) combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UVSPEC and the three-dimensional radiation transfer model MYSTIC. During both campaigns the spectral actinic flux density was measured at several locations at ground level and in the air by up to four different aircraft. This allows the comparison of measured and simulated actinic radiation profiles. In addition satellite data were used to complete the information of the three dimensional input data set for the simulation. A three-dimensional simulation of actinic flux density data under cloudy sky conditions requires a realistic simulation of the cloud field to be used as an input for the 3-D radiation transfer model calculations. Two different approaches were applied, to derive high- and low-resolution data sets, with a grid resolution of about 100 m and 1 km, respectively. The results of the measured and simulated radiation profiles as well as the results of the ground based measurements are presented in terms of photolysis rate profiles for ozone and nitrogen dioxide. During both campaigns all spectroradiometer systems agreed within ±10% if mandatory corrections e.g. stray light correction were applied. Stability changes of the systems were below 5% over the 4 week campaign periods and negligible over a few days. The J(O1D) data of the single monochromator systems can be

  16. Power spectral density function and spatial autocorrelation of the ambient vibration full-wavefield generated by a distribution of spatially correlated surface sources

    NASA Astrophysics Data System (ADS)

    Lunedei, Enrico; Albarello, Dario

    2016-03-01

    Synthetic dispersion curves are here computed in the frame of an ambient-vibration full-wavefield model, which relies on the description of both ambient-vibration ground displacement and its sources as stochastic fields defined on the Earth's surface, stationary in time and homogeneous in space. In this model, previously developed for computing synthetic Horizontal-to-Vertical Spectral Ratio curves, the power spectral density function and the spatial autocorrelation of the displacement are naturally described as functions of the power spectral density function of the generating forces and of the subsoil properties (via the relevant Green's function), by also accounting for spatial correlation of these forces. Dispersion curves are computed from the displacement power spectral density function and from the spatial autocorrelation according with the well-known f-k and SPAC techniques, respectively. Two examples illustrate the way this new ambient-vibration model works, showing its possible use in better understanding the role of the surface waves in forming the dispersion curves, as well as its capability to capture some remarkable experimental findings.

  17. Normal Mode Analysis of the Spectral Density of the Fenna–Matthews–Olson Light-Harvesting Protein: How the Protein Dissipates the Excess Energy of Excitons

    PubMed Central

    2012-01-01

    We report a method for the structure-based calculation of the spectral density of the pigment–protein coupling in light-harvesting complexes that combines normal-mode analysis with the charge density coupling (CDC) and transition charge from electrostatic potential (TrEsp) methods for the computation of site energies and excitonic couplings, respectively. The method is applied to the Fenna–Matthews–Olson (FMO) protein in order to investigate the influence of the different parts of the spectral density as well as correlations among these contributions on the energy transfer dynamics and on the temperature-dependent decay of coherences. The fluctuations and correlations in excitonic couplings as well as the correlations between coupling and site energy fluctuations are found to be 1 order of magnitude smaller in amplitude than the site energy fluctuations. Despite considerable amplitudes of that part of the spectral density which contains correlations in site energy fluctuations, the effect of these correlations on the exciton population dynamics and dephasing of coherences is negligible. The inhomogeneous charge distribution of the protein, which causes variations in local pigment–protein coupling constants of the normal modes, is responsible for this effect. It is seen thereby that the same building principle that is used by nature to create an excitation energy funnel in the FMO protein also allows for efficient dissipation of the excitons’ excess energy. PMID:23163520

  18. SU-D-204-01: Dual-Energy Calibration for Breast Density Measurement Using Spectral Mammography

    SciTech Connect

    Ding, H; Cho, H; Kumar, N; Sennung, D; Molloi, S

    2015-06-15

    Purpose: To investigate the feasibility of minimizing the systematic errors in dual-energy breast density quantification induced by the use of tissue-equivalent plastic phantoms as the calibration basis materials. Methods: Dual-energy calibration using tissue-equivalent plastic phantoms was performed on a spectral mammography system based on scanning multi-slit Si strip photon-counting detectors. The plastic phantom calibration used plastic water and adipose-equivalent phantoms as the basis materials, which have different x-ray attenuation properties compared to water and lipid in actual breast tissue. Two methods were used to convert the dual-energy decomposition measurements in plastic phantom thicknesses into true water and lipid basis. The first method was based entirely on the theoretical x-ray attenuation coefficients of the investigated materials in the mammographic energy range. The conversion matrix was determined from least-squares fitting of the target material using the reported attenuation coefficients of water and lipid. The second method was developed based on experimental calibrations, which measured the low-and high-energy signals of pure water and lipid of known thicknesses. A non-linear rational function was used to correlate the decomposed thicknesses to the known values, so that the conversion coefficients can be determined. Both methods were validated using independent measurements of water and lipid mixture phantoms. The correlation of the dual-energy decomposition measurements and the known values were studied with linear regression analysis. Results: There was an excellent linear correlation between the converted water thicknesses and the known values. The slopes of the linear fits were determined to be 0.63 and 1.03 for the simulation and experimental results, respectively. The non-linear fitting in the experimental approach reduced the root-mean-square (RMS) errors from approximately 3.4 mm to 1.5 mm. Conclusion: The results suggested

  19. Fatigue assessment of vibrating rail vehicle bogie components under non-Gaussian random excitations using power spectral densities

    NASA Astrophysics Data System (ADS)

    Wolfsteiner, Peter; Breuer, Werner

    2013-10-01

    The assessment of fatigue load under random vibrations is usually based on load spectra. Typically they are computed with counting methods (e.g. Rainflow) based on a time domain signal. Alternatively methods are available (e.g. Dirlik) enabling the estimation of load spectra directly from power spectral densities (PSDs) of the corresponding time signals; the knowledge of the time signal is then not necessary. These PSD based methods have the enormous advantage that if for example the signal to assess results from a finite element method based vibration analysis, the computation time of the simulation of PSDs in the frequency domain outmatches by far the simulation of time signals in the time domain. This is especially true for random vibrations with very long signals in the time domain. The disadvantage of the PSD based simulation of vibrations and also the PSD based load spectra estimation is their limitation to Gaussian distributed time signals. Deviations from this Gaussian distribution cause relevant deviations in the estimated load spectra. In these cases usually only computation time intensive time domain calculations produce accurate results. This paper presents a method dealing with non-Gaussian signals with real statistical properties that is still able to use the efficient PSD approach with its computation time advantages. Essentially it is based on a decomposition of the non-Gaussian signal in Gaussian distributed parts. The PSDs of these rearranged signals are then used to perform usual PSD analyses. In particular, detailed methods are described for the decomposition of time signals and the derivation of PSDs and cross power spectral densities (CPSDs) from multiple real measurements without using inaccurate standard procedures. Furthermore the basic intention is to design a general and integrated method that is not just able to analyse a certain single load case for a small time interval, but to generate representative PSD and CPSD spectra replacing

  20. A semi-implicit spectral method for compressible convection of rotating and density-stratified flows in Cartesian geometry

    NASA Astrophysics Data System (ADS)

    Cai, Tao

    2016-04-01

    In this paper, we have described a 'stratified' semi-implicit spectral method to study compressible convection in Cartesian geometry. The full set of compressible hydrodynamic equations are solved in conservative forms. The numerical scheme is accurate and efficient, based on fast Fourier/sin/cos spectral transforms in the horizontal directions, Chebyshev spectral transform or second-order finite difference scheme in the vertical direction, and second order semi-implicit scheme in time marching of linear terms. We have checked the validity of both the fully pseudo-spectral scheme and the mixed finite-difference pseudo-spectral scheme by studying the onset of compressible convection. The difference of the critical Rayleigh number between our numerical result and the linear stability analysis is within two percent. Besides, we have computed the Mach numbers with different Rayleigh numbers in compressible convection. It shows good agreement with the numerical results of finite difference methods and finite volume method. This model has wide application in studying laminar and turbulent flow. Illustrative examples of application on horizontal convection, gravity waves, and long-lived vortex are given in this paper.

  1. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    DOE PAGESBeta

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; Mayes, D. C.; Tommasini, R.; Smalyuk, V. A.; Regan, S. P.; Delettrez, J. A.

    2016-01-25

    In warm target direct-drive ICF implosion experiments performed at the OMEGA laser facility, plastic microballoons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. These 2-D space-resolvedmore » titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400±28eV, electron number density (Ne) = 8.5x1024±2.5x1024 cm-3, and average areal density <ρR> = 86±7mg/cm2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2-9, dominated by l = 2. We extract a target breakup fraction of 7.1±1.5% from our Fourier analysis. A new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5±1μm.« less

  2. Shell stability and conditions analyzed using a new method of extracting shell areal density maps from spectrally resolved images of direct-drive inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Johns, H. M.; Mancini, R. C.; Nagayama, T.; Mayes, D. C.; Tommasini, R.; Smalyuk, V. A.; Regan, S. P.; Delettrez, J. A.

