Science.gov

Sample records for deoxyribonucleic acid base

  1. Adansonian Analysis and Deoxyribonucleic Acid Base Composition of Serratia marcescens

    PubMed Central

    Colwell, R. R.; Mandel, M.

    1965-01-01

    Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of Serratia marcescens. J. Bacteriol. 89:454–461. 1965.—A total of 33 strains of Serratia marcescens were subjected to Adansonian analysis for which more than 200 coded features for each of the organisms were included. In addition, the base composition [expressed as moles per cent guanine + cytosine (G + C)] of the deoxyribonucleic acid (DNA) prepared from each of the strains was determined. Except for four strains which were intermediate between Serratia and the Hafnia and Aerobacter group C of Edwards and Ewing, the S. marcescens species group proved to be extremely homogeneous, and the different strains showed high affinities for each other (mean similarity, ¯S = 77%). The G + C ratio of the DNA from the Serratia strains ranged from 56.2 to 58.4% G + C. Many species names have been listed for the genus, but only a single clustering of the strains was obtained at the species level, for which the species name S. marcescens was retained. S. kiliensis, S. indica, S. plymuthica, and S. marinorubra could not be distinguished from S. marcescens; it was concluded, therefore, that there is only a single species in the genus. The variety designation kiliensis does not appear to be valid, since no subspecies clustering of strains with negative Voges-Proskauer reactions could be detected. The characteristics of the species are listed, and a description of S. marcescens is presented. PMID:14255714

  2. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi

    2015-08-01

    Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.

  3. Deoxyribonucleic acid in Nitrobacter carboxysomes.

    PubMed Central

    Westphal, K; Bock, E; Cannon, G; Shively, J M

    1979-01-01

    Carboxysomes were isolated from Nitrobacter winogradskyi and Nitrobacter agilis. The icosahedral particles contained double-stranded deoxyribonucleic acid (DNA). In the presence of ethidium bromide and cesium chloride, the particle-bound DNA had a buoyant density of rho 25 = 1.701 g/cm3. Electron microscopy revealed the DNA to be a 14-micron circular molecule. Images PMID:227833

  4. ADANSONIAN ANALYSIS AND DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF SOME GRAM-NEGATIVE BACTERIA

    PubMed Central

    Colwell, R. R.; Mandel, M.

    1964-01-01

    Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of some gram-negative bacteria. J. Bacteriol. 87:1412–1422. 1964.—The deoxyribonucleic acid (DNA) base compositions and S values for a minimum of 134 coded properties were determined for representative cultures of the genera Pseudomonas, Xanthomonas, Aeromonas, Vibrio, Aerobacter, Escherichia, Alcaligenes, and Flavobacterium. Those cultures having a high degree of similarity by the criterion of numerical taxonomy were found to have similar DNA base compositions. The relative affinities of clusters of cultures suggest taxonomic relations. Eleven species of Xanthomonas might be a single species, and V. metschnikovii was shown to be more closely related to enteric bacteria than to other vibrios which, in turn, were found to be like pseudomonads. Aeromonas was found to be intermediate in similarity to enterics and pseudomonads and divisible into at least two, but possibly three, species. F. aquatile was unlike any of the other organisms studied, and its DNA also differed greatly in composition from other representatives of the genus. PMID:14188722

  5. Deoxyribonucleic acid-based hybrid thin films for potential application as high energy density capacitors

    NASA Astrophysics Data System (ADS)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grabowski, Christopher A.; Terry Murray, P.; Grote, James G.

    2014-03-01

    Deoxyribonucleic acid (DNA) based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA (cetyltrimethylammonium) complex/sol-gel ceramic hybrid thin film devices have demonstrated reproducibility and stability in temperature- and frequency-dependent dielectric properties with dielectric constant k ˜ 5.0 (1 kHz), as well as reliability in DC voltage breakdown measurements, attaining values consistently in the range of 300-350 V/μm. The electrical/dielectric characteristics of DNA-CTMA films with sol-gel-derived ceramics were examined to determine the critical energy storage parameters such as voltage breakdown and dielectric constant.

  6. Reexamination of the Association Between Melting Point, Buoyant Density, and Chemical Base Composition of Deoxyribonucleic Acid

    PubMed Central

    De Ley, J.

    1970-01-01

    The equations currently used for the calculation of the chemical base composition of deoxyribonucleic acid (DNA), expressed as moles per cent guanine plus cytosine (% GC), from either buoyant density (ρ) or midpoint of thermal denaturation (Tm) were recalculated by using only sets of data on DNA determined with the same strains. All available information from the literature was screened and supplemented by unpublished data. The results were calculated by regression and correlation analysis and treated statistically. From the data on 96 strains of bacteria, it was calculated that% GC = 2.44 (Tm – 69.4). Tm appears to be unaffected by the substitution of cytosine by hydroxymethylcytosine. This equation is also valid for nonbacterial DNA. From the data on 84 strains of bacteria, the relation% GC = 1038.47 (–1.6616) was calculated. The constants in this equation are slightly modified when data on nonbacterial DNA are included. Both correlations differ only slightly from those currently used, but now they lean on a statistically sound basis. As a control, the relation between ρ and Tm was calculated from data of 197 strains; it agrees excellently with the above two equations. PMID:5438045

  7. Plasmid-Controlled Variation in the Content of Methylated Bases in Bacteriophage Lambda Deoxyribonucleic Acid

    PubMed Central

    Hattman, Stanley

    1972-01-01

    The N6-methyladenine (MeAde) and 5-methylcytosine (MeC) contents in deoxyribonucleic acid (DNA) of bacteriophage lambda has been analyzed as a function of host specificity. The following facts have emerged: (i) lambda grown on strains harboring the P1 prophage contain ca. 70 more MeAde residues/DNA molecule than lambda grown either in the P1-sensitive parent, or in a P1 immune-defective lysogen which does not confer P1 modification; (ii) lambda grown on strains harboring the N-3 drug-resistance factor contain ca. 60 more MeC residues/DNA molecule than lambda grown on the parental strain lacking the factor; (iii) lambda grown in Escherichia coli B strains is devoid of MeC, whereas lambda grown in a B (N-3) host contains a high level of MeC; (iv) the MeAde content in lambda DNA is not affected by the N-3 factor. These results suggest that P1 controls an adenine-specific DNA methylase, and that the N-3 plasmid controls a cytosine-specific DNA methylase. The N-3 factor has been observed previously to direct cytosine-specific methylation of phage P22 DNA and E. coli B DNA in vivo; in vitro studies presented here demonstrate this activity. PMID:4561202

  8. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    SciTech Connect

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  9. Latest advances in biomaterials: from deoxyribonucleic acid to nucleobases

    NASA Astrophysics Data System (ADS)

    Ouchen, Fahima; Gomez, Eliot; Joyce, Donna; Williams, Adrienne; Kim, Steve; Heckman, Emily; Johnson, Lewis; Yaney, Perry; Venkat, Narayanan; Steckl, Andrew; Kajzar, François; Rau, Ileana; Pawlicka, Agnieszka; Prasad, Paras; Grote, James

    2014-03-01

    This paper is a review of the recent research in bio-based materials for photonics and electronics applications. Materials that we have been working with include: deoxyribonucleic acid (DNA)-based biopolymers and nucleobases. We will highlight work on increasing the ionic conductivity of DNA-based membranes, enhancing the direct (DC) current and photoconductivity of DNA-based biopolymers, crosslinking of DNA-based biopolymers and promising applications for DNA nucleobases. Key

  10. Zygosity determination of multiple pregnancy by deoxyribonucleic acid fingerprints.

    PubMed

    Azuma, C; Kamiura, S; Nobunaga, T; Negoro, T; Saji, F; Tanizawa, O

    1989-03-01

    We used a new method of deoxyribonucleic acid analysis to determine zygosity in multiple pregnancies. This method uses a minisatellite core probe, requires only a small amount of deoxyribonucleic acid, and detects the restriction fragment length polymorphisms that are a result of allelic differences in the number of tandem repeats that contain the core sequence. Southern blot hybridization showed an individual-specific deoxyribonucleic acid fingerprint and each polymorphic band in the sibling could be identified within one (but not both) of the parents. Identical deoxyribonucleic acid fingerprints among the siblings of multiple pregnancy indicate they must be monozygotic. This method is sufficiently reliable and rapid so the determination of zygosity in multiple pregnancy can be made the same day the fetal deoxyribonucleic acid is made available. PMID:2564742

  11. Leishmania donovani complex (Kinetoplastida, Trypanosomatidae): comparison of deoxyribonucleic acid based techniques for typing of isolates from Ethiopia.

    PubMed

    Gadisa, E; Kuru, T; Genet, A; Engers, H; Aseffa, A; Gedamu, L

    2010-10-01

    In Ethiopia, visceral leishmaniasis (VL) is an increasing public health concern. Recently, a new outbreak of VL claimed the lives of hundreds of Ethiopians. Mapping its distribution and the identification of the causative Leishmania species is important for proper use of resources and for control planning. The choice of appropriate typing technique is the key for determining the infecting species. Here we compared three deoxyribonucleic acid (DNA) based markers. We used, for the first time, cpbE and cpbF (cpbE/F) PCR-RFLP and demonstrated that it clearly differentiates Leishmania donovani from Leishmania infantum. The cpbE/F PCR-RFLP gave identical banding pattern for all L. donovani strains irrespective of their geographic origin. With the K26 (primers) PCR-RFLP, the L. donovani strains gave a banding pattern different from L. infantum and showed variation with geographic origin. The Ethiopian isolates typed as L. donovani by the PCR-RFLP of the cpbE/F (gene) and K26 (primers) showed two types of patterns with the T2/B4 (primers) PCR-RFLP; one group with L. infantum-like and the other L. donovani-like pattern. Phylogenetic analysis using cpbE/F sequences showed variation with geographic origin of strains and the African strains of L. donovani are more distantly related to L. infantum. Moreover, the Ethiopian isolates were seen to be closely related to the Sudanese, Kenyan and Indian strains. Thus, we recommend the use of more than one marker to study the population genetics of L. donovani complex. PMID:20438727

  12. Homology between the deoxyribonucleic acid of fertility factor P and Vibrio cholerae chromosomal deoxyribonucleic acid.

    PubMed Central

    Wohhieter, J A; Datta, A; Brenner, D J; Baron, L S

    1975-01-01

    The deoxyribonucleic acid (DNA) of the Vibrio cholerae fertility factor P was isolated by the dye-buoyant density method and hybridized to V. cholerae chromosomal DNA. The DNA of this fertility plasmid had between 35 to 40% homology with the V. cholerae chromosomal DNA. Little or no homology was detected between the P factor DNA and DNA of the Escherichia coli sex factor F. PMID:1092651

  13. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking.

    PubMed

    Durney, Brandon C; Bachert, Beth A; Sloane, Hillary S; Lukomski, Slawomir; Landers, James P; Holland, Lisa A

    2015-06-23

    Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10°C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC-DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC]=2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix

  14. Fluorometric Determination of Deoxyribonucleic Acid in Bacteria with Ethidium Bromide

    PubMed Central

    Donkersloot, J. A.; Robrish, S. A.; Krichevsky, M. I.

    1972-01-01

    A simple, sensitive, and rapid method is presented for the determination of deoxyribonucleic acid (DNA) in both gram-positive and gram-negative bacteria. It is based upon the fluorometric determination of DNA with ethidium bromide after alkaline digestion of the bacteria to hydrolyze the interfering ribonucleic acid. The assay takes less than 2 hr. Its sensitivity is at least 0.2 μg of DNA in a final solution of 4 ml and it uses commonly available filter or double monochromator fluorometers. Judicious choice of light source and filters allows an additional 10-fold increase in sensitivity with a filter fluorometer. Turbidity caused by bacteria or insoluble polysaccharides does not interfere with the fluorescence measurements. There was no significant difference between the results obtained with this method and those obtained with the indole and diphenylamine methods when these assays were applied to Escherichia coli and sucrose- or glucose-grown Streptococcus mutans. The method was also tested by determining the specific growth rate of E. coli. This new procedure should be especially useful for the determination of bacterial DNA in dilute suspensions and for the estimation of bacterial growth or DNA replication where more conventional methods are not applicable or sensitive enough. PMID:4561101

  15. Electrophoresis-Enhanced Detection of Deoxyribonucleic Acids on a Membrane-Based Lateral Flow Strip Using Avian Influenza H5 Genetic Sequence as the Model

    PubMed Central

    Wu, Jui-Chuang; Chen, Chih-Hung; Fu, Ja-Wei; Yang, Huan-Ching

    2014-01-01

    This study reports a simple strategy to detect a deoxyribonucleic acid (DNA) on a membrane-based lateral flow (MBLF) strip without tedious gel preparation, gel electrophoresis, and EtBr-staining processes. The method also enhances the detection signal of the genetic sample. A direct electric field was applied over two ends of the MBLF strips to induce an electrophoresis of DNAs through the strips. The signal enhancement was demonstrated by the detection of the H5 subtype of avian influenza virus (H5 AIV). This approach showed an excellent selectivity of H5 AIV from other two control species, Arabidopsis thaliana and human PSMA5. It also showed an effective signal repeatability and sensitivity over a series of analyte concentrations. Its detection limit could be enhanced, from 40 ng to 0.1 ng by applying 12 V. The nano-gold particles for the color development were labeled on the capture antibody, and UV-VIS and TEM were used to check if the labeling was successful. This detection strategy could be further developed to apply on the detection of drug-allergic genes at clinics or detection of infectious substances at incident sites by a simple manipulation with an aid of a mini-PCR machine and auxiliary kits. PMID:24603637

  16. Characterization of mouse cellular deoxyribonucleic acid homologous to Abelson murine leukemia virus-specific sequences.

    PubMed Central

    Dale, B; Ozanne, B

    1981-01-01

    The genome of Abelson murine leukemia virus (A-MuLV) consists of sequences derived from both BALB/c mouse deoxyribonucleic acid and the genome of Moloney murine leukemia virus. Using deoxyribonucleic acid linear intermediates as a source of retroviral deoxyribonucleic acid, we isolated a recombinant plasmid which contained 1.9 kilobases of the 3.5-kilobase mouse-derived sequences found in A-MuLV (A-MuLV-specific sequences). We used this clone, designated pSA-17, as a probe restriction enzyme and Southern blot analyses to examine the arrangement of homologous sequences in BALB/c deoxyribonucleic acid (endogenous Abelson sequences). The endogenous Abelson sequences within the mouse genome were interrupted by noncoding regions, suggesting that a rearrangement of the cell sequences was required to produce the sequence found in the virus. Endogenous Abelson sequences were arranged similarly in mice that were susceptible to A-MuLV tumors and in mice that were resistant to A-MuLV tumors. An examination of three BALB/c plasmacytomas and a BALB/c early B-cell tumor likewise revealed no alteration in the arrangement of the endogenous Abelson sequences. Homology to pSA-17 was also observed in deoxyribonucleic acids prepared from rat, hamster, chicken, and human cells. An isolate of A-MuLV which encoded a 160,000-dalton transforming protein (P160) contained 700 more base pairs of mouse sequences than the standard A-MuLV isolate, which encoded a 120,000-dalton transforming protein (P120). Images PMID:9279386

  17. Short deoxyribonucleic acid repair patch length in Escherichia coli is determined by the processive mechanism of deoxyribonucleic acid polymerase I.

    PubMed Central

    Matson, S W; Bambara, R A

    1981-01-01

    The lengths of ultraviolet irradiation-induced repair resynthesis patches were measured in repair-competent extracts of Escherichia coli. Extracts containing wild-type deoxyribonucleic acid (DNA) polymerase I introduced a patch 15 to 20 nucleotides in length during repair of ColE1 plasmid DNA; extracts containing the polA5 mutant form of DNA polymerase I introduced a patch only about 5 nucleotides in length in a similar reaction. The repair patch length in the presence of either DNA polymerase corresponded to the processivity of that polymerase (the average number of nucleotides added per enzyme-DNA binding event) as determined with purified enzymes and DNA treated with a nonspecific endonuclease. The base composition of the repair patch inserted by the wild-type DNA polymerase was similar to that of the bacterial genome, whereas the patch inserted by the mutant enzyme was skewed toward greater pyrimidine incorporation. This skewing is expected, considering the predominance of pyrimidine incorporation occurring at the ultraviolet lesion and the short patch made by the mutant enzyme. Since the defect in the polA5 DNA polymerase which causes premature dissociation from DNA is reflected exactly in the repair patch length, the processive mechanism of the polymerase must be a central determinant of patch length. PMID:7012116

  18. Induction of cellular deoxyribonucleic acid synthesis in butyrate-treated cells by simian virus 40 deoxyribonucleic acid

    SciTech Connect

    Kawasaki, S.; Diamond, L.; Baserga, R.

    1981-11-01

    Sodium butyrate (3mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G/sub 1/ and S-phase 3T3 cells. Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in G/sub 1/ nuclei when G/sub 1/ cells are fused with S-phase cells. However, when G/sub 1/ 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G/sub 1/ phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. The author's interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G/sub o/ ..-->.. G/sub 1/ ..-->.. S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.

  19. The deoxyribonucleic acid of Micrococcus radiodurans

    PubMed Central

    Schein, Arnold H.

    1966-01-01

    The DNA of Micrococcus radiodurans was prepared by three methods. Although the recovery of DNA varied considerably, the percentage molar base ratios of the DNA from the three preparations were essentially the same: guanine, 33±2; adenine, 18±1; cytosine, 33±2; thymine, 17±1. Base compositions calculated from Tm values and from density in caesium chloride gradients also yielded guanine+cytosine contents of 66 and 68% of total bases respectively. No unusual bases were observed. The S20,w values were characteristic of high-molecular-weight DNA. Electron microscopy showed the purified DNA in long strands; occasionally these were coiled. Images(a)(b)(c)(d)(e)Fig. 1. PMID:16742439

  20. Comparison of the Morphology and Deoxyribonucleic Acid Composition of 27 Strains of Nitrifying Bacteria1

    PubMed Central

    Watson, Stanley W.; Mandel, Manley

    1971-01-01

    The gross morphology, fine structure, and per cent guanine plus cytosine (GC) composition of deoxyribonucleic acid of 27 strains of nitrifying bacteria were compared. Based on morphological differences, the ammonia-oxidizing bacteria were separated into four genera. Nitrosomonas species and Nitrosocystis species formed one homogenous group, and Nitrosolobus species and Nitrosospira species formed a second homogenous group in respect to their deoxyribonucleic acid GC compositions. Similarly, the nitrite-oxidizing bacteria were separated into three genera based on their morphology. The members of two of these nitrite-oxidizing genera, Nitrobacter and Nitrococcus, had similar GC compositions, but Nitrospina gracilis had a significantly lower GC composition than the members of the other two genera. Images PMID:4939767

  1. Nucleotide `maps' of digests of deoxyribonucleic acid

    PubMed Central

    Murray, K.

    1970-01-01

    Various digests of 32P-labelled DNA were examined by two-dimensional ionophoresis on cellulose acetate and DEAE-cellulose paper. The products from digestion with pancreatic deoxyribonuclease and Neurospora crassa endonuclease were qualitatively closely similar, but very complex, and were used to investigate the mapping behaviour of nucleotides in various ionophoretic systems. Ionophoresis on DEAE-cellulose paper in triethylamine carbonate, pH 9.7, followed by ionophoresis in the second dimension at pH1.9 gave high resolution of nucleotides in very complex mixtures and permitted the fractionation of larger quantities than is possible on cellulose acetate. High resolution of nucleotides in compact spots was obtained with two-dimensional ionophoresis on cellulose acetate and AE-cellulose paper, a system that is a useful supplement to those based on DEAE-cellulose paper. ImagesPLATE 7PLATE 1PLATE 2PLATE 3PLATE 4PLATE 5PLATE 6 PMID:5476726

  2. Polyamines in the Synthesis of Bacteriophage Deoxyribonucleic Acid. I. Lack of Dependence of Polyamine Synthesis on Bacteriophage Deoxyribonucleic Acid Synthesis

    PubMed Central

    Dion, Arnold S.; Cohen, Seymour S.

