Sample records for dental enamel solubility

  1. IN VIVO ASSESSMENT OF THE SOLUBILITY OF TOOTH ENAMEL DURING AN FBM PATROL

    DTIC Science & Technology

    The solubility of dental enamel is a prime factor in the dental decay process. Conditions which may influence the enamel solubility and the degree of...normal variation of this factor are therefore of interest to the Navy Dental Corps. Enamel solubility was determined in a group of volunteers from

  2. Calcium solubility of dental enamel following Er, Cr:YSGG laser irradiation

    NASA Astrophysics Data System (ADS)

    Apel, Christian; Graeber, Hans-Georg; Gutknecht, Norbert

    2000-03-01

    Ever since the laser was introduced in dental medicine, there has been a constant discussion about its use in caries prevention. Various studies have already illustrated the possible uses of CO2 and argon lasers in this field of dentistry. The aim of the present study was to examine the Er,Cr:YSGG laser with regard to potential in reducing the acid solubility of dental enamel. Thirty freshly extracted bovine incisor teeth were prepared for this purpose. The crowns of the teeth were covered with hard wax, leaving a standardized test area free. The test specimens were then divided into three groups. The test area was uniformly irradiated with 2.7 J/cm2 in the first test group and 6.5 J/cm2 in the second test group. The third test group was left untreated (control group). Demineralization of the teeth was performed over a period of 24 hours in acetate buffer solution (0.1 mol/l) with a pH value of 4.5 and a temperature of 37 degrees Celsius. The calcium content of the solution was subsequently determined by flame photometry. The results confirm a significantly lower calcium content in the test group exposed to radiation of 6.5 J/cm2 (p less than 0.025). Dental enamel seems to have increased acid resistance following irradiation with the Er,Cr:YSGG laser.

  3. Weaker dental enamel explains dental decay.

    PubMed

    Vieira, Alexandre R; Gibson, Carolyn W; Deeley, Kathleen; Xue, Hui; Li, Yong

    2015-01-01

    Dental caries continues to be the most prevalent bacteria-mediated non-contagious disease of humankind. Dental professionals assert the disease can be explained by poor oral hygiene and a diet rich in sugars but this does not account for caries free individuals exposed to the same risk factors. In order to test the hypothesis that amount of amelogenin during enamel development can influence caries susceptibility, we generated multiple strains of mice with varying levels of available amelogenin during dental development. Mechanical tests showed that dental enamel developed with less amelogenin is "weaker" while the dental enamel of animals over-expressing amelogenin appears to be more resistant to acid dissolution.

  4. Weaker Dental Enamel Explains Dental Decay

    PubMed Central

    Vieira, Alexandre R.; Gibson, Carolyn W.; Deeley, Kathleen; Xue, Hui; Li, Yong

    2015-01-01

    Dental caries continues to be the most prevalent bacteria-mediated non-contagious disease of humankind. Dental professionals assert the disease can be explained by poor oral hygiene and a diet rich in sugars but this does not account for caries free individuals exposed to the same risk factors. In order to test the hypothesis that amount of amelogenin during enamel development can influence caries susceptibility, we generated multiple strains of mice with varying levels of available amelogenin during dental development. Mechanical tests showed that dental enamel developed with less amelogenin is “weaker” while the dental enamel of animals over-expressing amelogenin appears to be more resistant to acid dissolution. PMID:25885796

  5. Development of fluorapatite cement for dental enamel defects repair.

    PubMed

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  6. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.

    PubMed

    Gordon, Lyle M; Cohen, Michael J; MacRenaris, Keith W; Pasteris, Jill D; Seda, Takele; Joester, Derk

    2015-02-13

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue. Copyright © 2015, American Association for the Advancement of Science.

  7. Effectiveness of anchovy substrate application on decreasing acid solubility of Sprague Dawley rats’ tooth enamel (in vivo)

    NASA Astrophysics Data System (ADS)

    Triputra, F.; Puspitawati, R.; Gunawan, H. A.

    2017-08-01

    Anchovies (Stolephorus insularis), a natural resource of Indonesia, contain fluoride in the form of CaF2 and can function as a fluoridation material to prevent dental caries. The aim of this study is to study the effectiveness of anchovy substrate, through food or topical application, in decreasing the acid solubility of tooth enamel. This research used 14 Sprague Dawley rats as subjects divided into the following 5 groups: baseline, experimental feeding, experimental smearing, and their negative controls. After 15 days of anchovy substrate application, lower incisors were extracted and the acid solubility of enamel was analyzed qualitatively and quantitatively using a stereo microscope and a Micro-Vickers Hardness Tester. Analysis of enamel surface destruction and enamel surface microscopic hardness shifting after a 60 sec application of H2PO4 (50% concentration) resulted in a decrease in acid solubility of enamel treated with anchovy substrate. This result can be seen with both the chewing and smearing method. S. insularis can be used as an alternative material for fluoridation.

  8. Influence of trace elements on dental enamel properties: A review.

    PubMed

    Qamar, Zeeshan; Haji Abdul Rahim, Zubaidah Binti; Chew, Hooi Pin; Fatima, Tayyaba

    2017-01-01

    Dental enamel, an avascular, irreparable, outermost and protective layer of the human clinical crown has a potential to withstand the physico-chemical effects and forces. These properties are being regulated by a unique association among elements occurring in the crystallites setup of human dental enamel. Calcium and phosphate are the major components (hydroxyapatite) in addition to some trace elements which have a profound effect on enamel. The current review was planned to determine the aptitude of various trace elements to substitute and their influence on human dental enamel in terms of physical and chemical properties.

  9. Polymer coated liposomes for dental drug delivery--interactions with parotid saliva and dental enamel.

    PubMed

    Nguyen, S; Hiorth, M; Rykke, M; Smistad, G

    2013-09-27

    The interactions between pectin coated liposomes and parotid saliva and dental enamel were studied to investigate their potential to mimic the protective biofilm formed naturally on tooth surfaces. Different pectin coated liposomes with respect to pectin type (LM-, HM- and AM-pectin) and concentration (0.05% and 0.2%) were prepared. Interactions between the pectin coated liposomes and parotid saliva were studied by turbidimetry and imaging by atomic force microscopy. The liposomes were adsorbed to hydroxyapatite (HA) and human dental enamel using phosphate buffer and parotid saliva as adsorption media. A continuous flow was imposed on the enamel surfaces for various time intervals to examine their retention on the dental enamel. The results were compared to uncoated, charged liposomes. No aggregation tendencies for the pectin coated liposomes and parotid saliva were revealed. This makes them promising as drug delivery systems to be used in the oral cavity. In phosphate buffer the adsorption to HA of pectin coated liposomes was significantly lower than the negative liposomes. The difference diminished in parotid saliva. Positive liposomes adsorbed better to the dental enamel than the pectin coated liposomes. However, when subjected to flow for 1h, no significant differences in the retention levels on the enamel were found between the formulations. For all formulations, more than 40% of the liposomes still remained on the enamel surfaces. At time point 20 min the retention of HM-pectin coated and positive liposomes were significantly higher. It was concluded that pectin coated liposomes can adsorb to HA as well as to the dental enamel. Their ability to retain on the enamel surfaces promotes the concept of using them as protective structures for the teeth. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Targeted p120-catenin ablation disrupts dental enamel development.

    PubMed

    Bartlett, John D; Dobeck, Justine M; Tye, Coralee E; Perez-Moreno, Mirna; Stokes, Nicole; Reynolds, Albert B; Fuchs, Elaine; Skobe, Ziedonis

    2010-09-16

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows.

  11. Targeted p120-Catenin Ablation Disrupts Dental Enamel Development

    PubMed Central

    Bartlett, John D.; Dobeck, Justine M.; Tye, Coralee E.; Perez-Moreno, Mirna; Stokes, Nicole; Reynolds, Albert B.; Fuchs, Elaine; Skobe, Ziedonis

    2010-01-01

    Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows. PMID:20862276

  12. On the brittleness of enamel and selected dental materials.

    PubMed

    Park, S; Quinn, J B; Romberg, E; Arola, D

    2008-11-01

    Although brittle material behavior is often considered undesirable, a quantitative measure of "brittleness" is currently not used in assessing the clinical merits of dental materials. To quantify and compare the brittleness of human enamel and common dental restorative materials used for crown replacement. Specimens of human enamel were prepared from the third molars of "young" (18< or =age< or =25) and "old" (50< or =age) patients. The hardness, elastic modulus and apparent fracture toughness were characterized as a function of distance from the DEJ using indentation approaches. These properties were then used in estimating the brittleness according to a model that accounts for the competing dissipative processes of deformation and fracture. The brittleness of selected porcelain, ceramic and micaceous glass ceramic (MGC) dental materials was estimated and compared with that of the enamel. The average brittleness of the young and old enamel increased with distance from the DEJ. For the old enamel the average brittleness increased from approximately 300 microm(-1) at the DEJ to nearly 900 microm(-1) at the occlusal surface. While there was no significant difference between the two age groups at the DEJ, the brittleness of the old enamel was significantly greater (and up to four times higher) than that of the young enamel near the occlusal surface. The brittleness numbers for the restorative materials were up to 90% lower than that of young occlusal enamel. The brittleness index could serve as a useful scale in the design of materials used for crown replacement, as well as a quantitative tool for characterizing degradation in the mechanical behavior of enamel.

  13. ON THE BRITTLENESS OF ENAMEL AND SELECTED DENTAL MATERIALS

    PubMed Central

    Park, S.; Quinn, J. B; Romberg, E.; Arola, D.

    2008-01-01

    Although brittle material behavior is often considered undesirable, a quantitative measure of “brittleness” is currently not used in assessing the clinical merits of dental materials. Objective To quantify and compare the brittleness of human enamel and common dental restorative materials used for crown replacement. Methods Specimens of human enamel were prepared from the 3rd molars of “young” (18≤age≤25) and “old” (50≤age) patients. The hardness, elastic modulus and apparent fracture toughness were characterized as a function of distance from the DEJ using indentation approaches. These properties were then used in estimating the brittleness according to a model that accounts for the competing dissipative processes of deformation and fracture. The brittleness of selected porcelain, ceramic and Micaceous Glass Ceramic (MGC) dental materials was estimated and compared with that of the enamel. Results The average brittleness of the young and old enamel increased with distance from the DEJ. For the old enamel the average brittleness increased from approximately 300 µm−1 at the DEJ to nearly 900 µm−1 at the occlusal surface. While there was no significant difference between the two age groups at the DEJ, the brittleness of the old enamel was significantly greater (and up to 4 times higher) than that of the young enamel near the occlusal surface. The brittleness numbers for the restorative materials were up to 90% lower than that of young occlusal enamel. Significance The brittleness index could serve as a useful scale in the design of materials used for crown replacement, as well as a quantitative tool for characterizing degradation in the mechanical behavior of enamel. PMID:18436299

  14. Morphology and structure of polymer layers protecting dental enamel against erosion.

    PubMed

    Beyer, Markus; Reichert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2012-10-01

    Human dental erosion caused by acids is a major factor for tooth decay. Adding polymers to acidic soft drinks is one important approach to reduce human dental erosion caused by acids. The aim of this study was to investigate the thickness and the structure of polymer layers adsorbed in vitro on human dental enamel from polymer modified citric acid solutions. The polymers propylene glycol alginate (PGA), highly esterified pectin (HP) and gum arabic (GA) were used to prepare polymer modified citric acids solutions (PMCAS, pH 3.3). With these PMCAS, enamel samples were treated for 30, 60 and 120s respectively to deposit polymer layers on the enamel surface. Profilometer scratches on the enamel surface were used to estimate the thickness of the polymer layers via atomic force microscopy (AFM). The composition of the deposited polymer layers was investigated with X-ray photoelectron spectroscopy (XPS). In addition the polymer-enamel interaction was investigated with zeta-potential measurements and scanning electron microscopy (SEM). It has been shown that the profilometer scratch depth on the enamel with deposited polymers was in the range of 10nm (30s treatment time) up to 25nm (120s treatment time). Compared to this, the unmodified CAS-treated surface showed a greater scratch depth: from nearly 30nm (30s treatment time) up to 60nm (120s treatment time). Based on XPS measurements, scanning electron microscopy (SEM) and zeta-potential measurements, a model was hypothesized which describes the layer deposited on the enamel surface as consisting of two opposing gradients of polymer molecules and hydroxyapatite (HA) particles. In this study, the structure and composition of polymer layers deposited on in vitro dental enamel during treatment with polymer modified citric acid solutions were investigated. Observations are consistent with a layer consisting of two opposing gradients of hydroxyapatite particles and polymer molecules. This leads to reduced erosive effects of

  15. Association of dental enamel lead levels with risk factors for environmental exposure.

    PubMed

    Olympio, Kelly Polido Kaneshiro; Naozuka, Juliana; Oliveira, Pedro Vitoriano; Cardoso, Maria Regina Alves; Bechara, Etelvino José Henriques; Günther, Wanda Maria Risso

    2010-10-01

    To analyze household risk factors associated with high lead levels in surface dental enamel. A cross-sectional study was conducted with 160 Brazilian adolescents aged 1418 years living in poor neighborhoods in the city of Bauru, southeastern Brazil, from August to December 2008. Body lead concentrations were assessed in surface dental enamel acid-etch microbiopsies. Dental enamel lead levels were measured by graphite furnace atomic absorption spectrometry and phosphorus levels were measured by inductively coupled plasma optical emission spectrometry. The parents answered a questionnaire about their children's potential early (05 years old) exposure to well-known lead sources. Logistic regression was used to identify associations between dental enamel lead levels and each environmental risk factor studied. Social and familial covariables were included in the models. The results suggest that the adolescents studied were exposed to lead sources during their first years of life. Risk factors associated with high dental enamel lead levels were living in or close to a contaminated area (OR = 4.49; 95% CI: 1.69;11.97); and member of the household worked in the manufacturing of paints, paint pigments, ceramics or batteries (OR = 3.43; 95% CI: 1.31;9.00). Home-based use of lead-glazed ceramics, low-quality pirated toys, anticorrosive paint on gates and/or sale of used car batteries (OR = 1.31; 95% CI: 0.56;3.03) and smoking (OR = 1.66; 95% CI: 0.52;5.28) were not found to be associated with high dental enamel lead levels. Surface dental enamel can be used as a marker of past environmental exposure to lead and lead concentrations detected are associated to well-known sources of lead contamination.

  16. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    PubMed

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  17. Prevalence of enamel defects and association with dental caries in preschool children.

    PubMed

    Massignan, C; Ximenes, M; da Silva Pereira, C; Dias, L; Bolan, M; Cardoso, M

    2016-12-01

    This was to evaluate the prevalence of the developmental defects of enamel (DDE) in primary teeth and its association with dental caries. A cross-sectional study with a randomised representative sample was carried out with 1101 children aged 2-5 years enrolled in public preschools (50% prevalence of DDE in primary teeth, a standard error of 3%, and a confidence level of 95%). Three calibrated dentists (K > 0.62) performed clinical examination. Data collected were: sex, age, DDE (Modified DDE Index) and dental caries (WHO). Descriptive analysis, Chi-square test and multinomial logistic regression were applied for data analysis. Among children, 565 (51.3%) were boys; mean age was 3.7 (±0.9 years). The prevalence of enamel defect was 39.1%; the prevalence of diffuse opacities, demarcated opacities and enamel hypoplasia was 25.3, 19.1 and 6.1%, respectively. The prevalence of dental caries was 31.0%, with mean def-t 1.14 (±2.44). Primary teeth with enamel hypoplasia had three times the odds of having dental caries than those with absence of enamel defects (OR = 3.10; 95% CI: 1.91, 5.01). The presence of enamel defects was moderate and associated with dental caries.

  18. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.

    PubMed

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-09-01

    An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Proteomic Mapping of Dental Enamel Matrix from Inbred Mouse Strains: Unraveling Potential New Players in Enamel.

    PubMed

    Lima Leite, Aline; Silva Fernandes, Mileni; Charone, Senda; Whitford, Gary Milton; Everett, Eric T; Buzalaf, Marília Afonso Rabelo

    2018-01-01

    Enamel formation is a complex 2-step process by which proteins are secreted to form an extracellular matrix, followed by massive protein degradation and subsequent mineralization. Excessive systemic exposure to fluoride can disrupt this process and lead to a condition known as dental fluorosis. The genetic background influences the responses of mineralized tissues to fluoride, such as dental fluorosis, observed in A/J and 129P3/J mice. The aim of the present study was to map the protein profile of enamel matrix from A/J and 129P3/J strains. Enamel matrix samples were obtained from A/J and 129P3/J mice and analyzed by 2-dimensional electrophoresis and liquid chromatography coupled with mass spectrometry. A total of 120 proteins were identified, and 7 of them were classified as putative uncharacterized proteins and analyzed in silico for structural and functional characterization. An interesting finding was the possibility of the uncharacterized sequence Q8BIS2 being an enzyme involved in the degradation of matrix proteins. Thus, the results provide a comprehensive view of the structure and function for putative uncharacterized proteins found in the enamel matrix that could help to elucidate the mechanisms involved in enamel biomineralization and genetic susceptibility to dental fluorosis. © 2018 S. Karger AG, Basel.

  20. Dental enamel defects in Italian children with cystic fibrosis: an observational study.

    PubMed

    Ferrazzano, G F; Sangianantoni, G; Cantile, T; Amato, I; Orlando, S; Ingenito, A

    2012-03-01

    The relationship between cystic fibrosis (CF) and caries experience has already been explored, but relatively little information is available on dental enamel defects prevalence among children affected by cystic fibrosis. The aim of this study was to investigate this issue in deciduous and permanent teeth of children with CF resident in southern Italy. This cross sectional observational study was undertaken between October 2009 and March 2010. 88 CF patients and 101 healthy age-matched participated in this study. The prevalence of dental enamel defects was calculated using a modified Developmental Defects of Enamel (DDE) index. The comparison of dental enamel defects prevalence among groups was carried out using regression binary logistic analysis. In the CF subjects there was a higher prevalence (56%) of enamel defects in comparison to the healthy group (22%). The most prevalent enamel defect was hypoplasia with loss of enamel (23% of CF patients vs 1 1/2% of control group) in permanent teeth. This study confirms that children with cystic fibrosis are at increased risk of developing hypoplastic defects on their permanent teeth.

  1. Oral aspects in celiac disease children: clinical and dental enamel chemical evaluation.

    PubMed

    de Carvalho, Fabrício Kitazono; de Queiroz, Alexandra Mussolino; Bezerra da Silva, Raquel Assed; Sawamura, Regina; Bachmann, Luciano; Bezerra da Silva, Léa Assed; Nelson-Filho, Paulo

    2015-06-01

    The aim of this study was to evaluate the oral manifestations of celiac disease (CD), the chemical composition of dental enamel, and the occurrence of CD in children with dental enamel defects (DEDs). In the study, 52 children with CD and 52 controls were examined for DEDs, recurrent aphthous stomatitis (RAS), dental caries experience, and salivary parameters. In addition, 10 exfoliated primary enamel molars from each group were analyzed by energy dispersive x-ray spectroscopy and Fourier transform infrared spectroscopy. Fifty children with DEDs were submitted to CD diagnosis. Among the children with CD, a higher prevalence of DEDs (P = .00001) and RAS (P = .0052), lower caries experience (P = .0024), and reduction of salivary flow (P = .0060) were observed. Dental enamel from the children with CD demonstrated a lower calcium-to-phosphorus ratio (P = .0136), but no difference in the carbonate-to-phosphate ratio (P = .5862) was observed. In the multivariate analysis, CD was a protective factor for caries (OR = 0.74) and a risk factor for RAS (OR3.23). The children with CD presented with more RAS, DEDs, reduction of salivary flow, and chemical alterations in the enamel. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The fracture behaviour of dental enamel.

    PubMed

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A

    2010-01-01

    Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).

  3. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    PubMed

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  4. Dental enamel cells express functional SOCE channels

    PubMed Central

    Nurbaeva, Meerim K.; Eckstein, Miriam; Concepcion, Axel R.; Smith, Charles E.; Srikanth, Sonal; Paine, Michael L.; Gwack, Yousang; Hubbard, Michael J.; Feske, Stefan; Lacruz, Rodrigo S.

    2015-01-01

    Dental enamel formation requires large quantities of Ca2+ yet the mechanisms mediating Ca2+ dynamics in enamel cells are unclear. Store-operated Ca2+ entry (SOCE) channels are important Ca2+ influx mechanisms in many cells. SOCE involves release of Ca2+ from intracellular pools followed by Ca2+ entry. The best-characterized SOCE channels are the Ca2+ release-activated Ca2+ (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca2+ uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca2+ release mechanism. Passive depletion of ER Ca2+ stores with thapsigargin resulted in a significant raise in [Ca2+]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca2+ entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca2+ uptake in enamel formation. PMID:26515404

  5. Dental enamel cells express functional SOCE channels.

    PubMed

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  6. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    NASA Astrophysics Data System (ADS)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  7. Quantitative assessment of the enamel machinability in tooth preparation with dental diamond burs.

    PubMed

    Song, Xiao-Fei; Jin, Chen-Xin; Yin, Ling

    2015-01-01

    Enamel cutting using dental handpieces is a critical process in tooth preparation for dental restorations and treatment but the machinability of enamel is poorly understood. This paper reports on the first quantitative assessment of the enamel machinability using computer-assisted numerical control, high-speed data acquisition, and force sensing systems. The enamel machinability in terms of cutting forces, force ratio, cutting torque, cutting speed and specific cutting energy were characterized in relation to enamel surface orientation, specific material removal rate and diamond bur grit size. The results show that enamel surface orientation, specific material removal rate and diamond bur grit size critically affected the enamel cutting capability. Cutting buccal/lingual surfaces resulted in significantly higher tangential and normal forces, torques and specific energy (p<0.05) but lower cutting speeds than occlusal surfaces (p<0.05). Increasing material removal rate for high cutting efficiencies using coarse burs yielded remarkable rises in cutting forces and torque (p<0.05) but significant reductions in cutting speed and specific cutting energy (p<0.05). In particular, great variations in cutting forces, torques and specific energy were observed at the specific material removal rate of 3mm(3)/min/mm using coarse burs, indicating the cutting limit. This work provides fundamental data and the scientific understanding of the enamel machinability for clinical dental practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recovery of crystallographic texture in remineralized dental enamel.

    PubMed

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  9. Acids with an equivalent taste lead to different erosion of human dental enamel.

    PubMed

    Beyer, Markus; Reichert, Jörg; Bossert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2011-10-01

    The consumption of acidic soft drinks may lead to demineralization and softening of human dental enamel, known as dental erosion. The aims of this in vitro study were to determine: (i) if different acids with a similar sensorial acidic taste lead to different hardness loss of enamel and (ii) if the fruit acids tartaric, malic, lactic or ascorbic acid lead to less hardness loss of enamel than citric or phosphoric acid when their concentration in solution is based on an equivalent sensorial acidic taste. Enamel samples of non-erupted human third molars were treated with acidic solutions of tartaric (TA), malic (MA), lactic (LA), ascorbic (AA), phosphoric (PA) and citric (CA) acids with a concentration that gave an equivalent sensorial acidic taste. The acidic solutions were characterized by pH value and titratable acidity. Atomic force microscopy (AFM) based nanoindentation was used to study the nano mechanical properties and scanning electron microscopy (SEM) was used to study the morphology of the treated enamel samples and the untreated control areas, respectively. The investigated acids fell into two groups. The nano hardnesses of MA, TA and CA treated enamel samples (group I) were statistically significantly greater (p<0.05) than the nano hardnesses of PA, AA and LA treated enamel samples (group II). Within each group the nano hardness was not statistically significantly different (p>0.05). The SEM micrographs showed different etch prism morphologies depending on the acid used. In vitro, the acids investigated led to different erosion effects on human dental enamel, despite their equivalent sensorial acidic taste. This has not been reported previously. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Laser ultrasonic evaluation of human dental enamel during remineralization treatment

    PubMed Central

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun; Swain, Michael; Law, Susan; Xue, Jing

    2011-01-01

    In this work a non-destructive laser ultrasonic technique is used to quantitatively evaluate the progressive change in the elastic response of human dental enamel during a remineralization treatment. The condition of the enamel was measured during two weeks treatment using laser generated and detected surface acoustic waves in sound and demineralized enamel. Analysis of the acoustic velocity dispersion confirms the efficacy, as well as illuminating the progress, of the treatment. PMID:21339879

  11. Dental enamel defect diagnosis through different technology-based devices.

    PubMed

    Kobayashi, Tatiana Yuriko; Vitor, Luciana Lourenço Ribeiro; Carrara, Cleide Felício Carvalho; Silva, Thiago Cruvinel; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira; Oliveira, Thais Marchini

    2018-06-01

    Dental enamel defects (DEDs) are faulty or deficient enamel formations of primary and permanent teeth. Changes during tooth development result in hypoplasia (a quantitative defect) and/or hypomineralisation (a qualitative defect). To compare technology-based diagnostic methods for detecting DEDs. Two-hundred and nine dental surfaces of anterior permanent teeth were selected in patients, 6-11 years of age, with cleft lip with/without cleft palate. First, a conventional clinical examination was conducted according to the modified Developmental Defects of Enamel Index (DDE Index). Dental surfaces were evaluated using an operating microscope and a fluorescence-based device. Interexaminer reproducibility was determined using the kappa test. To compare groups, McNemar's test was used. Cramer's V test was used for comparing the distribution of index codes obtained after classification of all dental surfaces. Cramer's V test revealed statistically significant differences (P < .0001) in the distribution of index codes obtained using the different methods; the coefficients were 0.365 for conventional clinical examination versus fluorescence, 0.961 for conventional clinical examination versus operating microscope and 0.358 for operating microscope versus fluorescence. The sensitivity of the operating microscope and fluorescence method was statistically significant (P = .008 and P < .0001, respectively). Otherwise, the results did not show statistically significant differences in accuracy and specificity for either the operating microscope or the fluorescence methods. This study suggests that the operating microscope performed better than the fluorescence-based device and could be an auxiliary method for the detection of DEDs. © 2017 FDI World Dental Federation.

  12. Optically Stimulated Luminescence (OSL) of dental enamel for retrospective assessment of radiation exposure

    PubMed Central

    Yukihara, E.G.; Mittani, J.; McKeever, S.W.S.; Simon, S.L.

    2009-01-01

    This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed. PMID:19623269

  13. Composition of enamel pellicle from dental erosion patients.

    PubMed

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p < 0.05). In particular, statherin, a calcium-binding protein, was 35% less abundant (p < 0.05). Calcium concentration within the acquired pellicle was also reduced by 50% in erosion patients (p < 0.001). In contrast, the natural pellicle on the incisor had similar amounts of total protein in erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  14. Recovery of Crystallographic Texture in Remineralized Dental Enamel

    PubMed Central

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain

  15. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE.

    PubMed

    Lacruz, Rodrigo S; Habelitz, Stefan; Wright, J Timothy; Paine, Michael L

    2017-07-01

    Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function. Copyright © 2017 the American Physiological Society.

  16. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth.

    PubMed

    De Menezes Oliveira, Maria Angélica Hueb; Torres, Carolina Paes; Gomes-Silva, Jaciara Miranda; Chinelatti, Michelle Alexandra; De Menezes, Fernando Carlos Hueb; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina

    2010-05-01

    This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth's dental enamel. Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Energy dispersive X-ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal-Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel-dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. (c) 2009 Wiley-Liss, Inc.

  17. Size dependent elastic modulus and mechanical resilience of dental enamel.

    PubMed

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Association between developmental defects of enamel and dental caries: A systematic review and meta-analysis.

    PubMed

    Vargas-Ferreira, F; Salas, M M S; Nascimento, G G; Tarquinio, S B C; Faggion, C M; Peres, M A; Thomson, W M; Demarco, F F

    2015-06-01

    Dental caries is the main problem oral health and it is not well established in the literature if the enamel defects are a risk factor for its development. Studies have reported a potential association between developmental defects enamel (DDE) and dental caries occurrence. We investigated the association between DDE and caries in permanent dentition of children and teenagers. A systematic review was carried out using four databases (Pubmed, Web of Science, Embase, and Science Direct), which were searched from their earliest records until December 31, 2014. Population-based studies assessing differences in dental caries experience according to the presence of enamel defects (and their types) were included. PRISMA guidelines for reporting systematic reviews were followed. Meta-analysis was performed to assess the pooled effect, and meta-regression was carried out to identify heterogeneity sources. From the 2558 initially identified papers, nine studies fulfilled all inclusion criteria after checking the titles, abstracts, references, and complete reading. Seven of them were included in the meta-analysis with random model. A positive association between enamel defects and dental caries was identified; meta-analysis showed that individuals with DDE had higher pooled odds of having dental caries experience [OR 2.21 (95% CI 1.3; 3.54)]. Meta-regression analysis demonstrated that adjustment for sociodemographic factors, countries' socioeconomic status, and bias (quality of studies) explained the high heterogeneity observed. A higher chance of dental caries should be expected among individuals with enamel defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sea otter dental enamel is highly resistant to chipping due to its microstructure

    PubMed Central

    Ziscovici, Charles; Lucas, Peter W.; Constantino, Paul J.; Bromage, Timothy G.; van Casteren, Adam

    2014-01-01

    Dental enamel is prone to damage by chipping with large hard objects at forces that depend on chip size and enamel toughness. Experiments on modern human teeth have suggested that some ante-mortem chips on fossil hominin enamel were produced by bite forces near physiological maxima. Here, we show that equivalent chips in sea otter enamel require even higher forces than human enamel. Increased fracture resistance correlates with more intense enamel prism decussation, often seen also in some fossil hominins. It is possible therefore that enamel chips in such hominins may have formed at even greater forces than currently envisaged. PMID:25319817

  20. Functions of KLK4 and MMP-20 in dental enamel formation

    PubMed Central

    Lu, Yuhe; Papagerakis, Petros; Yamakoshi, Yasuo; Hu, Jan C-C.; Bartlett, John D.; Simmer, James P.

    2009-01-01

    Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory stage ameloblasts. Enamel protein cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. Kallikrein 4 is secreted by transition and maturation stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins. PMID:18627287

  1. Titanium dioxide in dental enamel as a trace element and its variation with bleaching

    PubMed Central

    Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey

    2018-01-01

    Background Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Material and Methods Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance (p≤0.05) and Bonferroni pairwise comparisons. Results Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule (p≤0,05). Conclusions All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words:Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide. PMID:29930771

  2. Titanium dioxide in dental enamel as a trace element and its variation with bleaching.

    PubMed

    Vargas-Koudriavtsev, Tatiana; Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey

    2018-06-01

    Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule ( p ≤0,05). All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide.

  3. Prenatal effects by exposing to amoxicillin on dental enamel in Wistar rats

    PubMed Central

    Gottberg, Beatriz; Berné, Jeanily; Quiñónez, Belkis

    2014-01-01

    Amoxicillin is an antibiotic widely prescribed; its most frequent side effects are gastrointestinal disorders and hypersensitivity reactions. Over the last 10 years studies have been published which suggest that amoxicillin may cause dental alterations similar to dental fluorosis. Never the less, the results are not conclusive, this is why it was planned the need to make controlled studies on test animals. Objectives: The purpose of this study was to determine the effect produced by amoxicillin prenatal administration on dental enamel in Wistar rats. Study Design: 12 pregnant adult rats were used distributed into five different groups: witness control (n=2) didn’t get any treatment; negative control (n=2) they were prescribed with saline solution; positive control (n=3) they were prescribed with tetracycline 130 mg/kg, and two groups (n=3 and n=2) treated with amoxicillin doses of 50 and 100 mg/kg respectively. The treatments were daily administered by mouth, from the 6th gestation day to the end of gestation. Twenty five days after they were born, the offspring were sacrificed with a sodium pentobarbital overdose, the mandible was dissected and the first lower molars were gotten. The samples were fixed in 10% formaldehyde solution and clinically and histologically observed to determine any enamel disorders. Results: hypomineralization was observed in every single sample of the tetracyclic and amoxicillin treated group 100 mg/kg, meanwhile only 50% from the group administered with 50 mg/kg amoxicillin showed this histological disorder. Conclusions: the side effect caused by amoxicillin on dental enamel was doses dependent. Key words:Amoxicillin, dental enamel, hypomineralization, Wistar rats. PMID:24121904

  4. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion.

    PubMed

    Soares, Luís Eduardo Silva; de Oliveira, Rodrigo; Nahórny, Sídnei; Santo, Ana Maria do Espírito; Martin, Airton Abrahão

    2012-10-01

    Energy-dispersive X-ray fluorescence was employed to test the hypothesis that beverage consumption or mouthwash utilization will change the chemical properties of dental materials and enamel mineral content. Bovine enamel samples (n = 45) each received two cavity preparations (n = 90), each pair filled with one of three dental materials (R: nanofilled composite resin; GIC: glass-ionomer cement; RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: saliva; E: erosion/Pepsi Twist®; or EM: erosion+mouthwash/Colgate Plax®). It was found that mineral loss in enamel was greater in GICE samples than in RE > RMGICE > RMGICEM > REM > GICEM. An increased percentage of Zr was found in REM indicating organic matrix degradation. Dental materials tested (R, GIC, and RMGIC) were not able to protect adjacent enamel from acid erosion by the soft drink tested. The use of mouthwash promoted protection of enamel after erosion by the soft drink. To avoid chemical dissolution by mouthwashes, protection by resin composites with surface sealants is recommended.

  5. Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction.

    PubMed

    Simmons, Lisa M; Montgomery, Janet; Beaumont, Julia; Davis, Graham R; Al-Jawad, Maisoon

    2013-11-01

    The complex biological, physicochemical process of human dental enamel formation begins in utero and for most teeth takes several years to complete. Lost enamel tissue cannot regenerate, therefore a better understanding of the spatial and temporal progression of mineralization of this tissue is needed in order to design improved in vivo mineral growth processes for regenerative dentistry and allow the possibility to grow a synthetic whole or partial tooth. Human dental enamel samples across a range of developmental stages available through archaeological collections have been used to explore the spatial and temporal progression of enamel biomineralization. Position sensitive synchrotron X-ray diffraction was used to quantify spatial and temporal variations in crystallite organization, lattice parameters and crystallite thickness at three different stages in enamel maturation. In addition X-ray microtomography was used to study mineral content distributions. An inverse correlation was found between the spatial variation in mineral content and the distribution of crystallite organization and thickness as a function of time during enamel maturation. Combined X-ray microtomography and synchrotron X-ray diffraction results show that as enamel matures the mineral content increases and the mineral density distribution becomes more homogeneous. Starting concurrently but proceeding at a slower rate, the enamel crystallites become more oriented and larger; and the crystallite organization becomes spatially more complex and heterogeneous. During the mineralization of human dental enamel, the rate of mineral formation and mineral organization are not identical. Whilst the processes start simultaneously, full mineral content is achieved earlier, and crystallite organization is slower and continues for longer. These findings provide detailed insights into mineral development in human dental enamel which can inform synthetic biomimetic approaches for the benefit of clinical

  6. Continuum damage modeling and simulation of hierarchical dental enamel

    NASA Astrophysics Data System (ADS)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  7. Mechanism of Action of TiF4 on Dental Enamel Surface: SEM/EDX, KOH-Soluble F, and X-Ray Diffraction Analysis.

    PubMed

    Comar, Lívia P; Souza, Beatriz M; Al-Ahj, Luana P; Martins, Jessica; Grizzo, Larissa T; Piasentim, Isabelle S; Rios, Daniela; Buzalaf, Marília Afonso Rabelo; Magalhães, Ana Carolina

    2017-10-12

    This in vitro study aimed to evaluate the action of TiF4 on sound and carious bovine and human enamel. Sound (S) and pre-demineralised (DE) bovine and human (primary and permanent) enamel samples were treated with TiF4 (pH 1.0) or NaF varnishes (pH 5.0), containing 0.95, 1.95, or 2.45% F for 12 h. The enamel surfaces were analysed using SEM-EDX (scanning electron microscopy/energy-dispersive X-ray spectroscopy) (n = 10, 5 S and 5 DE) and KOH-soluble fluoride was quantified (n = 20, 10 S and 10 DE). Hydroxyapatite powder produced by precipitation method was treated with the corresponding fluoride solutions for 1 min (n = 2). The formed compounds were detected using X-ray diffraction (XRD). All TiF4 varnishes produced a coating layer rich in Ti and F on all types of enamel surface, with micro-cracks in its extension. TiF4 (1.95 and 2.45% F) provided higher fluoride deposition than NaF, especially for bovine enamel (p < 0.0001). It also induced a higher fluoride deposition on DE samples compared to S samples (p < 0.0001), except for primary enamel. The Ti content was higher for bovine and human primary enamel than human permanent enamel, with some differences between S and DE. The XRD analysis showed that TiF4 induced the formation of new compounds such as CaF2, TiO2, and Ti(HPO4)2·H2O. In conclusion, TiF4 (>0.95% F) interacts better, when compared to NaF, with bovine and human primary enamel than with human permanent enamel. TiF4 provoked higher F deposition compared to NaF. Carious enamel showed higher F uptake than sound enamel by TiF4 application, while Ti uptake was dependent on the enamel condition and origin. © 2017 S. Karger AG, Basel.

  8. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  9. Sea otter dental enamel is highly resistant to chipping due to its microstructure.

    PubMed

    Ziscovici, Charles; Lucas, Peter W; Constantino, Paul J; Bromage, Timothy G; van Casteren, Adam

    2014-10-01

    Dental enamel is prone to damage by chipping with large hard objects at forces that depend on chip size and enamel toughness. Experiments on modern human teeth have suggested that some ante-mortem chips on fossil hominin enamel were produced by bite forces near physiological maxima. Here, we show that equivalent chips in sea otter enamel require even higher forces than human enamel. Increased fracture resistance correlates with more intense enamel prism decussation, often seen also in some fossil hominins. It is possible therefore that enamel chips in such hominins may have formed at even greater forces than currently envisaged. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Near-UV laser treatment of extrinsic dental enamel stains.

    PubMed

    Schoenly, J E; Seka, W; Featherstone, J D B; Rechmann, P

    2012-04-01

    The selective ablation of extrinsic dental enamel stains using a 400-nm laser is evaluated at several fluences for completely removing stains with minimal damage to the underlying enamel. A frequency-doubled Ti:sapphire laser (400-nm wavelength, 60-nanosecond pulse duration, 10-Hz repetition rate) was used to treat 10 extracted human teeth with extrinsic enamel staining. Each tooth was irradiated perpendicular to the surface in a back-and-forth motion over a 1-mm length using an ∼300-µm-diam 10th-order super-Gaussian beam with fluences ranging from 0.8 to 6.4 J/cm(2) . Laser triangulation determined stain depth and volume removed by measuring 3D surface images before and after irradiation. Scanning electron microscopy evaluated the surface roughness of enamel following stain removal. Fluorescence spectroscopy measured spectra of unbleached and photobleached stains in the spectral range of 600-800 nm. Extrinsic enamel stains are removed with laser fluences between 0.8 and 6.4 J/cm(2) . Stains removed on sound enamel leave behind a smooth enamel surface. Stain removal in areas with signs of earlier cariogenic acid attacks resulted in isolated and randomly located laser-induced, 50-µm-diam enamel pits. These pits contain 0.5-µm diam, smooth craters indicative of heat transfer from the stain to the enamel and subsequent melting and water droplet ejection. Ablation stalling of enamel stains is typically observed at low fluences (<3 J/cm(2) ) and is accompanied by a drastic reduction in porphyrin fluorescence from the Soret band. Laser ablation of extrinsic enamel stains at 400 nm is observed to be most efficient above 3 J/cm(2) with minimal damage to the underlying enamel. Unsound underlying enamel is also observed to be selectively removed after irradiation. Copyright © 2012 Wiley Periodicals, Inc.

  11. The erosive effect of herbal tea on dental enamel.

    PubMed

    Brunton, P A; Hussain, A

    2001-11-01

    The aim of this study was to determine whether conventional black tea and a herbal tea were capable of eroding dental enamel. A further aim was to investigate whether herbal tea of the type tested eroded dental hard tissues to a greater or lesser extent than conventional black tea. Three groups of 21 teeth were exposed to a conventional black tea Typhoo (Group A), a herbal tea Twinings Blackcurrant, Ginsing and Vanilla (Group B) and water, which acted as a control (Group C). Sequential profilometric tracings of the specimens were taken, superimposed and the degree of enamel loss calculated as the area of disparity between the tracings before and after exposure. Conventional black tea and herbal tea, of the type tested, both resulted in tooth surface loss. Tooth surface loss, which resulted from exposure to herbal tea (mean 0.05mm(2), s.d. 0.02), however, was significantly greater (P=0.00) than that which resulted from exposure to conventional black tea (mean 0.01mm(2), s.d. 0.00) and water (mean 0.00mm(2), s.d. 0.00). It was concluded that herbal tea and conventional black tea of the type tested result in erosion of dental enamel. The erosive effect of the herbal tea of the type tested was five times more severe than that of the conventional black tea tested. The cumulative effects of regular consumption of herbal tea of the type tested are likely, therefore, to be of clinical significance.

  12. Influence of tooth bleaching on dental enamel microhardness: a systematic review and meta-analysis.

    PubMed

    Zanolla, J; Marques, Abc; da Costa, D C; de Souza, A S; Coutinho, M

    2017-09-01

    Several studies have investigated the effect of bleaching on dental tissues. The evaluation of the effect of home bleaching with 10% carbamide peroxide is important for assessing alterations in enamel microhardness that may affect dental health in terms of resistance to masticatory forces. This meta-analysis was performed in order to determine scientific evidence regarding the effects of home vital bleaching with 10% carbamide peroxide gel on the microhardness of human dental enamel. A systematic electronic literature search was conducted in the PubMed and Web of Science databases using search terms. Two independent researchers evaluated the information and methodological quality of the studies. Inclusion and exclusion criteria were established for article selection; further, only studies published in English were selected. Thirteen studies that met all of the inclusion and exclusion criteria were selected and underwent statistical analysis. The results of this meta-analysis showed no significant changes in enamel microhardness when using the 10% carbamide peroxide bleaching gel over periods of 7, 14 and 21 days. © 2016 Australian Dental Association.

  13. A comparative study on component volumes from outer to inner dental enamel in relation to enamel tufts.

    PubMed

    Setally Azevedo Macena, Marcus; de Alencar e Silva Leite, Maria Luísa; de Lima Gouveia, Cíntia; de Lima, Tamires Alcoforado Sena; Athayde, Priscilla Alves Aguiar; de Sousa, Frederico Barbosa

    2014-06-01

    Dental enamel presents marked mechanical properties gradients from outer to inner enamel, a region lacking component volumes profiles. Tufts, structures of inner enamel, have been shown to play a role in enamel resilience. We aimed at comparing component volumes from inner to outer enamel in relation to enamel tufts. Transversal ground sections from the cervical half of unerupted human third molars (n=10) were prepared and histological points were selected along transversal lines (extending from innermost to outer enamel) traced across tufts and adjacent control areas without tufts. Component volumes were measured at each histological point. Component volumes ranges were: 70.6-98.5% (mineral), 0.02-20.78% (organic), 3.8-9.8% (total water), 3-9% (firmly bound water), and 0.02-3.3% (loosely bound water). Inner enamel presented the lowest mineral volumes and the highest non-mineral volumes. Mineral, water and organic contents differed as a function of the distance from innermost enamel but not between the tuft and control lines. Tufts presented opaqueness in polarizing microscopy (feature of fracture lines). Organic volume gradient correlated with a relatively flat profile of loosely bound water. Inner, but not outer enamel, rehydrated after air-dried enamel was heated to 50°C and re-exposed to room conditions, as predicted by the organic/water gradient profiles. Component volumes vary markedly from outer to inner enamel, but not between areas with or without tufts (that behave like fracture lines under polarizing microscopy). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel.

    PubMed

    La Fontaine, Alexandre; Zavgorodniy, Alexander; Liu, Howgwei; Zheng, Rongkun; Swain, Michael; Cairney, Julie

    2016-09-01

    Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg(2+) ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth.

  15. A New Sugarcane Cystatin Strongly Binds to Dental Enamel and Reduces Erosion.

    PubMed

    Santiago, A C; Khan, Z N; Miguel, M C; Gironda, C C; Soares-Costa, A; Pelá, V T; Leite, A L; Edwardson, J M; Buzalaf, M A R; Henrique-Silva, F

    2017-08-01

    Cystatin B was recently identified as an acid-resistant protein in acquired enamel pellicle; it could therefore be included in oral products to protect against caries and erosion. However, human recombinant cystatin is very expensive, and alternatives to its use are necessary. Phytocystatins are reversible inhibitors of cysteine peptidases that are found naturally in plants. In plants, they have several biological and physiological functions, such as the regulation of endogenous processes, defense against pathogens, and response to abiotic stress. Previous studies performed by our research group have reported high inhibitory activity and potential agricultural and medical applications of several sugarcane cystatins, including CaneCPI-1, CaneCPI-2, CaneCPI-3, and CaneCPI-4. In the present study, we report the characterization of a novel sugarcane cystatin, named CaneCPI-5. This cystatin was efficiently expressed in Escherichia coli, and inhibitory assays demonstrated that it was a potent inhibitor of human cathepsins B, K, and L ( K i = 6.87, 0.49, and 0.34 nM, respectively). The ability of CaneCPI-5 to bind to dental enamel was evaluated using atomic force microscopy. Its capacity to protect against initial enamel erosion was also tested in vitro via changes in surface hardness. CaneCPI-5 showed a very large force of interaction with enamel (e.g., compared with mucin and casein) and significantly reduced initial enamel erosion. These results suggest that the inclusion of CaneCPIs in dental products might confer protection against enamel erosion.

  16. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    PubMed

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  17. Targeted Overexpression of Amelotin Disrupts the Microstructure of Dental Enamel

    PubMed Central

    Lacruz, Rodrigo S.; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L.; White, Shane N.; Paine, Michael L.; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms. PMID:22539960

  18. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    NASA Astrophysics Data System (ADS)

    Vila Verde, A.; Ramos, M. M. D.; Stoneham, A. M.

    2007-05-01

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO2 at 10.6 µm and Er:YAG at 2.94 µm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ap10 µs are used, the CO2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 µs duration can induce high stress transients which may cause unwanted cracking.

  19. Dental Caries and Enamel Defects in Very Low Birth Weight Adolescents

    PubMed Central

    Nelson, S.; Albert, J.M.; Lombardi, G.; Wishnek, S.; Asaad, G.; Kirchner, H.L.; Singer, L.T.

    2011-01-01

    Objectives The purpose of this study was to examine developmental enamel defects and dental caries in very low birth weight adolescents with high risk (HR-VLBW) and low risk (LR-VLBW) compared to full-term (term) adolescents. Methods The sample consisted of 224 subjects (80 HR-VLBW, 59 LR-VLBW, 85 term adolescents) recruited from an ongoing longitudinal study. Sociodemographic and medical information was available from birth. Dental examination of the adolescent at the 14-year visit included: enamel defects (opacity and hypoplasia); decayed, missing, filled teeth of incisors and molars (DMFT-IM) and of overall permanent teeth (DMFT); Simplified Oral Hygiene Index for debris/calculus on teeth, and sealant presence. A caregiver questionnaire completed simultaneously assessed dental behavior, access, insurance status and prevention factors. Hierarchical analysis utilized the zero-inflated negative binomial model and zero-inflated Poisson model. Results The zero-inflated negative binomial model controlling for sociodemographic variables indicated that the LR-VLBW group had an estimated 75% increase (p < 0.05) in number of demarcated opacities in the incisors and first molar teeth compared to the term group. Hierarchical modeling indicated that demarcated opacities were a significant predictor of DMFT-IM after control for relevant covariates. The term adolescents had significantly increased DMFT-IM and DMFT scores compared to the LR-VLBW adolescents. Conclusion LR-VLBW was a significant risk factor for increased enamel defects in the permanent incisors and first molars. Term children had increased caries compared to the LR-VLBW group. The effect of birth group and enamel defects on caries has to be investigated longitudinally from birth. PMID:20975268

  20. Effect of moisture on dental enamel in the interaction of two orthodontic bonding systems.

    PubMed

    Bertoz, André Pinheiro de Magalhães; de Oliveira, Derly Tescaro Narcizo; Gimenez, Carla Maria Melleiro; Briso, André Luiz Fraga; Bertoz, Francisco Antonio; Santos, Eduardo César Almada

    2013-01-01

    The purpose of this study was to assess by means of scanning electron microscopy (SEM) the remaining adhesive interface after debonding orthodontic attachments bonded to bovine teeth with the use of hydrophilic and hydrophobic primers under different dental substrate moisture conditions. Twenty mandibular incisors were divided into four groups (n = 5). In Group I, bracket bonding was performed with Transbond MIP hydrophilic primer and Transbond XT adhesive paste applied to moist substrate, and in Group II a bonding system comprising Transbond XT hydrophobic primer and adhesive paste was applied to moist substrate. Brackets were bonded to the specimens in Groups III and IV using the same adhesive systems, but on dry dental enamel. The images were qualitatively assessed by SEM. The absence of moisture in etched enamel enabled better interaction between bonding materials and the adamantine structure. The hydrophobic primer achieved the worst micromechanical interlocking results when applied to a moist dental structure, whereas the hydrophilic system proved versatile, yielding acceptable results in moist conditions and excellent interaction in the absence of contamination. The authors assert that the best condition for the application of primers to dental enamel occurs in the absence of moisture.

  1. [The effects of topical fluoridation of enamel on the growth of cariogenic bacteria contained in the dental plaque].

    PubMed

    Płuciennik-Stronias, Małgorzata; Zarzycka, Beata; Bołtacz-Rzepkowska, Elzbieta

    2013-01-01

    Dental caries is a bacterial disease. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. Fluoride can inhibit metabolism and bacterial growth in the dental plaque. The aim of the study was to evaluate the effect of topical fluoridation of the enamel on the growth of Lactobacillus spp. in the dental plaque. The study was carried out in 15 patients with good oral hygiene, in whom three-day dental plaque from the enamel was examined. Next, fluoride was rubbed on the same surface and the examination of three-day dental plaque was repeated. No statistically significant differences (p = 0.475) in the amounts of Lactobacillus spp. in the plaque collected prior to and after the topical fluoridation were revealed. Fluoride rubbed in the enamel, did not affect the amount of Lactobacillus spp. in the dental plaque growing on this material.

  2. Influence of bleaching agents on surface roughness of sound or eroded dental enamel specimens.

    PubMed

    Azrak, Birgül; Callaway, Angelika; Kurth, Petra; Willershausen, Brita

    2010-12-01

    The aim of the present in vitro study was to assess the effect of bleaching agents on eroded and sound enamel specimens. Enamel specimens prepared from human permanent anterior teeth were incubated with different bleaching agents containing active ingredients as 7.5 or 13.5% hydrogen peroxide or 35% carbamide peroxide, ranging in pH from 4.9 to 10.8. The effect of the tooth whitening agents on surface roughness was tested for sound enamel surfaces as well as for eroded enamel specimens. To provoke erosive damage, the enamel specimens were incubated for 10 hours with apple juice (pH = 3.4). Afterwards, pretreated and untreated dental slices were incubated with one of the bleaching agents for 10 hours. The surface roughness (R(a)) of all enamel specimens (N = 80) was measured using an optical profilometric device. A descriptive statistical analysis of the R(a) values was performed. The study demonstrated that exposure to an acidic bleaching agent (pH = 4.9) resulted in a higher surface roughness (p = 0.043) than treatment with a high peroxide concentration (pH = 6.15). If the enamel surface was previously exposed to erosive beverages, subsequent bleaching may enhance damage to the dental hard tissue. Bleaching agents with a high concentration of peroxide or an acidic pH can influence the surface roughness of sound or eroded enamel. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  3. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel

    PubMed Central

    La Fontaine, Alexandre; Zavgorodniy, Alexander; Liu, Howgwei; Zheng, Rongkun; Swain, Michael; Cairney, Julie

    2016-01-01

    Human dental enamel, the hardest tissue in the body, plays a vital role in protecting teeth from wear as a result of daily grinding and chewing as well as from chemical attack. It is well established that the mechanical strength and fatigue resistance of dental enamel are derived from its hierarchical structure, which consists of periodically arranged bundles of hydroxyapatite (HAP) nanowires. However, we do not yet have a full understanding of the in vivo HAP crystallization process that leads to this structure. Mg2+ ions, which are present in many biological systems, regulate HAP crystallization by stabilizing its precursor, amorphous calcium phosphate (ACP), but their atomic-scale distribution within HAP is unknown. We use atom probe tomography to provide the first direct observations of an intergranular Mg-rich ACP phase between the HAP nanowires in mature human dental enamel. We also observe Mg-rich elongated precipitates and pockets of organic material among the HAP nanowires. These observations support the postclassical theory of amelogenesis (that is, enamel formation) and suggest that decay occurs via dissolution of the intergranular phase. This information is also useful for the development of more accurate models to describe the mechanical behavior of teeth. PMID:27617291

  4. Beyond the Map: Enamel Distribution Characterized from 3D Dental Topography

    PubMed Central

    Thiery, Ghislain; Lazzari, Vincent; Ramdarshan, Anusha; Guy, Franck

    2017-01-01

    Enamel thickness is highly susceptible to natural selection because thick enamel may prevent tooth failure. Consequently, it has been suggested that primates consuming stress-limited food on a regular basis would have thick-enameled molars in comparison to primates consuming soft food. Furthermore, the spatial distribution of enamel over a single tooth crown is not homogeneous, and thick enamel is expected to be more unevenly distributed in durophagous primates. Still, a proper methodology to quantitatively characterize enamel 3D distribution and test this hypothesis is yet to be developed. Unworn to slightly worn upper second molars belonging to 32 species of anthropoid primates and corresponding to a wide range of diets were digitized using high resolution microcomputed tomography. In addition, their durophagous ability was scored from existing literature. 3D average and relative enamel thickness were computed based on the volumetric reconstruction of the enamel cap. Geometric estimates of their average and relative enamel-dentine distance were also computed using 3D dental topography. Both methods gave different estimations of average and relative enamel thickness. This study also introduces pachymetric profiles, a method inspired from traditional topography to graphically characterize thick enamel distribution. Pachymetric profiles and topographic maps of enamel-dentine distance are combined to assess the evenness of thick enamel distribution. Both pachymetric profiles and topographic maps indicate that thick enamel is not significantly more unevenly distributed in durophagous species, except in Cercopithecidae. In this family, durophagous species such as mangabeys are characterized by an uneven thick enamel and high pachymetric profile slopes at the average enamel thickness, whereas non-durophagous species such as colobine monkeys are not. These results indicate that the distribution of thick enamel follows different patterns across anthropoids. Primates might

  5. Laser investigation of the non-uniformity of fluorescent species in dental enamel

    NASA Astrophysics Data System (ADS)

    Tran, Stephanie U.; Ridge, Jeremy S.; Nelson, Leonard Y.; Seibel, Eric J.

    In the present study, artificial type I and type II erosions were created on dental specimen using acetic acid and EDTA respectively. Specimens were prepared by etching extracted teeth samples in acid to varying degrees, after which the absolute fluorescence intensity ratio of the etched enamel relative to sound enamel was recorded for each specimen using 405 and 532 nm laser excitation. Results showed differences in the fluorescence ratio of etched to sound enamel for type I and II erosions. These findings suggest a non-uniform distribution of fluorescent species in the interprismatic region as compared to the prismatic region.

  6. To What Extent is Primate Second Molar Enamel Occlusal Morphology Shaped by the Enamel-Dentine Junction?

    PubMed Central

    Gilissen, Emmanuel; Thiery, Ghislain

    2015-01-01

    The form of two hard tissues of the mammalian tooth, dentine and enamel, is the result of a combination of the phylogenetic inheritance of dental traits and the adaptive selection of these traits during evolution. Recent decades have been significant in unveiling developmental processes controlling tooth morphogenesis, dental variation and the origination of dental novelties. The enamel-dentine junction constitutes a precursor for the morphology of the outer enamel surface through growth of the enamel cap which may go along with the addition of original features. The relative contribution of these two tooth components to morphological variation and their respective response to natural selection is a major issue in paleoanthropology. This study will determine how much enamel morphology relies on the form of the enamel-dentine junction. The outer occlusal enamel surface and the enamel-dentine junction surface of 76 primate second upper molars are represented by polygonal meshes and investigated using tridimensional topometrical analysis. Quantitative criteria (elevation, inclination, orientation, curvature and occlusal patch count) are introduced to show that the enamel-dentine junction significantly constrains the topographical properties of the outer enamel surface. Our results show a significant correlation for elevation, orientation, inclination, curvature and occlusal complexity between the outer enamel surface and the enamel dentine junction for all studied primate taxa with the exception of four modern humans for curvature (p<0.05). Moreover, we show that, for all selected topometrical parameters apart from occlusal patch count, the recorded correlations significantly decrease along with enamel thickening in our sample. While preserving tooth integrity by providing resistance to wear and fractures, the variation of enamel thickness may modify the curvature present at the occlusal enamel surface in relation to enamel-dentine junction, potentially modifying

  7. Enamel formation and amelogenesis imperfecta.

    PubMed

    Hu, Jan C-C; Chun, Yong-Hee P; Al Hazzazzi, Turki; Simmer, James P

    2007-01-01

    Dental enamel is the epithelial-derived hard tissue covering the crowns of teeth. It is the most highly mineralized and hardest tissue in the body. Dental enamel is acellular and has no physiological means of repair outside of the protective and remineralization potential provided by saliva. Enamel is comprised of highly organized hydroxyapatite crystals that form in a defined extracellular space, the contents of which are supplied and regulated by ameloblasts. The entire process is under genetic instruction. The genetic control of amelogenesis is poorly understood, but requires the activities of multiple components that are uniquely important for dental enamel formation. Amelogenesis imperfecta (AI) is a collective designation for the variety of inherited conditions displaying isolated enamel malformations, but the designation is also used to indicate the presence of an enamel phenotype in syndromes. Recently, genetic studies have demonstrated the importance of genes encoding enamel matrix proteins in the etiology of isolated AI. Here we review the essential elements of dental enamel formation and the results of genetic analyses that have identified disease-causing mutations in genes encoding enamel matrix proteins. In addition, we provide a fresh perspective on the roles matrix proteins play in catalyzing the biomineralization of dental enamel. Copyright 2007 S. Karger AG, Basel.

  8. Dental enamel irradiated with infrared diode laser and photo-absorbing cream: part 2--EDX study.

    PubMed

    de Sant'Anna, Giselle Rodrigues; dos Santos, Edson Aparecido Pereira; Soares, Luís Eduardo Silva; do Espírito Santo, Ana Maria; Martin, Airton Abrahão; Duarte, Danilo Antônio; Pacheco-Soares, Cristina; Brugnera, Aldo

    2009-10-01

    The effects of laser-induced compositional changes on the enamel were investigated by energy-dispersive X-ray fluorescence spectrometry (micro-EDX). After cariogenic challenge, we administered treatment of low-level infrared diode laser and a photo-absorbing cream (used to intensify the superficial light absorption). Dental caries is considered the most prevalent oral disease. A simple and noninvasive caries preventive regimen is treating tooth enamel with a laser, either alone or in combination with fluoride, which reduces enamel solubility and dissolution rates. High power lasers are still not widely used in private practice. Low-power near-infrared lasers may be an alternative approach. Energy-dispersive micro-EDX is a versatile and nondestructive spectroscopic technique that allows for a qualitative and quantitative elemental analysis of inorganic enamel components, such as calcium and phosphorus. Twenty-four extracted or exfoliated caries-free deciduous molars were divided into six groups: 1) control group (CTR-no treatment); 2) infrared laser treatment (L) (lambda = 810 nm, 100 mW/cm(2), 90 sec, 4.47 J/cm(2), 9 J); 3) infrared laser irradiation and photo-absorbing agent (CL); 4) photo-absorbing agent alone (C); 5) infrared laser irradiation and fluoridated photo-absorbing agent (FCL); and 6) fluoridated photo-absorbing agent alone (FC). Samples were analyzed using micro-EDX after two sets of treatments and pH cycling cariogenic challenges. The CL group showed statistically significant increases in calcium and phosphorus (wt%) compared with the CTR group. The Ca/P ratio was similar in the FCL and CTR groups. There was a significant laser-induced reduction compared with the CTR group, and there was a possible modification of the organic balance content in enamel treated with laser and cream. micro-EDX may be able to detect compositional changes in mineral phases of lased enamel under cariogenic challenge. Our results suggest that with a combined laser and photo

  9. Comparative study of dental enamel loss after debonding braces by analytical scanning electron microscopy (SEM).

    PubMed

    Rodríguez-Chávez, Jacqueline Adelina; Arenas-Alatorre, Jesús; Belio-Reyes, Irma Araceli

    2017-07-01

    Clinical procedures when shear forces are applied to brackets suggest adhesion forces between 2.8 and 10.0 MPa as appropriate. In this study dental enamel was evaluated by scanning electron microscopy (SEM) before and after removing the brackets. Thirty bicuspids (previous prophylaxis) with metallic brackets (Roth Inovation 0.022 GAC), Transbond Plus SEP 3M Unitek adhesive and Transbond XT 3M resin were used. The samples were preserved to 37°C during 24 hr and submited to tangential forces with the Instron Universal machine 1.0 mm/min speed load strength resistance debonding. Also the Adhesive Remanent Index (ARI) test was made, evaluating the bracket base and the bicuspid surface. All the bracket SEM images were processed with AutoCAD to determine the enamel detached area. The average value was 6.86 MPa (SD ± 3.2 MPa). ARI value 1= 63.3%, value 2= 20%, value 3= 13.3% and 33% presented value 0. All those samples with dental enamel loss, presented different situations as fractures, ledges, horizontal, and vertical loss in some cases, and some scratch lines. There is no association between the debonding resistance and enamel presence. Less than half of the remanent adhesive on the dental enamel was present in most of the samples when the ARI test was applied. When the resin area increases, the debonding resistance also increases, and when the enamel loss increases, the resin free metallic area of the bracket base decreases in the debonding. © 2017 Wiley Periodicals, Inc.

  10. Dental enamel defects in adult coeliac disease: prevalence and correlation with symptoms and age at diagnosis.

    PubMed

    Trotta, Lucia; Biagi, Federico; Bianchi, Paola I; Marchese, Alessandra; Vattiato, Claudia; Balduzzi, Davide; Collesano, Vittorio; Corazza, Gino R

    2013-12-01

    Coeliac disease is a condition characterized by a wide spectrum of clinical manifestations. Any organ can be affected and, among others, dental enamel defects have been described. Our aims were to study the prevalence of dental enamel defects in adults with coeliac disease and to investigate a correlation between the grade of teeth lesion and clinical parameters present at the time of diagnosis of coeliac disease. A dental examination was performed in 54 coeliac disease patients (41 F, mean age 37 ± 13 years, mean age at diagnosis 31 ± 14 years). Symptoms leading to diagnosis were diarrhoea/weight loss (32 pts.), anaemia (19 pts.), familiarity (3 pts.); none of the patients was diagnosed because of enamel defects. At the time of evaluation, they were all on a gluten-free diet. Enamel defects were classified from grade 0 to 4 according to its severity. Enamel defects were observed in 46/54 patients (85.2%): grade 1 defects were seen in 18 patients (33.3%) grade 2 in 16 (29.6%), grade 3 in 8 (14.8%), and grade 4 in 4 (7.4%). We also observed that grades 3 and 4 were more frequent in patients diagnosed with classical rather than non-classical coeliac disease (10/32 vs. 2/20). However, this was not statistically significant. This study confirms that enamel defects are common in adult coeliac disease. Observation of enamel defects is an opportunity to diagnose coeliac disease. Copyright © 2013 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  11. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    PubMed

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  12. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    PubMed

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Prenatal effects by exposing to amoxicillin on dental enamel in Wistar rats.

    PubMed

    Gottberg, Beatriz; Berné, Jeanily; Quiñónez, Belkis; Solórzano, Eduvigis

    2014-01-01

    Amoxicillin is an antibiotic widely prescribed; its most frequent side effects are gastrointestinal disorders and hypersensitivity reactions. Over the last 10 years studies have been published which suggest that amoxicillin may cause dental alterations similar to dental fluorosis. Never the less, the results are not conclusive, this is why it was planned the need to make controlled studies on test animals. The purpose of this study was to determine the effect produced by amoxicillin prenatal administration on dental enamel in Wistar rats. 12 pregnant adult rats were used distributed into five different groups: witness control (n=2) didn't get any treatment; negative control (n=2) they were prescribed with saline solution; positive control (n=3) they were prescribed with tetracycline 130 mg/kg, and two groups (n=3 and n=2) treated with amoxicillin doses of 50 and 100 mg/kg respectively. The treatments were daily administered by mouth, from the 6th gestation day to the end of gestation. Twenty five days after they were born, the offspring were sacrificed with a sodium pentobarbital overdose, the mandible was dissected and the first lower molars were gotten. The samples were fixed in 10% formaldehyde solution and clinically and histologically observed to determine any enamel disorders. hypomineralization was observed in every single sample of the tetracyclic and amoxicillin treated group 100 mg/kg, meanwhile only 50% from the group administered with 50 mg/kg amoxicillin showed this histological disorder. the side effect caused by amoxicillin on dental enamel was doses dependent.