    2016-01-01

    In warm target direct-drive inertial confinement fusion implosion experiments performed at the OMEGA laser facility, plastic micro-balloons doped with a titanium tracer layer in the shell and filled with deuterium gas were imploded using a low-adiabat shaped laser pulse. Continuum radiation emitted in the core is transmitted through the tracer layer and the resulting spectrum recorded with a gated multi-monochromatic x-ray imager (MMI). Titanium K-shell line absorption spectra observed in the data are due to transitions in L-shell titanium ions driven by the backlighting continuum. The MMI data consist of an array of spectrally resolved images of the implosion. These 2-D space-resolved titanium spectral features constrain the plasma conditions and areal density of the titanium doped region of the shell. The MMI data were processed to obtain narrow-band images and space resolved spectra of titanium spectral features. Shell areal density maps, ρL(x,y), extracted using a new method using both narrow-band images and space resolved spectra are confirmed to be consistent within uncertainties. We report plasma conditions in the titanium-doped region of electron temperature (Te) = 400 ± 28 eV, electron number density (Ne) = 8.5 × 1024 ± 2.5 × 1024 cm-3, and average areal density <ρR> = 86 ± 7 mg/cm2. Fourier analysis of areal density maps reveals shell modulations caused by hydrodynamic instability growth near the fuel-shell interface in the deceleration phase. We observe significant structure in modes l = 2-9, dominated by l = 2. We extract a target breakup fraction of 7.1 ± 1.5% from our Fourier analysis. A new method for estimating mix width is evaluated against existing literature and our target breakup fraction. We estimate a mix width of 10.5 ± 1 μm.

  3. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    PubMed

    Saroka, Kevin S; Vares, David E; Persinger, Michael A

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity. PMID:26785376

  4. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko

    PubMed Central

    Saroka, Kevin S.; Vares, David E.; Persinger, Michael A.

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6–16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7–8 Hz), second (13–14 Hz) and third (19–20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the ‘best-of-fitness’ of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity. PMID:26785376

  5. Power spectral density analysis of the electromyogram from a work task performed in a full pressure suit. Ph.D. Thesis - Houston Univ.; [for determining muscular fatigue

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.

    1974-01-01

    Surface electromyograms (EMG) taken from three upper torso muscles during a push-pull task were analyzed by a power spectral density technique to determine the utility of the spectral analysis for identifying changes in the EMG caused by muscular fatigue. The results confirmed the value of the frequency analysis for identifying fatigue producing muscular performance. Data revealed reliable differences between muscles in fatigue induced responses to various locations in the reach envelope at which the subjects were required to perform the push-pull exercise, and the differential sensitivity of individual muscles to the various reach positions; i.e., certain reach positions imposed more fatigue related shifts in EMG power than did others. It was found that a pressurized space suit changed the pattern of normal shirtsleeve muscle fatigue responses in all three of the muscles.

  6. Novel Cosic resonance (standing wave) solutions for components of the JAK-STAT cellular signaling pathway: A convergence of spectral density profiles.

    PubMed

    Karbowski, Lukasz M; Murugan, Nirosha J; Persinger, Michael A

    2015-01-01

    Cosic discovered that spectral analyses of a protein sequence after each constituent amino acid had been transformed into an appropriate pseudopotential predicted a resonant energy between interacting molecules. Several experimental studies have verified the predicted peak wavelength of photons within the visible or near-visible light band for specific molecules. Here, this concept has been applied to a classic signaling pathway, JAK-STAT, traditionally composed of nine sequential protein interactions. The weighted linear average of the spectral power density (SPD) profiles of each of the eight "precursor" proteins displayed remarkable congruence with the SPD profile of the terminal molecule (CASP-9) in the pathway. These results suggest that classic and complex signaling pathways in cells can also be expressed as combinations of resonance energies. PMID:25870784

  7. Novel Cosic resonance (standing wave) solutions for components of the JAK–STAT cellular signaling pathway: A convergence of spectral density profiles

    PubMed Central

    Karbowski, Lukasz M.; Murugan, Nirosha J.; Persinger, Michael A.

    2015-01-01

    Cosic discovered that spectral analyses of a protein sequence after each constituent amino acid had been transformed into an appropriate pseudopotential predicted a resonant energy between interacting molecules. Several experimental studies have verified the predicted peak wavelength of photons within the visible or near-visible light band for specific molecules. Here, this concept has been applied to a classic signaling pathway, JAK–STAT, traditionally composed of nine sequential protein interactions. The weighted linear average of the spectral power density (SPD) profiles of each of the eight “precursor” proteins displayed remarkable congruence with the SPD profile of the terminal molecule (CASP-9) in the pathway. These results suggest that classic and complex signaling pathways in cells can also be expressed as combinations of resonance energies. PMID:25870784

  8. Vertical density contrast and mapping of basement, Conrad and Moho morphologies through 2D spectral analysis of gravity data in and around Odisha, India

    NASA Astrophysics Data System (ADS)

    Kumar, Arbind; S. Roy, P. N.; Das, L. K.

    2016-07-01

    Power spectrum analysis of Complete Bouguer Anomaly (CBA) map of Eastern Ghat Mobile Belt (EGMB) and its surroundings in India through Two Dimensional (2D) spectral analysis has provided estimates of the ensemble average depths for the density discontinuities which represent crustal inhomogeneities. The spectral analysis method has helped to estimate the depths of a perturbing body sources which are obtained from the negative slopes of the linear relationship between the logarithmic power spectrum and the wave-numbers of the gravity field. The detailed analysis reveals three horizontal discontinuities (i) Phanerozoic sediment thickness (ii) Basement depth and (iii) Conrad discontinuity. The average thickness of Phanerozoic sediments is estimated to be 3 km whereas depth of basement and Conrad discontinuity are at 7 km and 14.5 km respectively. Additionally Mohorovicic discontinuity also estimated at a depth of 32.8 km in the study region.

  9. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy.

    PubMed

    Aoki, Masahiko; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Fujioka, Ichitaro; Tanaka, Mitsuki; Ono, Shuichi; Takai, Yoshihiro

    2016-07-01

    The purpose of this study was to investigate the prognostic significance of average iodine density as assessed by dual-energy computed tomography (DE-CT) for lung tumors treated with stereotactic body radiotherapy (SBRT). From March 2011 to August 2014, 93 medically inoperable patients with 74 primary lung cancers and 19 lung metastases underwent DE-CT prior to SBRT of a total dose of 45-60 Gy in 5-10 fractions. Of these 93 patients, nine patients had two lung tumors. Thus, 102 lung tumors were included in this study. DE-CT was performed for pretreatment evaluation. Regions of interest were set for the entire tumor, and average iodine density was obtained using a dedicated imaging software and evaluated with regard to local control. The median follow-up period was 23.4 months (range, 1.5-54.5 months). The median value of the average iodine density was 1.86 mg/cm(3) (range, 0.40-9.27 mg/cm(3)). Two-year local control rates for the high and low average iodine density groups divided by the median value of the average iodine density were 96.9% and 75.7% (P = 0.006), respectively. Tumors with lower average iodine density showed a worse prognosis, possibly reflecting a hypoxic cell population in the tumor. The average iodine density exhibited a significant impact on local control. Our preliminary results indicate that iodine density evaluated using dual-energy spectral CT may be a useful, noninvasive and quantitative assessment of radio-resistance caused by presumably hypoxic cell populations in tumors. PMID:26826198

  10. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy

    PubMed Central

    Aoki, Masahiko; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Fujioka, Ichitaro; Tanaka, Mitsuki; Ono, Shuichi; Takai, Yoshihiro

    2016-01-01

    The purpose of this study was to investigate the prognostic significance of average iodine density as assessed by dual-energy computed tomography (DE-CT) for lung tumors treated with stereotactic body radiotherapy (SBRT). From March 2011 to August 2014, 93 medically inoperable patients with 74 primary lung cancers and 19 lung metastases underwent DE-CT prior to SBRT of a total dose of 45–60 Gy in 5–10 fractions. Of these 93 patients, nine patients had two lung tumors. Thus, 102 lung tumors were included in this study. DE-CT was performed for pretreatment evaluation. Regions of interest were set for the entire tumor, and average iodine density was obtained using a dedicated imaging software and evaluated with regard to local control. The median follow-up period was 23.4 months (range, 1.5–54.5 months). The median value of the average iodine density was 1.86 mg/cm3 (range, 0.40–9.27 mg/cm3). Two-year local control rates for the high and low average iodine density groups divided by the median value of the average iodine density were 96.9% and 75.7% (P = 0.006), respectively. Tumors with lower average iodine density showed a worse prognosis, possibly reflecting a hypoxic cell population in the tumor. The average iodine density exhibited a significant impact on local control. Our preliminary results indicate that iodine density evaluated using dual-energy spectral CT may be a useful, noninvasive and quantitative assessment of radio-resistance caused by presumably hypoxic cell populations in tumors. PMID:26826198