    1972-01-01

    To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis. PMID:4552549

  3. Incorporation of Deoxyribonucleic Acid Precursors by T4 Deoxyribonucleic Acid-Protein Complexes Retained on Glass Fiber Filters

    PubMed Central

    Miller, Robert C.; Kozinski, Andrzej W.

    1970-01-01

    Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA. PMID:5497903

  4. Effect of base-pair stability of nearest-neighbor nucleotides on the fidelity of deoxyribonucleic acid synthesis.

    PubMed

    Patten, J E; So, A G; Downey, K M

    1984-04-10

    The influence of the stability of base pairs formed by nearest-neighbor nucleotides on misincorporation frequency has been studied with the large fragment of DNA polymerase I, the alternating DNA copolymers, poly(dI-dC) and poly-(dG-dC), as template-primers, and dGTP, dITP, and dCTP as substrates. We have utilized the difference in thermodynamic stability between the doubly H-bonded I X C base pair and triply H-bonded G X C base pair to examine the effects of base-pair stability of both the "preceding" and the "following" nucleotides on the frequency of insertion of a mismatched nucleotide, as well as on its stable incorporation into polynucleotide. The present studies demonstrate that the stability of the base pairs formed by nearest-neighbor nucleotides affects the frequency of incorporation of noncomplementary nucleotides. Misincorporation frequency is increased when the nearest-neighbor nucleotides form more stable base pairs with the corresponding nucleotides in the template and is decreased when they form less stable base pairs. The stability of the base pair formed by a nucleotide either preceding (5' to) or following (3' to) a misincorporated nucleotide influences misincorporation frequency, but by different mechanisms. The stability of base pairs formed by preceding nucleotides affects the rate of insertion of mismatched nucleotide but does not protect the mismatched nucleotide from removal by the 3' to 5' exonuclease activity. In contrast, the stability of a base pair formed by a following nucleotide determines whether a misincorporated nucleotide is extended or excised by affecting the ability of the enzyme to edit errors of incorporation. PMID:6722115

  5. Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation.

    PubMed

    Bases, Robert

    2006-01-01

    Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens. PMID:17009597

  6. Intermediates in the Synthesis of Type 2 Adenovirus Deoxyribonucleic Acid

    PubMed Central

    Horwitz, Marshall S.

    1971-01-01

    Intermediates in the synthesis of adenovirus type 2 deoxyribonucleic acid (DNA) were studied in HeLa cells. Pieces of DNA smaller than the viral genome were demonstrated after labeling with 3H-thymidine for 10 to 240 sec. Intermediates as small as the Okazaki fragments (8 to 10S) do not predominate at any of the above times. No detectable addition of nucleotides to parental genome could be shown, nor was there any breakdown of recently synthesized viral DNA. The DNA intermediates were of viral origin for they hybridized to viral DNA and were made at a stage of the cell cycle (G2) when host DNA is not synthesized. PMID:5132696

  7. Studies on Resistance Transfer Factor Deoxyribonucleic Acid in Escherichia coli

    PubMed Central

    Silver, Richard P.; Falkow, Stanley

    1970-01-01

    A variant of the derepressed R factor, R1, which does not contain any of the drug resistance markers, and represents, in large part, the resistance transfer factor (RTF) was studied in Escherichia coli. RTF deoxyribonucleic acid (DNA) was specifically labeled in a female cell after conjugation. Physical characterization of the molecule showed that RTF possessed an average molecular weight of 50 × 106 daltons and a buoyant density of 1.709 g/cm3. By comparison to R1, we calculate that the region of DNA carrying the drug resistance genes is therefore about 20% of the R1 molecule and has a buoyant density of approximately 1.716 g/cm3. These results support the hypothesis that the single species of R-factor DNA observed in E. coli represents a composite of the 1.709 and 1.716 g/cm3 replicons seen in Proteus. PMID:4919749

  8. Electrical conduction in macroscopically oriented deoxyribonucleic and hyaluronic acid samples

    NASA Astrophysics Data System (ADS)

    Kutnjak, Zdravko; Lahajnar, Gojmir; Filipič, Cene; Podgornik, Rudolf; Nordenskiöld, Lars; Korolev, Nikolay; Rupprecht, Allan

    2005-04-01

    Measurements of the quasistatic and frequency dependent electrical conductivity below 1 MHz were carried out on wet-spun, macroscopically oriented, calf thymus deoxyribonucleic (DNA) and umbilical cord hyaluronic acid (HA) bulk samples. The frequency dependence of the electrical conductivity in the frequency range of approximately 10-3-106Hz of both materials is surprisingly rather similar. Temperature dependence of the quasistatic electrical conductivity above the low temperature saturation plateau can be well described by the activated Arrhenius law with the activation energy of ≈0.8eV for both DNA and HA. We discuss the meaning of these findings for the possible conduction mechanism in these particular charged polyelectrolytes.

  9. Specific Initiation Site for Simian Virus 40 Deoxyribonucleic Acid Replication

    PubMed Central

    Thoren, Marilyn M.; Sebring, Edwin D.; Salzman, Norman P.

    1972-01-01

    Replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) molecules have been isolated under conditions in which the newly synthesized DNA is uniformly labeled with 3H-thymidine. These newly synthesized strands are released from the replicative intermediate molecules by alkaline treatment, and it has been possible to isolate single-stranded SV40 DNA which varies in size from 157,000 daltons (from molecules that are 10% replicated) to 1,360,000 daltons (85% replicated). The rates of duplex formation of newly synthesized DNA have been used to relate their genetic complexity to the extent of DNA replication. As DNA replication proceeds, the time required to effect 50% renaturation of the newly synthesized DNA increases at a proportional rate. The data establish that DNA replication is not initiated at random, but rather that there is a single specific initiation site for DNA replication. PMID:4342054

  10. Origin and Direction of Simian Virus 40 Deoxyribonucleic Acid Replication

    PubMed Central

    Fareed, George C.; Garon, Claude F.; Salzman, Norman P.

    1972-01-01

    Double-branched, circular, replicating deoxyribonucleic acid (DNA) molecules of simian virus 40 (SV40) have been cleaved by the R1 restriction endonuclease from Escherichia coli. This enzyme introduces one double-strand break in SV40 DNA, at a specific site. The site of cleavage in the replicating molecules was used in this study to position the origin and the two branch points. Radioactively labeled molecules fractionated according to their extent of replication were evaluated after cleavage by sedimentation analysis and electron microscopy. The results demonstrate that the R1 cleavage site is 33% of the genome length from the origin of replication and that both branch points are growing points. These data indicate that SV40 DNA replication is bidirectional and confirm other reports which have shown a unique origin of replication. Images PMID:4342055

  11. Role of deoxyribonucleic acid technology in forensic dentistry

    PubMed Central

    Datta, Pankaj; Datta, Sonia Sood

    2012-01-01

    In the last few years, Deoxyribonucleic Acid (DNA) analysis methods have been applied to forensic cases. Forensic dental record comparison has been used for human identification in cases where destruction of bodily tissues or prolonged exposure to the environment has made other means of identification impractical, that is, after fire exposure or mass disaster. Teeth play an important role in identification and criminology, due to their unique characteristics and relatively high degree of physical and chemical resistance. The use of a DNA profile test in forensic dentistry offers a new perspective in human identification. The DNA is responsible for storing all the genetic material and is unique to each individual. The currently available DNA tests have high reliability and are accepted as legal proofs in courts. This article gives an overview of the evolution of DNA technology in the last few years, highlighting its importance in cases of forensic investigation. PMID:23087582

  12. Simian Virus 40 Deoxyribonucleic Acid Synthesis: Analysis by Gel Electrophoresis

    PubMed Central

    Tegtmeyer, Peter; Macasaet, Francisco

    1972-01-01

    An agarose-gel electrophoresis technique has been developed to study simian virus 40 deoxyribonucleic acid (DNA) synthesis. Superhelical DNA I, relaxed DNA II, and replicative intermediate (RI) molecules were clearly resolved from one another for analytical purposes. Moreover, the RI molecules could be identified as early or late forms on the basis of their electrophoretic migration in relation to that of DNA II. The technique has been utilized to study the kinetics of simian virus 40 DNA synthesis in pulse and in pulse-chase experiments. The average time required to complete the replication of prelabeled RI molecules and to convert them into DNA I was approximately 10 min under the experimental conditions employed. PMID:4343542

  13. Structure of Replicating Simian Virus 40 Deoxyribonucleic Acid Molecules 1

    PubMed Central

    Sebring, E. D.; Kelly, T. J.; Thoren, M. M.; Salzman, N. P.

    1971-01-01

    Properties of replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) have been examined by sedimentation analysis and by direct observation during a lytic cycle of infection of African green monkey kidney cells. Two types of replicating DNA molecules were observed in the electron microscope. One was an open structure containing two branch points, three branches, and no free ends whose length measurements were consistent with those expected for replicating SV40 DNA molecules. A second species had the same features as the open structure, but in addition it contained a superhelix in the unreplicated portion of the molecule. Eighty to ninety per cent of the replicative intermediates (RI) were in this latter configuration, and length measurements of these molecules also were consistent with replicating SV40 DNA. Replicating DNA molecules with this configuration have not been described previously. RI, when examined in ethidium bromide-cesium chloride (EB-CsCl) isopycnic gradients, banded in a heterogeneous manner. A fraction of the RI banded at the same density as circular SV40 DNA containing one or more single-strand nicks (component II). The remaining radioactive RI banded at densities higher than that of component II, and material was present at all densities between that of supercoiled double-stranded DNA (component I) and component II. When RI that banded at different densities in EB-CsCl were examined in alkaline gradients, cosedimentation of parental DNA and newly replicated DNA did not occur. All newly replicated DNA sedimented more slowly than did intact single-stranded SV40 DNA, a finding that is inconsistent with the rolling circle model of DNA replication. An inverse correlation exists between the extent of replication of the SV40 DNA and the banding density in EB-CsCl. Under alkaline conditions, the parental DNA strands that were contained in the RI sedimented as covalently closed structures. The sedimentation rates in alkali of the covalently closed

  14. Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: its action on transforming deoxyribonucleic acid.

    PubMed

    Setlow, R B; Setlow, J K; Carrier, W L

    1970-04-01

    An endonuclease purified from Micrococcus luteus makes single-strand breaks in ultraviolet (UV)-irradiated, native deoxyribonucleic acid (DNA). The purified endonuclease is able to reactivate UV-inactivated transforming DNA of Haemophilus influenzae, especially when the DNA is assayed on a UV-sensitive mutant of H. influenzae. After extensive endonuclease action, there is a loss of transforming DNA when assayed on both UV-sensitive and -resistant cells. The endonuclease does not affect unirradiated DNA. The results indicate that the endonuclease function is involved in the repair of biological damage resulting from UV irradiation and that the UV-sensitive mutant is deficient in this step. We interpret the data as indicating that the various steps in the repair of DNA must be well coordinated if repair is to be effective. PMID:4314478

  15. Absence of Strand Breaks in Deoxyribonucleic Acid Treated with Metronidazole

    PubMed Central

    LaRusso, Nicholas F.; Tomasz, Maria; Kaplan, David; Müller, Miklós

    1978-01-01

    The deoxyribonucleic acid (DNA)-degrading potential of metronidazole was evaluated in vitro by three techniques: determination of melting curve, measurement of viscosity, and centrifugation in neutral or alkaline sucrose gradients. Studies were performed on calf thymus DNA and on 3H-labeled or unlabeled pneumococcal and T7 phage DNA after treatment with metronidazole alone or metronidazole reduced by sodium dithionite in the presence of DNA. This latter process is known to elicit covalent binding of metronidazole to DNA. Reduced or unreduced metronidazole had no effect on the melting properties, viscosity, or sedimentation velocity of the nucleic acids studied. Sodium dithionite alone, however, caused a 25% decrease in the intrinsic viscosity of pneumococcal DNA, and decreased the sedimentation velocity of pneumococcal and T7 phage DNA in both neutral and alkaline sucrose gradients. These data suggest that degradation of DNA is not important in the interaction of metronidazole with nucleic acids, an interaction assumed relevant to the cytotoxic, radiosensitizing, and mutagenic activities of this compound. PMID:626487

  16. New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity.

    PubMed Central

    Yamagishi, J; Furutani, Y; Inoue, S; Ohue, T; Nakamura, S; Shimizu, M

    1981-01-01

    In Escherichia coli K-12 mutants which had a new nalidixic acid resistance mutation at about 82 min on the chromosome map, cell growth was resistant to or hypersusceptible to nalidixic acid, oxolinic acid, piromidic acid, pipemidic acid, and novobiocin. Deoxyribonucleic acid gyrase activity as tested by supercoiling of lambda phage deoxyribonucleic acid inside the mutants was similarly resistant or hypersusceptible to the compounds. The drug concentrations required for gyrase inhibition were much higher than those for cell growth inhibition but similar to those for inhibition of lambda phage multiplication. Transduction analysis with lambda phages carrying the chromosomal fragment of the tnaA-gyrB region suggested that one of the mutations, nal-31, was located on the gyrB gene. PMID:6271730

  17. Influence of surfactant on dynamics of photoinduced motions in a dye-doped deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Parafiniuk, Kacper; Miniewicz, Andrzej; Rau, Ileana; Kajzar, Francois; Niziol, Jacek; Hebda, Edyta; Pielichowski, Jan; Sahraoui, Bouchta

    2012-10-01

    Pure deoxyribonucleic acid (DNA) is known to be soluble in water only and exhibits poor temperature stability. In contrary, it is well known that the complex of DNA - with cetyltrimethyl ammonium (CTMA) is soluble in alcohols and can be processed into very good optical quality thin films by solution casting and spin deposition. Despite the success of DNA-CTMA, there is still need for new cationic surfactants which would extend the range of available solvents for DNA complex. We test and present experimental results of influence of new surfactants based on benzalkonium chloride (BA), and didecyldimethylammonium chloride (DDCA) for applications in all optical switching.

  18. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers

    PubMed Central

    Sérandour, Aurélien A.; Avner, Stéphane; Oger, Frédérik; Bizot, Maud; Percevault, Frédéric; Lucchetti-Miganeh, Céline; Palierne, Gaëlle; Gheeraert, Céline; Barloy-Hubler, Frédérique; Péron, Christine Le; Madigou, Thierry; Durand, Emmanuelle; Froguel, Philippe; Staels, Bart; Lefebvre, Philippe; Métivier, Raphaël; Eeckhoute, Jérôme; Salbert, Gilles

    2012-01-01

    Enhancers are developmentally controlled transcriptional regulatory regions whose activities are modulated through histone modifications or histone variant deposition. In this study, we show by genome-wide mapping that the newly discovered deoxyribonucleic acid (DNA) modification 5-hydroxymethylcytosine (5hmC) is dynamically associated with transcription factor binding to distal regulatory sites during neural differentiation of mouse P19 cells and during adipocyte differentiation of mouse 3T3-L1 cells. Functional annotation reveals that regions gaining 5hmC are associated with genes expressed either in neural tissues when P19 cells undergo neural differentiation or in adipose tissue when 3T3-L1 cells undergo adipocyte differentiation. Furthermore, distal regions gaining 5hmC together with H3K4me2 and H3K27ac in P19 cells behave as differentiation-dependent transcriptional enhancers. Identified regions are enriched in motifs for transcription factors regulating specific cell fates such as Meis1 in P19 cells and PPARγ in 3T3-L1 cells. Accordingly, a fraction of hydroxymethylated Meis1 sites were associated with a dynamic engagement of the 5-methylcytosine hydroxylase Tet1. In addition, kinetic studies of cytosine hydroxymethylation of selected enhancers indicated that DNA hydroxymethylation is an early event of enhancer activation. Hence, acquisition of 5hmC in cell-specific distal regulatory regions may represent a major event of enhancer progression toward an active state and participate in selective activation of tissue-specific genes. PMID:22730288

  19. Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila.

    PubMed Central

    Pratt, K; Hattman, S

    1981-01-01

    Deoxyribonucleic acid (DNA) of the transcriptionally active macronucleus of Tetrahymena thermophila is methylated at the N6 position of adenine to produce methyladenine (MeAde); approximately 1 in every 125 adenine residues (0.8 mol%) is methylated. Transcriptionally inert micronuclear DNA is not methylated (< or = 0.01 mol% MeAde; M. A. Gorovsky, S. Hattman, and G. L. Pleger, J. Cell Biol. 56:697-701, 1973). There is no detectable cytosine methylation in macronuclei in Tetrahymena DNA (< or = 0.01 mol% 5-methylcytosine). MeAde-containing DNA sequences in macronuclei are preferentially digested by both staphylococcal nuclease and pancreatic deoxyribonuclease I. In contrast, there is no preferential release of MeAde during digestion of purified DNA. These results indicate that MeAde residues are predominantly located in "linker DNA" and perhaps have a function in transcription. Pulse-chase studies showed that labeled MeAde remains preferentially in linker DNA during subsequent rounds of DNA replication; i.e., there is little, if any, movement of nucleosomes during chromatin replication. This implies that nucleosomes may be phased with respect to DNA sequence. PMID:9279374

  20. Application of Markov chain to the pattern of mitochondrial deoxyribonucleic acid mutations

    NASA Astrophysics Data System (ADS)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2014-03-01

    This research explains how Markov chain used to model the pattern of deoxyribonucleic acid mutations in mitochondrial (mitochondrial DNA). First, sign test was used to see a pattern of nucleotide bases that will appear at one position after the position of mutated nucleotide base. Results obtained from the sign test showed that for most cases, there exist a pattern of mutation except in the mutation cases of adenine to cytosine, adenine to thymine, and cytosine to guanine. Markov chain analysis results on data of mutations that occur in mitochondrial DNA indicate that one and two positions after the position of mutated nucleotide bases tend to be occupied by particular nucleotide bases. From this analysis, it can be said that the adenine, cytosine, guanine and thymine will mutate if the nucelotide base at one and/or two positions after them is cytosine.

  1. Disruption of Adenovirus Type 7 by Lithium Iodide Resulting in the Release of Viral Deoxyribonucleic Acid

    PubMed Central

    Neurath, A. Robert; Stasny, John T.; Rubin, Benjamin A.

    1970-01-01

    Adenovirus type 7 exposed to solutions of LiI was progressively converted into slower sedimenting deoxyribonucleic acid (DNA)-containing particles, and, ultimately, under proper conditions, DNA free or almost free from protein was released from the virus. The degree of viral degradation was dependent on the time of treatment, on the temperature, and on the concentration of the reagent. PMID:4988267

  2. Effect of Ethionine on the Ribonucleic Acid, Deoxyribonucleic Acid, and Protein Content of Escherichia coli

    PubMed Central

    Smith, Robert C.; Salmon, W. D.

    1965-01-01

    Smith, Robert C. (Auburn University, Auburn, Ala.), and W. D. Salmon. Effect of ethionine on the ribonucleic acid, deoxyribonucleic acid, and protein content of Escherichia coli. J. Bacteriol. 89:687–692. 1965.—The addition of ethionine to cultures of Escherichia coli K-12 W6, a methionine-requiring auxotroph, led to inhibition of the rate of increase in optical density when the ratio of ethionine to methionine was 200:1. When the ratio was 600:1, the increase in optical density became linear. When ethionine was substituted for methionine in the medium, the optical density of the culture increased, and there was a parallel increase in protein content. There was no cell division in these cultures. The rate of synthesis of ribonucleic acid (RNA) in a culture containing ethionine was similar to that of a culture deprived of methionine, but the synthesis of deoxyribonucleic acid in a culture with ethionine was about twice that of a culture deprived of methionine. No detectable radioactivity from ethionine-ethyl-1-C14 was incorporated into RNA. Ethionine-ethyl-1-C14 was readily incorporated into the protein fraction. PMID:14273646

  3. Assistant deoxyribonucleic acid recycling with Zn(2+) and molecular beacon for electrochemical detection of deoxyribonucleic acid via target-triggered assembly of mutated DNAzyme.