  14. Dental enamel irradiated with infrared diode laser and photoabsorbing cream: Part 1 -- FT-Raman Study.

    PubMed

    de Sant'anna, Giselle Rodrigues; dos Santos, Edson Aparecido Pereira; Soares, Luís Eduardo Silva; do Espírito Santo, Ana Maria; Martin, Airton Abrahão; Duarte, Danilo Antônio; Pacheco-Soares, Cristina; Brugnera, Aldo

    2009-06-01

    The aim of this FT-Raman study was to investigate laser-induced compositional changes in enamel after therapy with a low-level infrared diode laser and a photoabsorbing cream, in order to intensify the superficial light absorption before and after cariogenic challenge. Dental caries remains the most prevalent disease during childhood and adolescence. Preventive modalities include the use of fluoride, reduction of dietary cariogenic refined carbohydrates, plaque removal and oral hygiene techniques, and antimicrobial prescriptions. A relatively simple and noninvasive caries preventive regimen is treating tooth enamel with laser irradiation, either alone or in combination with topical fluoride treatment, resulting in reduced enamel solubility and dissolution rates. Due to their high cost, high-powered lasers are still not widely employed in private practice in developing countries. Thus, low-power red and near-infrared lasers appear to be an appealing alternative. Twenty-four extracted or exfoliated caries-free deciduous molars were divided into six groups: control group (no treatment; n = 8); infrared laser treatment (L; n = 8) (810 nm at 100 mW/cm(2) for 90 sec); infrared diode laser irradiation (810 nm at 100 mW/cm(2) for 90 sec) and photoabsorbing cream (IVL; n = 8); photoabsorbing cream alone (IV; n = 8); infrared diode laser irradiation (810 nm at 100 mW/cm(2) for 90 sec) and fluorinated photoabsorbing agent (IVLF; n = 8); and fluorinated photoabsorbing agent alone (IVF; n = 8). Samples were analyzed using FT-Raman spectroscopy before and after pH cycling cariogenic challenge. There was a significant laser-induced reduction and possible modification of the organic matrix content in enamel treated with the low-level diode laser (the L, IVL, and IVFL groups). The FT-Raman technique may be suitable for detecting compositional and structural changes occurring in mineral phases and organic phases of lased enamel under cariogenic challenge.

  15. Dental stigmata and enamel thickness in a probable case of congenital syphilis from XVI century Croatia.

    PubMed

    Lauc, Tomislav; Fornai, Cinzia; Premužić, Zrinka; Vodanović, Marin; Weber, Gerhard W; Mašić, Boris; Rajić Šikanjić, Petra

    2015-10-01

    To analyse the dental remains of an individual with signs of congenital syphilis by using macroscopic observation, CBCT and micro-CT images, and the analysis of the enamel thickness. Anthropological analysis of human skeletal remains from the 16th century archaeological site Park Grič in Zagreb, Croatia discovered a female, 17-20 years old at the time of death, with dental signs supportive of congenital syphilis: mulberry molars and canine defects, as well as non-specific hypoplastic changes on incisors. The focus of the analysis was on three aspects: gross morphology, hypoplastic defects of the molars, canines and incisors, as well as enamel thickness of the upper first and second molars. The observed morphology of the first molars corresponds to the typical aspect of mulberry molars, while that of the canines is characterised by hypomineralisation. Hypoplastic grooves were observed on the incisal edges of all incisors. The enamel of the first molars is underdeveloped while in the second molars a thick-enamelled condition is observed. Our observations for the dental and skeletal evidence are supportive to a diagnosis of congenital syphilis for this specimen from XVI century Croatia. The use of CT imaging helped documenting the diagnostic features and quantifying the effect of the dental stigmata on first molars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness.

    PubMed

    Rocha Maia, Rodrigo; Oliveira, Dayane; D'Antonio, Tracy; Qian, Fang; Skiff, Frederick

    2018-05-01

    To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness ( n = 10). All increments were light-cured to 16 J/cm 2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test ( p = 0.05). Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues.

  17. Evaluation of enamel by scanning electron microscopy green LED associated to hydrogen peroxide 35% for dental bleaching

    NASA Astrophysics Data System (ADS)

    Monteiro, Juliana S. C.; de Oliveira, Susana C. P. S.; Zanin, Fátima A. A.; Santos, Gustavo M. P.; Sampaio, Fernando J. P.; Gomes Júnior, Rafael Araújo; Gesteira, Maria F. M.; Vannier-Santos, Marcos A.; Pinheiro, Antônio Luiz B.

    2014-02-01

    Dental bleaching is a frequently requested procedure in clinical dental practice. The literature is contradictory regarding the effects of bleaching agents on both morphology and demineralization of enamel after bleaching. The aim of this study was to analyze by SEM the effect of 35% neutral hydrogen peroxide cured by green LED. Buccal surfaces of 15 pre-molars were sectioned and marked with a central groove to allow experimental and control groups on the same specimen. For SEM, 75 electron micrographs were evaluated by tree observers at 43X, 220X and 1000X. Quantitative analysis for the determination of the surface elemental composition of the samples through X-ray microanalysis by SEM was also performed. The protocol tested neither showed significant changes in mineral composition of the samples nor to dental enamel structure when compared to controls. SEM analysis allowed inferring that there were marked morphological differences between the enamel samples highlighting the need for the use of the same tooth in comparative morphological studies. The tested protocol did not cause morphological damage the enamel surface when compared to their respective controls.

  18. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion.

    PubMed

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

  19. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion

    NASA Astrophysics Data System (ADS)

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

  20. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Wang, Jiecheng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H 3PO 4) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  1. Retrospective dosimetry using OSL of tooth enamel and dental repair materials irradiated under wet and dry conditions.

    PubMed

    Geber-Bergstrand, Therése; Bernhardsson, Christian; Mattsson, Sören; Rääf, Christopher L

    2012-11-01

    Following a radiological or nuclear emergency event, there is a need for quick and reliable dose estimations of potentially exposed people. In situations where dosimeters are not readily available, the dose estimations must be carried out using alternative methods. In the present study, the optically stimulated luminescence (OSL) properties of tooth enamel and different dental repair materials have been examined. Specimens of the materials were exposed to gamma and beta radiation in different types of liquid environments to mimic the actual irradiation situation in the mouth. Measurements were taken using a Risø TL/OSL reader, and irradiations were made using a (90)Sr/(90)Y source and a linear accelerator (6 MV photons). Results show that the OSL signal from tooth enamel decreases substantially when the enamel is kept in a wet environment. Thus, tooth enamel is not reliable for retrospective dose assessment without further studies of the phenomenon. Dental repair materials, on the other hand, do not exhibit the same effect when exposed to liquids. In addition, dose-response and fading measurements of the dental repair materials show promising results, making these materials highly interesting for retrospective dosimetry. The minimum detectable dose for the dental repair materials has been estimated to be 20-185 mGy.

  2. Distribution patterns of elements in dental enamel of G. blacki: a preliminary dietary investigation using SRXRF

    NASA Astrophysics Data System (ADS)

    Qu, Yating; Jin, Changzhu; Zhang, Yingqi; Hu, Yaowu; Shang, Xue; Wang, Changsui

    2013-04-01

    We measured the elemental mappings in dental enamel of Gigantopithecus blacki ( n=3) using synchrotron radiation X-ray fluorescence (SRXRF) to understand the dietary variation during the time of tooth eruption. In order to account for the effects of diagenesis on the variation of elements in these fossil teeth, we compared the Fe and Mn elemental distribution and levels in dental enamel of G. blacki with that of a single modern pig tooth and found no differences. The observation of the variations of Sr, Ca and RE (rare earth elements) distribution in the incremental lines reveals that the plant foods utilized by G. blacki from the early Pleistocene or the middle Pleistocene had varied during the formation of dental enamel, possibly caused by the change of living environment or food resources. The variations of elemental distribution in different incremental lines are very promising to understand the nutritional and physical stress of G. blacki during the tooth eruption and environmental adaptations.

  3. Reconstructing impairment of secretory ameloblast function in porcine teeth by analysis of morphological alterations in dental enamel

    PubMed Central

    Witzel, Carsten; Kierdorf, Uwe; Dobney, Keith; Ervynck, Anton; Vanpoucke, Sofie; Kierdorf, Horst

    2006-01-01

    We studied the relationship between the macroscopic appearance of hypoplastic defects in the dental enamel of wild boar and domestic pigs, and microstructural enamel changes, at both the light and the scanning electron microscopic levels. Deviations from normal enamel microstructure were used to reconstruct the functional and related morphological changes of the secretory ameloblasts caused by the action of stress factors during amelogenesis. The deduced reaction pattern of the secretory ameloblasts can be grouped in a sequence of increasingly severe impairments of cell function. The reactions ranged from a slight enhancement of the periodicity of enamel matrix secretion, over a temporary reduction in the amount of secreted enamel matrix, with reduction of the distal portion of the Tomes' process, to either a temporary or a definite cessation of matrix formation. The results demonstrate that analysis of structural changes in dental enamel allows a detailed reconstruction of the reaction of secretory ameloblasts to stress events, enabling an assessment of duration and intensity of these events. Analysing the deviations from normal enamel microstructure provides a deeper insight into the cellular changes underlying the formation of hypoplastic enamel defects than can be achieved by mere inspection of tooth surface characteristics alone. PMID:16822273

  4. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  5. Developmental defects of enamel and dental caries in the primary dentition: A systematic review and meta-analysis.

    PubMed

    Costa, Francine S; Silveira, Ethieli R; Pinto, Gabriela S; Nascimento, Gustavo G; Thomson, William Murray; Demarco, Flávio F

    2017-05-01

    This systematic review and meta-analysis evaluated the association between developmental defects of enamel and dental caries in the primary dentition. Electronic searches were performed in PubMed, Web of Knowledge, Scopus and Scielo for the identification of relevant studies. Observational studies that examined the association between developmental defects of enamel and dental caries in the deciduous dentition were included. Additionally, meta-analysis, funnel plots and sensitivity analysis were employed to synthesize the available evidence. Multivariable meta-regression analysis was performed to explore heterogeneity among studies. A total of 318 articles were identified in the electronic searches. Of those, 16 studies were included in the meta-analysis. Pooled estimates revealed that children with developmental defects of enamel had higher odds of having dental caries (OR 3.32; 95%CI 2.41-4.57), with high heterogeneity between studies (I 2 80%). Methodological characteristic of the studies, such as where it was conducted, the examined teeth and the quality of the study explained about 30% of the variability. Concerning type of defect, children with hypoplasia and diffuse opacities had higher odds of having dental caries (OR 4.28; 95%CI 2.24-8.15; OR1.42; 95%CI 1.15-1.76, respectively). This systematic review and meta-analysis demonstrates a clear association between developmental defects of enamel and dental caries in the primary dentition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Precision ablation of dental enamel using a subpicosecond pulsed laser.

    PubMed

    Rode, A V; Gamaly, E G; Luther-Davies, B; Taylor, B T; Graessel, M; Dawes, J M; Chan, A; Lowe, R M; Hannaford, P

    2003-12-01

    In this study we report the use of ultra-short-pulsed near-infrared lasers for precision laser ablation of freshly extracted human teeth. The laser wavelength was approximately 800nm, with pulsewidths of 95 and 150fs, and pulse repetition rates of 1kHz. The laser beam was focused to an approximate diameter of 50microm and was scanned over the tooth surface. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain below 5 degrees C when the tooth was air-cooled during laser treatment. The surface preparation of the ablated teeth, observed by optical and electron microscopy, showed no apparent cracking or heat effects, and the hardness and Raman spectra of the laser-treated enamel were not distinguishable from those of native enamel. This study indicates the potential for ultra-short-pulsed lasers to effect precision ablation of dental enamel.

  7. Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness

    PubMed Central

    2018-01-01

    Objectives To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. Materials and Methods B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness (n = 10). All increments were light-cured to 16 J/cm2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test (p = 0.05). Results Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. Conclusions The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues. PMID:29765902

  8. Amelogenin and Enamel Biomimetics.

    PubMed

    Ruan, Qichao; Moradian-Oldak, Janet

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro , and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel.

  9. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    PubMed

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  10. Amelogenin and Enamel Biomimetics

    PubMed Central

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  11. Trace elementary concentration in enamel after dental bleaching using HI-ERDA

    NASA Astrophysics Data System (ADS)

    Added, N.; Rizzutto, M. A.; Curado, J. F.; Francci, C.; Markarian, R.; Mori, M.

    2006-08-01

    Changes of elementary concentrations in dental enamel after a bleaching treatment with different products, is presented, with special focus on the oxygen contribution. Concentrations for Ca, P, O and C and some other trace elements were obtained for enamel of bovine incisor teeth by HI-ERDA measurements using a 35Cl incident beam and an ionization chamber. Five groups of teeth with five samples each were treated with a different bleaching agents. Each tooth had its crown sectioned in two halves, one for bleaching test and one the other used as a control. Average values of C/Ca, O/Ca, F/Ca enrichment factors were found. The comparison between bleached and non-bleached halves indicates that bleaching treatment did not affect the mineral structure when low-concentration whitening systems were used. The almost constant oxygen concentration in enamel, suggests little changes due to whitening therapy.

  12. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    PubMed Central

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  13. The association between enamel fluorosis and dental caries in U.S. schoolchildren.

    PubMed

    Iida, Hiroko; Kumar, Jayanth V

    2009-07-01

    The authors assessed the association between enamel fluorosis and dental caries to determine if there is any beneficial effect of enamel fluorosis in U.S. schoolchildren. The authors used data from a National Institute of Dental Research survey of the oral health of U.S. children conducted in 1986 and 1987 to determine the prevalence of caries and mean decayed, missing or filled surfaces on permanent maxillary right first molars in children 7 to 17 years of age who had a history of a single residence. (To date, this is the only national oral health data set in the United States with detailed information on fluoride exposures.) They examined the association between enamel fluorosis and caries using logistic regression analysis, controlling for potential confounders in communities with water at or above optimal fluoridation levels and in communities with nonfluoridated or suboptimally fluoridated water. Permanent maxillary right first molars with fluorosis consistently had lower levels of caries experience than did normal molars. Adjusted odds ratios for caries prevalence in molars with fluorosis were 0.71 (95 percent confidence interval [CI], 0.56-0.89) in communities with nonfluoridated or suboptimally fluoridated water and 0.89 (95 percent CI, 0.74-1.06) in communities with water at or above optimal fluoridation levels. This study's findings suggest that molars with fluorosis are more resistant to caries than are molars without fluorosis. The results highlight the need for those considering policies regarding reduction in fluoride exposure to take into consideration the caries-preventive benefits associated with milder forms of enamel fluorosis.

  14. Matching the optical properties of direct esthetic dental restorative materials to those of human enamel and dentin

    NASA Astrophysics Data System (ADS)

    Ragain, James Carlton, Jr.

    One of the goals of the restorative dentist is to restore the appearance of the natural dentition. Clinical matching of teeth and restorative materials are seldom accurate and shade selection techniques are subjective. The first specific aim of this research was to characterize the optical absorption and scattering that occurs within enamel, dentin, and composite resin and compomer restorative materials and to relate those phenomena to translucency and color. The second aim was to evaluate small color differences among composite restorative materials which would be detectable by humans. The last aim was to lay the foundation for developing an improved model of specifying layers of dental restorative materials in order to match the translucency and color to those of human enamel. The Kubelka-Munk theory was validated for enamel, dentin, and the restorative materials. These tissues and materials were then characterized in terms of their color parameters. Tooth cores were also characterized in terms of color space parameters. Human subjects were evaluated for their abilities to discriminate small color differences in the dental composite resin materials. The following conclusions were derived from this study: (1) Kubelka-Munk theory accurately predicts the diffuse reflectance spectra of enamel, dentin, and the direct esthetic dental restorative materials studied. (2) Scattering and absorption coefficients of the dental tissues and esthetic restorative materials can be directly calculated from diffuse reflectance measurements of a uniformly thick slab of tissue/material using black and white backings and the appropriate refractive index. (3) For tooth cores, there is a positive correlation between L* and b* and a negative correlation between L* and a*. (4) The range of translucency parameters for the restorative materials studied does not match those of enamel and dentin. (5) None of the shades of the dental composite resin restorative materials studied fit into the

  15. Dental Enamel Irradiated with Infrared Diode Laser and Photo-Absorbing Cream: Part 2—EDX Study

    PubMed Central

    dos Santos, Edson Aparecido Pereira; Soares, Luís Eduardo Silva; do Espírito Santo, Ana Maria; Martin, Airton Abrahão; Duarte, Danilo Antônio; Pacheco-Soares, Cristina; Brugnera, Aldo

    2009-01-01

    Abstract Objective: The effects of laser-induced compositional changes on the enamel were investigated by energy-dispersive X-ray fluorescence spectrometry (μ-EDX). After cariogenic challenge, we administered treatment of low-level infrared diode laser and a photo-absorbing cream (used to intensify the superficial light absorption). Background Data: Dental caries is considered the most prevalent oral disease. A simple and noninvasive caries preventive regimen is treating tooth enamel with a laser, either alone or in combination with fluoride, which reduces enamel solubility and dissolution rates. High power lasers are still not widely used in private practice. Low-power near-infrared lasers may be an alternative approach. Energy-dispersive μ-EDX is a versatile and nondestructive spectroscopic technique that allows for a qualitative and quantitative elemental analysis of inorganic enamel components, such as calcium and phosphorus. Materials and Methods: Twenty-four extracted or exfoliated caries-free deciduous molars were divided into six groups: 1) control group (CTR-no treatment); 2) infrared laser treatment (L) (λ = 810 nm, 100 mW/cm2, 90 sec, 4.47 J/cm2, 9 J); 3) infrared laser irradiation and photo-absorbing agent (CL); 4) photo-absorbing agent alone (C); 5) infrared laser irradiation and fluoridated photo-absorbing agent (FCL); and 6) fluoridated photo-absorbing agent alone (FC). Samples were analyzed using μ-EDX after two sets of treatments and pH cycling cariogenic challenges. Results: The CL group showed statistically significant increases in calcium and phosphorus (wt%) compared with the CTR group. The Ca/P ratio was similar in the FCL and CTR groups. There was a significant laser-induced reduction compared with the CTR group, and there was a possible modification of the organic balance content in enamel treated with laser and cream. Conclusion: μ-EDX may be able to detect compositional changes in mineral phases of lased enamel under

  16. Structure and compositional characteristics of caniniform dental enamel in the tuatara Sphenodon punctatus (Lepidosauria: Rhynchocephalia).

    PubMed

    Kieser, J A; He, L-H; Dean, M C; Jones, M E H; Duncan, W J; Swain, M V; Nelson, N J

    2011-06-01

    The evolution of dental tissues in relation to tooth function is poorly understood in non-mammalian vertebrates. We studied the dentition of Sphenodon punctatus, the sole remaining member of the order Rhynchocephalia in this light. We examined 6 anterior maxillary caniniform teeth from adult Sphenodon by scanning electron microscopy, nano-indentation and Raman spectroscopy. The elastic modulus (E) for tuatara enamel was 73.17 (sd, 3.25) GPa and 19.52 +/- 0.76 Gpa for dentine. Hardness (H) values for enamel and dentine were 4.00 (sd, 0.22) and 0.63 +/- 0.02 Gpa respectively. The enamel was thin (100 gm or less), prismless and consisted of grouped parallel crystallites. Incremental lines occurred at intervals of about 0.5 to 1 rm. There were tubular structures along the enamel dentine junction running from the dentine into the inner enamel, at different angles. These were widened at their base with a smooth, possibly inorganic lining. Enamel elastic modulus and hardness were lower than those for mammals. The presence of enamel tubules in the basal part of the enamel along the EDJ remains speculative, with possible functions being added enamel/dentinal adhesion or a role in mechanosensation.

  17. Enamel Protein Regulation and Dental and Periodontal Physiopathology in Msx2 Mutant Mice

    PubMed Central

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-01-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/− mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2−/− mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2−/− roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context. PMID:20934968

  18. Randomized clinical study of alterations in the color and surface roughness of dental enamel brushed with whitening toothpaste.

    PubMed

    de Moraes Rego Roselino, Lourenço; Tirapelli, Camila; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2018-03-30

    This clinical study evaluated the influence of whitening toothpaste on color and surface roughness of dental enamel. Initially, the abrasiveness of the toothpastes used (Sorriso Dentes Brancos [SDB]; Colgate Luminous White and Close up White Now) was tested on 30 (n = 10) plexiglass acrylic plates that were submitted to mechanical tooth brushing totalizing 29,200 cycles. Subsequently, 30 participants were selected, and received a toothbrush and nonwhitening toothpaste (SDB). The participants used these products for 7 days and initial color readouts (Spectrophotometer) and surface roughness of one maxillary central incisors was performed after this period of time. For surface roughness readouts, one replica of the maxillary central incisor was obtained by a polyvinyl siloxane impression material (Express) and polyurethane resin. After baseline measurements, participants were separated into three groups (n = 10), according to the toothpaste used. The participants returned after 7, 30, and 90 days when new color readouts and surface roughness were recorded. The measured values were statistically analyzed (2-way-ANOVA, repeated measures, Tukey, P < .05). Whitening toothpastes did not promote significant (P > .05) color alteration and nor increased the surface roughness of the dental enamel in brushing time of the study. The abrasiveness of whitening toothpaste and the brushing trial period did not affect the surface roughness of dental enamel. However, color changes observed on enamel were above the perceptibility and acceptability thresholds reported in the literature. The over-the-counter toothpastes tested had an effect on dental enamel color above the perceptibility and acceptability thresholds but did not change the surface roughness of the teeth. © 2018 Wiley Periodicals, Inc.

  19. Dental radiography: tooth enamel EPR dose assessment from Rando phantom measurements

    NASA Astrophysics Data System (ADS)

    Aragno, D.; Fattibene, P.; Onori, S.; Aragno, D.; Fattibene, P.

    2000-09-01

    Electron paramagnetic resonance dosimetry of tooth enamel is now established as a suitable method for individual dose reconstruction following radiation accidents. The accuracy of the method is limited by some confounding factors, among which is the dose received due to medical x-ray irradiation. In the present paper the EPR response of tooth enamel to endoral examination was experimentally evaluated using an anthropomorphic phantom. The dose to enamel for a single exposure of a typical dental examination performed with a new x-ray generation unit working at 65 kVp gave rise to a CO2- signal of intensity similar to that induced by a dose of about 2 mGy of 60Co. EPR measurements were performed on the entire tooth with no attempt to separate buccal and lingual components. Also the dose to enamel for an orthopantomography exam was estimated. It was derived from TLD measurements as equivalent to 0.2 mGy of 60Co. In view of application to risk assessment analysis, in the present work the value for the ratio of the reference dose at the phantom surface measured with TLD to the dose at the tooth measured with EPR was determined.

  20. Effect of beverages on bovine dental enamel subjected to erosive challenge with hydrochloric acid.

    PubMed

    Amoras, Dinah Ribeiro; Corona, Silmara Aparecida Milori; Rodrigues, Antonio Luiz; Serra, Mônica Campos

    2012-01-01

    This study evaluated by an in vitro model the effect of beverages on dental enamel previously subjected to erosive challenge with hydrochloric acid. The factor under study was the type of beverage, in five levels: Sprite® Zero Low-calorie Soda Lime (positive control), Parmalat® ultra high temperature (UHT) milk, Ades® Original soymilk, Leão® Ice Tea Zero ready-to-drink low-calorie peach-flavored black teaand Prata® natural mineral water (negative control). Seventy-five bovine enamel specimens were distributed among the five types of beverages (n=15), according to a randomized complete block design. For the formation of erosive wear lesions, the specimens were immersed in 10 mL aqueous solution of hydrochloric acid 0.01 M for 2 min. Subsequently, the specimens were immersed in 20 mL of the beverages for 1 min, twice daily for 2 days at room temperature. In between, the specimens were kept in 20 mL of artificial saliva at 37ºC. The response variable was the quantitative enamel microhardness. ANOVA and Tukey's test showed highly significant differences (p<0.00001) in the enamel exposed to hydrochloric acid and beverages. The soft drink caused a significantly higher decrease in microhardness compared with the other beverages. The black tea caused a significantly higher reduction in microhardness than the mineral water, UHT milk and soymilk, but lower than the soft drink. Among the analyzed beverages, the soft drink and the black tea caused the most deleterious effects on dental enamel microhardness.

  1. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures

    PubMed Central

    Shaffer, John R.; Carlson, Jenna C.; Stanley, Brooklyn O. C.; Feingold, Eleanor; Cooper, Margaret; Vanyukov, Michael M.; Maher, Brion S.; Slayton, Rebecca L.; Willing, Marcia C.; Reis, Steven E.; McNeil, Daniel W.; Crout, Richard J.; Weyant, Robert J.; Levy, Steven M.; Vieira, Alexandre R.; Marazita, Mary L.

    2014-01-01

    Dental caries (tooth decay) is the most common chronic disease, worldwide, affecting most children and adults. Though dental caries is highly heritable, few caries-related genes have been discovered. We investigated whether 18 genetic variants in the group of nonamelogenin enamel matrix genes (AMBN, ENAM, TUFT1, and TFIP11) were associated with dental caries experience in 13 age- and race-stratified samples from six parent studies (N=3,600). Linear regression was used to model genetic associations and test gene-byfluoride interaction effects for two sources of fluoride: daily tooth brushing and home water fluoride concentration. Meta-analysis was used to combine results across five child and eight adult samples. We observed the statistically significant association of rs2337359 upstream of TUFT1 with dental caries experience via meta-analysis across adult samples (p<0.002) and the suggestive association for multiple variants in TFIP11 across child samples (p<0.05). Moreover, we discovered two genetic variants (rs2337359 upstream of TUFT1 and missense rs7439186 in AMBN) involved in gene-by-fluoride interactions. For each interaction, participants with the risk allele/genotype exhibited greater dental caries experience only if they were not exposed to the source of fluoride. Altogether, these results confirm that variation in enamel matrix genes contributes to individual differences in dental caries liability, and demonstrate that the effects of these genes may be moderated by protective fluoride exposures. In short, genes may exert greater influence on dental caries in unprotected environments, or equivalently, the protective effects of fluoride may obviate the effects of genetic risk alleles. PMID:25373699

  2. Dental health assessed after interproximal enamel reduction: caries risk in posterior teeth.

    PubMed

    Zachrisson, Björn U; Minster, Line; Ogaard, Bjørn; Birkhed, Dowen

    2011-01-01

    We investigated whether careful interdental enamel reduction (using extrafine diamond disks with air cooling, followed by contouring with triangular diamond burs and polishing) leads to increased caries risk in premolars and first molars. Our subjects were 43 consecutive patients from 19 to 71 years of age who had received mesiodistal enamel reduction of anterior and posterior teeth 4 to 6 years previously. Dental caries were assessed on standardized bite-wing radiographs according to a 5-grade scale and with a fine-tip explorer catch. The incidence of interproximal caries was compared between reproximated and unground contralateral surfaces in the same patient. Patients were asked about their toothbrushing habits, use of dental floss and toothpicks, and regular fluoride supplementation after the orthodontic appliances were removed. The overall clinical impression generally showed healthy dentitions with excellent occlusion. Only 7 (2.5%) new caries lesions (all grade 1) were found among 278 reproximated mesial or distal surfaces, in 3 patients. Among 84 contralateral unground reference tooth surfaces, 2 lesions (2.4%) were seen. On nonpaired premolars and molars that had not been ground, 23 surfaces had to be referred for caries treatment (grade 3 or occlusal caries). Eleven of these occurred in 1 patient. None of the 43 patients reported increased sensitivity to temperature variations. Interdental enamel reduction with this protocol did not result in increased caries risk in posterior teeth. We found no evidence that proper mesiodistal enamel reduction within recognized limits and in appropriate situations will cause harm to the teeth and supporting structures. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Influence of the Relative Enamel Abrasivity (REA) of Toothpastes on the Uptake of KOH-soluble and Structurally Bound Fluoride.

    PubMed

    Elmazi, Valbona; Sener, Beatrice; Attin, Thomas; Imfeld, Thomas; Wegehaupt, Florian J

    2015-01-01

    To determine the influence of the relative enamel abrasivity (REA) of fluoridated toothpaste on the uptake of KOH-soluble and structurally bound fluoride into enamel. Bovine enamel samples were randomly allocated to 6 groups (n=36 per group). Groups A to C were treated with sodium fluoride (NaF) toothpastes and groups D to F with amine fluoride (AmF) toothpastes (1500 ppm F each). The REA in groups A and D was 2, in groups B and E it was 6 and in groups C and F it was 9. Twice a day, 18 samples of each group were immersed for 2 min in a slurry (toothpaste:artificial saliva=1:3), while the remaining samples were brushed with the respective slurry (2.5 N force; 60 strokes/min; 2 min). All samples were stored at 37°C and 100% humidity. After five days, the amount of KOH-soluble and structurally bound fluoride was determined and statistically compared by Scheffe's post-hoc tests. REA value and mode of application (immersion or brushing) had no significant influence on the amount of either kind of fluoride from NaF toothpastes. Only for the NaF toothpaste with REA 6 was the amount of KOH-soluble fluoride significantly higher after brushing. With AmF toothpastes, KOH-soluble and structurally bound fluoride concentrations were significantly higher when the samples were brushed. Furthermore, in the REA-2 group, the amounts of KOH-soluble fluoride (brushed or immersed) and structurally bound fluoride (brushed) were significantly higher than in the other groups. The REA dependency of KOH-soluble and structurally bound fluoride was found only for the AmF toothpastes. Using AmF toothpaste, the mode of application influenced the uptake of KOH-soluble and structurally bound fluoride into enamel.

  4. Combinatorial localized dissolution analysis: Application to acid-induced dissolution of dental enamel and the effect of surface treatments.

    PubMed

    Parker, Alexander S; Al Botros, Rehab; Kinnear, Sophie L; Snowden, Michael E; McKelvey, Kim; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo; Philpotts, Carol; Unwin, Patrick R

    2016-08-15

    A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dental Enamel Irradiated with Infrared Diode Laser and Photoabsorbing Cream: Part 1—FT-Raman Study

    PubMed Central

    Dos Santos, Edson Aparecido Pereira; Soares, Luís Eduardo Silva; Do Espírito Santo, Ana Maria; Martin, Airton Abrahão; Duarte, Danilo Antônio; Pacheco-Soares, Cristina; Brugnera, Aldo

    2009-01-01

    Abstract Objective: The aim of this FT-Raman study was to investigate laser-induced compositional changes in enamel after therapy with a low-level infrared diode laser and a photoabsorbing cream, in order to intensify the superficial light absorption before and after cariogenic challenge. Background Data: Dental caries remains the most prevalent disease during childhood and adolescence. Preventive modalities include the use of fluoride, reduction of dietary cariogenic refined carbohydrates, plaque removal and oral hygiene techniques, and antimicrobial prescriptions. A relatively simple and noninvasive caries preventive regimen is treating tooth enamel with laser irradiation, either alone or in combination with topical fluoride treatment, resulting in reduced enamel solubility and dissolution rates. Due to their high cost, high-powered lasers are still not widely employed in private practice in developing countries. Thus, low-power red and near-infrared lasers appear to be an appealing alternative. Materials and Methods: Twenty-four extracted or exfoliated caries-free deciduous molars were divided into six groups: control group (no treatment; n = 8); infrared laser treatment (L; n = 8) (810 nm at 100 mW/cm2 for 90 sec); infrared diode laser irradiation (810 nm at 100 mW/cm2 for 90 sec) and photoabsorbing cream (IVL; n = 8); photoabsorbing cream alone (IV; n = 8); infrared diode laser irradiation (810 nm at 100 mW/cm2 for 90 sec) and fluorinated photoabsorbing agent (IVLF; n = 8); and fluorinated photoabsorbing agent alone (IVF; n = 8). Samples were analyzed using FT-Raman spectroscopy before and after pH cycling cariogenic challenge. Results: There was a significant laser-induced reduction and possible modification of the organic matrix content in enamel treated with the low-level diode laser (the L, IVL, and IVFL groups). Conclusion: The FT-Raman technique may be suitable for detecting compositional and structural changes

  6. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges

    PubMed Central

    Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; da Silva, Thiago Cruvinel; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges. PMID:28817591

  7. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    PubMed

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  8. Research on optical properties of dental enamel for early caries diagnostics using a He-Ne laser

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Liu, Li; Li, Song-zhan

    2008-12-01

    A new and non-invasive method adapted for optical diagnosis of early caries is proposed by researching on the interaction mechanism of laser with dental tissue and relations of remitted light with optical properties of the tissue. This method is based on simultaneous analyses of the following parameters: probing radiation, backscattering and auto-fluorescence. Investigation was performed on 104 dental samples in vitro by using He-Ne laser (λ=632.8nm, 2.0+/-0.1mW) as the probing. Spectrums of all samples were obtained. Characteristic spectrums of dental caries in various stages (intact, initial, moderate and deep) were given. Using the back-reflected light to normalize the intensity of back-scattering and fluorescence, a quantitative diagnosis standard for different stages of caries is proposed. In order to verify the test, comparison research was conducted among artificial caries, morphological damaged enamel, dental calculus and intact tooth. Results show that variations in backscattering characteristic changes in bio-tissue morphological and the quantity of auto-fluorescence is correlated with concentration of anaerobic microflora in hearth of caries lesion. This method poses a high potential of diagnosing various stages of dental caries, and is more reliability to detect early caries, surface damage of health enamel and dental calculus.

  9. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    PubMed

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects. © 2014 Wiley Periodicals, Inc.

  10. Alteration of Dentin-Enamel Mechanical Properties Due to Dental Whitening Treatments

    PubMed Central

    Zimmerman, B.; Datko, L.; Cupelli, M.; Alapati, S.; Dean, D.; Kennedy, M.

    2010-01-01

    The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0GPa versus 113.4GPa), while smaller increases were observed in the dentin (17.9GPa versus 27.9GPa). Likewise, there was an increase in the hardness of enamel (2.0GPa versus 4.3GPa) and dentin (0.5GPa versus 0.7GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips™, Opalescence™ or UltraEtch™ caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips™ showed a reduction in the elastic modulus of enamel (55.3GPa to 32.7GPa) and increase in the elastic modulus of dentin (17.2GPa to 24.3GPa). Opalescence™ treatments did not significantly affect the enamel properties, but did result in a decrease in modulus of dentin (18.5GPa to 15.1GPa). Additionally, as expected, UltraEtch™ treatment decreased the modulus and hardness of enamel (48.7GPa to 38.0GPa and 1.9GPa to 1.5GPa, respectively) and dentin (21.4GPa to 15.0GPa and 1.9GPa to 1.5GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. PMID:20346902

  11. Alteration of dentin-enamel mechanical properties due to dental whitening treatments.

    PubMed

    Zimmerman, B; Datko, L; Cupelli, M; Alapati, S; Dean, D; Kennedy, M

    2010-05-01

    The mechanical properties of dentin and enamel affect the reliability and wear properties of a tooth. This study investigated the influence of clinical dental treatments and procedures, such as whitening treatments or etching prior to restorative procedures. Both autoclaved and non-autoclaved teeth were studied in order to allow for both comparison with published values and improved clinical relevance. Nanoindentation analysis with the Oliver-Pharr model provided elastic modulus and hardness across the dentin-enamel junction (DEJ). Large increases were observed in the elastic modulus of enamel in teeth that had been autoclaved (52.0 GPa versus 113.4 GPa), while smaller increases were observed in the dentin (17.9 GPa versus 27.9 GPa). Likewise, there was an increase in the hardness of enamel (2.0 GPa versus 4.3 GPa) and dentin (0.5 GPa versus 0.7 GPa) with autoclaving. These changes suggested that the range of elastic modulus and hardness values previously reported in the literature may be partially due to the sterilization procedures. Treatment of the exterior of non-autoclaved teeth with Crest Whitestrips, Opalescence or UltraEtch caused changes in the mechanical properties of both the enamel and dentin. Those treated with Crest Whitestrips showed a reduction in the elastic modulus of enamel (55.3 GPa to 32.7 GPa) and increase in the elastic modulus of dentin (17.2 GPa to 24.3 GPa). Opalescence treatments did not significantly affect the enamel properties, but did result in a decrease in the modulus of dentin (18.5 GPa to 15.1 GPa). Additionally, as expected, UltraEtch treatment decreased the modulus and hardness of enamel (48.7 GPa to 38.0 GPa and 1.9 GPa to 1.5 GPa, respectively) and dentin (21.4 GPa to 15.0 GPa and 1.9 GPa to 1.5 GPa, respectively). Changes in the mechanical properties were linked to altered protein concentration within the tooth, as evidenced by fluorescence microscopy and Fourier transform infrared spectroscopy. Published by Elsevier Ltd.

  12. Dental fluorosis: chemistry and biology.

    PubMed

    Aoba, T; Fejerskov, O

    2002-01-01

    This review aims at discussing the pathogenesis of enamel fluorosis in relation to a putative linkage among ameloblastic activities, secreted enamel matrix proteins and multiple proteases, growing enamel crystals, and fluid composition, including calcium and fluoride ions. Fluoride is the most important caries-preventive agent in dentistry. In the last two decades, increasing fluoride exposure in various forms and vehicles is most likely the explanation for an increase in the prevalence of mild-to-moderate forms of dental fluorosis in many communities, not the least in those in which controlled water fluoridation has been established. The effects of fluoride on enamel formation causing dental fluorosis in man are cumulative, rather than requiring a specific threshold dose, depending on the total fluoride intake from all sources and the duration of fluoride exposure. Enamel mineralization is highly sensitive to free fluoride ions, which uniquely promote the hydrolysis of acidic precursors such as octacalcium phosphate and precipitation of fluoridated apatite crystals. Once fluoride is incorporated into enamel crystals, the ion likely affects the subsequent mineralization process by reducing the solubility of the mineral and thereby modulating the ionic composition in the fluid surrounding the mineral. In the light of evidence obtained in human and animal studies, it is now most likely that enamel hypomineralization in fluorotic teeth is due predominantly to the aberrant effects of excess fluoride on the rates at which matrix proteins break down and/or the rates at which the by-products from this degradation are withdrawn from the maturing enamel. Any interference with enamel matrix removal could yield retarding effects on the accompanying crystal growth through the maturation stages, resulting in different magnitudes of enamel porosity at the time of tooth eruption. Currently, there is no direct proof that fluoride at micromolar levels affects proliferation and

  13. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals

    PubMed Central

    Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao; De Yoreo, James J.; Moradian-Oldak, Janet

    2015-01-01

    Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair. PMID:26513418

  14. Ph-activated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization.

    PubMed

    Melo, Mary A S; Weir, Michael D; Passos, Vanara F; Powers, Michael; Xu, Hockin H K

    2017-12-01

    Enamel demineralization is destructive, esthetically compromised, and costly complications for orthodontic patients. Nano-sized amorphous calcium phosphate (NACP) has been explored to address this challenge. The 20% NACP-loaded ortho-cement notably exhibited favorable behavior on reducing demineralization of enamel around brackets in a caries model designed to simulate the carious attack. The 20% NACP-loaded ortho-cement markedly promotes higher calcium and phosphate release at a low pH, and the mineral loss was almost two fold lower and carious lesion depth decreased the by 1/3. This novel approach is promising co-adjuvant route for prevention of dental caries dissemination in millions of patients under orthodontic treatment.

  15. OSL and thermally assisted OSL response in dental enamel for its possible application in retrospective dosimetry.

    PubMed

    Soni, Anuj; Mishra, D R; Polymeris, G S; Bhatt, B C; Kulkarni, M S

    2014-11-01

    Dental enamel was studied for its thermoluminescence (TL) and optically stimulated luminescence (OSL) defects. The TL studies showed a wide glow curve with multiple peaks. The thermally assisted OSL (TA-OSL) studies showed that the integrated TA-OSL and thus OSL signal increases with readout temperature between 100 and 250 °C, due to the temperature dependence of OSL. The thermally assisted energy E A associated with this increase is found to be 0.21 ± 0.015 eV. On the other hand, the signal intensity decreases with temperature between 260 and 450 °C. This decrease could be due to depletion of OSL active traps or possible thermal quenching. The increase of the OSL signal at increased temperature can be used to enhance the sensitivity of dental enamel for ex vivo measurements in retrospective dosimetry. The emission and excitation spectra of its luminescence centers were studied by photoluminescence and were found to be at 412 and 324 nm, respectively. It was found to possess multiple OSL active traps having closely lying photoionization cross sections characterized by continuous wave OSL and nonlinear OSL methods. The investigated dental enamel samples showed a linear OSL dose response up to 500 Gy. The dose threshold was found to be 100 mGy using a highly sensitive compact OSL reader with blue LED (470 nm) stimulation.

  16. Alterations in enamel remineralization in vitro induced by blue light

    NASA Astrophysics Data System (ADS)

    Kato, I. T.; Zezell, D. M.; Mendes, F. M.; Wetter, N. U.

    2010-06-01

    Blue light, especially from LED devices, is a very frequently used tool in dental procedures. However, the investigations of its effects on dental enamel are focused primarily on enamel demineralization and fluoride retention. Despite the fact that this spectral region can inhibit enamel demineralization, the effects of the irradiation on demineralized enamel are not known. For this reason, we evaluated the effects of blue LED on remineralization of dental enamel. Artificial lesions were formed in bovine dental enamel blocks by immersing the samples in undersaturated acetate buffer. The lesions were irradiated with blue LED (455 nm, 1.38 W/cm2, 13.75 J/cm2, and 10 s) and remineralization was induced by pH-cycling process. Cross-sectional hardness was used to asses mineral changes after remineralization. Non-irradiated enamel lesions presented higher mineral content than irradiated ones. Furthermore, the mineral content of irradiated group was not significantly different from the lesion samples that were not submitted to the remineralization process. Results obtained in the present study show that the blue light is not innocuous for the dental enamel and inhibition of its remineralization can occur.

  17. Dental enamel defects, caries experience and oral health-related quality of life: a cohort study.

    PubMed

    Arrow, P

    2017-06-01

    The impact of enamel defects of the first permanent molars on caries experience and child oral health-related quality of life was evaluated in a cohort study. Children who participated in a study of enamel defects of the first permanent molars 8 years earlier were invited for a follow-up assessment. Consenting children completed the Child Perception Questionnaire and the faces Modified Child Dental Anxiety Scale, and were examined by two calibrated examiners. ANOVA, Kruskal-Wallis, negative binomial and logistic regression were used for data analyses. One hundred and eleven children returned a completed questionnaire and 91 were clinically examined. Negative binomial regression found that oral health impacts were associated with gender (boys, risk ratio (RR) = 0.73, P = 0.03) and decayed, missing or filled permanent teeth (DMFT) (RR = 1.1, P = 0.04). The mean DMFT of children were sound (0.9, standard deviation (SD) = 1.4), diffuse defects (0.8, SD = 1.7), demarcated defects (1.5, SD = 1.4) and pit defects (1.3, SD = 2.3) (Kruskal-Wallis, P = 0.05). Logistic regression of first permanent molar caries found higher odds of caries experience with baseline primary tooth caries experience (odds ratio (OR) = 1.5, P = 0.01), the number of teeth affected by enamel defects (OR = 1.9, P = 0.05) and lower odds with the presence of diffuse enamel defects (OR = 0.1, P = 0.04). The presence of diffuse enamel defects was associated with lower odds of caries experience. © 2016 Australian Dental Association.

  18. An in vitro study of the microstructure, composition and nanoindentation mechanical properties of remineralizing human dental enamel

    NASA Astrophysics Data System (ADS)

    Arsecularatne, J. A.; Hoffman, M.

    2014-08-01

    This paper describes the results of an in vitro investigation on the interrelations among microstructure, composition and mechanical properties of remineralizing human dental enamel. Polished enamel samples have been demineralized for 10 min in an acetic acid solution (at pH 3) followed by remineralization in human saliva for 30 and 120 min. Microstructure variations of sound, demineralized and remineralized enamel samples have been analysed using focused ion beam, scanning electron microscopy and transmission electron microscopy, while their compositions have been analysed using energy dispersive x-ray. Variations in the mechanical properties of enamel samples have been assessed using nanoindentation. The results reveal that, under the selected conditions, only partial remineralization of the softened enamel surface layer occurs where some pores remain unrepaired. As a result, while the nanoindentation elastic modulus shows an improvement following remineralization, hardness does not.

  19. Wear properties of dental ceramics and porcelains compared with human enamel.

    PubMed

    D'Arcangelo, Camillo; Vanini, Lorenzo; Rondoni, Giuseppe D; De Angelis, Francesco

    2016-03-01

    Contemporary pressable and computer-aided design/manufacturing (CAD/CAM) ceramics exhibit good mechanical and esthetic properties. Their wear resistance compared with human enamel and traditional gold based alloys needs to be better investigated. The purpose of this in vitro study was to compare the 2-body wear resistance of human enamel, gold alloy, and 5 different dental ceramics, including a recently introduced zirconia-reinforced lithium silicate ceramic (Celtra Duo). Cylindrical specimens were fabricated from a Type III gold alloy (Aurocast8), 2 hot pressed ceramics (Imagine PressX, IPS e.max Press), 2 CAD/CAM ceramics (IPS e.max CAD, Celtra Duo), and a CAD/CAM feldspathic porcelain (Vitablocs Mark II) (n=10). Celtra Duo was tested both soon after grinding and after a subsequent glaze firing cycle. Ten flat human enamel specimens were used as the control group. All specimens were subjected to a 2-body wear test in a dual axis mastication simulator for 120000 loading cycles against yttria stabilized tetragonal zirconia polycrystal cusps. The wear resistance was analyzed by measuring the vertical substance loss (mm) and the volume loss (mm(3)). Antagonist wear (mm) was also recorded. Data were statistically analyzed with 1-way ANOVA tests (α=.05). The wear depth (0.223 mm) of gold alloy was the closest to that of human enamel (0.217 mm), with no significant difference (P>.05). The greatest wear was recorded on the milled Celtra Duo (wear depth=0.320 mm), which appeared significantly less wear resistant than gold alloy or human enamel (P<.05). The milled and not glazed Celtra Duo showed a small but significantly increased wear depth compared with Aurocast8 and human enamel. Wear depth and volumetric loss for the glaze-fired Celtra Duo and for the other tested ceramics did not statistically differ in comparison with the human enamel. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Dental Enamel: Genes Define Biomechanics

    PubMed Central

    Rauth, Rick J.; Potter, Karen S.; Ngan, Amanda Y.-W.; Saad, Deema M.; Mehr, Rana; Luong, Vivian Q.; Schuetter, Verna L.; Miklus, Vetea G.; Chang, PeiPei; Paine, Michael L.; Lacruz, Rodrigo S.; Snead, Malcolm L.; White, Shane N.

    2010-01-01

    Regulated gene expression assembles an extracellular proteinaceous matrix to control biomineralization and the resultant biomechanical function of tooth enamel. The importance of the dominant enamel matrix protein, amelogenin (Amel); a minor transiently expressed protein, dentin sialoprotein (Dsp); an electrogenic sodium bicarbonate cotransporter (NBCe1); the timely removal of the proteinaceous matrix by a serine protease, Kallikrein-4 (Klk4); and the late-stage expression of Amelotin (Amtn) on enamel biomechanical function were demonstrated and measured using mouse models. PMID:20066874

  1. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals.

    PubMed

    Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao; De Yoreo, James J; Moradian-Oldak, Janet

    2016-01-01

    Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Enamel microarchitecture of a tribosphenic molar.

    PubMed

    Spoutil, Frantisek; Vlcek, Vojtĕch; Horácek, Ivan

    2010-10-01

    The tribosphenic molar is a dental apomorphy of mammals and the molar type from which all derived types originated. Its enamel coat is expected to be ancestral: a thin, evenly distributed layer of radial prismatic enamel. In the bat Myotis myotis, we reinvestigated the 3D architecture of the dental enamel using serial sectioning combined with scanning electron microscopy analyses, biometrics of enamel prisms and crystallites, and X-ray diffraction. We found distinct heterotopies in enamel thickness (thick enamel on the convex sides of the crests, thin on the concave ones), angularity of enamel prisms, and in distribution of particular enamel types (prismatic, interprismatic, aprismatic) and demonstrated structural relations of these heterotopies to the cusp and crest organization of the tribosphenic molar. X-ray diffraction demonstrated that the crystallites composing the enamel are actually the aggregates of much smaller primary crystallites. The differences among particular enamel types in degree of crystallite aggregation and the variation in structural microstrain of the primary crystallites (depending upon the duration and the mechanical context of mineralization) represent factors not fully understood as yet that may contribute to the complexity of enamel microarchitecture in a significant way. © 2010 Wiley-Liss, Inc.

  3. Enamel mineral loss.

    PubMed

    West, Nicola X; Joiner, Andrew

    2014-06-01

    To summarise the chemical, biological and host factors that impact enamel mineral loss, to highlight approaches to contemporary management of clinical conditions involving mineral loss and summarise emerging trends and challenges in this area. "Medline" and "Scopus" databases were searched electronically with the principal key words tooth, enamel, *mineral*, caries and erosion. Language was restricted to English and original studies and reviews were included. Conference papers and abstracts were excluded. Enamel mineral loss leads to the degradation of the surface and subsurface structures of teeth. This can impact their shape, function, sensitivity and aesthetic qualities. Dental caries is a multifactorial disease caused by the simultaneous interplay of dietary sugars, dental plaque, the host and time. There is a steady decline in dental caries in developed countries and the clinical management of caries is moving towards a less invasive intervention, with risk assessment, prevention, control, restoration and recall. Tooth wear can be caused by erosion, abrasion and attrition. Dental erosion can be the result of acid from intrinsic sources, such as gastric acids, or extrinsic sources, in particular from the diet and consumption of acidic foods and drinks. Its prevalence is increasing and it increases with age. Clinical management requires diagnosis and risk assessment to understand the underlying aetiology, so that optimal preventative measures can be implemented. Overall, prevention of enamel mineral loss from caries and tooth wear should form the basis of lifelong dental management. Evidence based oral hygiene and dietary advice is imperative, alongside preventive therapy, to have a healthy lifestyle, whilst retaining hard tooth tissue. © 2014 Elsevier Ltd. All rights reserved.

  4. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.

    PubMed

    Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo

    2014-06-01

    To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (p<0.05). In the protection study, the intrinsic rate constant for calcium loss from enamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (p<0.0001). Calcium silicate can transform into HAP and can be deposited on acid eroded and sound enamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  5. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.

    PubMed

    Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D

    2014-05-01

    Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Microhardness and morphological changes induced by Nd:Yag laser on dental enamel: an in vitro study.

    PubMed

    Bedini, Rossella; Manzon, Licia; Fratto, Giovanni; Pecci, Raffaella

    2010-01-01

    The aim of this work was a scanning electron microscopy (SEM) evaluation of the hardness and morphological changes of enamel irradiated by neodymium: yttrium aluminium garnet (Nd:YAG) laser with different energy levels. Twenty-eight human teeth samples were divided into 4 groups: control, where enamel surface was not lased, and 3 test treated with 3 different levels of energy power 0.6, 1.2 and 2.4 Watt, respectively. In each group, 5 samples underwent Vickers micro-hardness test and 2 samples were processed for SEM. No significant differences between treated and non treated samples were found by micro-hardness test. However, by SEM, test samples showed a rougher enamel surface than control. Specifically, the 0.6 Watt treated samples showed vertical scratches and glass-like areas, while in the other 2 groups enamel surface was covered by craters and cracks. These findings suggest that enamel should be lased at a low energy level to preserve its integrity and reduce demineralization, and thus for dental caries prevention purposes; while high energy level creates a retentive surface suitable for sealant or composite anchorage.

  7. A Coaxial Dielectric Probe Technique for Distinguishing Tooth Enamel from Dental Resin

    PubMed Central

    Williams, Benjamin B.; Geimer, Shireen D.; Flood, Ann B.; Swartz, Harold M.

    2016-01-01

    For purposes of biodosimetry in the event of a large scale radiation disaster, one major and very promising point-of contact device is assessing dose using tooth enamel. This technique utilizes the capabilities of electron paramagnetic resonance to measure free radicals and other unpaired electron species, and the fact that the deposition of energy from ionizing radiation produces free radicals in most materials. An important stipulation for this strategy is that the measurements, need to be performed on a central incisor that is basically intact, i.e. which has an area of enamel surface that is as large as the probing tip of the resonator that is without decay or restorative care that replaces the enamel. Therefore, an important consideration is how to quickly assess whether the tooth has sufficient enamel to be measured for dose and whether there is resin present on the tooth being measured and to be able to characterize the amount of surface that is impacted. While there is a relatively small commercially available dielectric probe which could be used in this context, it has several disadvantages for the intended use. Therefore, a smaller, 1.19mm diameter 50 ohm, open-ended, coaxial dielectric probe has been developed as an alternative. The performance of the custom probe was validated against measurement results of known standards. Measurements were taken of multiple teeth enamel and dental resin samples using both probes. While the probe contact with the teeth samples was imperfect and added to measurement variability, the inherent dielectric contrast between the enamel and resin was sufficient that the probe measurements could be used as a robust means of distinguishing the two material types. The smaller diameter probe produced markedly more definitive results in terms of distinguishing the two materials. PMID:27182531

  8. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche

    PubMed Central

    Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R.; Weisgerber, Daniel W.

    2015-01-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche. PMID:26246398

  9. Structure and scale of the mechanics of mammalian dental enamel viewed from an evolutionary perspective.

    PubMed

    Lucas, Peter W; Philip, Swapna M; Al-Qeoud, Dareen; Al-Draihim, Nuha; Saji, Sreeja; van Casteren, Adam

    2016-01-01

    Mammalian enamel, the contact dental tissue, is something of an enigma. It is almost entirely made of hydroxyapatite, yet exhibits very different mechanical behavior to a homogeneous block of the same mineral. Recent approaches suggest that its hierarchical composite form, similar to other biological hard tissues, leads to a mechanical performance that depends very much on the scale of measurement. The stiffness of the material is predicted to be highest at the nanoscale, being sacrificed to produce a high toughness at the largest scale, that is, at the level of the tooth crown itself. Yet because virtually all this research has been conducted only on human (or sometimes "bovine") enamel, there has been little regard for structural variation of the tissue considered as evolutionary adaptation to diet. What is mammalian enamel optimized for? We suggest that there are competing selective pressures. We suggest that the structural characteristics that optimize enamel to resist large-scale fractures, such as crown failures, are very different to those that resist wear (small-scale fracture). While enamel is always designed for damage tolerance, this may be suboptimal in the enamel of some species, including modern humans (which have been the target of most investigations), in order to counteract wear. The experimental part of this study introduces novel techniques that help to assess resistance at the nanoscale. © 2015 Wiley Periodicals, Inc.

  10. Mesoscopic modeling of the response of human dental enamel to mid-infrared radiation

    NASA Astrophysics Data System (ADS)

    Vila Verde, Ana; Ramos, Marta; Stoneham, A. M.

    2006-03-01

    Ablation of human dental enamel, a composite biomaterial with water pores, is of significant importance in minimally invasive laser dentistry but progress in the area is hampered by the lack of optimal laser parameters. We use mesoscopic finite element models of this material to study its response to mid-infrared radiation. Our results indicate that the cost-effective, off-the-shelf CO2 laser at λ = 10.6 μm may in fact ablate enamel precisely, reproducibly and with limited unwanted side effects such as cracking or heating, provided that a pulse duration of 10 μs is used. Furthermore, our results also indicate that the Er:YAG laser (λ = 2.94 μm), currently popular for laser dentistry, may in fact cause unwanted deep cracking in the enamel when regions with unusually high water content are irradiated, and also provide an explanation for the large range of ablation threshold values observed for this material. The model may be easily adapted to study the response of any composite material to infrared radiation and thus may be useful for the scientific community.

  11. Morphological and mineral analysis of dental enamel after erosive challenge in gastric juice and orange juice.

    PubMed

    Braga, Sheila Regina Maia; De Faria, Dalva Lúcia Araújo; De Oliveira, Elisabeth; Sobral, Maria Angela Pita

    2011-12-01

    This study evaluated and compared in vitro the morphology and mineral composition of dental enamel after erosive challenge in gastric juice and orange juice. Human enamel specimens were submitted to erosive challenge using gastric juice (from endoscopy exam) (n = 10), and orange juice (commercially-available) (n = 10), as follows: 5 min in 3 mL of demineralization solution, rinse with distilled water, and store in artificial saliva for 3 h. This cycle was repeated four times a day for 14 days. Calcium (Ca) loss after acid exposure was determined by atomic emission spectroscopy. The presence of carbonate (CO) and phosphate (PO) in the specimens was evaluated before and after the erosive challenge by FT-Raman spectroscopy. Data were tested using t-tests (P < 0.05). Morphology of enamel was observed in scanning electron microscopy (SEM). The mean loss of Ca was: 12.74 ± 3.33 mg/L Ca (gastric juice) and 7.07 ± 1.44 mg/L Ca (orange juice). The analysis by atomic emission spectroscopy showed statistically significant difference between erosive potential of juices (P = 0.0003). FT-Raman spectroscopy found no statistically significant difference in the ratio CO/PO after the erosive challenge. The CO/PO ratios values before and after the challenge were: 0.16/0.17 (gastric juice) (P = 0.37) and 0.18/0.14 (orange juice) (P = 0.16). Qualitative analysis by SEM showed intense alterations of enamel surface. The gastric juice caused more changes in morphology and mineral composition of dental enamel than orange juice. The atomic emission spectroscopy showed to be more suitable to analyze small mineral loss after erosive challenge than FT-Raman. Copyright © 2011 Wiley Periodicals, Inc.

  12. In Vitro Acid-Mediated Initial Dental Enamel Loss Is Associated with Genetic Variants Previously Linked to Caries Experience.

    PubMed

    Vieira, Alexandre R; Bayram, Merve; Seymen, Figen; Sencak, Regina C; Lippert, Frank; Modesto, Adriana

    2017-01-01

    We have previously shown that AQP5 and BTF3 genetic variation and expression in whole saliva are associated with caries experience suggesting that these genes may have a functional role in protecting against caries. To further explore these results, we tested ex vivo if variants in these genes are associated with subclinical dental enamel mineral loss. DNA and enamel samples were obtained from 53 individuals. Enamel samples were analyzed for Knoop hardness of sound enamel, integrated mineral loss after subclinical carious lesion creation, and change in integrated mineral loss after remineralization. DNA samples were genotyped for single nucleotide polymorphisms using TaqMan chemistry. Chi-square and Fisher's exact tests were used to compare individuals above and below the mean sound enamel microhardness of the cohort with alpha of 0.05. The A allele of BTF3 rs6862039 appears to be associated with harder enamel at baseline ( p = 0.09), enamel more resistant to demineralization ( p = 0.01), and enamel that more efficiently regain mineral and remineralize ( p = 0.04). Similarly, the G allele of AQP5 marker rs3759129 and A allele of AQP5 marker rs296763 are associated with enamel more resistant to demineralization ( p = 0.03 and 0.05, respectively). AQP5 and BTF3 genetic variations influence the initial subclinical stages of caries lesion formation in the subsurface of enamel.

  13. In Vitro Acid-Mediated Initial Dental Enamel Loss Is Associated with Genetic Variants Previously Linked to Caries Experience

    PubMed Central

    Vieira, Alexandre R.; Bayram, Merve; Seymen, Figen; Sencak, Regina C.; Lippert, Frank; Modesto, Adriana

    2017-01-01

    We have previously shown that AQP5 and BTF3 genetic variation and expression in whole saliva are associated with caries experience suggesting that these genes may have a functional role in protecting against caries. To further explore these results, we tested ex vivo if variants in these genes are associated with subclinical dental enamel mineral loss. DNA and enamel samples were obtained from 53 individuals. Enamel samples were analyzed for Knoop hardness of sound enamel, integrated mineral loss after subclinical carious lesion creation, and change in integrated mineral loss after remineralization. DNA samples were genotyped for single nucleotide polymorphisms using TaqMan chemistry. Chi-square and Fisher's exact tests were used to compare individuals above and below the mean sound enamel microhardness of the cohort with alpha of 0.05. The A allele of BTF3 rs6862039 appears to be associated with harder enamel at baseline (p = 0.09), enamel more resistant to demineralization (p = 0.01), and enamel that more efficiently regain mineral and remineralize (p = 0.04). Similarly, the G allele of AQP5 marker rs3759129 and A allele of AQP5 marker rs296763 are associated with enamel more resistant to demineralization (p = 0.03 and 0.05, respectively). AQP5 and BTF3 genetic variations influence the initial subclinical stages of caries lesion formation in the subsurface of enamel. PMID:28275354

  14. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser.

    PubMed

    Pires, Patrícia T; Ferreira, João C; Oliveira, Sofia A; Azevedo, Alvaro F; Dias, Walter R; Melo, Paulo R

    2013-01-01

    Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA)+ ExciTE(®); Group II - ExciTE(®); Group III - AdheSE(®) self-etching; Group IV - FuturaBond(®) no-rinse. NR; Group V - Xeno(®) V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. One-way ANOVA and post-hoc tests (P < 0.05). For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA) and the etching pattern analyzed under Scanning Electron Microscope (SEM). Mean bond strengths were Group I - 47.17 ± 1.61 MPa (type I etching pattern); Group II - 32.56 ± 1.64 MPa, Group III - 29.10 ± 1.34 MPa, Group IV - 23.32 ± 1.53 MPa (type III etching pattern); Group V - 24.43 MPa ± 1.55 (type II etching pattern). Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE(®) and ExciTE(®) without condition with PA. FuturaBond(®) NR and Xeno(®) V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  15. Evaluation of Mineral Content and Photon Interaction Parameters of Dental Enamel After Phosphoric Acid and Er:YAG Laser Treatment.

    PubMed

    Simsek, Huseyin; Gurbuz, Taskın; Buyuk, Suleyman Kutalmış; Ozdemir, Yuksel

    2017-05-01

    The purpose of this study was to evaluate the effects of laser and acid etching on the mineral content and photon interaction parameters of dental enamel in human teeth. The composition of dental enamel may vary, especially at the surface, depending on the reactions that occur during dental treatment. Forty maxillary premolars were divided randomly into 2 groups of 20 teeth. In the first group, half of teeth crowns were etched by using 37% phosphoric acid; in the second group, half of teeth crowns were etched by using an erbium:yttrium-aluminum-garnet (Er:YAG) laser. The remaining half crowns in each group were used as untreated controls. We characterized the calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na), and potassium (K) contents in each specimen by using wavelength dispersive X-ray fluorescence spectrometry. The total atomic cross-section ([Formula: see text]), effective atomic number ([Formula: see text]), and electron density (N e ) of the tooth samples were determined at photon energies of 22.1, 25, 59.5, and 88 keV by using a narrow beam transmission method. Data were analyzed statistically by using the Mann-Whitney U test. The mineral contents after Er:YAG laser and phosphoric acid etching did not differ significantly (p > 0.05), and no significant variation in [Formula: see text], [Formula: see text], or N e was observed. Therefore, we conclude that the Er:YAG laser and phosphoric acid systems used in this study did not affect mineral composition or photon interaction parameters of dental enamel.

  16. Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure.

    PubMed

    Scheider, I; Xiao, T; Yilmaz, E; Schneider, G A; Huber, N; Bargmann, S

    2015-03-01

    Dental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Effect of Toothpaste Application Prior to Dental Bleaching on Whitening Effectiveness and Enamel Properties.

    PubMed

    Vieira-Junior, W F; Lima, D A N L; Tabchoury, C P M; Ambrosano, G M B; Aguiar, F H B; Lovadino, J R

    2016-01-01

    The purpose of this study was to investigate the effects on the enamel properties and effectiveness of bleaching using 35% hydrogen peroxide (HP) when applying toothpastes with different active agents prior to dental bleaching. Seventy enamel blocks (4 × 4 × 2 mm) were submitted to in vitro treatment protocols in a tooth-brushing machine (n=10): with distilled water and exposure to placebo gel (negative control [NC]) or HP bleaching (positive control [PC]); and brushing with differing toothpastes prior to HP bleaching, including potassium nitrate toothpaste (PN) containing NaF, conventional sodium monofluorophosphate toothpaste (FT), arginine-based toothpastes (PA and SAN), or a toothpaste containing bioactive glass (NM). Color changes were determined using the CIE L*a*b* system (ΔE, ΔL, Δa, and Δb), and a roughness (Ra) analysis was performed before and after treatments. Surface microhardness (SMH) and cross-sectional microhardness (CSMH) were analyzed after treatment. Data were analyzed with repeated measures ANOVA for Ra, one-way ANOVA (SMH, ΔE, ΔL, Δa, and Δb), split-plot ANOVA (CSMH), and Tukey post hoc test (α<0.05). The relationship between the physical surface properties and color properties was evaluated using a multivariate Canonical correlation analysis. Color changes were statistically similar in the bleached groups. After treatments, SMH and CSMH decreased in PC. SMH increased significantly in the toothpaste groups vs the negative and positive control (NM > PA = SAN > all other groups) or decreased HP effects (CSMH). Ra increased in all bleached groups, with the exception of NM, which did not differ from the NC. The variation in the color variables (ΔL, Δa, and Δb) explained 21% of the variation in the physical surface variables (Ra and SMH). The application of toothpaste prior to dental bleaching did not interfere with the effectiveness of treatment. The bioactive glass based toothpaste protected the enamel against the deleterious

  18. Enhanced transport of materials into enamel nanopores via electrokinetic flow.

    PubMed

    Gan, H Y; Sousa, F B; Carlo, H L; Maciel, P P; Macena, M S; Han, J

    2015-04-01

    The ability to infiltrate various molecules and resins into dental enamel is highly desirable in dentistry, yet transporting materials into dental enamel is limited by the nanometric scale of their pores. Materials that cannot be infiltrated into enamel by diffusion/capillarity are often considered molecules with sizes above a critical threshold, which are often considered to be larger than the pores of enamel. We challenge this notion by reporting the use of electrokinetic flow to transport solutions with molecules with sizes above a critical threshold-namely, an aqueous solution with a high refractive index (Thoulet's solution) and a curable fluid resin infiltrant (without acid etching)-deep into the normal enamel layer. Volume infiltration by Thoulet's solution is increased by 5- to 6-fold, and resin infiltration depths as large as 600 to 2,000 µm were achieved, in contrast to ~10 µm resulting from diffusion/capillarity. Incubation with demineralization solution for 192 h resulted in significant demineralization at noninfiltrated histologic points but not at resin infiltrated. These results open new avenues for the transport of materials in dental enamel. © International & American Associations for Dental Research 2015.