  11. Synthesis, crystal structure, vibrational spectral and density functional studies of 4-(1,3-dioxoisoindolin-2-yl)antipyrine

    NASA Astrophysics Data System (ADS)

    Yu, Zongxue; Sun, Gang; Liu, Zengwei; Yu, Cheng; Huang, Changliang; Sun, Yuxi

    2012-12-01

    The 4-(1,3-dioxoisoindolin-2-yl)antipyrine, C19H15N3O3, was synthesized by the condensation reaction of 4-aminoantipyrine and phthalic anhydride in ethanol solution using triethylamine as catalyst, and characterized by X-ray diffraction and spectral techniques. The experimental spectral bands were structurally assigned with the theoretical calculation, and the thermodynamic properties of the studied compound were obtained from the theoretically calculated frequencies. The linear polarizability (α0) and first hyperpolarizabilities (β0) calculated at B3LYP/6-31G(d) level are of 33.6921 Å3 and 2.7835 × 10-30 cm5/esu, respectively. The NBO analysis reveals that the studied molecule presents a structural characteristic of long-range electron-transfer with the energy gap of ⩾3.639 eV. The frontier molecular orbitals are responsible for the electron polarization and long-range electron-transfer properties. The results indicate that the compound might be an excellent candidate of photo-responsive materials.

  12. Solvation and Spectral Line Shifts of Chromium Atoms in Helium Droplets Based on a Density Functional Theory Approach

    PubMed Central

    2014-01-01

    The interaction of an electronically excited, single chromium (Cr) atom with superfluid helium nanodroplets of various size (10 to 2000 helium (He) atoms) is studied with helium density functional theory. Solvation energies and pseudo-diatomic potential energy surfaces are determined for Cr in its ground state as well as in the y7P, a5S, and y5P excited states. The necessary Cr–He pair potentials are calculated by standard methods of molecular orbital-based electronic structure theory. In its electronic ground state the Cr atom is found to be fully submerged in the droplet. A solvation shell structure is derived from fluctuations in the radial helium density. Electronic excitations of an embedded Cr atom are simulated by confronting the relaxed helium density (ρHe), obtained for Cr in the ground state, with interaction pair potentials of excited states. The resulting energy shifts for the transitions z7P ← a7S, y7P ← a7S, z5P ← a5S, and y5P ← a5S are compared to recent fluorescence and photoionization experiments. PMID:24906160

  13. Synthesis, spectral characterization and density functional theory exploration of 1-(quinolin-3-yl)piperidin-2-ol.

    PubMed

    Suresh, M; Padusha, M Syed Ali; Bharanidharan, S; Saleem, H; Dhandapani, A; Manivarman, S

    2015-06-01

    The experimental and theoretical vibrational frequencies of a newly synthesized compound, namely 1-(quinolin-3-yl)piperidin-2-ol (QPPO) are analyzed. The experimental FT-IR (4000-400 cm(-1)) and FT-Raman (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The optimized molecular structure, vibrational assignments of QPPO have been investigated experimentally and theoretically using Gaussian03W software package. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The first order hyperpolarizability (β0) is calculated to find its character in non-linear optics. Gauge including atomic orbital (GIAO) method is used to calculate (1)H NMR chemical shift calculations were carried out and compared with experimental data. The electronic properties like UV-Visible spectral analysis and HOMO-LUMO energies were reported. The energy gap shows that the charge transfer occurs within the molecule. Thermodynamic parameters of the title compound were calculated at various temperatures. PMID:25769121

  14. Synthesis, spectral characterization and density functional theory exploration of 1-(quinolin-3-yl)piperidin-2-ol

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Syed Ali Padusha, M.; Bharanidharan, S.; Saleem, H.; Dhandapani, A.; Manivarman, S.

    2015-06-01

    The experimental and theoretical vibrational frequencies of a newly synthesized compound, namely 1-(quinolin-3-yl)piperidin-2-ol (QPPO) are analyzed. The experimental FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) of the molecule in solid phase have been recorded. The optimized molecular structure, vibrational assignments of QPPO have been investigated experimentally and theoretically using Gaussian03W software package. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The first order hyperpolarizability (β0) is calculated to find its character in non-linear optics. Gauge including atomic orbital (GIAO) method is used to calculate 1H NMR chemical shift calculations were carried out and compared with experimental data. The electronic properties like UV-Visible spectral analysis and HOMO-LUMO energies were reported. The energy gap shows that the charge transfer occurs within the molecule. Thermodynamic parameters of the title compound were calculated at various temperatures.

  15. Influence of signals length and noise in power spectral densities computation using Hilbert-Huang Transform in synthetic HRV

    NASA Astrophysics Data System (ADS)

    Rodríguez, María. G.; Altuve, Miguel; Lollett, Carlos; Wong, Sara

    2013-11-01

    Among non-invasive techniques, heart rate variability (HRV) analysis has become widely used for assessing the balance of the autonomic nervous system. Research in this area has not stopped and alternative tools for the study and interpretation of HRV, are still being proposed. Nevertheless, frequency-domain analysis of HRV is controversial when the heartbeat sequence is non-stationary. The Hilbert-Huang Transform (HHT) is a relative new technique for timefrequency analyses of non-linear and non-stationary signals. The main purpose of this work is to investigate the influence of time serieś length and noise in HRV from synthetic signals, using HHT and to compare it with Welch method. Synthetic heartbeat time series with different sizes and levels of signal to noise ratio (SNR) were investigated. Results shows i) sequencés length did not affect the estimation of HRV spectral parameter, ii) favorable performance for HHT for different SNR. Additionally, HHT can be applied to non-stationary signals from nonlinear systems and it will be useful to HRV analysis to interpret autonomic activity when acute and transient phenomena are assessed.

  16. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: A density functional theory

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.

    2014-09-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.

  17. Synthesis, structural and spectral analysis of 1-(pyrazin-2-yl) piperidin-2-ol by density functional theory

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Syed Ali Padusha, M.; Govindarasu, K.; Kavitha, E.

    2015-03-01

    The organic compound 1-(pyrazin-2-yl) piperidin-2-ol (abbreviated as PPOL) has been synthesized and characterized by IR, Raman, 1H NMR and UV-Vis spectroscopy. The Fourier-transform Raman (3500-50 cm-1) and infrared spectra (4000-400 cm-1) were recorded in the solid state and interpreted by comparison with theoretical spectra derived from density functional theory (DFT) calculations. The optimized geometry, frequency and intensity of the vibrational bands of the compound was obtained by the density functional theory using 6-31G(d,p) basis set. In the optimized geometry results shows that geometry parameters are good agreement with XRD values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. In calculation of electronic absorption spectra, TD-DFT calculations were carried out in the both gas and solution phases. 1H NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. 1H NMR analysis is evident for O-H⋯O intermolecular interaction of the title molecule. The thermodynamic properties of the title compound have been calculated at different temperatures and the results reveal that the standard heat capacities (Cp,m), standard entropies (Sm) and standard enthalpy changes (Hm) increase with rise in temperature. In addition, HOMO and LUMO energies and the first-order hyperpolarizability have been computed.

  18. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20-60 years old)

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Land, S.; Buysse, D. J.; Kupfer, D. J.; Monk, T. H.

    2001-01-01

    The effects of age and gender on sleep EEG power spectral density were assessed in a group of 100 subjects aged 20 to 60 years. We propose a new statistical strategy (mixed-model using fixed-knot regression splines) to analyze quantitative EEG measures. The effect of gender varied according to frequency, but no interactions emerged between age and gender, suggesting that the aging process does not differentially influence men and women. Women had higher power density than men in delta, theta, low alpha, and high spindle frequency range. The effect of age varied according to frequency and across the night. The decrease in power with age was not restricted to slow-wave activity, but also included theta and sigma activity. With increasing age, the attenuation over the night in power density between 1.25 and 8.00 Hz diminished, and the rise in power between 12.25 and 14.00 Hz across the night decreased. Increasing age was associated with higher power in the beta range. These results suggest that increasing age may be related to an attenuation of homeostatic sleep pressure and to an increase in cortical activation during sleep.

  19. Understanding collision-induced dissociation of dofetilide: a case study in the application of density functional theory as an aid to mass spectral interpretation.