    PubMed

    Qian, Yong; Wang, Chunyan; Gao, Fenglei

    2014-10-01

    A novel enzyme-free amplification strategy was designed for sensitive electrochemical detection of deoxyribonucleic acid (DNA) based on Zn(2+) assistant DNA recycling via target-triggered assembly of mutated DNAzyme. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme first hybridized and then cleaved the MB in the presence of cofactor Zn(2+). After cleavage, the MB was cleaved into two pieces and the ferrocene (Fc) labeled piece dissociated from the gold electrode, thus obviously decreasing the Fc signal and forming a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles to trigger the cleavage of many MB substrates. Therefore, the peak current of Fc dramatically decreased to approximately zero. The strategy showed a detection limit at 35 fM levels, which was about 2 orders of magnitude lower than that of the conventional hybridization without Zn(2+)-based amplification. The Zn(2+) assistant DNA recycling offers a versatile platform for DNA detection in a cost-effective manner, and has a promising application in clinical diagnosis. PMID:25201265

  4. Hydroxyquinolines inhibit ribonucleic acid-dependent deoxyribonucleic acid polymerase and inactivate Rous sarcoma virus and herpes simplex virus.

    PubMed

    Rohde, W; Mikelens, P; Jackson, J; Blackman, J; Whitcher, J; Levinson, W

    1976-08-01

    8-Hydroxyquinoline and several of its derivatives inactivate the transforming ability of Rous sarcoma virus and inhibit its ribonucleic acid-dependent deoxyribonucleic acid polymerase activity. The copper complex of these metal-binding ligands is as active as the free ligand. The activity of the 8-hydroxyquinolines is approximately 50-fold more effective than another group of metal-binding compounds that we have tested, the thiosemicarbazones. In contrast to the potency of the 8-hydroxyquinolines to inactivate Rous sarcoma virus, no intracellular inhibition of transformation could be demonstrated at a concentration that did not affect the growth and appearance of the cells. Cellular deoxyribonucleic acid synthesis was inhibited to a greater extent than was ribonucleic acid or protein synthesis. The phenomenon of "concentration quenching" was observed with high concentrations of drug, causing less inhibition of deoxyribonucleic acid synthesis than was observed with lower concentrations. Herpes simplex virus type 1 was inactivated also by the 8-hydroxyquinolines and their copper complexes. No intracellular inhibition of plaque formation was observed. Treatment with 8-hydroxyquinoline sulfate had no effect on the resolution of herpetic keratitis in rabbits. Some 8-hydroxyquinolines bind to deoxyribonucleic acid in the presence of copper, a phenomenon that may be important in their antiviral activity. PMID:185949

  5. Simulation and analysis of an evolutionary model of deoxyribonucleic acid (DNA). Master's thesis

    SciTech Connect

    McNally, R.E.

    1983-09-01

    A Monte Carlo simulation model was developed in order to evaluate model predictions with expectations of the evolutionary hypothesis of nearly neutral point mutations. The beta chain of hemoglobin was chosen as the strand of deoxyribonucleic acid (DNA) to be analyzed due to the extensive characterization of point mutations along the 146 amino acids of the protein chain. The nucleotide sequences of human, rabbit and a hypothetical ancestral hemoglobin were used as a starting point in the simulation. Three models of point mutations were tested. Equiprobable mutation from one nucleotide to any of the remaining three nucleotides composing DNA was one model. The second model incorporated observed first order probability of transition from each nucleotide to the remaining three nucleotides composing DNA using observed probabilities from three independent assessments. The third model was an Ising type model employing a probability of nucleotide change based on the nucleotide composition of the nearest neighbors. Use of these models resulted in evidence to suggest that five methods of simulating the mutations in an evolutionary system produced results that primarily differed in the way in which nulceotide changes resulted in a pattern of amino acid changes.

  6. Physical location of the ilvO determinant in Escherichia coli K-12 deoxyribonucleic acid.

    PubMed Central

    Subrahmanyam, C S; McCorkle, G M; Umbarger, H E

    1980-01-01

    A plasmid carrying the 4,6-kilobase (kb) HindIII-derived fragment from an ilvO mutant derivative of lambda h80dilv imparted a valine-resistant phenotype on strains it carried. This fragment carries a small amount of the promoter-proximal end of ilvE, the ilvO determinant, and apparently the entire ilvG gene, which specifies the valine-insensitive acetohydroxy acid synthase. Comparable deoxyribonucleic acid (DNA) from the original lambda h80dilv did not carry the valine resistance marker. The valine-resistant phenotype was always correlated with the formation of the resistant enzymes. The ilvO determinant was shown to be carried within an approximately 600-based-pair region lying between the SalI and KpnI sites on the HindIII fragment and perhaps within the ilvG gene itself. Ribonucleic acid that hybridizes with the DNA corresponding to the ilvG gene is formed in wild-type K-12 cells. This fact, coupled with the fact that ilvG is transcribed from the same DNA strand as the ilvE, D, and A genes, led to the idea that transcription is normally initiated upstream from ilvG in both wild-type and ilvO strains. In wild-type strains either the formation or the translation of the transcript would be terminated with the ilvG gene, thus preventing expression of that gene. PMID:6155372

  7. Electrochemical deoxyribonucleic acid biosensor based on the self-assembly film with nanogold decorated on ionic liquid modified carbon paste electrode.

    PubMed

    Gao, Hongwei; Qi, Xiaowei; Chen, Ying; Sun, Wei

    2011-10-17

    An electrochemical DNA biosensor was fabricated by self-assembling probe single-stranded DNA (ssDNA) with a nanogold decorated on ionic liquid modified carbon paste electrode (IL-CPE). IL-CPE was fabricated using 1-butylpyridinium hexafluorophosphate as the binder and the gold nanoparticles were electrodeposited on the surface of IL-CPE (Au/IL-CPE). Then mercaptoacetic acid was self-assembled on the Au/IL-CPE to obtain a layer of modified film, and the ssDNA probe was further covalently-linked with mercaptoacetic acid by the formation of carboxylate ester with the help of N-(3-dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The hybridization reaction with the target ssDNA was monitored with methylene blue (MB) as the electrochemical indicator. Under the optimal conditions, differential pulse voltammetric responses of MB was proportional to the specific ssDNA arachis sequences in the concentration range from 1.0×10(-11) to 1.0×10(-6) mol L(-1) with the detection limit as 1.5×10(-12) mol L(-1) (3σ). This electrochemical DNA sensor exhibited good stability and selectivity with the discrimination ability of the one-base and three-base mismatched ssDNA sequences. The polymerase chain reaction product of arachis Arabinose operon D gene was successfully detected by the proposed method, which indicated that the electrochemical DNA sensor designed in this paper could be further used for the detection of specific ssDNA sequence. PMID:21907030

  8. Excision of pyrimidine dimers from nuclear deoxyribonucleic acid in ultraviolet-irradiated Dictyostelium discoideum

    SciTech Connect

    Clark, J.M.; Deering, R.A.

    1987-02-01

    A sensitive endonuclease assay was used to study the fate of pyrimidine dimers introduced by ultraviolet irradiation into the nuclear deoxyribonucleic acid of the cellular slime mold Dictyostellium discoideum. Analysis of the frequency of T4 endonuclease V-induced single-strand breaks by alkaline sucrose gradient sedimentation showed that strain NC4 (rad/sup +/) removed >98% of the dimers induced by irradiation at 40 J/m/sup 2/ (254 nm) within 215 min after irradiation. HPS104 (radC44), a mutant sensitive to ultraviolet irradiation, removed 91% under these conditions, although at a significantly slower rate than NC4: only 8% were removed during the 10- to 15- min period immediately after irradiation, whereas NC4 excised 64% during this interval. HPS104 thus appears to be deficient in the activity(ies) responsible for rapidly incising ultraviolet-irradiated nuclear deoxyribonucleic acid at the sites of pyrimidine dimers.

  9. Adenovirus Type 2-Simian Virus 40 Hybrid Population: Evidence for a Hybrid Deoxyribonucleic Acid Molecule and the Absence of Adenovirus-Encapsidated Circular Simian Virus 40 Deoxyribonucleic Acid

    PubMed Central

    Crumpacker, Clyde S.; Levin, Myron J.; Wiese, William H.; Lewis, Andrew M.; Rowe, Wallace P.

    1970-01-01

    The deoxyribonucleic acid (DNA) from the adenovirus-encapsidated particles of the adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid population plaque variant (Ad2++ HEY), known to yield SV40 virus with high efficiency, was studied by equilibrium density centrifugation followed by ribonucleic acid-DNA hybridization employing virus-specific complementary ribonucleic acids synthesized in vitro. These techniques establish linkage between the Ad2 and SV40 components in the adenovirus-encapsidated particles of this population. The linkage is alkali-resistant and presumably covalent; thus, the Ad2 DNA and SV40 DNA are present in a hybrid molecule. Velocity centrifugation studies in alkaline sucrose gradients eliminated the possibility that supercoiled circular SV40 DNA is present in the adenovirus capsids. The DNA obtained from the adenovirus-encapsidated particles of the Ad2++ HEY population appears to consist of nonhybrid Ad2 DNA and Ad2-SV40 hybrid DNA molecules. PMID:4322081

  10. pH-responsive deoxyribonucleic acid capture/release by polydopamine functionalized magnetic nanoparticles.

    PubMed

    Wang, Yu; Ma, Xiangdong; Ding, Chun; Jia, Li

    2015-03-01

    Polydopamine functionalized magnetic nanoparticles (PDA@Fe3O4) were prepared and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential and vibrating sample magnetometry. They were found to enable highly efficient capture of genomic deoxyribonucleic acid (DNA). The adsorption capacity of PDA@Fe3O4 for genomic DNA can reach 161 mg g(-1). The extraction protocol used aqueous solutions for DNA binding to and releasing from the surface of the magnetic particles based on the pH inducing the charge switch of amino and phenolic hydroxyl groups on PDA@Fe3O4. The extracted DNA with high quality (A260/A280=1.80) can be directly used as templates for polymerase chain reaction (PCR) followed by capillary electrophoresis (CE) analysis. None of the toxic chemical reagents and PCR inhibitors was used throughout the whole procedure. PDA@Fe3O4 based magnetic solid phase extraction (MSPE) method was superior to those using commercial kit and traditional phenol-chloroform extraction methods in yield of DNA. The developed PDA@Fe3O4 based MSPE-PCR-CE method was applied for simultaneous and fast detection of Listeria monocytogenes and Escherichia coli O157:H7 in milk. PMID:25682426

  11. Target-driven self-assembly of stacking deoxyribonucleic acids for highly sensitive assay of proteins.

    PubMed

    Cao, Ya; Chen, Weiwei; Han, Peng; Wang, Zhuxin; Li, Genxi

    2015-08-26

    In this paper, we report a new signal amplification strategy for highly sensitive and enzyme-free method to assay proteins based on the target-driven self-assembly of stacking deoxyribonucleic acids (DNA) on an electrode surface. In the sensing procedure, binding of target protein with the aptamer probe is used as a starting point for a scheduled cycle of DNA hairpin assembly, which consists of hybridization, displacement and target regeneration. Following numbers of the assembly repeats, a great deal of DNA duplexes can accordingly be formed on the electrode surface, and then switch on a succeeding propagation of self-assembled DNA concatemers that provide further signal enhancement. In this way, each target binding event can bring out two cascaded DNA self-assembly processes, namely, stacking DNA self-assembly, and therefore can be converted into remarkably intensified electrochemical signals by associating with silver nanoparticle-based readout. Consequently, highly sensitive detection of target proteins can be achieved. Using interferon-gamma as a model, the assay method displays a linear range from 1 to 500 pM with a detection limit of 0.57 pM, which is comparable or even superior to other reported amplified assays. Moreover, the proposed method eliminates the involvement of any enzymes, thereby enhancing the feasibility in clinical diagnosis. PMID:26347164

  12. Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Dong, C.

    2009-01-01

    The mode and mechanism of the interaction of morphine chloride, an important alkaloid compound to calf thymus deoxyribonucleic acid (ct DNA) was investigated from absorption and fluorescence titration techniques. Hypochromic effect was founded in the absorption spectra of morphine when concentration of DNA increased. The decreased fluorescence study revealed non-cooperative binding of the morphine to DNA with an affinity of 3.94 × 10 3 M -1, and the stoichiometry of binding was characterized to be about one morphine molecule per nucleotide. Stern-Volmer plots at different temperatures proved that the quenching mechanism was static. Ferrocyanide quenching study showed that the magnitude of KSV of the bound morphine was lower than that of the free one. In addition, it was found that ionic strength could affect the binding of morphine and DNA. Fluorescence polarization and denatured DNA studies also applied strong evidences that morphine molecule was partially intercalated between every alternate base pairs of ct DNA. As observed from above experiments, intercalation was well supported as the binding mode of morphine and ct DNA.

  13. Fabrication of nickel and gold nanowires by controlled electrodeposition on deoxyribonucleic acid molecules

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Jin, Helena; Dai, Kun

    2009-01-01

    Magnetic and electrical nanowires are two important materials in the development of futuristic nanoelectronics, data storage media and nanosensors. Ni and Au nanowires with a diameter of a few tens of nanometres have been fabricated using deoxyribonucleic acid (DNA) molecules as a template through nanoparticle-controlled electroless deposition (ELD). Nanowire precursors, 1-3 nm Pt(0)-DNA and 1.4 nm Au(0)-DNA, were assembled using two different methods. Chemical reduction was used to deposit Pt(0) particles on DNA which catalyzed Ni nanowire growth. Positively charged Au nanoparticles were directly assembled on phosphate groups of DNA which were stretched and anchored between micrometre-spaced electrodes. Electrical measurement has shown that Au nanowires, catalyzed by Au(0)-DNA in a subsequent ELD, are highly conductive and show linear I-V characteristics. The major factors for the resistivity of nanowires were discussed in detail. This work involves important aspects in the field of DNA-based self-assembly, such as DNA and surface interaction, DNA nanoparticle assembly and electrical property of fabricated nanowires.

  14. Particle acceleration for delivery deoxyribonucleic acid vaccine into skin in vivo

    NASA Astrophysics Data System (ADS)

    Xinglong, Yu; Xiwen, Zhang; Yuan, Wang; Junshi, Xie; Pengfei, Hao

    2001-08-01

    Skin represents an important immunogenic inductive site, 3%-4% epidermis cells are special antigen-presenting cells. Deoxyribonucleic acid (DNA) vaccine can elicit vigorous immune responses in epidermis cells. The means of delivering DNA vaccine into epidermis cells becomes an important step in DNA vaccine applications. This article presents a new type of gene gun based on the principle of two-stage injector acceleration. DNA coated particles are attached on an screen-type carrier located at the negative pressure inlet, the particles will be sucked into the accelerating channel by negative pressure and be accelerated at a great speed. FLUENT, a computation fluid dynamic application software is used to simulate the flow condition of the injector. Distribution of Mach number, total pressure on exit cross section, and negative pressure on negative pressure inlet are analyzed, by which the process of acceleration of particles is determined. We also measured these parameters in this study. The data show that the particle velocity can be up to 500 m/s and the particles distribute evenly over a circle of Φ 20 mm. The numerical simulation results coincide with experimental data well. Therefore, the results of numerical simulation can be served as guidance for an optimal design of the gene gun and for practical operations. When gene coated particles are distributed evenly, they can penetrate into or even through epidermis cells where the gene can be expressed and subsequently elicits host immune responses. This device may be evaluated in human objects in future.

  15. Deoxyribonucleic Acid Degradation in Bacillus subtilis During Exposure to Actinomycin D1

    PubMed Central

    Farmer, James L.

    1968-01-01

    At high concentrations (10 μg/ml), actinomycin D inhibited deoxyribonucleic acid (DNA) synthesis in Bacillus subtilis. Inhibition occurred quickly (in less than 1 min) and was complete. In strain 23 thy his, inhibition of DNA synthesis by actinomycin D was followed by partial degradation of one of the two daughter strands to acid-soluble products. Degradation began at the replication point and proceeded over a distance equal to about 12% of a chromosome in length. Actinomycin D played some essential part in degradation, since exposure of the cells to other treatments or agents which inhibit growth did not lead to the above result. PMID:4967199

  16. Photodynamic Action on Native and Denatured Transforming Deoxyribonucleic Acid from Haemophilus influenzae

    PubMed Central

    León, Manuel Ponce-De; Cabrera-Juárez, Emiliano

    1970-01-01

    The photodynamic inactivation of native or denatured transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae is described. The inactivation at the same pH was higher for denatured than native DNA. At acidic pH, the inactivation both for native and denatured DNA was faster than at alkaline pH. The guanine content of photoinactivated native DNA at neutral pH was less than untreated DNA. The inactivation of biological activity was more extensive than the alteration of guanine. The absorption spectrum of photoinactivated native or denatured DNA was only slightly different than the control DNA at the different experimental conditions. PMID:5309576

  17. Electrochemical deoxyribonucleic acid biosensor based on electrodeposited graphene and nickel oxide nanoparticle modified electrode for the detection of salmonella enteritidis gene sequence.

    PubMed

    Sun, Wei; Wang, Xiuli; Lu, Yongxi; Gong, Shixing; Qi, Xiaowei; Lei, Bingxin; Sun, Zhenfan; Li, Guangjiu

    2015-04-01

    In this paper a new electrochemical DNA biosensor was prepared by using graphene (GR) and nickel oxide (NiO) nanocomposite modified carbon ionic liquid electrode (CILE) as the substrate electrode. GR and NiO nanoparticles were electrodeposited on the CILE surface step-by-step to get the nanocomposite. Due to the strong affinity of NiO with phosphate groups of ssDNA, oligonucleotide probe with a terminal 5'-phosphate group could be attached on the surface of NiO/GR/CILE, which could further hybridize with the target ssDNA sequence. Methylene blue (MB) was used as the electrochemical indicator for monitoring the hybridization reaction. Under the optimal conditions the reduction peak current of MB was proportional to the concentration of salmonella enteritidis gene sequence in the range from 1.0×10(-13) to 1.0×10(-6)molL(-1) with a detection limit as 3.12×10(-14)molL(-1). This electrochemical DNA sensor exhibited good discrimination ability to one-base and three-base mismatched ssDNA sequences, and the polymerase chain reaction amplification product of salmonella enteritidis gene sequences were further detected with satisfactory results. PMID:25686924

  18. Semiconductor sensor embedded microfluidic chip for protein biomarker detection using a bead-based immunoassay combined with deoxyribonucleic acid strand labeling.