  19. Optical pen-size reflectometer for monitoring of early dental erosion in native and polished enamels.

    PubMed

    Rakhmatullina, Ekaterina; Bossen, Anke; Bachofner, Kai K; Meier, Christoph; Lussi, Adrian

    2013-11-01

    Application of the specular reflection intensity was previously reported for the quantification of early dental erosion. Further development of the technique and assembly of the miniaturized pen-size instrument are described. The optical system was adjusted to fit into a handy device which could potentially access different positions in the oral cavity. The assembled instrument could successfully detect early erosion progression in both polished (n=70) and native (n=20) human enamels. Different severities of enamel erosion were induced by varying incubation time of polished enamel in 1% citric acid (pH=3.60, 0.5 to 10 min), while the native incisors were treated in the commercial orange juice (Tropicana Pure Premium®, pH=3.85, 10 to 60 min). The instrument provided a good differentiation between various severities of the erosion in vitro. The size of the measurement spot affected the erosion monitoring in native enamel (human incisors). The erosion measurement in the 0.7-mm (diameter) cervical spots showed systematically lower reflection intensities compared with the analysis of central and incisal small spots. The application of larger spot areas (2.3 mm) for the erosion monitoring revealed no effect (p>0.05) of the spot position on the reflection signal. High variation of the teeth susceptibility toward in vitro erosion was detected in native enamel.

  20. Regulation of Dental Enamel Shape and Hardness

    PubMed Central

    Simmer, J.P.; Papagerakis, P.; Smith, C.E.; Fisher, D.C.; Rountrey, A.N.; Zheng, L.; Hu, J.C.-C.

    2010-01-01

    Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation. PMID:20675598

  1. Root-like enamel pearl: a case report

    PubMed Central

    2014-01-01

    Introduction In general, enamel pearls are found in maxillary molars as a small globule of enamel. However, this case report describes an enamel pearl with a prolate spheroid shape which is 1.8mm wide and 8mm long. The different type of enamel pearl found in my clinic has significantly improved our understanding of enamel pearl etiology and pathophysiology. Case presentation A 42-year-old Han Chinese woman with severe toothache received treatment in my Department of Endodontics. She had no significant past medical history. A dental examination revealed extensive distal decay in her left mandibular first molar, tenderness to percussion and palpation of the periradicular zone, and found a deep periodontal pocket on the buccal lateral. Vitality testing was negative. Periapical radiographic images revealed radiolucency around the mesial apex. Cone beam computed tomography detected an opaque enamel pearl in the furcation area with a prolate spheroid shape of 1.8mm wide and 8mm long. Conclusion The enamel pearl described in this case report is like a very long dental root. Cone beam computed tomography may be used for evaluating enamel pearls. PMID:25008098

  2. Ceramic-like wear behaviour of human dental enamel.

    PubMed

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    PubMed

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  4. Dental Calculus Arrest of Dental Caries.

    PubMed

    Keyes, Paul H; Rams, Thomas E

    An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.

  5. Dental Calculus Arrest of Dental Caries

    PubMed Central

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993

  6. Vertical scanning interferometry: A new method to quantify re-/de-mineralization dynamics of dental enamel.

    PubMed

    Pignatelli, Isabella; Kumar, Aditya; Shah, Kumar; Balonis, Magdalena; Bauchy, Mathieu; Wu, Benjamin; Sant, Gaurav

    2016-10-01

    Remineralization and demineralization are processes that compete in the oral environment. At this time, numerous therapeutic agents are being developed to promote remineralization (precipitation) or suppress demineralization (dissolution). To evaluate the relative efficacy of such treatments, there is a need for non-invasive, real-time, high-resolution quantifications of topographical changes occurring during demineralization and remineralization. Vertical scanning interferometry (VSI) is demonstrated to be a quantitative method to assess reactions, and topographical changes occurring on enamel surfaces following exposure to demineralizing, and remineralizing liquids. First, the dissolution rate of enamel was compared to that of synthetic hydroxyapatite (HAP) under acidic conditions (pH=4). Second, VSI was used to compare the remineralization effects of F(-)-based and CCP-ACP agents. The former produced a remineralization rate of ≈349nm/h, similar to simulated body fluid (SBF; concentration 4.6×) while the latter produced a remineralization rate of ≈55nm/h, corresponding to 1.7× SBF. However, the precipitates formed by the CCP-ACP agent are found to demineralize 2.7× slower than that produced by its F(-)-counterpart. Based on this new VSI-based data, a remineralization factor (RF) and demineralization (DF) factor benchmarked, respectively, to 1× SBF and the demineralization rate of human enamel are suggested as figures of merit of therapeutic performance of dental treatments. Taken together, the outcomes offer new insights that can inform clinicians and researchers on the selection of remineralization strategies. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser

    PubMed Central

    Pires, Patrícia T.; Ferreira, João C.; Oliveira, Sofia A.; Azevedo, Álvaro F.; Dias, Walter R.; Melo, Paulo R.

    2013-01-01

    Context: Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Aims: Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. Subjects and Methods: One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I – 37% phosphoric acid (PA)+ ExciTE®; Group II – ExciTE®; Group III – AdheSE® self-etching; Group IV – FuturaBond® no-rinse. NR; Group V – Xeno® V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. Statistical Analysis Used: One-way ANOVA and post-hoc tests (P < 0.05). For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA) and the etching pattern analyzed under Scanning Electron Microscope (SEM). Results: Mean bond strengths were Group I – 47.17 ± 1.61 MPa (type I etching pattern); Group II – 32.56 ± 1.64 MPa, Group III – 29.10 ± 1.34 MPa, Group IV – 23.32 ± 1.53 MPa (type III etching pattern); Group V – 24.43 MPa ± 1.55 (type II etching pattern). Conclusions: Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE® and ExciTE® without condition with PA. FuturaBond® NR and Xeno® V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used. PMID:23853447

  8. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf

    1995-03-01

    The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).

  9. Efficacy and cytotoxicity of a bleaching gel after short application times on dental enamel.

    PubMed

    Soares, Diana Gabriela; Ribeiro, Ana Paula Dias; da Silveira Vargas, Fernanda; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2013-11-01

    This study aimed to evaluate and correlate the efficacy and cytotoxicity of a 35 % hydrogen peroxide (HP) bleaching gel after different application times on dental enamel. Enamel/dentin disks in artificial pulp chambers were placed in wells containing culture medium. The following groups were formed: G1, control (no bleaching); G2 and G3, three or one 15-min bleaching applications, respectively; and G4 and G5, three or one 5-min bleaching applications, respectively. Extracts (culture medium with bleaching gel components) were applied for 60 min on cultured odontoblast-like MDPC-23 cells. Cell metabolism (methyl tetrazolium assay) (Kruskal-Wallis/Mann-Whitney; α = 5 %) and cell morphology (scanning electron microscopy) were analyzed immediately after the bleaching procedures and the trans-enamel and trans-dentinal HP diffusion quantified (one-way analysis of variance/Tukey's test; α = 5 %). The alkaline phosphatase (ALP) activity was evaluated 24 h after the contact time of the extracts with the cells (Kruskal-Wallis/Mann-Whitney; α = 5 %). Tooth color was analyzed before and 24 h after bleaching using a spectrophotometer according to the Commission Internationale de l'Eclairage L*a*b* system (Kruskal-Wallis/Mann-Whitney; α = 0.05). Significant difference (p < 0.05) in cell metabolism occurred only between G1 (control, 100 %) and G2 (60.6 %). A significant decrease (p < 0.05) in ALP activity was observed between G2, G3, and G4 in comparison with G1. Alterations on cell morphology were observed in all bleached groups. The highest values of HP diffusion and color alterations were observed for G2, with significant difference among all experimental groups (p < 0.05). G3 and G4 presented intermediate color change and HP diffusion values with no statistically significant differences between them (p > 0.05). The lowest amount of HP diffusion was observed in G5 (p < 0.05), which also exhibited no significant color alteration compared to the control group (p > 0.05). HP

  10. Esthetic restorative materials and opposing enamel wear.

    PubMed

    Olivera, Anna Belsuzarri; Marques, Márcia Martins

    2008-01-01

    This in vitro study compared the effects of a gold alloy (Degulor M), four dental ceramics (IPS Empress, IPS Empress 2, Duceram Plus, Duceram LFC) and a laboratory-processed composite (Targis) on the wear of human enamel. The amount of wear of the enamel (dental cusps) and restorative materials (disks) were tested in water at 37 degrees C under standard load (20 N), with a chewing rate of 1.3 Hz and was determined after 150,000 and 300,000 cycles. Before the test, the average surface roughness of the restorative materials was analyzed using the Ra parameter. The results of this study indicate that Targis caused enamel wear similar to Degulor M and resulted in significantly less wear than all the ceramics tested. IPS Empress provoked the greatest amount of enamel wear and Degulor M caused less vertical dimension loss. Targis could be an appropriate alternative material to ceramic, because it is esthetic and produces opposing enamel wear comparable to gold alloy.

  11. Dental caries and developmental defects of enamel in relation to fluoride levels in drinking water in an arid area of Sri Lanka.

    PubMed

    Ekanayake, L; van der Hoek, W

    2002-01-01

    The study was conducted to assess caries and developmental defects of enamel in relation to fluoride levels in drinking water and the association between caries experience and the severity of diffuse opacities in children living in Uda Walawe, an area with varying concentrations of fluoride in drinking water in Sri Lanka. A total of 518 14-year-old children who were lifelong residents in this area were examined for dental caries and developmental defects of enamel. But the present analysis is confined to 486 children from whom drinking water samples were collected. The prevalence of enamel defects and diffuse opacities ranged from 27 to 57% while the prevalence of caries ranged from 18 to 29% in the different fluoride exposure groups. The prevalence of enamel defects increased significantly with the increase in the fluoride level in drinking water. Both the caries prevalence and the mean caries experience were significantly higher in children with diffuse opacities than in those without in the group consuming water containing >0.70 mg/l of fluoride. The association between dental caries and the severity of diffuse opacities was also significant only in this group. Children with the mildest form of opacities (DDE scores 3 and 4) had the lowest DMFS (0.25 +/- 0.7), and the highest DMFS (1.1 +/- 1.7) was found in those with the most severe form of opacities (DDE score 6). In conclusion, the relationship that was observed in this study between fluoride levels in drinking water, diffuse opacities and caries suggests that the appropriate level of fluoride in drinking water for arid areas of Sri Lanka is around 0.3 mg/l. Also individuals with severe forms of enamel defects in high-fluoride areas are susceptible to dental caries. Copyright 2002 S. Karger AG, Basel

  12. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    PubMed

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  13. Inhibition of enamel remineralization with blue LED: an in vitro study

    NASA Astrophysics Data System (ADS)

    Kato, Ilka Tiemy; Mendes, Fausto Medeiros; Zezell, Denise Maria; Zanardi de Freitas, Anderson; Raele, Marcus Paulo; Wetter, Niklaus Ursus

    2009-02-01

    Blue light, especially from LED devices, is a tool very frequently used in dental procedures. However, the investigations of its effects on dental enamel are focused primarily on enamel demineralization and fluoride retention. Despite the fact that this spectral region can inhibit enamel demineralization, the consequences of the irradiation on demineralized enamel are not known. For this reason, we evaluated the effects of blue LED on enamel remineralization. Artificial lesions formed in bovine dental enamel samples by immersion in undersaturated acetate buffer were divided into three groups. In the first group (DE), the lesions were not submitted to any treatment. In the second (RE), the lesions were submitted to remineralization. The lesions from the third group (LED+RE) were irradiated with blue LED (455nm, 1.38W/cm2, 13.75J/cm2 and 10s) before the remineralization. Cross-sectional microhardness was used to assess mineral changes induced by remineralization under pH-cycling. The mineral deposition occurred preferably in the middle portion of the lesions. Specimens from group RE showed higher hardness value than the DE ones. On the other hand, the mean hardness value of the LED+RE samples was not statistically different from the DE samples. Results obtained in the present study show that the blue light is not innocuous for the dental enamel and inhibition of its remineralization can occur.

  14. Microabrasion in tooth enamel discoloration defects: three cases with long-term follow-ups

    PubMed Central

    SUNDFELD, Renato Herman; SUNDFELD-NETO, Daniel; MACHADO, Lucas Silveira; FRANCO, Laura Molinar; FAGUNDES, Ticiane Cestari; BRISO, André Luiz Fraga

    2014-01-01

    Superficial irregularities and certain intrinsic stains on the dental enamel surfaces can be resolved by enamel microabrasion, however, treatment for such defects need to be confined to the outermost regions of the enamel surface. Dental bleaching and resin-based composite repair are also often useful for certain situations for tooth color corrections. This article presented and discussed the indications and limitations of enamel microabrasion treatment. Three case reports treated by enamel microabrasion were also presented after 11, 20 and 23 years of follow-ups. PMID:25141208

  15. Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel.

    PubMed

    Anastasiou, A D; Strafford, S; Thomson, C L; Gardy, J; Edwards, T J; Malinowski, M; Hussain, S A; Metzger, N K; Hassanpour, A; Brown, C T A; Brown, A P; Duggal, M S; Jha, A

    2018-04-15

    A radical new methodology for the exogenous mineralization of hard tissues is demonstrated in the context of laser-biomaterials interaction. The proposed approach is based on the use of femtosecond pulsed lasers (fs) and Fe 3+ -doped calcium phosphate minerals (specifically in this work fluorapatite powder containing Fe 2 O 3 nanoparticles (NP)). A layer of the synthetic powder is applied to the surface of eroded bovine enamel and is irradiated with a fs laser (1040 nm wavelength, 1 GHz repetition rate, 150 fs pulse duration and 0.4 W average power). The Fe 2 O 3 NPs absorb the light and may act as thermal antennae, dissipating energy to the vicinal mineral phase. Such a photothermal process triggers the sintering and densification of the surrounding calcium phosphate crystals thereby forming a new, dense layer of typically ∼20 μm in thickness, which is bonded to the underlying surface of the natural enamel. The dispersed iron oxide NPs, ensure the localization of temperature excursion, minimizing collateral thermal damage to the surrounding natural tissue during laser irradiation. Simulated brushing trials (pH cycle and mechanical force) on the synthetic layer show that the sintered material is more acid resistant than the natural mineral of enamel. Furthermore, nano-indentation confirms that the hardness and Young's modulus of the new layers are significantly more closely matched to enamel than current restorative materials used in clinical dentistry. Although the results presented herein are exemplified in the context of bovine enamel restoration, the methodology may be more widely applicable to human enamel and other hard-tissue regenerative engineering. In this work we provide a new methodology for the mineralisation of dental hard tissues using femtosecond lasers and iron doped biomaterials. In particular, we demonstrate selective laser sintering of an iron doped fluorapatite on the surface of eroded enamel under low average power and mid

  16. Modelling of micromachining of human tooth enamel by erbium laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.

    2014-08-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.

  17. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization.

    PubMed

    Martins, Mariana Leonel; Leite, Karla Lorene de França; Pacheco-Filho, Edivaldo Ferreira; Pereira, Adriana Farah de Miranda; Romanos, Maria Teresa Villela; Maia, Lucianne Cople; Fonseca-Gonçalves, Andréa; Padilha, Wilton Wilney Nascimento; Cavalcanti, Yuri Wanderley

    2018-05-23

    The efficacy of a red propolis hydro-alcoholic extract (RP) in controlling Streptococcus mutans biofilm colonization was evaluated. The effect of RP on dental demineralization was also investigated. Chemical composition was determined by High Performance Liquid Chromatography (HPLC). Minimum Inhibitory and Bactericidal Concentration (MIC and MBC, respectively) were investigated against Streptococcus mutans (ATCC 25175). The cytotoxic potential of 3% RP in oral fibroblasts was observed after 1 and 3 min. Bovine dental enamel blocks (N = 24) were used for S. mutans biofilm formation (48 h), simulating 'feast or famine' episodes. Blocks/biofilms were exposed 2×/day, for 3 days, to a cariogenic challenge with sucrose 10% (5 min) and treated (1 min) with: 0.85% saline solution (negative control), 0.12% Chlorhexidine (CHX, positive control for biofilm colonization), 0.05% Sodium Fluoride (NaF, positive control to avoid demineralization) and 3% RP. Biofilms were assessed for viability (CFU/mL), and to observe the concentration of soluble and insoluble extracellular polysaccharides (SEPS and IEPS). Dental demineralization was assessed by the percentage of surface hardness loss (%SHL) and through polarized light microscopy (PLM). The RP presented 4.0 pH and ºBrix = 4.8. The p-coumaric acid (17.2 μg/mL) and luteolin (15.23 μg/mL) were the largest contents of phenolic acids and flavonoids, respectively. MIC and MBC of RP were 293 μg/mL and 1172 μg/mL, respectively. The 3% RP showed 43% of viably cells after 1 min. Lower number (p < 0.05) of viable bacteria (CFU/mL) was observed after CHX (1.8 × 10 5 ) followed by RP (1.8 × 10 7 ) treatments. The lowest concentration (μg/CFU) of SEPS (12.6) and IEPS (25.9) was observed in CHX (p < 0.05) followed by RP (17.1 and 54.3), and both differed from the negative control (34.4 and 63.9) (p < 0.05). Considering the %SHL, all groups differed statistically (p < 0.05) from the

  18. In vitro study of the effects of fluoride-releasing dental materials on remineralization in an enamel erosion model.

    PubMed

    Zhou, San Ling; Zhou, Jun; Watanabe, Shigeru; Watanabe, Koji; Wen, Ling Ying; Xuan, Kun

    2012-03-01

    This study was conducted to compare the remineralization effects of five regimens on the loss of fluorescence intensity, surface microhardness, roughness and microstructure of bovine enamel after remineralization. We hope that these results can provide some basis for the clinical application of these materials. One hundred bovine incisors were prepared and divided into the following five groups, which were treated with distinct dental materials: (1) Clinpro™ XT varnish (CV), (2) F-varnish (FV), (3) Tooth Mousse (TM), (4) Fuji III LC(®) light-cured glass ionomer pit and fissure sealant (FJ) and (5) Base Cement(®) glass polyalkenoate cement (BC). Subsequently, they were detected using four different methods: quantitative light-induced fluorescence, microhardness, surface 3D topography and scanning electron microscopy (SEM). The loss of fluorescence intensity of CV, BC and FJ groups showed significant decreases after remineralization (p<0.05). The microhardness values of the BC group were significantly higher than those of the other groups (p<0.05) after 6 weeks of remineralization. The CV group's surface roughness was significantly lower than those of the other groups after 6 weeks of remineralization (p<0.05). Regarding microstructure values, the FV group showed many round particles deposited in the bovine enamel after remineralization. However, the other four groups mainly showed needle-like crystals. Glass ionomer cement (GIC)-based dental materials can promote more remineralization of the artificial enamel lesions than can NaF-based dental materials. Resin-modified GIC materials (e.g., CV and FJ) have the potential for more controlled and sustained release of remineralized agents. The effect of TM requires further study. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. The Role of Na:K:2Cl Cotransporter 1 (NKCC1/SLC12A2) in Dental Epithelium during Enamel Formation in Mice

    PubMed Central

    Jalali, Rozita; Lodder, Johannes C.; Zandieh-Doulabi, Behrouz; Micha, Dimitra; Melvin, James E.; Catalan, Marcelo A.; Mansvelder, Huibert D.; DenBesten, Pamela; Bronckers, Antonius

    2017-01-01

    Na+:K+:2Cl− cotransporters (NKCCs) belong to the SLC12A family of cation-coupled Cl− transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for Nkcc1 were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer. In incisors of Nkcc1-null mice late maturation ameloblasts were disorganized, shorter and the mineral density of the enamel was reduced by 10% compared to wild-type controls. Protein levels of gap junction protein connexin 43, Na+-dependent bicarbonate cotransporter e1 (NBCe1), and the Cl−-dependent bicarbonate exchangers SLC26A3 and SLC26A6 were upregulated in Nkcc1-null enamel organs while the level of NCKX4/SLC24A4, the major K+, Na+ dependent Ca2+ transporter in maturation ameloblasts, was slightly downregulated. Whole-cell voltage clamp studies on rat ameloblast-like HAT-7 cells indicated that bumetanide increased ion-channel activity conducting outward currents. Bumetanide also reduced cell volume of HAT-7 cells. We concluded that non-ameloblast dental epithelium expresses NKCC1 to regulate cell volume in enamel organ and provide ameloblasts with Na+, K+ and Cl− ions required for the transport of mineral- and bicarbonate-ions into enamel. Absence of functional Nkcc1 likely is compensated by other types of ion channels and ion transporters. The increased amount of Cx43 in enamel organ cells in Nkcc1-null mice suggests that these cells display a higher number of gap junctions to increase intercellular communication. PMID:29209227

  20. The effects of acid erosion and remineralization on enamel and three different dental materials: FT-Raman spectroscopy and scanning electron microscopy analysis.

    PubMed

    Soares, Luís Eduardo Silva; Soares, Ana Lúcia Silva; De Oliveira, Rodrigo; Nahórny, Sidnei

    2016-07-01

    FT-Raman spectroscopy and scanning electron microscopy (SEM) were employed to test the hypothesis that the beverage consumption or mouthwash utilization would change the chemistry of dental materials and enamel inorganic content. Bovine enamel samples (n = 36) each received two cavity preparations (n = 72), each pair filled with one of three dental materials (R: nanofilled composite resin, GIC: glass-ionomer cement, RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: artificial saliva, E: erosion/Pepsi Twist or EM: erosion + mouthwash/Colgate Plax). Reduction of carbonate content of enamel was greater in RE than RS (P < 0.01). Increment of carbonate was greater in GICEM than in GICE and GICS (P < 0.01; P < 0.001). Significant material degradation was found in RE, REM, GICE, and GICEM than in RS and GICS (P < 0.01; P < 0.001). SEM showed clear enamel demineralization after erosion. Material degradation was greater after E and EM than S. GIC and RMGIC materials had a positive effect against acid erosion in the adjacent enamel after remineralization with mouthwash. The beverage and mouthwash utilization would change R and GIC chemical properties. A professional should periodically monitor the glass-ionomer and resin restorations, as they degrade over time under erosive challenges and mouthwash utilization. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc. Microsc. Res. Tech. 79:646-656, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation

    PubMed Central

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J.; Cao, Huojun; Amendt, Brad A.

    2017-01-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1−/− mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. PMID:28746823

  2. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation.

    PubMed

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J; Cao, Huojun; Amendt, Brad A

    2017-09-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1 -/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization.

    PubMed

    Jeremias, Fabiano; Koruyucu, Mine; Küchler, Erika C; Bayram, Merve; Tuna, Elif B; Deeley, Kathleen; Pierri, Ricardo A; Souza, Juliana F; Fragelli, Camila M B; Paschoal, Marco A B; Gencay, Koray; Seymen, Figen; Caminaga, Raquel M S; dos Santos-Pinto, Lourdes; Vieira, Alexandre R

    2013-10-01

    Genetic disturbances during dental development influence variation of number and shape of the dentition. In this study, we tested if genetic variation in enamel formation genes is associated with molar-incisor hypomineralization (MIH), also taking into consideration caries experience. DNA samples from 163 cases with MIH and 82 unaffected controls from Turkey, and 71 cases with MIH and 89 unaffected controls from Brazil were studied. Eleven markers in five genes [ameloblastin (AMBN), amelogenin (AMELX), enamelin (ENAM), tuftelin (TUFT1), and tuftelin-interacting protein 11 (TFIP11)] were genotyped by the TaqMan method. Chi-square was used to compare allele and genotype frequencies between cases with MIH and controls. In the Brazilian data, distinct caries experience within the MIH group was also tested for association with genetic variation in enamel formation genes. The ENAM rs3796704 marker was associated with MIH in both populations (Brazil: p=0.03; OR=0.28; 95% C.I.=0.06-1.0; Turkey: p=1.22e-012; OR=17.36; 95% C.I.=5.98-56.78). Associations between TFIP11 (p=0.02), ENAM (p=0.00001), and AMELX (p=0.01) could be seen with caries independent of having MIH or genomic DNA copies of Streptococcus mutans detected by real time PCR in the Brazilian sample. Several genes involved in enamel formation appear to contribute to MIH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique

    NASA Astrophysics Data System (ADS)

    Yin, Jiali; Mei, May Lei; Li, Quanli; Xia, Rong; Zhang, Zhihong; Chu, Chun Hung

    2016-05-01

    We aimed to create a slippery liquid-infused enamel surface with antibiofouling property to prevent dental biofilm/plaque formation. First, a micro/nanoporous enamel surface was obtained by 37% phosphoric acid etching. The surface was then functionalized by hydrophobic low-surface energy heptadecafluoro-1,1,2,2-tetra- hydrodecyltrichlorosilane. Subsequent infusion of fluorocarbon lubricants (Fluorinert FC-70) into the polyfluoroalkyl-silanized rough surface resulted in an enamel surface with slippery liquid-infused porous surface (SLIPS). The results of water contact angle measurement, diffuse-reflectance Fourier transform infrared spectroscopy, and atomic force microscope confirmed that the SLIPS was successfully constructed on the enamel surface. The antibiofouling property of the SLIPS was evaluated by the adsorption of salivary protein of mucin and Streptococcus mutans in vitro, as well as dental biofilm formation using a rabbit model in vivo. The results showed that the SLIPS on the enamel surface significantly inhibited mucin adhesion and S. mutans biofilm formation in vitro, and inhibited dental plaque formation in vivo.

  5. Penetration of Streptococcus sobrinus and Streptococcus sanguinis into dental enamel.

    PubMed

    Kneist, Susanne; Nietzsche, Sandor; Küpper, Harald; Raser, Gerhard; Willershausen, Brita; Callaway, Angelika

    2015-10-01

    The aim of this pilot study was to assess the difference in virulence of acidogenic and aciduric oral streptococci in an in vitro caries model using their penetration depths into dental enamel. 30 caries-free extracted molars from 11- to 16-year-olds were cleaned ultrasonically for 1 min with de-ionized water and, after air-drying, embedded in epoxy resin. After 8-h of setting at room temperature, the specimens were ground on the buccal side with SiC-paper 1200 (particle size 13-16 μm). Enamel was removed in circular areas sized 3 mm in diameter; the mean depth of removed enamel was 230 ± 60 μm. 15 specimens each were incubated anaerobically under standardized conditions with 24 h-cultures of Streptococcus sanguinis 9S or Streptococcus sobrinus OMZ 176 in Balmelli broth at 37 ± 2 °C; the pH-values of the broths were measured at the beginning and end of each incubation cycle. After 2, 4, 6, 8, and 10 weeks 3 teeth each were fixed in 2.5% glutaraldehyde in cacodylate buffer for 24 h, washed 3× and dehydrated 30-60min by sequential washes through a series of 30-100% graded ethanol. The teeth were cut in half longitudinally; afterward, two slits were made to obtain fracture surfaces in the infected area. After critical-point-drying the fragments were gold-sputtered and viewed in a scanning electron microscope at magnifications of ×20-20,000. After 10 weeks of incubation, penetration of S. sanguinis of 11.13 ± 24.04 μm below the break edges into the enamel was observed. The invasion of S. sobrinus reached depths of 87.53 ± 76.34 μm. The difference was statistically significant (paired t test: p = 0.033). The experimental penetration depths emphasize the importance of S. sanguinis versus S. sobrinus in the context of the extended ecological plaque hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Modelling of micromachining of human tooth enamel by erbium laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength betweenmore » the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)« less

  7. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    NASA Astrophysics Data System (ADS)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  8. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy.

    PubMed

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, Óscar-Andrey

    2017-01-01

    There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and PolaOffice) according to the manufacturer´s instructions. The concentration of carbonate molecules in enamel was measured prior to and during the treatment by means of Raman spectroscopy. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. At home bleaching agents depicted a decrease in the carbonate molecule. This decrease was statistically significant for the bleaching gel with the highest hydrogen peroxide concentration ( p ≤0,05). In-office whitening agents caused an increase in carbonate, which was significant for all three groups ( p ≤0,05). In-office bleaching gels seem to cause a gain in carbonate of the enamel structure, whilst at-home whitening gels caused a loss in carbonate. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, carbonate.

  9. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy

    PubMed Central

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, Óscar-Andrey

    2017-01-01

    Background There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Material and Methods Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and PolaOffice) according to the manufacturer´s instructions. The concentration of carbonate molecules in enamel was measured prior to and during the treatment by means of Raman spectroscopy. Statistical analysis included repeated measures analysis of variance (p≤0.05) and Bonferroni pairwise comparisons. Results At home bleaching agents depicted a decrease in the carbonate molecule. This decrease was statistically significant for the bleaching gel with the highest hydrogen peroxide concentration (p≤0,05). In-office whitening agents caused an increase in carbonate, which was significant for all three groups (p≤0,05). Conclusions In-office bleaching gels seem to cause a gain in carbonate of the enamel structure, whilst at-home whitening gels caused a loss in carbonate. Key words:Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, carbonate. PMID:28149472

  10. Effect of different dental ceramic systems on the wear of human enamel: An in vitro study.

    PubMed

    Zandparsa, Roya; El Huni, Rabie M; Hirayama, Hiroshi; Johnson, Marc I

    2016-02-01

    The wear of tooth structure opposing different advanced dental ceramic systems requires investigation. The purpose of this in vitro study was to compare the wear of advanced ceramic systems against human enamel antagonists. Four ceramic systems (IPS e.max Press, IPS e.max CAD, Noritake Super Porcelain EX-3, and LAVA Plus Zirconia) and 1 control group containing human enamel specimens were used in this study (n = 12). All specimens were fabricated as disks 11 mm in diameter and 3 mm thick. The mesiopalatal cusps of the maxillary third molars were prepared to serve as the enamel styluses. All specimens were embedded individually in 25 mm(3) autopolymerizing acrylic resin blocks. Wear was measured with a cyclic loading machine and a newly designed wear simulator. All enamel styluses (cusps) were scanned using the Activity 880 digital scanner (SmartOptics). Data from the base line and follow-up scans were collected and compared with Qualify 2012 3-dimensional (3D) and 2D digital inspection software (Geomagic), which aligned the models and detected the geometric changes and the wear caused by the antagonist specimen. One-way ANOVA was used to analyze the collected data. After 125,000 bidirectional loading cycles, the mean loss of opposing enamel volume for the enamel disks in the control group was 37.08 μm(3), the lowest mean value for IPS e.max Press system was 39.75 μm(3); 40.58 μm(3) for IPS e.max CAD; 45.08 μm(3) for Noritake Super Porcelain EX-3 system; and 48.66 μm(3) for the Lava Plus Zirconia system. No statically significant differences were found among the groups in opposing enamel volume loss (P=.225) or opposing enamel height loss (P=.149). In terms of opposing enamel height loss, Lava Plus Zirconia system showed the lowest mean value of 27.5 μm. The mean value for the IPS e.max CAD system was 27.91 μm; 29.08 μm for the control enamel; 33.25 μm for the IPS e.max Press system; and 34.75 μm for the Noritake Super Porcelain EX-3 system. Within the

  11. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    PubMed Central

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID). PMID:28079165

  12. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    NASA Astrophysics Data System (ADS)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  13. Refining enamel thickness measurements from B-mode ultrasound images.

    PubMed

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  14. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    PubMed

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (< 20 micros) CO(2) laser pulses at 9.6 microm and for Q-switched erbium laser pulses at 2.79 and 2.94 microm. Droplets of water applied to the surface before ablation significantly reduced the residual heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  15. Effect of carbonated beverages, coffee, sports and high energy drinks, and bottled water on the in vitro erosion characteristics of dental enamel.

    PubMed

    Kitchens, Michael; Owens, Barry M

    2007-01-01

    This study evaluated the effect of carbonated and non-carbonated beverages, bottled and tap water, on the erosive potential of dental enamel with and without fluoride varnish protection. Beverages used in this study included: Coca Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappuccino coffee drink, Dasani water (bottled), and tap water (control). Enamel surfaces were coated with Cavity Shield 5% sodium fluoride treatment varnish. Twenty-eight previously extracted human posterior teeth free of hypocalcification and caries were used in this study. The coronal portion of each tooth was removed and then sectioned transverse from the buccal to lingual surface using a diamond coated saw blade. The crown sections were embedded in acrylic resin blocks leaving the enamel surfaces exposed. The enamel surfaces were polished using 600 to 2000 grit abrasive paper and diamond paste. Test specimens were randomly distributed to seven beverage groups and comprised 4 specimens per group. Two specimens per beverage group were treated with a fluoride varnish while 2 specimens did not receive fluoride coating. Surface roughness (profilometer) readings were performed at baseline (prior to fluoride treatment and immersion in the beverage) and again, following immersion for 14 days (24 hours/day). The test beverages were changed daily and the enamel specimens were immersed at 37 degrees C. Surface roughness data was evaluated using multiple factor ANOVA at a significance level of p<0.05. Results showed that Coca-Cola Classic, Gatorade and Red Bull with/without fluoride revealed the highest post-treatment surface roughness measurements. Coca-Cola Classic, Diet Coke, Gatorade, and Red Bull all showed significantly higher post treatment readings than StarBucks coffee, Dasani water, and tap water. Fluoride varnish was not a significant impact factor; however, beverage (type) and exposure time were significant impact variables. Both carbonated and non

  16. Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.

    PubMed

    Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2015-11-01

    This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P < 0.05). The pulse repetition rate of the Er:YAG laser did not affect roughness of dental enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.

  17. Mechanisms and causes of wear in tooth enamel: implications for hominin diets

    PubMed Central

    Lucas, Peter W.; Omar, Ridwaan; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S.; Henry, Amanda G.; Michael, Shaji; Thai, Lidia Arockia; Watzke, Jörg; Strait, David S.; Atkins, Anthony G.

    2013-01-01

    The wear of teeth is a major factor limiting mammalian lifespans in the wild. One method of describing worn surfaces, dental microwear texture analysis, has proved powerful for reconstructing the diets of extinct vertebrates, but has yielded unexpected results in early hominins. In particular, although australopiths exhibit derived craniodental features interpreted as adaptations for eating hard foods, most do not exhibit microwear signals indicative of this diet. However, no experiments have yet demonstrated the fundamental mechanisms and causes of this wear. Here, we report nanowear experiments where individual dust particles, phytoliths and enamel chips were slid across a flat enamel surface. Microwear features produced were influenced strongly by interacting mechanical properties and particle geometry. Quartz dust was a rigid abrasive, capable of fracturing and removing enamel pieces. By contrast, phytoliths and enamel chips deformed during sliding, forming U-shaped grooves or flat troughs in enamel, without tissue loss. Other plant tissues seem too soft to mark enamel, acting as particle transporters. We conclude that dust has overwhelming importance as a wear agent and that dietary signals preserved in dental microwear are indirect. Nanowear studies should resolve controversies over adaptive trends in mammals like enamel thickening or hypsodonty that delay functional dental loss. PMID:23303220

  18. Mechanisms and causes of wear in tooth enamel: implications for hominin diets.

    PubMed

    Lucas, Peter W; Omar, Ridwaan; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Henry, Amanda G; Michael, Shaji; Thai, Lidia Arockia; Watzke, Jörg; Strait, David S; Atkins, Anthony G

    2013-03-06

    The wear of teeth is a major factor limiting mammalian lifespans in the wild. One method of describing worn surfaces, dental microwear texture analysis, has proved powerful for reconstructing the diets of extinct vertebrates, but has yielded unexpected results in early hominins. In particular, although australopiths exhibit derived craniodental features interpreted as adaptations for eating hard foods, most do not exhibit microwear signals indicative of this diet. However, no experiments have yet demonstrated the fundamental mechanisms and causes of this wear. Here, we report nanowear experiments where individual dust particles, phytoliths and enamel chips were slid across a flat enamel surface. Microwear features produced were influenced strongly by interacting mechanical properties and particle geometry. Quartz dust was a rigid abrasive, capable of fracturing and removing enamel pieces. By contrast, phytoliths and enamel chips deformed during sliding, forming U-shaped grooves or flat troughs in enamel, without tissue loss. Other plant tissues seem too soft to mark enamel, acting as particle transporters. We conclude that dust has overwhelming importance as a wear agent and that dietary signals preserved in dental microwear are indirect. Nanowear studies should resolve controversies over adaptive trends in mammals like enamel thickening or hypsodonty that delay functional dental loss.

  19. [Comparison of translucency between enamel, dentin and Vita veneer porcelain].

    PubMed

    Xiong, Fang; Chao, Yong-lie; Zhu, Zhi-min

    2007-12-01

    To compare the translucency between enamel, dentin and dental porcelain. 32 newly extracted vital human central incisors were collected and cut into 0.8mm enamel slices and 1.0 mm dentin slices. 1.0 mm dental porcelain specimen were made with different Vita veneer porcelain, EN1, EN2, T4, Window, A1, A2, A3, A3.5, A4, B2, C2, D2, 3 samples for each kind. The transmittance and reflectance of tooth slices and porcelain specimen were measured by PR-650 spectra scan spectrocolorimeter. The transmittance coefficients were also calculated. The 95% confidence interval was obtained by SPSS 12.0 software package. SNK method was used to compare the transmittance coefficients of different dentin porcelains. The transmittance coefficient of tooth enamel ranged from 0.0817 mm(-1) to 0.1009 mm(-1), which was higher than that of two kinds of enamel porcelain (0.0507 mm(-1) for EN1 and 0.0408 mm(-1) for EN2). The transmittance coefficient of dentin (0.0418-0.0482 mm(-1)) was also higher than that of dentin porcelain (0.016-0.027 mm(-1)). The transmittance coefficient of dentin porcelain decreased with the increasing of chroma (P<0.05). Prominent difference exists between translucency of tooth tissue and dental porcelain, especially between enamel and enamel porcelain.

  20. Qualitative and quantitative evaluation of human dental enamel after bracket debonding: a noncontact three-dimensional optical profilometry analysis.

    PubMed

    Ferreira, Fabiano G; Nouer, Darcy F; Silva, Nelson P; Garbui, Ivana U; Correr-Sobrinho, Lourenço; Nouer, Paulo R A

    2014-09-01

    The aim of this study was to undertake a qualitative and quantitative evaluation of changes on enamel surfaces after debonding of brackets followed by finishing procedures, using a high-resolution three-dimensional optical profiler and to investigate the accuracy of the technique. The labial surfaces of 36 extracted upper central incisors were examined. Before bonding, the enamel surfaces were subjected to profilometry, recording four amplitude parameters. Brackets were then bonded using two types of light-cured orthodontic adhesive: composite resin and resin-modified glass ionomer cement. Finishing was performed by three different methods: pumice on a rubber cup, fine and ultrafine aluminum oxide discs, and microfine diamond cups followed by silicon carbide brushes. The samples were subsequently re-analyzed by profilometry. Wilcoxon signed-rank test, Kruskal-Wallis test (p < 0.05) and a posteriori Mann-Whitney U test with Bonferroni correction (p < 0.0167) revealed a significant reduction of enamel roughness when diamond cups followed by silicon carbide brushes were used to finish surfaces that had remnants of resin-modified glass ionomer adhesive and when pumice was used to finish surfaces that had traces of composite resin. Enamel loss was minimal. The 3D optical profilometry technique was able to provide accurate qualitative and quantitative assessment of changes on the enamel surface after debonding. Morphological changes in the topography of dental surfaces, especially if related to enamel loss and roughness, are of considerable clinical importance. The quantitative evaluation method used herein enables a more comprehensive understanding of the effects of orthodontic bonding on teeth.

  1. Dental enamel defects in German medieval and early-modern-age populations.

    PubMed

    Lang, J; Birkenbeil, S; Bock, S; Heinrich-Weltzien, R; Kromeyer-Hauschild, K

    2016-11-01

    Aim of this study was to investigate the frequency and type of developmental defects of enamel (DDE) in a medieval and an early-modern-age population from Thuringia, Germany. Sixty-six skeletons subdivided into 31 single burials (12 th /13 th c.) and 35 individuals buried in groups (15 th /16 th c.) were examined. DDE were classified on 1,246 teeth according to the DDE index. Molar-incisor-hypomineralisation (MIH), a special type of DDE, was recorded according to the European Academy of Paediatric Dentistry (EAPD) criteria. DDE was found in 89.4% of the individuals (single burials 90.3% and group burials 88.6%). Hypoplastic pits were the most frequent defect in primary teeth and linear enamel hypoplasia (LEH) in permanent teeth. 13 individuals (24.1%) showed at least one hypomineralised permanent tooth, 12.2% had MIH on at least one first permanent molar and 10.0% in permanent incisors. Second primary molars were affected in 8.0% of the children and juveniles. No individual suffered from affected molars and incisors in combination. Endogenous factors like nutritional deficiencies and health problems in early childhood could have been aetiological reasons of DDE and MIH. The frequency of DDE and MIH might have been masked by extended carious lesions, dental wear and ante-mortem tooth loss.

  2. Deformation behavior of human enamel and dentin-enamel junction under compression.

    PubMed

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  3. Enamel formation and growth in non-mammalian cynodonts

    PubMed Central

    Dirks, Wendy; Martinelli, Agustín G.

    2018-01-01

    The early evolution of mammals is associated with the linked evolutionary origin of diphyodont tooth replacement, rapid juvenile growth and determinate adult growth. However, specific relationships among these characters during non-mammalian cynodont evolution require further exploration. Here, polarized light microscopy revealed incremental lines, resembling daily laminations of extant mammals, in histological sections of enamel in eight non-mammalian cynodont species. In the more basal non-probainognathian group, enamel extends extremely rapidly from cusp to cervix. By contrast, the enamel of mammaliamorphs is gradually accreted, with slow rates of crown extension, more typical of the majority of non-hypsodont crown mammals. These results are consistent with the reduction in dental replacement rate across the non-mammalian cynodont lineage, with greater rates of crown extension required in most non-probainognathians, and slower crown extension rates permitted in mammaliamorphs, which have reduced patterns of dental replacement in comparison with many non-probainognathians. The evolution of mammal-like growth patterns, with faster juvenile growth and more abruptly terminating adult growth, is linked with this reduction in dental replacement rates and may provide an additional explanation for the observed pattern in enamel growth rates. It is possible that the reduction in enamel extension rates in mammaliamorphs reflects an underlying reduction in skeletal growth rates at the time of postcanine formation, due to a more abruptly terminating pattern of adult growth in these more mammal-like, crownward species. PMID:29892415

  4. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    PubMed

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Acid demineralization susceptibility of dental enamel submitted to different bleaching techniques and fluoridation regimens.

    PubMed

    Salomão, Dlf; Santos, Dm; Nogueira, Rd; Palma-Dibb, Rg; Geraldo-Martins, Vr

    2014-01-01

    The aim of the current study was to assess the acid demineralization susceptibility of bleached dental enamel submitted to different fluoride regimens. One hundred bovine enamel blocks (6×6×3 mm) were randomly divided into 10 groups (n=10). Groups 1 and 2 received no bleaching. Groups 3 to 6 were submitted to an at-home bleaching technique using 6% hydrogen peroxide (HP; G3 and G4) or 10% carbamide peroxide (CP; G5 and G6). Groups 7 to 10 were submitted to an in-office bleaching technique using 35% HP (G7 and G8) or 35% CP (G9 and G10). During bleaching, a daily fluoridation regimen of 0.05% sodium fluoride (NaF) solution was performed on groups 3, 5, 7, and 9, while weekly fluoridation with a 2% NaF gel was performed on groups 4, 6, 8, and 10. The samples in groups 2 to 10 were pH cycled for 14 consecutive days. The samples from all groups were then assessed by cross-sectional Knoop microhardness at different depths from the outer enamel surface. The average Knoop hardness numbers (KHNs) were compared using one-way analysis of variance and Tukey tests (α=0.05). The comparison between groups 1 and 2 showed that the demineralization method was effective. The comparison among groups 2 to 6 showed the same susceptibility to acid demineralization, regardless of the fluoridation method used. However, the samples from groups 8 and 10 showed more susceptibility to acid demineralization when compared with group 2 (p<0.05). Groups 7 and 9 provided similar results to group 2, but the results of those groups were different when compared with groups 8 and 10. The use of 6% HP and 10% CP associated with daily or weekly fluoridation regimens did not increase the susceptibility of enamel to acid demineralization. However, the use of 35% HP and 35% CP must be associated with a daily fluoridation regimen, otherwise the in-office bleaching makes the bleached enamel more susceptible to acid demineralization.

  6. Spectrally enhanced image resolution of tooth enamel surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2012-01-01

    Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.

  7. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy

    PubMed Central

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266

  8. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    PubMed

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-03-30

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.

  9. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes.

    PubMed

    Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S

    2015-10-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs. © International & American Associations for Dental Research 2015.

  10. Enamel Regeneration - Current Progress and Challenges

    PubMed Central

    Baswaraj; H.K, Navin; K.B, Prasanna

    2014-01-01

    Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration. PMID:25386548

  11. Bonding strategies for MIH-affected enamel and dentin.

    PubMed

    Krämer, Norbert; Bui Khac, Ngoc-Han Nana; Lücker, Susanne; Stachniss, Vitus; Frankenberger, Roland

    2018-02-01

    Aim of the present study was to evaluate resin composite adhesion to dental hard tissues affected by molar incisor hypomineralisation (MIH). 94 freshly extracted human molars and incisors (53 suffering MIH) were used. 68 teeth (35 with MIH) were used for μ-TBS tests in enamel and dentin, 26 (18 with MIH) for qualitative evaluation. Specimens were bonded with Clearfil SE Bond, Scotchbond Universal, and OptiBond FL. For MIH affected enamel, additional OptiBond FL groups with NaOCl and NaOCl+Icon were investigated. Beside fractographic analysis, also qualitative evaluations were performed using SEM at different magnifications as well as histological sectioning. Highest μ-TBS values were recorded with dentin specimens (ANOVA, mod. LSD, p<0.05). Results were independent of adhesive and dentin substrate (p>0.05). Pre-test failures did not occur in dentin specimens. Sound enamel specimens exhibited significantly higher μ-TBS values than MIH enamel (p<0.05). The two-step self-etch adhesive (Clearfil SE Bond) and the two-step etch-and-rinse adhesive (Scotchbond Universal) showed the lowest values in affected enamel specimens (p<0.05) with most pre-test failures (p<0.05). OptiBond FL on affected enamel showed better results than Clearfil SE Bond (p<0.05). An additional pre-treatment of affected enamel with NaOCl or NaOCl and Icon did not enhance enamel bonding (p>0.05), however, it caused less pre-test failures (p<0.05). Micromorphological analyses revealed that conventional phosphoric acid etching produces a much less pronounced etching pattern in affected enamel and a porous structure as weak link for the resin-enamel bond was identified. Bonding to porous hypomineralized MIH enamel is the limiting factor in adhesion to MIH teeth. MIH-affected dentin may be bonded conventionally. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. NBCe1 (SLC4A4) a potential pH Regulator in Enamel Organ Cells during Enamel Development in the Mouse

    PubMed Central

    Jalali, R; Guo, J; Zandieh-Doulabi, B; Bervoets, TJM; Paine, ML; Boron, W; Parker, M; Bijvelds, MJC; Medina, JF; DenBesten, PK; Bronckers, ALJJ

    2016-01-01

    During formation of dental enamel maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by co-transporting HCO3− with Na+. Mutation in SLC4A4 (coding for the Na+ bicarbonate co-transporter NBCe1) induces developmental defects in human and murine enamel. We hypothesized that NBCe1 in dental epithelium is engaged in neutralizing protons released during crystal formation in the enamel space. We immunolocalized NBCe1 protein in mouse wild-type dental epithelium and examined the effect of NBCe1-null mutation on enamel formation in mice. Ameloblasts expressed gene transcripts for NBCe1 isoforms B/D/C/E. In wild-type mice weak to moderate immunostaining for NBCe1 with antibodies that recognize isoforms A/B/D/E and isoform C was seen in ameloblasts in secretory stage, no or very low staining in early maturation-stage but moderately to high staining in late maturation-stage. The papillary layer showed the opposite pattern and immunostained prominently at early maturation-stage but gradually showed less staining at mid- and late maturation-stage. In NBCe1−/− mice ameloblasts were disorganized, the enamel thin and severely hypomineralized. Enamel organs of CFTR−/− and AE2a,b−/− mice (believed to be pH regulators in ameloblasts) contained higher levels of NBCe1 protein than wild-type mice. Our data show that expression of NBCe1 in ameloblast and papillary layer cell depends on developmental stage and possibly responds to pH changes. PMID:25012520

  13. The molecular basis of hereditary enamel defects in humans.

    PubMed

    Wright, J T; Carrion, I A; Morris, C

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. © International & American Associations for

  14. A simplified genetic design for mammalian enamel

    PubMed Central

    Snead, ML; Zhu, D; Lei, YP; Luo, W; Bringas, P.; Sucov, H.; Rauth, RJ; Paine, ML; White, SN

    2011-01-01

    A biomimetic replacement for tooth enamel is urgently needed because dental caries is the most prevalent infectious disease to affect man. Here, design specifications for an enamel replacement material inspired by Nature are deployed for testing in an animal model. Using genetic engineering we created a simplified enamel protein matrix precursor where only one, rather than dozens of amelogenin isoforms, contributed to enamel formation. Enamel function and architecture were unaltered, but the balance between the competing materials properties of hardness and toughness was modulated. While the other amelogenin isoforms make a modest contribution to optimal biomechanical design, the enamel made with only one amelogenin isoform served as a functional substitute. Where enamel has been lost to caries or trauma a suitable biomimetic replacement material could be fabricated using only one amelogenin isoform, thereby simplifying the protein matrix parameters by one order of magnitude. PMID:21295848

  15. Near-infrared imaging of developmental defects in dental enamel.

    PubMed

    Hirasuna, Krista; Fried, Daniel; Darling, Cynthia L

    2008-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) and near-infrared (NIR) imaging are promising new technologies under development for monitoring early carious lesions. Fluorosis is a growing problem in the United States, and the more prevalent mild fluorosis can be visually mistaken for early enamel demineralization. Unfortunately, there is little quantitative information available regarding the differences in optical properties of sound enamel, enamel developmental defects, and caries. Thirty extracted human teeth with various degrees of suspected fluorosis were imaged using PS-OCT and NIR. An InGaAs camera and a NIR diode laser were used to measure the optical attenuation through transverse tooth sections (approximately 200 microm). A digital microradiography system was used to quantify the enamel defect severity by measurement of the relative mineral loss for comparison with optical scattering measurements. Developmental defects were clearly visible in the polarization-resolved OCT images, demonstrating that PS-OCT can be used to nondestructively measure the depth and possible severity of the defects. Enamel defects on whole teeth that could be imaged with high contrast with visible light were transparent in the NIR. This study suggests that PS-OCT and NIR methods may potentially be used as tools to assess the severity and extent of enamel defects.

  16. Assessment of Dental Fluorosis in Mmp20+/− Mice

    PubMed Central

    Sharma, R.; Tye, C.E.; Arun, A.; MacDonald, D.; Chatterjee, A.; Abrazinski, T.; Everett, E.T.; Whitford, G.M.; Bartlett, J.D.

    2011-01-01

    The molecular mechanisms that underlie dental fluorosis are poorly understood. The retention of enamel proteins hallmarking fluorotic enamel may result from impaired hydrolysis and/or removal of enamel proteins. Previous studies have suggested that partial inhibition of Mmp20 expression is involved in the etiology of dental fluorosis. Here we ask if mice expressing only one functional Mmp20 allele are more susceptible to fluorosis. We demonstrate that Mmp20+/− mice express approximately half the amount of MMP20 as do wild-type mice. The Mmp20 heterozygous mice have normal-appearing enamel, with Vickers microhardness values similar to those of wild-type control enamel. Therefore, reduced MMP20 expression is not solely responsible for dental fluorosis. With 50-ppm-fluoride (F−) treatment ad libitum, the Mmp20+/− mice had F− tissue levels similar to those of Mmp20+/+ mice. No significant difference in enamel hardness was observed between the F−-treated heterozygous and wild-type mice. Interestingly, we did find a small but significant difference in quantitative fluorescence between these two groups, which may be attributable to slightly higher protein content in the Mmp20+/− mouse enamel. We conclude that MMP20 plays a nominal role in dental enamel fluorosis. PMID:21386097

  17. Effect of Psidium cattleianum leaf extract on enamel demineralisation and dental biofilm composition in situ.

    PubMed

    Brighenti, Fernanda Lourenção; Gaetti-Jardim, Elerson; Danelon, Marcelle; Evangelista, Gustavo Vaz; Delbem, Alberto Carlos Botazzo

    2012-08-01

    Previous evaluations of Psidium cattleianum leaf extract were not done in conditions similar to the oral environment. The aim of this study was to evaluate the effect of P. cattleianum leaf extract on enamel demineralisation, extracellular polysaccharide formation, and the microbial composition of dental biofilms formed in situ. Ten volunteers took part in this crossover study. They wore palatal appliances containing 4 enamel blocks for 14 days. Each volunteer dripped 20% sucrose 8 times per day on the enamel blocks. Twice a day, deionised water (negative control), extract, or a commercial mouthwash (active control) was dripped after sucrose application. On the 12th and 13th days of the experiment, plaque acidogenicity was measured with a microelectrode, and the pH drop was calculated. On the 14th day, biofilms were harvested and total anaerobic microorganisms (TM), total streptococci (TS), mutans streptococci (MS), and extracellular polysaccharides (EPS) were evaluated. Enamel demineralisation was evaluated by the percentage change of surface microhardness (%ΔSMH) and integrated loss of subsurface hardness (ΔKHN). The researcher was blinded to the treatments during data collection. The extract group showed lower TM, TS, MS, EPS, %ΔSMH, and ΔKHN values than the negative control group. There were no differences between the active and negative control groups regarding MS and EPS levels. There were no differences in pH drop between the extract and active control groups, although they were significantly different from the negative control group. For all other parameters, the extract differed from the active control group. Psidium cattleianum leaf extract exhibits a potential anticariogenic effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. MMP20 Promotes a Smooth Enamel Surface, a Strong DEJ, and a Decussating Enamel Rod Pattern

    PubMed Central

    Bartlett, John D.; Skobe, Ziedonis; Nanci, Antonio; Smith, Charles E.

    2012-01-01

    Mutations of the Matrix metalloproteinase-20 (MMP20, enamelysin) gene cause autosomal recessive amelogenesis imperfecta and Mmp20 ablated mice also have malformed dental enamel. Here we show that Mmp20 null mouse secretory stage ameloblasts maintained a columnar shape and were present as a single layer of cells. However, the null maturation stage ameloblasts covered extraneous nodules of ectopic calcified material formed at the enamel surface. Remarkably, nodule formation occurs in null mouse enamel when MMP20 is normally no longer expressed. The malformed enamel in Mmp20 null teeth was loosely attached to the dentin and the entire enamel layer tended to separate from the dentin indicative of a faulty DEJ. The enamel rod pattern was also altered in Mmp20 null mice. Each enamel rod is formed by a single ameloblast and is a mineralized record of the migration path of the ameloblast that formed it. The Mmp20 null mouse enamel rods were grossly malformed or were absent indicating that the ameloblasts do not migrate properly when backing away from the DEJ. Thus, MMP20 is required for ameloblast cell movement necessary to form the decussating enamel rod patterns, for the prevention of ectopic mineral formation, and to maintain a functional DEJ. PMID:22243247

  19. Dental caries: a dynamic disease process.

    PubMed

    Featherstone, J D B

    2008-09-01

    Abstract Dental caries is a transmissible bacterial disease process caused by acids from bacterial metabolism diffusing into enamel and dentine and dissolving the mineral. The bacteria responsible produce organic acids as a by-product of their metabolism of fermentable carbohydrates. The caries process is a continuum resulting from many cycles of demineralization and remineralization. Demineralization begins at the atomic level at the crystal surface inside the enamel or dentine and can continue unless halted with the end-point being cavitation. There are many possibilities to intervene in this continuing process to arrest or reverse the progress of the lesion. Remineralization is the natural repair process for non-cavitated lesions, and relies on calcium and phosphate ions assisted by fluoride to rebuild a new surface on existing crystal remnants in subsurface lesions remaining after demineralization. These remineralized crystals are acid resistant, being much less soluble than the original mineral.

  20. Human dental enamel and dentin structural effects after Er:YAG laser irradiation.

    PubMed

    Lima, Darlon Martíns; Tonetto, Mateus Rodrigues; de Mendonça, Adriano Augusto Melo; Elossais, André Afif; Saad, José Roberto Cury; de Andrade, Marcelo Ferrarezi; Pinto, Shelon Cristina Souza; Bandéca, Matheus Coelho

    2014-05-01

    Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations--namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and influence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifications caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the superficial structure of the target tissue irradiated, may be correlated to the structural optical modifications of the substrate produced by an interaction of the energy propagated by laser systems.

  1. Dental erosion--an overview with emphasis on chemical and histopathological aspects.

    PubMed

    Lussi, A; Schlueter, N; Rakhmatullina, E; Ganss, C

    2011-01-01

    The quality of dental care and modern achievements in dental science depend strongly on understanding the properties of teeth and the basic principles and mechanisms involved in their interaction with surrounding media. Erosion is a disorder to which such properties as structural features of tooth, physiological properties of saliva, and extrinsic and intrinsic acidic sources and habits contribute, and all must be carefully considered. The degree of saturation in the surrounding solution, which is determined by pH and calcium and phosphate concentrations, is the driving force for dissolution of dental hard tissue. In relation to caries, with the calcium and phosphate concentrations in plaque fluid, the 'critical pH' below which enamel dissolves is about 5.5. For erosion, the critical pH is lower in products (e.g. yoghurt) containing more calcium and phosphate than plaque fluid and higher when the concentrations are lower. Dental erosion starts by initial softening of the enamel surface followed by loss of volume with a softened layer persisting at the surface of the remaining tissue. Dentine erosion is not clearly understood, so further in vivo studies, including histopathological aspects, are needed. Clinical reports show that exposure to acids combined with an insufficient salivary flow rate results in enhanced dissolution. The effects of these and other interactions result in a permanent ion/substance exchange and reorganisation within the tooth material or at its interface, thus altering its strength and structure. The rate and severity of erosion are determined by the susceptibility of the dental tissues towards dissolution. Because enamel contains less soluble mineral than dentine, it tends to erode more slowly. The chemical mechanisms of erosion are also summarised in this review. Special attention is given to the microscopic and macroscopic histopathology of erosion. Copyright © 2011 S. Karger AG, Basel.

  2. Dental wear, wear rate, and dental disease in the African apes.

    PubMed

    Elgart, Alison A

    2010-06-01

    The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin-enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin-enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin-enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample.

  3. Prevalence of enamel defects and MIH in non-fluoridated and fluoridated communities.

    PubMed

    Balmer, R C; Laskey, D; Mahoney, E; Toumba, K J

    2005-12-01

    This was to study the prevalence of enamel defects and molar incisor hypomineralisation (MIH) in children attending Leeds Dental Institute (UK) and Westmead Dental Hospital, Sydney (Australia). Prospective dental examinations were carried out on 25 children referred to two orthodontic departments. A questionnaire was completed to obtain background information and about previous fluoride (F) exposure followed by an oral examination. First permanent molars and permanent incisors were examined for presence, type and severity of enamel defects using the modified DDE screening index. Chi square tests were used to compare results. Data for 24 children in Sydney and 20 in Leeds presented with at least one enamel defect. Of 300 teeth examined, 155 in Sydney and 82 in Leeds had a defect (p < 0.005). Severity of enamel defects was higher in Sydney. The children presenting with any type of enamel defect in at least one incisor or molar were 21 in Sydney and 10 in Leeds. However, if only demarcated defects were considered, the number in Sydney dropped to 11 and in Leeds remained at 10. There was a higher prevalence of enamel defects in those children living in F Sydney than in non-F Leeds, but the prevalence of MIH was the same supporting the view that F is not associated with the aetiology of MIH.

  4. In vitro cariostatic effect of whitening toothpastes in human dental enamel-microhardness evaluation.

    PubMed

    Watanabe, Melina Mayumi; Rodrigues, José Augusto; Marchi, Giselle Maria; Ambrosano, Gláucia Maria Bovi

    2005-06-01

    The aim of this study was to evaluate, in vitro, the cariostatic effect of whitening toothpastes. Ninety-five dental fragments were obtained from nonerupted third molars. The fragments were embedded in polystyrene resin and sequentially polished with abrasive papers (400-, 600-, and 1,000-grit) and diamond pastes of 6, 3, and 1 microm. The fragments were assigned in five groups according to toothpaste treatment: G1 = Rembrandt Plus with Peroxide; G2 = Crest Dual Action Whitening; G3 = Aquafresh Whitening Triple Protection; and the control groups: G4 = Sensodyne Original (without fluoride); G5 = Sensodyne Sodium Bicarbonated (with fluoride). The initial enamel microhardness evaluations were done. For 2 weeks the fragments were submitted daily to a de-remineralization cycle followed by a 10-minute toothpaste slurry. After that, the final microhardness tests were done. The percentage of mineral loss of enamel was determined for statistical analysis. Analysis of variance and the Tukey test were applied. The results did not show statistically significant differences in mineral loss among groups G1, G2, G3, and G5, which statistically differ from G4 (toothpaste without fluoride). G4 showed the highest mineral loss (P < or = .05). The whitening toothpastes evaluated showed a cariostatic effect similar to regular, nonwhitening toothpaste.

  5. The developmental clock of dental enamel: a test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind

    PubMed Central

    Antoine, Daniel; Hillson, Simon; Dean, M Christopher

    2009-01-01

    Dental tissues contain regular microscopic structures believed to result from periodic variations in the secretion of matrix by enamel- and dentine-forming cells. Counts of these structures are an important tool for reconstructing the chronology of dental development in both modern and fossil hominids. Most studies rely on the periodicity of the regular cross-banding that occurs along the long axis of enamel prisms. These prism cross-striations are widely thought to reflect a circadian rhythm of enamel matrix secretion and are generally regarded as representing daily increments of tissue. Previously, some researchers have argued against the circadian periodicity of these structures and questioned their use in reconstructing dental development. Here we tested the periodicity of enamel cross-striations – and the accuracy to which they can be used – in the developing permanent dentition of five children, excavated from a 19th century crypt in London, whose age-at-death was independently known. The interruption of crown formation by death was used to calibrate cross-striation counts. All five individuals produced counts that were strongly consistent with those expected from the independently known ages, taking into account the position of the neonatal line and factors of preservation. These results confirm that cross-striations do indeed reflect a circadian rhythm in enamel matrix secretion. They further validate their use in reconstructing dental development and in determining the age-at-death of the remains of children whose dentitions are still forming at the time of death. Significantly they identify the most likely source of error and the common difficulties encountered in histological studies of this kind. PMID:19166472

  6. Carbon dioxide laser effects on caries-like lesions of dental enamel

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Zhang, S. H.; Shariati, M.; McCormack, Sandra M.

    1991-05-01

    Previous studies by the authors have shown that carbon dioxide (CO2) laser light has marked effects on dental hard tissues and that these effects are wavelength-dependent. The aim of the present study was to determine whether treatment by CO2 laser of caries-like lesions in human enamel would inhibit subsequent lesion progression. Nine groups of 10 teeth each with preformed caries-like lesions were treated with/without CO2 laser (9.32 micrometers , 15 mJ or 25 mJ per pulse) by a pulsed laser (100-200 nsec) for either 200 or 400 pulses. Preformed lesions were then treated with acidulated phosphate fluoride for 5 minutes with control groups with no fluoride treatment. Teeth were subjected to a subsequent pH cycling challenge to determine the protection against lesion progression. Low energy laser treatment coupled with fluoride treatment entirely inhibited subsequent lesion progression in this model system.

  7. [Evaluation of shear bond strengths of self-etching and total-etching dental adhesives to enamel and dentin].