    PubMed

    Wright, Patricia; Alex, Alexander; Harvey, Sophie; Parsons, Teresa; Pullen, Frank

    2013-11-21

    Fragmentation of molecules under collision-induced dissociation (CID) conditions is not well-understood. This may make interpretation of MSMS spectra difficult and limit the effectiveness of software tools intended to aid mass spectral interpretation. Density Functional Theory (DFT) has been successfully applied to explain the thermodynamics of fragmentation in the gas phase by the modelling the effect that protonation has on the bond lengths (and hence bond strengths). In this study, dofetilide and four methylated analogues were used to investigate further the potential for using DFT to understand and predict the CID fragmentation routes. The products ions present in the CID spectra of all five compounds were consistent with charge-directed fragmentation, with protonation adjacent to the cleavage site being required to initiate fragmentation. Protonation at the dissociative site may have occurred either directly or via proton migration. A correlation was observed between protonation-induced bond lengthening and the bonds which were observed to break in the CID spectra. This correlation was quantitative in that the bonds calculated to elongate to the greatest extent gave rise to the most abundant of the major product ions. Thus such quantum calculations may offer the potential for contributing to a predictive tool for aiding the accuracy and speed mass spectral interpretation by generating numerical data in the form of bond length increases to act as descriptors flagging potential bond cleavages. PMID:24071718

  20. Spectral and structural density functional theory on 4-ethyl and 4-(p-tolyl)-1-(pyridin-2-yl)thiosemicarbazides and their Pd(II) complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rhman, Mohamed H.; Hassanian, Mohamed M.; El-Asmy, Ahmed A.

    2012-07-01

    The study deals with the experimental and theoretical calculations of 4-ethyl and 4-(p-tolyl)-1-(pyridin-2-yl)thiosemicarbazides and their Pd(II) complexes. Quantum chemical calculations of geometry, vibrational wavenumbers, 1H NMR and Natural Bond Orbital (NBO) analysis of the ligands and their Pd(II) complexes have been carried out by DFT/B3LYP method combined with 6-311++G(d,p) and DGTZVP basis sets. The geometry optimized structures of the ligands confirming the involvement of N1H in intramolecular H-bond with the. The DFT calculated spectral data showed good agreement with the experimental data supporting the obtained geometries for the ligands and Pd(II) complexes. The NBO analysis confirmed the formation of bonds with sulfur, σ(Pd-S), and nitrogen (N1) described as donation of electron density from a lone pair orbital on each nitrogen atom to palladium orbitals.

  1. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  2. Effect of sun and sensor geometry, canopy structure and density, and atmospheric condition on the spectral response of vegetation, with particular emphasis on across-track pointing

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.

    1981-01-01

    A computer modeling and simulation study carried out to assess the effects of various sun and sensor geometries and atmospheric conditions on the directional reflected radiance of several vegetated targets is described. Spectral responses at two wavelengths, 0.68 micron and 0.80 micron, are simulated at nine sensor zenith angles, five sensor azimuths, and nine solar zenith angles for six vegetation canopies under three atmspheric conditions. The six canopies comprise two different geometries of grass canopies at low, medium, and high leaf density. The results suggest that off-nadir viewing effects are more pronounced in the red than in the IR. However, the use of such transformations as the normalized difference index is found to reduce much of the variability seen in the bands. The magnitude of off-nadir viewing effects is found to be a function of canopy geometry.

  3. Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna-Matthews-Olson Trimer from Chlorobaculum tepidum.

    PubMed

    Kell, Adam; Blankenship, Robert E; Jankowiak, Ryszard

    2016-08-11

    The Fenna-Matthews-Olson (FMO) trimer (composed of identical subunits) from the green sulfur bacterium Chlorobaculum tepidum is an important protein model system to study exciton dynamics and excitation energy transfer (EET) in photosynthetic complexes. In addition, FMO is a popular model for excitonic calculations, with many theoretical parameter sets reported describing different linear and nonlinear optical spectra. Due to fast exciton relaxation within each subunit, intermonomer EET results predominantly from the lowest energy exciton states (contributed to by BChl a 3 and 4). Using experimentally determined shapes for the spectral densities, simulated optical spectra are obtained for the entire FMO trimer. Simultaneous fits of low-temperature absorption, fluorescence, and hole-burned spectra place constraints on the determined pigment site energies, providing a new Hamiltonian that should be further tested to improve modeling of 2D electronic spectroscopy data and our understanding of coherent and dissipation effects in this important protein complex. PMID:27438068

  4. Theoretical investigations into spectral and non-linear optical properties of brucine and strychnine using density functional theory

    NASA Astrophysics Data System (ADS)

    Islam, Nasarul; Niaz, Saba; Manzoor, Taniya; Pandith, Altaf Hussain

    2014-10-01

    The density functional theoretical (DFT) computations were performed at the B3LYP/6-311G++(d, p) level to calculate the equilibrium geometry, vibrational wave numbers, intensities, and various other molecular properties of brucine and strychnine, which were found in satisfactory agreement with the experimental data. The out-of-phase stretching modes of aromatic rings and carbonyl stretching modes in combination with CH stretching modes at stereogenic centers generate VCD signals, which are remarkably efficient configuration markers for these chiral molecular systems. NBOs analysis reveals that the large values of second order perturbation energy (47.24 kcal/mol for brucine and 46.93 kcal/mol for strychnine) confirms strong hyperconjugative interaction between the orbital containing the lone pair of electron of nitrogen and the neighboring Cdbnd O antibonding orbital. The molecular electrostatic potential map of strychnine molecule, with no polar groups other than the lone keto group, shows less polarization, which accounts for its lower susceptibility towards electrophilic attack as compared to brucine.

  5. Sedimentation Rates at IODP Site U1424 since the Pliocene Deciphered from Spectral Analyses of RGB and GRA Bulk Density Profiles

    NASA Astrophysics Data System (ADS)

    Gorgas, T. J.; Tada, R.; Irino, T.; Clemens, S. C.; Ziegler, M.; Holbourn, A. E.; Murray, R. W.; Alvarez Zarikian, C. A.

    2014-12-01

    Sedimentation Rates (SRs) for IODP Site U1424 in the Japan Basin (40o11.40'N, 138o13.90'E) were calculated by performing spectral analysis in the depth domain on both RGB color and Gamma-Ray-Attenuation (GRA) bulk density data. Inversion and integration of SRs versus depth from spectral analysis yielded detailed SR profiles in both time and depth domains. Our results show a greater variability in calculated SR's, which differed from those established through coarse-scaled biostratigraphic and paleomagnetic data. SR profiles from our analysis exhibit similar excursions and features in both depth and age domains, with GRA representing a smoothed version of the SR profile derived from RGB data while exhibiting slight offsets in high-to-low SRs downhole versus those observed in RBG data. Both GRA and RGB profiles show a distinct periodicity in the waveband of Milankovitch cycles. The pronounced Milankovitch cyclicity suggests that climate variability and trends in SRs at Site U1424 was responding to insolation patterns during the past 4.5 Myr. A dominance of the 100 ky cycle (eccentricity) throughout the entire normalized spectral amplitude profile might be observed; however, for the purpose of fine-tuning our high-resolution Age-Depth model to fit the low-resolution Age-Depth model from biostratigraphic and paleomagnetic data, choosing obliquity (41 ky) and precession (19-23 ky) cycles as tuning-frequency produced a closer fit between high-and-low-resolution models than using the prominent eccentricity cycles (100 and 400 ky). Relatively low SRs are found when evolutive amplitude spectra are dominated by obliquity and eccentricity periods. In contrast, significant SR peaks at Site U1424 often occur when strong precessional amplitudes coexist with obliquity and eccentricity cycles. Lower SR values at Site U1424 are interpreted to reflect a decrease in diatom flux and relative increase in detrital fraction. By contrast moderate to higher SRs were associated with lower

  6. High-Resolution Sedimentation Rates at IODP Sites U1424 and U1427 since the late Pliocene from spectral-analyzing GRA Bulk Density and RGB Color Profiles

    NASA Astrophysics Data System (ADS)

    Gorgas, Thomas; Irino, Tomohisa; Tada, Ryuji

    2016-04-01

    Sedimentation Rates (SRs) for IODP Sites U1424 (lat/lon coordinates: 40o11.40'N, 138o13.90'E; water depth: 2808 mbsl) and U1427 (lat/lon coordinates: 35o57.92'N, 134o26.06'E; water depth: 330 mbsl) were calculated by performing spectral analysis in the depth domain on both RGB color and Gamma-Ray-Attenuation (GRA) bulk density data. Inversion and integration of SRs versus depth from spectral analysis yielded detailed SR profiles in both time and depth domains. Our results show a greater variability in calculated SRs and differed from those established through coarse-scaled biostratigraphy and paleo-magnetic data. Our data analyses produces pulses of distinct high SRs for certain depth/age intervals at both sites, with time lags for such features possibly due to variable oceanographic conditions near-shore for Site U1427 versus those at Site U1424 further offshore. Both GRA and RGB profiles reveal a distinct periodicity in the waveband of Milankovitch cycles and other prominent periodicities in the 10-to-1ky period range. This observation suggests climate variabilities and trends in SRs responding to insolation patterns during the past 1 Myr at both sites and extending to 4.5 Myr for Site U1424. With only few identified eccentricity (100ky) cycle segments throughout the entire normalized spectral amplitude profile, our high-resolution Age-Depth model was tuned to obliquity (41ky) and precessional (19-23ky) cycles to achieving a strong fit with corresponding low-resolution models based on biostratigraphy, paleo-magnetic and, at least for Site U1424, augmenting volcanostratigraphy data. According to our Age-Depth models, relatively low SRs occur when evolutive amplitude spectra are dominated by periods in the range of obliquity and eccentricity. In contrast, significant SR peaks at both sites often occur when strong precessional amplitudes coexist with all other cycles. Lower SRs at Site U1424 have been interpreted to reflect a decrease in diatom flux and relative