    PubMed

    Lin, Yen-Heng; Peng, Po-Yu

    2015-04-15

    Two major issues need to be addressed in applying semiconductor biosensors to detecting proteins in immunoassays. First, the length of the antibody on the sensor surface surpasses the Debye lengths (approximately 1 nm, in normal ionic strength solution), preventing certain specifically bound proteins from being tightly attached to the sensor surface. Therefore, these proteins do not contribute to the sensor's surface potential change. Second, these proteins carry a small charge and can be easily affected by the pH of the surrounding solution. This study proposes a magnetic bead-based immunoassay using a secondary antibody to label negatively charged DNA fragments for signal amplification. An externally imposed magnetic force attaches the analyte tightly to the sensor surface, thereby effectively solving the problem of the analyte protein's distance to the sensor surface surpassing the Debye lengths. In addition, a normal ion intensity buffer can be used without dilution for the proposed method. Experiments revealed that the sensitivity can be improved by using a longer DNA fragment for labeling and smaller magnetic beads as solid support for the antibody. By using a 90 base pair DNA label, the signal was 15 times greater than that without labeling. In addition, by using a 120 nm magnetic bead, a minimum detection limit of 12.5 ng mL(-1) apolipoprotein A1 can be measured. Furthermore, this study integrates a semiconductor sensor with a microfluidic chip. With the help of microvalves and micromixers in the chip, the length of the mixing step for each immunoassay has been reduced from 1h to 20 min, and the sample volume has been reduced from 80 μL to 10 μL. In practice, a protein biomarker in a urinary bladder cancer patient's urine was successfully measured using this technique. This study provides a convenient and effective method to measure protein using a semiconductor sensor. PMID:25818137

  19. “BLACK LIGHT” INACTIVATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID FROM HAEMOPHILUS INFLUENZAE

    PubMed Central

    Cabrera-Juárez, Emiliano

    1964-01-01

    Cabrera-Juárez, Emiliano (Instituto Politecnico Nacional, Mexico, D.F., Mexico). “Black light” inactivation of transforming deoxyribonucleic acid from Haemophilus influenzae. J. Bacteriol. 87:771–778. 1964.—The biological activity (intrinsic genetic markers or nitrous acid mutable regions) of transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae has been inactivated by “black light” (BL) by two mechanisms: (i) photodynamic action (oxygen-dependent) and (ii) “BL inactivation” (oxygen-independent). The BL inactivation is greater in denatured than in native DNA, and it is dependent on the pH. It does not depend on the temperature, and the damage produced is stable. The effective wavelength of inactivation is between 330 and 360 mμ. The BL inactivation is not reactivated by photoreactivating enzyme or nitrous acid. The BL and ultraviolet inactivations are additive, suggesting that the changes produced by BL and ultraviolet irradiation on transforming DNA are different. T2 phage was also inactivated by BL. The nature of the photochemical changes produced in DNA by BL is not known. PMID:14139527

  20. Effect of Poliovirus on Deoxyribonucleic Acid Synthesis in HeLa Cells

    PubMed Central

    Ackermann, W. W.; Cox, D. C.; Kurtz, H.; Powers, C. D.; Davies, S. J.

    1966-01-01

    Ackermann, W. W. (University of Michigan, Ann Arbor), D. C. Cox, H. Kurtz, C. D. Powers, and S. J. Davies. Effect of poliovirus on deoxyribonucleic acid synthesis in HeLa cells. J. Bacteriol. 91:1943–1952. 1966.—Both poliovirus and arginine stimulated deoxyribonucleic acid (DNA) synthesis in cultures of HeLa cells which were preconditioned by incubation in a medium deficient in arginine. However, the number of cells producing DNA was unaffected. DNA synthesis in such preconditioned cells was 10 to 20% of the maximal value obtained with a full complement of amino acids. Inhibition of DNA synthesis was produced in these cultures either by increasing the multiplicity of exposure above 40 plaque-forming units of virus per cell or by increasing the concentration of the deficient amino acid at the time of virus addition. Inhibition of DNA synthesis resulted from a reduction in the fraction of cells producing DNA. The concentration of arginine required for viral inhibition of DNA synthesis is greater than that for viral multiplication. PMID:4287076

  1. Covalently linked deoxyribonucleic acid with multi-walled carbon nanotubes: synthesis and characterization.

    PubMed

    Chen, Weiwei; Yi, Changqing; Chi-Hung, Tzang; Lee, Shuit-Tong; Yang, Mengsu

    2010-01-01

    In this chapter, a multi-step protocol for covalently linking functionalized multi-walled carbon nanotubes (MWCNT) to deoxyribonucleic acid (DNA) oligonucleotides is provided. X-ray photoelectron spectroscopy (XPS) is used to characterize the initially formed amine-terminated MWCNTs, to which DNA is covalently anchored. Atomic force microscopy (AFM) investigation of the DNA-MWCNT conjugates reveals that the chemical functionalization occurs at both the ends and sidewalls of the nanotubes. The described methodology represents an important step toward the realization of DNA-guided self-assembly for carbon nanotubes. PMID:20422378

  2. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor.

    PubMed

    Gao, Fenglei; Du, Lili; Zhang, Yu; Tang, Daoquan; Du, Yan

    2015-07-01

    A novel ratiometric electrochemical sensor for sensitive and selective determination of deoxyribonucleic acid (DNA) had been developed based on signal-on and signal-off strategy. The target DNA hybridized with the loop portion of ferrocene (Fc) labeled hairpin probe immobilized on the gold electrode (GE), the Fc away from the surface of GE and the methylene blue (MB) was attached to an electrode surface by hybridization between hairpin probe and MB labeled primer. Such conformational changes resulted in the oxidation peak current of Fc decreased and that of MB increased, and the changes of dual signals are linear with the concentration of DNA. Furthermore, with the help of strand-displacement polymerization, polymerase catalyzed the extension of the primer and the sequential displacement of the target DNA, which led to the release of target and another polymerization cycle. Thus the circular strand displacement produced the multiplication of the MB confined near the GE surface and Fc got away from the GE surface. Therefore, the recognition of target DNA resulted in both the "signal-off" of Fc and the "signal-on" of MB for dual-signal electrochemical ratiometric readout. The dual signal strategy offered a dramatic enhancement of the stripping response. The dynamic range of the target DNA detection was from 10(-13) to 10(-8) mol L(-1) with a detection limit down to 28 fM level. Compared with the single signaling electrochemical sensor, the dual-signaling electrochemical sensing strategy developed in this paper was more selective. It would have important applications in the sensitive and selective electrochemical determination of other small molecules and proteins. PMID:26088778

  3. Assay of deoxyribonucleic acid homology using a single-strand-specific nuclease at 75 C.

    PubMed Central

    Barth, P T; Grinter, N J

    1975-01-01

    We investigated the conditions under which a crude preparation of endonuclease S1 gives maximal hydrolysis of denatured deoxyribonucleic acid (DNA) while giving minimal hydrolysis of native DNA. The hydrolysis was measured by filtering and determining the acid-insoluble reaction product using 3H-labeled substrates. We also investigated various parameters in making this measurement. Under appropriate conditions (in 1 mM ZnSO-4, 0.168 M NaCl at pH 4.8) denatured DNA is hydrolyzed within 3% of completion whereas native DNA is essentially unaffected. The reaction was applied to assay plasmid DNA homoand heteroduplexes for which the method proves to be simple, fast, and reproducible. PMID:234416

  4. Cell Division During Inhibition of Deoxyribonucleic Acid Synthesis in Escherichia coli

    PubMed Central

    Helmstetter, Charles E.; Pierucci, Olga

    1968-01-01

    When cultures of Escherichia coli B/r growing at various rates were exposed to ultraviolet light, mitomycin C, or nalidixic acid, deoxyribonucleic acid (DNA) synthesis stopped but cell division continued for at least 20 min. The chromosome configurations in the cells which divided were estimated by determining the rate of DNA synthesis during the division cycle. The cultures were pulse-labeled with 14C-thymidine, and the amount of label incorporated into cells of different ages was found by measuring the radioactivity in cells born subsequent to the labeling period. The cells which divided in the absence of DNA synthesis were those which had completed a round of chromosome replication prior to the treatments. It was concluded that completion of a round of replication is a necessary and sufficient condition of DNA synthesis for cell division. PMID:4870278

  5. Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Sznitko, Lech; Parafiniuk, Kacper; Miniewicz, Andrzej; Rau, Ileana; Kajzar, Francois; Niziol, Jacek; Hebda, Edyta; Pielichowski, Jan; Sahraoui, Bouchta; Mysliwiec, Jaroslaw

    2013-10-01

    Pure deoxyribonucleic acid (DNA) is known to be soluble in water only and exhibits poor temperature stability. In contrary, it is well known that the complex of DNA - with cetyltrimethyl ammonium (CTMA) is insoluble in water but soluble in alcohols and can be processed into very good optical quality thin films by solution casting or spin deposition. Despite the success of DNA-CTMA, there is still need for new cationic surfactants which would extend the range of available solvents for DNA complex. We test and present experimental results of influence of new surfactants replacing CTMA in the DNA complex and based on benzalkonium chloride (BA) and didecyldimethylammonium chloride (DDCA) on their optical properties. Particularly, we were interested in all optical switching and light generation in amplified spontaneous emission process in these materials.

  6. Residual Activity of Thermally Denatured Transforming Deoxyribonucleic Acid from Haemophilus influenzae

    PubMed Central

    Barnhart, Benjamin J.

    1965-01-01

    Barnhart, Benjamin J. (Johns Hopkins University School of Hygiene and Public Health, Baltimore, Md.). Residual activity of thermally denatured transforming deoxyribonucleic acid from Haemophilus influenzae. J. Bacteriol. 89:1271–1279. 1965.—The level of residual transforming activity of heated deoxyribonucleic acid (DNA) (i.e., 1 to a few per cent of native DNA-transforming activity) was found to be independent of the heating and quenching temperatures and less susceptible than native or renatured DNA to heat inactivation upon prolonged heating above or below the critical melting temperature. Similar dose-response curves were obtained for inactivation by formamide of native and renatured DNA, but the residual-active material was much more resistant. Heating DNA above the Tm in the presence of 1% formaldehyde resulted in a level of residual activity 4 logs lower than that obtained without formaldehyde. Residual-active material was not inactivated by Escherichia coli phosphodiesterase, but it was susceptible to snake venom phosphodiesterase. A new genetic marker was induced in heated-quenched DNA but not in purified residual-active material following nitrous acid treatment. Residual activity was found to be less susceptible to ultraviolet inactivation and to band at a higher density region in CsCl than native DNA. In conclusion, it is suggested that the residual-active material is a structure formed by intrastrand hydrogen bonding of the separated units of heated-quenched DNA. Such a configuration would result in at least a partially double-stranded structure, which is probably the essential characteristic of the residual-active material endowing it with biological activity. PMID:14292997

  7. Mechanism of Shope Fibroma Virus-Induced Suppression of Host Deoxyribonucleic Acid Synthesis

    PubMed Central

    Chan, James C.; Hodes, M. E.

    1973-01-01

    The effects of treatment with live or inactivated Shope fibroma virus on host cell deoxyribonucleic acid (DNA) synthesis were determined. The incorporation of 3H-thymidine into nuclear DNA was suppressed by both active and inactivated virus, although live virus was more effective. During the early phase of infection, stimulation of host nuclear DNA synthesis of up to 240% of control value was observed in cells infected with active virus. Inhibition of DNA synthesis began at about the 8th h and was maximal by 12 h postinfection. Virus inactivated by ultraviolet-irradiation or heat treatment did not induce viral DNA synthesis but was, nevertheless, able to suppress host DNA synthesis. PMID:4202660

  8. Deoxyribonucleic Acid Synthesis During Exponential Growth and Microcyst Formation in Myxococcus xanthus

    PubMed Central

    Rosenberg, Eugene; Katarski, Mary; Gottlieb, Peter

    1967-01-01

    Myxococcus xanthus in exponential phase with a generation time of 270 min contained a period of 50 min during which deoxyribonucleic acid (DNA) synthesis did not take place. After induction of microcysts by the glycerol technique, the DNA content increased 19%. Autoradiographic experiments demonstrated that the DNA made after glycerol induction was not evenly distributed among the microcysts. The distribution of grains per microcyst fits the following model of chromosome replication: in exponential phase, each daughter cell receives two chromosomes which are replicated sequentially during 80% of the divison cycle; after microcyst induction, no chromosomes are initiated. Mathematical formulas were derived which predict the kinetics and discrete probability distribution for several chromosome models. PMID:6032514

  9. Fluorescence, spectroscopic and NLO properties of green tea extract in deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia

    2013-11-01

    Natural, purely biological deoxyribonucleic acid (DNA)-green tea extract (GTE) complexes at different concentrations were prepared and characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties. The complexes can be processed into good optical quality thin films by solution casting. They fluoresce when excited in UV absorption band, with a significantly larger quantum yield for the DNA-GTE complex than for a pure GTE solution. The thin film refractive indices were determined by Fabry-Perot (FP) interference patterns. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1064.2 nm fundamental wavelength. The phase of THG susceptibility was determined from the concentration variation of THG susceptibility. It reveals presence of a two-photon resonance with a band lying in the optical gap.

  10. New Deoxyribonucleic Acid Polymerase Induced by Bacillus subtilis Bacteriophage PBS2

    PubMed Central

    Price, Alan R.; Cook, Sandra J.

    1972-01-01

    The deoxyribonucleic acid (DNA) of Bacillus subtilis phage PBS2 has been confirmed to contain uracil instead of thymine. PBS2 phage infection of wild-type cells or DNA polymerase-deficient cells results in an increase in the specific activity of DNA polymerase. This induction of DNA polymerase activity is prevented by actinomycin D and chloramphenicol. In contrast to the major B. subtilis DNA polymerase, which prefers deoxythymidine triphosphate (dTTP) to deoxyuridine triphosphate (dUTP), the DNA polymerase in crude extracts of PBS2-infected cells is equally active whether dTTP or dUTP is employed. This phage-induced polymerase may be responsible for the synthesis of uracil-containing DNA during PBS2 phage infection. PMID:4623224

  11. Transcription of exogenous and endogenous deoxyribonucleic acid templates in cold-shocked Bacillus subtilis.

    PubMed Central

    Kuhl, S J; Brown, L R

    1980-01-01

    Ribonucleic acid (RNA) synthesis was examined in cold-shocked Bacillus subtilis cells. The cells were grown to mid-log stage, harvested, and cold shocked. RNA synthesis was monitored by the incorporation of [3H]uridine triphosphate or [alpha 32P]adenosine triphosphate into trichloroacetic acid-precipitable material in the presence of all four nucleoside triphosphates. The inhibition of RNA synthesis in cold-shocked cells by lipiarmycin, ethidium bromide, rifampin. or streptolydigin was analyzed using mutant or wild-type cells. Also examined were the effects of temperature, salt concentration, and the addition of polyamines or highly phosphorylated nucleotides. In ultraviolet-irradiated and cold-shocked cells, RNA wynthesis decreased to low levels. The addition of exogenous phi 29 or TSP-1 template to these cells caused a 13- to 20-fold increase in RNA synthesis, as monitored by trichloroacetic acid-precipitable counts. RNA synthesized in the presence of phi 29 deoxyribonucleic acid (DNA) hybridizes mainly to EcoRI fragments A and C of phi 29 DBA, These two fragments direct transcription by purified RNA polymerase in vitro and hybridize to early phi 29 DNA produced in vivo. Our results with TSP-1 DNA in this system indicated that the RNA produced hybridizes to the same fragments as early RNA produced in vivo. Plasmic pUB110 DNA was not transcribed in this system. Images PMID:6157674

  12. Inactivation of lambda phage infectivity and lambda deoxyribonucleic acid transfection by N-methyl-isatin beta-thiosemicarbazone-copper complexes.

    PubMed

    Levinson, W; Helling, R

    1976-01-01

    The infectivity of intact lambda phage and transfection by lambda deoxyribonucleic acid were inactivated by exposure to the copper complexes of N-methyl-isatin beta-thiosemicarbazone, thiosemicarbazide, and semicarbazide, but not methyl-isatin. No inactivation was observed when these compounds were used in the absence of copper sulfate. This confirms our previous observation that the activity of N-methyl-isatin beta-thiosemicarbazone is mediated by its thiosemicarbazone moiety and that the presence of copper is required for action. This represents the first time, to our knowledge, that semicarbazide has been found to possess antiviral activity. It is clear that these compounds act directly on deoxyribonucleic acid; whether the compounds also act on proteins has not been determined. PMID:769669

  13. Characterization of a Temperature-sensitive Mutant of Bacillus subtilis Defective in Deoxyribonucleic Acid Replication

    PubMed Central

    Mendelson, Neil H.; Gross, Julian D.

    1967-01-01

    In this paper we present a preliminary characterization of a temperature-sensitive mutant of Bacillus subtilis which appears to be defective in deoxyribonucleic acid (DNA) replication at high temperature. When log-phase cells of the mutant were transferred from 30 to 45 C, protein synthesis and ribonucleic acid synthesis continued more or less normally for several hours, whereas DNA synthesis continued at a normal rate for only 20 to 30 min and then was drastically reduced. The amount of DNA synthesized prior to this reduction corresponded approximately to the amount of DNA synthesized under conditions of protein synthesis inhibition by the parent or mutant strain. After 1 hr of growth at high temperature, cells of the mutant showed a pronounced drop in viable count. After 30 or 60 min of growth at high temperature, DNA synthesis could be restored by lowering the temperature. A longer period of growth at 45 C led to a loss of reversibility of DNA synthesis. Spores of the mutant synthesized no DNA when germinated at high temperature, although an outgrowing cell appeared. When spores were germinated at low temperature until DNA synthesis began, and then were transferred to high temperature, macromolecular synthesis continued as the log-phase transfer experiments described above. Images PMID:4964484

  14. Specific Labeling and Physical Characterization of R-Factor Deoxyribonucleic Acid in Escherichia coli

    PubMed Central

    Silver, Richard P.; Falkow, Stanley

    1970-01-01

    The molecular nature of R-factor deoxyribonucleic acid (DNA) was examined in Escherichia coli by using a method for the specific labeling of the derepressed R factor, R1, in a female cell after conjugation. Sixty minutes after mating, the R factor was isolated as a single molecule with a molecular weight of 65 × 106 daltons. This single molecular species sedimented as either a covalently closed molecule or a “nicked” circle. When the single R-factor component was centrifuged in a CsCl density gradient, only a single homogeneous species with a buoyant density of 1.711 g/cm3 was observed. R-factor DNA was also isolated directly from exponentially growing cells of E. coli as a covalently closed single molecular species comprising about 1% of the total cellular DNA. Previous studies in Proteus show that R1 factor DNA components of buoyant density 1.709, 1.711, and 1.716 g/cm3 can be identified as distinct replicons. It is suggested that the single molecule of R1 observed in E. coli is most simply explained as a composite structure resulting from a recombinational assemblage of a 1.709 and 1.716 g/cm3 replicon. PMID:4919748

  15. Replication of Simian Virus 40 Deoxyribonucleic Acid: Analysis of the One-Step Growth Cycle

    PubMed Central

    Manteuil, Simone; Pages, Jacqueline; Stehelin, Dominique; Girard, Marc

    1973-01-01

    The time course of replication of simian virus 40 deoxyribonucleic acid (DNA) was investigated in growing monolayer cultures of subcloned CV1 cells. At multiplicities of infection of 30 to 60 plaque-forming units (PFU)/cell, first progeny DNA molecules (component 1) were detected by 10 hr after infection. During the following 10 to 12 hr, accumulation of virus DNA proceeded at ever increasing rates, albeit in a non-exponential fashion. The rate of synthesis then remained constant, until approximately the 40th hour postinfection, when DNA replication stopped. Under these conditions, the duration of the virus growth cycle was approximately 50 hr. The time needed for the synthesis of one DNA molecule was found to be approximately 15 min. At multiplicities of infection of 1 or less than 1 PFU/cell, the onset of the linear phase of DNA accumulation was delayed, but the final rate of DNA synthesis was the same, independent of the input multiplicity. This was taken as a proof that templates for the synthesis of viral DNA multiply in the cell during the early phase of replication. However, the probability for every replicated DNA molecule to become in turn replicative decreased constantly during that phase. This could be accounted for by assuming a limited number of replication sites in the infected cell. PMID:4346282