    PubMed

    Yu, Ling; Liu, Jing-Ming; Wang, Xiao-Yan; Gao, Xue-Jun

    2009-03-01

    To evaluate the shear bond strengths of four dental adhesives in vitro. The facial surfaces of 20 human maxillary incisors were prepared to expose fresh enamel and randomly divided into four groups, in each group 5 teeth were bonded with one adhesives: group A (Clearfil Protect Bond, self-etching two steps), group B (Adper( Prompt, self-etching one step), group C (SwissTEC SL Bond, total-etching two steps), group D (Single Bond, total-etching two steps). Shear bond strengths were determined using an universal testing machine after being stored in distilled water for 24 h at 37 degrees C. The bond strengths to enamel and dentin were (25.33 +/- 2.84) and (26.07 +/- 5.56) MPa in group A, (17.08 +/- 5.13) and (17.93 +/- 4.70) MPa in group B, (33.14 +/- 6.05) and (41.92 +/- 6.25) MPa in group C, (22.51 +/- 6.25) and (21.45 +/- 7.34) MPa in group D. Group C showed the highest and group B the lowest shear bond strength to enamel and dentin among the four groups. The two-step self-etching adhesive showed comparable shear bond strength to some of the total-etching adhesives and higher shear bond strength than one-step self-etching adhesive.

  8. Novel Dental Cement to Combat Biofilms and Reduce Acids for Orthodontic Applications to Avoid Enamel Demineralization

    PubMed Central

    Zhang, Ning; Melo, Mary Anne S.; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Bai, Yuxing; Xu, Hockin H.K.

    2016-01-01

    Orthodontic treatments often lead to biofilm buildup and white spot lesions due to enamel demineralization. The objectives of this study were to develop a novel bioactive orthodontic cement to prevent white spot lesions, and to determine the effects of cement compositions on biofilm growth and acid production. 2-methacryloyloxyethyl phosphorylcholine (MPC), nanoparticles of silver (NAg), and dimethylaminohexadecyl methacrylate (DMAHDM) were incorporated into a resin-modified glass ionomer cement (RMGI). Enamel shear bond strength (SBS) was determined. Protein adsorption was determined using a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU) and lactic acid production. Incorporating 3% of MPC, 1.5% of DMAHDM, and 0.1% of NAg into RMGI, and immersing in distilled water at 37 °C for 30 days, did not decrease the SBS, compared to control (p > 0.1). RMGI with 3% MPC + 1.5% DMAHDM + 0.1% NAg had protein amount that was 1/10 that of control. RMGI with triple agents (MPC + DMAHDM + NAg) had much stronger antibacterial property than using a single agent or double agents (p < 0.05). Biofilm CFU on RMGI with triple agents was reduced by more than 3 orders of magnitude, compared to commercial control. Biofilm metabolic activity and acid production were also greatly reduced. In conclusion, adding MPC + DMAHDM + NAg in RMGI substantially inhibited biofilm viability and acid production, without compromising the orthodontic bracket bond strength to enamel. The novel bioactive cement is promising for orthodontic applications to hinder biofilms and plaque buildup and enamel demineralization. PMID:28773534

  9. Effect of pretreatment with an Er:YAG laser and fluoride on the prevention of dental enamel erosion.

    PubMed

    dos Reis Derceli, Juliana; Faraoni-Romano, Juliana Jendiroba; Azevedo, Danielle Torres; Wang, Linda; Bataglion, César; Palma-Dibb, Regina Guenka

    2015-02-01

    The aim of this study was to evaluate the effect of the Er:YAG laser and its association with fluoride (1.23% acidulate phosphate fluoride gel) on the prevention of enamel erosion. Sixty specimens were obtained from bovine enamel (4 × 4 mm), which were ground flat, polished, and randomly divided into five groups according to the preventive treatments: control-fluoride application; L--Er:YAG laser; L+F--laser + fluoride; F+L--fluoride + laser; L/F--laser/fluoride simultaneously. Half of the enamel surface was covered with nail varnish (control area), and the other half was pretreated with one of the preventive strategies to subsequently be submitted to erosive challenge. When the laser was applied, it was irradiated for 10 s with a focal length of 4 mm and 60 mJ/2 Hz. Fluoride gel was applied for 4 min. Each specimen was individually exposed to regular Coca-Cola® for 1 min, four times/day, for 5 days. Wear analysis was performed with a profilometer, and demineralization was assessed with an optical microscope. Data were analyzed using the Kruskal-Wallis test (wear)/Dunn test and ANOVA/Fisher's exact tests. The group L/F was similar to control group. The other groups showed higher wear, which did not present differences among them. In the demineralization assessment, the groups F+L and L/F showed lower demineralization in relation to the other groups. It can be concluded that none preventive method was able to inhibit dental wear. The treatments L/F and F+L showed lower enamel demineralization.

  10. Chronic Fluoride Toxicity: Dental Fluorosis

    PubMed Central

    DenBesten, Pamela; Li, Wu

    2012-01-01

    Dental fluorosis occurs as a result of excess fluoride ingestion during tooth formation. Enamel fluorosis and primary dentin fluorosis can only occur when teeth are forming, and therefore fluoride exposure (as it relates to dental fluorosis) occurs during childhood. In the permanent dentition, this would begin with the lower incisors, which complete mineralization at approximately 2–3 years of age, and end after mineralization of the third molars. The white opaque appearance of fluorosed enamel is caused by a hypomineralized enamel subsurface; with more severe dental fluorosis, pitting and a loss of the enamel surface occurs, leading to secondary staining (appearing as a brown color). Many of the changes caused by fluoride are related to cell/matrix/mineral interactions as the teeth are forming. At the early maturation stage, the relative quantity of amelogenin protein is increased in fluorosed enamel in a dose-related manner. This appears to result from a delay in the removal of amelogenins as the enamel matures. In vitro, when fluoride is incorporated into the mineral, more protein binds to the forming mineral, and protein removal by proteinases is delayed. This suggests that altered protein/mineral interactions are in part responsible for retention of amelogenins and the resultant hypomineralization that occurs in fluorosed enamel. Fluoride also appears to enhance mineral precipitation in forming teeth, resulting in hypermineralized bands of enamel, which are then followed by hypomineralized bands. Enhanced mineral precipitation with local increases in matrix acidity may affect maturation stage ameloblast modulation, potentially explaining the doserelated decrease in cycles of ameloblast modulation from ruffleended to smooth-ended cells that occur with fluoride exposure in rodents. Specific cellular effects of fluoride have been implicated, but more research is needed to determine which of these changes are relevant to the formation of fluorosed teeth. As

  11. Chronic fluoride toxicity: dental fluorosis.

    PubMed

    Denbesten, Pamela; Li, Wu

    2011-01-01

    Dental fluorosis occurs as a result of excess fluoride ingestion during tooth formation. Enamel fluorosis and primary dentin fluorosis can only occur when teeth are forming, and therefore fluoride exposure (as it relates to dental fluorosis) occurs during childhood. In the permanent dentition, this would begin with the lower incisors, which complete mineralization at approximately 2-3 years of age, and end after mineralization of the third molars. The white opaque appearance of fluorosed enamel is caused by a hypomineralized enamel subsurface. With more severe dental fluorosis, pitting and a loss of the enamel surface occurs, leading to secondary staining (appearing as a brown color). Many of the changes caused by fluoride are related to cell/matrix interactions as the teeth are forming. At the early maturation stage, the relative quantity of amelogenin protein is increased in fluorosed enamel in a dose-related manner. This appears to result from a delay in the removal of amelogenins as the enamel matures. In vitro, when fluoride is incorporated into the mineral, more protein binds to the forming mineral, and protein removal by proteinases is delayed. This suggests that altered protein/mineral interactions are in part responsible for retention of amelogenins and the resultant hypomineralization that occurs in fluorosed enamel. Fluoride also appears to enhance mineral precipitation in forming teeth, resulting in hypermineralized bands of enamel, which are then followed by hypomineralized bands. Enhanced mineral precipitation with local increases in matrix acidity may affect maturation stage ameloblast modulation, potentially explaining the dose-related decrease in cycles of ameloblast modulation from ruffle-ended to smooth-ended cells that occur with fluoride exposure in rodents. Specific cellular effects of fluoride have been implicated, but more research is needed to determine which of these changes are relevant to the formation of fluorosed teeth. As further

  12. Enamel renal syndrome with associated amelogenesis imperfecta, nephrolithiasis, and hypocitraturia: A case report.

    PubMed

    Bhesania, Dhvani; Arora, Ankit; Kapoor, Sonali

    2015-09-01

    Numerous cases of enamel renal syndrome have been previously reported. Various terms, such as enamel renal syndrome, amelogenesis imperfecta and gingival fibromatosis syndrome, and enamel-renal-gingival syndrome, have been used for patients presenting with the dental phenotype characteristic of this condition, nephrocalcinosis or nephrolithiasis, and gingival findings. This report describes a case of amelogenesis imperfecta of the enamel agenesis variety with nephrolithiasis in a 21-year-old male patient who complained of small teeth. The imaging modalities employed were conventional radiography, cone-beam computed tomography, and renal sonography. Such cases are first encountered by dentists, as other organ or metabolic diseases are generally hidden. Hence, cases of amelogenesis imperfecta should be subjected to advanced diagnostic modalities, incorporating both dental and medical criteria, in order to facilitate comprehensive long-term management.

  13. Differential diagnosis of dental fluorosis made by undergraduate dental students

    PubMed Central

    Rigo, Lilian; Lodi, Leodinei; Garbin, Raíssa Rigo

    2015-01-01

    ABSTRACT Objective To check knowledge of undergraduate dental students to make diagnosis of dental fluorosis with varying degrees of severity and choose its appropriate treatment. Methods Data were collected using a semi-structured questionnaire addressing knowledge of undergraduates based on ten images of mouths presenting enamel changes. Results Only three images were correctly diagnosed by most undergraduates; the major difficulty was in establishing dental fluorosis severity degree. Conclusion Despite much information about fluorosis conveyed during the Dentistry training, as defined in the course syllabus, a significant part of the students was not able to differentiate it from other lesions; they did not demonstrate expertise as to defining severity of fluorosis and indications for treatment, and could not make the correct diagnosis of enamel surface changes. PMID:26761552

  14. Year of birth determination using radiocarbon dating of dental enamel

    PubMed Central

    Buchholz, B.A.; Spalding, K.L

    2010-01-01

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 (14C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, 14C levels in the enamel represent 14C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists. PMID:20976120

  15. Year of birth determination using radiocarbon dating of dental enamel.

    PubMed

    Buchholz, B A; Spalding, K L

    2010-05-01

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ((14)C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, (14)C levels in the enamel represent (14)C levels in the atmosphere at the time of its formation. In this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.

  16. Dental enamel as biomarker for environmental contaminants in relevant industrialized estuary areas in São Paulo, Brazil.

    PubMed

    de Oliveira, Vera Lucia Ferreira; Gerlach, Raquel Fernanda; Martins, Lourdes Conceição; de Souza Guerra, Carolina; Frazão, Paulo; Braga, Alfésio Luis Ferreira; Pereira, Luiz Alberto Amador

    2017-06-01

    Heavy metal contamination is a long-standing and very well-known public health problem, and its exposure can cause damage to several organs of human body, especially on the central nervous system of young children and teenagers. The aim of this article is to evaluate lead, cadmium, and manganese contamination in 125 children from 6 to 13 years old living in contaminated areas during the period from 2006 to 2009 (São Vicente, Cubatão Downtown, Bertioga and Cubatão Pilões/Água Fria). This estuary area is the most important example of environmental degradation by chemicals from industrial sources. This is a cross-sectional study through clinical examinations and dental enamel tests. All mothers from these children lived in the area since before the pregnancy. Lead, cadmium, and manganese levels (μg/g) were measured on dental enamel samples through graphite furnace atomic absorption spectrometry, searching for the occurrence of heavy metals. The mean lead concentrations were 139.48 μg/g in Cubatão Pilões/Água Fria, 170.45 μg/g in Cubatão Downtown, 213.52 μg/g in São Vicente, and 151.89 μg/g in Bertioga. The mean cadmium concentrations were 10.83 μg/g in Cubatão Pilões/Água Fria, 12.58 μg/g in Cubatão Downtown, 10.92 μg/g in São Vicente, and 14.57 μg/g in Bertioga. The mean manganese concentrations were 23.49 μg/g in Cubatão Pilões/Água Fria, 30.90 μg/g in Cubatão Downtown, 41.46 μg/g in São Vicente, and 42.00 μg/g in Bertioga. Dental surface enamel may be used as an efficient biomarker of past environmental exposure to lead, manganese, and cadmium which are associated to well-known sources of heavy metal contamination. The results suggest that the evaluated children were exposed to sources of lead, cadmium, and manganese since before their conceptions. Although Bertioga initially was chosen as a control area of this study, it was also was verified to have heavy metal contamination on examined children.

  17. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    PubMed

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  18. Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii

    NASA Astrophysics Data System (ADS)

    Sasagawa, Ichiro; Ishiyama, Mikio; Yokosuka, Hiroyuki; Mikami, Masato

    2008-06-01

    The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light, scanning electron and transmission electron microscopy. In the enamel, slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed, suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians. Ameloblasts containing developed Golgi apparatus, rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage. In the maturation stage, a ruffled border was not seen at the distal end of the ameloblasts, while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm. The enamel organ consisted of the outer dental epithelial cells, stratum reticulum cells and ameloblasts, but there was no stratum intermedium. It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

  19. Enamel Surface with Pit and Fissure Sealant Containing 45S5 Bioactive Glass.

    PubMed

    Yang, S-Y; Kwon, J-S; Kim, K-N; Kim, K-M

    2016-05-01

    Enamel demineralization adjacent to pit and fissure sealants leads to the formation of marginal caries, which can necessitate the replacement of existing sealants. Dental materials with bioactive glass, which releases ions that inhibit dental caries, have been studied. The purpose of this study was to evaluate the enamel surface adjacent to sealants containing 45S5 bioactive glass (BAG) under simulated microleakage between the material and the tooth in a cariogenic environment. Sealants containing 45S5BAG filler were prepared as follows: 0% 45S5BAG + 50.0% glass (BAG0 group), 12.5% 45S5BAG + 37.5% glass (BAG12.5 group), 25.0% 45S5BAG + 25.0% glass (BAG25.0 group), 37.5% 45S5BAG + 12.5% glass (BAG37.5 group), and 50.0% 45S5BAG + 0% glass (BAG50.0 group). A cured sealant disk was placed over a flat bovine enamel disk, separated by a 60-µm gap, and immersed in lactic acid solution (pH 4.0) at 37 °C for 15, 30, and 45 d. After the storage period, each enamel disk was separated from the cured sealant disk, and the enamel surface was examined with optical 3-dimensional surface profilometer, microhardness tester, and scanning electron microscopy. The results showed a significant increase in roughness and a decrease in microhardness of the enamel surface as the proportion of 45S5BAG decreased (P< 0.05). In the scanning electron microscopy images, enamel surfaces with BAG50.0 showed a smooth surface, similar to those in the control group with distilled water, even after prolonged acid storage. Additionally, an etched pattern was observed on the surface of the demineralized enamel with a decreasing proportion of 45S5BAG. Increasing the 45S5BAG filler contents of the sealants had a significant impact in preventing the demineralization of the enamel surface within microgaps between the material and the tooth when exposed to a cariogenic environment. Therefore, despite some marginal leakage, these novel sealants may be effective preventive dental materials for inhibiting

  20. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-01-30

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  1. Photoacoustic imaging of teeth for dentine imaging and enamel characterization

    NASA Astrophysics Data System (ADS)

    Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit

    2018-02-01

    Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.

  2. Dentist and practice characteristics associated with restorative treatment of enamel caries in permanent teeth: multiple-regression modeling of observational clinical data from The National Dental PBRN

    PubMed Central

    Fellows, Jeffrey L; Gordan, Valeria V.; Gilbert, Gregg H.; Rindal, D. Brad; Qvist, Vibeke; Litaker, Mark S.; Benjamin, Paul; Flink, Håkan; Pihlstrom, Daniel J.; Johnson, Neil

    2014-01-01

    Purpose Current evidence in dentistry recommends non-surgical treatment to manage enamel caries lesions. However, surveyed practitioners report they would restore enamel lesions that are confined to the enamel. We used actual clinical data to evaluate patient, dentist, and practice characteristics associated with restoration of enamel caries, while accounting for other factors. Methods We combined data from a National Dental Practice-Based Research Network observational study of consecutive restorations placed in previously unrestored permanent tooth surfaces and practice/demographic data from 229 participating network dentists. Analysis of variance and logistic regression, using generalized estimating equations (GEE) and variable selection within blocks, were used to test the hypothesis that patient, dentist, and practice characteristics were associated with variations in enamel restorations of occlusal and proximal caries compared to dentin lesions, accounting for dentist and patient clustering. Results Network dentists from 5 regions placed 6,891 restorations involving occlusal and/or proximal caries lesions. Enamel restorations accounted for 16% of enrolled occlusal caries lesions and 6% of enrolled proximal caries lesions. Enamel occlusal restorations varied significantly (p<0.05) by patient age and race/ethnicity, dentist use of caries risk assessment, network region, and practice type. Enamel proximal restorations varied significantly (p<0.05) by dentist race/ethnicity, network region, and practice type. CLINICAL SIGNIFICANCE Identifying patient, dentist, and practice characteristics associated with enamel caries restorations can guide strategies to improve provider adherence to evidence-based clinical recommendations. PMID:25000667

  3. In-vitro Thermal Maps to Characterize Human Dental Enamel and Dentin.

    PubMed

    Lancaster, Paula; Brettle, David; Carmichael, Fiona; Clerehugh, Val

    2017-01-01

    The crown of a human tooth has an outer layer of highly-mineralized tissue called enamel, beneath which is dentin, a less-mineralized tissue which forms the bulk of the tooth-crown and root. The composition and structure of enamel and dentin are different, resulting in different thermal properties. This gives an opportunity to characterize enamel and dentin from their thermal properties and to visually present the findings as a thermal map. The thermal properties of demineralized enamel and dentin may also be sufficiently different from sound tissue to be seen on a thermal map, underpinning future thermal assessment of caries. The primary aim of this novel study was to produce a thermal map of a sound, human tooth-slice to visually characterize enamel and dentin. The secondary aim was to map a human tooth-slice with demineralized enamel and dentin to consider future diagnostic potential of thermal maps for caries-detection. Two human slices of teeth, one sound and one demineralized from a natural carious lesion, were cooled on ice, then transferred to a hotplate at 30°C where the rewarming-sequence was captured by an infra-red thermal camera. Calculation of thermal diffusivity and thermal conductivity was undertaken, and two methods of data-processing used customized software to produce thermal maps from the thermal characteristic-time-to-relaxation and heat-exchange. The two types of thermal maps characterized enamel and dentin. In addition, sound and demineralized enamel and dentin were distinguishable within both maps. This supports thermal assessment of caries and requires further investigation on a whole tooth.

  4. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes.

    PubMed

    Wassel, Mariem O; Khattab, Mona A

    2017-07-01

    Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans ( S. mutans ) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.

  5. Year of Birth Determination Using Radiocarbon Dating of Dental Enamel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchholz, B A; Spalding, K L

    2009-03-10

    Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite and carbon-14 ({sup 14}C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, {sup 14}C levels in the enamel represent {sup 14}C levels in the atmosphere at the time of its formation. Inmore » this paper we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases police will try to match particulars of the unidentified individual (which is often only gender and/or an estimate of age), with particulars from missing persons lists.« less

  6. Ultrastructural evaluation of enamel after dental bleaching associated with fluoride.

    PubMed

    Dominguez, John A; Bittencourt, Bruna; Michel, Milton; Sabino, Nilson; Gomes, João Carlos; Gomes, Osnara M M

    2012-08-01

    This study evaluated the effects on human enamel after two bleaching procedures: with a fluoridated bleaching agent and with topical fluoride application postbleaching. It used 43 enamel blocks (3 mm(2) ) that were ground flat (600-2,000 grit) and polished with polishing paste (one and one-fourth). Specimens were randomly divided into three groups according to the bleaching procedure: (1) control group, (2) hydrogen peroxide 35% (HPF) and topical application of fluoride 1.23%, and (3) HP 38% (OP) with fluoride in its composition. Bleaching agents were used according to the manufacturer's instructions. Three methodologies were used: nanoindentation, to observe surface hardness and elastic modulus; atomic force microscopy, to observe surface roughness (R(a) - R(z)); and scanning electron microscopy, to observe the enamel surface effects. Group OP had a decrease in the elastic modulus after bleaching, which was recovered at 14 days. An increased roughness (R(a); 32%) was observed on group HPF and had an increased erosion on enamel surface (67%). It was concluded that topical application of fluoride, after using the nonfluoridated whitening agent, increased the roughness values and erosion of enamel. Copyright © 2012 Wiley Periodicals, Inc.

  7. Compositional Determinants of Mechanical Properties of Enamel

    PubMed Central

    Baldassarri, M.; Margolis, H.C.; Beniash, E.

    2008-01-01

    Dental enamel is comprised primarily of carbonated apatite, with less than 1% w/w organic matter and 4-5% w/w water. To determine the influence of each component on the microhardness and fracture toughness of rat incisor enamel, we mechanically tested specimens in which water and organic matrix were selectively removed. Tests were performed in mid-sagittal and transverse orientations to assess the effect of the structural organization on enamel micromechanical properties. While removal of organic matrix resulted in up to a 23% increase in microhardness, and as much as a 46% decrease in fracture toughness, water had a significantly lesser effect on these properties. Moreover, removal of organic matrix dramatically weakened the dentino-enamel junction (DEJ). Analysis of our data also showed that the structural organization of enamel affects its micromechanical properties. We anticipate that these findings will help guide the development of bio-inspired nanostructured materials for mineralized tissue repair and regeneration. PMID:18573984

  8. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel.

    PubMed

    Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti

    2015-01-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P < 0.05 as the level of significance. In comparison between applied and non-applied CPP-ACP subgroups, there was no significant decrease in the shear bond strength to enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond.

  9. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel

    PubMed Central

    Shadman, Niloofar; Ebrahimi, Shahram Farzin; Shoul, Maryam Azizi; Sattari, Hasti

    2015-01-01

    Background: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Materials and Methods: Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P < 0.05 as the level of significance. Results: In comparison between applied and non-applied CPP-ACP subgroups, there was no significant decrease in the shear bond strength to enamel only in Tetric N-Bond (P > 0.05). In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. Conclusion: CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond. PMID:25878683

  10. Developmental Defects of Enamel in Children with Intellectual Disability.

    PubMed

    Erika, Vesna; Modrić; Verzak, Željko; Karlović, Zoran

    2016-03-01

    To investigate the frequency of developmental defects of enamel (DDE) in children with intellectual disability. Children aged 5-18 years (72 children with intellectual disabilities and 72 controls) were included in the study. All the teeth were screened for developmental defects of enamel using the modified Developmental defects of enamel (mDDE) index. Out of the 72 children with intellectual disabilities in this study, 20 (27.78%) presented dental defects of enamel, compared with 8 (11.11%) of those in the control group, which was considered statistically significant (p = 0.021). The majority of children in both groups had white demarcated opacities. Children in both groups were more likely to have maxillary teeth affected than the mandibular teeth and the asymmetrical demarcated enamel defects were more common than the symmetric ones. Majority of opacities in children in both groups were on the maxillary incisors. Children with intellectual disabilities have more developmental defects of enamel than children in the control group. Enamel defects increase caries risk and cause reduction in enamel mechanical properties leading to restoration failures.

  11. [Differential diagnosis of dental enamel focal demineralization and fluorosis by means of spectrophotometry].

    PubMed

    Makarova, N E; Vinnichenko, Yu A

    2018-01-01

    The article presents the results of spectrophotometric tooth enamel scanning for differential diagnosis of focal enamel demineralization and fluorosis. Research was conducted in vivo on teeth affected by these diseases. VITA EasyShade spectrophotometer measurements were made on the affected area and on the visually healthy part of enamel. The lightness appeared as the only one differential significant optical characteristics of tooth enamel. Lightness metrics were higher in the case of initial caries than on the healthy part of enamel when these metrics were lower in the case of fluorosis than on the healthy part of enamel.

  12. Cutting efficiency of a mid-infrared laser on human enamel.

    PubMed

    Levy, G; Koubi, G F; Miserendino, L J

    1998-02-01

    In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.

  13. Store-operated Ca2+ entry controls ameloblast cell function and enamel development

    PubMed Central

    Eckstein, Miriam; Vaeth, Martin; Fornai, Cinzia; Vinu, Manikandan; Bromage, Timothy G.; Nurbaeva, Meerim K.; Sorge, Jessica L.; Coelho, Paulo G.; Idaghdour, Youssef; Feske, Stefan; Lacruz, Rodrigo S.

    2017-01-01

    Loss-of-function mutations in stromal interaction molecule 1 (STIM1) impair the activation of Ca2+ release–activated Ca2+ (CRAC) channels and store-operated Ca2+ entry (SOCE), resulting in a disease syndrome called CRAC channelopathy that is characterized by severe dental enamel defects. The cause of these enamel defects has remained unclear given a lack of animal models. We generated Stim1/2K14cre mice to delete STIM1 and its homolog STIM2 in enamel cells. These mice showed impaired SOCE in enamel cells. Enamel in Stim1/2K14cre mice was hypomineralized with decreased Ca content, mechanically weak, and thinner. The morphology of SOCE-deficient ameloblasts was altered, showing loss of the typical ruffled border, resulting in mislocalized mitochondria. Global gene expression analysis of SOCE-deficient ameloblasts revealed strong dysregulation of several pathways. ER stress genes associated with the unfolded protein response were increased in Stim1/2-deficient cells, whereas the expression of components of the glutathione system were decreased. Consistent with increased oxidative stress, we found increased ROS production, decreased mitochondrial function, and abnormal mitochondrial morphology in ameloblasts of Stim1/2K14cre mice. Collectively, these data show that loss of SOCE in enamel cells has substantial detrimental effects on gene expression, cell function, and the mineralization of dental enamel. PMID:28352661

  14. Near-infrared transillumination at 1310-nm for the imaging of early dental decay

    NASA Astrophysics Data System (ADS)

    Jones, Robert S.; Huynh, Gigi D.; Jones, Graham C.; Fried, Daniel

    2003-09-01

    New imaging technologies are needed for the early detection of dental caries (decay) in the interproximal contact sites between teeth. Previous measurements have demonstrated that dental enamel is highly transparent in the near-IR at 1300-nm. In this study, a near-IR imaging system operating at 1300-nm was used to acquire images through tooth sections of varying thickness and whole teeth in order to demonstrate the utility of a near-IR dental transillumination system for the imaging of early dental caries (decay). Simulated lesions, which model the optical scattering of natural dental caries, were placed in plano-parallel dental enamel sections. The contrast ratio between the simulated lesions and surrounding sound enamel was calculated from analysis of acquired projection images. The results show significant contrast between the lesion and the enamel (>0.35) and a spatial line profile that clearly resolves the lesion in samples as thick as 6.75-mm. This study clearly demonstrates that a near-IR transillumination system has considerable potential for the imaging of early dental decay.

  15. Near-infrared transillumination at 1310-nm for the imaging of early dental decay.

    PubMed

    Jones, Robert; Huynh, Gigi; Jones, Graham; Fried, Daniel

    2003-09-08

    New imaging technologies are needed for the early detection of dental caries (decay) in the interproximal contact sites between teeth. Previous measurements have demonstrated that dental enamel is highly transparent in the near-IR at 1300-nm. In this study, a near-IR imaging system operating at 1300-nm was used to acquire images through tooth sections of varying thickness and whole teeth in order to demonstrate the utility of a near-IR dental transillumination system for the imaging of early dental caries (decay). Simulated lesions, which model the optical scattering of natural dental caries, were placed in plano-parallel dental enamel sections. The contrast ratio between the simulated lesions and surrounding sound enamel was calculated from analysis of acquired projection images. The results show significant contrast between the lesion and the enamel (>0.35) and a spatial line profile that clearly resolves the lesion in samples as thick as 6.75-mm. This study clearly demonstrates that a near-IR transillumination system has considerable potential for the imaging of early dental decay.

  16. Nanoindentation mapping of the mechanical properties of human molar tooth enamel.

    PubMed

    Cuy, J L; Mann, A B; Livi, K J; Teaford, M F; Weihs, T P

    2002-04-01

    The mechanical behavior of dental enamel has been the subject of many investigations. Initial studies assumed that it was a more or less homogeneous material with uniform mechanical properties. Now it is generally recognized that the mechanical response of enamel depends upon location, chemical composition, and prism orientation. This study used nanoindentation to map out the properties of dental enamel over the axial cross-section of a maxillary second molar (M(2)). Local variations in mechanical characteristics were correlated with changes in chemical content and microstructure across the entire depth and span of a sample. Microprobe techniques were used to examine changes in chemical composition and scanning electron microscopy was used to examine the microstructure. The range of hardness (H) and Young's modulus (E) observed over an individual tooth was found to be far greater than previously reported. At the enamel surface H>6GPa and E>115GPa, while at the enamel-dentine junction H<3GPa and E<70GPa. These variations corresponded to the changes in chemistry, microstructure, and prism alignment but showed the strongest correlations with changes in the average chemistry of enamel. For example, the concentrations of the constituents of hydroxyapatite (P(2)O(5) and CaO) were highest at the hard occlusal surface and decreased on moving toward the softer enamel-dentine junction. Na(2)O and MgO showed the opposite trend. The mechanical properties of the enamel were also found to differ from the lingual to the buccal side of the molar. At the occlusal surface the enamel was harder and stiffer on the lingual side than on the buccal side. The interior enamel, however, was softer and more compliant on the lingual than on the buccal side, a variation that also correlated with differences in average chemistry and might be related to differences in function.

  17. p38α MAPK Is Required for Tooth Morphogenesis and Enamel Secretion*

    PubMed Central

    Greenblatt, Matthew B.; Kim, Jung-Min; Oh, Hwanhee; Park, Kwang Hwan; Choo, Min-Kyung; Sano, Yasuyo; Tye, Coralee E.; Skobe, Ziedonis; Davis, Roger J.; Park, Jin Mo; Bei, Marianna; Glimcher, Laurie H.; Shim, Jae-Hyuck

    2015-01-01

    An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678–27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38αK14 mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and β4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel. PMID:25406311

  18. CK13 in craniopharyngioma versus related odontogenic neoplasms and human enamel organ.

    PubMed

    el-Sissy, N A; Rashad, N A

    1999-05-01

    The monoclonal antibody NCL-CK13 was studied in specimens of craniopharyngioma, ameloblastoma and calcifying odontogenic cyst neoplasms and the mandible and maxillae of normal human fetuses. There was a decrease in NCL-CK13 as the dental lamina developed, with a complete loss in the enamel organ. The neoplastic epithelia of the neoplasms revealed a clear phenotypic and immunohistochemical reactive relationship to the stratified embroyonic mucosa, away from the enamel organ. This suggests that these neoplasms might have their histogenesis from early stage epithelium, the oral part of the dental lamina or its remnants.

  19. Influence of Surfactants and Fluoride against Enamel Erosion.

    PubMed

    Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler

    2018-06-06

    This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.

  20. Chemical Composition and Microhardness of Human Enamel Treated with Fluoridated Whintening Agents. A Study in Situ

    PubMed Central

    Petta, Thais de Mendonça; do Socorro Batista de Lima Gomes, Yasmin; Antunes Esteves, Renata; do Carmo Freitas Faial, Kelson; Souza D`Almeida Couto, Roberta; Martins Silva, Cecy

    2017-01-01

    Background: Dental whitening has been increasingly sought out to improve dental aesthetics, but may cause chemical and morphological changes in dental enamel surfaces. Objective: Assess in situ the effects of high-concentration hydrogen peroxide with and without fluoride on human dental enamel using the ion chromatography test (IC) and the Knoop hardness test (KHN). Material and Methods: Nineteen enamel specimens were prepared using third human molars. These specimens were fixed on molars of volunteers and were divided into groups: OP38-Opalescence Boost PF38%, PO37-Pola Office 37.5% and CO-Control group. For chemical analysis (n= 3), the dentin layer was removed, keeping only the enamel, which was subjected to acidic digestion by microwave radiation. It was necessary to perform sample dilutions for the elements fluorine (F), calcium (Ca) and phosphorus (P) for quantification using the IC test. The KHN (n= 5) was performed before and after the treatments. Five indentations were made, separated by 100 µm, for each specimen using a load of 25 gf for 5 seconds in the microdurometer. The data were analyzed using ANOVA with a 5% significance level. Results: The OP38 group had the largest concentrations of F, Ca and P ions. The PO37 group showed the lowest concentrations of F and Ca ions. The average KHN was not significantly different between the OP38 and PO37 groups. Conclusion: Enamel whitened with hydrogen peroxide containing fluoride had greater concentrations of F, Ca and P ions. The presence of fluoride in the whitening agent did not influence the enamel microhardness. PMID:28405245

  1. Remineralization of demineralized enamel via calcium phosphate nanocomposite.

    PubMed

    Weir, M D; Chow, L C; Xu, H H K

    2012-10-01

    Secondary caries remains the main problem limiting the longevity of composite restorations. The objective of this study was to investigate the remineralization of demineralized human enamel in vitro via a nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP). NACP were synthesized by a spray-drying technique and incorporated into a dental resin. First, caries-like subsurface enamel lesions were created via an acidic solution. Then, NACP nanocomposite or a commercial fluoride-releasing control composite was placed on the demineralized enamel, along with control enamel without a composite. These specimens were then treated with a cyclic demineralization/remineralization regimen for 30 days. Quantitative microradiography showed typical enamel subsurface demineralization before cyclic demineralization/remineralization treatment, and significant remineralization in enamel under the NACP nanocomposite after the demineralization/remineralization treatment. The NACP nanocomposite had the highest enamel remineralization (mean ± SD; n = 6) of 21.8 ± 3.7%, significantly higher than the 5.7 ± 6.9% for fluoride-releasing composite (p < 0.05). The enamel group without composite had further demineralization of -26.1 ± 16.2%. In conclusion, a novel NACP nanocomposite was effective in remineralizing enamel lesions in vitro. Its enamel remineralization was 4-fold that of a fluoride-releasing composite control. Combined with the good mechanical and acid-neutralization properties reported earlier, the new NACP nanocomposite is promising for remineralization of demineralized tooth structures.

  2. Remineralization of Demineralized Enamel via Calcium Phosphate Nanocomposite

    PubMed Central

    Weir, M.D.; Chow, L.C.; Xu, H.H.K.

    2012-01-01

    Secondary caries remains the main problem limiting the longevity of composite restorations. The objective of this study was to investigate the remineralization of demineralized human enamel in vitro via a nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP). NACP were synthesized by a spray-drying technique and incorporated into a dental resin. First, caries-like subsurface enamel lesions were created via an acidic solution. Then, NACP nanocomposite or a commercial fluoride-releasing control composite was placed on the demineralized enamel, along with control enamel without a composite. These specimens were then treated with a cyclic demineralization/remineralization regimen for 30 days. Quantitative microradiography showed typical enamel subsurface demineralization before cyclic demineralization/remineralization treatment, and significant remineralization in enamel under the NACP nanocomposite after the demineralization/remineralization treatment. The NACP nanocomposite had the highest enamel remineralization (mean ± SD; n = 6) of 21.8 ± 3.7%, significantly higher than the 5.7 ± 6.9% for fluoride-releasing composite (p < 0.05). The enamel group without composite had further demineralization of −26.1 ± 16.2%. In conclusion, a novel NACP nanocomposite was effective in remineralizing enamel lesions in vitro. Its enamel remineralization was 4-fold that of a fluoride-releasing composite control. Combined with the good mechanical and acid-neutralization properties reported earlier, the new NACP nanocomposite is promising for remineralization of demineralized tooth structures. PMID:22933607

  3. Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries.

    PubMed

    Maia, A M A; Karlsson, L; Margulis, W; Gomes, A S L

    2011-10-01

    The aim of this paper was to evaluate a transillumination (TI) system using near-infrared (NIR) light and bitewing radiographs for the detection of early approximal enamel caries lesions. Mesiodistal sections of teeth (n = 14) were cut with various thicknesses from 1.5 mm to 4.75 mm. Both sides of each section were included, 17 approximal surfaces with natural enamel caries and 11 surfaces considered intact. The approximal surfaces were illuminated by NIR light and X-ray. Captured images were analysed by two calibrated specialists in radiology, and re-analysed after 6 months using stereomicroscope images as a gold standard. The interexaminer reliability (Kappa test statistic) for the NIR TI technique showed moderate agreement on first (0.55) and second (0.48) evaluation, and low agreement for bitewing radiographs on first (0.26) and second (0.32) evaluation. In terms of accuracy, the sensitivity for the NIR TI system was 0.88 and the specificity was 0.72. For the bitewing radiographs the sensitivity ranged from 0.35 to 0.53 and the specificity ranged from 0.50 to 0.72. In the same samples and conditions tested, NIR TI images showed reliability and the enamel caries surfaces were better identified than on dental radiographs.

  4. Evaluation of two imaging techniques: near-infrared transillumination and dental radiographs for the detection of early approximal enamel caries

    PubMed Central

    Maia, A M A; Karlsson, L; Margulis, W; Gomes, A S L

    2011-01-01

    Objectives The aim of this paper was to evaluate a transillumination (TI) system using near-infrared (NIR) light and bitewing radiographs for the detection of early approximal enamel caries lesions. Methods Mesiodistal sections of teeth (n = 14) were cut with various thicknesses from 1.5 mm to 4.75 mm. Both sides of each section were included, 17 approximal surfaces with natural enamel caries and 11 surfaces considered intact. The approximal surfaces were illuminated by NIR light and X-ray. Captured images were analysed by two calibrated specialists in radiology, and re-analysed after 6 months using stereomicroscope images as a gold standard. Results The interexaminer reliability (Kappa test statistic) for the NIR TI technique showed moderate agreement on first (0.55) and second (0.48) evaluation, and low agreement for bitewing radiographs on first (0.26) and second (0.32) evaluation. In terms of accuracy, the sensitivity for the NIR TI system was 0.88 and the specificity was 0.72. For the bitewing radiographs the sensitivity ranged from 0.35 to 0.53 and the specificity ranged from 0.50 to 0.72. Conclusion In the same samples and conditions tested, NIR TI images showed reliability and the enamel caries surfaces were better identified than on dental radiographs. PMID:21960400

  5. Further morphological evidence on South African earliest Homo lower postcanine dentition: Enamel thickness and enamel dentine junction.

    PubMed

    Pan, Lei; Dumoncel, Jean; de Beer, Frikkie; Hoffman, Jakobus; Thackeray, John Francis; Duployer, Benjamin; Tenailleau, Christophe; Braga, José

    2016-07-01

    The appearance of the earliest members of the genus Homo in South Africa represents a key event in human evolution. Although enamel thickness and enamel dentine junction (EDJ) morphology preserve important information about hominin systematics and dietary adaptation, these features have not been sufficiently studied with regard to early Homo. We used micro-CT to compare enamel thickness and EDJ morphology among the mandibular postcanine dentitions of South African early hominins (N = 30) and extant Homo sapiens (N = 26), with special reference to early members of the genus Homo. We found that South African early Homo shows a similar enamel thickness distribution pattern to modern humans, although three-dimensional average and relative enamel thicknesses do not distinguish australopiths, early Homo, and modern humans particularly well. Based on enamel thickness distributions, our study suggests that a dietary shift occurred between australopiths and the origin of the Homo lineage. We also observed that South African early Homo postcanine EDJ combined primitive traits seen in australopith molars with derived features observed in modern human premolars. Our results confirm that some dental morphological patterns in later Homo actually occurred early in the Homo lineage, and highlight the taxonomic value of premolar EDJ morphology in hominin species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Morphology of the cemento-enamel junction in premolar teeth.

    PubMed

    Arambawatta, Kapila; Peiris, Roshan; Nanayakkara, Deepthi

    2009-12-01

    The present study attempted to describe the distribution of the mineralized tissues that compose the cemento-enamel junction, with respect to both the different types of permanent premolars of males and females and the various surfaces of individual teeth. The cervical region of ground sections of 67 premolars that had been extracted for orthodontic reasons were analyzed using transmitted light microscopy to identify which of the following tissue interrelationships was present at the cemento-enamel junction: cementum overlapping enamel; enamel overlapping cementum; edge-to-edge relationship between cementum and enamel; or the presence of gaps between the enamel and cementum with exposed dentin. An edge-to-edge interrelation between root cementum and enamel was predominant (55.1%). In approximately one-third of the sample, gaps between cementum and enamel with exposed dentin were observed. Cementum overlapping enamel was less prevalent than previously reported, and enamel overlapping cementum was seen in a very small proportion of the sample. In any one tooth, the distribution of mineralized tissues at the cemento-enamel junction was irregular and unpredictable. The frequency of gaps between enamel and cementum with exposure of dentin was higher than previously reported, which suggests that this region is fragile and strongly predisposed to pathological changes. Hence, this region should be protected and carefully managed during routine clinical procedures such as dental bleaching, orthodontic treatment, and placement of restorative materials.

  7. Effect of acidity upon attrition-corrosion of human dental enamel.

    PubMed

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.

    PubMed

    Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi

    2010-04-01

    Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.

  9. Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.

    PubMed

    Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P

    2008-05-01

    To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p < 0.001). When the nature of failure was assessed with the ARI Index, 83 per cent of the enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.

  10. Study of Two-Body Wear Performance of Dental Materials.

    PubMed

    Hu, Xin; Zhang, Qian; Ning, Jia; Wu, Wenmeng; Li, Changyi

    2018-06-01

    The purpose of this study was to evaluate the two-body wear resistances of natural enamel and four dental materials in vitro. The testing machine was modified to form a type of pin-on-disk wear test apparatus. Four dental material specimens (Au-Pd alloy, Ag-Pd alloy, FiltekTMP60 and FiltekTMZ350 composite resins) and enamel were used as the pins, and a steatite ceramic grinding wheel was used as the abrasive counter face. The wear volume loss and the rigidity value was measured. The worn surface and the element analysis of the debris were analyzed. The wear volume loss of Au-Pd alloy and its steatite antagonists were the nearest to those of the dental enamel. SEM microphotographs showed that, the main wear mechanism of the dental materials was abrasive and adhesive wear. Au-Pd alloy had good wear resistance and was more suitable for dental applications than other three dental materials. Copyright © 2017 National Medical Association. Published by Elsevier Inc. All rights reserved.

  11. DLX3-Dependent Regulation of Ion Transporters and Carbonic Anhydrases is Crucial for Enamel Mineralization.

    PubMed

    Duverger, Olivier; Ohara, Takahiro; Bible, Paul W; Zah, Angela; Morasso, Maria I

    2017-03-01

    Patients with tricho-dento-osseous (TDO) syndrome, an ectodermal dysplasia caused by mutations in the homeodomain transcription factor DLX3, exhibit enamel hypoplasia and hypomineralization. Here we used a conditional knockout mouse model to investigate the developmental and molecular consequences of Dlx3 deletion in the dental epithelium in vivo. Dlx3 deletion in the dental epithelium resulted in the formation of chalky hypomineralized enamel in all teeth. Interestingly, transcriptomic analysis revealed that major enamel matrix proteins and proteases known to be involved in enamel secretion and maturation were not affected significantly by Dlx3 deletion in the enamel organ. In contrast, expression of several ion transporters and carbonic anhydrases known to play an important role in enamel pH regulation during maturation was significantly affected in enamel organs lacking DLX3. Most of these affected genes showed binding of DLX3 to their proximal promoter as evidenced by chromatin immunoprecipitation sequencing (ChIP-seq) analysis on rat enamel organ. These molecular findings were consistent with altered pH staining evidenced by disruption of characteristic pH oscillations in the enamel. Taken together, these results show that DLX3 is indispensable for the regulation of ion transporters and carbonic anhydrases during the maturation stage of amelogenesis, exerting a crucial regulatory function on pH oscillations during enamel mineralization. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  12. [Effects of surface treatment and adhesive application on shear bond strength between zirconia and enamel].

    PubMed

    Li, Yinghui; Wu, Buling; Sun, Fengyang

    2013-03-01

    To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (P<0.05) and comparable between the two groups with the adhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.

  13. On the critical parameters that regulate the deformation behaviour of tooth enamel.

    PubMed

    Xie, Zonghan; Swain, Michael; Munroe, Paul; Hoffman, Mark

    2008-06-01

    Tooth enamel is the hardest tissue in the human body with a complex hierarchical structure. Enamel hypomineralisation--a developmental defect--has been reported to cause a marked reduction in the mechanical properties of enamel and loss of dental function. We discover a distinctive difference in the inelastic deformation mechanism between sound and hypomineralised enamels that is apparently controlled by microstructural variation. For sound enamel, when subjected to mechanical forces the controlling deformation mechanism was distributed shearing within nanometre thick protein layer between its constituent mineral crystals; whereas for hypomineralised enamel microcracking and subsequent crack growth were more evident in its less densely packed microstructure. We develop a mechanical model that not only identifies the critical parameters, i.e., the thickness and shear properties of enamels, that regulate the mechanical behaviour of enamel, but also explains the degradation of hypomineralised enamel as manifested by its lower resistance to deformation and propensity for catastrophic failure. With support of experimental data, we conclude that for sound enamel an optimal microstructure has been developed that endows enamel with remarkable structural integrity for durable mechanical function.

  14. Dental injuries in autistic patients.

    PubMed

    Altun, Ceyhan; Guven, Gunseli; Yorbik, Ozgur; Acikel, Cengizhan

    2010-01-01

    The purpose of this study was to assess the incidence of traumatic dental injury among Turkish children and young adults with autism and compare this to the general population of Turkish children and young adults without autism. This study was comprised of 186 children and young adults (138 males and 48 females), 93 with autism (autistic group, or AG) and 93 without autism (control group, or CG). Dental injuries were classified according to drawings and texts based on the WHO classification system, as modified by Andreasen and Andreasen. The rate of injury was higher among the AG (23%) than the CG (15%). The difference between the 2 groups, however, was not statistically significant (P<.19). The most common type of dental injury was enamel fracture. The rate of enamel fracture was higher in the CG (59%) than in the AG (33%), and the distribution of types of traumatic injury differed significantly between the AG and CG (P>.01). There were no significant differences in the rates of traumatic dental injuries among children and young adults with and without autistic disorder. The most frequently injured teeth were the permanent maxillary central incisors, and the frequency of injury to these teeth differed significantly (P>.01) between AG (56%) and CG (91%). The most common type of dental injury, enamel fracture, was more common in CG (59%) than AG (33%). The distribution of types of traumatic dental injuries differed significantly between the 2 groups (P>.01).

  15. Measurement of solubility and water sorption of dental nanocomposites light cured by argon laser.

    PubMed

    Mirsasaani, Seyed Shahabeddin; Ghomi, Farhad; Hemati, Mehran; Tavasoli, Tina

    2013-03-01

    Different parameters used for photoactivation process and also composition provide changes in the properties of dental composites. In the present work the effect of different power density of argon laser and filler loading on solubility (SL) and water sorption (WS) of light-cure dental nanocomposites was studied. The resin of nanocomposites was prepared by mixing bisphenol A glycol dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) with a mass ratio of 65/35. 20 wt.% and 25 wt.% of nanosilica fillers with a primary particle size of 10 nm were added to the resin. Camphorquinone (CQ) and DMAEMA were added as photoinitiator system. The nanocomposites were cured by applying the laser beam at the wavelength of 472 nm and power densities of 260 and 340 mW/cm(2) for 40 sec. Solubility and water sorption were then measured according to ISO 4049, which in our case, the maximums were 2.2% and 4.3% at 260 mW/cm(2) and 20% filler, respectively. The minimum solubility (1.2%) and water sorption (3.8%) were achieved for the composite containing 25% filler cured at 340 mW/cm(2). The results confirmed that higher power density and filler loading decreased solubility of unreacted monomers and water sorption and improved physico-mechanical properties of nanocomposites.

  16. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    PubMed

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  17. Effects of fluoride and epigallocatechin gallate on soft-drink-induced dental erosion of enamel and root dentin.

    PubMed

    Wang, Yin-Lin; Chang, Hao-Hueng; Chiang, Yu-Chih; Lu, Yu-Chen; Lin, Chun-Pin

    2018-04-01

    Fluoride and epigallocatechin gallate (EGCG) have been proven to prevent dental caries. The purpose of this study was to evaluate the effects of fluoride and EGCG on soft-drink-induced dental erosion in vitro. Forty enamel and dentin specimens were prepared from extracted human teeth. The specimens were divided into 4 groups and treated separately with distilled water (as control), 0.5 M sodium fluoride (NF), 400 μM EGCG (EG), and a solution containing 0.5 M NaF and 400 μM EGCG (FG). Cyclic erosive treatment was performed according to the experimental procedures. The specimens were analyzed using laser scanning confocal microscopy, scanning electron microscopy, and a microhardness tester. The data were analyzed using ANOVA and Bonferroni's post hoc test. The significance level was set at 5%. The amount of substance loss was lower in the NF and EG groups than in the control group (p < 0.05). The erosion-caused substance loss was more pronounced in the dentin than in the enamel specimens. Surface microhardness loss was lower in the NF and EG groups than in the control group (p < 0.05). The diameter of the dentinal tubule was wider in the control group than in the NF and EG groups (p < 0.05). No combined effects were observed in the FG group. Both fluoride and EGCG are effective in preventing soft-drink-induced erosion compared with the control group. Fluoride and EGCG may interfere with each other. The mechanisms of the anti-erosive effect need to be explored in the future. Copyright © 2018. Published by Elsevier B.V.

  18. Effects of the CO II laser combined with fluoridated toothpaste on human dental enamel demineralization

    NASA Astrophysics Data System (ADS)

    Azevedo Rodrigues, Lidiany Karla; Alvarez Vidigal, Evelyn; Silva Soares, Luís Eduardo; Abrahão Martin, Airton; Brugnera-Júnior, Aldo; Aparecida Zanin, Fátima Antonia; Nobre dos Santos, Marinês

    2006-02-01

    This in vitro pilot study investigated the CO II laser effects on demineralization inhibition in sound human dental enamel. Thirty six human enamel specimens were used and randomly assigned to 6 groups, as follows: I) Control; II) 1W; III) 2W; IV) 3W; V) 4W; VI) 5W. Group I one was kept as control and others were irradiated using a pulsed CO II laser (λ=10.6 μm) with low crescent potencies. Fourier Transform Raman Spectroscopy was used to study the surface composition of specimens after irradiation. One specimen from each group was analyzed by Scanning Electron Microscopy and the remaining ones were submitted to an 8-day pH cycling model with use of fluoridated toothpaste twice a day. After pH-cycling, the cross-sectional microhardness was performed for mineral loss (ΔZ) quantification. The data were analyzed by ANOVA and Tuckey test (α=0.05). No changes were found either in SEM photomicrographies or RAMAN Spectra of the specimens in all groups. The ΔZ values (n=5; mean+/-SD) for I-VI groups were: 1741.6+/-725.3a 1782.7+/-639.0a 1427.2+/-237.0a 1780.6+/-552.4a 1385.2+/-602.2a 943.1+/-228.1a respectively. The highest percentage of caries inhibition was found in group VI (45.8%); however the differences between ΔZ of the groups were not statistically significant. The use of CO II laser with low fluencies did not prevent more caries development than the use of fluoridated toothpaste, even though group VI had present good results in caries inhibition. Energy densities higher than 0.0125 J/cm 2 should be used to promote chemical or morphological changes on enamel surface, which are able of inhibiting mineral.

  19. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  20. Developmental and Post-Eruptive Defects in Molar Enamel of Free-Ranging Eastern Grey Kangaroos (Macropus giganteus) Exposed to High Environmental Levels of Fluoride

    PubMed Central

    Kierdorf, Uwe; Death, Clare; Hufschmid, Jasmin; Witzel, Carsten; Kierdorf, Horst

    2016-01-01

    Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus) from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface) enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species. PMID:26895178

  1. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    PubMed

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  2. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    PubMed

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  3. Low-levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes.

    PubMed

    Lynch, R J M; Navada, R; Walia, R

    2004-01-01

    To summarise support for current consensus on the likely means by which fluoride toothpastes reduce caries and review some relevant studies of the effect of low levels of fluoride on the demineralisation and remineralisation of enamel. The major anti-caries effect of fluoride toothpastes is thought to result from small but protracted elevations in levels of fluoride in plaque and saliva. Fluoride incorporated into enamel systemically does not reduce enamel solubility sufficiently to exert an anti-caries effect. Fluoride has the potential to exert an anti-caries benefit largely through three mechanisms; inhibition of demineralisation, promotion of remineralisation and interference with bacterial growth and metabolism. However, the low levels of fluoride thought to influence caries are insufficient to have a significant effect via the latter mechanism. Thus reductions in caries resulting from the use of fluoride toothpastes can be linked to modification of the demineralisation/remineralisation balance by direct effects on dental mineral exerted topically by low levels of fluoride. Numerous in vitro studies have shown that low levels of fluoride, typical of those found after many hours in resting plaque and saliva, and resulting from the regular use of fluoride toothpastes, can have a profound effect on enamel demineralisation and remineralisation.

  4. Amelogenin-Ameloblastin Spatial Interaction around Maturing Enamel Rods.

    PubMed

    Mazumder, P; Prajapati, S; Bapat, R; Moradian-Oldak, J

    2016-08-01

    Amelogenin and ameloblastin are 2 extracellular matrix proteins that are essential for the proper development of enamel. We recently reported that amelogenin and ameloblastin colocalized during the secretory stage of enamel formation when nucleation of enamel crystallites occurs. Direct interactions between the 2 proteins have been also demonstrated in our in vitro studies. Here, we explore interactions between their fragments during enamel maturation. We applied in vivo immunofluorescence imaging, quantitative co-localization analysis, and a new FRET (fluorescence resonance energy transfer) technique to demonstrate ameloblastin and amelogenin interaction in the maturing mouse enamel. Using immunochemical analysis of protein samples extracted from 8-d-old (P8) first molars from mice as a model for maturation-stage enamel, we identified the ~17-kDa ameloblastin (Ambn-N) and the TRAP (tyrosine-rich amelogenin peptide) fragments. We used Ambn-N18 and Ambn-M300 antibodies raised against the N-terminal and C-terminal segments of ameloblastin, as well as Amel-FL and Amel-C19 antibodies against full-length recombinant mouse amelogenin (rM179) and C-terminal amelogenin, respectively. In transverse sections, co-localization images of N-terminal fragments of amelogenin and ameloblastin around the prism boundary revealed the "fish net" pattern of the enamel matrix. Using in vivo FRET microscopy, we further demonstrated spatial interactions between amelogenin and ameloblastin N-terminal fragments. In the maturing mouse enamel, the association of these residual protein fragments created a discontinuity between enamel rods, which we suggest is important for support and maintenance of enamel rods and eventual contribution to unique enamel mechanical properties. We present data that support cooperative functions of enamel matrix proteins in mediating the structural hierarchy of enamel and that contribute to our efforts to design and develop enamel biomimetic material.

  5. Effects of moisture conditions of dental enamel surface on bond strength of brackets bonded with moisture-insensitive primer adhesive system.

    PubMed

    Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi

    2008-07-01

    The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.

  6. Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion.

    PubMed

    Wei, Wei; Gao, Yanhui; Wang, Cheng; Zhao, Lijun; Sun, Dianjun

    2013-06-01

    Protein retention in the enamel layer during tooth formation is well known to be associated with dental fluorosis but the underlying mechanism is unclear. The functions of the endoplasmic reticulum (ER) correlate directly with secreted protein metabolism. We used an ameloblast-derived cell line to determine whether excessive amounts of fluoride cause ER stress, and whether this interferes with the secretion of enamel matrix proteinases. ER stress activates a signaling network called the unfolded protein response (UPR). Here, we used real-time RT-PCR and immunofluorescence to study the effect of fluoride on the expression, translation, and secretion of UPR transcription factors in ameloblast-like cells. Measurement of both the gene and protein expression of UPR transcription factors indicated that high-dose fluoride increases the expression of UPR transcription factors in a dose-dependent manner. We also used ELISA to detect and quantify the enamel proteinases secreted by ameloblasts. We found a corresponding decrease in extracellular secretion of the enamel proteinases matrix metalloproteinase-20 and kallikrein-4, after exposure to fluoride. Furthermore, correlation analysis indicated that the expression of UPR transcription factors showed a strong inverse correlation with that of enamel proteinases. The results suggest that high-dose fluoride initiates an ER stress response in ameloblasts and induces the UPR, which interferes with the synthesis and secretion of enamel proteinases. Taken together, these results suggest that excessive ingestion of fluoride during tooth formation can decrease the secretion of proteinases, thus causing protein retention in the enamel layer, indicating that the ER stress response may be responsible for dental fluorosis. Copyright © 2011 Wiley Periodicals, Inc.

  7. Effects of coating materials on nanoindentation hardness of enamel and adjacent areas.

    PubMed

    Alsayed, Ehab Z; Hariri, Ilnaz; Nakashima, Syozi; Shimada, Yasushi; Bakhsh, Turki A; Tagami, Junji; Sadr, Alireza

    2016-06-01

    Materials that can be applied as thin coatings and actively release fluoride or other bioavailable ions for reinforcing dental hard tissue deserve further investigation. In this study we assessed the potential of resin coating materials in protection of underlying and adjacent enamel against demineralization challenge using nanoindentation. Enamel was coated using Giomer (PRG Barrier Coat, PBC), resin-modified glass-ionomer (Clinpro XT Varnish, CXT), two-step self-etch adhesive (Clearfil SE Protect, SEP) or no coating (control). After 5000 thermal cycles and one-week demineralization challenge, Martens hardness of enamel beneath the coating, uncoated area and intermediate areas was measured using a Berkovich tip under 2mN load up to 200μm depth. Integrated hardness and 10-μm surface zone hardness were compared among groups. Nanoindentation and scanning electron microscopy suggested that all materials effectively prevented demineralization in coated area. Uncoated areas presented different hardness trends; PBC showed a remarkable peak at the surface zone before reaching as low as the control, while CXT showed relatively high hardness values at all depths. Ion-release from coating materials affects different layers of enamel. Coatings with fluoride-releasing glass fillers contributed to reinforcement of adjacent enamel. Surface prereacted glass filler-containing PBC superficially protected neighboring enamel against demineralization, while resin-modified glass-ionomer with calcium (CXT) improved in-depth protection. Cross-sectional hardness mapping of enamel on a wide range of locations revealed minute differences in its structure. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. HREM study of irradiation damage in human dental enamel crystals.

    PubMed

    Brès, E F; Hutchison, J L; Senger, B; Voegel, J C; Frank, R M

    1991-06-01

    Several phenomena have been observed during the examination of human dental enamel crystals (mainly constituted by hydroxyapatite (OHAP] by high-resolution electron microscopy (HREM) at 300 and 400 keV: orientation-dependent damage in the form of mass loss from voids or uniform destruction of crystal structure, beam-induced diffusion creating outgrowths at the crystal surfaces, recrystallization of the bulk crystal and crystallization of the inorganic components of the matrix surrounding the crystals. These beam-induced crystals have the CaO structure. The phenomena observed are most likely due to various electron-crystal interaction mechanisms (ballistic knock-on damage, electronic excitations, temperature rise, etc.). In this paper, the contribution of the ballistic process to the phenomena observed is discussed. The quantitative description of the knock-on collisions rests on the McKinley-Feshbach cross-section formula. The minimum ion displacement energies which appear in this expression have been estimated on the basis of the electrostatic ion binding energies, and the covalent bond energies if required. It is shown that hydroxyl, calcium and oxygen ions can effectively be displaced by the incident 300 and 400 keV electrons. Thus, the formation of CaO crystals by the combination of calcium and oxygen ions diffusing from their initial sites inside the OHAP lattice can tentatively be explained.

  9. Enamel subsurface damage due to tooth preparation with diamonds.

    PubMed

    Xu, H H; Kelly, J R; Jahanmir, S; Thompson, V P; Rekow, E D

    1997-10-01

    In clinical tooth preparation with diamond burs, sharp diamond particles indent and scratch the enamel, causing material removal. Such operations may produce subsurface damage in enamel. However, little information is available on the mechanisms and the extent of subsurface damage in enamel produced during clinical tooth preparation. The aim of this study, therefore, was to investigate the mechanisms of subsurface damage produced in enamel during tooth preparation by means of diamond burs, and to examine the dependence of such damage on enamel rod orientation, diamond particle size, and removal rate. Subsurface damage was evaluated by a bonded-interface technique. Tooth preparation was carried out on two enamel rod orientations, with four clinical diamond burs (coarse, medium, fine, and superfine) used in a dental handpiece. The results of this study showed that subsurface damage in enamel took the form of median-type cracks and distributed microcracks, extending preferentially along the boundaries between the enamel rods. Microcracks within individual enamel rods were also observed. The median-type cracks were significantly longer in the direction parallel to the enamel rods than perpendicular to the rods. Preparation with the coarse diamond bur produced cracks as deep as 84 +/- 30 microns in enamel. Finishing with fine diamond burs was effective in crack removal. The crack lengths in enamel were not significantly different when the removal rate was varied. Based on these results, it is concluded that subsurface damage in enamel induced by tooth preparation takes the form of median-type cracks as well as inter- and intra-rod microcracks, and that the lengths of these cracks are sensitive to diamond particle size and enamel rod orientation, but insensitive to removal rate.

  10. A comparative evaluation of APF gel, CPP/ACP paste alone and in combination with carbon dioxide laser on human enamel resistance to acid solubility using atomic absorption spectrometry: an in-vitro study.

    PubMed

    Nozari, Ali; Rafiee, Azade; Dehghan Khalili, Sara; Fekrazad, Reza

    2018-04-01

    The aim of this study was to compare the effects of acidulated phosphate fluoride (APF) gel, calcium phosphopeptide-amorphous calcium phosphate (CPP/ACP) paste alone and in combination with CO2 laser on the resistance of enamel to acid solubility. Ninety enamel sections were obtained from 15 extracted teeth and were randomly assigned to six groups: 1) control group; 2) APF group; 3) CPP-ACP group; 4) CO2 laser group; 5) APF + CO2 group; and 6) CPP-ACP + CO2 group. The specimens were individually demineralized in 0.1 M lactic acid solution with adjusted pH of 4.8 for 24h at 37 ºC. The acid solubility was determined using atomic absorption spectrometry. Statistical analysis was done using one-way ANOVA and Tukey-Kramer post hoc test (P<0.05). The average extent of calcium ion released (ppm) was estimated as follow: group 1: 6.974±1.757, group 2: 5.363±1.383, group 3: 6.962±1.489, group 4: 6.890±1.560, group 5: 4.803±1.080 and group 6: 6.789±1.218. Based on the between-group comparison results, group 2 and group 5 showed significant differences with the other groups. Under the studied conditions, only, the APF group alone and in combination with CO2 laser could decrease enamel acid solubility.

  11. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    PubMed

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  12. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.

    PubMed

    Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V

    2015-07-01

    This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Dental health of aboriginal pre-school children in Brisbane, Australia.

    PubMed

    Seow, W K; Amaratunge, A; Bennett, R; Bronsch, D; Lai, P Y

    1996-06-01

    This investigation studied the dental health status of a group of 184 Australian Aboriginal children with a mean age of 4.4 +/- 0.8 years, who were attending pre-schools in metropolitan Brisbane, a non-fluoridated state capital city. The DDE (Developmental Defects of Enamel) Index was used to chart enamel hypoplasia and enamel opacities. WHO criteria was used to diagnose dental caries. The results showed that 98% of children had at least one tooth showing developmental enamel defects. Each child had a mean of 3.8 +/- 1.7 teeth affected by enamel hypoplasia and another 1.1 +/- 0.8 teeth affected by enamel opacity. Seventy-eight percent of the children had dental caries. The mean number of decayed, missing, filled teeth (dmft) per child was 3.8 +/- 3.7. The decayed component constituted 3.5 (95%) of the mean dmft, indicating a high unmet restorative need in this group. The mean dmfs (decayed, missing, filled, surfaces) was 5.9 +/- 7.3. Maxillary anterior labial decay of at least one tooth affected 43 (23%) of the children. In this sub-group, the dmft and dmfs was 9.1 +/- 2.8 and 15.4 +/- 7.7 respectively. Oral debris was found in 98% of the children. It is hypothesized that the high levels of underlying developmental enamel defects, compounded by low fluoride exposure, poor oral hygiene and a diet high in refined sugars pose an important caries risk factor in this group of children.

  14. Ca2+ transport and signalling in enamel cells.

    PubMed

    Nurbaeva, Meerim K; Eckstein, Miriam; Feske, Stefan; Lacruz, Rodrigo S

    2017-05-15

    Dental enamel is one of the most remarkable examples of matrix-mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage-dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca 2+ is the most abundant ion, yet how ameloblasts modulate Ca 2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca 2+ transport, the intracellular Ca 2+ buffering systems expressed in ameloblasts and provides an up-dated view of current models concerning Ca 2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca 2+ transport by the enamel organ. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Ca2+ transport and signalling in enamel cells

    PubMed Central

    Nurbaeva, Meerim K.; Eckstein, Miriam; Feske, Stefan

    2016-01-01

    Abstract Dental enamel is one of the most remarkable examples of matrix‐mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage‐dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up‐dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ. PMID:27510811

  16. Bio-inspired dental fillings

    NASA Astrophysics Data System (ADS)

    Deyhle, Hans; Bunk, Oliver; Buser, Stefan; Krastl, Gabriel; Zitzmann, Nicola U.; Ilgenstein, Bernd; Beckmann, Felix; Pfeiffer, Franz; Weiger, Roland; Müller, Bert

    2009-08-01

    Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small angle X-ray scattering (SAXS) with a spatial resolution in the 10 μm range allows determining the size and orientation of the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings with superior resistance to thermal and mechanical shocks.