  7. Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms

    NASA Astrophysics Data System (ADS)

    Itoh, Taketsugu; Yamauchi, Noriyoshi

    2007-05-01

    Surface morphology of pentacene thin films and their substrates with under-layers is characterized by using atomic force microscopy (AFM). The power values of power spectral density (PSD) for the AFM digital data were determined by the fast Fourier transform (FFT) algorithms instead of the root-mean-square (rms) and peak-to-valley value. The PSD plots of pentacene films on glass substrate are successfully approximated by the k-correlation model. The pentacene film growth is interpreted the intermediation of the bulk and surface diffusion by parameter C of k-correlation model. The PSD plots of pentacene film on Au under-layer is approximated by using the linear continuum model (LCM) instead of the combination model of the k-correlation model and Gaussian function. The PSD plots of SiO 2 layer on Au under-layer as a gate insulator on a gate electrode of organic thin film transistors (OTFTs) have three power values of PSD. It is interpreted that the specific three PSD power values are caused by the planarization of the smooth SiO 2 layer to rough Au under-layer.

  8. Surface Roughness and Critical Exponent Analyses of Boron-Doped Diamond Films Using Atomic Force Microscopy Imaging: Application of Autocorrelation and Power Spectral Density Functions

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Vierkant, G. P.

    2014-09-01

    The evolution of the surface roughness of growing metal or semiconductor thin films provides much needed information about their growth kinetics and corresponding mechanism. While some systems show stages of nucleation, coalescence, and growth, others exhibit varying microstructures for different process conditions. In view of these classifications, we report herein detailed analyses based on atomic force microscopy (AFM) characterization to extract the surface roughness and growth kinetics exponents of relatively low boron-doped diamond (BDD) films by utilizing the analytical power spectral density (PSD) and autocorrelation function (ACF) as mathematical tools. The machining industry has applied PSD for a number of years for tool design and analysis of wear and machined surface quality. Herein, we present similar analyses at the mesoscale to study the surface morphology as well as quality of BDD films grown using the microwave plasma-assisted chemical vapor deposition technique. PSD spectra as a function of boron concentration (in gaseous phase) are compared with those for samples grown without boron. We find that relatively higher boron concentration yields higher amplitudes of the longer-wavelength power spectral lines, with amplitudes decreasing in an exponential or power-law fashion towards shorter wavelengths, determining the roughness exponent ( α ≈ 0.16 ± 0.03) and growth exponent ( β ≈ 0.54), albeit indirectly. A unique application of the ACF, which is widely used in signal processing, was also applied to one-dimensional or line analyses (i.e., along the x- and y-axes) of AFM images, revealing surface topology datasets with varying boron concentration. Here, the ACF was used to cancel random surface "noise" and identify any spatial periodicity via repetitive ACF peaks or spatially correlated noise. Periodicity at shorter spatial wavelengths was observed for no doping and low doping levels, while smaller correlations were observed for relatively

  9. Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG

    PubMed Central

    Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.

    2014-01-01

    Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030

  10. Feasibility and accuracy of relative electron density determined by virtual monochromatic CT value subtraction at two different energies using the gemstone spectral imaging

    PubMed Central

    2013-01-01

    Background Recent work by Saito (2012) has demonstrated a simple conversion from energy-subtracted computed tomography (CT) values (ΔHU) obtained using dual-energy CT to relative electron density (RED) via a single linear relationship. The purpose of this study was to investigate the feasibility of this method to obtain RED from virtual monochromatic CT images obtained by the gemstone spectral imaging (GSI) mode with fast-kVp switching. Methods A tissue characterization phantom with 13 inserts made of different materials was scanned using the GSI mode on a Discovery CT750 HD. Four sets of virtual monochromatic CT images (60, 77, 100 and 140 keV) were obtained from a single GSI acquisition. When we define Δ HU in terms of the weighting factor for the subtraction α, Δ HU ≡ (1 + α)H - αL (H and L represent the CT values for high and low energy respectively), the relationship between Δ HU and RED is approximated as a linear function, a × Δ HU/1000 + b (a, b = unity). We evaluated the agreement between the determined and nominal RED. We also have investigated reproducibility over short and long time periods. Results For the 13 insert materials, the RED determined by monochromatic CT images agreed with the nominal values within 1.1% and the coefficient of determination for this calculation formula was greater than 0.999. The observed reproducibility (1 standard deviation) of calculation error was within 0.5% for all materials. Conclusions These findings indicate that virtual monochromatic CT scans at two different energies using GSI mode can provide an accurate method for estimating RED. PMID:23570343

  11. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG.

    PubMed

    Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T

    2014-11-01

    Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation

  12. A transported probability density function/photon Monte Carlo method for high-temperature oxy-natural gas combustion with spectral gas and wall radiation

    NASA Astrophysics Data System (ADS)

    Zhao, X. Y.; Haworth, D. C.; Ren, T.; Modest, M. F.

    2013-04-01

    A computational fluid dynamics model for high-temperature oxy-natural gas combustion is developed and exercised. The model features detailed gas-phase chemistry and radiation treatments (a photon Monte Carlo method with line-by-line spectral resolution for gas and wall radiation - PMC/LBL) and a transported probability density function (PDF) method to account for turbulent fluctuations in composition and temperature. The model is first validated for a 0.8 MW oxy-natural gas furnace, and the level of agreement between model and experiment is found to be at least as good as any that has been published earlier. Next, simulations are performed with systematic model variations to provide insight into the roles of individual physical processes and their interplay in high-temperature oxy-fuel combustion. This includes variations in the chemical mechanism and the radiation model, and comparisons of results obtained with versus without the PDF method to isolate and quantify the effects of turbulence-chemistry interactions and turbulence-radiation interactions. In this combustion environment, it is found to be important to account for the interconversion of CO and CO2, and radiation plays a dominant role. The PMC/LBL model allows the effects of molecular gas radiation and wall radiation to be clearly separated and quantified. Radiation and chemistry are tightly coupled through the temperature, and correct temperature prediction is required for correct prediction of the CO/CO2 ratio. Turbulence-chemistry interactions influence the computed flame structure and mean CO levels. Strong local effects of turbulence-radiation interactions are found in the flame, but the net influence of TRI on computed mean temperature and species profiles is small. The ultimate goal of this research is to simulate high-temperature oxy-coal combustion, where accurate treatments of chemistry, radiation and turbulence-chemistry-particle-radiation interactions will be even more important.

  13. The Influence of Finasteride on Mean and Relative Spectral Density of EEG Bands in Rat Model of Thioacetamide-Induced Hepatic Encephalopathy.

    PubMed

    Mladenović, D; Hrnčić, D; Rašić-Marković, A; Macut, Dj; Stanojlović, O

    2016-08-01

    Liver failure is associated with a neuropsychiatric syndrome, known as hepatic encephalopathy (HE). Finasteride, inhibitor of neurosteroid synthesis, may improve the course of HE. The aim of our study was to investigate the influence of finasteride on mean and relative power density of EEG bands, determined by spectral analysis, in rat model of thioacetamide-induced HE. Male Wistar rats were divided into groups: (1) control; (2) thioacetamide-treated group, TAA (900 mg/kg); (3) finasteride-treated group, FIN (150 mg/kg); and (4) group treated with finasteride (150 mg/kg) and thioacetamide (900 mg/kg), FIN + TAA. Daily doses of FIN (50 mg/kg) and TAA (300 mg/kg) were administered during 3 subsequent days, and in FIN + TAA group FIN was administered 2 h before every dose of TAA. EEG was recorded 22-24 h after treatment and analyzed by fast Fourier transformation. While TAA did not induce significant changes in the beta band, mean and relative power in this band were significantly higher in FIN + TAA versus control group (p < 0.01). TAA caused a significant decline in mean power in alpha, theta, and delta band, and in FIN + TAA group the mean power in these bands was significantly higher compared with control. While in TAA group relative power was significantly decreased in theta (p < 0.01) and increased in delta band (p < 0.01) versus control, the opposite changes were found in FIN + TAA group: an increase in theta (p < 0.01) and a decrease in delta relative power (p < 0.01). In this study, finasteride pretreatment caused EEG changes that correspond to mild TAA-induced HE. PMID:26951455

  14. 1D Current Source Density (CSD) Estimation in Inverse Theory: A Unified Framework for Higher-Order Spectral Regularization of Quadrature and Expansion-Type CSD Methods.