  16. Postreplication repair of deoxyribonucleic acid and daughter strand exchange in uvr- mutants of Bacillus subtilis.

    PubMed Central

    Dodson, L A; Hadden, C T

    1980-01-01

    The fate of pyrimidine dimers in deoxyribonucleic acid (DNA) newly synthesized by Bacillus subtilis after ultraviolet irradiation was monitored by use of a damage-specific endonuclease that introduces single-strand breaks adjacent to nearly all of the dimer sites. Two Uvr- strains, one defective in the initiation of dimer excision and the other defective in a function required for efficient dimer excision, were found to be similar to their wild-type parent in the kinetics and extent of converting low-molecular-weight DNA newly synthesized after ultraviolet irradiation to high molecular weight. In the Uvr- strains large molecules of newly synthesized DNA remained susceptible to nicking by the damage-specific endonuclease even after extended incubation in growth medium, whereas the enzyme-sensitive sites were rapidly removed from both preexisting and newly synthesized DNA in Uvr+ cells. Our results support the hypothesis that postreplication repair in bacteria includes recombination between dimer-containing parental DNA strands and newly synthesized strands. PMID:6776098

  17. Bacteriophage SP82G Inhibition of an Intracellular Deoxyribonucleic Acid Inactivation Process in Bacillus subtilis1

    PubMed Central

    McAllister, William T.; Green, D. MacDonald

    1972-01-01

    The stability of SP82G bacteriophage deoxyribonucleic acid (DNA) after its uptake by competent Bacillus subtilis was examined by determining the ability of superinfecting phage particles to rescue genetic markers carried by the infective DNA. These experiments show that a DNA inactivation process within the cell is inhibited after infection of the cell by intact phage particles. The inhibition is maximally expressed 6 min after phage infection and is completely prevented by the addition of chloramphenicol at the time of infection. The protective effect of this function extends even to infective DNA which was present in the cell before the addition of intact phage. Continued protein synthesis does not appear to be a requirement for the maintenance of the inhibition. In an analogous situation, if infectious centers resulting from singly infecting phage particles are exposed to chloramphenicol shortly after the time of infection, an exponential decrease in the survival of infectious centers with time held in chloramphenicol is observed. If the addition of chloramphenicol is delayed until 6 min after infection, the infectious centers are resistant to chloramphenicol. The sensitivity of infectious centers treated with chloramphenicol at early times after infection is strongly dependent upon the multiplicity of infection and is consistent with a model of multiplicity reactivation. These results indicate that injected DNA is also susceptible to the intracellular inactivation process and suggest that the inhibition of this system is necessary for the successful establishment of an infectious center. PMID:4625174

  18. Cell division in Escherichia coli BS-12 is hypersensitive to deoxyribonucleic acid damage by ultraviolet light.

    PubMed Central

    Bridges, B A; Mottershead, R P; Green, M H

    1977-01-01

    Escherichia coli BS-12 uvrA lon is hypersensitive to ultraviolet light. On minimal agar plates at densities in excess of about 10(7) bacteria per plate, as few as one or two photoreversible pyrimidine dimers in the entire genome are sufficient to cause inhibition of cell division. Most of the resulting filaments are unable to divide or form a viable colony. Inhibition of cell division appears to be a rapid consequence of replication of deoxyribonucleic acid containing a pyrimidine dimer. Photoreversibility of the inhibition of cell division persists indefinitely, indicating that the continued presence of the pyrimidine dimers (or the continued generation of daughter strand gaps) is necessary to maintain the division-inhibited state. In view of the kinetics for the production of filamentation by ultraviolet light and the extremely low average inducing fluence (0.03 J/m2), it is concluded that the initiating signal is not the same as that causing other inducible phenomena such as prophage induction or Weigle reactivation. PMID:400790

  19. Nuclear and mitochondrial deoxyribonucleic acid replication during mitosis in Saccharomyces cerevisiae.

    PubMed

    Sena, E P; Welch, J W; Halvorson, H O; Fogel, S

    1975-08-01

    To study nuclear and mitochondrial deoxyribonucleic acid (DNA) synthesis during the cell cycle, a 15N-labeled log-phase population of Saccharomyces cervisiae was shifted to 14N medium. After one-half generation, the cells were centrifuged on a sorbitol gradient in a zonal rotor to fractionate the population according to cell size and age into fractions representing the yeast cell cycle. DNA samples isolated from the zonal rotor cell samples were centrifuged to equilibrium in CsC1 in an analytical ultracentrifuge to separate the nuclear and mitochondrial DNA components. The amount of 14N incorporated into each 15N-labeled DNA species was measured. The extent of nuclear DNA replication per sample was obtained by measuring the amount of hybrid DNA. The percentage of hybrid nuclear DNA increased from 6 to 68% and then decreased to 44% during the cell cycle. Upon ultracentrifugation, mitochondrial DNA banded as a unimodal peak in all zonal rotor samples. Mitochondrial DNA replication could be ascertained only by the 14N level in each mitochondrial peak and not, as with nuclear DNA, by hybrid DNA level. In contrast to the nuclear incorporation pattern, the 14N percentage in mitochondrial DNA remained effectively constant during the cell cycle. Comparison of the data to theoretical distributions showed that nuclear DNA was replicated discontinuously during the cell cycle, whereas mitochondrial DNA was replicated continuously throughout the entire mitotic cycle. PMID:1097413

  20. The effect of deoxyribonucleic acid extraction methods from lymphoid tissue on the purity, content, and amplifying ability

    PubMed Central

    Ayatollahi, Hossein; Sadeghian, Mohammad Hadi; Keramati, Mohammad Reza; Ayatollahi, Ali; Shajiei, Arezoo; Sheikhi, Maryam; Bakhshi, Samane

    2016-01-01

    Background: Nowadays, definitive diagnosis of numerous diseases is based on the genetic and molecular findings. Therefore, preparation of fundamental materials for these evaluations is necessary. Deoxyribonucleic acid (DNA) is the first material for the molecular pathology and genetic analysis, and better results need more pure DNA. Furthermore, higher concentration of achieved DNA causes better results and higher amplifying ability for subsequent steps. We aim to evaluate five DNA extraction methods to compare DNA intimacy including purity, concentration, and amplifying ability with each other. Materials and Methods: The lymphoid tissue DNA was extracted from formalin-fixed, paraffin embedded (FFPE) tissue through five different methods including phenol-chloroform as the reference method, DNA isolation kit (QIAamp DNA FFPE Tissue Kit, Qiagen, Germany), proteinase K and xylol extraction and heat alkaline plus mineral oil extraction as authorship innovative method. Finally, polymerase chain reaction (PCR) and real-time PCR method were assessed to compare each following method consider to DNA purity and its concentration. Results: Among five different applied methods, the highest mean of DNA purity was related to heat alkaline method. Moreover, the highest mean of DNA concentration was related to heat alkaline plus mineral oil. Furthermore, the best result in quantitative PCR was in proteinase K method that had the lowest cycle threshold averages among the other extraction methods. Conclusion: We concluded that our innovative method for DNA extraction (heat alkaline plus mineral oil) achieved high DNA purity and concentration.

  1. Chromosomal and extrachromosomal deoxyribonucleic acid from four bacterial endosymbionts derived from stock 51 of Paramecium tetraurelia.

    PubMed Central

    Dilts, J A

    1977-01-01

    Four variant lines of stock 51 kappa (Paramecium tetraurelia) were screened for the presence of covalently closed circular (CCC) deoxyribonucleic acid (DNA). Stock 51m43 kappa, a nonkiller resistant to 51 killing, contained four classes of CCC DNA: 2.9 X 10(7), 9.7 X 10(7), and 11.8 X 10(7) daltons. The buoyant densities of 51m43 kappa chromosomal and CCC DNA were 1.700 and 1.698 g/cm3, respectively. Stock 51m43 pi, a sensitive nonkiller, contained two CCC species: 0.3 X 10(7) and 4.4 X 10(7) daltons. The buoyant densities of both the chromosomal and CCC DNA were 1.694 to 1.695 g/cm3. Three sizes of CCC DNA were found in 51m1 pi: 0.3 X 10(7), 2.3 X 10(7), and 4.5 X 10(7) daltons. The buoyant densities of both the chromosoaml DNA and the CC DNA were 1.694 to 1.695 g/cm3. It is not known whether 51m1 kappa, a sensitive spinner killer, contains CCC DNA. The buoyant density of its chromosomal DNA was 1.703 g/cm3. Of the four variant lines, only 51m43 kappa appears to be a mutant of 51 kappa. The chromosomal and CCC DNAs of 51m43 kappa have the same buoyant densities as those of 51 kappa; in addition 51m43 kappa contain a CCC molecule the same size as that found in 51 kappa (2.8 x 10(7) daltons). The three other lines are probably bacterial species that are distinct from 51 kappa and which, at one time, were co-inhabitants with 51 kappa in stock 51 paramecia. PMID:838691

  2. Photoreactivation, Photoproduct Formation, and Deoxyribonucleic Acid State in Ultraviolet-Irradiated Sporulating Cultures of Bacillus cereus

    PubMed Central

    Baillie, Elizabeth; Germaine, G. R.; Murreli, W. G.; Ohye, D. F.

    1974-01-01

    Photoreactivation of ultraviolet-irradiated Bacillus cereus T declined markedly during the development of stage IV forespores. During ultraviolet irradiation of a culture containing early and late stage IV forespores, both vegetative- and spore-type photoproducts were formed. The formation of vegetative-type photoproducts (mainly thymine dimers) decreased to nearly half during late stage IV, remaining constant until lysis of the mother cells began, when it fell to zero. Spore-type photoproducts were first observed during late stage IV and increased with the increase in numbers of late stage IV forespores. The occurrence of spore-type photoproducts preceded the development of refractile forespores by about 1 h. At stage III the nuclear material occupied a central position, and the ribosomes were at the periphery of the forespore protoplast. During stage IV the deoxyribonucleic acid (DNA) occurred in a peripheral position, and bundles of fibers (“transition” DNA) could be seen. By stage V, all of the DNA appeared to be of the spore type and was peripheral, and the forespore protoplast center was packed with ribosomes. Forespore stages II, III, and IV were classified by light and electron microscopy. The curve for electron microscope classifications preceded that for light microscope classifications by approximately one stage. The formation of spore-type photoproducts preceded differentiation of DNA by about 1 h, the latter coinciding with the development of refractility. Spore-type photoproducts have been associated with DNA in the A state, and the progressive change of the forespore DNA into this state is discussed in relation to the spore differentiation process. Images PMID:4214215

  3. Direct Enzymatic Repair of Deoxyribonucleic Acid Single-Strand Breaks in Dormant Spores

    PubMed Central

    Durban, E.; Grecz, N.; Farkas, J.

    1974-01-01

    With the alkaline sucrose gradient centrifugation method, it was found that dormant spores of Clostridium botulinum subjected to 300 krads of gamma radiation showed a distinct decrease in deoxyribonucleic acid (DNA) fragment size, indicating induction of single-strand breaks (SSB). A two- to threefold difference in radiation resistance of spores of two strains of C. botulinum, 33A (37% survival dose [D37] = 110 krads) and 51B (D37 = 47 krads), was accompanied by relatively larger DNA fragments (molecular weight 7.9 × 107) obtained during extraction from the radiation-resistant strain 33A and smaller DNA fragments (molecular weight 1.8 × 107) obtained under identical conditions from radiation-sensitive strain 51B. The apparent number of DNA SSB produced by 300 krads in strains 33A and 51B was 0.37 and 3.50, respectively, per 108 daltons of DNA. Addition of 0.02 M ethylenediaminetetraacetic acid (EDTA) to spore suspensions during irradiation doubled the apparent number of SSB in strain 33A but had no effect on strain 51B. In vivo, 0.02 M EDTA present during irradiation to 100 to 300 krads decreased survival of spores of 33A by about 30% but had little or no effect on 51B. Survival of 33A was also reduced by about 45% when the spores were irradiated while frozen in dry ice (−75 C) and, after irradiation, immediately exposed to 0.03 M EDTA for 1 h to inhibit repair in the dormant spores. These results suggest that the highly radiation-resistant strain 33A may be able to accomplish repair of SSB during irradiation or after irradiation under nonphysiological conditions, i.e., in the dormant state. This repair can be inhibited by EDTA. Sedimentation patterns show that DNA from spores of both strains 33A and 51B did not show any postirradiation repair during the first 6 h of germination, as opposed to Bacillus subtilis spores, which exhibit repair immediately after germination. These observations suggest the existence of direct repair in physiological dormant spores of

  4. Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses

    PubMed Central

    Sheth, Bhavisha P.; Thaker, Vrinda S.

    2015-01-01

    Background: Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. Objective: To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. Materials and Methods: The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. Results: The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. Conclusion: A strategy as used here, incorporating the integrated use of DNA

  5. Association of mitochondrial deoxyribonucleic acid mutation with polymorphism in CYP2E1 gene in oral carcinogenesis

    PubMed Central

    Pandey, Rahul; Mehrotra, Divya; Catapano, Carlo; Choubey, Vimal; Sarin, Rajiv; Mahdi, Abbas Ali; Singh, Stuti

    2012-01-01

    Background Oral carcinogenesis is a complex process affected by genetic as well as environmental factors. CYP2E1 gene is involved in metabolism of number of compounds and carcinogens. Its normal functioning is required for homeostasis of free radical. Mitochondrial deoxyribonucleic acid (mtDNA) is 10–100 times more susceptible to damage than nuclear DNA. Mitochondrial DNA large scale deletions are well documented in oral cancer. However, the relationship between CYP2E1 gene polymorphisms and mtDNA damage is still not documented in literature. Materials and Methods Case–control study involving 50 subjects was carried out. Deoxyribonucleic acid extraction was done from study subject tissue samples. Restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR) amplification was done to confirm CYP2E1 gene polymorphisms. The PCR amplification was done for mtDNA 4977 bp deletion. Statistical analysis was carried out using SPSS version 11.5 with χ2 tests. Results c1c1 and DD polymorphisms are prevalent in North Indian population having oral cancer. These polymorphisms are significantly associated with mtDNA 4977 bp deletion. Conclusion Mitochondrial DNA damage induced by wild CYP2E1 forms and imperfect DNA repair in mtDNA may act synergistically to greatly enhance oral cancer risk. PMID:25756024

  6. Separation of the Herpesvirus Deoxyribonucleic Acid Duplex into Unique Fragments and Intact Strand on Sedimentation in Alkaline Gradients

    PubMed Central

    Frenkel, Niza; Roizman, Bernard

    1972-01-01

    Deoxyribonucleic acid (DNA) extracted from herpes simplex virions forms multiple partially overlapping bands upon denaturation and centrifugation in alkaline sucrose density gradients. The most rapidly sedimenting DNA corresponds to an intact strand 48 × 106 daltons in molecular weight. In this study, we analyzed the DNA fragments generated in alkaline sucrose gradients with respect to size and uniqueness of base sequences. The distribution of sedimentation constants of the various fragments obtained in numerous gradients showed that the fragments smaller than the whole strand fall into six distinct classes ranging in molecular weight from 10 × 106 to 39 × 106 daltons. Four types of DNA strands can be reconstructed from the whole strand and six fragments on the basis of their molecular weights. DNA from each of the bands self-hybridizes to a lower extent than unfractionated viral DNA, indicating that each of the bands preferentially contains sequences from one unique strand. The data permit reconstruction of four possible types of DNA duplexes differing in the positions of the strand interruptions. Analysis of viral DNA extracted from nuclei of cells labeled with 3H-thymidine for intervals from 3 to 120 min showed that nascent DNA is invariably attached to small fragments and that the fragments become elongated only upon prolonged incubation of cells. The experiments suggest that viral DNA replication begins at numerous initiation sites along each strand and that the elongation beyond the size of the replication unit involves repair or ligation, or both. Since newly made DNA yields more fragments than viral DNA extracted from mature virions, it is suggested that the fragmentation of mature DNA on denaturation with alkali arises from incomplete processing of specific initiation sites. Comparison of viral DNA extracted from nuclei with that extracted from mature cytoplasmic virions in cells labeled for 120 min indicates that packaged DNA is not randomly selected

  7. Virus-Specific Deoxyribonucleic Acid in Simian Virus 40-Exposed Hamster Cells: Correlation with S and T Antigens 1

    PubMed Central

    Levine, Arthur S.; Oxman, Michael N.; Henry, Patrick H.; Levin, Myron J.; Diamandopoulos, George T.; Enders, John F.

    1970-01-01

    Several homologous hamster embryonic cell lines, transformed in association with simian virus (SV) 40 infection, were examined for the presence of deoxyribonucleic acid (DNA) complementary to SV40 ribonucleic acid (RNA) made in vitro. The methods employed permitted the detection of 10−5 μg of viral DNA in 100 μg of cellular DNA, corresponding to one-fifth of an SV40 DNA molecule per cell. Those lines which contained both the SV40 surface (S) and tumor (T) antigens also contained DNA complementary to SV40 RNA synthesized in vitro. In contrast, neither of two lines which contained S, but not T, antigen contained detectable DNA complementary to SV40 RNA. These findings suggest that the production of S antigen does not depend upon the persistence of SV40 DNA in transformed cells. PMID:4322872

  8. Isolation of Minicircular Deoxyribonucleic Acids from Wild Strains of Escherichia coli and their Relationship to other Bacterial Plasmids

    PubMed Central

    Goebel, Werner; Schrempf, Hildgund

    1972-01-01

    Supercoiled minicircular deoxyribonucleic acid (DNA) molecules with molecular weights of 1.8 × 106 and 2.3 × 106 have been isolated from two wild strains of Escherichia coli. DNA-DNA hybridization experiments indicate that these DNA molecules share extended homologies with the minicircular DNA of E. coli 15. The DNA of the colicinogenic factor E1 (ColE1) also hybridizes to a large extent with minicircular DNA of E. coli 15. In contrast, no hybridization could be detected with various large extrachromosomal DNA elements such as the colicinogenic factor V (ColV), the beta-hemolytic factor (Hly), or the P1-like DNA of E. coli 15. Two different insertion DNA species of E. coli integrated into λdg-DNA (λdg UPin 128, λdg UPin 308) do not show any annealing with minicircular DNA of E. coli 15. Images PMID:4340922

  9. Evaluation of deoxyribonucleic acid (DNA) isolated from human bloodstains exposed to ultraviolet light, heat, humidity, and soil contamination

    SciTech Connect

    McNally, L.; Shaler, R.C.; Baird, M.; Balazs, I.; De Forest, P.; Kobilinsky, L. )

    1989-09-01

    This study was designed to analyze the effects of common environmental insults on the ability to obtain deoxyribonucleic acid (DNA) restriction fragment-length polymorphisms (RFLP) patterns from laboratory prepared specimens. The environmental conditions studied include the exposure of dried bloodstains to varying amounts of relative humidity (0, 33, 67, and 98%), heat (37{degree}C), and ultraviolet light for periods of up to five days. In addition, the effect of drying over a four-day period in whole blood collected with and without ethylenediaminetetraacetate (EDTA) was examined. The results of the study showed that, under the conditions studied, the integrity of DNA is not altered such that false RFLP patterns are obtained. The only effect observed was that the overall RFLP pattern becomes weaker, but individual RFLP fragments are neither created nor destroyed.

  10. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.

    PubMed

    Ge, Zhengwei; Wang, Wei; Yang, Chun

    2015-02-01

    This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. PMID:25597807

  11. Initiation points for cellular deoxyribonucleic acid replication in human lymphoid cells converted by Epstein-Barr virus

    SciTech Connect

    Oppenheim, A.; Shlomai, Z.; Ben-Bassat, H.

    1981-08-01

    Replicon size was estimated in two Epstein-Barr virus (EBV)-negative human lymphoma lines, BJAB and Ramos, and four EBV-positive lines derived from the former ones by infection (conversion) with two viral strains, B95-8 and P3HR-1. Logarithmic cultures were pulse-labeled with (/sup -3/H)thymidine, and the deoxyribonucleic acid was spread on microscopic slides and autoradiographed by the method of Huberman and Riggs. Three of the four EBV-converted cell lines, BJAB/B95-8, Ra/B95-8, and Ra/HRIK, were found to have significantly shorter replicons (41, 21, 54% shorter, respectively), i.e., more initiation points, than their EBV-negative parents. BJAB/HRIK had replicons which were only slightly shorter (11%) than those of BJAB. However, analysis of track length demonstrated that extensive track fusion occurred during the labeling of BJAB/HRIK, implying that its true average replicon size is shorter than the observed value. The results indicate that in analogy to simian virus 40, EBV activates new initiation points for cellular DNA replication in EBV-transformed cells.