  17. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    NASA Astrophysics Data System (ADS)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.

  18. Surface variations affecting human dental enamel studied using nanomechanical and chemical analysis

    NASA Astrophysics Data System (ADS)

    Dickinson, Michelle Emma

    The enamel surface is the interface between the tooth and its ever changing oral environment. Cavity (caries) formation and extrinsic tooth staining are due, respectively, to degradation of the enamel structure under low pH conditions and interactions between salivary pellicle and dietary elements. Both of these occur at the enamel surface and are caused by the local environment changing the chemistry of the surface. The results can be detrimental to the enamel's mechanical integrity and aesthetics. Incipient carious lesions are the precursor to caries and form due to demineralisation of enamel. These carious lesions are a reversible structure where ions (e.g. Ca2+, F -) can diffuse in (remineralisation) to preserve the tooth's structural integrity. This investigation used controlled in vitro demineralisation and remineralisation to study artificial carious lesion formation and repair. The carious lesions were cross-sectioned and characterised using nanoindentation, electron probe micro-analysis and time of flight secondary ion mass spectrometry. Mechanical and chemical maps showed the carious lesion had a significantly reduced hardness and elastic modulus, and the calcium and phosphate content was lower than in sound enamel. Fluoride based remineralisation treatments gave a new phase (possibly fluorohydroxyapatite) within the lesion with mechanical properties higher than sound enamel. The acquired salivary pellicle is a protein-rich film formed by the physisorption of organic molecules in saliva onto the enamel surface. Its functions include lubrication during mastication and chemical protection. However, pellicle proteins react with dietary elements such as polyphenols (tannins in tea) causing a brown stain. This study has used in vitro dynamic nanoindentation and atomic force microscopy to examine normal and stained pellicles formed in vivo. The effects of polyphenols on the pellicle's mechanical properties and morphology have been studied. It was found that the

  19. Mediator 1 contributes to enamel mineralization as a coactivator for Notch1 signaling and stimulates transcription of the alkaline phosphatase gene.

    PubMed

    Yoshizaki, Keigo; Hu, Lizhi; Nguyen, Thai; Sakai, Kiyoshi; Ishikawa, Masaki; Takahashi, Ichiro; Fukumoto, Satoshi; DenBesten, Pamela K; Bikle, Daniel D; Oda, Yuko; Yamada, Yoshihiko

    2017-08-18

    Tooth enamel is mineralized through the differentiation of multiple dental epithelia including ameloblasts and the stratum intermedium (SI), and this differentiation is controlled by several signaling pathways. Previously, we demonstrated that the transcriptional coactivator Mediator 1 (MED1) plays a critical role in enamel formation. For instance, conditional ablation of Med1 in dental epithelia causes functional changes in incisor-specific dental epithelial stem cells, resulting in mineralization defects in the adult incisors. However, the molecular mechanism by which Med1 deficiency causes these abnormalities is not clear. Here, we demonstrated that Med1 ablation causes early SI differentiation defects resulting in enamel hypoplasia of the Med1 -deficient molars. Med1 deletion prevented Notch1-mediated differentiation of the SI cells resulting in decreased alkaline phosphatase (ALPL), which is essential for mineralization. However, it does not affect the ability of ameloblasts to produce enamel matrix proteins. Using the dental epithelial SF2 cell line, we demonstrated that MED1 directly activates transcription of the Alpl gene through the stimulation of Notch1 signaling by forming a complex with cleaved Notch1-RBP-Jk on the Alpl promoter. These results suggest that MED1 may be essential for enamel matrix mineralization by serving as a coactivator for Notch1 signaling regulating transcription of the Alpl gene.

  20. Fluoride varnishes containing calcium glycerophosphate: fluoride uptake and the effect on in vitro enamel erosion.

    PubMed

    Carvalho, Thiago S; Bönecker, Marcelo; Altenburger, Markus J; Buzalaf, Marília A R; Sampaio, Fabio C; Lussi, Adrian

    2015-07-01

    Calcium glycerophosphate (CaGP) was added to fluoride varnishes to analyze their preventive effect on initial enamel erosion and fluoride uptake: potassium hydroxide (KOH)-soluble and KOH-insoluble fluoride bound to enamel. This study was carried out in two parts. Part 1: 108 enamel samples were randomly distributed into six varnish groups: base varnish (no active ingredients); Duraphat® (2.26%NaF); Duofluorid® (5.63%NaF/CaF2); experimental varnish 1 (1%CaGP/5.63 NaF/CaF2); experimental varnish 2 (5%CaGP/5.63%NaF/CaF2); and no varnish. Cyclic demineralization (90 s; citric acid, pH = 3.6) and remineralization (4 h) was made once a day, for 3 days. Change in surface microhardness (SMH) was measured. Part 2: 60 enamel samples were cut in half and received no varnish (control) or a layer of varnish: Duraphat®, Duofluorid®, experimental varnishes 1 and 2. Then, KOH-soluble and KOH-insoluble fluoride were analyzed using an electrode. After cyclic demineralization, SMH decreased in all samples, but Duraphat® caused less hardness loss. No difference was observed between varnishes containing CaGP and the other varnishes. Similar amounts of KOH-soluble and insoluble fluoride was found in experimental varnish 1 and Duofluorid®, while lower values were found for experimental varnish 2 and Duraphat®. The addition of CaGP to fluoride varnishes did not increase fluoride bound to enamel and did not enhance their protection against initial enamel erosion. We observe that the fluoride varnishes containing CaGP do not promote greater amounts of fluoride bound to enamel and that fluoride bound to enamel may not be closely related to erosion prevention.

  1. The Molecular Basis of Hereditary Enamel Defects in Humans

    PubMed Central

    Carrion, I.A.; Morris, C.

    2015-01-01

    The formation of human enamel is highly regulated at the molecular level and involves thousands of genes. Requisites for development of this highly mineralized tissue include cell differentiation; production of a unique extracellular matrix; processing of the extracellular matrix; altering of cell function during different stages of enamel formation; cell movement and attachment; regulation of ion and protein movement; and regulation of hydration, pH, and other conditions of the microenvironment, to name just a few. Not surprising, there is a plethora of hereditary conditions with an enamel phenotype. The objective of this review was to identify the hereditary conditions listed on Online Mendelian Inheritance in Man (OMIM) that have an associated enamel phenotype and whether a causative gene has been identified. The OMIM database was searched with the terms amelogenesis, enamel, dental, and tooth, and all results were screened by 2 individuals to determine if an enamel phenotype was identified. Gene and gene product function was reviewed on OMIM and from publications identified in PubMed. The search strategy revealed 91 conditions listed in OMIM as having an enamel phenotype, and of those, 71 have a known molecular etiology or linked genetic loci. The purported protein function of those conditions with a known genetic basis included enzymes, regulatory proteins, extracellular matrix proteins, transcription factors, and transmembrane proteins. The most common enamel phenotype was a deficient amount of enamel, or enamel hypoplasia, with hypomineralization defects being reported less frequently. Knowing these molecular defects allows an initial cataloging of molecular pathways that lead to hereditary enamel defects in humans. This knowledge provides insight into the diverse molecular pathways involved in enamel formation and can be useful when searching for the genetic etiology of hereditary conditions that involve enamel. PMID:25389004

  2. Enamel defects and dental caries in 9-year-old children living in fluoridated and nonfluoridated areas of Auckland, New Zealand.

    PubMed

    Kanagaratnam, Sathananthan; Schluter, Philip; Durward, Callum; Mahood, Robyn; Mackay, Tim

    2009-06-01

    This epidemiological study aims to investigate the developmental enamel defects and dental caries among 9-year-old children resident in fluoridated and nonfluoridated regions in Auckland, New Zealand. A stratified, two-stage random selection design where strata were defined by fluoridation status, school size, and school decile. After informed consent was obtained, parents completed oral health questionnaires and children underwent dental examinations at school clinics. 612 children from 38 schools participated in the study. Overall, 175 (29%) children had lived continuously in fluoridated areas, 149 (24%) had lived continuously in nonfluoridated areas, and 288 (47%) had resided intermittently in fluoridated areas. Diffuse opacities were present in 117 (19%) children and deciduous teeth dental caries was seen in 370 (60%) children. After adjustment for covariates, a strong dose-response relationship between diffuse opacity and fluoridation status was found, with children who lived continuously in fluoridated areas being 4.17 times as likely to have diffuse opacities as children who lived continuously in nonfluoridated areas (P < 0.001). Conversely, a strong protective dose-response relationship between caries experience and fluoridation status was seen, with children who lived continuously in fluoridated areas being 0.42 times as likely to have dental caries as children who lived continuously in nonfluoridated areas (P < 0.001). Reticulated water fluoridation in Auckland reduces the risk of dental caries but increases the risk of diffuse opacities in 9-year-old children. Guidelines and health-promotion strategies that enable children to minimize their risk to diffuse opacities yet reduce their risk of dental caries should be reviewed.

  3. Long thermal interactions of PAW with normal tooth structure and different dental biomaterials

    NASA Astrophysics Data System (ADS)

    Bostǎnaru, Andra-Cristina; Hnatiuc, Eugen; Roşca, Irina; Vasiliu, Ana Lavinia; Doroftei, Mirela; Ursu, Laura; Ailincǎi, Luminiţa Iuliana; Nǎstasǎ, Valentin; Mareş, Mihai

    2016-12-01

    Plasma activated water (PAW) has been widely considered to be an effective method for decontamination. Recently, numerous studies report that plasma-activated water (PAW) also has antibacterial ability to prevent or treat dental caries and periodontal related diseases. In this context, this study presents the first report to evaluate the plasma activated water effect on vital teeth enamel and different dental biomaterials. In this context, this study presents the first report to evaluate long thermal interactions of plasma activated water effect on vital teeth enamel and different dental biomaterials without organic substrate. The results suggest that the long-thermal of treatment with PAW of enamel without organic substrate can dissolve the apatite crystallites which are highly organized hierarchical structures.

  4. Efficacy of fluoride varnishes for preventing enamel demineralization after interproximal enamel reduction. Qualitative and quantitative evaluation

    PubMed Central

    González Paz, Belén Manuela; García López, José

    2017-01-01

    Objectives To evaluate quantitatively and qualitatively the changes produced to enamel after interproximal reduction and subjected to demineralization cycles, after applying a fluoride varnish (Profluorid) and a fluoride varnish containing tricalcium phosphate modified by fumaric acid (Clinpro White). Materials and methods 138 interproximal dental surfaces were divided into six groups: 1) Intact enamel; 2) Intact enamel + demineralization cycles (DC); 3) Interproximal Reduction (IR); 4) IR + DC; 5) IR + Profluorid + DC; 6) IR + Clinpro White + DC. IR was performed with a 0.5 mm cylindrical diamond bur. The weight percentage of calcium (Ca), phosphorous (P) and fluoride (F) were quantified by energy-dispersive X-ray spectrometry (EDX). Samples were examined under scanning electron microscopy (SEM). Results The weight percentage of Ca was significantly higher (p<0.05) in Groups 1, 2 and 5 than Groups 4 and 6. No significant differences were detected in the weight percentage of Ca between Group 3 and the other groups (p>0.05). The weight percentage of P was similar among all six groups (p>0.05). F was detected on 65% of Group 6 surfaces. SEM images of Groups 4 and 6 showed signs of demineralization, while Group 5 did not. Conclusions Profluorid application acts as a barrier against the demineralization of interproximally reduced enamel. PMID:28430810

  5. Dental calculus image based on optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-03-01

    In this study, the dental calculus was characterized and imaged by means of swept-source optical coherence tomography (SSOCT). The refractive indices of enamel, dentin, cementum and calculus were measured as 1.625+/-0.024, 1.534+/-0.029, 1.570+/-0.021 and 1.896+/-0.085, respectively. The dental calculus lead strong scattering property and thus the region can be identified under enamel with SSOCT imaging. An extracted human tooth with calculus was covered by gingiva tissue as in vitro sample for SSOCT imaging.

  6. Keratins as components of the enamel organic matrix

    PubMed Central

    Duverger, Olivier; Beniash, Elia; Morasso, Maria I.

    2016-01-01

    Dental enamel is a hardest tissue in the human body, and although it starts as a tissue rich in proteins, by the time of eruption of the tooth in the oral cavity only a small fraction of the protein remains. While this organic matrix of enamel represents less than 1% by weight it plays essential roles in improving both toughness and resilience to chemical attacks. Despite the fact that the first studies of the enamel matrix began in the 19th century its exact composition and mechanisms of its function remain poorly understood. It was proposed that keratin or a keratin-like primitive epithelial component exists in mature enamel, however due to the extreme insolubility of its organic matrix the presence of keratins there was never clearly established. We have recently identified expression of a number of hair keratins in ameloblasts, the enamel secreting cells, and demonstrated their incorporation into mature enamel. Mutation in epithelial hair keratin KRT75 leads to a skin condition called pseudofollicularis barbae. Carriers of this mutation have an altered enamel structure and mechanical properties. Importantly, these individuals have a much higher prevalence of caries. To the best of our knowledge, this is the first study showing a direct link between a mutation in a protein-coding region of a gene and increased caries rates. In this paper we present an overview of the evidence of keratin-like material in enamel that has accumulated over the last 150 years. Furthermore, we propose potential mechanisms of action of KTR75 in enamel and highlight the clinical implications of the link between mutations in KRT75 and caries. Finally, we discuss the potential use of keratins for enamel repair. PMID:26709044

  7. The aesthetic impact of enamel fluorosis on Irish adolescents.

    PubMed

    Browne, Deirdre; Whelton, Helen; O'Mullane, Denis; Tavener, Jacqueline; Flannery, Edel

    2011-04-01

    To assess the impact of differing degrees of enamel fluorosis on dental aesthetics according to Irish adolescents. The same participants also aesthetically rated other variations in dental appearances including a carious lesion, bleached teeth and a demarcated opacity. One hundred and fifty adolescents examined seven identical template photographs of an attractive dental smile displaying varying levels of enamel fluorosis (TF1, TF2, TF3), a demarcated opacity, no fluorosis (TF0), anterior caries and very white or bleached teeth. By indicating their level of agreement or disagreement with five statements on a five-point Likert scale, the participants rated the aesthetic acceptability of each of the photographs. Using paired t-tests with the Bonferroni correction, it was found that the photographs depicting the very white teeth and anterior caries were rated as the most and least aesthetically pleasing images, respectively. There was no significant difference in the ratings of the photographs displaying TF0, TF1 and TF2 levels of fluorosis indicating that these photographs were viewed similarly (P>0.002). The remaining two photographs (TF3 and the demarcated opacity) were rated similarly and significantly worse (P<0.002) than the photographs showing no or low grades of fluorosis (TF0, TF1 and TF2). TF3 level of fluorosis represented the break point at which enamel fluorosis became aesthetically objectionable to these participants. Low grades of fluorosis (TF1 and TF2) were rated similarly to the photograph depicting no fluorosis (TF0). © 2011 John Wiley & Sons A/S.

  8. Age estimation of archaeological remains using amino acid racemization in dental enamel: a comparison of morphological, biochemical, and known ages-at-death.

    PubMed

    Griffin, R C; Chamberlain, A T; Hotz, G; Penkman, K E H; Collins, M J

    2009-10-01

    The poor accuracy of most current methods for estimating age-at-death in adult human skeletal remains is among the key problems facing palaeodemography. In forensic science, this problem has been solved for unburnt remains by the development of a chemical method for age estimation, using amino acid racemization in collagen extracted from dentine. Previous application of racemization methods to archaeological material has proven problematic. This study presents the application to archaeological human remains of a new age estimation method utilizing amino acid racemization in a potentially closed system-the dental enamel. The amino acid composition and extent of racemization in enamel from two Medieval cemeteries (Newcastle Blackgate and Grantham, England) and from a documented age-at-death sample from a 19th century cemetery (Spitalfriedhof St Johann, Switzerland) were determined. Alterations in the amino acid composition were detected in all populations, indicating that diagenetic change had taken place. However, in the Medieval populations, these changes did not appear to have substantially affected the relationship between racemization and age-at-death, with a strong relationship being retained between aspartic acid racemization and the morphological age estimates. In contrast, there was a poor relationship between racemization and age in the post-medieval documented age-at-death population from Switzerland. This appears to be due to leaching of amino acids post-mortem, indicating that enamel is not functioning as a perfectly closed system. Isolation of amino acids from a fraction of enamel which is less susceptible to leaching may improve the success of amino acid racemization for archaeological age estimation.

  9. Effects of bleaching agents on human enamel light reflectance.

    PubMed

    Markovic, Ljubisa; Fotouhi, Kasra; Lorenz, Heribert; Jordan, Rainer A; Gaengler, Peter; Zimmer, Stefan

    2010-01-01

    Tooth whitening has been associated with splitting-up chromogenic molecules by hydrogen peroxides. Though micromorphological alterations are well documented, little is known about optical changes as a function of shifting in wavelengths. Therefore, the aim of the current study was to measure reflectance changes after bleaching in vitro by using a spectrometer. Forty-eight enamel slabs (diameter = 5 mm) were prepared from the sound enamel of extracted human teeth that were: 1) fully impacted, 2) from juveniles ages 10 to 16 years, 3) from adults 35 to 45 years of age and 4) from seniors older than age 65. In all specimens, the baseline total reflectance measurement was performed with a computer-assisted spectrometer (Ocean Optics, Dunedin, FL, USA) within wavelengths (wl) from 430 nm to 800 nm. Four enamel samples of each age group were exposed to either 10% or 15% carbamide peroxide (Illuminé Home, Dentsply, Konstanz, Germany) or 35% hydrogen peroxide (Pola Office, SDI Limited, Victoria, Australia). After surface treatment, all slabs underwent total reflectance measurement again. Statistical analysis was calculated at wl 450, 500 and 750 nm using the Student's paired t-test and one-way variance analysis. Total reflectance significantly increased after bleaching at all enamel maturation stages, irrespective of the bleaching agent concentration, for wl 450 nm (blue) and 500 nm (green) with p<0.0001. At 750 nm (red), significant changes only occurred in enamel from adults and seniors (p<0.04). However, the efficacy of bleaching was significantly increased in the blue and green light spectra as compared to the red spectra (p<0.0001). The results of the current study showed that the exclusive assumption of the "chromophore effect" in dental bleaching could not be sustained, because whitening of the dental enamel works at different maturation stages, even in impacted teeth. This effect is irrespective of the bleaching protocol used and the bleaching agent concentration.

  10. Enamel microabrasion: An overview of clinical and scientific considerations

    PubMed Central

    Pini, Núbia Inocencya Pavesi; Sundfeld-Neto, Daniel; Aguiar, Flavio Henrique Baggio; Sundfeld, Renato Herman; Martins, Luis Roberto Marcondes; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2015-01-01

    Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface with mechanical pressure from a rubber cup coupled to a rotatory mandrel of a low-rotation micromotor. If necessary, this treatment can be safely combined with bleaching for better esthetic results. Recent studies show that microabrasion is a conservative treatment when the enamel wear is minimal and clinically imperceptible. The most important factor contributing to the success of enamel microabrasion is the depth of the defect, as deeper, opaque stains, such as those resulting from hypoplasia, cannot be resolved with microabrasion, and require a restorative approach. Surface enamel alterations that result from microabrasion, such as roughness and microhardness, are easily restored by saliva. Clinical studies support the efficacy and longevity of this safe and minimally invasive treatment. The present article presents the clinical and scientific aspects concerning the microabrasion technique, and discusses the indications for and effects of the treatment, including recent works describing microscopic and clinical evaluations. PMID:25610848

  11. SEM investigation on casein phosphopeptides capability in contrasting cola drinks enamel erosion: an in vitro preliminary study.

    PubMed

    Ferrazzano, G F; Coda, M; Cantile, T; Sangianantoni, G; Ingenito, A

    2012-12-01

    Erosion of dental hard tissues induced by acidic dietary components is a high-prevalence finding, especially among children and adolescents. Acidic soft drinks are frequently implicated in dental erosion. The aim of this in vitro study was to assess if CPP-ACP preparation is capable of reducing enamel erosion caused by a cola-type drink. Twenty-five sound human permanent premolars, extracted for orthodontic reasons in patients of 12-16 years old, were used. The roots were removed and the crowns were sectioned in order to obtain 3 enamel sections from each tooth. The specimens were immersed in: (A) cola-type drink; (B) cola-type drink plus CPP-ACP; (C) deionised water (control) for: 48 h, 24 h, 12 h, 6 h and 3 h, respectively. pH values were constantly monitored. Statistical analysis was performed using ANOVA. The enamel samples were evaluated for surface changes using scanning electron microscopy (SEM). Specimens subjected to cola-type drink (treatment A) showed wide areas of enamel dissolution, while the treatment B specimens showed a few areas of little enamel erosion, different from control samples. Adding CPP-ACP to the cola-type drinks influenced pH levels of the solutions, but always in the acidity range. CPP-ACP provides protection against dental erosion from cola-type drinks in vitro. Therefore, further studies are necessary to evaluate if adding casein phosphopeptide-stabilised amorphous calcium phosphate complex to acidic cola drinks could reduce their erosive potential in vivo as well.

  12. Effect of low-fluoride dentifrices supplemented with calcium glycerophosphate on enamel demineralization in situ.

    PubMed

    do Amaral, Jackeline Gallo; Sassaki, Kikue Takebayashi; Martinhon, Cleide Cristina Rodrigues; Delbem, Alberto Carlos Botazzo

    2013-04-01

    To evaluate whether a low-fluoride dentifrice with calcium glycerophosphate (CaGP) reduced the demineralization process in situ. A cross-over design with four treatment phases of 7 days each was used. Ten volunteers wore palatal devices containing four blocks of bovine dental enamel. The enamel was treated (ex-vivo) with a placebo, 500 microg-F/g (500), 500 microg-F/g with 0.25%CaGP (500 CaGP), and 1,100 microg-F/g (1,100) dentifrices (twice a day/1 minute) under cariogenic challenge from sucrose solution. To evaluate mineral loss, surface and cross-sectional hardness were performed. The fluoride, calcium, and phosphorus ion concentrations from enamel and dental plaque were determined. The insoluble extracellular polysaccharide (EPS) concentrations were also analyzed. The data were submitted to ANOVA (1-way) followed by the Student-Newman-Keuls test (P < 0.05). The mineral loss and EPS concentration were lowest in the 500 CaGP and 1,100 dentifrice groups. The use of the 500 CaGP and 1,100 dentifrices resulted in similar fluoride, calcium, and phosphorus concentrations in the enamel and in dental plaque (P > 0.05). The ionic activities of calcium phosphate phases for the 500 CaGP and 1,100 dentifrices were similar (P > or = 0.492). The low-fluoride dentifrice with 0.25%CaGP demonstrated efficacy similar to that of the positive control (1,100 dentifrice) with respect to in situ demineralization.

  13. A tissue-dependent hypothesis of dental caries.

    PubMed

    Simón-Soro, A; Belda-Ferre, P; Cabrera-Rubio, R; Alcaraz, L D; Mira, A

    2013-01-01

    Current understanding of dental caries considers this disease a demineralization of the tooth tissues due to the acid produced by sugar-fermenting microorganisms. Thus, caries is considered a diet- and pH-dependent process. We present here the first metagenomic analysis of the bacterial communities present at different stages of caries development, with the aim of determining whether the bacterial composition and biochemical profile are specific to the tissue affected. The data show that microbial composition at the initial, enamel-affecting stage of caries is significantly different from that found at subsequent stages, as well as from dental plaque of sound tooth surfaces. Although the relative proportion of Streptococcus mutans increased from 0.12% in dental plaque to 0.72% in enamel caries, Streptococcus mitis and Streptococcus sanguinis were the dominant streptococci in these lesions. The functional profile of caries-associated bacterial communities indicates that genes involved in acid stress tolerance and dietary sugar fermentation are overrepresented only at the initial stage (enamel caries), whereas other genes coding for osmotic stress tolerance as well as collagenases and other proteases enabling dentin degradation are significantly overrepresented in dentin cavities. The results support a scenario in which pH and diet are determinants of the disease during the degradation of enamel, but in dentin caries lesions not only acidogenic but also proteolytic bacteria are involved. We propose that caries disease is a process of varying etiology, in which acid-producing bacteria are the vehicle to penetrate enamel and allow dentin degrading microorganisms to expand the cavity. © 2013 S. Karger AG, Basel.

  14. Near-IR Imaging of Thermal Changes in Enamel during Laser Ablation.

    PubMed

    Maung, Linn H; Lee, Chulsung; Fried, Daniel

    2010-03-05

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO(2) laser operating at a wavelength of 9.3-µm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 µs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO(2) laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO(2) laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase light-scattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 ± 0.82 to 5.08 ± 0.98 with loss of mobile water due to heating.

  15. Near-IR imaging of thermal changes in enamel during laser ablation

    NASA Astrophysics Data System (ADS)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  16. Near-IR Imaging of Thermal Changes in Enamel during Laser Ablation

    PubMed Central

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2011-01-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-µm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10–20 µs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase light-scattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 ± 0.82 to 5.08 ± 0.98 with loss of mobile water due to heating. PMID:21935291

  17. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    PubMed

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (P<.001). The Ra of enamel specimens increased significantly after wear tests with monolithic zirconia, glass ceramic, and enamel (P<.05); however, no difference was found among these materials. Within the limitations of this in vitro study, monolithic zirconia and composite resin resulted in less wear depth to human enamel compared with glass ceramic and enamel. All test materials except composite resin similarly increased the enamel

  18. Effect of white tea and xylitol on structure and properties of demineralized enamel and jawbone

    NASA Astrophysics Data System (ADS)

    Auerkari, EI; Kiranahayu, R.; Emerita, D.; Sumariningsih, P.; Sarita, D.; Adiwirya, MS; Suhartono, AW

    2018-05-01

    White tea and xylitol have been suggested as potential agents to combat dental caries and osteoporosis through enhanced remineralization. This investigation aimed to determine the effects of exposure to white tea with and without xylitol on the structure, composition and hardness of demineralized human dental enamel. For control, samples of untreated and demineralized enamel and samples of untreated rat jawbone were subjected to similar measurements. For demineralization, the enamel samples were immersed for two days at 50°C in an acetate solution (pH 4.0). All samples were then soaked for two weeks at 37°C in a solution containing three different concentrations of white tea, xylitol or both, and an optional addition of the remineralization ingredients including Ca, P and F. For enamel samples without preceding demineralization and without added remineralization ingredients, the results showed highest mean hardness after immersion in a solution containing both white tea and xylitol, practically independently of their applied concentration level. However, for demineralized enamel samples with added remineralization ingredients, the resulting mean hardness was also dependent on concentration of white tea and xylitol. With sufficient concentration, hardness was again higher for combined white tea and xylitol than for either of these used alone.

  19. Comparison of reflectance spectra of sound and carious enamel

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa; Ando, Masatoshi; Stookey, George K.

    2000-03-01

    Development of dental caries is associated with the loss of minerals and change in the enamel structure. In this study, we have measured and compared reflectance spectra of sound and carious enamel, to investigate its utility in detection and analysis of dental caries. One hundred twenty, 3-mm diameter human enamel cores, with no sign of fluorosis, tetracycline stain, hypoplasia, fracture and restorations, were prepared. The enamel surfaces then were ground and polished. Specimens were placed on a fitted holder with either black or white color for background, with no fluorescence. The baseline spectra were measured using a spectrophotometer with enclosed diffused illumination. Spectra measured from 380 to 780 nm at 5 nm intervals. All measurements were corrected to compensate for the spectrum of illumination. The specimens were divided into two groups and exposed to a demineralizing solution, for 48 and 96 hours, respectively. Reflectance spectra of specimens were measured following lesion induction. All specimens were sectioned and analyzed by transverse microradiography (TMR), where lesion depth and mineral loss ((Delta) Z) were measured. Dimensionality of multi-spectral data was reduced through its conversion to L*a*b* color coordinates and principal component analysis (PCA). Multiple linear regression analysis showed low correlation between L*a*b* and lesion depth and mineral loss. PCA analysis showed higher correlation coefficient, compared to L*a*b*. Preliminary results of this study suggest that multi-spectral measurement and analysis of the tooth surface could be useful in predicting the depth and severity of an early carious lesion.

  20. Measurement of hydroxyapatite density and Knoop hardness in sound human enamel and a correlational analysis between them.

    PubMed

    He, Bing; Huang, Shengbin; Jing, Junjun; Hao, Yuqing

    2010-02-01

    The aim of this study was to measure the hydroxyapatite (HAP) density and Knoop hardness (KHN) of enamel slabs and to analyse the relationship between them. Twenty enamel slabs (10 lingual sides and 10 buccal sides) were prepared and scanned with micro-CT. Tomographic images of each slab from dental cusp to dentinoenamel junction (DEJ) were reconstructed. On these three-dimensional (3D) images, regions of interest (ROIs) were defined at an interval of 50 microm, and the HAP density for each ROI was calculated. Then the polished surfaces were indented from cusp to DEJ at intervals of 50 microm with a Knoop indenter. Finally, the data were analysed with one-way ANOVA, Student's t-test, and linear regression analysis. The HAP density and KHN decreased from the dental cusp to DEJ. Both HAP density and KHN in the outer-layer enamel were significantly higher than those in the middle- or inner-layer enamel (P<0.05). The HAP density showed no significant difference between the buccal and lingual sides for enamel in the outer, middle and inner layers, respectively (P>0.05). The KHN in the outer-layer enamel of the lingual sides was significantly lower than that of the buccal sides (P<0.05); there was no significant difference between the lingual and buccal sides in the middle or inner layer. Linear regression analysis revealed a linear relationship between the mean KHN and the mean HAP density (r=0.87). Both HAP density and KHN decrease simultaneously from dental cusp to DEJ, and the two properties are highly correlated. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Tributyltin impairs dentin mineralization and enamel formation in cultured mouse embryonic molar teeth.

    PubMed

    Salmela, Eija; Sahlberg, Carin; Alaluusua, Satu; Lukinmaa, Pirjo-Liisa

    2008-11-01

    Tributyltin (TBT), earlier used as an antifouling agent in marine paints, causes damage to the aquatic ecosystem, for example, impaired shell calcification in oysters. TBT affects hard tissue mineralization even in mammals: delayed bone mineralization has been observed in rodents exposed to TBT in utero. To see if TBT interferes with tooth development, especially dental hard tissue formation, we exposed mouse E18 mandibular first and second molars to 0.1, 0.5, 1.0, and 2.0 microM TBT chloride in organ culture for 7-12 days. The amount of enamel was assessed and the sizes of the first molars were measured from photographs taken after the culture. TBT concentration dependently impaired enamel formation (p < 0.001) and reduced tooth size (p < 0.001). Histological analysis showed slight arrest of dentin mineralization and enamel formation in first molars exposed to 0.1 microM TBT. At the concentration of 1.0 microM the effect was overt. The differentiation of ameloblasts in the mesial cusps was retarded but TBT had no effect on odontoblast morphology. The dental epithelium showed enhanced apoptosis. The failure of ameloblasts to form enamel was likely to be secondary to the effect of TBT on dentin mineralization. In the second molars, where predentin deposition had not started, ameloblasts and odontoblasts were nonpolarized and proliferative. The results showed that TBT concentration dependently impairs dental hard tissue formation and reduces tooth size in cultured mouse embryonic molars. The effects depend on the stage of tooth development at the start of exposure and may involve epithelial-mesenchymal interactions.

  2. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    PubMed

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P < .05). SEM clearly revealed enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Meeting report: a hard look at the state of enamel research

    PubMed Central

    Klein, Ophir D; Duverger, Olivier; Shaw, Wendy; Lacruz, Rodrigo S; Joester, Derk; Moradian-Oldak, Janet; Pugach, Megan K; Wright, J Timothy; Millar, Sarah E; Kulkarni, Ashok B; Bartlett, John D; Diekwisch, Thomas GH; DenBesten, Pamela; Simmer, James P

    2017-01-01

    The Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development workshop was held on 23 June 2017 at the Bethesda headquarters of the National Institute of Dental and Craniofacial Research (NIDCR). Discussion topics included model organisms, stem cells/cell lines, and tissues/3D cell culture/organoids. Scientists from a number of disciplines, representing institutions from across the United States, gathered to discuss advances in our understanding of enamel, as well as future directions for the field. PMID:29165423

  4. Comparison of conventional and digital radiography for radiometric differentiation of dental cements.

    PubMed

    Baksi, B Güniz; Ermis, R Banu

    2007-10-01

    To test the efficacy of conventional radiometry with indirect digital image analysis in the assessment of the relative radiopacity of dental cements used as liners or bases compared to human enamel and dentin. Disks of 15 different dental cements, 5 mm in diameter and 2 mm thick, were exposed to radiation together with 2-mm-thick disks of enamel and dentin and an aluminum step wedge. Density was evaluated by digital transmission densitometry and with the histogram function of an image analysis program following digitization of the radiographs with a flatbed scanner. A higher number of dental cements were discriminated from both dentin and enamel with conventional radiographic densitometer. All the cements examined, except Ionoseal (Voco) and Ionobond (Voco), were more radiopaque than dentin. With both methods, Chelon-Silver (3M ESPE) had the highest radiopacity and glass-ionomer cements the lowest. Radiodensity of dental cements can be differentiated with a high probability with the conventional radiometric method.

  5. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    PubMed Central

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-01-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 ≥ −0.86) as well as calcium release (r2 ≥ −0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42–0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364

  6. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects

    PubMed Central

    Morkmued, Supawich; Laugel-Haushalter, Virginie; Mathieu, Eric; Schuhbaur, Brigitte; Hemmerlé, Joseph; Dollé, Pascal; Bloch-Zupan, Agnès; Niederreither, Karen

    2017-01-01

    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations. PMID:28111553

  7. [Research progress of bonding strength between porcelain veneer and enamel].

    PubMed

    Cheng, Hong; Zhang, Fu-qiang

    2014-02-01

    Porcelain veneer had gained more and more attention in dental clinical applications due to its advantages such as good esthetic effects and minor invasiveness. The reliable and consistent adhesive bonding were the key to success. The enamel which featured high mineralization and low moisture would be the ideal bonding part for porcelain veneer. This article was aimed to summarize the research progress regarding to those factors that might had effect on the bonding strength between the porcelain veneer and the enamel including the restoration types of resin adhesives and bonding surface preparations.

  8. Mathematical model governing laser-produced dental cavity

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir S.; Karatoy, M.; Yilbas, Z.; Karakas, Eyup S.; Bilge, A.; Ustunbas, Hasan B.; Ceyhan, O.

    1990-06-01

    Formation of dental cavity may be improved by using a laser beam. This provides nonmechanical contact, precise location of cavity, rapid processing and increased hygienity. Further examination of interaction mechanism is needed to improve the application of lasers in density. Present study examines the tenperature rise and thermal stress development in the enamel during Nd YAG laser irradiation. It is found that the stresses developed in the enamel is not sufficiently high enough to cause crack developed in the enamel.

  9. The influence of the Nd:YAG laser bleaching on physical and mechanical properties of the dental enamel.

    PubMed

    Marcondes, Maurem; Paranhos, Maria Paula Gandolfi; Spohr, Ana Maria; Mota, Eduardo Gonçalves; da Silva, Isaac Newton Lima; Souto, André Arigony; Burnett, Luiz Henrique

    2009-07-01

    The Nd:YAG laser can be used in Dentistry to remove soft tissue, disinfect canals in endodontic procedures and prevent caries. However, there is no protocol for Nd:YAG laser application in dental bleaching. The aims of this in vitro study were: (a) to observe the tooth shade alteration when hydrogen peroxide whitening procedures are associated with dyes with different wavelengths and irradiated with Nd:YAG laser or halogen light; (b) to measure the Vickers (VHN) enamel microhardness before and after the whitening procedure; (c) to evaluate the tensile bond strength of two types of adhesive systems applied on bleached enamel; (d) to observe the failure pattern after bond strength testing; (e) to evaluate the pulpal temperature during the bleaching procedures with halogen light or laser; (f) to measure the kinetic reaction of hydrogen peroxide. Extracted sound human molar crowns were sectioned in the mesiodistal direction to obtain 150 fragments that were divided into five groups for each adhesive system: WL (H(2)O(2) + thickener and Nd:YAG), WH (H(2)O(2) + thickener and halogen light), QL (H(2)O(2) + carbopol + Q-switch and Nd:YAG), QH (H(2)O(2) + carbopol + Q-switch and halogen light), and C (Control, without whitening agent). Shade assessment was made with a shade guide and the microhardness tests were performed before and after the bleaching procedures. Immediately afterwards, the groups were restored with the adhesive systems Adper Single Bond 2 or Solobond M plus composite resin, and the tensile bond strength test was performed. The temperature was measured by thermocouples placed on the enamel surface and intrapulpal chamber. The kinetics of hydrogen peroxide was observed by ultraviolet analysis. The shade changed seven levels for Nd:YAG laser groups and eight levels for halogen light. According to the student's t-test, there was no statistical difference between the VHN before and after the whitening protocols (p > 0.05). The tensile bond strength showed no

  10. Type 1 diabetes mellitus effects on dental enamel formation revealed by microscopy and microanalysis.

    PubMed

    Silva, Bruna Larissa Lago; Medeiros, Danila Lima; Soares, Ana Prates; Line, Sérgio Roberto Peres; Pinto, Maria das Graças Farias; Soares, Telma de Jesus; do Espírito Santo, Alexandre Ribeiro

    2018-03-01

    Type 1 diabetes mellitus (T1DM) largely affects children, occurring therefore at the same period of deciduous and permanent teeth development. The aim of this work was to investigate birefringence and morphology of the secretory stage enamel organic extracellular matrix (EOECM), and structural and mechanical features of mature enamel from T1DM rats. Adult Wistar rats were maintained alive for a period of 56 days after the induction of experimental T1DM with a single dose of streptozotocin (60 mg/kg). After proper euthanasia of the animals, fixed upper incisors were accurately processed, and secretory stage EOECM and mature enamel were analyzed by transmitted polarizing and bright field light microscopies (TPLM and BFLM), energy-dispersive x-ray (EDX) analysis, scanning electron microscopy (SEM), and microhardness testing. Bright field light microscopies and transmitted polarizing light microscopies showed slight morphological changes in the secretory stage EOECM from diabetic rats, which also did not exhibit statistically significant alterations in birefringence brightness when compared to control animals (P > .05). EDX analysis showed that T1DM induced statistically significant little increases in the amount of calcium and phosphorus in outer mature enamel (P < .01) with preservation of calcium/phosphorus ratio in that structure (P > .05). T1DM also caused important ultrastructural alterations in mature enamel as revealed by SEM and induced a statistically significant reduction of about 13.67% in its microhardness at 80 μm from dentin-enamel junction (P < .01). This study shows that T1DM may disturb enamel development, leading to alterations in mature enamel ultrastructure and in its mechanical features. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Effect of iron on inhibition of acid demineralisation of bovine dental enamel in vitro.

    PubMed

    Buzalaf, Marília Afonso Rabelo; de Moraes Italiani, Flávia; Kato, Melissa Thiemi; Martinhon, Cleide Cristina Rodrigues; Magalhães, Ana Carolina

    2006-10-01

    Iron ions (Fe(2+)) have been shown to be cariostatic in many studies particularly by their ability to reduce bacterial metabolism. Nevertheless, the role of iron ions on dissolution of enamel is unexplored. The aim of the present study was therefore to investigate the protective effect of increasing concentrations (0-120mmol/L) of Fe(2+) on the dissolution of enamel. Enamel powder was subjected to acetic acid made with increasing concentrations with respect to FeSO(4)x7H(2)O. In order to determine the amount of enamel dissolved, the phosphate released in the medium was analysed spectrophotometrically using the Fiske-Subarrow method. Data were tested using Kruskall-Wall and Dunn's tests (p<0.05). The degree of protection was found to approach maximum at about 15mmol/L Fe(2+). Higher concentrations of Fe(2+) did not have an extra effect on inhibition of dissolution of enamel powder. In the next step, the protective effect of 15mmol/L Fe(2+) against mineral dissolution of the bovine enamel was evaluated using a simple abiotic model system. Enamel blocks were exposed to a sequence of seven plastic vials, each containing 1mL of 10mmol/L acetic acid. The acid in vial 4 was made 15mmol/L with respect to FeSO(4)x7H(2)O. The mineral dissolved during each challenge was thus determined by phosphate released as described above. Data were tested using two-way ANOVA (p<0.05). Lower demineralisation (around 45%) was found in vial 4 (with Fe) that continued stable until vial 7. Thus, our data suggest that Fe(2+) can be effective on inhibition of dissolution of enamel and that this effect may be durable.

  12. Characterization of enamel caries lesions in rat molars using synchrotron X-ray microtomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Free, R. D.; DeRocher, K.; Stock, S. R.

    Dental caries is a ubiquitous infectious disease with a nearly 100% lifetime prevalence. Rodent caries models are widely used to investigate the etiology, progression and potential prevention or treatment of the disease. To explore the suitability of these models for deeper investigations of intact surface zones during enamel caries, the structures of early-stage carious lesions in rats were characterized and compared with previous reports on white spot enamel lesions in humans. Synchrotron X-ray microcomputed tomography non-destructively mapped demineralization in carious rat molar specimens across a range of caries severity, identifying 52 lesions across the 30 teeth imaged. Of these lesions,more » 13 were shown to have intact surface zones. Depth profiles of fractional mineral density were qualitatively similar to lesions in human teeth. However, the thickness of the surface zone in the rat model ranges from 10 to 58 µm, and is therefore significantly thinner than in human enamel. These results indicate that a fraction of lesions in rat caries possess an intact surface zone and are qualitatively similar to human lesions at the micrometer scale. This suggests that rat caries models may be a suitable analog through which to investigate the structure of surface zone enamel and its role during dental caries.« less

  13. Effect of 10% Strontium Chloride and 5% Potassium Nitrate with Fluoride on Bleached Bovine Enamel.

    PubMed

    Alencar, Cristiane de Melo; Pedrinha, Victor Feliz; Araújo, Jesuína Lamartine Nogueira; Esteves, Renata Antunes; Silva da Silveira, Ana Daniela; Silva, Cecy Martins

    2017-01-01

    Dental whitening has been increasingly sought out to improve dental aesthetics, but may cause chemical and morphological changes in dental enamel surfaces. This study evaluated in vitro the effect of 10% strontium chloride and 5% potassium nitrate with fluoride on bovine enamel, through tristimulus colorimetry, Knoop microhardness (KHN), and roughness after bleaching with 35% hydrogen peroxide (HP). The specimens were divided into three groups (n=15): GControl received bleaching treatment with 35% HP; GNitrate received bleaching with 35% HP followed by the application of 5% potassium nitrate with 2% sodium fluoride; and GStrontium received bleaching with 35% HP followed by the application of 10% strontium chloride on the enamel. Next, five specimens of each experimental group were subjected to KHN and tristimulus colorimetry tests, and 10 specimens were subjected to surface roughness (SR) tests. The values obtained for the different groups were compared through analysis of variance (ANOVA) followed by a post-hoc Tukey-Kramer test in addition to Student's T-test for paired data. In the intergroup comparison, KHN final differed statistically ( p <0.05). The mean SR final of the experimental groups differed statistically from the GControl group ( p <0.05). In addition, the groups did not differ in color variation ( p >0.05). 10% strontium chloride and 5% potassium nitrate combined with 2% fluoride downplayed morphological changes to the enamel, without interfering with the effectiveness of the bleaching process.

  14. Effect of 10% Strontium Chloride and 5% Potassium Nitrate with Fluoride on Bleached Bovine Enamel

    PubMed Central

    Alencar, Cristiane de Melo; Pedrinha, Victor Feliz; Araújo, Jesuína Lamartine Nogueira; Esteves, Renata Antunes; Silva da Silveira, Ana Daniela; Silva, Cecy Martins

    2017-01-01

    Background: Dental whitening has been increasingly sought out to improve dental aesthetics, but may cause chemical and morphological changes in dental enamel surfaces. Objective: This study evaluated in vitro the effect of 10% strontium chloride and 5% potassium nitrate with fluoride on bovine enamel, through tristimulus colorimetry, Knoop microhardness (KHN), and roughness after bleaching with 35% hydrogen peroxide (HP). Methods: The specimens were divided into three groups (n=15): GControl received bleaching treatment with 35% HP; GNitrate received bleaching with 35% HP followed by the application of 5% potassium nitrate with 2% sodium fluoride; and GStrontium received bleaching with 35% HP followed by the application of 10% strontium chloride on the enamel. Next, five specimens of each experimental group were subjected to KHN and tristimulus colorimetry tests, and 10 specimens were subjected to surface roughness (SR) tests. The values obtained for the different groups were compared through analysis of variance (ANOVA) followed by a post-hoc Tukey-Kramer test in addition to Student’s T-test for paired data. Results: In the intergroup comparison, KHN final differed statistically (p<0.05). The mean SR final of the experimental groups differed statistically from the GControl group (p<0.05). In addition, the groups did not differ in color variation (p>0.05). Conclusion: 10% strontium chloride and 5% potassium nitrate combined with 2% fluoride downplayed morphological changes to the enamel, without interfering with the effectiveness of the bleaching process. PMID:28979576

  15. Effects of different black mediators on the shear strength of orthodontic bracket to the enamel treated with Nd-Yag laser

    NASA Astrophysics Data System (ADS)

    Huang, Shun-Te; Lin, I.-Shueng; Tsai, Chi-Cheng

    1995-04-01

    The Nd:YAG laser has ablation, crack, and crater effects on the dental enamel through black mediators which are very similar to the acid etching effects of phosphoric acid. This study was designed for searching how the different black mediators influence the shear strengths of the brackets bound to the enamel surfaces which were treated with the Nd:YAG laser. 90 bovine enamels divided into 5 groups were painted with 5 kinds of black mediators including Chinese ink, oil ink, black ball pen, water ink and black transfer paper. The enamel surfaces painted with black mediators were then radiated by Nd:YAG laser (ADL; American Dental Laser 300dl, power: 20 pps, 87.5 mj). Orthodontic brackets were bonded to the radiated surfaces. Then the shear strengths of the brackets to the enamels were measured by Instron. The results showed that the Chinese ink group and oil ink group has the strongest shear strength, ball pen group and water ink group showed the second strength, and the transfer paper group has the lowest shear strength. In addition, scanning electronic microscope also was used to observe the topographic changes of the enamel surfaces induced by the laser ablation.

  16. In Vitro Inhibition of Enamel Demineralisation by Fluoride-releasing Restorative Materials and Dental Adhesives.

    PubMed

    Dionysopoulos, Dimitrios; Koliniotou-Koumpia, Eugenia; Helvatzoglou-Antoniades, Maria; Kotsanos, Nikolaos

    2016-01-01

    To determine the ability of 5 contemporary fluoride-releasing restoratives and 3 fluoride-releasing adhesives to inhibit enamel demineralisation surrounding restorations, and the associations between inhibition and the levels of fluoride released from these materials. Five fluoride-releasing restoratives (Fuji IX GP, Ketac N100, Dyract Extra, Beautifil II and Wave) and 3 fluoride-releasing adhesives (Stae, Prime & Bond NT and Fluoro Bond II) were investigated. Eight disks of each material were prepared. Fluoride release was measured daily using a fluoride-ion-selective electrode for 15 days. Twenty-four cavities for each group were restored with a restorative and an adhesive. Specimens were subjected to thermal stress and stored for 30 days in saline solution. After a 15-day pH-cycling regimen, two 150-μm-thick sections were derived from each specimen. Enamel lesion depth was measured at 0, 100, and 200 μm from each restoration's margin via polarised light microscopy. Of the restoratives investigated, Fuji IX GP released the most fluoride. The fluoride-releasing restoratives tested exhibited shallower enamel lesions than did the control group at all distances tested (p < 0.05). Fuji IX GP yielded significantly lower enamel lesion depth than did the other experimental materials. The depths of enamel lesions did not differ significantly when comparing restoratives applied with a fluoride-releasing adhesive with those applied with a non-fluoride-releasing adhesive. The fluoride-releasing materials tested reduced enamel demineralisation but to different extents, depending on their levels of fluoride release. Fluoride-releasing adhesives did not influence enamel lesion formation.

  17. A laser-abrasive method for the cutting of enamel and dentin.

    PubMed

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  18. Meeting report: a hard look at the state of enamel research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Ophir D.; Duverger, Olivier; Shaw, Wendy

    Enamel is a principal component of the dentition, and defects in this hard tissue are associated with a wide variety of diseases. To assess the state of the field of enamel research, the National Institute of Dental and Craniofacial Research (NIDCR) convened the “Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development” workshop at its Bethesda headquarters on 23 June 2017. Enamel formation involves complex developmental stages and cellular differentiation mechanisms that are summarized in Figure 1. The meeting, which was organized by Jason Wan from NIDCR, had three sessions: model organisms, stem cells/cell lines, and tissues/ 3Dmore » cell culture/organoids. In attendance were investigators interested in enamel from a broad range of disciplines as well as NIDCR leadership and staff. The meeting brought together developmental biologists, cell biologists, human geneticists, materials scientists, and clinical researchers from across the United States to discuss recent progress and future challenges in our understanding of the formation and function of enamel. Lively discussions took place throughout the day, and this meeting report highlights some of the major findings and ideas that emerged during the workshop.« less

  19. Pulsed Nd:YAG laser selective ablation of surface enamel caries: II. Histology and clinical trials

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Goodis, Harold E.; White, Joel M.; Arcoria, Charles J.; Simon, James; Burkart, John; Yessik, Michael J.; Myers, Terry D.

    2000-03-01

    High intensity infrared light from the pulsed Nd:YAG dental laser is absorbed by pigmented carious enamel and not absorbed by normal enamel. Therefore, this system is capable of selective removal of surface enamel caries. Safety and efficacy of the clinical procedure was evaluated in two sets of clinical trials at three dental schools. Carious lesions were randomized to drill or laser treatment. Pulp vitality, surface condition, preparations and restorations were evaluated by blinded evaluators. In Study 1 surface caries were removed from 104 third molars scheduled for extraction. One week post-treatment teeth were extracted and the pulp was examined histologically. In Study 2 90 patients with 422 lesions on 376 teeth were randomized to laser or drill and followed for six months. There were no adverse events and both clinical and histological evaluations of pulp vitality showed no abnormalities. Caries were removed in all conditions. A significantly greater number of preparations in the drill groups vs. laser groups entered dentin (drill equals 11, laser equals 1, p less than 0.001). This indicates that the more conservative laser treatment removed the caries but not the sound enamel below the lesion.

  20. In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications.

    PubMed

    Vieira, K A; Steiner-Oliveira, C; Soares, L E S; Rodrigues, L K A; Nobre-dos-Santos, M

    2015-02-01

    This study aimed to evaluate the effects of repeated CO2 laser applications on the inhibition of enamel demineralization. Sixty-five human dental enamel slabs were randomly assigned to the following groups (n = 13): control (C), one application of the CO2 laser (L1), two applications of the CO2 laser (L2), three applications of the CO2 laser (L3), and four applications of the CO2 laser (L4). Enamel slabs were irradiated by a 10.6-μm CO2 laser operating at 5 J/cm(2). The slabs were subjected to a pH-cycling regimen and then analyzed by FT-Raman spectroscopy, energy-dispersive X-ray fluorescence spectrometry (EDXRF), cross-sectional micro-hardness, and scanning electron microscopy (SEM). Statistical analysis was performed using ANOVA and Tukey tests (p < 0.05). FT-Raman spectroscopy showed a reduced carbonate content for L1, L3, and L4 groups when compared to C (p < 0.05). The EDXRF data showed no statistical differences between the control and irradiated groups for calcium and phosphorus components (p > 0.05). Cross-sectional micro-hardness data showed a statistically significant difference between the control and all irradiated groups (p < 0.05), but no difference was found among the irradiated groups (p > 0.05) up to 30-μm depth. A tendency of lower demineralization occurred in deeper depths for L3 and L4 groups. The SEM results showed that with repeated applications of the CO2 laser, a progressive melting and recrystallization of the enamel surface occurred. Repeated irradiations of dental enamel may enhance the inhibition of enamel demineralization.

  1. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion.

    PubMed

    Ionta, Franciny Querobim; Alencar, Catarina Ribeiro Barros de; Val, Poliana Pacifico; Boteon, Ana Paula; Jordão, Maisa Camillo; Honório, Heitor Marques; Buzalaf, Marília Afonso Rabelo; Rios, Daniela

    2017-01-01

    The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group): GP5 and GP100 - 5% and pure palm oil, respectively; GC5 and GC100 - 5% and pure coconut oil; GSa5 and GSa100 - 5% and pure safflower oil; GSu5 and GSu100 - 5% and pure sunflower oil; GO5 and GO100 - 5% and pure olive oil; CON- - Deionized Water (negative control) and CON+ - Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control). Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf) / SHf )×100]. Data were analyzed by one-way ANOVA and Tukey's test (p<0.05). Enamel blocks of GP100 presented similar hardness loss to GSu100 (p>0.05) and less than the other groups (p<0.05). There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON- and CON+. Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling.

  2. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion

    PubMed Central

    IONTA, Franciny Querobim; de ALENCAR, Catarina Ribeiro Barros; VAL, Poliana Pacifico; BOTEON, Ana Paula; JORDÃO, Maisa Camillo; HONÓRIO, Heitor Marques; BUZALAF, Marília Afonso Rabelo; RIOS, Daniela

    2017-01-01

    Abstract Objective The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Material and Methods Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group): GP5 and GP100 – 5% and pure palm oil, respectively; GC5 and GC100 – 5% and pure coconut oil; GSa5 and GSa100 – 5% and pure safflower oil; GSu5 and GSu100 – 5% and pure sunflower oil; GO5 and GO100 – 5% and pure olive oil; CON− – Deionized Water (negative control) and CON+ – Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control). Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf) / SHf )×100]. Data were analyzed by one-way ANOVA and Tukey’s test (p<0.05). Results Enamel blocks of GP100 presented similar hardness loss to GSu100 (p>0.05) and less than the other groups (p<0.05). There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON− and CON+. Conclusion Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling. PMID:28877281

  3. Evaluation of crystalline changes and resistance to demineralization of the surface of human dental enamel treated with Er:YAG laser and fluoride using x-ray diffraction analysis and Vickers microhardness

    NASA Astrophysics Data System (ADS)

    Behroozibakhsh, Marjan; Shahabi, Sima; Ghavami-Lahiji, Mehrsima; Sadeghian, Safura; Sadat Faal Nazari, Neda

    2018-06-01

    This study aimed to investigate the changes in crystalline structure and resistance to demineralization of human dental surface enamel treated with erbium-doped yttrium aluminium garnet laser (Er:YAG) laser and fluoride. The enamel surfaces were divided into four groups according to the treatment process including, (L): irradiated with Er:YAG; (F): treated with acidulated phosphate fluoride gel (LF): Pre-irradiated surfaces with Er:YAG subjected to acidulated phosphate fluoride gel and (FL): laser irradiation was performed on the fluoridated enamel surface. Before and after the treatment procedure, the samples were evaluated using X-ray diffraction, scanning electron microscope (SEM) and the Vickers microhardness test. The surface microhardness values also were measured after a pH-cycling regime and acid challenge. The a-axis of all lased groups was contracted after treatment procedure. Measurement of the area under the peaks showed the highest crysallinity in the FL group. The hardness values of all laser treated samples significantly reduced after treatment procedure compared to the F group (p  ⩽  0.001). The morphological observations showed remarkable changes on the lased enamel surfaces including cracks, craters and exposed prisms. These findings suggest, irradiation of the Er:YAG laser accompanying with fluoride application can induce some beneficial crystalline changes regarding the acid-resistance properties of enamel, however, the craters and cracks produced by laser irradiation can promote enamel demineralization and consequently the positive effects of the Er:YAG laser will be eliminated.

  4. Role of Candida species from HIV infected children in enamel caries lesions: an in vitro study.

    PubMed

    Charone, Senda; Portela, Maristela Barbosa; Martins, Karol de Oliveira; Soares, Rosangela Maria; Castro, Gloria Fernanda

    2017-01-01

    This study analyzed the capacity of Candida spp. from dental biofilm of HIV infected (HIV+) children to demineralize primary molar enamel in vitro by Transversal Microhardness (TMH), Polarized Light Microscopy (PLM) and the quantity of calcium ions (Ca2+) released from the enamel. Candida spp. samples were isolated from the supragingival biofilm of HIV+ children. A hundred and forty (140) enamel blocks were randomly assigned to six groups: biofilm formed by C. albicans (Group 1); mixed biofilm formed by C. albicans and C. tropicalis (Group 2); mixed biofilm formed by C. albicans and C. parapsilosis (Group 3); mixed biofilm formed by C. albicans, C. parapsilosis and C. glabrata (Group 4); biofilm formed by C. albicans ATCC (Group 5) and medium without Candida (Group 6). Enamel blocks from each group were removed on days 3, 5, 8 and 15 after biofilm formation to evaluate the TMH and images of enamel were analyzed by PLM. The quantity of Ca2+ released, from Groups 1 and 6, was determined using an Atomic Absorption Spectrophotometer. The SPSS program was used for statistical analysis and the significance level was 5%. TMH showed a gradual reduction in enamel hardness (p<0.05) from the 1st to 15th day, but mainly five days after biofilm formation in all groups. The PLM showed superficial lesions indicating an increase in porosity. C. albicans caused the release of Ca2+ into suspension during biofilm formation. Candida species from dental biofilm of HIV+ children can cause demineralization of primary enamel in vitro.

  5. Role of Candida species from HIV infected children in enamel caries lesions: an in vitro study

    PubMed Central

    CHARONE, Senda; PORTELA, Maristela Barbosa; MARTINS, Karol de Oliveira; SOARES, Rosangela Maria; CASTRO, Gloria Fernanda

    2017-01-01

    Abstract Objectives This study analyzed the capacity of Candida spp. from dental biofilm of HIV infected (HIV+) children to demineralize primary molar enamel in vitro by Transversal Microhardness (TMH), Polarized Light Microscopy (PLM) and the quantity of calcium ions (Ca2+) released from the enamel. Material and Methods Candida spp. samples were isolated from the supragingival biofilm of HIV+ children. A hundred and forty (140) enamel blocks were randomly assigned to six groups: biofilm formed by C. albicans (Group 1); mixed biofilm formed by C. albicans and C. tropicalis (Group 2); mixed biofilm formed by C. albicans and C. parapsilosis (Group 3); mixed biofilm formed by C. albicans, C. parapsilosis and C. glabrata (Group 4); biofilm formed by C. albicans ATCC (Group 5) and medium without Candida (Group 6). Enamel blocks from each group were removed on days 3, 5, 8 and 15 after biofilm formation to evaluate the TMH and images of enamel were analyzed by PLM. The quantity of Ca2+ released, from Groups 1 and 6, was determined using an Atomic Absorption Spectrophotometer. The SPSS program was used for statistical analysis and the significance level was 5%. Results TMH showed a gradual reduction in enamel hardness (p<0.05) from the 1st to 15th day, but mainly five days after biofilm formation in all groups. The PLM showed superficial lesions indicating an increase in porosity. C. albicans caused the release of Ca2+ into suspension during biofilm formation. Conclusion Candida species from dental biofilm of HIV+ children can cause demineralization of primary enamel in vitro. PMID:28198976

  6. Effects of tooth whitening and orange juice on surface properties of dental enamel.

    PubMed

    Ren, Yan-Fang; Amin, Azadeh; Malmstrom, Hans

    2009-06-01

    To study the effects of 6% H2O2 activated with LED light on surface enamel as compared to orange juice challenges in vitro. A total of 40 human enamel discs were incubated in saliva overnight to allow pellicle formation and then divided into three groups: 15 for whitening treatments, 15 for orange juice immersions and 10 for normal saline controls. Baseline microhardness was measured with a microhardness Knoop indenter (50g, 10s) and surface topography was evaluated with a focus-variation 3D scanning microscopy. Enamel discs were treated with H2O2 or orange juice for 20 min each cycle for five cycles to simulate daily treatment with the products for 5 days. The discs were stored in saliva between treatment cycles. Microhardness and surface topography were evaluated again after treatments. Changes in microhardness and in surface area roughness (Sa), mean maximum peak-to-valley distance (Sz) and the developed surface area ratio (Sdr) were compared before and after treatments (t-test) and among groups (ANOVA). Enamel surface hardness decreased by 84% after orange juice immersion but no statistically significant changes were observed in the whitening and control groups. Surface topography changed significantly only in the orange juice group as shown by increased Sa (1.2 microm vs. 2.0 microm), Sz (7.7 microm vs. 10.2 microm) and Sdr (2.8% vs. 6.0%). No such changes were observed in the whitening and control groups. In comparison to orange juice challenges, the effects of 6% H2O2 on surface enamel are insignificant. Orange juice erosion markedly decreased hardness and increased roughness of enamel.

  7. Zinc and Metallothionein in the Development and Progression of Dental Caries.

    PubMed

    Rahman, Mohammad Tariqur; Hossain, Ashfaque; Pin, Chew Hooi; Yahya, Noor Azlin

    2018-05-09

    Chronic oxidative stress and reactive oxygen species (ROS) in oral cavity as well as acidic pH on dental enamel surface due to the metabolic activities of bacterial plaque are the major contributors in the development and progression of dental caries. Along with other factors, deposition or dissolution Ca and Mg mostly determines the re- or demineralization of dental enamel. Zn plays an important role for both Ca and Mg bioavailability in oral cavity. Metallothionein (MT), a group of small molecular weight, cysteine-rich proteins (~ 7 kDa), is commonly induced by ROS, bacterial infection, and Zn. In the current review, we evaluated MT at the junction between the progression of dental caries and its etiologies that are common in MT biosynthesis.

  8. Micro-indentation fracture behavior of human enamel.

    PubMed

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  9. Calcium release rates from tooth enamel treated with dentifrices containing whitening agents and abrasives.

    PubMed

    Araujo, Danilo Barral; Silva, Luciana Rodrigues; de Araujo, Roberto Paulo Correia

    2010-01-01

    Tooth whitening agents containing hydrogen peroxide and carbamide peroxide are used frequently in esthetic dental procedures. However, lesions on the enamel surface have been attributed to the action of these products. Using conventional procedures for separating and isolating biological structures, powdered enamel was obtained and treated with hydrogen peroxide, carbamide peroxide, and sodium bicarbonate, ingredients typically found in dentifrices. The enamel was exposed to different pH levels, and atomic emission spectrometry was used to determine calcium release rates. As the pH level increased, the rate of calcium release from enamel treated with dentifrices containing whitening agents decreased. Carbamide peroxide produced the lowest amount of decalcification, while sodium bicarbonate produced the highest release rates at all pH levels.

  10. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    PubMed Central

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J.; Cooper, Paul R.

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo. PMID:26538821

  11. Dental Pulp Defence and Repair Mechanisms in Dental Caries.

    PubMed

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J; Cooper, Paul R

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  12. In Vitro Comparative Study of Two Different Bleaching Agents on Micro-hardness Dental Enamel.

    PubMed

    Fatima, Nazish; Ali Abidi, Syed Yawar; Meo, Ashraf Ali

    2016-02-01

    To evaluate the effect of home-use bleaching agent containing 16% Carbamide Peroxide (CP) and in-office bleaching agent containing 38% Hydrogen Peroxide (HP) on enamel micro-hardness. An in vitroexperimental study. Department of Operative Dentistry and Science of Dental Materials at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences and Material Engineering Department of NED University of Engineering and Technology, Karachi, from July to December 2014. Atotal of 90 enamel slabs from 45 sound human 3rd molar were randomly divided into 3 groups. Each group contained 30 specimens (n=30). Group 1 was kept in artificial saliva at 37°C in incubator during the whole experiment. However, Groups 2 and 3 were treated with power whitening gel and tooth whitening pen respectively. After bleaching session, specimens were thoroughly rinsed with deionized water again for 10 seconds and then stored in artificial saliva at 37°C in incubator. Artificial saliva was changed after every 2 days. The Vickers hardness tester (Wolpert 402 MVD, Germany) was adjusted to a load of 0.1 kg (100 gm) and dwell time of 5 seconds. Three Vickers were performed on each specimen using a hardness tester according to the ISO 6507-3:1998 specification. Micro-hardness measurements were performed before and after bleaching at day 1, 7 and 14. In the control group, the baseline micro-hardness was 181.1 ±9.3 which was reduced after the storage on day 1, 7 and 14 (p = 0.104). In Group 2, baseline micro-hardness was 180.4 ±10.1 which was reduced to 179.79 ±10.0 units after day 1. Whereas, on day 7 and 14, the values of micro-hardness were 179.8 ±10 and 179.7 ±10.29, respectively (p=0.091). Furthermore, the baseline micro-hardness in Group 3 was 174.0 ±22.9 units which was reduced to 173 ±23 on day 1, 170 ±30 on day 7 and 173 ±23 on day 14 (p = 0.256). The statistically insignificant difference was found

  13. Changes in surface morphology and mineralization level of human enamel following in-office bleaching with 35% hydrogen peroxide and light irradiation.