    PubMed

    Kropf, Pascal; Shmuel, Amir

    2016-07-01

    Estimation of current source density (CSD) from the low-frequency part of extracellular electric potential recordings is an unstable linear inverse problem. To make the estimation possible in an experimental setting where recordings are contaminated with noise, it is necessary to stabilize the inversion. Here we present a unified framework for zero- and higher-order singular-value-decomposition (SVD)-based spectral regularization of 1D (linear) CSD estimation from local field potentials. The framework is based on two general approaches commonly employed for solving inverse problems: quadrature and basis function expansion. We first show that both inverse CSD (iCSD) and kernel CSD (kCSD) fall into the category of basis function expansion methods. We then use these general categories to introduce two new estimation methods, quadrature CSD (qCSD), based on discretizing the CSD integral equation with a chosen quadrature rule, and representer CSD (rCSD), an even-determined basis function expansion method that uses the problem's data kernels (representers) as basis functions. To determine the best candidate methods to use in the analysis of experimental data, we compared the different methods on simulations under three regularization schemes (Tikhonov, tSVD, and dSVD), three regularization parameter selection methods (NCP, L-curve, and GCV), and seven different a priori spatial smoothness constraints on the CSD distribution. This resulted in a comparison of 531 estimation schemes. We evaluated the estimation schemes according to their source reconstruction accuracy by testing them using different simulated noise levels, lateral source diameters, and CSD depth profiles. We found that ranking schemes according to the average error over all tested conditions results in a reproducible ranking, where the top schemes are found to perform well in the majority of tested conditions. However, there is no single best estimation scheme that outperforms all others under all tested

  15. GW approximation study of late transition metal oxides: Spectral function clusters around Fermi energy as the mechanism behind smearing in momentum density

    NASA Astrophysics Data System (ADS)

    Khidzir, S. M.; Ibrahim, K. N.; Wan Abdullah, W. A. T.

    2016-05-01

    Momentum density studies are the key tool in Fermiology in which electronic structure calculations have proven to be the integral underlying methodology. Agreements between experimental techniques such as Compton scattering experiments and conventional density functional calculations for late transition metal oxides (TMOs) prove elusive. In this work, we report improved momentum densities of late TMOs using the GW approximation (GWA) which appears to smear the momentum density creating occupancy above the Fermi break. The smearing is found to be largest for NiO and we will show that it is due to more spectra surrounding the NiO Fermi energy compared to the spectra around the Fermi energies of FeO and CoO. This highlights the importance of the positioning of the Fermi energy and the role played by the self-energy term to broaden the spectra and we elaborate on this point by comparing the GWA momentum densities to their LDA counterparts and conclude that the larger difference at the intermediate level shows that the self-energy has its largest effect in this region. We finally analyzed the quasiparticle renormalization factor and conclude that an increase of electrons in the d-orbital from FeO to NiO plays a vital role in changing the magnitude of electron correlation via the self-energy.

  16. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  17. Thermophotovoltaic Spectral Control

    SciTech Connect

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  18. Infrared measurements of organic radical anions in solution using mid-infrared optical fibers and spectral analyses based on density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Sakamoto, Akira; Kuroda, Masahito; Harada, Tomohisa; Tasumi, Mitsuo

    2005-02-01

    By using ATR and transmission probes combined with bundles of mid-infrared optical fibers, high-quality infrared spectra are observed for the radical anions of biphenyl and naphthalene in deuterated tetrahydrofuran solutions. The ATR and transmission probes can be inserted into a glass-tube cell with O-rings under vacuum. Organic radical anions prepared separately in a vacuum system are transferred into the cell for infrared absorption measurements. Observed infrared spectra are in good agreement with those calculated by density functional theory. The origin of the strong infrared absorption intensities characteristic of the radical anions are discussed in terms of changes in electronic structures induced by specific normal vibrations (electron-molecular vibration interaction).

  19. Spectral stratigraphy

    NASA Technical Reports Server (NTRS)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  20. Synthesis, structural, spectral (FTIR, FT-Raman, UV, NMR), NBO and first order hyperpolarizability analysis of N-phenylbenzenesulfonamide by density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E; Sundaraganesan, N

    2014-12-10

    In this study sulfonamide compound, N-phenylbenzenesulfonamide (NPBS) has been synthesized and grown as a high quality single crystal by the slow evaporation solution growth technique. The grown crystals were characterized by the Fourier transform infrared (4000-400cm(-1)), Fourier transform Raman (3500-500cm(-1)), UV-Vis (200-800nm) and NMR spectroscopy. Density functional (DFT) calculations have been carried out for the compound NPBS by utilizing DFT level of theory using B3LYP/6-31G(d,p) as basis set. The theoretical vibrational frequencies and optimized geometric parameters such as bond lengths and bond angles have been calculated by using quantum chemical methods. The stability of the molecule arising from hyper conjugative interaction and charge delocalization has been analyzed using NBO analysis. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The chemical reactivity and ionization potential of NPBS were also calculated. In addition, Molecular Electrostatic Potential (MEP), Frontier Molecular Orbital (FMO) analysis was investigated using theoretical calculations. The thermodynamic properties of the compound were calculated at different temperatures and corresponding relations between the properties and temperature were also studied. Finally, geometric parameters, vibrational bands were compared with available experimental data of the molecules. PMID:24973782

  1. Spectral stratigraphy

    NASA Astrophysics Data System (ADS)

    Lang, Harold R.

    1991-09-01

    Stratigraphic and structural studies of the Wind River and Bighorn basins, Wyoming, and the Guerrero-Morelos basin, Mexico, have resulted in development of ''spectral stratigraphy.'' This approach to stratigraphic analysis uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. This paper reviews selected published examples that illustrate this new stratigraphic procedure. Visible to thermal infrared laboratory, spectral measurements of sedimentary rocks are the physical basis for spectral stratigraphy. Results show that laboratory, field, and remote spectroscopy can augment conventional laboratory and field methods for petrologic analysis, stratigraphic correlation, interpretation of depositional environments, and construction of facies models. Landsat thematic mapper data are used to map strata and construct stratigraphic columns and structural cross sections at 1:24,000 scale or less. Experimental multispectral thermal infrared aircraft data facilitate lithofacies/biofacies analyses. Visible short-wavelength infrared imaging spectrometer data allow remote determination of the stratigraphic distribution of iron oxides, quartz, calcite, dolomite, gypsum, specific clay species, and other minerals diagnostic of environments of deposition. Development of a desk-top, computer-based, geologic analysis system that provides for automated application of these approaches to coregistered digital image and topographic data portends major expansion in the use of spectral stratigraphy for purely scientific (lithospheric research) or practical (resource exploration) objectives.

  2. Spectral averaging techniques for Jacobi matrices

    SciTech Connect

    Rio, Rafael del; Martinez, Carmen; Schulz-Baldes, Hermann

    2008-02-15

    Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner-type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.

  3. Age-dependence of power spectral density and fractal dimension of bone mineralized matrix in atomic force microscope topography images: potential correlates of bone tissue age and bone fragility in female femoral neck trabeculae

    PubMed Central

    Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko

    2012-01-01

    There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20–40 years) and a group of elderly women (n = 5, age: 70–95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (−2.374 vs. −2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. PMID:22946475

  4. Spectral Dictionaries

    PubMed Central

    Kim, Sangtae; Gupta, Nitin; Bandeira, Nuno; Pevzner, Pavel A.

    2009-01-01

    Database search tools identify peptides by matching tandem mass spectra against a protein database. We study an alternative approach when all plausible de novo interpretations of a spectrum (spectral dictionary) are generated and then quickly matched against the database. We present a new MS-Dictionary algorithm for efficiently generating spectral dictionaries and demonstrate that MS-Dictionary can identify spectra that are missed in the database search. We argue that MS-Dictionary enables proteogenomics searches in six-frame translation of genomic sequences that may be prohibitively time-consuming for existing database search approaches. We show that such searches allow one to correct sequencing errors and find programmed frameshifts. PMID:18703573

  5. Spectral Predictors

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  6. Spectral lineshapes of molecular clusters

    NASA Astrophysics Data System (ADS)

    Islampour, Reza; Mukamel, Shaul

    1984-06-01

    The electronic spectral lineshape of an impurity molecule in a cluster is calculated. Both a rigid (solid-like) and a non-rigid (droplet-like) model for the cluster are considered and compared. The spectrum is calculated using the spectral density J(ω) which is related to the correlation function of the time-dependent enegy gap between the two electronic states. Our calculations demonstrate how the information regarding individual eigenstates is lost under the broadened lineshape envelope in large clusters.

  7. Spectral characterization of lithographic sources

    SciTech Connect

    Cerjan, C.