  12. N-methylimidazolium modified magnetic particles as adsorbents for solid phase extraction of genomic deoxyribonucleic acid from genetically modified soybeans.

    PubMed

    Deng, Manchen; Jiang, Cheng; Jia, Li

    2013-04-10

    N-Methylimidazolium modified magnetic particles (MIm-MPs) were prepared and applied in the solid phase extraction of genomic deoxyribonucleic acid (DNA) from genetically modified soybeans. The adsorption of MIm-MPs for DNA mainly resulted from the strong electrostatic interaction between the positively charged MPs and the negatively charged DNA. The elution of DNA from MPs-DNA conjugates using phosphate buffer resulted from the stronger electrostatic interaction of phosphate ions with MPs than DNA. In the extraction procedure, no harmful reagents (e.g. phenol, chloroform and isopropanol, etc.) used, high yield (10.4 μg DNA per 30 mg sample) and high quality (A260/A280=1.82) of DNA can be realized. The as-prepared DNA was used as template for duplex-polymerase chain reaction (PCR) and the PCR products were analyzed by a sieving capillary electrophoresis method. Quick and high quality extraction of DNA template, and fast and high resolution detection of duplex PCR products can be realized using the developed method. No toxic reagents are used throughout the method. PMID:23522109

  13. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine

    PubMed Central

    Chamcha, Venkateswarlu; Kannanganat, Sunil; Gangadhara, Sailaja; Nabi, Rafiq; Kozlowski, Pamela A.; Montefiori, David C.; LaBranche, Celia C.; Wrammert, Jens; Keele, Brandon F.; Balachandran, Harikrishnan; Sahu, Sujata; Lifton, Michelle; Santra, Sampa; Basu, Rahul; Moss, Bernard; Robinson, Harriet L.; Amara, Rama Rao

    2016-01-01

    Background. In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods. The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results. Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions. The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques. PMID:27006959

  14. Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships as studied by means of deoxyribonucleic acid homology.

    PubMed

    Harrison, A P; Jarvis, B W; Johnson, J L

    1980-07-01

    From several presumably pure cultures of Thiobacillus ferrooxidans, we isolated a pair of stable phenotypes. One was a strict autotroph utilizing sulfur or ferrous iron as the energy source and unable to utilize glucose; the other phenotype was an acidophilic obligate heterotroph capable of utilizing glucose but not sulfur or ferrous iron. The acidophilic obligate heterotroph not only was encountered in cultures of T. ferrooxidans, but also was isolated with glucose-mineral salts medium, pH 2.0, directly from coal refuse. By means of deoxyribonucleic acid homology, we have demonstrated that the acidophilic heterotrophs are of a different genotype from T. ferrooxidans, not closely related to this species; we have shown also that the acidophilic obligate heterotrophs, regardless of their source of isolation, are related to each other. Therefore, cultures of T. ferrooxidans reported capable of utilizing organic compounds should be carefully examined for contamination. The acidophilic heterotrophs isolated by us are different from T. acidophilis, which is also associated with T. ferrooxidans but is facultative, utilizing both glucose and elemental sulfur as energy sources. Since they are so common and tenacious in T. ferrooxidans cultures, the heterotrophs must be associated with T. ferrooxidans in the natural habitat. PMID:7400100

  15. Assignment of the chloramphenicol resistance gene to mitochondrial deoxyribonucleic acid and analysis of its expression in cultured human cells

    SciTech Connect

    Wallace, D.C.

    1981-08-01

    The mitochondrial deoxyribonucleic acids (mtDNA's) from human HeLa and HT1080 cells differed in their restriction endonuclease cleavage patterns for HaeII, HaeIII, and HhaI. HaeII digestion yielded a 9-kilobase fragment in Ht1080, which was replaced by 4.5-, 2.4-, and 2.1-kilobase fragments in HeLa. HaeIII and HhaI yielded distinctive 1.35- and 0.68-kilobase HeLa fragments. These restriction endonuclease polymorphisms were used as mtDNA markers in HeLa-HT1080 cybrid and hybrid crosses involving the cytoplasmic chloramphenicol resistance mutation was used. Three cybrids and four hybrids (four expressing HeLa and three expressing HT1080 chloramphenicol resistance) contained 2- to 10-fold excesses of the mtDNA of the chloramphenicol-resistant parent. One cybrid, which was permitted to segregate chloramphenicol resistance and was then rechallenged with chloramphenicol, had approximately equal proportions of the two mtDNA's. Only one hybrid was discordant. These results indicated that chloramphenicol resistance is encoded in mtDNA and that expression of chloramphenicol resistance is related to the ratio of chloramphenicol-resistant and -sensitive genomes within cells.

  16. Transposition of a plasmid deoxyribonucleic acid sequence that mediates ampicillin resistance: independence from host rec functions and orientation of insertion.

    PubMed Central

    Rubens, C; Heffron, F; Falkow, S

    1976-01-01

    Insertion of the transposable deoxyribonucleic acid sequence that specifies the TEM beta-lactamase (TnA) occurred in at least 19 sites on the 5.5 x 10(6)-dalton plasmid RSF1010. There was no significant difference in the frequency of transposition or in the distribution of TnA insertion sites for recombinant plasmids isolated from recombination-proficient (rec+) or recombination-deficient (rec-) bacterial host cells. The site and orientation of TnA insertions were determined by both heteroduplex analysis and enzymatic digestion with restriction endonucleases. Insertion in the gene encoding for sulfonamide resistance occurred without circular permutation in one or the other of two distinct orientations. Insertions in orientation P were strongly polar on distal gene expression, whereas insertions in orientation M were mutagenic but not polar. In addition, we have observed that TnA elements from different R plasmids show fine structural heterogeneity, and that TnA insertion at a site adjacent to the origin of replication causes an increase in plasmid copy number. Images PMID:789346

  17. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine.

    PubMed

    Chamcha, Venkateswarlu; Kannanganat, Sunil; Gangadhara, Sailaja; Nabi, Rafiq; Kozlowski, Pamela A; Montefiori, David C; LaBranche, Celia C; Wrammert, Jens; Keele, Brandon F; Balachandran, Harikrishnan; Sahu, Sujata; Lifton, Michelle; Santra, Sampa; Basu, Rahul; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-01-01

    Background.  In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods.  The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results.  Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions.  The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques. PMID:27006959

  18. Gibberellic Acid-induced Phase Change in Hedera helix as Studied by Deoxyribonucleic Acid-Ribonucleic Acid Hybridization 1

    PubMed Central

    Rogler, Charles E.; Dahmus, Michael E.

    1974-01-01

    Applications of gibberellic acid to the mature form of Hedera helix induce morphological reversions to the juvenile form of growth. The juvenile forms produced are stable with time and differ dramatically from the mature in phenotype. DNA-RNA hybridization techniques have been used to study the RNA populations of juvenile, mature and gibberellic acid-treated mature apices. Hybridization competition experiments using RNA extracted by a hot phenol technique and uniformly labeled in vitro with 3H dimethylsulfate show no qualitative differences between the species of RNA present in juvenile and mature apices. However, differences are observed in the frequency distribution of RNA species using both uniformly labeled or pulse-labeled RNA as a reference. RNA extracted from gibberellic acid-treated mature buds was a less effective competitor than control mature RNA and the difference observed was comparable to that observed between mature and juvenile RNA. These results indicate that at least part of the molecular basis of phase change and gibberellic acid action may involve an alteration in the rate of transcription of certain genes in the apices of the mature form. RNA extracted using the hot phenol procedure contained a fraction of rapidly labeled RNA which was not extractable with cold phenol. When RNA extracted only with cold phenol was used in competition experiments sequences unique to the juvenile were detected and sequences unique to the mature were not detected. Implications of these results in relation to possible post-transcriptional control mechanisms are discussed. PMID:16658844

  19. The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element.

    PubMed Central

    Haynes, S R; Toomey, T P; Leinwand, L; Jelinek, W R

    1981-01-01

    A consensus sequence has been determined for a major interspersed deoxyribonucleic acid repeat in the genome of Chinese hamster ovary cells (CHO cells). This sequence is extensively homologous to (i) the human Alu sequence (P. L. Deininger et al., J. Mol. Biol., in press), (ii) the mouse B1 interspersed repetitious sequence (Krayev et al., Nucleic Acids Res. 8:1201-1215, 1980) (iii) an interspersed repetitious sequence from African green monkey deoxyribonucleic acid (Dhruva et al., Proc. Natl. Acad. Sci. U.S.A. 77:4514-4518, 1980) and (iv) the CHO and mouse 4.5S ribonucleic acid (this report; F. Harada and N. Kato, Nucleic Acids Res. 8:1273-1285, 1980). Because the CHO consensus sequence shows significant homology to the human Alu sequence it is termed the CHO Alu-equivalent sequence. A conserved structure surrounding CHO Alu-equivalent family members can be recognized. It is similar to that surrounding the human Alu and the mouse B1 sequences, and is represented as follows: direct repeat-CHO-Alu-A-rich sequence-direct repeat. A composite interspersed repetitious sequence has been identified. Its structure is represented as follows: direct repeat-residue 47 to 107 of CHO-Alu-non-Alu repetitious sequence-A-rich sequence-direct repeat. Because the Alu flanking sequences resemble those that flank known transposable elements, we think it likely that the Alu sequence dispersed throughout the mammalian genome by transposition. Images PMID:9279371

  20. DEGRADATION OF DEOXYRIBONUCLEIC ACID AND ALTERATION OF NUCLEIC ACID METABOLISM IN SUSPENSION CULTURES OF L-M CELLS INFECTED WITH EQUINE ABORTION VIRUS

    PubMed Central

    Randall, Charles C.; Walker, Barbara M.

    1963-01-01

    Randall, Charles C. (University of Mississippi School of Medicine, Jackson) and Barbara M. Walker. Degradation of deoxyribonucleic acid and alteration of nucleic acid metabolism in suspension cultures of L-M cells infected with equine abortion virus. J. Bacteriol. 86:138–146. 1963.—Metabolic alterations in log-phase suspension cultures infected with equine abortion virus (EAV) were determined in L-M cells simultaneously labeled or prelabeled with H3- or C14-thymidine. Although infection produced an early stimulation of the uptake of labeled thymidine (TdR) into the acid-soluble fraction of concurrently labeled cells, incorporation of the isotope into deoxyribonucleic acid (DNA) was progressively inhibited. The specific activity of infected-cell DNA was 48% of the control at 24 hr. The rate of incorporation of isotope from 12 to 24 hr was 43 and 13 counts per min per μg of DNA per hr for control and infected cultures, respectively. Owing to degradation of DNA, synthesis could not be accurately determined with the concurrently labeled cells. On the other hand, with prelabeled cells, quantitative isotopic methods could be used to determine the amount of DNA synthesized by measuring dilution of specific activity, even though infection triggered degradation of DNA into acid-soluble components. With this method, the DNA synthesized in infected cultures for 24 hr was approximately five times greater than the slight net increase determined by the diphenylamine reaction. The specific activity of infected-cell DNA decreased and then remained fixed after 24 hr, with 53% of the radioactivity appearing in the medium by 48 hr. No radioactive CO2 was detected as a consequence of DNA degradation. Infected cells lost ribonucleic acid (RNA) as well as DNA; RNA and DNA were reduced by 64 and 50%, respectively, at 48 hr. The degradation of DNA was effectively inhibited by chelating agents in situ and is thought to be due to a deoxyribonuclease. Preliminary experiments with

  1. Determination of deoxyribonucleic acids by a resonance light scattering technique and its application

    NASA Astrophysics Data System (ADS)

    Jie, Nianqin; Jia, Guifang; Hou, Shicong; Xiong, Yanmei; Dong, Yanhong

    2003-12-01

    For the first time, acetamiprid has been used to determine nucleic acid (DNA) using the resonance light scattering (RLS). The RLS of acetamiprid was greatly enhanced by DNA in the range of pH 1.6-1.8. A RLS peak at 313 nm was found, and the enhanced intensity of RLS at this wavelength was proportional to the concentration of DNA. The linear range of the calibration curve was 0-11.0 μg ml -1 with the detection limit of 20 ng ml -1. The nucleic acids in synthetic sample and in rice seedling extraction were determined satisfactorily. The interaction mechanism of acetamiprid and DNA is discussed. Mechanism studies show that the enhanced RLS is due to the aggregation of acetamiprid in the presence of DNA.

  2. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    PubMed

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. PMID:25263062

  3. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2016-08-01

    Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4)  M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26846192

  4. Effect of sodium vanadate on deoxyribonucleic acid and protein syntheses in cultured rat calvariae.

    PubMed

    Canalis, E

    1985-03-01

    Sodium vanadate, an agent known to have multiple cellular actions, was studied for its effects on aspects of bone formation in cultures of 21-day-old fetal rat calvariae. Vanadate (0.1-10 microM) stimulated the incorporation of [3H] thymidine into acid-insoluble residues (DNA); the effect appeared after 3 h and was sustained for 96 h. Vanadate increased the bone DNA content and mitotic index. Treatment with vanadate at 10 microM for 24 h or at 0.3-1 microM for 96 h increased the incorporation of [3H]proline into collagenase-digestible protein (CDP), but the effect was not specific for collagen; vanadate also increased the labeling of noncollagen protein (NCP). Vanadate increased the incorporation of [3H]proline into type I collagen without affecting other collagen types. Vanadate (100 microM) caused a marked and irreversible inhibitory effect on the labeling of DNA, CDP, and NCP. Treatment with vanadate at multiple doses for 3-96 h did not stimulate alkaline phosphatase activity, but this enzyme was inhibited in bones exposed to 1 mM vanadate for 24 h or 10 microM vanadate for 96 h. The stimulatory effect on DNA labeling was primarily observed in the periosteum, while that on CDP labeling was seen only in the periosteum-free bone. These studies indicate that sodium vanadate stimulates bone DNA, collagen, and NCP syntheses in vitro, although high doses of vanadate have an irreversible inhibitory effect. PMID:2578950

  5. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    SciTech Connect

    Guttmann, David M.; Hart, Lori; Du, Kevin; Seletsky, Andrew; Koumenis, Constantinos

    2013-09-01

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.

  6. Construction of a colicin E1-R factor composite plasmid in vitro: means for amplification of deoxyribonucleic acid.

    PubMed Central

    Tanaka, T; Weisblum, B

    1975-01-01

    A composite plasmid has been constructed in vitro from colicin E1 factor (mass of 4.2 megadaltons [Md]) and nontransmissible resistance factor RSF 1010 (mass, 5.5. Md) deoxyribonucleic acids (DNAs) by the sequential action of Escherichia coli endonuclease (RI (Eco RI) and T4 phage DNA ligase on the covalently closed circular forms of the constituents. The composite plasmid was selected and amplified in vivo by sequential transformation of E. coli C600 with the ligated mixture and selection of transformants in medium containing streptomycin plus colicin E1, followed by amplification in the presence of chloramphenicol and purification of the extracted plasmid by dye-buoyant density gradient centrifugation in ethidium bromide-cesium chloride solution. Treatment of the composite plasmid with Eco RI yielded two fragments with mobilities corresponding to the linear forms of the parental plasmids, whereas Serratia marscesens endonuclease R (SmaR), which introduces a single scission in the colicin E1 factor but not in RSF 1010, convErted the composite plasmid to a single linear molecule (mass, 9.7 Md). Sequential degradation of colicin E1 factor with Sma R and Eco RI produced two fragments with masses of 3.5 and 0.7 Md; sequential degradation of RSF 1010 produced only one fragment (due to the cleavage with Eco RI), and sequential degradation of the composite plasmid produced the expected three fragments--an RSF 1010 Eco RI linear and the two expected products from the colicin E1 factor moiety. The composite plasmid conferred on the host cell resistance to streptomycin, sulfonamides, and colicin E1, but colicin E1 itself was not synthesized. In contrast, colicin E1 was synthesized by cells containing simultaneously both colicin E1 factor and RSF 1010 as separate entities. In the presence of chloramphenicol, the composite plasmid continued to replicate for 6 h. whereas replication of RSF 1010 and chromosomal DNA stopped within 2 h. Continued replication in the presence of

  7. Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-12-01

    DNA as a genetic biomolecule is more commonly referred to in life sciences, genetics, and microbiology. With the development of ‘DNA photonics’, it has shown tremendous applicability as an optical and photonic material. In this letter, we introduce a novel dye PicoGreen as a lasing medium in which DNA not only acts as a host matrix but also functions as a fluorescence enhancer. A dramatic increase in the fluorescence led us to the observation of optical amplification in dye doped DNA thin films. We also indicate the possible tunability of the output emission in the green-yellow region. With the obtained results, we have enough reasons to lead to the development of DNA-based bio-lasers.

  8. Development of a small gantry robotic workcell for deoxyribonucleic acid (DNA) filter array construction

    SciTech Connect

    Beugelsdijk, T.J.; Hollen, R.M.; Snider, K.T.

    1990-01-01

    At Los Alamos National Laboratory, we have constructed a primary cosmid library of human chromosome 16. This library consists of an 11-fold representation of the chromosome and is arrayed in microtiter plate format. A need has arisen in the large scale physical mapping of this chromosome, to array spots of DNA from each of these colonies onto filter media for hybridization studies. We are currently developing a small gantry robot-based workcell to array small spots of DNA in an interleaved format. This allows for the construction of a high spot density format filter array. This paper will discuss the features incorporated into this workcell for the handling of thousands of colonies and their automatic tracking and positioning onto the filter. 7 refs., 3 figs., 1 tab.

  9. Study of deoxyribonucleic acid-ligand interactions by partial filling affinity capillary electrophoresis.

    PubMed

    Růžička, Martin; Čížková, Martina; Jirásek, Michael; Teplý, Filip; Koval, Dušan; Kašička, Václav

    2014-07-01

    In this work, a new partial filling affinity capillary electrophoresis (PF-ACE) method has been developed and applied to investigation of non-covalent molecular interactions between double stranded DNA oligonucleotide (Dickerson dodecamer) and classical DNA intercalator ligand-ethidiumbromide (EtBr) or oligophenylene derivatives-based potential new type of DNA ligands. Binding constants of DNA-ligand complexes were determined from the dependence of migration time changes of DNA oligomer (applied as analyte) on the length of ligand zones introduced beforehand as plugs of various lengths (0-75mm with 12.5mm step) in hydroxypropylcellulose coated fused silica capillary of 50/375μm I.D./O.D. and 400/300mm total/effective length. PF-ACE experiments were performed in two background electrolytes, Tris-borate, pH 8.0, ionic strength 14.3mM (BGE1), and sodium phosphate, pH 7.5, ionic strength 133mM (BGE2). Binding constants of DNA-EtBr complex (ca 15300L/mol in the BGE1 and 4200L/mol in the BGE2) were found to be significantly higher than those of DNA complexes with oligophenylene derivatives (ca 2200-3600L/mol in the BGE1 and 1600-2300L/mol in the BGE2). PMID:24861783

  10. A self-assembled deoxyribonucleic acid concatemer for sensitive detection of single nucleotide polymorphism.

    PubMed

    Wu, Wei; Chen, Junhua; Fang, Zhiyuan; Ge, Chenchen; Xiang, Zhicheng; Ouyang, Chuanyan; Lie, Puchang; Xiao, Zhuo; Yu, Luxin; Wang, Lin; Zeng, Lingwen

    2013-12-01

    Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAF(T1799A) oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAF(T1799A) DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAF(T1799A) DNA in complex human serum with excellent recovery (94-103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes. PMID:24267087

  11. Subnucleosomes and their relationships to the arrangement of histone binding sites along nucleosome deoxyribonucleic acid

    SciTech Connect

    Nelson, D.A.; Mencke, A.J.; Chambers, S.A.; Oosterhof, D.K.; Rill, R.L.