    PubMed

    Berger, Sandrine Bittencourt; Cavalli, Vanessa; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2010-01-01

    The objective of this study was to evaluate the alterations on surface morphology and mineral loss of human enamel following in-office bleaching with 35% hydrogen peroxide and light irradiation. Dental enamel samples were obtained from human third molars and randomly divided into 10 groups (n = 10). The control group remained untreated. Bleached groups were treated with one of three whitening products. Bleaching was performed in a single session, during which bleaching gel was applied to the enamel surface three times for 10 minutes each time. During treatment, the bleaching agents were either irradiated by a halogen light or an LED/diode laser or were not irradiated at all. Microhardness testing was performed with a Knoop indentor and the surface morphologic observations were carried out by scanning electron microscopy (SEM). Cross-sectional microhardness (CSMH) and polarized light microscopy (PLM) were used to measure the depth of demineralization. The results revealed a significant decrease in surface microhardness values and changes to the enamel morphology after bleaching. CSMH and PLM showed that bleached enamel presented lower volume percentage of mineral up to 40 micrometers from the enamel surface and demineralization areas located in the subsuperficial region of enamel, respectively. It was concluded that 35% hydrogen peroxide can alter the surface morphology and the mineralization level of the dental enamel surface and sub-surface regardless of what type of bleaching light is used.

  14. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold

  15. Esthetic management of anterior dental anomalies: A clinical case.

    PubMed

    Chafaie, Amir

    2016-09-01

    Many types of dental abnormality can be observed in the anterior sectors, where they can cause genuine esthetic problems for our patients. While conventional prosthetic treatments offer the best solutions in terms of esthetic result and durability, they involve the sacrifice of significant quantities of mineralized dental material and cannot be undertaken before the periodontal tissues are mature. Other less invasive alternatives should be envisaged as transitional, or sometimes even permanent, solutions for the management of these anomalies in children and adolescents. This article discusses these options and presents a clinical case where composite resin veneers and microabrasion of the enamel were used to treat dental agenesis and enamel dysplasia. Copyright © 2016 CEO. Published by Elsevier Masson SAS. All rights reserved.

  16. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jones, Robert S.; Darling, Cynthia L.; Featherstone, John D. B.; Fried, Daniel

    2006-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is potentially useful for imaging the nonsurgical remineralization of dental enamel. This study uses an all-fiber-based PS-OCT system operating at 1310 nm to image demineralized and fluoride-enhanced remineralized artificial lesions. PS-OCT images of lesions before and after remineralization are compared with the relative mineral loss ΔZ (%vol×µm), obtained from high resolution digital microradiography (DM), and chemical composition changes by infrared spectroscopy. Severe early artificial caries show a significant increase in perpendicular-axis integrated reflectivity after remineralization. After sectioning the samples, DM demonstrates that the lesions remineralized with new mineral and the lesion surface zone show significant restoration of mineral volume. PS-OCT and DM both do not show a major change in lesion depth. For less severe artificial caries, the perpendicular-axis image resolves the scattering and depolarization of an outer growth layer after remineralization. This outer layer has a mineral volume close to that of sound enamel, and spectroscopic analysis indicates that the layer is a highly crystalline phase of apatite, without carbonate substitutions that increase the solubility of sound enamel. This study determines that PS-OCT can image the effects of fluoride-enhanced remineralization of mild and severe early artificial in vitro caries.

  17. Influence of a Brazilian wild green propolis on the enamel mineral loss and Streptococcus mutans' count in dental biofilm.

    PubMed

    Cardoso, Julia Gabiroboertz; Iorio, Natalia Lopes Pontes; Rodrigues, Luís Fernando; Couri, Maria Luiza Barra; Farah, Adriana; Maia, Lucianne Cople; Antonio, Andréa Gonçalves

    2016-05-01

    This study investigated the anti-demineralizing and antibacterial effects of a propolis ethanolic extract (EEP) against Streptococcus mutans dental biofilm. Blocks of sound bovine enamel (n=24) were fixed on polystyrene plates. S. mutans inoculum (ATCC 25175) and culture media were added (48 h-37 °C) to form biofilm. Blocks with biofilm received daily treatment (30 μL/1 min), for 5 days, as following: G1 (EEP 33.3%); G2 (chlorhexidine digluconate 0.12%); G3 (ethanol 80%); and G4 (Milli-Q water). G5 and G6 were blocks without biofilm that received only EEP and Milli-Q water, respectively. Final surface hardness was evaluated and the percentage of hardness loss (%HL) was calculated. The EEP extract pH and total solids were determined. S. mutans count was expressed by log10 scale of Colony-Forming Units (CFU/mL). One way ANOVA was used to compare results which differed at a 95% significance level. G2 presented the lowest average %HL value (68.44% ± 12.98) (p=0.010), while G4 presented the highest (90.49% ± 5.38%HL) (p=0.007). G1 showed %HL (84.41% ± 2.77) similar to G3 (87.80% ± 6.89) (p=0.477). Groups G5 and G6 presented %HL=16.11% ± 7.92 and 20.55% ± 10.65; respectively (p=0.952). G1 and G4 differed as regards to S. mutans count: 7.26 ± 0.08 and 8.29 ± 0.17 CFU/mL, respectively (p=0.001). The lowest bacterial count was observed in chlorhexidine group (G2=6.79 ± 0.10 CFU/mL) (p=0.043). There was no difference between S. mutans count of G3 and G4 (p=0.435). The EEP showed pH 4.8 and total soluble solids content=25.9 Brix. The EEP seems to be a potent antibacterial substance against S. mutans dental biofilm, but presented no inhibitory action on the de-remineralization of caries process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dental enamel defects predict adolescent health indicators: A cohort study among the Tsimane' of Bolivia.

    PubMed

    Masterson, Erin E; Fitzpatrick, Annette L; Enquobahrie, Daniel A; Mancl, Lloyd A; Eisenberg, Dan T A; Conde, Esther; Hujoel, Philippe P

    2018-05-01

    Bioarchaeological findings have linked defective enamel formation in preadulthood with adult mortality. We investigated how defective enamel formation in infancy and childhood is associated with risk factors for adult morbidity and mortality in adolescents. This cohort study of 349 Amerindian adolescents (10-17 years of age) related extent of enamel defects on the central maxillary incisors (none, less than 1/3, 1/3 to 2/3, more than 2/3) to adolescent anthropometrics (height, weight) and biomarkers (hemoglobin, glycated hemoglobin, white blood cell count, and blood pressure). Risk differences and 95% confidence intervals were estimated using multiple linear regression. Enamel defects and stunted growth were compared in their ability to predict adolescent health indicators using log-binomial regression and receiver operating characteristics (ROCs). Greater extent of defective enamel formation on the tooth surface was associated with shorter height (-1.35 cm, 95% CI: -2.17, -0.53), lower weight (-0.98 kg, 95% CI: -1.70, -0.26), lower hemoglobin (-0.36 g/dL, 95% CI: -0.59, -0.13), lower glycated hemoglobin (-0.04 %A 1c , 95% CI: -0.08, -0.00008), and higher white blood cell count (0.74 10 9 /L, 95% CI: 0.35, 1.14) in adolescence. Extent of enamel defects and stunted growth independently performed similarly as risk factors for adverse adolescent outcomes, including anemia, prediabetes/type II diabetes, elevated WBC count, prehypertension/hypertension, and metabolic health. Defective enamel formation in infancy and childhood predicted adolescent health outcomes and may be primarily associated with infection. Extent of enamel defects and stunted growth may be equally predictive of adverse adolescent health outcomes. © 2018 Wiley Periodicals, Inc.

  19. Fiber optic-based optical coherence tomography (OCT) for dental applications

    NASA Astrophysics Data System (ADS)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  20. Comparison of bond strength and surface morphology of dental enamel for acid and Nd-YAG laser etching

    NASA Astrophysics Data System (ADS)

    Parmeswearan, Diagaradjane; Ganesan, Singaravelu; Ratna, P.; Koteeswaran, D.

    1999-05-01

    Recently, laser pretreatment of dental enamel has emerged as a new technique in the field of orthodontics. However, the changes in the morphology of the enamel surface is very much dependent on the wavelength of laser, emission mode of the laser, energy density, exposure time and the nature of the substance absorbing the energy. Based on these, we made a comparative in vitro study on laser etching with acid etching with reference to their bond strength. Studies were conducted on 90 freshly extracted, non carious, human maxillary or mandibular anteriors and premolars. Out of 90, 60 were randomly selected for laser irradiation. The other 30 were used for conventional acid pretreatment. The group of 60 were subjected to Nd-YAG laser exposure (1060 nm, 10 Hz) at differetn fluences. The remaining 30 were acid pretreated with 30% orthophosphoric acid. Suitable Begg's brackets were selected and bound to the pretreated surface and the bond strength were tested using Instron testing machine. The bond strength achieved through acid pretreatment is found to be appreciably greater than the laser pretreated tooth. Though the bond strength achieved through the acid pretreated tooth is found to be significantly greater than the laser pretreated specimens, the laser pretreatement is found to be successful enough to produce a clinically acceptable bond strength of > 0.60 Kb/mm. Examination of the laser pre-treated tooth under SEM showed globule formation which may produce the mechanical interface required for the retention of the resin material.

  1. Implications of gluten exposure period, CD clinical forms, and HLA typing in the association between celiac disease and dental enamel defects in children. A case-control study.

    PubMed

    Majorana, Alessandra; Bardellini, Elena; Ravelli, Alberto; Plebani, Alessandro; Polimeni, Antonella; Campus, Guglielmo

    2010-03-01

    The association between coeliac disease (CD) and dental enamel defects (DED) is well known. The aim of this study was to investigate the prevalence of DED in children with CD and to specifically find the association of DED and gluten exposure period, CD clinical forms, HLA class II haplotype. This study was designed as a matched case-control study: 250 children were enrolled (125 coeliac children - 79 female and 46 male, 7.2 +/- 2.8 years and 125 healthy children). Data about age at CD diagnosis, CD clinical form, and HLA haplotype were recorded. Dental enamel defects were detected in 58 coeliac subjects (46.4%) against seven (5.6%) controls (P < 0.005). We found an association between DED and gluten exposure period, as among CD subjects the mean age at CD diagnosis was significantly (P = 0.0004) higher in the group with DED (3.41 +/- 1.27) than without DED (1.26 +/- 0.7). DED resulted more frequent (100%) in atypical and silent CD forms than in the typical one (30.93%). The presence of HLA DR 52-53 and DQ7antigens significantly increased the risk of DED (P = 0.0017) in coeliac children. Our results confirmed a possible correlation between HLA antigens and DED.

  2. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    PubMed

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S 3 Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  3. EMMPRIN/CD147 deficiency disturbs ameloblast-odontoblast cross-talk and delays enamel mineralization.

    PubMed

    Khaddam, Mayssam; Huet, Eric; Vallée, Benoît; Bensidhoum, Morad; Le Denmat, Dominique; Filatova, Anna; Jimenez-Rojo, Lucia; Ribes, Sandy; Lorenz, Georg; Morawietz, Maria; Rochefort, Gael Y; Kiesow, Andreas; Mitsiadis, Thimios A; Poliard, Anne; Petzold, Matthias; Gabison, Eric E; Menashi, Suzanne; Chaussain, Catherine

    2014-09-01

    Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5μm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The possible correlation between dental enamel hypoplasia and a historic natural disaster in the Roman population of Herculaneum (79 AD - central Italy).

    PubMed

    D'Anastasio, R; Cesana, D T; Viciano, J; Sciubba, M; Nibaruta, P; Capasso, L

    2013-01-01

    Dental enamel hypoplasia is usually read as a sign of a systematic growth disturbance during childhood. Following the analysis of human teeth from Herculaneum (79 AD, Central Italy), the authors focused on linear enamel hypoplasia (LEH) manifestations in order to delineate a possible correlation between their frequency and distribution and the earthquake that occurred in 62 AD, which is well documented in historical literature. The human remains from Herculaneum were buried at the same time as the Vesuvius eruption and represent an exceptional snapshot of life in the Roman Imperial Age. The Goodman and Rose method (1990) was used for attributing an "age at the moment of stress" for every skeleton in order to delineate the epidemiology of the enamel hypoplasia. When LEH frequency was analysed by age, two different age groups showed relevant patterns of hypoplasia: the first peak was evident in individuals between 14 and 20 years who were younger than 6 years at the time of the 62 AD earthquake, and a second peak was noted in adults of 30 +/- 5 years old, which suggests the presence of another stressful event that occurred 10 years before the earthquake, around 53 AD. The bimodal distribution of enamel hypoplasia could be the consequence of two different historical periods characterized by instability in the food supply, unhygienic conditions, and epidemic episodes; our data suggest that the first peak could be related to a decline in health status as an effect of the 62 AD earthquake. The relationship between recent natural disasters and variations in health status in modern populations is well documented in scientific literature. Our research represents the first attempt to correlate the status of health to an earthquake of known date in an archaeological population.

  5. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin

    NASA Astrophysics Data System (ADS)

    Li, Danxue; Lv, Xueping; Tu, Huanxin; Zhou, Xuedong; Yu, Haiyang; Zhang, Linglin

    2015-09-01

    Dental caries is the most common oral disease with high incidence, widely spread and can seriously affect the health of oral cavity and the whole body. Current caries prevention measures such as fluoride treatment, antimicrobial agents, and traditional Chinese herbal, have limitations to some extent. Here we design and synthesize a novel peptide based on the amelogenin, and assess its ability to promote the remineralization of initial enamel caries lesions. We used enamel blocks to form initial lesions, and then subjected to 12-day pH cycling in the presence of peptide, NaF and HEPES buffer. Enamel treated with peptide or NaF had shallower, narrower lesions, thicker remineralized surfaces and less mineral loss than enamel treated with HEPES. This peptide can promote the remineralization of initial enamel caries and inhibit the progress of caries. It is a promising anti-caries agent with various research prospects and practical application value.

  6. The effects of three different food acids on the attrition-corrosion wear of human dental enamel

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Arsecularatne, Joseph A.; Hoffman, Mark

    2015-07-01

    With increased consumption of acidic drinks and foods, the wear of human teeth due to attrition in acidic environments is an increasingly important issue. Accordingly, the present paper investigates in vitro the wear of human enamel in three different acidic environments. Reciprocating wear tests in which an enamel cusp slides on an enamel flat surface were carried out using acetic, citric and lactic acid lubricants (at pH 3-3.5). Distilled water was also included as a lubricant for comparison. Focused ion beam milling and scanning electron microscopy imaging were then used to investigate the enamel subsurfaces following wear tests. Nanoindentation was used to ascertain the changes in enamel mechanical properties. The study reveals crack generation along the rod boundaries due to the exposure of enamel to the acidic environments. The wear mechanism changes from brittle fracture in distilled water to ploughing or shaving of the softened layer in acidic environments, generating a smooth surface with the progression of wear. Moreover, nanoindentation results of enamel samples which were exposed to the above acids up to a duration of the wear tests show decreasing hardness and Young’s modulus with exposure time.

  7. Conventional and digital radiographic assessment of tooth enamel de-/remineralization processes: an experimental study.

    PubMed

    Leite-Ribeiro, Patrícia; de Oliveira, Thais Feitosa Leitão; Mathias, Paula; Campo, Elisângela de Jesus; Sarmento, Viviane Almeida

    2014-01-01

    This study aimed to compare digital techniques for evaluating dental enamel de-/remineralization. Sixty extracted molars were subjected to a process of de- and remineralization. Radiographs were taken before and after each stage. These radiographs were evaluated by the conventional method and were then scanned and analyzed either with or without the use of image enhancement. Moreover, the gray levels (GLs) of the affected areas were measured. All methods exhibited low sensitivity and identical levels of specificity (99.4%). Analysis of the grayscale levels found statistically significant differences between the initial radiographs (P < 0.05). The mean GL of the carious group was significantly lower than that of the remineralized group. The GL did not differ significantly between the initial and final radiographs of the remineralized group, although the mean of the first group was lower than that of the second, which demonstrated that the remineralization process restored the normal density of the dental enamel. Measurement of the mean GL was sufficiently sensitive to detect small alterations in the surface of the enamel.

  8. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    NASA Astrophysics Data System (ADS)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  9. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    PubMed

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (P< 0.05). In the ROT group, brushing promoted a significantly greater wear of white spot lesion compared with sound enamel, and this group differed significantly from the ST1 group (P< 0.05). None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.

  10. Is the red fluorescence of dental plaque related to its cariogenicity?

    NASA Astrophysics Data System (ADS)

    Bittar, Daniela G.; Pontes, Laura Regina A.; Calvo, Ana Flávia B.; Novaes, Tatiane F.; Braga, Mariana M.; Freitas, Patrícia M.; Tabchoury, Cinthia P. M.; Mendes, Fausto M.

    2014-06-01

    It has been speculated that the red fluorescence emitted by dental plaque could be related to its cariogenicity. To test this hypothesis, we designed this crossover in situ study, with two experimental phases of 14 days each. Seventeen volunteers, wearing a palatal appliance with bovine enamel blocks, were instructed to drip a 20% sucrose solution (experimental group) or purified water (control group) onto the enamel blocks eight times daily. The specimens were removed after 4, 7, 10, and 14 days, and the red fluorescence of dental plaque formed on the enamel blocks was assessed using a quantitative light-induced fluorescence device. After the plaque removal, surface and cross-sectional microhardness tests were performed to assess the mineral loss. The comparisons were made by a multilevel linear regression analysis. We observed a significant increase in the red fluorescence of the dental plaque after longer periods of formation, but this trend was verified in both groups. The mineral loss assessed by the microhardness techniques, contrariwise, showed a significant increase only in the experimental group. In conclusion, the red fluorescence emitted by the dental plaque indicates a mature biofilm, but this fact is not necessarily associated with its cariogenicity.

  11. Effectiveness of Combination of Dentin and Enamel Layers on the Masking Ability of Porcelain.

    PubMed

    Boscato, Noéli; Hauschild, Fernando Gabriel; Kaizer, Marina da Rosa; De Moraes, Rafael Ratto

    2015-01-01

    This study evaluated the masking ability of different porcelain thicknesses and combination of enamel and/or dentin porcelain layers over simulated background dental substrates with higher (A2) and lower (C4) color values. Combination of the enamel (E) and dentin (D) monolayer porcelain disks with different thicknesses (0.5 mm, 0.8 mm, and 1 mm) resulted in the following bilayer groups (n=10): D1E1, D1E0.8; D1E0.5; D0.8E0.8; D0.8E0.5, and D0.5E0.5. CIELAB color coordinates were measured with a spectrophotometer. The translucency parameter of mono and bilayer specimens and the masking ability estimated by color variation (ΔE*ab) of bilayer specimens over simulated dental substrates were evaluated. Linear regression analysis was used to investigate the relationships translucency parameter × ΔE*, translucency parameter × porcelain thickness, and ΔE* × porcelain thickness. Data were analyzed statistically (α= 0.05). Thinner porcelain disks were associated with higher translucency. Porcelain monolayers were considerably more translucent than bilayers (enamel + dentin). Dentin porcelain was less translucent than enamel porcelain with same thickness. ΔE* was always lower when measured over A2 background. Higher ΔE* was observed for the C4 background, indicating poorer masking ability. Increased ΔE* was significantly associated with increased translucency for both backgrounds. Decreased translucency and ΔE* were associated with increased total porcelain thickness or increased dentin thickness for both backgrounds. In conclusion, increased porcelain thickness (particularly increased dentin layer) and increased porcelain opacity resulted in better masking ability of the dental backgrounds.

  12. Dental bleaching on teeth submitted to enamel microabrasion 30 years ago-a case report of patients' compliance during bleaching treatment.

    PubMed

    Sundfeld, Daniel; Pavani, Caio Cesar; Schott, Timm Cornelius; Machado, Lucas Silveira; Pini, Núbia Inocêncya Pavesi; Bertoz, André Pinheiro de Magalhães; Sundfeld, Renato Herman

    2018-04-20

    The present dental bleaching case report describes a new method that precisely quantifies the daily wearing-times of the bleaching product by inserting a microsensor in the acetate custom tray. The bleaching efficacy was also discussed since the patient was previously submitted to enamel microabrasion. The patient was submitted to enamel microabrasion in 1987, and bleaching treatment was performed in 2005. In 2017, re-bleaching was executed using 10% peroxide carbamide. The electronic microsensor, TheraMon (TheraMon® microelectronic system; Sales Agency Gschladt, Hargelsberg, Austria), was embedded in the labial region of the upper and lower acetate trays to evaluate the wearing-times of the acetate trays/bleaching product. The patient was instructed to wear the tray for 6 to 8 h/day while sleeping. After 24 days of bleaching treatment, the data obtained from the TheraMon electronic devices was collected and interpreted. The patient did not entirely follow the bleaching treatment as recommended, as there was no evidence of use of the upper and lower trays for some days; additionally, the bleaching product was used for shorter and longer periods than was instructed. The TheraMon microeletronic device precisely measured the wearing-times of the acetate tray/bleaching product during the bleaching treatment. Teeth submitted to enamel microabrasion presented with a healthy clinical appearance after 30 years. Measuring the length and frequency of use of an acetate tray/bleaching product can be important to clinicians and patients for obtaining a controlled and adequate bleaching treatment.

  13. Excessive fluoride reduces Foxo1 expression in dental epithelial cells of the rat incisor.

    PubMed

    Gao, Jianghong; Ruan, Jianping; Gao, Liping

    2014-10-01

    Enamel fluorosis is characterized by hypomineralization, and forkhead box O1 (Foxo1) is essential for mouse enamel biomineralization. This study investigated the effect of fluoride on Foxo1 expression and its implications for enamel fluorosis. Mandibular incisors were extracted from Sprague Dawley rats treated for 3 months with water containing 0, 50, or 100 p.p.m. F⁻. Immunohistochemistry was used to localize and quantify FOXO1 expression in dental epithelial layer cells of the incisors. The effect of fluoride on expression of Foxo1, kallikrein-4 (Klk4), and amelotin (Amtn) mRNAs was analyzed by real-time RT-PCR, and western blotting was used to measure total and nuclear FOXO1 protein levels in mature dental epithelial cells. The results revealed that nuclear FOXO1 was mainly localized in the transition and the mature ameloblasts and exhibited weaker expression in the rats exposed to fluoride. In addition to the reduced levels of Foxo1, Klk4, and AmtnmRNAs, the protein levels of total and nuclearFOXO1 were decreased in the mature dental epithelial cells exposed to fluoride. Thus, excessive fluoride may have an effect on the expression levels of Foxo1 in dental epithelial cells and thereby affect hypomineralization of the enamel during fluorosis. © 2014 Eur J Oral Sci.

  14. Dental Wear: A Scanning Electron Microscope Study

    PubMed Central

    Levrini, Luca; Di Benedetto, Giulia

    2014-01-01

    Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction) studied by scanning electron microscopy (SEM). The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp), to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders). It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction. PMID:25548769

  15. Fluoride rinse effect on retention of CaF2 formed on enamel/dentine by fluoride application.

    PubMed

    Falcão, Amanda; Masson, Nadia; Leitão, Tarcísio Jorge; Botelho, Juliana Nunes; Ferreira-Nóbilo, Naiara de Paula; Tabchoury, Cínthia Pereira Machado; Tenuta, Livia Maria Andaló; Cury, Jaime Aparecido

    2016-01-01

    Calcium fluoride-like materials ("CaF2") formed on dental surfaces after professional fluoride application are unstable in the oral environment but can be retained longer with a daily NaF mouthrinse. We tested the effect of twice daily 0.05% NaF rinses on the retention of "CaF2" formed on enamel and dentine after applying acidulated phosphate fluoride (APF). "CaF2" formed on enamel/dentine by APF application significantly decreased after exposure to artificial saliva and the 0.05% NaF rinse was ineffective to avoid this reduction. These findings suggest that the combination of APF and 0.05% NaF is not clinically relevant, either for caries or dental hypersensitivity.

  16. Wear of human enamel: a quantitative in vitro assessment.

    PubMed

    Kaidonis, J A; Richards, L C; Townsend, G C; Tansley, G D

    1998-12-01

    Many factors influence the extent and rate at which enamel wears. Clinical studies in humans are limited by difficulties in the accurate quantification of intra-oral wear and by a lack of control over the oral environment. The purpose of this study was to determine the wear characteristics of human dental enamel under controlled experimental conditions. An electro-mechanical tooth wear machine, in which opposing enamel surfaces of sectioned, extracted teeth were worn under various conditions, was used to simulate tooth grinding or bruxism. Enamel surface wear was quantified by weight to an accuracy of 0.1 mg, with water uptake and loss controlled. The variables considered included the structure and hardness of enamel, facet area, duration of tooth contact, relative speed of opposing surfaces, temperature, load, pH, and the nature of the lubricant. Enamel wear under non-lubricated conditions increased with increasing load over the range of 1.7 to 16.2 kg. The addition of a liquid lubricant (pH = 7) reduced enamel wear up to 6.7 kg, but when the load increased above this threshold, the rate of wear increased dramatically. With the viscosity of the lubricant constant and pH = 3, the rate of wear was further reduced to less than 10% of the non-lubricated rate at 9.95 kg, after which the rate again increased substantially. Under more extreme conditions (pH = 1.2, simulating gastric acids), the wear was excessive under all experimental loads. When saliva was used as a lubricant, the amount of wear was relatively low at 9.95 kg, but rapid wear occurred at 14.2 kg and above. These results indicate that under non-lubricated conditions, enamel wear remains low at high loads due to the dry-lubricating capabilities of fine enamel powder. Under lubricated conditions, low loads with an acidic lubricant lead to little enamel wear, whereas very low pH results in a high rate of wear under all loads.

  17. Reminova and EAER: Keeping Enamel Whole through Caries Remineralization.

    PubMed

    Pitts, N B; Wright, J P

    2018-02-01

    This article aims to outline the early development of a King's College London dental spinout company, Reminova, formed to commercialize a novel clinical method of caries remineralization: electrically accelerated and enhanced remineralization (EAER). This method is being developed to address the unmet clinical need identified by modern caries management strategies to keep enamel "whole" through remineralization of clinical caries as a form of nonoperative caries treatment for initial-stage and moderate lesions. A progressive movement within dentistry is shifting away from the restorative-only model, which, it is suggested, has failed. The high prevalence of initial-stage caries across populations provides a significant opportunity to prevent restorations and reduce repeat restorations over a patient's lifetime. Reminova has set out to provide a method to repair lesions without drilling, filling, pain, or injections. The article outlines the rationale for and the chronological stages of the technology and company development. It then outlines corroborative evidence to show that EAER treatment can, in this preliminary in vitro investigation, remineralize clinically significant caries throughout the depth of the lesion as measured by Knoop microhardness and corroborated by scanning electron microscopy. Furthermore, the presented data show that EAER-treated enamel is harder than the healthy enamel measured nearby in each sample and is very similar in appearance to healthy enamel from the subjective interpretation made possible by scanning electron microscopy imagery. The data presented also show that this more "complete" remineralization to a high hardness level has been achieved with 2 remineralizing agents via in vitro human tooth samples. The broad clinical potential of this new treatment methodology seems to be very encouraging from these results. Reminova will strive to continue its mission, to ensure that, in the future, dental teams will not need to drill holes

  18. Polarization sensitive camera for the in vitro diagnostic and monitoring of dental erosion

    NASA Astrophysics Data System (ADS)

    Bossen, Anke; Rakhmatullina, Ekaterina; Lussi, Adrian; Meier, Christoph

    Due to a frequent consumption of acidic food and beverages, the prevalence of dental erosion increases worldwide. In an initial erosion stage, the hard dental tissue is softened due to acidic demineralization. As erosion progresses, a gradual tissue wear occurs resulting in thinning of the enamel. Complete loss of the enamel tissue can be observed in severe clinical cases. Therefore, it is essential to provide a diagnosis tool for an accurate detection and monitoring of dental erosion already at early stages. In this manuscript, we present the development of a polarization sensitive imaging camera for the visualization and quantification of dental erosion. The system consists of two CMOS cameras mounted on two sides of a polarizing beamsplitter. A horizontal linearly polarized light source is positioned orthogonal to the camera to ensure an incidence illumination and detection angles of 45°. The specular reflected light from the enamel surface is collected with an objective lens mounted on the beam splitter and divided into horizontal (H) and vertical (V) components on each associate camera. Images of non-eroded and eroded enamel surfaces at different erosion degrees were recorded and assessed with diagnostic software. The software was designed to generate and display two types of images: distribution of the reflection intensity (V) and a polarization ratio (H-V)/(H+V) throughout the analyzed tissue area. The measurements and visualization of these two optical parameters, i.e. specular reflection intensity and the polarization ratio, allowed detection and quantification of enamel erosion at early stages in vitro.

  19. Structure-mechanical function relations at nano-scale in heat-affected human dental tissue.

    PubMed

    Sui, Tan; Sandholzer, Michael A; Le Bourhis, Eric; Baimpas, Nikolaos; Landini, Gabriel; Korsunsky, Alexander M

    2014-04-01

    The knowledge of the mechanical properties of dental materials related to their hierarchical structure is essential for understanding and predicting the effect of microstructural alterations on the performance of dental tissues in the context of forensic and archaeological investigation as well as laser irradiation treatment of caries. So far, few studies have focused on the nano-scale structure-mechanical function relations of human teeth altered by chemical or thermal treatment. The response of dental tissues to thermal treatment is thought to be strongly affected by the mineral crystallite size, their spatial arrangement and preferred orientation. In this study, synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) techniques were used to investigate the micro-structural alterations (mean crystalline thickness, crystal perfection and degree of alignment) of heat-affected dentine and enamel in human dental teeth. Additionally, nanoindentation mapping was applied to detect the spatial and temperature-dependent nano-mechanical properties variation. The SAXS/WAXS results revealed that the mean crystalline thickness distribution in dentine was more uniform compared with that in enamel. Although in general the mean crystalline thickness increased both in dentine and enamel as the temperature increased, the local structural variations gradually reduced. Meanwhile, the hardness and reduced modulus in enamel decreased as the temperature increased, while for dentine, the tendency reversed at high temperature. The analysis of the correlation between the ultrastructure and mechanical properties coupled with the effect of temperature demonstrates the effect of mean thickness and orientation on the local variation of mechanical property. This structural-mechanical property alteration is likely to be due to changes of HAp crystallites, thus dentine and enamel exhibit different responses at different temperatures. Our results enable an improved understanding of

  20. Optical pathlengths in dental caries lesions

    NASA Astrophysics Data System (ADS)

    Mujat, Claudia; ten Bosch, Jaap J.; Dogariu, Aristide C.

    2001-04-01

    The average pathlength of light inside dental enamel and incipient lesions is measured and compared, in order to quantitatively confirm the prediction that incipient lesions have higher scattering coefficients that sound enamel. The technique used, called optical pathlength spectroscopy provides experimental access to the pathlength distribution of light inside highly scattering samples. This is desirable for complex biological materials, where current theoretical models are very difficult to apply. To minimize the effects of surface reflections the average pathlength is measured in wet sound enamel and white spots. We obtain values of 367 micrometers and 272 micrometers average pathlength for sound enamel and white spots respectively. We also investigate the differences between open and subsurface lesions, by measuring the change in the pathlength distribution of light as they go from dry to wet.

  1. Effects of probiotic fermented milk on biofilms, oral microbiota, and enamel.

    PubMed

    Lodi, Carolina Simonetti; Oliveira, Lidiane Viana; Brighenti, Fernanda Lourenção; Delbem, Alberto Carlos Botazzo; Martinhon, Cleide Cristina Rodrigues

    2015-01-01

    The aim of this study was to evaluate in vitro and in vivo the effects of 2 brands of probiotic fermented milk on biofilms, oral microbiota, and enamel. For the in situ experiment, ten volunteers wore palatine devices containing four blocks of bovine dental enamel over 3 phases, during which 20% sucrose solution, Yakult® (Treatment A), and Batavito® (Treatment B) were dropped on the enamel blocks. Salivary microbial counts were obtained and biofilm samples were analyzed after each phase. For the in vivo experiment, the same ten volunteers drunk Yakult® (Treatment C) and Batavito® (Treatment D) in two phases. Saliva samples were collected for microbial analysis after each phase. The in situ study showed that in comparison with Treatment A, Treatment B resulted in fewer total cultivable anaerobes and facultative microorganisms in biofilms, higher final microhardness, lower percentage change in surface hardness, and smaller integrated subsurface enamel hardness. In the in vivo study, Treatment D resulted in a reduction in the counts of all microorganisms. The results suggested that the probiotic fermented milk Batavito®, but not Yakult®, reduced the amount of oral microorganisms and mineral loss in bovine enamel.

  2. Ameloblasts require active RhoA to generate normal dental enamel.

    PubMed

    Xue, Hui; Li, Yong; Everett, Eric T; Ryan, Kathleen; Peng, Li; Porecha, Rakhee; Yan, Yan; Lucchese, Anna M; Kuehl, Melissa A; Pugach, Megan K; Bouchard, Jessica; Gibson, Carolyn W

    2013-08-01

    RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited. © 2013 Eur J Oral Sci.

  3. Variation in Enamel Formation Genes Influences Enamel Demineralization In Vitro in a Streptococcus mutans Biofilm Model

    PubMed Central

    Pang, Liangyue; Zhi, Qinghui; Zhuang, Peilin; Yu, Lixia; Tao, Ye; Lin, Huancai

    2017-01-01

    Genetic studies have shown that variations in enamel formation genes are associated with caries susceptibility. The aim of this study was to test in vitro whether variants in these genes are associated with dental enamel demineralization in a Streptococcus mutans biofilm model. DNA and enamel samples were obtained from 213 individuals. DNA was extracted from saliva, and 16 single nucleotide polymorphisms were analyzed. The physical and chemical properties of sound enamel samples and the mineral loss and the lesion depth of the demineralized enamel samples under cariogenic challenge were analyzed. Microhardness, enamel chemicals, mineral loss and demineralization depth were compared between different genotypes at each single nucleotide polymorphism. The GG genotype of TUFT1 (rs17640579) and the GT genotype of MMP20 (rs1612069) exhibited increased microhardness (p = 0.044 and 0.016, respectively). The GG genotype of AMBN (rs7694409) had a higher magnesium level, while the CT genotype of TFIP11 (rs2097470) had a lower magnesium level (p = 0.044 and 0.046, respectively). The GT genotype of MMP20 (rs1612069) had a higher calcium level (p = 0.034). The GG genotype of AMBN (rs13115627), the AG genotype of ENAM (rs12640848) and the AA genotype of MMP20 (rs2292730) had a lower phosphorus level (p = 0.012, 0.006, and 0.023, respectively). The GG genotype of AMBN (rs13115627) was also associated with a higher calcium-phosphorus ratio (p = 0.034). Individuals with the CC genotype of TFIP11 (rs134143) exhibited significantly more mineral loss (p = 0.011) and a deeper lesions (p = 0.042). Individuals with the TT genotype of TFIP11 (rs2097470) had more mineral loss (p = 0.018). Individuals with the GG genotype of TUFT1 (rs17640579) exhibited a shallower demineralization depth (p = 0.047). Individuals with the GT genotype of MMP20 (rs1612069) exhibited a shallower demineralization depth (p = 0.042). Individuals with the GG genotype of ENAM (rs12640848) exhibited less mineral loss

  4. Enamel alteration following tooth bleaching and remineralization.

    PubMed

    Coceska, Emilija; Gjorgievska, Elizabeta; Coleman, Nichola J; Gabric, Dragana; Slipper, Ian J; Stevanovic, Marija; Nicholson, John W

    2016-06-01

    The purpose of this study was to compare the effects of professional tooth whitening agents containing highly concentrated hydrogen peroxide (with and without laser activation), on the enamel surface; and the potential of four different toothpastes to remineralize any alterations. The study was performed on 50 human molars, divided in two groups: treated with Opalescence(®) Boost and Mirawhite(®) Laser Bleaching. Furthermore, each group was divided into five subgroups, a control one and 4 subgroups remineralized with: Mirasensitive(®) hap+, Mirawhite(®) Gelleѐ, GC Tooth Mousse™ and Mirafluor(®) C. The samples were analysed by SEM/3D-SEM-micrographs, SEM/EDX-qualitative analysis and SEM/EDX-semiquantitative analysis. The microphotographs show that both types of bleaching cause alterations: emphasized perikymata, erosions, loss of interprizmatic substance; the laser treatment is more aggressive and loss of integrity of the enamel is determined by shearing off the enamel rods. In all samples undergoing remineralization deposits were observed, those of toothpastes based on calcium phosphate technologies seem to merge with each other and cover almost the entire surface of the enamel. Loss of integrity and minerals were detected only in the line-scans of the sample remineralized with GC Tooth Mousse™. The semiquantitative EDX analysis of individual elements in the surface layer of the enamel indicates that during tooth-bleaching with HP statistically significant loss of Na and Mg occurs, whereas the bleaching in combination with a laser leads to statistically significant loss of Ca and P. The results undoubtedly confirm that teeth whitening procedures lead to enamel alterations. In this context, it must be noted that laser bleaching is more aggressive for dental substances. However, these changes are reversible and can be repaired by application of remineralization toothpastes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. [Ultrastructural changes of human dental hard tissues during orthodontic treatment with fixed appliances].

    PubMed

    Antonova, I N; Goncharov, V D; Bobrova, E A

    The aim of the study was to evaluate ultrastructural changes of dental enamel after fixation of orthodontic appliances, initial influence of orthodontic forces and removal of braces. Five intact permanent tooth extracted for orthodontic reasons were included in the experimental study. Scanning probe microscopy was conducted in 4 random enamel points in each tooth (20 points overall) in semi-contact mode with standard 10 nm probes. The study showed ultrastructural enamel changes such as nanofractures up to 1 mm along the braces locks. The changes correlated with surface morphological features and teeth anatomy and may play an important role in dental decay and non-carious lesions occurring in the course of orthodontic treatment.

  6. Enzyme replacement prevents enamel defects in hypophosphatasia mice

    PubMed Central

    Yadav, Manisha C.; de Oliveira, Rodrigo Cardoso; Foster, Brian L.; Fong, Hanson; Cory, Esther; Narisawa, Sonoko; Sah, Robert L.; Somerman, Martha; Whyte, Michael P.; Millán, José Luis

    2012-01-01

    Hypophosphatasia (HPP) is the inborn error of metabolism characterized by deficiency of alkaline phosphatase activity leading to rickets or osteomalacia and to dental defects. HPP occurs from loss-of-function mutations within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNAP). TNAP knockout (Alpl−/−, a.k.a. Akp2−/−) mice closely phenocopy infantile HPP, including the rickets, vitamin B6-responsive seizures, improper dentin mineralization, and lack of acellular cementum. Here, we report that lack of TNAP in Alpl−/− mice also causes severe enamel defects, which are preventable by enzyme replacement with mineral-targeted TNAP (ENB-0040). Immunohistochemistry was used to map the spatiotemporal expression of TNAP in the tissues of the developing enamel organ of healthy mouse molars and incisors. We found strong, stage-specific expression of TNAP in ameloblasts. In the Alpl−/− mice, histological, μCT, and scanning electron microscopy analysis showed reduced mineralization and disrupted organization of the rods and inter-rod structures in enamel of both the molars and incisors. All of these abnormalities were prevented in mice receiving from birth daily subcutaneous injections of mineral-targeting, human TNAP (sALP-FcD10, a.k.a. ENB-0040) at 8.2 mg/kg/day for up to 44 days. These data reveal an important role for TNAP in enamel mineralization, and demonstrate the efficacy of mineral-targeted TNAP to prevent enamel defects in HPP. PMID:22461224

  7. Interaction of slow highly charged ions with hard dental tissue: studies of fluoride uptake and reminalization efficacy

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Kasperski, G.; Rousseau, P.; Domaracka, A.; Lawicki, A.

    2014-05-01

    TOF-SIMS mass spectroscopy data are presented on ion irradiation of hard dental tissue using a beam of 129Xe20+ (15 kV) ions delivered in the ARIBE facility by an ECR source. The investigation was focused on the mass distribution of the fragment ions. A comparison is made between the mass spectra from hard dental tissue treated by olaflur-(C27H60F2N2O3) and untreated hard dental tissue obtained under irradiation by low-energy highly-charged ions (HCIs). We found significant differences between the mass spectra of enamel after introducing amine fluoride (olaflur) and the mass spectra of pure untreated enamel. Further, we separated out the effects caused by radiation induced in the tooth enamel from those induced in dentin, which has not been performed before. In order to conduct a further detailed analysis, it is necessary to extend the research scope to include the influence of fluorine compounds on enamel and dentin.

  8. Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants.

    PubMed

    Andrade Neto, D M; Carvalho, E V; Rodrigues, E A; Feitosa, V P; Sauro, S; Mele, G; Carbone, L; Mazzetto, S E; Rodrigues, L K; Fechine, P B A

    2016-06-01

    Enamel resin infiltrants are biomaterials able to treat enamel caries at early stages. Nevertheless, they cannot prevent further demineralization of mineral-depleted enamel. Therefore, the aim of this work was to synthesize and incorporate specific hydroxyapatite nanoparticles (HAps) into the resin infiltrant to overcome this issue. HAps were prepared using a hydrothermal method (0h, 2h and 5h). The crystallinity, crystallite size and morphology of the nanoparticles were characterized through XRD, FT-IR and TEM. HAps were then incorporated (10wt%) into a light-curing co-monomer resin blend (control) to create different resin-based enamel infiltrants (HAp-0h, HAp-2h and HAp-5h), whose degree of conversion (DC) was assessed by FT-IR. Enamel caries lesions were first artificially created in extracted human molars and infiltrated using the tested resin infiltrants. Specimens were submitted to pH-cycling to simulate recurrent caries. Knoop microhardness of resin-infiltrated underlying and surrounding enamel was analyzed before and after pH challenge. Whilst HAp-0h resulted amorphous, HAp-2h and HAp-5h presented nanorod morphology and higher crystallinity. Resin infiltration doped with HAp-2h and HAp-5h caused higher enamel resistance against demineralization compared to control HAp-free and HAp-0h infiltration. The inclusion of more crystalline HAp nanorods (HAp-2h and HAp-5h) increased significantly (p<0.05) the DC. Incorporation of more crystalline HAp nanorods into enamel resin infiltrants may be a feasible method to improve the overall performance in the prevention of recurrent demineralization (e.g. caries lesion) in resin-infiltrated enamel. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Evaluation of the bleached human enamel by Scanning Electron Microscopy.

    PubMed

    Miranda, Carolina Baptista; Pagani, Clovis; Benetti, Ana Raquel; Matuda, Fábio da Silva

    2005-06-01

    Since bleaching has become a popular procedure, the effect of peroxides on dental hard tissues is of great interest in research. The aim of this in vitro study was to perform a qualitative analysis of the human enamel after the application of in-office bleaching agents, using Scanning Electron Microscopy (SEM). Twenty intact human third molars extracted for orthodontic reasons were randomly divided into four groups (n=5) treated as follows: G1- storage in artificial saliva (control group); G2- four 30-minute applications of 35% carbamide peroxide (total exposure: 2h); G3- four 2-hour exposures to 35% carbamide peroxide (total exposure: 8h); G4- two applications of 35% hydrogen peroxide, which was light-activated with halogen lamp at 700mW/cm² during 7min and remained in contact with enamel for 20min (total exposure: 40min). All bleaching treatments adopted in this study followed the application protocols advised by manufacturers. Evaluation of groups submitted to 35% carbamide peroxide was carried out after two time intervals (30 minutes and 2 hours per session), following the extreme situations recommended by the manufacturer. Specimens were prepared for SEM analysis performing gold sputter coating under vacuum and were examined using 15kV at 500x and 2000x magnification. Morphological alterations on the enamel surface were similarly detected after bleaching with either 35% carbamide peroxide or 35% hydrogen peroxide. Surface porosities were characteristic of an erosive process that took place on human enamel. Depression areas, including the formation of craters, and exposure of enamel rods could also be detected. Bleaching effects on enamel morphology were randomly distributed throughout enamel surface and various degrees of enamel damage could be noticed. In-office bleaching materials may adversely affect enamel morphology and therefore should be used with caution.

  10. Mueller matrix imaging study to detect the dental demineralization

    NASA Astrophysics Data System (ADS)

    Chen, Qingguang; Shen, Huanbo; Wang, Binqiang

    2018-01-01

    Mueller matrix is an optical parameter invasively to reveal the structure information of anisotropic material. Dental tissue has the ordered structure including dental enamel prism and dentinal tubule. The ordered structure of teeth surface will be destroyed by demineralization. The structure information has the possibility to reflect the dental demineralization. In the paper, the experiment setup was built to obtain the Mueller matrix images based on the dual- wave plate rotation method. Two linear polarizer and two quarter-wave plate were rotated by electric control revolving stage respectively to capture 16 images at different group of polarization states. Therefore, Mueller matrix image can be calculated from the 16 images. On this basis, depolarization index, the diattenuation index and retardance index of the Mueller matrix were analyzed by Lu-Chipman polarization decomposition method. Mueller matrix images of artificial demineralized enamels at different stages were analyzed and the results show the possibility to detect the dental demineralization using Mueller matrix imaging method.

  11. Pleiotropic function of DLX3 in amelogenesis: from regulating pH and keratin expression to controlling enamel rod decussation.

    PubMed

    Duverger, Olivier; Morasso, Maria I

    2018-12-01

    DLX3 is essential for tooth enamel development and is so far the only transcription factor known to be mutated in a syndromic form of amelogenesis imperfecta. Through conditional deletion of Dlx3 in the dental epithelium in mouse, we have previously established the involvement of DLX3 in enamel pH regulation, as well as in controlling the expression of sets of keratins that contribute to enamel rod sheath formation. Here, we show that the decussation pattern of enamel rods was lost in conditional knockout animals, suggesting that DLX3 controls the coordinated migration of ameloblasts during enamel secretion. We further demonstrate that DLX3 regulates the expression of some components of myosin II complexes potentially involved in driving the movement of ameloblasts that leads to enamel rod decussation.

  12. Surface modulation of dental hard tissues

    NASA Astrophysics Data System (ADS)

    Tantbirojn, Daranee

    Tooth surfaces play a central role in the equilibrium of dental hard tissues, in which contrasting processes lead to loss or deposition of materials. The central interest of this Thesis was the modulation of tooth surfaces to control such equilibrium. Four specific studies were carried out to investigate different classes of surface modulating agents. These are: (1) Ionic modulation of the enamel surface to enhance stain removal . Dental stain is the most apparent form of tooth surface deposit. The nature of extrinsic stain in terms of spatial chemical composition was studied by using electron probe microanalysis. An ionic surface modulating agent, sodium tripolyphosphate (STPP), was evaluated. Image analysis methodologies were developed and the ability of STPP in stain removal was proved. (2) Thin film modulation with substantive polymeric coating and the effect on in vitro enamel de/re-mineralization . A novel polymeric coating that formed a thin film on the tooth surface was investigated for its inhibitory effect on artificial enamel caries, without interfering with the remineralization process. The preventive effect was distinct, but the mineral redeposition was questionable. (3) Thick film modulation with fluoride containing sealants and the effect on in vitro enamel and root caries development. Fluoride incorporated into resin material is an example of combining different classes of surface modulating agents to achieve an optimal outcome. A proper combination, such as in resin modified glass ionomer, showed in vitro caries inhibitory effect beyond the material boundary in both enamel and dentin. (4) Thick film modulation with dental adhesives and the determination of adhesion to dentin. Dentin adhesives modulate intracoronal tooth surfaces by enhancing adhesion to restorative materials. Conventional nominal bond tests were inadequate to determine the performance of current high strength adhesives. It was shown that interfacial fracture toughness test was more

  13. Effects of enamel fluorosis and dental caries on quality of life.

    PubMed

    Onoriobe, U; Rozier, R G; Cantrell, J; King, R S

    2014-10-01

    The objectives of this study were to determine the impact of enamel fluorosis and dental caries on oral health-related quality of life (OHRQoL) in North Carolina schoolchildren and their families. Students (n = 7,686) enrolled in 398 classrooms in grades K-12 were recruited for a onetime survey. Parents of students in grades K-3 and 4-12 completed the Early Childhood Oral Health Impact Scale (ECOHIS) and Family Impact Scale (FIS), respectively. Students in grades 4-12 completed the Child Perceptions Questionnaire (CPQ8-10 in grades 4-5; CPQ11-14 in grades 6-12). All students were examined for fluorosis (Dean's index) and caries experience (d2-3fs or D2-3MFS indices). OHRQoL scores (sum response codes) were analyzed for their association with fluorosis categories and sum of d2-3fs and D2-3MFS according to ordinary least squares regression with SAS procedures for multiple imputation and analysis of complex survey data. Differences in OHRQoL scores were evaluated against statistical and minimal important difference (MID) thresholds. Of 5,484 examined students, 71.8% had no fluorosis; 24.4%, questionable to very mild fluorosis; and 3.7%, mild, moderate, or severe fluorosis. Caries categories were as follows: none (43.1%), low (28.6%), and moderate to high (28.2%). No associations between fluorosis and any OHRQoL scales met statistical or MID thresholds. The difference (5.8 points) in unadjusted mean ECOHIS scores for the no-caries and moderate-to-high caries groups exceeded the MID estimate (2.7 points) for that scale. The difference in mean FIS scores (1.5 points) for the no-caries and moderate-to-high groups exceeded the MID value (1.2 points). The sum of d2-3fs and D2-3MFS scores was positively associated with CPQ11-14 (B = 0.240, p < .001), ECOHIS (B = 0.252, p ≤ .001), and FIS (B = 0.096, p ≤ .01) scores in ordinary least squares regression models. A child's caries experience negatively affects OHRQoL, while fluorosis has little impact. © International

  14. Laboratory studies of sweets re-formulated to improve their dental properties.

    PubMed

    Grenby, T H; Mistry, M

    1996-03-01

    To evaluate the potential dental effects of ten new types of sugar-free sweets formulated with Lycasin or isomalt as bulk sweeteners instead of sugars. Examination of the sweets for their acidity, fermentability by oral microorganisms, influence on the demineralisation of dental enamel, and their influence on human interdental plaque pH, compared with conventional sugar-containing sweets. The importance of reducing the levels of flavouring acids in the sweets was demonstrated. It was not straightforward to evaluate chocolate products in this system, but the potential benefits of re-formulating fruit gums, lollipops, chew-bars, toffee and fudge with Lycasin or isomalt in place of sugars were shown by determining their reduced acidogenicity and fermentability compared with conventional confectionery. The extent of demineralisation of dental enamel was related to both the acidity and the fermentability of the sweets. Re-formulating sweets with reduced acidity levels and bulk sweeteners not fermentable by dental plaque microorganisms can provide a basis for improving their potential dental effects.

  15. Hunter-Schreger Band patterns in human tooth enamel

    PubMed Central

    Lynch, Christopher D; O’Sullivan, Victor R; Dockery, Peter; McGillycuddy, Catherine T; Sloan, Alastair J

    2010-01-01

    Using light microscopy, we examined Hunter-Schreger Band (HSB) patterns on the axial and occlusal/incisal surfaces of 160 human teeth, sectioned in both the buccolingual and mesiodistal planes. We found regional variations in HSB packing densities (number of HSBs per mm of amelodentinal junction length) and patterns throughout the crown of each class of tooth (maxillary and mandibular: incisor, canine, premolar, and molar) examined. HSB packing densities were greatest in areas where functional and occlusal loads are greatest, such as the occlusal surfaces of posterior teeth and the incisal regions of incisors and canines. From this it is possible to infer that the behaviour of ameloblasts forming enamel prisms during amelogenesis is guided by genetic/evolutionary controls that act to increase the fracture and wear resistance of human tooth enamel. It is suggested that HSB packing densities and patterns are important in modern clinical dental treatments, such as the bonding of adhesive restorations to enamel, and in the development of conditions, such as abfraction and cracked tooth syndrome. PMID:20579171

  16. [Influence of manufacture technique on translucency and color of dental porcelain].

    PubMed

    Xiong, Fang; Chao, Yong-Lie; Zhu, Zhi-Min

    2007-12-01

    To study the influence of manufacture technique on the translucency and color of dental porcelain. Specimens were made of VITA VMK 95 dentin porcelain and enamel porcelain and divided into 3 groups: Sintering times group (1, 2, 4, 6, 8 and 10 times), sintering temperature group (910, 920, 930, 940 and 950 degrees C), sintering vacuum group (95, 65, 35 and 0 kPa). Transmittance, Y, dominant wavelength and saturation were measured by PR-650 spectra scan spectrocolorimeter. Transmittance of dentin porcelain increased after 6 times repeated sintering. Transmittance of enamel porcelain increased first after the second sintering, and then became decreasing when sintering more than 2 times. Transmittance of enamel porcelain deceased when sintering temperature was lower than standard. Decrease of sintering vacuum caused the transmittance of dentin and enamel porcelain decreased. The changing of value was coordinated with transmittance. Dominant wavelength and saturation had negative correlation with sintering times and temperature, and positive correlation with vacuum. Sintering times, temperature and vacuum all had prominent effects on the translucency and color of dental porcelain. Comparing with dentin porcelain, enamel porcelain was more sensitive with the modification of manufacture technique.

  17. The effect of McInnes solution on enamel and the effect of Tooth mousse on bleached enamel: An in vitro study

    PubMed Central

    Darshan, H E; Shashikiran, N D

    2008-01-01

    Aims: To evaluate the effect of McInnes bleaching agent on the micro hardness of enamel before and after bleaching and to evaluate the effect of G C Tooth Mousse on the bleached enamel surface for its microhardness. Materials and Methods: McInnes bleaching solution, Casein phosphopeptide-amorphous calcium phosphate CCP-ACP (G C Tooth mousse) artificial saliva (Dept of Oral Pathology, College of Dental Sciences, Davengere), deionized water, Vickers Micro Hardness tester (Zwick/ZHV, Germany), freshly extracted teeth, cold cure acrylic, Diamond disc (Horico - PFINGST New jersey USA, KAVO- Germany), straight handpiece (kavo peca reta) and plastic moulds (6.5 × 2 mm). The purpose of this study was to evaluate and compare microhardness of the sound enamel surface by Vickers Hardness Number before and after bleaching with McInnes solution, and to evaluate the effect of casein phosphopeptide amorphous calcium phosphate (G C Tooth Mousse) on the bleached enamel surface for its microhardness. Statistical analysis: The data obtained from the test were subjected for statistical analysis and are presented as range, mean and standard deviation. P value of 0.05 or less was considered for statistical significance. The changes in microhardness at different times of assessment were analyzed using the paired ‘t’ test Results: All the samples showed decrease in the microhardness after two cycles of bleaching, though immediately after bleaching the decrease in the microhardness was not significant (P = 0.34). However, after the second cycles, it showed a significant decrease (P<0.01) in the microhardness. After application of remineralization solution (GC Tooth mousse), the samples showed a marginal increase in the microhardness (P<0.05) after seven days and a marked increase after fourteen days (P<0.001). Conclusion: McInnes bleaching agent does decrease the microhardness of enamel by causing enamel demineralization and GC Tooth mousse used in the study causes an increase in the

  18. Physical and adhesive properties of dental enamel after radiotherapy and bonding of metal and ceramic brackets.

    PubMed

    Santin, Gabriela Cristina; Palma-Dibb, Regina Guenka; Romano, Fábio Lourenço; de Oliveira, Harley Francisco; Nelson Filho, Paulo; de Queiroz, Alexandra Mussolino

    2015-08-01

    The increasing success rates for cancer patients treated with radiotherapy and the frequent occurrence of tooth loss during treatment have led to an increased demand for orthodontic treatment after radiotherapy. The aim of this study was to evaluate tooth enamel of irradiated teeth after the bonding and debonding of metal and ceramic brackets. Ten permanent molars were cut into enamel fragments measuring 1 mm(2) and divided into an irradiated group (total dose of 60 Gy) and a nonirradiated group. The fragments were subjected to microshear testing to evaluate whether radiotherapy altered the strength of the enamel. Furthermore, 90 prepared premolars were divided into 6 groups and subgroups (n = 15): group 1, nonirradiated and nonaged; group 2, nonirradiated and aged (thermal cycled); group 3, irradiated and aged; each group was divided into 2 subgroups: metallic and ceramic brackets. After thermal cycling and radiotherapy, the brackets were bonded onto the specimens with Transbond XT (3M Unitek, Monrovia, Calif). After 24 hours, the specimens were subjected to the shear tests. Images of the enamel surfaces were classified using the adhesive remnant index. The composite resin-enamel interface was also evaluated. Enamel fragments subjected to radiation had lower strength than did the nonirradiated samples (P <0.05). The groups and subgroups submitted to radiation and bonded ceramic brackets had the lowest strength values. Groups 1 and 2 with metallic brackets had less adhesive on the surface, whereas groups 1 and 2 with ceramic brackets and group 3 with both metallic and ceramic brackets had more adhesive on the surfaces. On the images of the composite resin-enamel interface, resin tags were more extensive on irradiated tooth enamel. Radiation decreased tooth enamel strength, and the specimens treated with radiotherapy had higher frequencies of adhesive failure between the bracket and the composite resin as well as more extensive tags. Copyright © 2015 American

  19. Smile restoration through use of enamel microabrasion associated with tooth bleaching.

    PubMed

    Sundfeld, Renato Herman; Rahal, Vanessa; de Alexandre, Rodrigo Sversut; Briso, André Luiz Fraga; Sundfeld Neto, Daniel

    2011-01-01

    in 1989, correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional. Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required.

  20. The enamel protein amelotin is a promoter of hydroxyapatite mineralization.

    PubMed

    Abbarin, Nastaran; San Miguel, Symone; Holcroft, James; Iwasaki, Kengo; Ganss, Bernhard

    2015-05-01

    Amelotin (AMTN) is a recently discovered protein that is specifically expressed during the maturation stage of dental enamel formation. It is localized at the interface between the enamel surface and the apical surface of ameloblasts. AMTN knock-out mice have hypomineralized enamel, whereas transgenic mice overexpressing AMTN have a compact but disorganized enamel hydroxyapatite (HA) microstructure, indicating a possible involvement of AMTN in regulating HA mineralization directly. In this study, we demonstrated that recombinant human (rh) AMTN dissolved in a metastable buffer system, based on light scattering measurements, promotes HA precipitation. The mineral precipitates were characterized by scanning and transmission electron microscopy and electron diffraction. Colloidal gold immunolabeling of AMTN in the mineral deposits showed that protein molecules were associated with HA crystals. The binding affinity of rh-AMTN to HA was found to be comparable to that of amelogenin, the major protein of the forming enamel matrix. Overexpression of AMTN in mouse calvaria cells also increased the formation of calcium deposits in the culture medium. Overexpression of AMTN during the secretory stage of enamel formation in vivo resulted in rapid and uncontrolled enamel mineralization. Site-specific mutagenesis of the potential serine phosphorylation motif SSEEL reduced the in vitro mineral precipitation to less than 25%, revealing that this motif is important for the HA mineralizing function of the protein. A synthetic short peptide containing the SSEEL motif was only able to facilitate mineralization in its phosphorylated form ((P)S(P) SEEL), indicating that this motif is necessary but not sufficient for the mineralizing properties of AMTN. These findings demonstrate that AMTN has a direct influence on biomineralization by promoting HA mineralization and suggest a critical role for AMTN in the formation of the compact aprismatic enamel surface layer during the maturation

  1. Cheese consumption and the development and progression of dental caries.

    PubMed

    Kashket, Shelby; DePaola, Dominick P

    2002-04-01

    Whereas research into the causes of dental decay has focused on the harmful relationship between dental plaque bacteria and foods, studies into the protective effects of foods have been infrequent and limited in number. Recent investigations showed that milk and cheese could reduce the effects of metabolic acids, and could help restore the enamel that is lost during eating. Postulated mechanisms involve buffering, salivary stimulation, reduction of bacterial adhesion, reduction of enamel demineralization, and/or promotion of remineralization by casein and ionizable Ca and P. Given this information, consumers may be motivated to use milk and cheese to reduce, or reverse the cariogenic effects of many other foods.

  2. Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed. PMID:21196351

  3. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel.

    PubMed

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed

    2014-01-01

    The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser.

  4. Influence of Enamel Thickness on Bleaching Efficacy: An In-Depth Color Analysis

    PubMed Central

    Públio, Juliana do Carmo; D’Arce, Maria Beatriz Freitas; Catelan, Anderson; Ambrosano, Gláucia Maria Bovi; Aguiar, Flávio Henrique Baggio; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2016-01-01

    This study evaluated the influence of different enamel thicknesses and bleaching agents on treatment efficacy in-depth by spectrophotometry color analysis. Eighty bovine dental fragments were previously stained in black tea solution and randomly assigned into eight groups (n=10), 1.75mm dentin thickness and different enamel thicknesses as follows: 0.5mm, 1.0mm planned, 1.0mm unplanned (aprismatic enamel), and absence of enamel. The 10% carbamide peroxide (CP) and 35% hydrogen peroxide (HP) bleaching gels were applied on the enamel surface following the manufacturer's recommendations. Color of underlying dentin was evaluated at four times: after staining with tea (baseline) and after each one of the three weeks of bleaching treatment, by CIE L*a*b* system using reflectance spectrophotometer (CM 700d, Konica Minolta). The ΔE, ΔL, Δa, and Δb values were recorded and subjected to repeated measures ANOVA and Tukey’s test (α=0.05). The results showed an increase on lightness (L*), with decreased redness (a*) and yellowness (b*). At first and second week, bleaching with CP showed higher whitening effectiveness compared to bleaching with HP and the presence of aprismatic enamel significantly reduced ΔE for bleaching with CP. After three weeks of bleaching, few differences were observed between CP and HP groups, and outer enamel layer caused no influence on bleaching effectiveness. Overall, both at-home and in-office bleaching treatments were effective and the presence of aprismatic enamel did not interfere on the whitening efficacy. PMID:27708725

  5. Influence of Enamel Thickness on Bleaching Efficacy: An In-Depth Color Analysis.

    PubMed

    Públio, Juliana do Carmo; D'Arce, Maria Beatriz Freitas; Catelan, Anderson; Ambrosano, Gláucia Maria Bovi; Aguiar, Flávio Henrique Baggio; Lovadino, José Roberto; Lima, Débora Alves Nunes Leite

    2016-01-01

    This study evaluated the influence of different enamel thicknesses and bleaching agents on treatment efficacy in-depth by spectrophotometry color analysis. Eighty bovine dental fragments were previously stained in black tea solution and randomly assigned into eight groups (n=10), 1.75mm dentin thickness and different enamel thicknesses as follows: 0.5mm, 1.0mm planned, 1.0mm unplanned (aprismatic enamel), and absence of enamel. The 10% carbamide peroxide (CP) and 35% hydrogen peroxide (HP) bleaching gels were applied on the enamel surface following the manufacturer's recommendations. Color of underlying dentin was evaluated at four times: after staining with tea (baseline) and after each one of the three weeks of bleaching treatment, by CIE L*a*b* system using reflectance spectrophotometer (CM 700d, Konica Minolta). The ΔE, ΔL, Δa, and Δb values were recorded and subjected to repeated measures ANOVA and Tukey's test (α=0.05). The results showed an increase on lightness (L*), with decreased redness (a*) and yellowness (b*). At first and second week, bleaching with CP showed higher whitening effectiveness compared to bleaching with HP and the presence of aprismatic enamel significantly reduced ΔE for bleaching with CP. After three weeks of bleaching, few differences were observed between CP and HP groups, and outer enamel layer caused no influence on bleaching effectiveness. Overall, both at-home and in-office bleaching treatments were effective and the presence of aprismatic enamel did not interfere on the whitening efficacy.

  6. Using dental enamel wrinkling to define sauropod tooth morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina.

    PubMed

    Holwerda, Femke M; Pol, Diego; Rauhut, Oliver W M

    2015-01-01

    The early Middle Jurassic is regarded as the period when sauropods diversified and became major components of the terrestrial ecosystems. Not many sites yield sauropod material of this time; however, both cranial and postcranial material of eusauropods have been found in the Cañadón Asfalto Formation (latest Early Jurassic-early Middle Jurassic) in Central Patagonia (Argentina), which may help to shed light on the early evolution of eusauropods. These eusauropod remains include teeth associated with cranial and mandibular material as well as isolated teeth found at different localities. In this study, an assemblage of sauropod teeth from the Cañadón Asfalto Formation found in four different localities in the area of Cerro Condor (Chubut, Argentina) is used as a mean of assessing sauropod species diversity at these sites. By using dental enamel wrinkling, primarily based on the shape and orientation of grooves and crests of this wrinkling, we define and describe three different morphotypes. With the exception of one taxon, for which no cranial material is currently known, these morphotypes match the local eusauropod diversity as assessed based on postcranial material. Morphotype I is tentatively assigned to Patagosaurus, whereas morphotypes II and III correspond to new taxa, which are also distinguished by associated postcranial material. This study thus shows that enamel wrinkling can be used as a tool in assessing sauropod diversity.