    1993-06-01

    Spectral data collected in recent laser-plasma experiments at LLNL for Sn are compared to simulation results in order to more fully characterize the plasma properties, especially electron temperature and density. These plasma conditions determine the ionization states achieved by the material and the consequent radiative emission. Synthetic spectra are produced using very detailed radiating line positions and oscillator strengths calculated from extensive multi-configuration Dirac-Fock computations. Better quantitative agreement with experimental conversion efficiencies in the laser intensity regime of interest to projection soft x-ray lithography is obtained using this atomic database. The spectral characterization thus validates the general reliability of the simulations.

  8. Spectral and spread-spectral teleportation

    SciTech Connect

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  9. The pulsar spectral index distribution

    NASA Astrophysics Data System (ADS)

    Bates, S. D.; Lorimer, D. R.; Verbiest, J. P. W.

    2013-05-01

    The flux-density spectra of radio pulsars are known to be steep and, to first order, described by a power-law relationship of the form Sν ∝ να, where Sν is the flux density at some frequency ν and α is the spectral index. Although measurements of α have been made over the years for several hundred pulsars, a study of the intrinsic distribution of pulsar spectra has not been carried out. From the result of pulsar surveys carried out at three different radio frequencies, we use population synthesis techniques and a likelihood analysis to deduce what underlying spectral index distribution is required to replicate the results of these surveys. We find that in general the results of the surveys can be modelled by a Gaussian distribution of spectral indices with a mean of -1.4 and unit standard deviation. We also consider the impact of the so-called gigahertz-peaked spectrum pulsars proposed by Kijak et al. The fraction of peaked-spectrum sources in the population with any significant turnover at low frequencies appears to be at most 10 per cent. We demonstrate that high-frequency (>2 GHz) surveys preferentially select flatter spectrum pulsars and the converse is true for lower frequency (<1 GHz) surveys. This implies that any correlations between α and other pulsar parameters (for example age or magnetic field) need to carefully account for selection biases in pulsar surveys. We also expect that many known pulsars which have been detected at high frequencies will have shallow, or positive, spectral indices. The majority of pulsars do not have recorded flux density measurements over a wide frequency range, making it impossible to constrain their spectral shapes. We also suggest that such measurements would allow an improved description of any populations of pulsars with `non-standard' spectra. Further refinements to this picture will soon be possible from the results of surveys with the Green Bank Telescope and LOFAR.

  10. Different approaches of spectral analysis

    NASA Technical Reports Server (NTRS)

    Lacoume, J. L.

    1977-01-01

    Several approaches to the problem of the calculation of spectral power density of a random function from an estimate of the autocorrelation function were studied. A comparative study was presented of these different methods. The principles on which they are based and the hypothesis implied were pointed out. Some indications on the optimization of the length of the estimated correlation function was given. An example of application of the different methods discussed in this paper was included.

  11. The Spectral Shift Function and Spectral Flow

    NASA Astrophysics Data System (ADS)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  12. A spectral theory of color perception.

    PubMed

    Clark, James J; Skaff, Sandra

    2009-12-01

    The paper adopts the philosophical stance that colors are real and can be identified with spectral models based on the photoreceptor signals. A statistical setting represents spectral profiles as probability density functions. This permits the use of analytic tools from the field of information geometry to determine a new kind of color space and structure deriving therefrom. In particular, the metric of the color space is shown to be the Fisher information matrix. A maximum entropy technique for spectral modeling is proposed that takes into account measurement noise. Theoretical predictions provided by our approach are compared with empirical colorfulness and color similarity data. PMID:19956315

  13. Spectral Deception: Understanding Misleading Spectral Features Using Simulations

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron B.; Silvia, Devin W.; Smith, Britton

    2016-01-01

    Quasar absorption line studies are our primary source of information for revealing the state of the intergalactic and circumgalacic media (IGM and CGM). Using quasars as bright background sources, tenuous intervening gas clouds imprint absorption features in the resulting spectra providing clues to the clouds' density, temperature, metallicity, and ionization state. Correctly interpreting these spectra is crucial to understanding the distribution of baryons in the universe.Using the Trident code to generate synthetic spectra from high-resolution cosmological hydrodynamical simulations, we examine how spectral noise, instrument smoothing, and certain configurations of gas can mask the true nature of gas absorbers. We demonstrate how cold gas filaments can create broad spectral features mimicking hot absorbers, and chimneys of hot gas viewed side-on appear as narrow, cold absorbers. Understanding how commonly these conditions occur is critical for correctly characterizing the physical conditions in the media galactic.

  14. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  15. Synthesis, structural, spectral (FT-IR, FT-Ra, and UV-Vis), thermal, and density functional studies on p-methylaniline complexes of Mn(II), Co(II), and Ni(II) bromides

    NASA Astrophysics Data System (ADS)

    Bardakçı, Tayyibe; Altun, Ahmet; Golcuk, Kurtulus; Kumru, Mustafa

    2015-11-01

    Transition metal complexes of the form MBr2L2, where M = Mn(II), Co(II) and Ni(II); L = p-methylaniline, were prepared and characterized by elemental and thermogravimetric analyses, magnetic moment measurements, and UV-vis, FT-IR and FT-Raman spectral studies. Geometries, spin-state energetics, and vibrational spectra of the complexes were obtained at the B3LYP/def2-TZVP level. The present experimental and theoretical data suggest 5-coordinate polymeric bromide bridged structure for the Mn complex, distorted tetrahedral structure for the Co complex, and distorted octahedral coordination site for the Ni complex. The experimental FT-IR and FT-Raman bands of the complexes were assigned based on the computational results expressed in terms of internal coordinates with percent potential energy distributions. The vibrational spectra suggest that the coordination occurs via nitrogen atom of p-methylaniline. The thermal characteristics of the complexes indicate that their decompositions start through p-methylaniline.

  16. Evaluating Spectral Signals to Identify Spectral Error

    PubMed Central

    Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana

    2016-01-01

    Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541

  17. Evaluating Spectral Signals to Identify Spectral Error.

    PubMed

    Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana

    2016-01-01

    Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541

  18. Spectral methods for CFD

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Streett, Craig L.; Hussaini, M. Yousuff

    1989-01-01

    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched.

  19. Synthesis, crystal growth, thermal, electronic and vibrational spectral studies of 1-(4-Bromophenyl)-3-(3,4-dimethoxy-phenyl)prop-2-en-1-one: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Joseph, L.; Arunsasi, B. S.; Sajan, D.; Shettigar, V.

    2014-11-01

    A new chalcone derivative, 1-(4-Bromophenyl)-3-(3,4-dimethoxy-phenyl)prop-2-en-1-one (DMBC) was synthesized and single crystals were grown by slow evaporation technique. The FT-Raman and FT-IR spectra of the sample were recorded in the region 3500-50 cm-1 and 4000-400 cm-1 respectively. The spectra were interpreted with the aid of normal coordinate analysis, following structure optimizations and force field calculations based on density functional theory (DFT) at the B3LYP/6-31G(d,p) level of theory. Normal coordinate calculations were performed using the DFT force field corrected by a recommended set of scaling factors yielding fairly good agreement between the observed and calculated wavenumbers. DMBC is thermally stable up to 265.0 °C and optically transparent in the visible region. The total electron density and molecular electrostatic potential surfaces of the molecules were constructed by Natural Bond Orbital analysis using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution, molecular shape, size, and dipole moments of the molecule. The electronic properties, HOMO and LUMO energies were measured.

  20. Spectral likelihood expansions for Bayesian inference

    NASA Astrophysics Data System (ADS)

    Nagel, Joseph B.; Sudret, Bruno

    2016-03-01

    A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.

  1. On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra

    NASA Astrophysics Data System (ADS)

    Renger, Thomas; Marcus, R. A.

    2002-06-01

    A theory for calculating time- and frequency-domain optical spectra of pigment-protein complexes is presented using a density matrix approach. Non-Markovian effects in the exciton-vibrational coupling are included. A correlation function is deduced from the simulation of 1.6 K fluorescence line narrowing spectra of a monomer pigment-protein complex (B777), and then used to calculate fluorescence line narrowing spectra of a dimer complex (B820). A vibrational sideband of an excitonic transition is obtained, a distinct non-Markovian feature, and agrees well with experiment on B820 complexes. The theory and the above correlation function are used elsewhere to make predictions and compare with data on time-domain pump-probe spectra and frequency-domain linear absorption, circular dichroism and fluorescence spectra of Photosystem II reaction centers.

  2. Spectral separation of optical spin based on antisymmetric Fano resonances

    PubMed Central

    Piao, Xianji; Yu, Sunkyu; Hong, Jiho; Park, Namkyoo

    2015-01-01

    We propose a route to the spectral separation of optical spin angular momentum based on spin-dependent Fano resonances with antisymmetric spectral profiles. By developing a spin-form coupled mode theory for chiral materials, the origin of antisymmetric Fano spectra is clarified in terms of the opposite temporal phase shift for each spin, which is the result of counter-rotating spin eigenvectors. An analytical expression of a spin-density Fano parameter is derived to enable quantitative analysis of the Fano-induced spin separation in the spectral domain. As an application, we demonstrate optical spin switching utilizing the extreme spectral sensitivity of the spin-density reversal. Our result paves a path toward the conservative spectral separation of spins without any need of the magneto-optical effect or circular dichroism, achieving excellent purity in spin density superior to conventional approaches based on circular dichroism. PMID:26561372

  3. Triatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 117 Triatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  4. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  5. Diatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 114 Diatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.