    1982-01-01

    Micrococcal nuclease cleaves within nucleosomes at sites spaced about 10.4 base pairs (bp) apart. Cleavages at sites equivalent to 30-35 bp from the ends of 146-bp cores cause spontaneous loss of an H2a-H2b pair associated with 30-40 bp length DNA. Cleavages at certain other sites do not affect the nucleosome integrity unless a solvent perturbant such as urea is added. Chromatin moderately digested with micrococcal nuclease, when fractionated by sedimentation or electrophoresis in the presence of 3 M urea, yielded four previously unobserved subnucleosomes with the following histone/DNA compositions: (H3)/sub 2/(H4)/sub 2/(H2a)(H2b)/95-115 bp; (H3)(H4)/70-80 bp DNA; (H2a)(H2b)/50-60 bp DNA; and (H1)/60-70 bp DNA. All but the latter subnucleosome were also obtained upon DNase I digestion of purified nucleosome cores labeled on the 5' ends with /sup 32/P. Only subnucleosomes that retained H2a and H2b also retained labeled ends. These results show that H2a and H2b are paired on the terminal 30-40 bp of core DNA, as suggested from analyses of histone-DNA cross-link products by Mirzabekov and coworkers. Considerations of the orgins and compositions of subnucleosomes and of cross-linking data suggest an expanded model for the locations of histone binding sites along nucleosome core DNA. The principal features of this model are (i) strong electrostatic binding sites of H2a and H2b occur at positions approximately 20-30 bp from the core ends, (ii) strong electrostatic binding sites of H3 and H4 occur primarily on the central 40 bp of core DNA, (iii) strong nonelectrostatic, urea-sensitive binding sites of H3 and H4 occur at positions approximately 30-50 bp from the core ends, and (iv) urea-sensitive binding sites of H2a or H2b may occur on the terminal 10-20 bp of core DNA.

  12. Rapid Initiation of Thymidine Incorporation into Deoxyribonucleic Acid in Vegetative Tobacco Stem Segments Treated with Indole-3-acetic Acid 1

    PubMed Central

    Wardell, William L.

    1975-01-01

    The short term effect of 11.4 μm indoleacetic acid on the incorporation of (methyl-3H)thymidine into DNA in vegetative tobacco (Nicotiana tabacum cv. Wis. 38) stem segments has been investigated. In segments that are defoliated, inverted, and kept in the dark for 7 hours, indoleacetic acid very rapidly (about 60 minutes) and strikingly initiates thymidine incorporation into DNA. The time required before enough indoleacetic acid (2.8 μm) to enhance thymidine incorporation moves into a segment has been found to be about 35 minutes. The initiation response time for segment tissue that already contains 2.8 μm indoleacetic acid should be no more than about 25 minutes. The rate of labeled thymidine incorporation into DNA is affected by physiological treatments of segments. Moving segments from the light into the dark or defoliating segments or inverting defoliated segments decreases the rate of thymidine incorporation. For segments given all three treatments, indoleacetic acid restores the rate of thymidine incorporation as compared to controls. Darkness, or defoliation or inversion of segments, therefore, may decrease thymidine incorporation into DNA by effecting reduced auxin levels in stem segments. PMID:16659268

  13. Babesia gibsoni: detection in blood smears and formalin-fixed, paraffin-embedded tissues using deoxyribonucleic acid in situ hybridization analysis.

    PubMed

    Yamasaki, Masahiro; Kobayashi, Yusuke; Nakamura, Kensuke; Sasaki, Noboru; Murakami, Masahiro; Rajapakshage, Bandula Kumara Wickramasekara; Ohta, Hiroshi; Yamato, Osamu; Maede, Yoshimitsu; Takiguchi, Mitsuyoshi

    2011-01-01

    In this study, we attempted to detect Babesia gibsoni in blood smears and formalin-fixed, paraffin-embedded tissues obtained from B. gibsoni-infected dogs using in situ hybridization. Using a digoxigenin-conjugated deoxyribonucleic acid (DNA) probe, both intraerythrocytic and exoerythrocytic parasites in the culture could be specifically stained in blood smears fixed with 4% phosphate-buffered paraformaldehyde. This indicated that genomic DNA extracted from the parasites could be detected using in situ hybridization. Moreover, the parasite could be specifically stained in paraffin-embedded spleen, lymph node, and kidney sections using in situ hybridization. Infected erythrocytes in blood vessels in the spleen and kidney, hemosiderin-laden macrophages in the spleen, and phagocytized erythrocytes, which seemed to be infected with the parasites, in lymph nodes were also specifically stained. This suggests that in situ hybridization can be utilized to investigate both the life cycle of B. gibsoni and the pathological condition of canine babesiosis. PMID:20637756

  14. Contemporaneous isolation of deoxyribonucleic acid-dependent ribonucleic acid polymerase and poly(A) polymerase from rat liver mitochondria.

    PubMed Central

    Gallerani, R; di Istituto; Istituto di, Ch; Saccone, C

    1976-01-01

    1. Poly(A) polymerase and DNA-dependent RNA polymerase from rat liver mitochondria can be completely separated by using two different chromatographic procedures. 2. Poly(A) polymerase can only incorporate ATP into acid-insoluble material and strongly depends on the addition of an endogenous factor (probably containing a mixture of oligoribonucleotides), but it is not stimulated by DNA. 3. RNA polymerase is fully DNA-dependent and rifampicin-sensitive, but was not stimulated by the endogenous factor mentioned above. 4. The chromatographic behaviour of the two enzymes, together with the properties described, suggest that they represent two different protein molecules. PMID:962867

  15. Evaluation of deoxyribonucleic acid toxicity induced by the radiopharmaceutical 99mTechnetium-Methylenediphosphonic acid and by stannous chloride in Wistar rats.

    PubMed

    Mattos, José Carlos Pelielo De; Matos, Vanessa Coutinho de; Rodrigues, Michelle Pinheiro; Oliveira, Marcia Betânia Nunes de; Dantas, Flavio José S; Santos-Filho, Sebastião David; Bernardo-Filho, Mario; Caldeira-de-Araujo, Adriano

    2012-01-01

    Radiopharmaceuticals are employed in patient diagnostics and disease treatments. Concerning the diagnosis aspect, technetium-99m (99mTc) is utilized to label radiopharmaceuticals for single photon computed emission tomography (SPECT) due to its physical and chemical characteristics. 99mTc fixation on pharmaceuticals depends on a reducing agent, stannous chloride (SnCl(2)) being the most widely-utilized. The genotoxic, clastogenic and anegenic properties of the 99mTc-MDP(methylene diphosphonate used for bone SPECT) and SnCl(2) were evaluated in Wistar rat blood cells using the Comet assay and micronucleus test. The experimental approach was to endovenously administer NaCl 0.9% (negative control), cyclophosphamide 50 mg/kg b.w. (positive control), SnCl(2) 500 μg/mL or 99mTc-MDP to animals and blood samples taken immediately before the injection, 3, and 24 h after (in the Comet assay) and 36 h after, for micronucleus test. The data showed that both SnCl(2) and 99mTc-MDP-induced deoxyribonucleic acid (DNA) strand breaks in rat total blood cells, suggesting genotoxic potential. The 99mTc-MDP was not able to induce a significant DNA strand breaks increase in in vivo assays. Taken together, the data presented here points to the formation of a complex between SnCl(2) in the radiopharmaceutical 99mTc-MDP, responsible for the decrease in cell damage, compared to both isolated chemical agents. These findings are important for the practice of nuclear medicine. PMID:23117436

  16. Temporal sequence of events during the initiation process in Escherichia coli deoxyribonucleic acid replication: roles of the dnaA and dnaC gene products and ribonucleic acid polymerase.

    PubMed Central

    Zyskind, J W; Deen, L T; Smith, D W

    1977-01-01

    Three thermosensitive deoxyribonucleic acid (DNA) initiation mutants of Escherichia coli exposed to the restrictive temperature for one to two generations were examined for the ability to reinitiate DNA replication after returning to the permissive temperature in the presence of rifampin, chloramphenicol, or nalidixic acid. Reinitiation in the dnaA mutant was inhibited by rifampin but not by chloramphenicol, whereas renitiation was not inhibited by rifampin but not by chloramphenicol, whereas reinitiation was not inhibited in two dnaC mutants by either rifampin or chloramphenicol. To observe the rifampin inhibition, the antibiotic must be added at least 10 min before return to the permissive temperature. The rifampin inhibition of reinitiation was not observed when a rifampin-resistant ribonucleic acid ((RNA) polymerase gene was introduced into the dnaA mutant, demonstrating that RNA polymerase synthesizes one or more RNA species required for the initation of DNA replication (origin-RNA). Reinitiation at 30 degrees C was not inhibited by streptolydigin in a stretolydigin-sensitive dnaA muntant. Incubation in the presence of nalidixic acid prevented subsequent reinitiation in the dnaC28 mutant but did not inhibit reinitiation in the dnaA5 muntant. These results demonstrate that the dnaA gene product acts before or during the synthesis of an origin-RNA, RNA polymerase synthesizes this origin RNA, and the dnaC gene product is involved in a step after this RNA synthesis event. Furthermore, these results suggest that the dnaC gene product is involved in the first deoxyribounucleotide polymerization event wheareas the dnaA gene product acts prior to this event. A model is presented describing the temporal sequence of events that occur during initiation of a round of DNA replication, based on results in this and the accompanying paper. PMID:321429

  17. Deoxyribonucleic acid-directed growth of well dispersed nickel-palladium-platinum nanoclusters on graphene as an efficient catalyst for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ma, Jingwen; Wang, Jun; Zhang, Guanghui; Fan, Xiaobin; Zhang, Guoliang; Zhang, Fengbao; Li, Yang

    2015-03-01

    Trimetallic NiPdPt alloy nanoclusters with diameter of about 10 nm are successfully dispersed on the deoxyribonucleic acid-modified reduced graphene oxide (DNA-rGO) by using NaBH4 as reductant. The prepared NiPdPt nanoclusters grown on DNA-rGO (NiPdPt/DNA-rGO) composite are used as electrocatalysts for ethanol electrooxidation in alkaline solution. Cyclic voltammetry and chronoamperometry are used to investigate the electrochemical activities and stabilities of the catalysts. The Ni1Pd1Pt1/DNA-rGO (molar ratio of Ni, Pd, Pt is 1:1:1) has extraordinary electrocataltic activity, with their mass current density reaching 3.4 A mg-1metal and better stability. As compared with the bimetallic counterparts and NiPdPt grown on multi-wall carbon nanotubes, Ni1Pd1Pt1/DNA-rGO retains the highest mass current density after a 2000 s current-time test at 0 V.

  18. Evidence for a Relationship Between Equine Abortion (Herpes) Virus Deoxyribonucleic Acid Synthesis and the S Phase of the KB Cell Mitotic Cycle

    PubMed Central

    Lawrence, William C.

    1971-01-01

    Autoradiographic analyses of deoxyribonucleic acid (DNA) synthesis in randomly growing KB cell cultures infected with equine abortion virus (EAV) suggested that viral DNA synthesis was initiated only at times that coincided with the entry of noninfected control cells into the S phase of the cell cycle. Synchronized cultures of KB cells were infected at different stages of the cell cycle, and rates of synthesis of cellular and viral DNA were measured. When cells were infected at different times within the S phase, viral DNA synthesis was initiated 2 to 3 hr after infection. However, when cells in G1 and G2 were infected, the initiation of viral DNA synthesis was delayed and occurred only at times corresponding to the S phase. The times when viral DNA synthesis began were independent of the time of infection and differed by as much as 5 hr, depending on the stage of the cell cycle at which cells were infected. Viral one-step growth curves were also related to the S phase in a manner which indicated a relationship between the initiation of viral DNA synthesis and the S phase. These data support the concept that initiation of EAV DNA synthesis is dependent upon some cellular function(s) which is related to the S phase of the cell cycle. PMID:4254680

  19. Carcinogenic damage to deoxyribonucleic acid is induced by near-infrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption

    NASA Astrophysics Data System (ADS)

    Nadiarnykh, Oleg; Thomas, Giju; Van Voskuilen, Johan; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2012-11-01

    Nonlinear optical imaging modalities (multiphoton excited fluorescence, second and third harmonic generation) applied in vivo are increasingly promising for clinical diagnostics and the monitoring of cancer and other disorders, as they can probe tissue with high diffraction-limited resolution at near-infrared (IR) wavelengths. However, high peak intensity of femtosecond laser pulses required for two-photon processes causes formation of cyclobutane-pyrimidine-dimers (CPDs) in cellular deoxyribonucleic acid (DNA) similar to damage from exposure to solar ultraviolet (UV) light. Inaccurate repair of subsequent mutations increases the risk of carcinogenesis. In this study, we investigate CPD damage that results in Chinese hamster ovary cells in vitro from imaging them with two-photon excited autofluorescence. The CPD levels are quantified by immunofluorescent staining. We further evaluate the extent of CPD damage with respect to varied wavelength, pulse width at focal plane, and pixel dwell time as compared with more pronounced damage from UV sources. While CPD damage has been expected to result from three-photon absorption, our results reveal that CPDs are induced by competing two- and three-photon absorption processes, where the former accesses UVA absorption band. This finding is independently confirmed by nonlinear dependencies of damage on laser power, wavelength, and pulse width.

  20. Development of a chamber system for rapid, high yield and cost-effective purification of deoxyribonucleic acid fragments from agarose gel

    PubMed Central

    Eslami, Gilda; Salehi, Rasoul

    2014-01-01

    Background: There are several methods commonly practicing for deoxyribonucleic acid (DNA) purification from agarose gel. In most laboratories, especially in developing countries, present methods for recovering of DNA fragments from the gel are mostly involved organic solvents. However, manual purification using organic solvents are toxic, labor intensive, time consuming and prone to contamination owing to several handling steps. The above mentioned burdens as well as cost and long time to import them, especially in developing countries, prompted us to design and develop a chamber system for rapid, non-toxic, cost-effective and user friendly device for polymerase chain reaction (PCR) products purification from agarose gel. Materials and Methods: The device was made from plexiglass plates. After amplification of two fragments of 250 and 850 bp, PCR products were electrophoresed. Subsequently, the desired bands were excised and purified with three method: HiPer Mini chamber, phenol extraction method and spin column procedure. To assess the suitability of the purified DNAs, restriction digestion was applied. Results: Results showed that the yield of recovered DNA in our method was above 95%, whereas the yields obtained with conventional phenol extraction and spin column methods were around 60%. Conclusion: In conclusion, the current method for DNA elution is quick, inexpensive and robust and it does not require the use of toxic organic solvents. In addition, the purified DNA was well has suited for further manipulations such as restriction digestion, ligation, cloning, sequencing and hybridization. PMID:24761386

  1. Cell cytotoxicity and serum albumin binding capacity of the morin-Cu(ii) complex and its effect on deoxyribonucleic acid.

    PubMed

    Roy, Atanu Singha; Samanta, Sintu Kumar; Ghosh, Pooja; Tripathy, Debi Ranjan; Ghosh, Sudip Kumar; Dasgupta, Swagata

    2016-08-16

    The dietary components, flavonoids, are important for their anti-oxidant properties and the ability to act as metal ion chelators. The characterization of the morin-Cu(ii) complex is executed using elemental analysis, FTIR and mass spectroscopy. DNA cleaving and cell cytotoxicity properties followed by serum albumin binding have been investigated in this report. The morin-Cu(ii) complex was found to cleave plasmid pBR322 DNA via an oxidative pathway as revealed by agarose gel based assay performed in the presence of some scavengers and reactive oxygen species. The breaking of the deoxyribose ring of calf thymus DNA (ct-DNA) was also confirmed by the formation of thiobarbituric acid reacting species (TBARS) between thiobarbituric acid and malonaldehyde. The morin-Cu(ii) complex is able to inhibit the growth of human HeLa cells. Fluorescence studies revealed that the morin-Cu(ii) complex can quench the intrinsic fluorescence of serum albumins (SAs) via a static quenching method. The binding constants were found to be in the order of 10(5) M(-1) and observed to increase with temperature. Both ΔH° and ΔS° are positive for the binding of the morin-Cu(ii) complex with serum albumins which indicated the presence of hydrophobic forces. Site-selectivity studies reveal that the morin-Cu(ii) complex binds to both site 1 (subdomain IIA) and site 2 (subdomain IIIA) of human serum albumin (HSA) and bovine serum albumin (BSA). Circular dichroism (CD) studies showed the structural perturbation of SAs during binding with the morin-Cu(ii) complex. The results from binding studies confirmed that after complexation with the Cu(ii) ion, morin alters its mode of interaction with SAs which could have differential implications on its other biological and pharmaceutical properties. PMID:27345944

  2. Relationship between deoxyribonucleic acid content and nucleoli in human heart muscle cells and estimation of cell number during cardiac growth and hyperfunction.

    PubMed

    Adler, C P

    1975-01-01

    In the myocardium of 30 human hearts of all age groups quantitative deoxyribonucleic acid (DNA) measurements were performed and the results of the measurements were correlated with the pure myocardium weight. By means of the diphenylamine reaction the total amount of DNA (DNA concentration and DNA amount) in the myocardium was estimated. By means of Feulgen cytophotometry the DNA amount exclusively in the heart muscle cell nuclei was measured. With the use of myocardial tissue spread on slides, the nuclear areas of the heart muscle nuclei were planimetrically measured. After preparation with DNase and staining with gallocyanine chromalumn the nucleoli in heart muscle nuclei were specifically presented and their number per nucleus as well as their area values were demonstrated. From the biochemical and cytophotometric results of the myocardial DNA content it was possible to estimate the absolute cell number of the hearts, keeping the pure myocardium weight in consideration. The investigations led to the following results. In growing childrens' hearts the DNA concentration decreases to a constant level of 0.3-0.4 mg/g. The amount of DNA rises with increasing heart weight. During the growth of the heart of a child between the ages of 8 and 12 the DNA amount doubles in the heart muscle nuclei, and most of the muscle nuclei of an adult have a tetraploid DNA content. In pathological heart hypertrophy a further polyploidization of the heart muscle nuclei occurs. The areas of the nuclei increases with growing polyploidization. The nuclear areas form the same grouping as the ploidy classes. With growing nuclear areas, the total areas of the nucleoli and their number per nucleus also increase. Right after birth an increase in the number of connective tissue and heart muscle cells follows. A normal heart contains about 2 x 10(9) muscle cells. In hypertrophic hearts the number of muscle cells can double. PMID:129834

  3. Floral Induction of Vegetative Plants Supplied a Purified Fraction of Deoxyribonucleic Acid from Stems of Flowering Plants 1

    PubMed Central

    Wardell, William L.