  7. Using Dental Enamel Wrinkling to Define Sauropod Tooth Morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina

    PubMed Central

    Holwerda, Femke M.; Pol, Diego; Rauhut, Oliver W. M.

    2015-01-01

    The early Middle Jurassic is regarded as the period when sauropods diversified and became major components of the terrestrial ecosystems. Not many sites yield sauropod material of this time; however, both cranial and postcranial material of eusauropods have been found in the Cañadón Asfalto Formation (latest Early Jurassic–early Middle Jurassic) in Central Patagonia (Argentina), which may help to shed light on the early evolution of eusauropods. These eusauropod remains include teeth associated with cranial and mandibular material as well as isolated teeth found at different localities. In this study, an assemblage of sauropod teeth from the Cañadón Asfalto Formation found in four different localities in the area of Cerro Condor (Chubut, Argentina) is used as a mean of assessing sauropod species diversity at these sites. By using dental enamel wrinkling, primarily based on the shape and orientation of grooves and crests of this wrinkling, we define and describe three different morphotypes. With the exception of one taxon, for which no cranial material is currently known, these morphotypes match the local eusauropod diversity as assessed based on postcranial material. Morphotype I is tentatively assigned to Patagosaurus, whereas morphotypes II and III correspond to new taxa, which are also distinguished by associated postcranial material. This study thus shows that enamel wrinkling can be used as a tool in assessing sauropod diversity. PMID:25692466

  8. Uniaxial compressive behavior of micro-pillars of dental enamel characterized in multiple directions.

    PubMed

    Yilmaz, Ezgi D; Jelitto, Hans; Schneider, Gerold A

    2015-04-01

    In this work, the compressive elastic modulus and failure strength values of bovine enamel at the first hierarchical level formed by hydroxyapatite (HA) nanofibers and organic matter are identified in longitudinal, transverse and oblique direction with the uniaxial micro-compression method. The elastic modulus values (∼70 GPa) measured here are within the range of results reported in the literature but these values were found surprisingly uniform in all orientations as opposed to the previous nanoindentation findings revealing anisotropic elastic properties in enamel. Failure strengths were recorded up to ∼1.7 GPa and different failure modes (such as shear, microbuckling, fiber fracture) governed by the orientation of the HA nanofibers were visualized. Structural irregularities leading to mineral contacts between the nanofibers are postulated as the main reason for the high compressive strength and direction-independent elastic behavior on enamels first hierarchical level. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. SEM analysis of enamel surface treated by Er:YAG laser: influence of irradiation distance.

    PubMed

    Souza-Gabriel, A E; Chinelatti, M A; Borsatto, M C; Pécora, J D; Palma-Dibb, R G; Corona, S A M

    2008-07-01

    Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

  10. Erosion of enamel by non-carbonated soft drinks with and without toothbrushing abrasion.

    PubMed

    Hemingway, C A; Parker, D M; Addy, M; Barbour, M E

    2006-10-07

    To investigate how enamel loss due to erosion, and due to cycling of erosion and abrasion, depends on compositional parameters of soft drinks, and particularly whether the thickness of the erosive softened layer is a function of drink composition. University dental hospital research laboratory in the UK, 2004. Six drinks were chosen based on their popularity and composition: apple juice, orange juice, apple drink, orange drink, cranberry drink and 'ToothKind' blackcurrant drink. Group A samples (n = 36) were exposed to soft drinks at 36 degrees C for six consecutive 10 minute periods. Group B samples (n = 36) were subjected to alternating erosion and toothbrushing, repeated six times. Enamel loss was measured using optical profilometry. Group A: significant enamel loss was seen for all drinks (p < 0.001). Erosion was correlated with pH and calcium concentration but not phosphate concentration or titratable acidity. Group B: significant additional material loss due to toothbrush abrasion occurred with all drinks. Abrasive enamel loss differed between the drinks and was positively correlated with drink erosive potential. Enamel loss by erosion is exacerbated by subsequent abrasion. The amount of softened enamel removed by toothbrushing is a function of the chemical composition of the erosive medium.

  11. Self-induced vomiting and dental erosion--a clinical study.

    PubMed

    Uhlen, Marte-Mari; Tveit, Anne Bjørg; Stenhagen, Kjersti Refsholt; Mulic, Aida

    2014-07-29

    In individuals suffering from eating disorders (ED) characterized by vomiting (e.g. bulimia nervosa), the gastric juice regularly reaches the oral cavity, causing a possible risk of dental erosion. This study aimed to assess the occurrence, distribution and severity of dental erosions in a group of Norwegian patients experiencing self-induced vomiting (SIV). The individuals included in the study were all undergoing treatment at clinics for eating disorders and were referred to a university dental clinic for examinations. One calibrated clinician registered erosions using the Visual Erosion Dental Examination (VEDE) system. Of 72 referred patients, 66 (63 females and three males, mean age 27.7 years) were or had been experiencing SIV (mean duration 10.6 years; range: 3 - 32 years), and were therefore included in the study. Dental erosions were found in 46 individuals (69.7%), 19 had enamel lesions only, while 27 had both enamel and dentine lesions. Ten or more teeth were affected in 26.1% of those with erosions, and 9% had ≥10 teeth with dentine lesions. Of the erosions, 41.6% were found on palatal/lingual surfaces, 36.6% on occlusal surfaces and 21.8% on buccal surfaces. Dentine lesions were most often found on lower first molars, while upper central incisors showed enamel lesions most frequently. The majority of the erosive lesions (48.6%) were found in those with the longest illness period, and 71.7% of the lesions extending into dentine were also found in this group. However, despite suffering from SIV for up to 32 years, 30.3% of the individuals showed no lesions. Dental erosion commonly affects individuals with ED experiencing SIV, and is more often found on the palatal/lingual surfaces than on the buccal in these individuals, confirming a common clinical assumption.

  12. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization

    PubMed Central

    Costa Oliveira, Bárbara Emanoele; Cury, Jaime Aparecido

    2017-01-01

    This study was conducted to evaluate if extracellular polysaccharides (EPS) are used by Streptococcus mutans (Sm) biofilm during night starvation, contributing to enamel demineralization increasing occurred during daily sugar exposure. Sm biofilms were formed during 5 days on bovine enamel slabs of known surface hardness (SH). The biofilms were exposed to sucrose 10% or glucose + fructose 10.5% (carbohydrates that differ on EPS formation), 8x/day but were maintained in starvation during the night. Biofilm samples were harvested during two moments, on the end of the 4th day and in the morning of the 5th day, conditions of sugar abundance and starvation, respectively. The slabs were also collected to evaluate the percentage of surface hardness loss (%SHL). The biofilms were analyzed for EPS soluble and insoluble and intracellular polysaccharides (IPS), viable bacteria (CFU), biofilm architecture and biomass. pH, calcium and acid concentration were determined in the culture medium. The data were analyzed by two-way ANOVA followed by Tukey’s test or Student's t-test. The effect of the factor carbohydrate treatment for polysaccharide analysis was significant (p < 0.05) but not the harvest moment (p > 0.05). Larger amounts of soluble and insoluble EPS and IPS were formed in the sucrose group when compared to glucose + fructose group (p < 0.05), but they were not metabolized during starvation time (S-EPS, p = 0.93; I-EPS, p = 0.11; and IPS = 0.96). Greater enamel %SHL was also found for the sucrose group (p < 0.05) but the demineralization did not increase during starvation (p = 0.09). In conclusion, the findings suggest that EPS metabolization by S. mutans during night starvation do not contribute to increase enamel demineralization occurred during the daily abundance of sugar. PMID:28715508

  13. Raman spectroscopy analysis of dental enamel treated with whitening product - Influence of saliva in the remineralization.

    PubMed

    Silveira, J; Coutinho, S; Marques, D; Castro, J; Mata, A; Carvalho, M L; Pessanha, S

    2018-06-05

    In this work we present the analysis of dental enamel treated with an over-the-counter whitening product, bought in e-commerce at a very low cost, used without medical supervision in an abusive manner, in order to evaluate its demineralization action. Moreover, we studied the influence of renewal or non-renewal of saliva solution in which the specimens were stored throughout the study. The Degree of Demineralization was determined through the evaluation of the PO 4 3- symmetric stretching band (~959cm -1 ) in Raman spectra of the specimens in different days during the course of the study. Results showed that a maximum of demineralization occurred between days 27 and 34 of application. Titration of the whitening product revealed a content of hydrogen peroxide 170-fold higher than what is allowed in Europe, according with legislation. Despite this extreme concentration of hydrogen peroxide, the demineralization was not as great as could be expected suggesting an important role of the pH of the solution in this demineralization mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Raman spectroscopy analysis of dental enamel treated with whitening product - Influence of saliva in the remineralization

    NASA Astrophysics Data System (ADS)

    Silveira, J.; Coutinho, S.; Marques, D.; Castro, J.; Mata, A.; Carvalho, M. L.; Pessanha, S.

    2018-06-01

    In this work we present the analysis of dental enamel treated with an over-the-counter whitening product, bought in e-commerce at a very low cost, used without medical supervision in an abusive manner, in order to evaluate its demineralization action. Moreover, we studied the influence of renewal or non-renewal of saliva solution in which the specimens were stored throughout the study. The Degree of Demineralization was determined through the evaluation of the PO43- symmetric stretching band ( 959 cm-1) in Raman spectra of the specimens in different days during the course of the study. Results showed that a maximum of demineralization occurred between days 27 and 34 of application. Titration of the whitening product revealed a content of hydrogen peroxide 170-fold higher than what is allowed in Europe, according with legislation. Despite this extreme concentration of hydrogen peroxide, the demineralization was not as great as could be expected suggesting an important role of the pH of the solution in this demineralization mechanism.

  15. Automated classification and visualization of healthy and pathological dental tissues based on near-infrared hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Usenik, Peter; Bürmen, Miran; Vrtovec, Tomaž; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by non-surgical means through well established dental treatments (fluoride therapy, anti-bacterial therapy, low intensity laser irradiation). Near-infrared (NIR) hyper-spectral imaging is a new promising technique for early detection of demineralization based on distinct spectral features of healthy and pathological dental tissues. In this study, we apply NIR hyper-spectral imaging to classify and visualize healthy and pathological dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized areas. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of natural dental lesions imaged by NIR hyper-spectral system, X-ray and digital color camera. The color and X-ray images of teeth were presented to a clinical expert for localization and classification of the dental tissues, thereby obtaining the gold standard. Principal component analysis was used for multivariate local modeling of healthy and pathological dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. High agreement was observed between the resulting classification and the gold standard with the classification sensitivity and specificity exceeding 85 % and 97 %, respectively. This study demonstrates that NIR hyper-spectral imaging has considerable diagnostic potential for imaging hard dental tissues.

  16. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  17. Effects of a Novel Whitening Formulation on Dental Enamel

    PubMed Central

    Takesh, Thair; Sargsyan, Anik; Anbarani, Afarin; Ho, Jessica; Wilder-Smith, Petra

    2017-01-01

    Objective The goal of this study was to evaluate the enamel whitening effects of 2 new test formulations, one of which was a rinse, and the other a whitening strip. Materials and Methods Forty enamel chips were prepared from 20 healthy extracted teeth (2 from each tooth). After pre-staining and colorimetry to measure L* and b* values, 20 matched samples were immersed in either test or control rinses, and then colorimetry was performed again after 1 hr, 2 hr, 3 hr, 6 hr, 12 hr, 24 hr and 48 hrs (Each hour equates to one month of clinical use at the recommended dosage of 1 minute exposure 2 times a day). The remaining 20 matched samples were exposed to the test or control whitening strips and colorimetry was performed every 30 minutes for a total of 10 treatments. Results Overall, the whitening performance of test and control strips was similar. The test and control rinses had a similar lightening effect over the first 3 hours (equivalent to 3 months of clinical use). Subsequently, the control rinse continued to lighten samples, whereas the test rinse had little further effect. Conclusion Test and control-whitening strips showed similar effects; over time whitening strips showed a greater lightening effect than whitening rinses. PMID:28706755

  18. Effects of a Novel Whitening Formulation on Dental Enamel.

    PubMed

    Takesh, Thair; Sargsyan, Anik; Anbarani, Afarin; Ho, Jessica; Wilder-Smith, Petra

    2017-04-01

    The goal of this study was to evaluate the enamel whitening effects of 2 new test formulations, one of which was a rinse, and the other a whitening strip. Forty enamel chips were prepared from 20 healthy extracted teeth (2 from each tooth). After pre-staining and colorimetry to measure L* and b* values, 20 matched samples were immersed in either test or control rinses, and then colorimetry was performed again after 1 hr, 2 hr, 3 hr, 6 hr, 12 hr, 24 hr and 48 hrs (Each hour equates to one month of clinical use at the recommended dosage of 1 minute exposure 2 times a day). The remaining 20 matched samples were exposed to the test or control whitening strips and colorimetry was performed every 30 minutes for a total of 10 treatments. Overall, the whitening performance of test and control strips was similar. The test and control rinses had a similar lightening effect over the first 3 hours (equivalent to 3 months of clinical use). Subsequently, the control rinse continued to lighten samples, whereas the test rinse had little further effect. Test and control-whitening strips showed similar effects; over time whitening strips showed a greater lightening effect than whitening rinses.

  19. Assessing the Penetrating Abilities of Experimental Preparation with Dental Infiltrant Features Using Optical Microscope: Preliminary Study.

    PubMed

    Skucha-Nowak, Małgorzata; Machorowska-Pieniążek, Agnieszka; Tanasiewicz, Marta

    2016-01-01

    The aim of the infiltration technique is to penetrate demineralized enamel with a low viscosity resin. Icon® (DMG) is the first ever and so far the only dental infiltrant. Bacteriostaticity is one of the properties that should be inherent in dental infiltrants, but Icon lacks this feature. The aim of the preliminary study was to properly choose a dye which would allow us to assess the penetrating abilities of our own, experimental preparation with features of a dental infiltrant with bacteriostatic properties and to compare using an optical microscope the depth of infiltration of the designed experimental preparation with the infiltrant available on the market. The preparation is supposed to infiltrate decalcified human enamel and be assessed with an optical microscope. Eosin, neutral fuchsine and methylene blue were added to experimental preparation with dental infiltrant features and to Icon® (DMG) in order to assess the depth of penetration of the experimental solution into the decalcified layers of enamel. The experimental solution mixes well with eosin, neutral fuchsine, and methylene blue. During the preliminary study, the authors concluded that the experimental solution mixes well with methylene blue, neutral fuchsine, and eosin. An addition of eosin to a preparation which infiltrates inner, demineralized enamel layers, facilitates the assessment of such a preparation with an optical microscope. A designed experimental solution with the main ingredients, i.e., 2-hydroxyethyl methacrylate (HEMA) and tetraethylene glycol dimethacrylate (TEGDMA) with a ratio of 75% to 25% penetrates the demineralized (decalcified) inner parts of the enamel and polymerizes when exposed to light. In order to assess the infiltration of the experimental solution into the demineralized enamel layers, it is required to improve the measurement techniques that utilize optical microscopy.

  20. Comparison of in vitro fluoride uptake from whitening toothpastes and a conventional toothpaste in demineralised enamel.

    PubMed

    Altenburger, Markus J; Bernhart, Jasmin; Schicha, Thurid D; Wrbas, Karl-Thomas; Hellwig, Elmar

    2010-01-01

    Studies on the compatibility of abrasives and fluoride compounds deal exclusively with fluoride uptake and remineralization after storing the enamel specimens in a toothpaste-saliva mixture. The influence of brushing on the fluoride uptake when highly abrasive toothpastes are used has hardly been investigated so far. The aim of the present study was to investigate fluoride uptake in initially demineralised dental enamel after storage in, or brushing with, whitening toothpaste slurries, compared to a conventional toothpaste. For this purpose two widely available whitening toothpastes with ionically bound fluoride (sodium fluoride NaF), two with covalently-bound fluoride toothpastes (sodium monofluorophosphate, NaMFP) and a conventional amine fluoride toothpaste (AmF) were compared. The fluoride uptake after use of the AmF toothpaste was shown to be statistically significantly higher than that after application of the NaF toothpastes, which in turn was statistically significantly higher than the uptake resulting from NaMFP application. The fluoride uptake was slightly higher when the enamel samples were brushed with NaF toothpaste, rather than just stored in the respective toothpaste slurry. Brushing with highly abrasive toothpastes did not negatively influence fluoride uptake in demineralised dental enamel. The ionic form of the fluoride in toothpastes appears to be critical for increased fluoride uptake. The acidic components of the AmF toothpaste improved fluoride uptake compared to alkaline NaF toothpastes.

  1. Erosion and abrasion on dental structures undergoing at-home bleaching

    PubMed Central

    Demarco, Flávio Fernando; Meireles, Sônia Saeger; Sarmento, Hugo Ramalho; Dantas, Raquel Venâncio Fernandes; Botero, Tatiana; Tarquinio, Sandra Beatriz Chaves

    2011-01-01

    This review investigates erosion and abrasion in dental structures undergoing at- home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled. PMID:23674914

  2. Long-Wave Infrared Thermophotonic Imaging of Demineralization in Dental Hard Tissue

    NASA Astrophysics Data System (ADS)

    Ojaghi, A.; Parkhimchyk, A.; Tabatabaei, N.

    2016-08-01

    Dental caries remains the most prevalent chronic disease in both children and adults worldwide. To address this prevalence through disease prevention and management, dentists need tools capable of detecting caries at early stages of formation. Looking into the physics of light propagation in teeth, this study presents a clinically and commercially viable platform technology for thermophotonic detection of early dental caries using an inexpensive long-wavelength infrared (LWIR; 8 μm to 14 μm) camera. The developed system incorporates intensity-modulated light to generate a thermal-wave field inside enamel and uses the subsequent infrared emission of the thermal-wave field to detect early caries. It was found that the greater light absorption at caries sites shifts the thermal-wave field centroid, providing contrast between early caries and intact enamel. Use of LWIR detection band in dental samples is novel and beneficial over the conventional mid-wavelength infrared band (3 μm to 5 μm) as it suppresses the masking effect of the instantaneous radiative emission from subsurface features due to the minimal transmittance of enamel in the LWIR band. The efficacy of the LWIR system is verified though experiments carried out on nonbiological test samples as well as on teeth with natural and artificially induced caries. The results suggest that the developed LWIR technology is an affordable early dental caries detection system suitable for commercialization/translation to Dentistry.

  3. Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.

    2017-12-01

    Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.

  4. Effect of gamma irradiation on the wear behaviour of human tooth enamel

    NASA Astrophysics Data System (ADS)

    Qing, Ping; Huang, Shengbin; Gao, Shanshan; Qian, Linmao; Yu, Haiyang

    2015-06-01

    Radiotherapy is a frequently used treatment for oral cancer. Extensive research has been conducted to detect the mechanical properties of dental hard tissues after irradiation at the macroscale. However, little is known about the influence of irradiation on the tribological properties of enamel at the micro- or nanoscale. Therefore, this study aimed to investigate the effect of gamma irradiation on the wear behaviour of human tooth enamel in relation to prism orientation. Nanoscratch tests, surface profilometer and scanning electron microscope (SEM) analysis were used to evaluate the friction behaviour of enamel slabs before and after treatment with identical irradiation procedures. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were performed to analyse the changes in crystallography and chemical composition induced by irradiation. Surface microhardness (SMH) alteration was also evaluated. The results showed that irradiation resulted in different scratch morphologies, friction coefficients and remnant depth and width at different loads. An inferior nanoscratch resistance was observed independent of prism orientation. Moreover, the variation of wear behaviours was closely related to changes in the crystallography, chemical composition and SMH of the enamel. Together, these measures indicated that irradiation had a direct deleterious effect on the wear behaviour of human tooth enamel.

  5. Aspects on dental hard tissues in primary teeth from patients with Ehlers-Danlos syndrome.

    PubMed

    Klingberg, Gunilla; Hagberg, Catharina; Norén, Jörgen G; Nietzsche, Sandor

    2009-07-01

    Ehlers-Danlos syndrome (EDS) is a rare hereditary condition affecting connective tissues and dental hard tissues. Primary enamel and dentine from EDS patients were expected to differ from those of healthy subjects regarding morphology and chemical composition. Forty-seven exfoliated primary teeth from 25 patients with EDS were investigated. Morphology was studied using a polarized light microscope, scanning electron microscope, and X-ray microanalysis. Comparisons were made with 36 primary teeth from 36 healthy patients. Morphological analysis of enamel in EDS teeth showed a high frequency of postnatally hypomineralized enamel and postnatally located incremental lines, whereas dentine was normal in all patients. Chemical analysis could not reveal any differences between EDS and control patients except for lower content of C and a higher Ca/P ratio in the enamel in the EDS teeth, indicating porous enamel. Regarding dentine, EDS teeth had a lower content of C, and a higher content of Ca, P, and O. Ratios for Ca/C and Ca/O were also higher compared with controls. There are several aberrations of booth enamel and dentine in primary teeth from patients with EDS. These could explain the occurrence of both more dental caries and tooth fractures in patients with EDS.

  6. Bioinspired design of dental multilayers.

    PubMed

    Huang, M; Wang, R; Thompson, V; Rekow, D; Soboyejo, W O

    2007-01-01

    This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crown materials and the joins that attach them to dentin) are shown to promote significant reductions in stress and improvements in the critical crack size. Special inspiration is drawn from the low stress concentrations associated with the graded distributions in the dentin-enamel-junction (DEJ). The implications of such functionally graded structures are also discussed for the design of dental restorations.

  7. In situ effect of CPP-ACP chewing gum upon erosive enamel loss

    PubMed Central

    de ALENCAR, Catarina Ribeiro Barros; de OLIVEIRA, Gabriela Cristina; MAGALHÃES, Ana Carolina; BUZALAF, Marília Afonso Rabelo; MACHADO, Maria Aparecida de Andrade Moreira; HONÓRIO, Heitor Marques; RIOS, Daniela

    2017-01-01

    Abstract Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) is able to increase salivary calcium and phosphate levels at an acidic pH. Previous studies demonstrated that a CPP-ACP chewing gum was able to enhance the re-hardening of erosion lesions, but could not diminish enamel hardness loss. Therefore, there is no consensus regarding the effectiveness of CPP-ACP on dental erosion. Objective This in situ study investigated the ability of a CPP-ACP chewing gum in preventing erosive enamel loss. Material and Methods: During three experimental crossover phases (one phase per group) of seven days each, eight volunteers wore palatal devices with human enamel blocks. The groups were: GI – Sugar free chewing gum with CPP-ACP; GII – Conventional sugar free chewing gum; and GIII – No chewing gum (control). Erosive challenge was extraorally performed by immersion of the enamel blocks in cola drink (5 min, 4x/day). After each challenge, in groups CPP and No CPP, volunteers chewed one unit of the corresponding chewing gum for 30 minutes. Quantitative analysis of enamel loss was performed by profilometry (µm). Data were analyzed by Repeated-Measures ANOVA and Tukey’s test (p<0.05). Results The use of chewing gum (CPP and No CPP) resulted in lower erosive enamel loss compared with the control group (p<0.05). CPP-ACP chewing gum (CPP) did not improve the protection against erosive enamel loss compared with conventional chewing gum (No CPP) (p>0.05). Conclusion The CPP-ACP chewing gum was not able to enhance the anti-erosive effect of conventional chewing gum against enamel loss. PMID:28678944

  8. Tissue mimicking materials for dental ultrasound

    PubMed Central

    Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Brown, Elliott R.; White, Shane N.

    2008-01-01

    While acoustic tissue mimicking materials have been explored for a variety of soft and hard biological tissues, no dental hard tissue mimicking materials have been characterized. Tooth phantoms are necessary to better understand acoustic phenomenology within the tooth environment and to accelerate the advancement of dental ultrasound imaging systems. In this study, soda lime glass and dental composite were explored as surrogates for human enamel and dentin, respectively, in terms of compressional velocity, attenuation, and acoustic impedance. The results suggest that a tooth phantom consisting of glass and composite can effectively mimic the acoustic behavior of a natural human tooth. PMID:18396919

  9. Effect of bracket bonding with Er: YAG laser on nanomechanical properties of enamel

    PubMed Central

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh; Banimostafaee, Hamed

    2014-01-01

    Background: The aim of this study was to compare the effects of conventional acid etching and laser etching on the nano-mechanical properties of the dental enamel using nano-indentation test. Materials and Methods: In this experimental in vitro study, buccal surfaces of 10 premolars were divided into three regions. One of the regions was etched with 37% phosphoric acid and another etched with Er:YAG laser, the third region was not etched. The brackets were bonded to both of etched regions. After thermocycling for 500 cycles, the brackets were removed and the teeth were decoronated from the bracket bonding area. Seven nano-indentations were applied at 1-31 μm depth from the enamel surface in each region. Mean values of the hardness and elastic modulus were analyzed with repeated measures analysis of variance and Tukey HSD tests, using the SPSS software (SPSS Inc., version16.0, Chicago, Il, USA). P < 0.05 was considered as significant. Results: The hardness up to 21 μm in depth and elastic modulus up to 6 μm in depth from the enamel surface for laser-etched enamel had significantly higher values than control enamel and the hardness up to 11 μm in depth and elastic modulus up to 6 μm in depth for acid-etched enamel had significantly lower values than the control enamel. Conclusion: The mechanical properties of the enamel were decreased after bracket bonding with conventional acid etching and increased after bonding with Er:YAG laser. PMID:24688560

  10. Toothpastes containing abrasive and chemical whitening agents: efficacy in reducing extrinsic dental staining.

    PubMed

    Soares, Cristina Neves Girao Salgado; Amaral, Flavia Lucisano Botelho do; Mesquita, Marcelo Ferraz; Franca, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso

    2015-01-01

    This in vitro study evaluated the efficacy of toothpastes containing abrasive and chemical whitening agents in reducing the extrinsic discoloration of dental enamel. Sixty slabs of dentin from human teeth were sealed so that only the enamel surface was exposed. The enamel surfaces were photographed for initial color assessment. Staining was performed by immersing the dental slabs in 0.2% chlorhexidine solution for 2 minutes and then in black tea for 60 minutes. This process was repeated 15 times. Photographs were taken at the end of the staining process, and the slabs were divided into 5 groups (n = 12), 3 to be brushed with toothpastes containing chemical whitening agents (2 containing phosphate salts and 1 containing phosphate salts plus hydrogen peroxide) and 2 to represent control groups (ordinary/nonwhitening toothpaste and distilled water). The dental slabs were subjected to mechanical toothbrushing with toothpaste slurry or distilled water, according to each group's specifications. After brushing, more photographs were taken for color analysis. The results showed a significant reduction in luminosity after the staining process in addition to an increase in the colors red and yellow (P < 0.001). After brushing, there was a significant increase in luminosity and a reduction in both red and yellow (P < 0.001). However, there was no observed difference between the changes in color values in dental enamel slabs brushed with whitening toothpastes and the changes found in slabs brushed with ordinary toothpaste. The whitening toothpastes did not outperform an ordinary toothpaste in the removal of extrinsic staining.

  11. Effect of three nanobiomaterials on the surface roughness of bleached enamel

    PubMed Central

    Khoroushi, Maryam; Shirban, Farinaz; Doustfateme, Samaneh; Kaveh, Sara

    2015-01-01

    Background: The ever-increasing demand for enhanced esthetic appearance has resulted in significant developments in bleaching products. However, the enamel surface roughness (SR) might be negatively affected by bleaching agents. This in vitro study was undertaken to compare the effects of three nanobiomaterials on the enamel SR subsequent to bleaching. Materials and Methods: The crowns of six extracted intact nonerupted human third molars were sectioned. Five dental blocks measuring 2 mm × 3 mm × 4 mm were prepared from each tooth and placed in colorless translucent acrylic resin. The enamel areas from all the specimens were divided into five groups (n = 6): Group 1 did not undergo any bleaching procedures; Group 2 was bleached with a 40% hydrogen peroxide (HP) gel; Groups 3, 4, and 5 were bleached with a 40% HP gel modified by bioactive glass (BAG), amorphous calcium phosphate, and hydroxyapatite, respectively. The enamel SR was evaluated before and after treatment by atomic force microscopy. The data were analyzed by Kruskal–Wallis and Mann–Whitney tests. Results: SR increased significantly in the HP group. SR decreased significantly in the HP gel modified by BAG group as compared to other groups. Conclusions: Within the limitations of this study, incorporation of each one of the three test biomaterials proved effective in decreasing enamel SR subsequent to in-office bleaching technique. PMID:26681849

  12. Self-induced vomiting and dental erosion – a clinical study

    PubMed Central

    2014-01-01

    Background In individuals suffering from eating disorders (ED) characterized by vomiting (e.g. bulimia nervosa), the gastric juice regularly reaches the oral cavity, causing a possible risk of dental erosion. This study aimed to assess the occurrence, distribution and severity of dental erosions in a group of Norwegian patients experiencing self-induced vomiting (SIV). Methods The individuals included in the study were all undergoing treatment at clinics for eating disorders and were referred to a university dental clinic for examinations. One calibrated clinician registered erosions using the Visual Erosion Dental Examination (VEDE) system. Results Of 72 referred patients, 66 (63 females and three males, mean age 27.7 years) were or had been experiencing SIV (mean duration 10.6 years; range: 3 – 32 years), and were therefore included in the study. Dental erosions were found in 46 individuals (69.7%), 19 had enamel lesions only, while 27 had both enamel and dentine lesions. Ten or more teeth were affected in 26.1% of those with erosions, and 9% had ≥10 teeth with dentine lesions. Of the erosions, 41.6% were found on palatal/lingual surfaces, 36.6% on occlusal surfaces and 21.8% on buccal surfaces. Dentine lesions were most often found on lower first molars, while upper central incisors showed enamel lesions most frequently. The majority of the erosive lesions (48.6%) were found in those with the longest illness period, and 71.7% of the lesions extending into dentine were also found in this group. However, despite suffering from SIV for up to 32 years, 30.3% of the individuals showed no lesions. Conclusions Dental erosion commonly affects individuals with ED experiencing SIV, and is more often found on the palatal/lingual surfaces than on the buccal in these individuals, confirming a common clinical assumption. PMID:25069878

  13. Histochemical changes of occlusal surface enamel of permanent teeth, where dental caries is questionable vs sound enamel surfaces.

    PubMed

    Michalaki, M; Oulis, C J; Pandis, N; Eliades, G

    2016-12-01

    This in vitro study was to classify questionable for caries occlusal surfaces (QCOS) of permanent teeth according to ICDAS codes 1, 2, and 3 and to compare them in terms of enamel mineral composition with the areas of sound tissue of the same tooth. Partially impacted human molars (60) extracted for therapeutic reasons with QCOS were used in the study, photographed via a polarised light microscope and classified according to the ICDAS II (into codes 1, 2, or 3). The crowns were embedded in clear self-cured acrylic resin and longitudinally sectioned at the levels of the characterised lesions and studied by SEM/EDX, to assess enamel mineral composition of the QCOS. Univariate and multivariate random effect regressions were used for Ca (wt%), P (wt%), and Ca/P (wt%). The EDX analysis indicated changes in the Ca and P contents that were more prominent in ICDAS-II code 3 lesions compared to codes 1 and 2 lesions. In these lesions, Ca (wt%) and P (wt%) concentrations were significantly decreased (p = 0.01) in comparison with sound areas. Ca and P (wt%) contents were significantly lower (p = 0.02 and p = 0.01 respectively) for code 3 areas in comparison with codes 1 and 2 areas. Significantly higher (p = 0.01) Ca (wt%) and P (wt%) contents were found on sound areas compared to the lesion areas. The enamel of occlusal surfaces of permanent teeth with ICDAS 1, 2, and 3 lesions was found to have different Ca/P compositions, necessitating further investigation on whether these altered surfaces might behave differently on etching preparation before fissure sealant placement, compared to sound surfaces.

  14. Effect of hydrogen peroxide concentration on enamel color and microhardness.

    PubMed

    Borges, A B; Zanatta, R F; Barros, A C S M; Silva, L C; Pucci, C R; Torres, C R G

    2015-01-01

    The aim of this study was to investigate the effect of hydrogen peroxide gels with different concentrations (20%, 25%, 30%, and 35%) on enamel Knoop microhardness (KNH) as well as on changes in dental color (C). Cylindrical specimens of enamel/dentin (3-mm diameter and 2-mm thickness) were obtained from bovine incisors and randomly divided into six groups (n=20), according to the concentration of the whitening gel (20%, 25%, 30%, 35%, control, thickener). After polishing, initial values of KNH0 and color measurement, assessed by spectrophotometry using the CIE L*a*b* system, were taken from the enamel surface. The gels were applied on the enamel surface for 30 minutes, and immediate values of KNHi were taken. After seven days of being stored in artificial saliva, new measures of KNH7 and color (L7* a7* b7*, for calculating ΔE, ΔL, and Δb) were made. Data were submitted to statistical analysis of variance, followed by Tukey test (p<0.05). Differences in gel concentration and time did not influence the microhardness (p=0.54 and p=0.29, respectively). In relation to color changes, ΔE data showed that the 35% gel presented a higher color alteration than the 20% gel did (p=0.006). Bleaching with 35% hydrogen peroxide gel was more effective than with the 20% gel, without promoting significant adverse effects on enamel surface microhardness.

  15. Oral and dental health in children with chronic liver disease in the Turkey Northeast.

    PubMed

    Baygin, O; Cakır, M; Ucuncu, N

    2017-09-01

    It is important to be aware of oral and dental problems in the early period in children with chronic liver disease (CLD) to prevent late complications. Therefore, we aimed to analyze the oral and dental health status in children with CLD. The three groups of children (3-18 years old); Group 1 (disease group, n = 31) patients with CLD, Group 2 (disease control group, n = 17) patients with chronic renal failure, and Group 3 healthy children (control group, n = 35). Examination of oral and dental structures were made, and then salivary parameters were analyzed. Antegonial index were calculated from panoramic X-rays. Enamel hypoplasia was found in 54.8%, 41.1%, and 31.4% of the children in the Groups 1, 2, and 3, respectively (P1-3 < 0.05). High salivary buffer capacity was found in 45.2% and 70.6% of the patients in Groups 1 and 2, respectively, and 45.7% of the children in healthy group, (P1-2 and P2-3 < 0.05). Factors associated with enamel hypoplasia in patients with CLD were male gender (64.7% vs. 21.4%, P < 0.05) and the presence of malnutrition (41.1% vs. 7.1%, P < 0.05). Pediatric hepatologists must be aware of the dental problems in children with CLD. Enamel hypoplasia is common in children with CLD, and it may predispose to dental caries.

  16. The remineralisation of enamel: a review of the literature.

    PubMed

    Li, Xiaoke; Wang, Jinfang; Joiner, Andrew; Chang, Jiang

    2014-06-01

    The purpose of this paper is to review current knowledge and technologies for tooth remineralisation. The literature was searched using the "Scopus" and "Web of Knowledge" database from the year 1971, with principal key words of *miner*, teeth and enamel. Language was restricted to English. Original studies and reviews were included. Conference papers and posters were excluded. The importance of oral health for patients and consumers has seen a steady increase in the number of tooth remineralisation agents, products and procedures over recent years. Concomitantly, there has been continued publication of both in vivo and in vitro tooth remineralisation and demineralisation studies. It is clear that fluoride treatments are generally effective in helping to protect the dental enamel from demineralisation and enhancing remineralisation. Continued efforts to increase the efficacy of fluoride have been made, in particular, by the addition of calcium salts or calcium containing materials to oral care products which may enhance the delivery and retention of fluoride into the oral cavity. In addition, the calcium salts or materials may act as additional sources of calcium to promote enamel remineralisation or reduce demineralisation processes. Inspired by the concept of bioactive materials for bone repair and regeneration, bioglass and in particular calcium silicate type materials show potential for enamel health benefits and is a growing area of research. © 2014 Elsevier Ltd. All rights reserved.

  17. Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti).

    PubMed

    Loch, Carolina; Kieser, Jules A; Fordyce, R Ewan

    2015-01-01

    The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand) to Pliocene (Caldera, Chile). Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM) observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth), the inner enamel was organized in Hunter-Schreger bands (HSB) with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward odontocetes, with

  18. Enamel Ultrastructure in Fossil Cetaceans (Cetacea: Archaeoceti and Odontoceti)

    PubMed Central

    Loch, Carolina; Fordyce, R. Ewan

    2015-01-01

    The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand) to Pliocene (Caldera, Chile). Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM) observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth), the inner enamel was organized in Hunter-Schreger bands (HSB) with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward odontocetes, with

  19. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography.

    PubMed

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography ([Formula: see text]) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In [Formula: see text], the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer-Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to [Formula: see text] in SS-OCT. A correlation between [Formula: see text] and SS-OCT was found regarding lesion depth ([Formula: see text], [Formula: see text]) and also surface layer thickness ([Formula: see text], [Formula: see text]). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution [Formula: see text] without the use of x-ray.

  20. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography

    PubMed Central

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606  μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079

  1. Mineral loss and morphological changes in dental enamel induced by a 16% carbamide peroxide bleaching gel.

    PubMed

    Soares, Diana Gabriela; Ribeiro, Ana Paula Dias; Sacono, Nancy Tomoko; Loguércio, Alessandro Dourado; Hebling, Josimeri; Costa, Carlos Alberto de Souza

    2013-01-01

    The aim of this study was to compare the effect of a 16% carbamide peroxide (CP) gel and a 10% CP gel on mineralized enamel content and morphology. Enamel blocks from bovine incisors were subjected to a 14-day treatment (8 h/day) with 10% or 16% CP gels. Knoop microhardness was evaluated before bleaching and at 1, 7 or 14 days after this treatment (50 g/15 s). Mineral content (energy-dispersive x-ray spectroscopy), surface roughness and topography (atomic force microscopy) were evaluated at the 14-day period. Data were analyzed statistically by two-way ANOVA and Tukey's test (α=0.05). Significant microhardness reduction was observed at the 7 th and 14 th days for 10% CP gel, and for all bleaching times for 16% CP gel (p<0.05). At the 14-day period, a significant decrease in Ca and P content, increase on surface roughness (p<0.05) as well as on picks and valleys distance were observed when both bleaching gels were used. These enamel alterations were more intense for 16% CP gel. It was concluded that both CP-based gels promoted loss of mineral structure from enamel, resulting in a rough and porous surface. However, 16% CP gel caused the most intense adverse effects on enamel.

  2. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization

  3. Neutron scanning reveals unexpected complexity in the enamel thickness of an herbivorous Jurassic reptile.

    PubMed

    Jones, Marc E H; Lucas, Peter W; Tucker, Abigail S; Watson, Amy P; Sertich, Joseph J W; Foster, John R; Williams, Ruth; Garbe, Ulf; Bevitt, Joseph J; Salvemini, Floriana

    2018-06-01

    Eilenodontines are one of the oldest radiation of herbivorous lepidosaurs (snakes, lizards and tuatara) characterized by batteries of wide teeth with thick enamel that bear mammal-like wear facets. Unlike most reptiles, eilenodontines have limited tooth replacement, making dental longevity particularly important to them. We use both X-ray and neutron computed tomography to examine a fossil tooth from the eilenodontine Eilenodon (Late Jurassic, USA). Of the two approaches, neutron tomography was more successful and facilitated measurements of enamel thickness and distribution. We find the enamel thickness to be regionally variable, thin near the cusp tip (0.10 mm) but thicker around the base (0.15-0.30 mm) and notably greater than that of other rhynchocephalians such as the extant Sphenodon (0.08-0.14 mm). The thick enamel in Eilenodon would permit greater loading, extend tooth lifespan and facilitate the establishment of wear facets that have sharp edges for orally processing plant material such as horsetails ( Equisetum ). The shape of the enamel dentine junction indicates that tooth development in Eilenodon and Sphenodon involved similar folding of the epithelium but different ameloblast activity. © 2018 The Authors.

  4. Influence of a pulsed CO2 laser operating at 9.4 μm on the surface morphology, reflectivity, and acid resistance of dental enamel below the threshold for melting

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wan; Lee, Raymond; Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2017-02-01

    Below the threshold for laser ablation, the mineral phase of enamel is converted into a purer phase hydroxyapatite with increased acid resistance. Studies suggest the possibility of achieving the conversion without visible surface alteration. In this study, changes in the surface morphology, reflectivity, and acid resistance were monitored with varying irradiation intensity. Bovine enamel specimens were irradiated using a CO2 laser operating at 9.4 μm with a Gaussian spatial beam profile-1.6 to 3.1 mm in diameter. After laser treatment, samples were subjected to demineralization to simulate the acidic intraoral conditions of dental decay. The resulting demineralization and erosion were assessed using polarization-sensitive optical coherence tomography, three-dimensional digital microscopy, and polarized light microscopy. Distinct changes in the surface morphology and the degree of inhibition were found within the laser-treated area in accordance with the laser intensity profile. Subtle visual changes were noted below the melting point for enamel that appear to correspond to thresholds for denaturation of the organic phase and thermal decomposition of the mineral phase. There was significant protection from laser irradiation in areas in which the reflectivity was not increased significantly, suggesting that aesthetically sensitive areas of the tooth can be treated for caries prevention.

  5. A review of the effect of vital teeth bleaching on the mechanical properties of tooth enamel.

    PubMed

    Elfallah, Hunida M; Swain, Michael V

    2013-09-01

    Tooth whitening is considered the easiest and most cost-effective procedure for treating tooth discoloration. Contemporary bleaching agents contain hydrogen peroxide as the active ingredient. It is either applied directly or produced from its precursor, carbamide peroxide. A review of the published literature was undertaken to investigate the potential adverse effects of whitening products on dental enamel, with a focus on its mechanical properties and the influence of various parameters on study outcomes. There appear to be considerable differences in opinion as to whether changes in mechanical properties occur as a result of tooth whitening. However, the mechanical property findings of those studies appear to be related to the load applied during the indentation tests. Most studies which used loads higher than 500mN to determine enamel hardness showed no effect of bleaching, whereas those using lower loads were able to detect hardness reduction in the surface layer of enamel. In conclusion, bleaching reduces the hardness of the enamel surface of enamel, and that is more readily detected with instrumented low load testing systems. This hardness reduction may arise due to degradation or denaturation of enamel matrix proteins by the peroxide oxidation.

  6. [Effects of tooth whitening agents and acidic drinks on the surface properties of dental enamel].

    PubMed

    Chen, Xiaoling; Chen, Zhiqun; Lin, Yao; Shao, Jinquan; Yin, Lu

    2013-10-01

    Using tooth whitening agents (bleaching clip) in vitro and acidic drinks, we conducted a comparative study of the changes in enamel surface morphology, Ca/P content, and hardness. Tooth whitening glue pieces, cola, and orange juice were used to soak teeth in artificial saliva in vitro. Physiological saline was used as a control treatment. The morphology of the four groups was observed under a scanning electron microscope (SEM) immediately after the teeth were soaked for 7 and 14 d. The changes in Ca/P content and microhardness were analyzed. The enamel surfaces of the teeth in the three test groups were demineralized. The Ca/P ratio and the average microhardness were significantly lower than those of the control group immediately after the teeth were soaked (P < 0.05). The Ca/P ratio and microhardness gradually increased after 7 d. No significant difference was observed between the control group and the test groups after 14 d (P > 0.05). Bleaching agents caused transient demineralization of human enamel, but these agents could induce re-mineralization and repair of enamel over time. Demineralization caused by bleaching covered a relatively normal range compared with acidic drinks and daily drinking.

  7. Analysis of dental abfractions by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Demjan, Enikö; Mărcăuţeanu, Corina; Bratu, Dorin; Sinescu, Cosmin; Negruţiu, Meda; Ionita, Ciprian; Topală, Florin; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian Gh.

    2010-02-01

    Aim and objectives. Abfraction is the pathological loss of cervical hard tooth substance caused by biomechanical overload. High horizontal occlusal forces result in large stress concentrations in the cervical region of the teeth. These stresses may be high enough to cause microfractures in the dental hard tissues, eventually resulting in the loss of cervical enamel and dentin. The present study proposes the microstructural characterization of these cervical lesions by en face optical coherence tomography (eFOCT). Material and methods: 31 extracted bicuspids were investigated using eFOCT. 24 teeth derived from patients with active bruxism and occlusal interferences; they presented deep buccal abfractions and variable degrees of occlusal pathological attrition. The other 7 bicuspids were not exposed to occlusal overload and had a normal morphology of the dental crowns. The dental samples were investigated using an eFOCT system operating at 1300 nm (B-scan at 1 Hz and C-scan mode at 2 Hz). The system has a lateral resolution better than 5 μm and a depth resolution of 9 μm in tissue. OCT images were further compared with micro - computer tomography images. Results. The eFOCT investigation of bicuspids with a normal morphology revealed a homogeneous structure of the buccal cervical enamel. The C-scan and B-scan images obtained from the occlusal overloaded bicuspids visualized the wedge-shaped loss of cervical enamel and damage in the microstructure of the underlaying dentin. The high occlusal forces produced a characteristic pattern of large cracks, which reached the tooth surface. Conclusions: eFOCT is a promising imaging method for dental abfractions and it may offer some insight on the etiological mechanism of these noncarious cervical lesions.

  8. A comparison of sports and energy drinks--Physiochemical properties and enamel dissolution.

    PubMed

    Jain, Poonam; Hall-May, Emily; Golabek, Kristi; Agustin, Ma Zenia

    2012-01-01

    The consumption of sports and energy drinks by children and adolescents has increased at an alarming rate in recent years. It is essential for dental professionals to be informed about the physiochemical properties of these drinks and their effects on enamel. The present study measured the fluoride levels, pH, and titratable acidity of multiple popular, commercially available brands of sports and energy drinks. Enamel dissolution was measured as weight loss using an in vitro multiple exposure model consisting of repeated short exposures to these drinks, alternating with exposure to artificial saliva. The relationship between enamel dissolution and fluoride levels, pH, and titratable acidity was also examined. There was a statistically significant difference between the fluoride levels (p = 0.034) and pH (p = 0.04) of the sports and energy drinks studied. The titratable acidity of energy drinks (11.78) was found to be significantly higher than that of sports drinks (3.58) (p < 0.001). Five of the energy drinks (Red Bull Sugar Free, Monster Assault, Von Dutch, Rockstar, and 5-Hour Energy) were found to have the highest titratable acidity values among the brands studied. Enamel weight loss after exposure to energy drinks was significantly higher than it was after exposure to sports drinks. The effect of titratable acidity on enamel weight loss was found to vary inversely with the pH of the drinks. The findings indicated that energy drinks have significantly higher titratable acidity and enamel dissolution associated with them than sports drinks. Enamel weight loss after exposure to energy drinks was more than two times higher than it was after exposure to sports drinks. Titratable acidity is a significant predictor of enamel dissolution, and its effect on enamel weight loss varies inversely with the pH of the drink. The data from the current study can be used to educate patients about the differences between sports and energy drinks and the effects of these drinks on

  9. Computer laser system for prevention and treatment of dental diseases: new methods and results

    NASA Astrophysics Data System (ADS)

    Fedyai, S. G.; Prochonchukov, Alexander A.; Zhizhina, Nina A.; Metelnikov, Michael A.

    1995-05-01

    We report results of clinical application of the new computer-laser system. The system includes hardware and software means, which are applied for new efficient methods of prevention and treatment of main dental diseases. The hardware includes a laser physiotherapeutic device (LPD) `Optodan' and a fiberoptic laser delivery system with special endodontic rigging. The semiconductor AG-AL-AG laser diode with wavelengths in the spectral range of 850 - 950 nm (produced by Scientific-Industrial Concern `Reflector') is used as a basic unit. The LPD `Optodan' and methods of treatment are covered by Russian patent No 2014107 and certified by the Russian Ministry of Health. The automated computer system allows us to examine patients quickly and to input differential diagnosis, to determine indications (and contraindications), parameters and regimen of laser therapy, to control treatment efficacy (for carious -- through clinical indexes of enamel solubles, velocity of demineralization and other tests; for periodontal diseases trough complex of the periodontal indexes with automated registry and calculation). We present last results of application of the new technique and methods in treatment of dental diseases in Russian clinics.

  10. Microbiologic aspects of dental plaque and dental caries.

    PubMed

    Marsh, P D

    1999-10-01

    Dental plaque is an example of a microbial biofilm with a diverse microbial composition; it is found naturally on teeth and confers advantages to the host, for example, by preventing colonization by exogenous, and often pathogenic, micro-organisms. In individuals with a high frequency sugar diet, or with a severely compromised saliva flow, the levels of potentially cariogenic bacteria (acid-producing and acid-tolerating species) can increase beyond those compatible with enamel health. This article discusses antimicrobial strategies to control dental caries, including; reducing plaque levels, in general or specific cariogenic bacteria in particular, by antiplaque or antimicrobial agents; reducing bacterial acid production by replacing fermentable carbohydrates in the diet with sugar substitutes, or by interfering with bacterial metabolism with fluoride or antimicrobial agents.

  11. Optical detection dental disease using polarized light

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel

    2003-01-01

    A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.

  12. Testing the Effect of Aggressive Beverage on the Damage of Enamel Structure.

    PubMed

    Lutovac, Mitar; Popova, Olga V; Macanovic, Gordana; Kristina, Radoman; Lutovac, Bojana; Ketin, Sonja; Biocanin, Rade

    2017-12-15

    Dental erosion is a common problem in modern societies, owing to the increased consumption of acid drinks such as soft drinks, sports drinks, fruit juice. Examining the enamel surface with the Atomic Force Microscopy (AFM) enables more precise registering and defining the changes of enamel surface structure and microhardness. This method can be used to compare the efficiency of application of different preventive and therapy materials and medicaments in dentistry. The chronic regular consumption of low pH cola drinks encouraged the erosion of the teeth. The loss of anatomy and sensitivity are direct results of acid cola dissolving coronal tooth material. Under the influence of coca cola, a change of crystal structure and nanomorphology on enamel surface occurs. This paper reflects dental damage from abusive cola drinking, and the clinical presentation can be explained from data presented in this thesis. The trial was conducted on a total of 40 extracted teeth which were divided into two groups treated with the solution of coca cola during 5 minutes, and then prepared and tested with a standard AFM procedure, type SPM-5200. Quantitative analysis was performed by comparing the roughness parameters (Ra) of the treated and non-treated sample. Based on the test of a hypothesis of the existence of differences between the treated and untreated sample, with an application of a t-test, it is shown that there are statistically highly significant differences between Ra of the treated sample with a 5-minute treatment of coca cola and Ra of the same sample without the treatment. Use of AFM enables successful monitoring of changes on enamel surface as well as the interpretation of the ultrastructural configuration of the crystal stage and the damage created under the influence of different external factors.

  13. Testing the Effect of Aggressive Beverage on the Damage of Enamel Structure

    PubMed Central

    Lutovac, Mitar; Popova, Olga V.; Macanovic, Gordana; Kristina, Radoman; Lutovac, Bojana; Ketin, Sonja; Biocanin, Rade

    2017-01-01

    BACKGROUND: Dental erosion is a common problem in modern societies, owing to the increased consumption of acid drinks such as soft drinks, sports drinks, fruit juice. Examining the enamel surface with the Atomic Force Microscopy (AFM) enables more precise registering and defining the changes of enamel surface structure and microhardness. This method can be used to compare the efficiency of application of different preventive and therapy materials and medicaments in dentistry. The chronic regular consumption of low pH cola drinks encouraged the erosion of the teeth. The loss of anatomy and sensitivity are direct results of acid cola dissolving coronal tooth material. Under the influence of coca cola, a change of crystal structure and nanomorphology on enamel surface occurs. AIM: This paper reflects dental damage from abusive cola drinking, and the clinical presentation can be explained from data presented in this thesis. MATERIAL AND METHODS: The trial was conducted on a total of 40 extracted teeth which were divided into two groups treated with the solution of coca cola during 5 minutes, and then prepared and tested with a standard AFM procedure, type SPM-5200. Quantitative analysis was performed by comparing the roughness parameters (Ra) of the treated and non-treated sample. RESULTS: Based on the test of a hypothesis of the existence of differences between the treated and untreated sample, with an application of a t-test, it is shown that there are statistically highly significant differences between Ra of the treated sample with a 5-minute treatment of coca cola and Ra of the same sample without the treatment. CONCLUSION: Use of AFM enables successful monitoring of changes on enamel surface as well as the interpretation of the ultrastructural configuration of the crystal stage and the damage created under the influence of different external factors. PMID:29362633

  14. Effect of iron on the dissolution of bovine enamel powder in vitro by carbonated beverages.

    PubMed

    Kato, Melissa Thiemi; Maria, Andrea Gutierrez; Sales-Peres, Sílvia Helena de Carvalho; Buzalaf, Marília Afonso Rabelo

    2007-07-01

    The aim of this study was to evaluate, in vitro, the effect of iron on the dissolution of bovine enamel powder, when added to two carbonated beverages. Powdered enamel was produced by griding enamel fragments of bovine incisor in a steel pestle and mortar. Particles between 75 and 106 microm were selected using appropriated meshes. At time zero, the carbonated beverage (Coke or Sprite Zero) was added to powdered enamel (1 mg enamel powder/10 microL of beverage) and vortexed for 30 s. The sample was immediately centrifuged (11,000 rpm) for 30 s and the supernatant was removed at 1 min 40 s. This procedure was repeated five times with the beverage containing increasing ferrous sulphate concentrations (1.25, 2.5, 5, 10, 15, 30 and 60 mmol/L). The phosphate released in the medium was analysed spectrophotometrically. Data were analysed using ANOVA and Tukey's test (p<0.05). When iron at 30 and 60 mmol/L was added to Coke, a significant reduction in the dissolution of powdered enamel was observed when compared to control (11 and 17%, respectively), while lower iron concentrations did not have any effect on enamel powder dissolution. Regarding Sprite Zero, iron concentrations up to 10 mmol/L had no significant effect, while higher concentrations significantly increased enamel powder dissolution. The results suggest that iron can interfere with the dissolution of dental enamel powder in the presence of acidic beverages and the type of acid in these beverages seems to modulate this effect.

  15. Testing functional and morphological interpretations of enamel thickness along the deciduous tooth row in human children.

    PubMed

    Mahoney, Patrick

    2013-08-01

    The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel thickness along the entire human deciduous tooth row. Average enamel thickness (AET), the area and proportion of crown enamel and dentin, and a crown size proxy are calculated for incisors, canines, and molars. Allometric scaling relationships are assessed within each tooth class, and then comparisons are undertaken along the row. Generally, AET was correlated with crown size and scaled with isometry, except for second molars which scaled with positive allometry. Mean AET increased along the row and was greater on molars, where bite forces are reported to be higher. Second molars combined the largest crown size with the thickest enamel and the smallest proportion of dentin, which is consistent with a reduction in the potential for cusp fracture under high bite forces. Resistance to wear may also account for some enamel thickness variation between tooth classes. Dental reduction did not explain the trend in AET from central to lateral incisors, or from first to second molars. The gradient in AET along the deciduous tooth row is partly consistent with a functional interpretation of enamel thickness. Copyright © 2013 Wiley Periodicals, Inc.

  16. Histo-anatomic 3D printing of dental structures.

    PubMed

    Schweiger, J; Beuer, F; Stimmelmayr, M; Edelhoff, D; Magne, P; Güth, J F

    2016-11-04

    The creation of dental restorations with natural appearance and biomechanics represents a major challenge for the restorative team. The manufacturing-process of high-aesthetic restorations from tooth-coloured restorative materials is currently dominated by manual manufacturing procedures and the outcome is highly dependent on the knowledge and skills of the performing dental technician. On the other hand, due to the simplicity of the manufacturing process, CAD/CAM restorations from different material classes gain more and more acceptance in the daily routine. Multi-layered restorations show significant aesthetic advantages versus monolithic ones, but are difficult to fabricate using digital technologies. The key element for the successful automated digital fabrication of aesthetic anterior restorations seems to be the form of the individual dentine core as defined by dentine enamel junction (DEJ) covered by a more transparent layer of material imitating the enamel layer to create the outer enamel surface (OES). This article describes the possibilities and technologies available for so-called '4D-printing'. It introduces the digital manufacturing process of multilayered anterior teeth using 3D multipart printing, taking the example of manufacturing replicas of extracted intact natural teeth.

  17. Dental caries: strategies to control this preventable disease.

    PubMed

    Rugg-Gunn, Andrew

    2013-11-01

    To provide a brief commentary review of strategies to control dental caries. Dental decay is one of man's most prevalent diseases. In many counties, severity increased in parallel with importation of sugar, reaching its zenith about 1950s and 1960s. Since then, severity has declined in many countries, due to the wide use of fluoride especially in toothpaste, but dental caries remains a disease of medical, social and economic importance. Within the EU in 2011, the cost of dental treatment was estimated to be €79 billion. The pathogenesis is well understood: bacteria in dental plaque (biofilm) metabolise dietary sugars to acids which then dissolve dental enamel and dentine. Possible approaches to control caries development, therefore, involve: removal of plaque, reducing the acidogenic potential of plaque, reduction in sugar consumption, increasing the tooth's resistance to acid attack, and coating the tooth surface to form a barrier between plaque and enamel. At the present time, only three approaches are of practical importance: sugar control, fluoride, and fissure sealing. The evidence that dietary sugars are the main cause of dental caries is extensive, and comes from six types of study. Without sugar, caries would be negligible. Fluoride acts in several ways to aid caries prevention. Ways of delivering fluoride can be classed as: 'automatic', 'home care' and 'professional care': the most important of these are discussed in detail in four articles in this issue of the Acta Medica Academica. Dental caries is preventable - individuals, communities and countries need strategies to achieve this. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  18. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    PubMed

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  19. Monitoring of enamel lesion remineralization by optical coherence tomography: an alternative approach towards signal analysis

    NASA Astrophysics Data System (ADS)

    Sadr, Alireza; Mandurah, Mona; Nakashima, Syozi; Shimada, Yasushi; Kitasako, Yuichi; Tagami, Junji; Sumi, Yasunori

    Early detection, monitoring and remineralization repair of enamel lesions are top research priorities in the modern dentistry focusing on minimal intervention concept for caries management. We investigate the use of swept-source optical coherence tomography system (SS-OCT) without polarization-sensing at 1319 nm wavelength developed for clinical dentistry (Dental OCT System Prototype 2, Panasonic Healthcare Co., Ltd., Japan) in quantitative assessment of artificial enamel lesions and their remineralization. Bovine enamel blocks were subjected to demineralization to create subsurface lesions approximately 130 μm in depth over 2 weeks, and subjected to remineralization in solution containing bioavailable calcium and 1ppm fluoride at pH 6.5 for 2 weeks. Cross-sectional images of sound, demineralized and remineralized specimens were captured under hydrated conditions by the OCT. Finally, the specimens were cut into sections for nanoindentation to measure hardness through the lesion under 2mN load. Reflectivity had increased with demineralization. OCT images of lesions showed a boundary closely suggesting the lesion depth that gradually progressed with demineralization time. After remineralization, the boundary depth gradually decreased and nanoindentation showed over 60% average hardness recovery rate. A significant negative correlation was found between the slope power-law regression as a measure of attenuation and overall nanohardness for a range of data covering sound, demineralized and remineralized areas. In conclusion, OCT could provide clear images of early enamel lesion extent and signal attenuation could indicate its severity and recovery. Clinical data of natural lesions obtained using Dental OCT and analyzed by this approach will also be presented. Study supported by GCOE IRCMSTBD and NCGG.

  20. Enamel Bond Strength of New Universal Adhesive Bonding Agents.

    PubMed

    McLean, D E; Meyers, E J; Guillory, V L; Vandewalle, K S

    2015-01-01

    Universal bonding agents have been introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinician's preference. The purpose of this study was to evaluate the shear bond strength (SBS) of composite to enamel using universal adhesives compared to a self-etch adhesive when applied in self-etch and etch-and-rinse modes over time. Extracted human third molars were used to create 120 enamel specimens. The specimens were ground flat and randomly divided into three groups: two universal adhesives and one self-etch adhesive. Each group was then subdivided, with half the specimens bonded in self-etch mode and half in etch-and-rinse mode. The adhesives were applied as per manufacturers' instructions, and composite was bonded using a standardized mold and cured incrementally. The groups were further divided into two subgroups with 10 specimens each. One subgroup was stored for 24 hours and the second for six months in 37°C distilled water and tested in shear. Failure mode was also determined for each specimen. A three-way analysis of variance (ANOVA) found a significant difference between groups based on bonding agent (p<0.001) and surface treatment (p<0.001) but not on time (p=0.943), with no significant interaction (p>0.05). Clearfil SE in etch-and-rinse and self-etch modes had more mixed fractures than either universal adhesive in either mode. Etching enamel significantly increased the SBS of composite to enamel. Clearfil SE had significantly greater bond strength to enamel than either universal adhesive, which were not significantly different from each other.

  1. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  2. Carabelli's trait revisited: an examination of mesiolingual features at the enamel-dentine junction and enamel surface of Pan and Homo sapiens upper molars.

    PubMed

    Ortiz, Alejandra; Skinner, Matthew M; Bailey, Shara E; Hublin, Jean-Jacques

    2012-10-01

    Carabelli's trait is a morphological feature that frequently occurs on the mesiolingual aspect of Homo sapiens upper molars. Similar structures also referred to as Carabelli's trait have been reported in apes and fossil hominins. However, the morphological development and homology of these mesiolingual structures among hominoids are poorly understood. In this study, we employ micro-computed tomography to image the enamel-dentine junction (EDJ) and outer enamel surface (OES) of Pan (n = 48) and H. sapiens (n = 52) upper molars. We investigate the developmental origin of mesiolingual features in these taxa and establish the relative contribution of the EDJ and enamel cap to feature expression. Results demonstrate that mesiolingual features of H. sapiens molars develop at the EDJ and are similarly expressed at the OES. Morphological variation at both surfaces in this taxon can satisfactorily be assessed using standards for Carabelli's trait developed by the Arizona State University Dental Anthropology System (ASUDAS). Relative to H. sapiens, Pan has an even greater degree of correspondence in feature expression between the EDJ and OES. Morphological manifestations in Pan molars are not necessarily limited to the protocone and are best characterized by a lingual cingulum that cannot be captured by the ASUDAS. Cusp-like structures, similar to those seen in marked Carabelli's trait expressions in H. sapiens, were not found in Pan. This study provides a foundation for further analyses on the evolutionary history of mesiolingual dental traits within the hominoid lineage. It also highlights the wealth of morphological data that can be obtained at the EDJ for understanding tooth development and for characterizing tooth crown variation in worn fossil teeth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. An in vitro screening assay for dental stain cleaning.

    PubMed

    Wang, Changxiang; Lucas, Robert; Smith, Anthony J; Cooper, Paul R

    2017-01-09

    The present study aimed to develop an in vitro model for stain removal from natural enamel for the assessment and comparison of oral hygiene products. Bovine teeth (n = 8 per group) were ground/polished to provide flat enamel specimens and ferric-tannate deposits were precipitated onto the enamel surfaces. The ferric-tannate stained enamel specimens were brushed using an in vitro tooth-brushing simulator with slurries containing commercially available toothpaste products, dental abrasive particles, and sodium tripolyphosphate (STP) solutions of different concentrations. The colour of the enamel surfaces was measured using a spectrophotometer before and after stain application as well as after the brushing treatments. Differences in stain removal efficacy were found between the toothpastes categorised as whitening and non-whitening comprising of different types of dental abrasives (hydrated silica and alumina). A mean value of 27% for stain removal was detected for the three non-whitening toothpastes and 59% of stain removal was detected for the three whitening toothpastes after 1000 strokes. Compared with the slurry with Zeodent 113 abrasive alone, the addition of STP provided better performance for stain removal under the same brushing conditions (mean value of 62% for Zeodent 113 abrasive alone and 72% with the addition of 5% (w/w) STP after 1000 strokes). No difference was evident between the STP concentration of 5% (w/w) and 10% (w/w). The ferric-tannate/bovine enamel model reported here provides good stain retention, is rapidly and easily prepared, and is shown to be progressively and reproducibly sensitive to toothbrushing using different toothpastes and surfactant/chelating agent solutions. Importantly, it provides good discrimination between various oral hygiene products. The stain removal assay reported here has considerable potential to enable comparative assessments of different toothpaste types in terms of their cleaning capabilities.

  4. Effect of titanium dioxide nanoparticle addition into orthodontic adhesive resin on enamel microhardness

    NASA Astrophysics Data System (ADS)

    Andriani, A.; Krisnawati; Purwanegara, M. K.

    2017-08-01

    White spots are an early sign of enamel demineralization, which may lead to development of dental caries. Enamel demineralization can be determined by examining the microhardness number of the enamel. Addition of antibacterial agents such as TiO2 nanoparticles into the orthodontic adhesive (TiO2 nanocomposite) is expected to prevent enamel demineralization. The objective of this study is to evaluate the effect of TiO2 nanocomposites in maintaining enamel microhardness around orthodontic brackets. The bracket was bonded to the premolar using Transbond XT (group 1), 1% TiO2 nanocomposites (group 2), and 2% TiO2 nanocomposites (group 3). Group 4 was the control group, and it was not given any treatment prior to the microhardness test. The samples of groups 1, 2, and 3 were soaked in BHI solution containing Streptococcus mutans, and then stored in an incubator at 37°C for 30 days. Demineralizations were determined on cross-sectioned tooth 100μm and 200μm cervical to the bracket by the Vickers microhardness test. The microhardness values were significantly different between every group, with the highest value obtained for control group, followed by the 2% TiO2 nanocomposite group, 1% TiO2 nanocomposite group, and then the Transbond XT group. The results of this study reveal that 2% TiO2 nanocomposites have the ability to maintain enamel microhardness around the orthodontic bracket.