  6. Propagation of spectral functions and dilepton production at SIS energies

    SciTech Connect

    Wolf, Gy.; Kaempfer, B.; Zetenyi, M.

    2012-06-15

    The time evolution of vector meson spectral functions is studied within a BUU-type transport model. Applications focus on {rho} and {omega} mesons being important pieces for the interpretation of the dielectron invariant mass spectrum. Since the evolution of the spectral functions is driven by the local density, the inmedium modifications turn out to compete, in this approach, with the known vacuum contributions.

  7. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  8. Spectral Redundancy in Tissue Characterization

    NASA Astrophysics Data System (ADS)

    Varghese, Tomy

    1995-01-01

    Ultrasonic backscattered signals from material comprised of quasi-periodic scatterers exhibit redundancy over both its phase and magnitude spectra. This dissertation addresses the problem of estimating the mean scatterer spacing and scatterer density from the backscattered ultrasound signal using spectral redundancy characterized by the spectral autocorrelation (SAC) function. The SAC function exploits characteristic differences between the phase spectrum of the resolvable quasi-periodic (regular) scatterers and the unresolvable uniformly distributed (diffuse) scatterers to improve estimator performance over other estimators that operate directly on the magnitude spectrum. Analytical, simulation, and experimental results (liver and breast tissue) indicate the potential of utilizing phase information using the SAC function. A closed form analytical expression for the SAC function is derived for gamma distributed scatterer spacings. The theoretical expression for the SAC function demonstrate the increased regular-to-diffuse scatterer signal ratio in the off-diagonal components of the SAC function, since the diffuse component contributes only to the diagonal components (power spectrum). The A-scan is modelled as a cyclostationary signal whose statistical parameters vary in time with single or multiple periodicities. A-scan models consist of a collection of regular scatterers with gamma distributed spacings embedded in diffuse scatterers with uniform distributed spacings. The model accounts for attenuation by convolving the frequency dependent backscatter coefficients of the scatterer centers with a time-varying system response. Simulation results show that SAC-based estimates converge more reliably over smaller amounts of data than previously used cepstrum-based estimates. A major reason for the performance advantage is the use of phase information by the SAC function, while the cepstnun uses a phaseless power spectral density, that is directly affected by the system

  9. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  10. Commission 45: Spectral Classification

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta

    This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.

  11. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  12. Density Visualization

    ERIC Educational Resources Information Center

    Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A.

    2006-01-01

    Metal rods of high purity for many elements are now commercially available and may be used to construct a display of relative densities. We have constructed a display with nine metal rods (Mg, Al, Ti, V, Fe, Cu, Ag, Pb, and W) of equal mass whose densities vary from 1.74 to 19.3 g cm[superscript -3]. The relative densities of the metals may be…

  13. Spectral efficiency of optical direct detection

    NASA Astrophysics Data System (ADS)

    Martinez, Alfonso

    2007-04-01

    The spectral efficiency (channel capacity) of the optical direct-detection channel is studied. The modeling of the optical direct-detection channel as a discrete-time Poisson channel is reviewed. Closed-form integral representations for the entropy of random variables with Poisson and negative binomial distributions are derived. The spectral efficiency achievable with an arbitrary input gamma density is expressed in closed integral form. Simple, nonasymptotic upper and lower bounds to the channel capacity are computed. Numerical results are presented and compared with previous bounds and approximations.

  14. Spectrally selective glazings

    SciTech Connect

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  15. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m). PMID:18345245

  16. Photovoltaic spectral responsivity measurements

    SciTech Connect

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T.

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  17. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  18. Bone Density

    MedlinePlus

    ... bone health. It compares your bone density, or mass, to that of a healthy person who is ... Whether your osteoporosis treatment is working Low bone mass that is not low enough to be osteoporosis ...

  19. Design of spectral filtering for tissue classification

    NASA Astrophysics Data System (ADS)

    Narayanan, Ajay; Shah, Pratik; Das, Bipul

    2012-02-01

    Tissue characterization from imaging studies is an integral part of clinical practice. We describe a spectral filter design for tissue separation in dual energy CT scans obtained from Gemstone Spectral Imaging scanner. It enables to have better 2D/3D visualization and tissue characterization in normal and pathological conditions. The major challenge to classify tissues in conventional computed tomography (CT) is the x-ray attenuation proximity of multiple tissues at any given energy. The proposed method analyzes the monochromatic images at different energy levels, which are derived from the two scans obtained at low and high KVp through fast switching. Although materials have a distinct attenuation profile across different energies, tissue separation is not trivial as tissues are a mixture of different materials with range of densities that vary across subjects. To address this problem, we define spectral filtering, that generates probability maps for each tissue in multi-energy space. The filter design incorporates variations in the tissue due to composition, density of individual constituents and their mixing proportions. In addition, it also provides a framework to incorporate zero mean Gaussian noise. We demonstrate the application of spectral filtering for bone-free vascular visualization and calcification characterization.

  20. Spectral library searching in proteomics.

    PubMed

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data. PMID:26616598

  1. Artifacts Of Spectral Analysis Of Instrument Readings

    NASA Technical Reports Server (NTRS)

    Wise, James H.

    1995-01-01

    Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).

  2. Low Bone Density

    MedlinePlus

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  3. Spectral Analysis of Vector Magnetic Field Profiles

    NASA Technical Reports Server (NTRS)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  4. Large Spectral Library Problem

    SciTech Connect

    Chilton, Lawrence K.; Walsh, Stephen J.

    2008-10-03

    Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

  5. Microwave spectral line listing

    NASA Technical Reports Server (NTRS)

    White, W. F., Jr.

    1975-01-01

    The frequency, intensity, and identification of 9615 spectral lines belonging to 75 molecules are tabulated in order of increasing frequency. Measurements for all 75 molecules were made in the frequency range from 26500 to 40000 MHz by a computer controlled spectrometer. Measurements were also made in the 18000 to 26500 MHz range for some of the molecules.

  6. Symmetries of Spectral Problems

    NASA Astrophysics Data System (ADS)

    Shabat, A.

    Deriving abelian KdV and NLS hierarchies, we describe non-abelian symmetries and "pre-Lax" elementary approach to Lax pairs. Discrete symmetries of spectral problems are considered in Sect. 4.2. Here we prove Darboux classical theorem and discuss a modern theory of dressing chains.

  7. LCLS Spectral Flux Viewer

    Energy Science and Technology Software Center (ESTSC)

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  8. Spectral imaging using forward-viewing spectrally encoded endoscopy.

    PubMed

    Zeidan, Adel; Yelin, Dvir

    2016-02-01

    Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times. PMID:26977348

  9. Spectral imaging using forward-viewing spectrally encoded endoscopy

    PubMed Central

    Zeidan, Adel; Yelin, Dvir

    2016-01-01

    Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times. PMID:26977348

  10. Fuzzy stochastic elements method. Spectral approach

    NASA Astrophysics Data System (ADS)

    Sniady, Pawel; Mazur-Sniady, Krystyna; Sieniawska, Roza; Zukowski, Stanislaw

    2013-05-01

    We study a complex dynamic problem, which concerns a structure with uncertain parameters subjected to a stochastic excitation. Formulation of such a problem introduces fuzzy random variables for parameters of the structure and fuzzy stochastic processes for the load process. The uncertainty has two sources, namely the randomness of structural parameters such as geometry characteristics, material and damping properties, load process and imprecision of the theoretical model and incomplete information or uncertain data. All of these have a great influence on the response of the structure. By analyzing such problems we describe the random variability using the probability theory and the imprecision by use of fuzzy sets. Due to the fact that it is difficult to find an analytic expression for the inversion of the stochastic operator in the stochastic differential equation, a number of approximate methods have been proposed in the literature which can be connected to the finite element method. To evaluate the effects of excitation in the frequency domain we use the spectral density function. The spectral analysis is widely used in stochastic dynamics field of linear systems for stationary random excitation. The concept of the evolutionary spectral density is used in the case of non-stationary random excitation. We solve the considered problem using fuzzy stochastic finite element method. The solution is based on the idea of a fuzzy random frequency response vector for stationary input excitation and a transient fuzzy random frequency response vector for the fuzzy non-stationary one. We use the fuzzy random frequency response vector and the transient fuzzy random frequency response vector in the context of spectral analysis in order to determine the influence of structural uncertainty on the fuzzy random response of the structure. We study a linear system with random parameters subjected to two particular cases of stochastic excitation in a frequency domain. The first one