  5. Energy dispersive X-ray spectrometry study of the protective effects of fluoride varnish and gel on enamel erosion.

    PubMed

    De Carvalho Filho, Antonio Carlos Belfort; Sanches, Roberto Pizarro; Martin, Airton Abrahão; Do Espírito Santo, Ana Maria; Soares, Luís Eduardo Silva

    2011-09-01

    Dental erosion is a risk factor for dental health, introduced by today's lifestyle. Topical fluoride applications in the form of varnishes and gel may lead to deposition of fluoride on enamel. This in vitro study aimed to evaluate the effect of two fluoride varnishes and one fluoride gel on the dissolution of bovine enamel by acids. Enamel samples (72) were divided (n = 8): artificial saliva (control-G1), Pepsi Twist® (G2), orange juice (G3), Duraphat® + Pepsi Twist® (G4), Duraphat® + orange juice (G5), Duofluorid® + Pepsi Twist® (G6), Duofluorid® + orange juice (G7), fluoride gel + Pepsi Twist® (G8), and fluoride gel + orange juice (G9). Fluoride gel was applied for 4 min and the varnishes were applied and removed after 6 h. The samples were submitted to six cycles (demineralization: Pepsi Twist® or orange juice, 10 min; remineralization: saliva, 1 h). Samples were analyzed by energy-dispersive X-ray fluorescence (144 line-scanning). The amount of Ca and P decreased significantly in the samples of G2 and G3, and the Ca/P ratio decreased in G3. Mineral gain (Ca) was greater in G9 samples than in G4 > G3 > G5 > G1, and (P) greater in G7 samples than in G9 > G4-6 > G2-3. The protective effect of Duofluorid® was significantly lower than fluoride gel against orange juice. The fluoride varnishes can interfere positively with the dissolution of dental enamel in the presence of acidic beverages. Fluoride gel showed the best protection level to extrinsic erosion with low costs. Copyright © 2010 Wiley-Liss, Inc.

  6. The efficacy of a highly concentrated fluoride dentifrice on bovine enamel subjected to erosion and abrasion.

    PubMed

    Rios, Daniela; Magalhães, Ana Carolina; Polo, Renata Ocon Braga; Wiegand, Annette; Attin, Thomas; Buzalaf, Marilia Afonso Rabelo

    2008-12-01

    Researchers have proposed the use of fluoride for the prevention of enamel wear; however, only limited information is available about the impact of fluoridated dentifrices. Because tooth wear is a well-recognized dental problem, the authors conducted an in situ, ex vivo study to assess the efficacy of a highly concentrated fluoride dentifrice on bovine enamel subjected to erosion and abrasion. The authors conducted a double-blind, crossover in situ study consisting of three phases (seven days each). In each phase, the authors tested one of the dentifrices (5,000 parts per million fluoride [F]; 1,100 ppm F; no F). They performed erosive challenges with the use of cola drink (60 seconds, four times per day) and abrasive challenges via toothbrushing (30 seconds, four times per day). The authors determined the enamel loss via profilometry. The authors tested the data by using two-way analysis of variance (P < .05). For the erosion-plus-abrasion condition, the study results showed that enamel wear was significantly higher than that with erosion alone. The findings showed no significant differences between the dentifrices regarding enamel wear. Within the in situ, ex vivo conditions of this study, the authors concluded that the highly concentrated fluoride dentifrice did not have a protective effect on enamel against erosion and erosion plus toothbrushing abrasion. Patients at risk of developing enamel erosion should benefit from preventive measures other than fluoride dentifrice, because even a highly concentrated fluoride dentifrice does not appear to prevent enamel erosion.

  7. Ultrastructure of the surface of dental enamel with molar incisor hypomineralization (MIH) with and without acid etching.

    PubMed

    Bozal, Carola B; Kaplan, Andrea; Ortolani, Andrea; Cortese, Silvina G; Biondi, Ana M

    2015-01-01

    The aim of the present work was to analyze the ultrastructure and mineral composition of the surface of the enamel on a molar with MIH, with and without acid etching. A permanent tooth without clinical MIH lesions (control) and a tooth with clinical diagnosis of mild and moderate MIH, with indication for extraction, were processed with and without acid etching (H3PO4 37%, 20") for observation with scanning electron microscope (SEM) ZEISS (Supra 40) and mineral composition analysis with an EDS detector (Oxford Instruments). The control enamel showed normal prismatic surface and etching pattern. The clinically healthy enamel on the tooth with MIH revealed partial loss of prismatic pattern. The mild lesion was porous with occasional cracks. The moderate lesion was more porous, with larger cracks and many scales. The mineral composition of the affected surfaces had lower Ca and P content and higher O and C. On the tooth with MIH, even on normal looking enamel, the demineralization does not correspond to an etching pattern, and exhibits exposure of crystals with rods with rounded ends and less demineralization in the inter-prismatic spaces. Acid etching increased the presence of cracks and deep pores in the adamantine structure of the enamel with lesion. In moderate lesions, the mineral composition had higher content of Ca, P and Cl. Enamel with MIH, even on clinically intact adamantine surfaces, shows severe alterations in the ultrastructure and changes in ionic composition, which affect the acid etching pattern and may interfere with adhesion.

  8. Relationship between analysis of laser speckle image and Knoop hardness on softening enamel.

    PubMed

    Koshoji, Nelson H; Prates, Renato A; Bussadori, Sandra K; Bortoletto, Carolina C; de Miranda Junior, Walter G; Librantz, André F H; Leal, Cintia Raquel Lima; Oliveira, Marcelo T; Deana, Alessandro M

    2016-09-01

    In this study is presented the correlation between laser speckle images and enamel hardness loss. In order to shift the enamel hardness, a dental demineralization model was applied to 32 samples of vestibular bovine teeth. After they were cleaned, cut and polished, the samples were divided into 4 groups and immersed in 30ml of a cola-based soft drink for 10, 20, 30 and 40min twice a day for 7 consecutive days with half the surface protected by two layers of nail polish. Each sample was analyzed by Knoop hardness and laser speckle imaging. Pearson's correlation analysis demonstrated that the laser speckle image technique presents a strong correlation with the hardness loss of the enamel (r=0.7085, p<0.0001). This finding is corroborated by Blend & Altman analysis, in which the data presented a constant behavior throughout the whole interval. For both analyses, more than 95% of the data is within the confidence interval, as expected. This work demonstrates, for the first time to our knowledge, an empirical model for correlating laser speckle images with the loss of tooth enamel hardness. Copyright © 2016. Published by Elsevier B.V.

  9. Wide-Field Raman Imaging of Dental Lesions

    PubMed Central

    Yang, Shan; Li, Bolan; Akkus, Anna; Akkus, Ozan; Lang, Lisa

    2014-01-01

    Detection of dental caries at the onset remains as a great challenge in dentistry. Raman spectroscopy could be successfully applied towards detecting caries since it is sensitive to the amount of the Raman active mineral crystals, the most abundant component of enamel. Effective diagnosis requires full examination of a tooth surface via a Raman mapping. Point-scan Raman mapping is not clinically relevant (feasible) due to lengthy data acquisition time. In this work, a wide-field Raman imaging system was assembled based on a high-sensitivity 2D CCD camera for imaging the mineralization status of teeth with lesions. Wide-field images indicated some lesions to be hypomineralized and others to be hypermineralized. The observations of wide-field Raman imaging were in agreement with point-scan Raman mapping. Therefore, sound enamel and lesions can be discriminated by Raman imaging of the mineral content. In conclusion, wide-field Raman imaging is a potentially useful tool for visualization of dental lesions in the clinic. PMID:24781363

  10. Near-infrared image-guided laser ablation of dental decay

    NASA Astrophysics Data System (ADS)

    Tao, You-Chen; Fried, Daniel

    2009-09-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries.

  11. Near-infrared image-guided laser ablation of dental decay

    PubMed Central

    Tao, You-Chen; Fried, Daniel

    2009-01-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:19895146

  12. Near-infrared image-guided laser ablation of dental decay.

    PubMed

    Tao, You-Chen; Fried, Daniel

    2009-01-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO(2) laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO(2) laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.

  13. Surface remineralization potential of casein phosphopeptide-amorphous calcium phosphate on enamel eroded by cola-drinks: An in-situ model study.

    PubMed

    Grewal, Navneet; Kudupudi, Vinod; Grewal, Sukrit

    2013-07-01

    The aim of this study was to investigate the remineralization potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on enamel eroded by cola drinks. A total of 30 healthy subjects were selected from a random sample of 1200 children and divided into two groups of 15 each wherein calcium and phosphorus analyses and scanning electron microscope (SEM) analysis was carried out to investigate the remineralization of enamel surface. A total of 30 non-carious premolar teeth were selected from the human tooth bank (HTB) to prepare the in-situ appliance. Three enamel slabs were prepared from the same. One enamel slab was used to obtain baseline values and the other two were embedded into the upper palatal appliances prepared on the subjects' maxillary working model. The subjects wore the appliance after which 30 ml cola drink exposure was given. After 15 days, the slabs were removed and subjected to respective analysis. Means of all the readings of soluble calcium and phosphorous levels at baseline,post cola-drink exposure and post cpp-acp application were subjected to statistical analysis SPSS11.5 version. Comparison within groups and between groups was carried out using ANOVA and F-values at 1% level of significance. Decrease in calcium solubility of enamel in the CPP-ACP application group as compared to post-cola drink exposure group (P < 0.05) was seen. Distinctive change in surface topography of enamel in the post-CPP-ACP application group as compared to post-cola drink exposure group was observed. CPP-ACP significantly promoted remineralization of enamel eroded by cola drinks as revealed by significant morphological changes seen in SEM magnification and spectrophotometric analyses.

  14. Treatment of enamel hypoplasia in a patient with Usher syndrome.

    PubMed

    de la Peña, Victor Alonso; Valea, Martín Caserío

    2011-08-01

    Usher syndrome (USH) is a group of autosomal recessive diseases characterized by the association of retinitis pigmentosa with sensorineural hearing loss. There are three types of USH. In addition, in people with USH and hypoplasia, the thickness of the enamel is reduced. The authors describe a case of a patient with USH type II associated with severe enamel hypoplasia and multiple unerupted teeth. The authors placed direct composite crowns and extracted severely affected and impacted molars. There is little information available on the oral pathologies of USH. Because the authors did not know how the patient's condition would progress and the patient still was growing, the authors treated the patient conservatively by placing direct composite crowns. The treatment has met both esthetic and functional expectations for 10 years. Copyright © 2011 American Dental Association. All rights reserved.

  15. Improved classification and visualization of healthy and pathological hard dental tissues by modeling specular reflections in NIR hyperspectral images

    NASA Astrophysics Data System (ADS)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots, which are difficult to diagnose. Near-infrared (NIR) hyperspectral imaging is a new promising technique for early detection of demineralization which can classify healthy and pathological dental tissues. However, due to non-ideal illumination of the tooth surface the hyperspectral images can exhibit specular reflections, in particular around the edges and the ridges of the teeth. These reflections significantly affect the performance of automated classification and visualization methods. Cross polarized imaging setup can effectively remove the specular reflections, however is due to the complexity and other imaging setup limitations not always possible. In this paper, we propose an alternative approach based on modeling the specular reflections of hard dental tissues, which significantly improves the classification accuracy in the presence of specular reflections. The method was evaluated on five extracted human teeth with corresponding gold standard for 6 different healthy and pathological hard dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized regions. Principal component analysis (PCA) was used for multivariate local modeling of healthy and pathological dental tissues. The classification was performed by employing multiple discriminant analysis. Based on the obtained results we believe the proposed method can be considered as an effective alternative to the complex cross polarized imaging setups.

  16. Dental erosion: Prevalence and severity among 16-year-old adolescents in Troms, Norway.

    PubMed

    Mulic, A; Fredriksen, Ø; Jacobsen, I D; Tveit, A B; Espelid, I; Crossner, C G

    2016-09-01

    To study the prevalence, distribution and severity of dental erosion among 16-year-old adolescents in the Troms region of Norway. Study design: The participants were recruited through the Tromsø-study ("Fit Futures"), and 392 16-year-olds were examined for dental erosion using clinical intraoral photographs. Three calibrated clinicians used the Visual Erosion Dental Examination (VEDE) system to register and grade the dental erosive wear. More than one third (38%) of the participants showed dental erosion on at least one tooth surface, 18% were limited to the enamel, while 20% of the adolescents showed erosive wear extending into the dentine. The occlusal surfaces of the lower first molars, and the palatal surfaces of the maxillary incisors were the most often and most severely affected. Of the participants showing dental erosion, 93% exhibited "cuppings" on the molars, with 48% limited to the enamel and 52% extending into the dentine. The highest prevalence of "cuppings" (73%) was found on the first lower molars, especially the mesiobuccal cusp of the teeth. The prevalence and severity of dental erosion was found to be higher in male than in female participants (p < 0.0001). The results from this study indicate a high prevalence and severity of dental erosion among adolescents in Troms and stress the importance of information, early and effective diagnostics and implementation of prevention strategies.

  17. Prevalence of developmental dental hard-tissue anomalies and association with caries and oral hygiene status of children in Southwestern, Nigeria.

    PubMed

    Popoola, Bamidele O; Onyejaka, Nneka; Folayan, Morenike O

    2016-07-07

    Developmental dental hard tissue anomalies are often associated with oral health problems. This study determined the clinical prevalence of developmental dental hard tissue anomalies in the permanent dentition of children resident in southwestern Nigeria and its association with dental caries and poor oral hygiene status. This was a cross-sectional study recruiting 1565 school children, 12 to 15 year old attending schools in Ibadan, Oyo State and Ile-Ife, Osun State. All eligible study participants had oral examinations conducted to determine presence of developmental hard dental tissue anomalies, caries and oral hygiene status. The prevalence of developmental dental hard tissue anomalies was determined. Logistic Poisson regression was used to determine the association of between developmental dental hard tissue anomalies, caries and oral hygiene status. Only 65 (4.2 %) children had clinically diagnosed developmental dental hard tissue anomalies. The most prevalent anomaly was enamel hypoplasia (2.2 %). More females (p = 0.003) and more children with middle socioeconomic class (p = 0.001) had enamel hypoplasia. The probability of having poor oral hygiene was significantly increased for children with developmental dental anomalies (APR: 0.07; 95 % CI: 0.03 - 0.12; p = 0.002). The probability of having caries was insignificantly increased for children with developmental dental hard tissue anomalies (APR: 0.005; 95 % CI: -0.03 - 0.04; p = 0.08). The most prevalence clinically detectable developmental dental hard tissue anomalies for the study population was enamel hypoplasia. The presence of developmental dental hard tissue anomalies significantly increased the chances of having poor oral hygiene but not caries. Further studies are required to understand if poor oral hygiene is associated with dental caries in children with developmental dental hard tissue anomalies.

  18. Effects of in-office bleaching on human enamel and dentin. Morphological and mineral changes.

    PubMed

    Llena, Carmen; Esteve, Irene; Forner, Leopoldo

    2018-05-01

    The effects of HP-based products upon dental enamel and dentin are inconclusive. To evaluate changes in micromorphology and composition of calcium (Ca) and phosphate (P) in enamel and dentin after the application of 37.5% hydrogen peroxide (HP) and 35% carbamide peroxide (CP) METHODS: Crowns of 20 human teeth were divided in two halves. One half was used as control specimen and the other as experimental specimen. The control specimens were kept in artificial saliva, and the experimental specimens were divided into four groups (n=5 each): group 1 (enamel HP for 45min); group 2 (dentin HP for 45min); group 3 (enamel CP for 90min); and group 4 (dentin CP for 90min). The morphological changes were evaluated using confocal laser scanning microscopy (CLSM), while the changes in the composition of Ca and P were assessed using environmental scanning electron microscopy combined with a microanalysis system (ESEM+EDX). The results within each group and between groups were compared using the Wilcoxon test and Mann-Whitney U-test, respectively (p<0.05). Similar morphological changes in the enamel and no changes in dentin were assessed with both products. Ca and P decreased in enamel and dentin, without significant differences between them or with respect to their control specimens (p>0.05). When bleaching products with a neutral pH are used in clinical practice, both, the concentration and the application time should be taken into account in order to avoid possible structural and mineral changes in enamel and dentin. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. OCT of early dental caries: a comparative study with histology and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hewko, Mark D.; Choo-Smith, Lin-P'ing; Ko, Alex C.; Leonardi, Lorenzo; Dong, Cecilia C.; Cleghorn, Blaine; Sowa, Michael G.

    2005-03-01

    Early dental caries result from destruction of the tooth's outer mineral matrix by acid-forming bacteria found in dental plaques. Early caries begin as surface disruptions where minerals are leached from the teeth resulting in regions of decreased mineral matrix integrity. Visually, these early carious regions appear as white spots due to the higher backscattering of incident light. With age these areas may become stained by organic compounds. Optical coherence tomography (OCT) examination of human teeth demonstrates a difference in penetration depth of the OCT signal into the carious region in comparison with sound enamel. However, while OCT demonstrates a structural difference in the enamel in the region of the caries, this technique provides little insight into the source of this difference. Raman spectroscopy provides biochemical measures derived from hydroxyapatite within the enamel as well as information on the crystallinity of the enamel matrix. The differences in the biochemical and morphological features of early caries and intact sound enamel are compared. Histological thin sections confirm the observations by OCT morphological imaging while Raman spectroscopy allows for biochemical identification of carious regions by a non-destructive method. Visual examination and conventional radiographic imaging of the intact tooth are used in clinical assessment prior to optical measurements. The combination of OCT, Raman spectroscopy and thin section histology aid in determining the changes that give rise to the visual white spot lesions.

  20. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration

    PubMed Central

    Fan, Yuwei; Nelson, James R.; Alvarez, Jason R.; Hagan, Joseph; Berrier, Allison; Xu, Xiaoming

    2011-01-01

    The formation of organized nanocrystals that resemble enamel is crucial for successful enamel remineralization. Calcium, phosphate and fluoride ions and amelogenin are important ingredients for the formation of organized hydroxyapatite (HAP) crystals in vitro. However, the effects of these remineralization agents on the enamel crystal morphology have not been thoroughly studied. The objective of this study was to investigate the effects of fluoride ions, supersaturation degree and amelogenin on the crystal morphology and organization of ex vivo remineralized human enamel. Extracted third molars were sliced thin and acid-etched to provide the enamel surface for immersion in different remineralization solutions. The crystal morphology and mineral phase of the remineralized enamel surface were analyzed by FE-SEM, ATR-FTIR and XRD. The concentration of fluoride and supersaturation degree of hydroxyapatite had significant effects on the crystal morphology and crystal organization, which varied from plate-like loose crystals to rod-like densely packed nanocrystal arrays. Densely packed arrays of fluoridated hydroxyapatite nanorods were observed under the following conditions: σ(HAP) = 10.2±2.0 with fluoride 1.5±0.5 mg/L and amelogenin 40±10 µg/mL, pH 6.8±0.4. A phase diagram summarized the conditions that form dense or loose hydroxyapatite nanocrystal structures. This study provides the basis for the development of novel dental materials for caries management. PMID:21256987

  1. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    PubMed Central

    Nelson, Leonard Y.; Seibel, Eric J.

    2012-01-01

    Abstract. An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results. PMID:22894502

  2. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Nelson, Leonard Y.; Seibel, Eric J.

    2012-07-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results.

  3. Hyperspectral laser-induced autofluorescence imaging of dental caries

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  4. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    PubMed Central

    Shahabi, Sima; Fekrazad, Reza; Johari, Maryam; Chiniforoush, Nasim; Rezaei, Yashar

    2016-01-01

    Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group); Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1) exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1) area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention. PMID:28096945

  5. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    NASA Astrophysics Data System (ADS)

    Barbour, Michele E.; Shellis, R. Peter

    2007-02-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.

  6. Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration.

    PubMed

    Krishnan, Vinod; Bhatia, Ankit; Varma, Harikrishna

    2016-05-01

    Enamel damage resulting or arising from/associated with orthodontic treatment such as white spot lesions and surface deterioration after debonding brackets along with incipient carious lesions are considered problems not amenable for routine restorations due to its invasive nature. The present study was aimed at synthesizing and characterizing nHAp and 25 and 50 mol% strontium nHAp as a surface application modality for dental enamel remineralization/repair. 25 and 50 mol% Sr nHAp was synthesized and characterized in comparison with custom made pure nHAp initially with the help of transmission and scanning electron microscopy as well as toxicological assessment. Further, comparative evaluation of these novel synthesized strontium substituted particles was assessed for its efficacy in repairing damaged enamel with the help of atomic force microscopy, scanning electron microscopy and micro indentation testing. There is increase in crystallinity and reduced particle size favoring dissolution and re-precipitation through small incipient carious lesions and soft white spot areas with 25% Sr-nHAp. Sr doped specimens showed more cell viability in comparison with pure nHAP make it less cytotoxic and hence a biologically friendly material which can be safely applied in patient's mouth. AFM images obtained from 25% and 50% Sr nHAp treated specimens clearly indicated increased roughness in surface topography and performed well with micro indentation test. The novel synthesized Sr doped nHAp forms an improved treatment modality to tackle the long standing quest for solving the problem of enamel loss with incipient carious lesions and WSL from orthodontic procedures. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Direct spectrometry: a new alternative for measuring the fluorescence of composite resins and dental tissues.

    PubMed

    da Silva, Tm; de Oliveira, Hpm; Severino, D; Balducci, I; Huhtala, Mfrl; Gonçalves, Sep

    2014-01-01

    The aim of this study was to evaluate the fluorescence intensity of different composite resins and compare those values with the fluorescence intensity of dental tissues. Different composite resins were used to make 10 discs (2 mm in depth and 4 mm in diameter) of each brand, divided into groups: 1) Z (Filtek Z350, 3M ESPE), 2) ES (Esthet-X, Dentsply), 3) A (Amelogen Plus, Ultradent), 4) DVS (Durafill-VS, Heraeus Kulzer) with 2 mm composite resin for enamel (A2), 5) OES ([Esthet-X] opaque-OA [1 mm] + enamel-A2 [1 mm]); 6) ODVSI ([Charisma-Opal/Durafill-VSI], opaque-OM (1 mm) + translucent [1mm]), and 7) DVSI ([Durafill- VSI] translucent [2 mm]). Dental tissue specimens were obtained from human anterior teeth cut in a mesiodistal direction to obtain enamel, dentin, and enamel/dentin samples (2 mm). The fluorescence intensity of specimens was directly measured using an optic fiber associated with a spectrometer (Ocean Optics USB 4000) and recorded in graphic form (Origin 8.0 program). Data were submitted to statistical analysis using Dunnet, Tukey, and Kruskall-Wallis tests. Light absorption of the composite resins was obtained in a spectral range from 250 to 450 nm, and that of dental tissues was between 250 and 300 nm. All composite resins were excited at 398 nm and exhibited maximum emissions of around 485 nm. Fluorescence intensity values for all of the resins showed statistically significant differences (measured in arbitrary units [AUs]), with the exception of groups Z and DVS. Group DVSI had the highest fluorescence intensity values (13539 AU), followed by ODVS (10440 AU), DVS (10146 AU), ES (3946 AU), OES (3841 AU), A (3540 AU), and Z (1146 AU). The fluorescence intensity values for the composite resins differed statistically from those of dental tissues (E=1380 AU; D=6262 AU; E/D=3251 AU). The opacity interfered with fluorescence intensity, and group Z demonstrated fluorescence intensity values closest to that of tooth enamel. It is concluded that the

  8. Viability of imaging structures inside human dentin using dental transillumination

    NASA Astrophysics Data System (ADS)

    Grandisoli, C. L.; Alves-de-Souza, F. D.; Costa, M. M.; Castro, L.; Ana, P. A.; Zezell, D. M.; Lins, E. C.

    2014-02-01

    Dental Transillumination (DT) is a technique for imaging internal structures of teeth by detecting infrared radiation transmitted throughout the specimens. It was successfully used to detect caries even considering dental enamel and dentin scatter infrared radiation strongly. Literature reports enamel's scattering coefficient is 10 to 30 times lower than dentin; this explain why DT is useful for imaging pathologies in dental enamel, but does not disable its using for imaging dental structures or pathologies inside the dentin. There was no conclusive data in the literature about the limitations of using DT to access biomedical information of dentin. The goal in this study was to present an application of DT to imaging internal structures of dentin. Slices of tooth were confectioned varying the thickness of groups from 0.5 mm up to 2,5 mm. For imaging a FPA InGaAs camera Xeva 1.7- 320 (900-1700 nm; Xenics, Inc., Belgium) and a 3W lamp-based broadband light source (Ocean Optics, Inc., USA) was used; bandpass optical filters at 1000+/-10 nm, 1100+/-10 nm, 1200+/-10 nm and 1300+/-50 nm spectral region were also applied to spectral selection. Images were captured for different camera exposure times and finally a computational processing was applied. The best results revealed the viability to imaging dent in tissue with thickness up to 2,5 mm without a filter (900-1700nm spectral range). After these results a pilot experiment of using DT to detect the pulp chamber of an incisive human tooth was made. New data showed the viability to imaging the pulp chamber of specimen.

  9. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    PubMed

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  10. Beneficial effects of hydroxyapatite on enamel subjected to 30% hydrogen peroxide.

    PubMed

    Jiang, Tao; Ma, Xiao; Wang, Zhejun; Tong, Hua; Hu, Jiming; Wang, Yining

    2008-11-01

    To evaluate the effect of combination of hydroxyapatite (HA) and hydrogen peroxide (HP) on color, microhardness and morphology of human tooth enamel. Forty-eight human dental blocks were obtained from 12 pairs of premolars and were randomly divided into four groups. Group DW was treated with distilled water, group HP with 30% HP, group HA+DW with HA mixed with distilled water and group HA+HP with HA mixed with 30% HP. Baseline and final color measurements and microhardness test were carried out before and after bleaching experiments. Two specimens from each group were selected for morphological investigation after final tests. The DeltaE of group HP and HA+HP were significantly higher than those of group DW (p=0.000 and p=0.000) and group HA+DW (p=0.000 and p=0.000). The percentage microhardness loss of group HA+HP was significantly lower than that of group HP (p=0.047), but significantly higher than those of group DW (p=0.000) and group HA+DW (p=0.000). The obvious variation of morphology was only observed on enamel surfaces in group HP. This study suggested that combination of HA and HP was effective in tooth whitening. HA could significantly reduce the microhardness loss of enamel caused by 30% HP and keep enamel surface morphology almost unchanged.

  11. Qualitative Assessment of Wear Resistance and Surface Hardness of Different Commercially Available Dental Porcelain: An in vitro Study.

    PubMed

    Singh, Abhishek; Nagpal, Abhishek; Pawah, Salil; Pathak, Chetan; Issar, Gaurav; Sharma, Pankaj

    2016-09-01

    In an attempt to minimize wear damage to the enamel of antagonist teeth, new low and medium fusing ceramic materials have been developed. Manufacturers usually claim that these ceramics are wear-friendly because of their lower hardness, lower concentrations of crystal phase, and smaller crystal sizes. This study aimed to quantitatively analyze the wear strength of various commercially available dental porcelain with tooth enamel as well as the surface hardness of these dental porcelain. The basic model was designed as a pin on plate arrangement. The tooth specimens were mounted on the stylus which was centered on the ceramic specimen in a wear testing machine. The dental ceramic specimen was centered in the metal die. A load of 40 N was applied at a rate of 80 cycles/minute for 15 minutes. In the current study, mean wear depth (Ra) value, volumetric loss, and surface hardness were obtained by standard quantification method and were statistically evaluated. Ceramco-3 was reported to be most abrasive for enamel; however, Duceram love significantly more abraded itself than the other two, Ceramco-3 and Vita Alpha, and generated the lowest loss of enamel. Also, same abrasive type of wear was revealed for all three variants of tested ceramics. Ceramco-3 was the most abrasive for enamel, while surface roughness (mean wear depth) of Duceram love was maximum and for Ceramco-3 it was minimum. The value of surface roughness for Vita Alpha was in between Duceram love and Ceramco-3. Nonetheless, the mean surface hardness of Duceram love was found to be least and maximum for Vita Alpha. In situations of dental wear and wasting tooth disease (Attrition/Abrasion), Duceram can be applied in lieu of Ceramco-3 so as to prevent worsening of existing dentition. However, in younger patients Vita Alpha would offer maximum durability due to its greater surface hardness.

  12. PIXE analysis of caries related trace elements in tooth enamel

    NASA Astrophysics Data System (ADS)

    Annegarn, H. J.; Jodaikin, A.; Cleaton-Jones, P. E.; Sellschop, J. P. F.; Madiba, C. C. P.; Bibby, D.

    1981-03-01

    PIXE analysis has been applied to a set of twenty human teeth to determine trace element concentration in enamel from areas susceptible to dental caries (mesial and distal contact points) and in areas less susceptible to the disease (buccal surfaces), with the aim of determining the possible roles of trace elements in the curious process. The samples were caries-free anterior incisors extracted for periodontal reasons from subjects 10-30 years of age. Prior to extraction of the sample teeth, a detailed dental history and examination was carried out in each individual. PIXE analysis, using a 3 MeV proton beam of 1 mm diameter, allowed the determination of Ca, Mn, Fe, Cu, Zn, Sr and Pb above detection limits. As demonstrated in this work, the enhanced sensitivity of PIXE analysis over electron microprobe analysis, and the capability of localised surface analysis compared with the pooled samples required for neutron activation analysis, makes it a powerful and useful technique in dental analysis.

  13. In Situ analysis of CO2 laser irradiation on controlling progression of erosive lesions on dental enamel.

    PubMed

    Lepri, Taísa Penazzo; Scatolin, Renata Siqueira; Colucci, Vivian; De Alexandria, Adílis Kalina; Maia, Lucianne Cople; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2014-08-01

    The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty-six slabs of bovine incisors enamel (5 × 3 × 2.5 mm(3) ) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2-day lead-in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross-over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three-way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2 -laser irradiated and non-irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. © 2014 Wiley Periodicals, Inc.

  14. Erosive potential of commonly used beverages, medicated syrup, and their effects on dental enamel with and without restoration: An in vitro study

    PubMed Central

    Trivedi, Krishna; Bhaskar, Vijay; Ganesh, Mahadevan; Venkataraghavan, Karthik; Choudhary, Prashant; Shah, Shalin; Krishnan, Ramesh

    2015-01-01

    Aim: This study evaluates erosive potential of commonly used beverages, medicated syrup, and their effects on dental enamel with and without restoration in vitro. Materials and Methods: Test medias used in this study included carbonated beverage, noncarbonated beverage, high-energy sports drink medicated cough syrup, distilled water as the control. A total of 110 previously extracted human premolar teeth were selected for the study. Teeth were randomly divided into two groups. Test specimens were randomly distributed to five beverages groups and comprised 12 specimens per group. Surface roughness (profilometer) readings were performed at baseline and again, following immersion for 14 days (24 h/day). Microleakage was evaluated. The results obtained were analyzed for statistical significance using SPSS-PC package using the multiple factor ANOVA at a significance level of P < 0.05. Paired t-test, Friedman test ranks, and Wilcoxon signed ranks test. Results: For surface roughness high-energy sports drink and noncarbonated beverage showed the highly significant difference with P values of 0.000 and 0.000, respectively compared to other test media. For microleakage high-energy sports drink had significant difference in comparison to noncarbonated beverage (P = 0.002), medicated syrup (P = 0.000), and distilled water (P = 0.000). Conclusion: High-energy sports drink showed highest surface roughness value and microleakage score among all test media and thus greater erosive potential to enamel while medicated syrup showed least surface roughness value and microleakage among all test media. PMID:26538901

  15. Confocal laser scanning microscopy and area-scale analysis used to quantify enamel surface textural changes from citric acid demineralization and salivary remineralization in vitro.

    PubMed

    Austin, R S; Giusca, C L; Macaulay, G; Moazzez, R; Bartlett, D W

    2016-02-01

    This paper investigates the application of confocal laser scanning microscopy to determine the effect of acid-mediated erosive enamel wear on the micro-texture of polished human enamel in vitro. Twenty polished enamel samples were prepared and subjected to a citric acid erosion and pooled human saliva remineralization model. Enamel surface microhardness was measured using a Knoop hardness tester, which confirmed that an early enamel erosion lesion was formed which was then subsequently completely remineralized. A confocal laser scanning microscope was used to capture high-resolution images of the enamel surfaces undergoing demineralization and remineralization. Area-scale analysis was used to identify the optimal feature size following which the surface texture was determined using the 3D (areal) texture parameter Sa. The Sa successfully characterized the enamel erosion and remineralization for the polished enamel samples (P<0.001). Areal surface texture characterization of the surface events occurring during enamel demineralization and remineralization requires optical imaging instrumentation with lateral resolution <2.5 μm, applied in combination with appropriate filtering in order to remove unwanted waviness and roughness. These techniques will facilitate the development of novel methods for measuring early enamel erosion lesions in natural enamel surfaces in vivo. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Surface temperature and thermal penetration depth of Nd:YAG laser applied to enamel and dentin

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Neev, Joseph; Goodis, Harold E.; Berns, Michael W.

    1992-06-01

    The determination of the thermal effects of Nd:YAG laser energy on enamel and dentin is critical in understanding the clinical applications of caries removal and surface modification. Recently extracted non-carious third molars were sterilized with gamma irradiation. Calculus and cementum were removed using scaling instruments and 600 grit sand paper. The smear layer produced by sanding was removed with a solution of 0.5 M EDTA (pH 7.4) for two minutes. Enamel and dentin surfaces were exposed to a pulsed Nd:YAG laser with 150 microsecond(s) pulse duration. Laser energy was delivered to the teeth with a 320 micrometers diameter fiberoptic delivery system, for exposure times of 1, 10 and 30 seconds. Laser parameters varied from 0.3 to 3.0 W, 10 to 30 Hz and 30 to 150 mJ/pulse. Other conditions included applications of hot coffee, carbide bur in a dental air-cooled turbine drill and soldering iron. Infrared thermography was used to measure the maximum surface temperature on, and thermal penetration distance into enamel and dentin. Thermographic data were analyzed with a video image processor to determine the diameter of maximum surface temperature and thermal penetration distance of each treatment. Between/within statistical analysis of variance (p enamel and dentin in thermal effects from the Nd:YAG laser. Enamel had lower maximum surface temperatures than dentin for all laser powers and times. The surface temperature ranged from 34 +/- 1 degree(s)C to 110 +/- 4 degree(s)C on enamel and 62 +/- 5 degree(s)C to 392 +/- 82 degree(s)C on dentin. As power and time of exposure increased, both the maximum surface temperature and thermal penetration distance increased. The greatest length of thermal effect on the surface (11.0 +/- 0.9 mm) and thermal penetration distance (4.7 +/- 0.4 mm) recorded were caused by the air-cooled turbine drill on dentin. Surface temperatures were much higher for the Nd:YAG laser applied to enamel

  17. The influence of dental alloys on three-body wear of human enamel and dentin in an inlay-like situation.

    PubMed

    Graf, K; Johnson, G H; Mehl, A; Rammelsberg, P

    2002-01-01

    This in vitro study evaluated the effect of metal alloys on three-body wear resistance of enamel and dentin, and vice versa. Three-body wear of human enamel, dentin, a soft gold alloy (BiOcclus Inlay), a CoCr alloy (Remanium 2000), a resin cement (Variolink II) and a zinc oxide phosphate cement (Harvard) was investigated using the ACTA-machine. Sample chambers of eight sample wheels were prepared with pure materials or combinations of human tooth substance, alloys and cement, simulating an inlay-like situation. After 100,000 and 200,000 cycles in a millet suspension with a spring force of 20 N, the amount of abraded material was profilometrically measured and evaluated by 3D surface data analysis. After 200,000 cycles, the materials demonstrated a mean loss of 0.41 microm for CoCr, 51 microm for gold, 57 microm for enamel, 164 microm for dentin, 79 microm for Variolink and 369 microm for Harvard. Using ANOVA and the Games-Howell-test, resin cement, enamel and gold were a subset not shown to differ, as was zinc phosphate cement and dentin. CoCr demonstrated the least wear and differed significantly from all materials. Enamel wear was significantly reduced in mixed chambers with CoCr, and gold after 200,000 cycles compared to enamel in pure chambers. In summary, a soft gold alloy can be recommended for inlays when considering three-body abrasion since the wear rate of the "soft" gold alloy corresponded to that of human enamel.

  18. Current dental adhesives systems. A narrative review.

    PubMed

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  19. Near-surface structural examination of human tooth enamel subject to in vitro demineralization and remineralization

    NASA Astrophysics Data System (ADS)

    Gaines, Carmen Veronica

    The early stages of chemical tooth decay are governed by dynamic processes of demineralization and remineralization of dental enamel that initiates along the surface of the tooth. Conventional diagnostic techniques lack the spatial resolution required to analyze near-surface structural changes in enamel at the submicron level. In this study, slabs of highly-polished, decay-free human enamel were subjected to 0.12M EDTA and buffered lactic acid demineralizing agents and MI Paste(TM) and calcifying (0.1 ppm F) remineralizing treatments in vitro. Grazing incidence x-ray diffraction (GIXD), a technique typically used for thin film analysis, provided depth profiles of crystallinity changes in surface enamel with a resolution better than 100 nm. In conjunction with nanoindentation, a technique gaining acceptance as a means of examining the mechanical properties of sound enamel, these results were corroborated with well-established microscopy and Raman techniques to assess the nanohardness, morphologies and chemical nature of treated enamel. Interestingly, the average crystallite size of surface enamel along its c-axis dimension increased by nearly 40% after a 60 min EDTA treatment as detected by GIXD. This result was in direct contrast to the obvious surface degradation observed by microscopic and confocal Raman imaging. A decrease in nanohardness from 4.86 +/- 0.44 GPa to 0.28 +/- 0.10 GPa was observed. Collective results suggest that mineral dissolution characteristics evident on the micron scale may not be fully translated to the nanoscale in assessing the integrity of chemically-modified tooth enamel. While an intuitive decrease in enamel crystallinity was observed with buffered lactic acid-treated samples, demineralization was too slow to adequately quantify the enamel property changes seen. MI Paste(TM) treatment of EDTA-demineralized enamel showed preferential growth along the a-axis direction. Calcifying solution treatments of both demineralized sample types

  20. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    PubMed

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  1. Dental Treatment Needs among Children and Adolescents Residing in an Ugandan Orphanage.

    PubMed

    Rubin, Pessia Friedman; Winocur, Ephraim; Erez, Assaf; Birenboim-Wilensky, Ravit; Peretz, Benjamin

    Previous studies focused on the dental caries status of East African children and not on their overall dental needs. Urban children consume more sugar-rich foods. To assess overall dental treatment needs of children living in an orphanage in Uganda. Teeth were diagnosed as needing treatment by obvious frank carious lesions (WHO criteria), temporary fillings, staining, or very deep pit and/or fissures possibly requiring sealants. Calculus or crowding in the mandibular anterior region and evidence of tooth fractures were recorded, as were signs of wear on the mandibular molars and canines and the maxillary incisors. Most of the primary teeth (64%) required no dental treatment, but almost all (98%) of the permanent teeth did. A mean (±standard deviation) of 4.81±1.92 permanent teeth required treatment. The mean number of missing teeth was 0.47. Thirty-one children (20.2%) had crowding, 52 (34%) had calculus, and 49 (32%) had signs of attrition on primary and permanent molar teeth (45 enamel only and 4 enamel and dentin). Most of the primary teeth required no dental treatment, while the vast majority of permanent teeth did, possibly in association with high sugar cane consumption and poor brushing habits among older children.

  2. TiF(4) varnish-A (19)F-NMR stability study and enamel reactivity evaluation.

    PubMed

    Nóbrega, Carolina Bezerra Cavalcanti; Fujiwara, Fred Yukio; Cury, Jaime Aparecido; Rosalen, Pedro Luiz

    2008-01-01

    The aim of this study was to develop a titanium tetrafluoride (TiF(4)) varnish and evaluate the stability of the formulation and its reactivity with dental enamel. The varnish was prepared in a resinous matrix using ethanol 96% as solvent. Samples (n=45) were aged at 65 degrees C and 30% of relativity humidity (RE n degrees 01/05-ANVISA) and after 3, 6, 9 and 12 months, nine samples were removed for evaluation and compared with fresh samples. Chemical stability of TiF(4) varnish was determinate by (19)F-NMR and the reactivity of the formulation was quantified by formation of fluoride loosely (CaF(2)) and firmly bound (fluorapatite; FA) to enamel. For reactivity comparisons, a varnish without TiF(4) was used as control. The loss of soluble fluoride was about 0.9% after one year of storage. The values of the reactivity (mean+/-S.D.) of fresh, aged at 3, 6, 9 and 12 months and control samples were: CaF(2) (microg F/mm(2)): 89.3+/-27.5(a); 54.5+/-14.3(b); 51.2+/-29.8(b); 69.3+/-21.3(a); 48.0+/-27.4(b); 0.10+/-0.07(c), FA (microg F/g): 2477.5+/-1044.0(a); 2484.8+/-992.0(a); 2580.0+/-1383.9(a); 2517.2+/-929.9(a); 2121.0+/-1059.2(a); 330.0+/-180.0(b), respectively. Means followed by distinct letters were statistically different (p<0.05). After one year of storage, the formulation was chemically stable and the levels of FA were maintained. However there was an initial decrease in the ability to form CaF(2).

  3. Precision of 655nm Confocal Laser Profilometry for 3D surface texture characterisation of natural human enamel undergoing dietary acid mediated erosive wear.

    PubMed

    Mullan, F; Mylonas, P; Parkinson, C; Bartlett, D; Austin, R S

    2018-03-01

    To assess the precision of optical profilometry for characterising the 3D surface roughness of natural and polished human enamel in order to reliably quantify acid mediated surface roughness changes in human enamel. Forty-two enamel samples were prepared from extracted human molars and either polished flat or left unmodified. To investigate precision, the variability of thirty repeated measurements of five areas of one polished and one natural enamel sample was assessed using 655nm Confocal Laser Profilometry. Remaining samples were subjected to forty-five minutes orange juice erosion and microstructural changes were analysed using Sa roughness change (μm) and qualitatively using surface/subsurface confocal microscopy. Enamel surface profilometry from the selected areas revealed maximal precision of 5nm for polished enamel and 23nm for natural enamel. After erosion, the polished enamel revealed a 48% increase in mean (SD) Sa roughness of 0.10 (0.07)μm (P<0.05), whereas in contrast the natural enamel revealed a 45% decrease in mean (SD) roughness of -0.32 (0.42)μm (P<0.05). These data were supported by qualitative confocal images of the surface/subsurface enamel. This study demonstrates a method for precise surface texture measurement of natural human enamel. Measurement precision was superior for polished flat enamel in contrast to natural enamel however, natural enamel responds very differently to polished enamel when exposed to erosion challenges. Therefore, thus future studies characterising enamel surface changes following erosion on natural enamel may provide more clinically relevant responses in comparison to polished enamel. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel

    PubMed Central

    Sabel, N.; Robertson, A.; Nietzsche, S.; Norén, J. G.

    2012-01-01

    Enamel structure is of importance in demineralization. Differences in porosity in enamel effect the rate of demineralization, seen between permanent and deciduous teeth. Individual differences have been shown in the mean mineral concentration values in enamel, the role of this in demineralization is not thoroughly investigated. The aim of this study was to study variations of depths of artificial lesions of demineralization and to analyze the depth in relation to variations in the chemical and mineral composition of the enamel. A demineralized lesion was created in second primary molars from 18 individuals. Depths of lesions were then related to individual chemical content of the enamel. Enamel responded to demineralization with different lesion depths and this was correlated to the chemical composition. The carbon content in sound enamel was shown to be higher where lesions developed deeper. The lesion was deeper when the degree of porosity of the enamel was higher. PMID:22629152

  5. Comparison of the effect of resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on surface hardness and streptococcus mutans adhesion to artificial enamel lesions.

    PubMed

    Aziznezhad, Mahdiye; Alaghemand, Homayoon; Shahande, Zahra; Pasdar, Nilgoon; Bijani, Ali; Eslami, Abdolreza; Dastan, Zohre

    2017-03-01

    Dental caries is a major public health problem, and Streptococcus mutans is considered the main causal agent of dental caries. This study aimed to compare the effect of three re-mineralizing materials: resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on the surface hardness and adhesion of Streptococcus mutans as noninvasive treatments for initial enamel lesions. This experimental study was conducted from December 2015 through March 2016 in Babol, Iran. Artificial enamel lesions were created on 60 enamel surfaces, which were divided into two groups: Group A and Group B (30 subjects per group). Group A was divided into three subgroups (10 samples in each subgroup), including fluoride varnish group, nano-hydroxy apatite paste group (Nano P paste), and resin infiltrant group (Icon-resin). In Group A, the surface hardness of each sample was measured in three stages: First, on an intact enamel (baseline); second, after creating artificial enamel lesions; third, after application of re-mineralizing materials. In Group B, the samples were divided into five subgroups, including intact enamel, demineralized enamel, demineralized enamel treated with fluoride varnish, Nano P paste, and Icon-resin. In Group B, standard Streptococcus mutans bacteria adhesion (PTCC 1683) was examined and reported in terms of colony forming units (CFU/ml). Then, data were analyzed using ANOVA, Kruskal-Wallis, Mann-Whitney, and post hoc tests. In Group A, after treatment with re-mineralizing materials, the Icon-resin group had the highest surface hardness among the studied groups, then the Nano P paste group and fluoride varnish group, respectively (p = 0.035). In Group B, in terms of bacterial adhesion, fluoride varnish group had zero bacterial adhesion level, and then the Nano P paste group, Icon-resin group, intact enamel group, and the de-mineralized enamel group showed bacterial adhesion increasing in order (p < 0.001). According to the study among the examined materials

  6. Influence of Conditioning Time of Universal Adhesives on Adhesive Properties and Enamel-Etching Pattern.

    PubMed

    Cardenas, A M; Siqueira, F; Rocha, J; Szesz, A L; Anwar, M; El-Askary, F; Reis, A; Loguercio, A

    2016-01-01

    To evaluate the effect of application protocol in resin-enamel microshear bond strength (μSBS), in situ degree of conversion, and etching pattern of three universal adhesive systems. Sixty-three extracted third molars were sectioned in four parts (buccal, lingual, and proximals) and divided into nine groups, according to the combination of the main factors-Adhesive (Clearfil Universal, Kuraray Noritake Dental Inc, Tokyo, Japan; Futurabond U, VOCO, Cuxhaven, Germany; and Scotchbond Universal Adhesive, 3M ESPE, St Paul, MN, USA)-and enamel treatment/application time (etch-and-rinse mode [ER], self-etch [SE] application for 20 seconds [SE20], and SE application for 40 seconds [SE40]). Specimens were stored in water (37°C/24 h) and tested at 1.0 mm/min (μSBS). The degree of conversion of the adhesives at the resin-enamel interfaces was evaluated using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a scanning electron microscope. Data were analyzed with two-way analysis of variance and Tukey test (α=0.05). In general, the application of the universal adhesives in the SE40 produced μSBS and degree of conversion that were higher than in the SE20 (p<0.01) and similar to the ER mode. The deepest enamel-etching pattern was obtained in the ER mode, followed by the SE40. The active and prolonged application of universal adhesives in the SE mode may be a viable alternative to increase the degree of conversion, etching pattern, and resin-enamel bond strength.

  7. Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide

    PubMed Central

    Deng, Meng; Wen, Hai-Lin; Dong, Xiao-Li; Li, Feng; Xu, Xin; Li, Hong; Li, Ji-Yao; Zhou, Xue-Dong

    2013-01-01

    Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized water (DDW), BG, HP, BG before HP, BG after HP and BG during HP. Colorimetric and microhardness tests were performed before and after the treatment procedure. Representative specimens from each group were selected for morphology investigation after the final tests. A significant color change was observed in group HP, BG before HP, BG after HP and BG during HP. The microhardness loss was in the following order: group HP>BG before HP, BG after HP>BG during HP>DDW, BG. The most obvious morphological alteration of was observed on enamel surfaces in group HP, and a slight morphological alteration was also detected in group BG before HP and BG after HP. Our findings suggest that the combination use of BG and HP could not impede the tooth whitening efficacy. Using BG during HP brought better protective effect than pre/post-bleaching use of BG, as it could more effectively reduce the mineral loss as well as retain the surface integrity of enamel. BG may serve as a promising biomimetic adjunct for bleaching therapy to prevent/restore the enamel damage induced by bleaching agents. PMID:23743618

  8. Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide.

    PubMed

    Deng, Meng; Wen, Hai-Lin; Dong, Xiao-Li; Li, Feng; Xu, Xin; Li, Hong; Li, Ji-Yao; Zhou, Xue-Dong

    2013-06-01

    Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized water (DDW), BG, HP, BG before HP, BG after HP and BG during HP. Colorimetric and microhardness tests were performed before and after the treatment procedure. Representative specimens from each group were selected for morphology investigation after the final tests. A significant color change was observed in group HP, BG before HP, BG after HP and BG during HP. The microhardness loss was in the following order: group HP>BG before HP, BG after HP>BG during HP>DDW, BG. The most obvious morphological alteration of was observed on enamel surfaces in group HP, and a slight morphological alteration was also detected in group BG before HP and BG after HP. Our findings suggest that the combination use of BG and HP could not impede the tooth whitening efficacy. Using BG during HP brought better protective effect than pre/post-bleaching use of BG, as it could more effectively reduce the mineral loss as well as retain the surface integrity of enamel. BG may serve as a promising biomimetic adjunct for bleaching therapy to prevent/restore the enamel damage induced by bleaching agents.

  9. Dental erosion: a widespread condition nowadays? A cross-sectional study among a group of adolescents in Norway.

    PubMed

    Søvik, Jenny Bogstad; Tveit, Anne Bjørg; Storesund, Trond; Mulic, Aida

    2014-10-01

    This study aimed to investigate the prevalence, distribution and severity of erosive wear in a group of 16-18-year-olds in the western part of Norway. A second aim was to describe possible associations between caries experience, socioeconomic background and origin of birth. Adolescents (n = 795) attending recall examinations at Public Dental Service (PDS) clinics were also examined for dental erosive wear on index surfaces, using the Visual Erosion Dental Examination scoring system (VEDE). In total, 795 individuals were examined. Dental erosive wear was diagnosed in 59% of the population (44% erosive wear in enamel only, 14% combination of enamel and dentine lesions, 1% erosive wear in dentine only). The palatal surfaces of upper central incisors and occlusal surfaces of first lower molars were affected the most (33% and 48% of all surfaces, respectively). Cuppings on molars were registered in 66% of the individuals with erosive wear. Erosive wear was significantly more prevalent among men (63%) than women (55%) (p = 0.018). There were no significant associations between dental erosive wear and caries experience, socioeconomic background or origin of birth.

  10. Dental Caries Experience in Texan Children with Cleft Lip and Palate.

    PubMed

    Sunderji, Sabrina; Acharya, Bhavini; Flaitz, Catherine; Chiquet, Brett

    2017-09-15

    The purpose of this study was to assess the caries experience in the primary dentition of children born with cleft lip and palate (CLP). A retrospective chart review was conducted on subjects between two and six years old recruited from a university-based pediatric dentistry residency clinic. The number of dental visits and professional fluoride applications, the plaque index and treatment modality, and the presence/location of caries, white spot lesions, and enamel hypoplastic lesions were compared between CLP patients and healthy age- and gender-matched controls. Descriptive statistics, Student's t test, Mann-Whitney U test, and regression analysis were completed. A total of 183 charts were reviewed. Compared to healthy children, CLP children had increases in number of dental visits (P<0.001), decayed-missing-filled surfaces (dmfs; P<0.001), decayed-missing-filled teeth (dmft; P<0.001), enamel hypoplastic lesions (P=0.003), treatment completed under general anesthesia (P<0.001), plaque score (P<0.001), and caries increment between baseline and most recent oral examination (P=0.003). Regression analysis revealed a positive association between age and dmft scores within the CLP group (P=0.018). The caries experience of unilateral and bilateral CLP cases was the same (P>0.05). Children with cleft lip and palate are at a greater risk of enamel hypoplasia and dental caries. No significant caries experience difference was found between unilateral or bilateral CLP cases.

  11. [Wear behavior of enamel and veneering ceramics].

    PubMed

    Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng; Meng, Yu-kun

    2007-10-01

    To compare the wear between the enamel and two types of dental decoration porcelains for all-ceramic restorations (Vita-alpha, Vintage AL). Friction coefficients, wear scar width, element concentrations and wear surface evolution were considered relatively to the tribology of that in vivo situation. The wear scars of the samples were characterized by means of dynamic atomic force microscopy (DFM). The different element concentrations of the surface before/after the wear test were determined with energy dispersion spectrometry (EDS). The friction coefficient varied from time in each kind of material. The statistical differences between materials were observed in wear scar width and properties of materials (P<0.05). DFM results showed wear surface of natural tooth full of abrasive particles and denaturation of dental texture. Wear surface of veneering ceramics consisted mainly of abrasive particles, plough and microcracking. EDS results showed that the element concentration of Fe was obviously found on the samples after wear. The main underlying mechanisms of natural teeth wear are abrasive, and denaturation of dental texture. Abrasive wear, adhesion and fatigue of veneering ceramics characterize the wear patterns which plays different role in Vita-alpha and Vintage AL. The wear patterns of veneering ceramics can be described as mild wear.

  12. Saliva with reduced calcium and phosphorous concentrations: Effect on erosion dental lesions.

    PubMed

    Denucci, Giovanna Corrêa; Mantilla, Taís Fonseca; Amaral, Flávia Lucisano Botelho; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes; Turssi, Cecilia Pedroso

    2018-02-08

    To investigate whether saliva formulations with reduced calcium (Ca) and inorganic phosphorous (Pi) concentration would affect dental erosion caused by hydrochloric acid (HCl). Enamel and root dentine bovine slabs were embedded, polished and measured for surface Knoop microhardness (SMH). After reference areas were created, specimens were exposed to HCl solution (0.01M; pH 2; 120s) and immersed in artificial salivas (6h) containing three different Ca/Pi concentrations (n=15), which simulate serum conditions of normo-, mild- or severe hypocalcaemia. The control group was immersed in Ca/Pi-free saliva. The study protocol was carried out 2x/day for 5 days. Surface loss of enamel and root dentine was assessed using an optical profilometer and SMH was remeasured for enamel. ANOVA (p<0.001) and Tukey's test showed that enamel loss in groups subjected to artificial salivas that simulated mild- or severe hypocalcaemia did not differ from that resembling normocalcemia. %SMH was lower when saliva was mildly- and normally-concentrated in Ca/Pi (p<0.001). Root dentine loss was higher in saliva simulating severe hypocalcaemia than in those referring to mild, hypo- and normocalcemia. Depending on the dental substrate, salivary formulations resembling serum hypocalcaemia affected surface loss due to erosion and rehardening thereof. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Effects of Diode Laser Debonding of Ceramic Brackets on Enamel Surface and Pulpal Temperature.

    PubMed

    Yassaei, Soghra; Soleimanian, Azadeh; Nik, Zahra Ebrahimi

    2015-04-01

    Debonding of ceramic brackets due to their high bond strength and low fracture toughness is one of the most challenging complications of orthodontic clinicians. Application of lasers might be effective in the debonding of ceramic brackets as they reduce bond strength of resins and, therefore, can eliminate the risk of enamel damage. However, the thermal effects of laser radiation on dental tissue can cause undesirable results. The aim of this study is to evaluate the enamel surface characteristics and pulpal temperature changes of teeth after debonding of ceramic brackets with or without laser light. Thirty polycrystalline brackets were bonded to 30 intact extracted premolars, and later debonded conventionally or through a diode laser (2.5 W, 980 nm). The laser was applied for 10 seconds with sweeping movement. After debonding, the adhesive remnant index (ARI), the lengths and frequency of enamel cracks were compared among the groups. The increase in intrapulpal temperature was also measured. The collected data were analyzed by Chi-squared test and paired t-test using Statistical Package for Social Sciences (SPSS) software. There was no case of enamel fracture in none of the groups. Laser debonding caused a significant decrease in the frequency and lengths of enamel cracks, compared to conventional debonding. In laser debonding group, the increase in intrapulpal temperature (1.46°C) was significantly below the benchmark of 5.5°C for all the specimens. No significant difference was observed in ARI scores among the groups. Laser-assisted debonding of ceramic brackets could reduce the risk of enamel damage, without causing thermal damage to the pulp. However, some increases in the length and frequency of enamel cracks should be expected with all debonding methods.

  14. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    NASA Astrophysics Data System (ADS)

    Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.

    2013-05-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.

  15. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: nanomechanical properties and microtribological behaviour study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Zheng, J.; Zhang, Y. F.; Qian, L. M.; Zhou, Z. R.

    2013-10-01

    Casein phosphopeptide-stabilized amorphous calcium phosphate (CPP-ACP) has been used to enhance tooth remineralization in the dental clinic. But the contribution of CPP-ACP to the remineralization of acid-eroded human tooth enamel is of widespread controversy. To confirm the application potential of CPP-ACP in the remineralization repair of tooth erosion caused by acid-attack, the effect of remineralization in vitro in 2% w/v CPP-ACP solution on the acid-eroded human tooth enamel was investigated in this study. The repair of surface morphology and the improvement of nanomechanical and microtribological properties were characterized with laser confocal scanning microscope, scanning electron microscope, nanoindentation tester and nanoscratch tester. Results showed that a layer of uneven mineral deposits, which were mainly amorphous calcium phosphate (ACP) in all probability, was observed on the acid-eroded enamel surface after remineralization. Compared with the acid-eroded enamel surface, the nanoindentation hardness and Young's modulus of the remineralized enamel surface obviously increased. Both the friction coefficient and wear volume of the acid-eroded enamel surface decreased after remineralization. However, both the nanomechanical and the anti-wear properties of the remineralized enamel surface were still inferior to those of original enamel surface. In summary, tooth damage caused by acid erosion could be repaired by remineralization in CPP-ACP solution, but the repair effect, especially on the nanomechanical and anti-wear properties of the acid-eroded enamel, was limited. These results would contribute to a further exploration of the remineralization potential of CPP-ACP and a better understanding of the remineralization repair mechanism for acid-eroded human tooth enamel.

  16. Evaluation of the medical exposure doses regarding dental examinations with different X-ray instruments

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chi; Chuang, Keh-Shih; Yu, Cheng-Ching; Chao, Jiunn-Hsing; Hsu, Fang-Yuh

    2015-11-01

    Modern dental X-ray examination that consists of traditional form, panorama, and cone-beamed 3D technologies is one of the most frequent diagnostic applications nowadays. This study used the Rando Phantom and thermoluminescence dosimeters (TLD) to measure the absorbed doses of radiosensitive organs recommended by International Commission on Radiological Protection (ICRP), and whole body effective doses which were delivered due to dental X-ray examination performed with different types of X-ray instrument. Besides, enamel samples which performed reading with Electronic Paramagnetic Resonance (EPR) procedure were also used to estimate the tooth doses. EPR is a dose reconstruction method of measuring free radicals induced by radiation exposure to the calcified tissue (mainly in the tooth enamel or bone) to evaluate the accepted high dose. The tooth doses estimated by TLD and EPR methods were compared. Relationships between the tooth doses and effective doses by dental X-ray examinations with different types of X-ray equipment were investigated in this work.

  17. Effect of Popping Chocolate and Candy on Enamel Microhardness of Primary and Permanent Teeth.

    PubMed

    Tabari, Mitra; Alaghemand, Homayoon; Qujeq, Durdi; Mohammadi, Elahe

    2017-01-01

    Dental erosion is a common disease in children. Food diets, due to high amounts of juice, soft drinks, chewing gum, and acidic chocolate, are one of the most important risk factors in erosive processes among children. The aim of this study was to evaluate the effect of candy and chocolate on the microhardness of tooth enamel. Two types of popping candy and one type of popping chocolate were used in this study. Thirty-three healthy permanent premolar teeth and 33 primary incisor teeth (A or B) were selected. Five grams of each popping chocolate or candy was dissolved with 2 ml of artificial saliva. Subsequently, their pH and titrable acidity (TA) as well as microhardness and surface roughness of enamel were examined in the laboratory. Data were analyzed and evaluated Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY through independent t -test, paired t -test, Tukey test, and ANOVA. The results of this study showed that only the pH of the candies was below the critical pH of the enamel (5.5) and their TA was B = 0.20 and C = 0.21. The most significant effect on the enamel microhardness of the permanent and primary teeth was by the following types of candy: orange flavor (C), strawberry flavor (B), and chocolate (A), respectively. This difference was significant ( P < 0.001) and the surface roughness increased after exposure. This study showed that popping chocolate and candy reduces microhardness of enamel.

  18. Evaluation of the colour change in enamel and dentine promoted by the interaction between 2% chlorhexidine and auxiliary chemical solutions.

    PubMed

    Souza, Matheus; Cecchin, Doglas; Barbizam, Joao V B; Almeida, José F A; Zaia, Alexandre Augusto; Gomes, Brenda P F A; Ferraz, Caio C R

    2013-12-01

    To evaluate the colour change in enamel and dentine, promoted by interaction of 2% chlorhexidine gluconate (CHX) with 5.25% sodium hypochlorite (NaOCl) and 17% ethylenediaminetetraacetic acid (EDTA). Fragments containing enamel and dentine were obtained from the crowns of extracted bovine incisors. Before and after immersion of the samples in the substances, they were evaluated with reference to the colour of the enamel and dentine. The values obtained in numerical scores were subjected to statistical analysis using Wilcoxon test. A colour change in the enamel and dentine in groups treated with CHX gel + NaOCl and CHX gel + NaOCl + EDTA, and a change in colour only in the dentine in groups treated with CHX solution + NaOCl and CHX solution + NaOCl + EDTA. When used prior to NaOCl, CHX has the ability to induce a colour change in dental structures. © 2011 The Authors. Australian Endodontic Journal © 2011 Australian Society of Endodontology.

  19. The types and management of dental trauma during military service in Finland.

    PubMed

    Antikainen, Atte; Patinen, Pertti; Päkkilä, Jari; Tjäderhane, Leo; Anttonen, Vuokko

    2018-04-01

    All Finnish males must attend compulsory military service that lasts from 6 months to 1 year. About 25 000 males (approximately 80% of each age cohort) and 400 volunteer females complete the service annually. The aim of the study was to investigate the types of dental trauma occurring among Finnish conscripts during their military service. The article also focused on how dental trauma is treated in the Finnish Defence Forces. All dental records in the Defence Forces' patient register concerning dental trauma during the years 2011 and 2012 were analysed by tooth number, treatment procedures and number of visits. According to the patient register, 361 conscripts suffered an oral trauma during their military service; thus, the average annual incidence was 7.2 trauma per 1000 conscripts. A total of 483 teeth were traumatized in the 2-year period. The most frequently traumatized teeth were the maxillary central incisors (61%), and the most common findings were enamel or enamel-dentin fractures (63% of all findings). Severe trauma was not common, and the most severe ones occurred during off-duty hours. The most common treatment was direct filling (n = 189 patients). Only 53 patients had soft tissue injuries (bruises, wounds). Among patients with dental trauma, the mean number of visits to the Defence Forces' dental clinic was 1.9. Great variation exists in recording findings concerning dental and oral trauma. Minor trauma is common. In all cases, recording trauma and treatments should be performed carefully. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Dental indicators of adaptation in the Sahara Desert during the Late Holocene.

    PubMed

    Nikita, E; Mattingly, D; Lahr, M M

    2014-10-01

    The present paper examines dental diseases and linear enamel hypoplasia among the Garamantes, a Late Holocene Saharan population, and aims to draw conclusions about nutrition and adaptation to a hyper-arid environment. Archaeological evidence suggests that the Garamantian diet included animal protein and local, Mediterranean and Near Eastern plants. Moreoever, although the Garamantes had developed urban centres, the size of these was not large enough to allow for particularly unhygienic conditions to appear. The above archaeological findings were partly corroborated by the current bioarchaeological study. At an intra-population level, the Garamantes showed limited sex differences in dental disease prevalence, while all dental conditions increased in frequency with age, as expected. At an inter-population level, the frequency of all dental conditions was comparable to that found among other North African groups, with the exception of ante-mortem tooth loss. The low frequency of most dental conditions is an indication that the Garamantian diet was overall balanced, while the high frequency of ante-mortem tooth loss may be related to factors such as oral hygiene, food preparation or eating mode, which cannot be controlled for osteologically. Finally, the low frequency of enamel hypoplasia suggests either that the Sahara did not inflict particular stresses on the population, or, more likely, that the Garamantes had developed effective mechanisms for coping with their natural environment. Copyright © 2014 Elsevier GmbH. All rights reserved.