    1977-01-01

    It has been found that floral induced stems of flowering tobacco (Nicotiana tabacum cv. Wis. 38) plants contain large amounts of rapidly renaturing DNA, whereas noninduced stems of vegetative plants contain only small amounts. In addition, it has been shown that the striking qualitative difference in DNA between stems of flowering and vegetative plants mimics the over-all quantitative difference in DNA content (on a fresh weight basis). Therefore, the extra DNA in stems of flowering plants seems, at least in part, to represent preferential synthesis of rapidly renaturing DNA. Rapidly renatured DNA (flowering plants) has been purified (cesium chloride gradients) from heated-cooled DNA solution and under noninductive conditions has been tested for floral activity. It has been found that when rapidly renatured DNA in buffer solution is supplied to axillary vegetative buds of vegetative plants and then the axillary buds are defoliated every 4th day for 12 days, the treated buds change into flower buds. On the other hand, control axillary buds supplied buffer solution alone remain vegetative. In stem segments from flowering plants, the concept, discussed in previous reports, that indole-3-acetic acid may modify in vitro bud expression by directly affecting DNA synthesis has been reviewed. On the basis of this report, the concept is elaborated by proposing here that indole-3-acetic acid may act partially in bud expression by directly suppressing synthesis of rapidly renaturing DNA. PMID:16660207

  4. Quantitative determination of polycyclic aromatic hydrocarbon adducts to deoxyribonucleic acid using GC/MS (gas chromatography/mass spectrometry) techniques

    SciTech Connect

    Bean, R.M.; Thomas, B.L.; Chess, E.K.; Pavlovich, J.G.; Springer, D.L.

    1988-02-01

    A direct, specific mass spectrometric method useful for determination of polycyclic aromatic adducts has been developed. Our experiments indicated that overall recoveries from the acid hydrolysis, isolation and derivatization steps will be about 50%. It is apparent that a method even for BaP adducts is not yet complete. The methods described in this paper are provided in detail. Other derivatization techniques are needed that are selective and quantitative, and that will enhance the singal in the mass spectrometer to improve instrument selectivity and sensitivity. In addition to improvements in instrument sensitivity and gas chromatography column performance, there is a great need for procedures for rigorous documentation of organic analytical methods at the picogram level. 12 refs., 2 tabs.

  5. Deoxyribonucleic acid-Ag nanoparticles for EMI Shielding: the effect of nanoparticle size, shape and distribution on the shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Ouchen, Fahima; Wilson, Benjamin G.; Yaney, Perry P.; Salour, Michael M.; Grote, James G.

    2014-09-01

    This study focuses on the use of silver based nanoparticle as fillers in DNA host materials to form nancomposites for applications in Electro-Magnetic Interferences (EMI) shielding. For relatively low-conductivity EMI shielding nanocomposites, silver-oxide coated cenospheres are investigated as fillers. The filler loadings are varied to determine a percolation threshold for the desired low conductivity and shielding effectiveness. Microwave absorption as well as DC surface resistivity measurements are undertaken to characterize the obtained films.

  6. Comparative studies on zirconia and graphene composites obtained by one-step and stepwise electrodeposition for deoxyribonucleic acid sensing.

    PubMed

    Yang, Tao; Guo, Xiuhong; Kong, Qianqian; Yang, Ruirui; Li, Qianhe; Jiao, Kui

    2013-07-01

    In this paper, the comparison of two kinds of electrochemically reduced graphene oxide (ERGNO) and zirconia composites, obtained by one-step (ZrO2-ERGNO) and stepwise (ZrO2/ERGNO) electrodeposition for DNA sensing, is systematically studied. The resulting composites were characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The results indicated that the ZrO2-ERGNO presented fine globular nanostructure. However, ZrO2/ERGNO presented agglomerate massive microstructure due to the absence of the oxygen-containing groups of graphene oxide, confirming the oxygen-containing groups provided a better affinity for the deposition of ZrO2. Due to the strong binding of the phosphate groups of DNA with the zirconia film, DNA probes were attached on the ZrO2-based composites. ZrO2-ERGNO/Au owning fine nanostructure presented larger surface area than microstructured ZrO2/ERGNO/Au. Moreover, compared with microstructured ZrO2/ERGNO, the nanostructured ZrO2-ERGNO provided more accessible space for immobilized DNA probe hybridization with target sequence, which consequently resulted in higher hybridization efficiency. Therefore, the ZrO2-ERGNO was chosen for fabricating DNA sensor with a limit of detection 1.21×10(-14) mol L(-1). PMID:23790288

  7. Electron Microscope and Autoradiographic Study of Ultrastructural Aspects of Competence and Deoxyribonucleic Acid Absorption in Bacillus subtilis: Ultrastructure of Competent and Noncompetent Cells and Cellular Changes During Development of Competence

    PubMed Central

    Vermeulen, C. A.; Venema, G.

    1974-01-01

    By means of electron microscope autoradiography of component cultures of Bacillus subtilis exposed to [3H]thymidine-labeled transforming deoxyribonucleic acid competent and noncompetent cells can be distinguished. Competence is not limited to a specific phase of the cell division cycle. With serial section electron microscopy of competent and noncompetent cells, two types of mesosomal structures are observed: mesosomes connected to the plasma membrane only (plasma membrane mesosomes) and mesosomes which are additionally connected to the nuclear bodies (nuclear mesosomes). The two types show different cellular distributions. Especially the number of nuclear mesosomes is higher in competent than in noncompetent cells. This, and the observation that the increase and decrease of competence is correlated with both the number of cells carrying nuclear mesosomes and the number of nuclear mesosomes per cell, suggests that mesosomes are involved in the acquisition of competence. PMID:4208130

  8. Cloning and characterization of a complementary deoxyribonucleic acid encoding haploid-specific alanine-rich acidic protein located on chromosome-X.

    PubMed

    Uchida, K; Tsuchida, J; Tanaka, H; Koga, M; Nishina, Y; Nozaki, M; Yoshinaga, K; Toshimori, K; Matsumiya, K; Okuyama, A; Nishimune, Y

    2000-10-01

    We have isolated a cDNA clone encoding a germ cell-specific protein from an expression cDNA library prepared from the mouse testis using testis-specific polyclonal antibodies. Northern blot analysis showed a transcript of 1.1 kilobases exclusively expressed in haploid germ cells of the testis. Sequence analysis of the cDNA revealed one long open reading frame consisting of 238 deduced amino acids, rich in basic amino acids in the N-terminal one-third that also contained the nuclear localization signal, and rich in acidic amino acids, including two type of acidic alanine-rich repeats, in the rest of the deduced protein. The protein having a molecular weight of approximately 55 kDa and an isoelectric point of pH 4.3-4.7 was also exclusively detected in the testis by Western blot analysis. As the cDNA was located on chromosome-X, Halap-X (haploid-specific alanine-rich acidic protein located on chromosome-X) was proposed for the name of the protein encoded by the cDNA. Immunohistochemical observation revealed that the Halap-X protein was predominantly present in the nucleoplasm of round spermatids but gradually decreased as spermatids matured, followed by the subsequent appearance in the cytoplasm of elongating spermatids. Thus, the Halap-X protein was transferred from the nuclei to the cytoplasm during the spermatid maturation when the chromatin condensation and transformation of the nuclei occurred. The Halap-X may facilitate specific association of nuclear DNA with some basic chromosomal proteins and play important roles in the process of chromatin condensation. PMID:10993819

  9. Purification of influenza deoxyribonucleic acid-based vaccine using agmatine monolith.

    PubMed

    Bicho, D; Caramelo-Nunes, C; Sousa, A; Sousa, F; Queiroz, J A; Tomaz, C T

    2016-02-15

    Lately, researchers have made several efforts to improve vaccine production to fight highly contagious respiratory diseases like influenza. One of the most promising options for reducing the impact of this virus is DNA vaccination. However, a large quantity of highly pure plasmid DNA (pDNA) is necessary to attain this goal. The present work describes the production and purification of the plasmid NTC7482-41H-VA2HA expressing influenza virus hemagglutinin using an agmatine monolith. This ligand was chosen to purify supercoiled (sc) pDNA from complex lysates because of its versatile multimodal character. Its natural intervention in several biological systems together with its similarity with the highly studied arginine ligand allowed the development of a simpler and more specific purification process. Agmatine works under two strategies: descending ammonium sulfate gradient and ascending sodium chloride gradient. Furthermore, pH manipulation revealed an important role in pDNA isoforms selectivity. Dynamic binding capacity (DBC) experiments were performed varying different parameters and showed an increase with pDNA concentration, while high flow rate and high pH had the opposite effect. Sc pDNA was purified with high yield and was efficient with respect to cell transfection and cell viability. This monolith showed to be appropriate to purify the plasmid NTC7482-41H-VA2HA, providing a valuable tool for pDNA influenza vaccines preparation. PMID:26827278

  10. Molecular cloning of otoconin-22 complementary deoxyribonucleic acid in the bullfrog endolymphatic sac: effect of calcitonin on otoconin-22 messenger ribonucleic acid levels.

    PubMed

    Yaoi, Yuichi; Suzuki, Masakazu; Tomura, Hideaki; Sasayama, Yuichi; Kikuyama, Sakae; Tanaka, Shigeyasu

    2003-08-01

    Anuran amphibians have a special organ called the endolymphatic sac (ELS), containing many calcium carbonate crystals, which is believed to have a calcium storage function. The major protein of aragonitic otoconia, otoconin-22, which is considered to be involved in the formation of calcium carbonate crystals, has been purified from the saccule of the Xenopus inner ear. In this study, we cloned a cDNA encoding otoconin-22 from the cDNA library constructed for the paravertebral lime sac (PVLS) of the bullfrog, Rana catesbeiana, and sequenced it. The bullfrog otoconin-22 encoded a protein consisting of 147 amino acids, including a signal peptide of 20 amino acids. The protein had cysteine residues identical in a number and position to those conserved among the secretory phospholipase A(2) family. The mRNA of bullfrog otoconin-22 was expressed in the ELS, including the PVLS and inner ear. This study also revealed the presence of calcitonin receptor-like protein in the ELS, with the putative seven-transmembrane domains of the G protein-coupled receptors. The ultimobranchialectomy induced a prominent decrease in the otoconin-22 mRNA levels of the bullfrog PVLS. Supplementation of the ultimobranchialectomized bullfrogs with synthetic salmon calcitonin elicited a significant increase in the mRNA levels of the sac. These findings suggest that calcitonin secreted from the ultimobranchial gland, regulates expression of bullfrog otoconin-22 mRNA via calcitonin receptor-like protein on the ELS, thereby stimulating the formation of calcium carbonate crystals in the lumen of the ELS. PMID:12865304

  11. Repair of Radiation-Induced Damage in Escherichia coli II. Effect of rec and uvr Mutations on Radiosensitivity, and Repair of X-Ray-Induced Single-Strand Breaks in Deoxyribonucleic Acid1

    PubMed Central

    Kapp, Daniel S.; Smith, Kendric C.

    1970-01-01

    Strains of Escherichia coli K-12 mutant in the genes controlling excision repair (uvr) and genetic recombination (rec) have been studied with reference to their radiosensitivity and their ability to repair X-ray-induced single-strand breaks in deoxyribonucleic acid (DNA). Mutations in the rec genes appreciably increase the radiosensitivity of E. coli K-12, whereas uvr mutations produce little if any increase in radiosensitivity. For a given dose of X-rays, the yield of single-strand breaks has been shown by alkaline sucrose gradient studies to be largely independent of the presence of rec or uvr mutations. The rec+ cells (including those carrying the uvrB5 mutation) could efficiently rejoin X-ray-induced single-strand breaks in DNA, whereas recA56 mutants could not repair these breaks to any great extent. The recB21 and recC22 mutants showed some indication of repair capacity. From these studies, it is concluded that a correlation exists between the inability to repair single-strand breaks and the radiosensitivity of the rec mutants of E. coli K-12. This suggests that unrepaired single-strand breaks may be lethal lesions in E. coli. PMID:4912530

  12. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  13. Bilateral lesions of suprachiasmatic nuclei affect circadian rhythms in (/sup 3/H)-thymidine incorporation into deoxyribonucleic acid in mouse intestinal tract, mitotic index of corneal epithelium, and serum corticosterone

    SciTech Connect

    Scheving, L.E.; Tsai, T.H.; Powell, E.W.; Pasley, J.N.; Halberg, F.; Dunn, J.

    1983-03-01

    Investigations into the role of the suprachiasmatic nuclei (SCN) in the coordination of circadian rhythms have presented differing results. Several reports have shown that ablation of the suprachiasmatic nuclei (SCNA) alters the phase and amplitude of rhythms but does not abolish them. The present study investigates the effect of SCNA on the rhythms in cell proliferation in various regions of the intestinal tract as measured by the incorporation of (/sup 3/H)-thymidine into deoxyribonucleic acid, in the mitotic activity of the corneal epithelium, and in serum corticosterone levels. The study involved mice with verified lesions of the SCN (six to 13 mice per time point) and control groups of both sham-operated and unoperated mice (seven of each per time point). The mice were killed in groups that represented seven time points over a single 24 hr span (3 hr intervals with the 0800 hr sampled both at start and end of the series). The tissues examined were the tongue, esophagus, gastric stomach, and colon for DNA synthesis, the corneal epithelium for mitotic index, and blood serum for corticosterone level. The most consistent result of SCNA was a phase advance in the rhythms in cell proliferation in the tongue, esophagus, gastric stomach, colon, and corneal epithelium. A reduction in rhythm amplitude occurred in the tongue, esophagus, and corneal epithelium; however, there was an amplitude increase for the stomach, colon, and serum corticosterone. The mesor (rhythm-adjusted mean) was increased by SCNA in all tissues except the corneal epithelium. These findings further support the role of the suprachiasmatic nuclear area in the control of rhythms in cell proliferation and corticosterone production, by acting as a ''phase-resetter'' and as a modulator of rhythm amplitude.

  14. Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study

    PubMed Central

    Tang, Ling-Long; Mao, Yan-Ping; Li, Wen-Fei; Guo, Rui; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2016-01-01

    We evaluated the combined prognostic value of cigarette smoking and baseline plasma Epstein-Barr virus deoxyribonucleic acid (EBV DNA) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Of consecutive patients, 1501 with complete data were eligible for retrospective analysis. Smoking index (SI; cigarette packs per day times smoking duration [years]), was used to evaluate the cumulative effect of smoking. Primary endpoint was overall survival (OS); progression-free survival (PFS), distant metastasisfree survival (DMFS) and locoregional relapse-free survival (LRFS) were secondary end-points. Both cigarette smoking and baseline plasma EBV DNA load were associated with poorer survival (P<0.001). Patients were divided into four groups: low EBV DNA and light smoker (LL), low EBV DNA and heavy smoker (LH), high EBV DNA and light smoker (HL), and high EBV DNA and heavy smoker (HH). The respective 5-year survival rates were: OS (93.1%, 87.2%, 82.9%, and 76.3%, P<0.001), PFS (87.0%, 84.0%, 73.9%, and 64.6%, P<0.001), DMFS (94.1%, 92.1%, 82.4%, and72.5%, P<0.001), and LRFS (92.8%, 92.4%, 88.7%, and 84.0%, P=0.012).OS and PFS were significantly different between the LH and HL groups and HL and HH groups, but not LL and LH groups (pairwise comparisons). The combined risk stratification remained an independent prognostic factor for all endpoints (all Ptrend<0.001; multivariate analysis). Both cigarette smoking and baseline plasma EBV DNA were independent prognostic factors for survival outcomes. Combined interpretation of EBV DNA with smoking led to the refinement of the risks stratification for patient subsets, especially with improved risk discrimination in patients with high baseline plasma EBV DNA. PMID:26919237

  15. Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study.

    PubMed

    Lv, Jia-Wei; Chen, Yu-Pei; Zhou, Guan-Qun; Tang, Ling-Long; Mao, Yan-Ping; Li, Wen-Fei; Guo, Rui; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2016-03-29

    We evaluated the combined prognostic value of cigarette smoking and baseline plasma Epstein-Barr virus deoxyribonucleic acid (EBV DNA) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Of consecutive patients, 1501 with complete data were eligible for retrospective analysis. Smoking index (SI; cigarette packs per day times smoking duration [years]), was used to evaluate the cumulative effect of smoking. Primary end-point was overall survival (OS); progression-free survival (PFS), distant metastasis-free survival (DMFS) and locoregional relapse-free survival (LRFS) were secondary end-points. Both cigarette smoking and baseline plasma EBV DNA load were associated with poorer survival (P <0.001). Patients were divided into four groups: low EBV DNA and light smoker (LL), low EBV DNA and heavy smoker (LH), high EBV DNA and light smoker (HL), and high EBV DNA and heavy smoker (HH). The respective 5-year survival rates were: OS (93.1%, 87.2%, 82.9%, and 76.3%, P<0.001), PFS (87.0%, 84.0%, 73.9%, and 64.6%, P<0.001), DMFS (94.1%, 92.1%, 82.4%, and72.5%, P<0.001), and LRFS (92.8%, 92.4%, 88.7%, and 84.0%, P=0.012).OS and PFS were significantly different between the LH and HL groups and HL and HH groups, but not LL and LH groups (pairwise comparisons). The combined risk stratification remained an independent prognostic factor for all endpoints (all Ptrend<0.001; multivariate analysis). Both cigarette smoking and baseline plasma EBV DNA were independent prognostic factors for survival outcomes. Combined interpretation of EBV DNA with smoking led to the refinement of the risks stratification for patient subsets, especially with improved risk discrimination in patients with high baseline plasma EBV DNA. PMID:26919237

  16. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  17. Acid-base chemistry

    SciTech Connect

    Hand, C.W.; Blewit, H.L.

    1985-01-01

    The book is not a research compendium and there are no references to the literature. It is a teaching text covering the entire range of undergraduate subject matter dealing with acid-base chemistry (some of it remotely) as taught in inorganic, analytical, and organic chemistry courses. The excellent chapters VII through IX deal in detail with the quantitative aspects of aqueous acid-base equilibria (salt hydrolysis and buffer, titrations, polyprotic and amphoteric substances).

  18. Evaluation of mobile phase composition for enhancing sensitivity of targeted quantification of oligonucleotides using ultra-high performance liquid chromatography and mass spectrometry: application to phosphorothioate deoxyribonucleic acid.

    PubMed

    Chen, Buyun; Bartlett, Michael G

    2013-05-01

    LC-MS based assays are a promising approach for the bioanalysis of oligonucleotide therapeutics due to their selectivity and structure identification capabilities. However, the lack of sensitivity and complicated sample preparation procedures remain a barrier for application of LC-MS based assays to preclinical and clinical studies. Numerous studies have shown that the mobile phase composition, especially organic solvent type, has a significant impact on the MS sensitivity of oligonucleotides. In this study, we systematically investigated the type of organic solvents and concentration of organic modifiers for their effect on electrospray desorption efficiency, chromatographic separation and LC-MS signal intensity and provide mechanisms for these effects. 25mM HFIP, 15mM DIEA and the use of ethanol as an organic solvent were observed to achieve a two order of magnitude increase in LC-MS signal intensity when compared to the most commonly used LC-MS mobile phase composition. Phenol-chloroform LLE in combination with ethanol precipitation was demonstrated to be effective for quantitative bioanalysis of therapeutic oligonucleotides. Various conditions for ethanol precipitation were evaluated and >75% absolute recovery was achieved using an optimized extraction procedure. No increase in column pressure or deterioration of separation was observed for >500 injections of biological samples. The method run time was 5min and the LOQ was 2.5ng/ml. The accuracy (% error) and precision (%RSD) are <5.09% and <10.56%, respectively, over a dynamic range of 2.5-1000ng/ml. The assay was applied to a proof of concept animal study and similar PK parameters to previous studies were obtained. PMID:23528868

  19. Rapid deoxyribonucleic acid analysis by allele-specific polymerase chain reaction for detection of mutations in the steroid 21-hydroxylase gene

    SciTech Connect

    Wilson, R.C.; Wei, J.Q.; Cheng, K.C.

    1995-05-01

    Rapid DNA analysis based on allele-specific polymerase chain reaction (PCR) using mutation site-specific primers was developed to detect mutations in the CYP21 gene known to cause steroid 21-hydroxylase deficiency. In contrast to the previous method, in which PCR of genomic DNA was followed by dot blot analysis with radio active probes and multiple rounds of stripping and reprobing for each of the 8 most common mutation sites, the results using this new method were immediately visualized after the PCR run by ethidium bromide-stained agarose gel electrophoresis. Using allele-specific PCR, mutation(s) were identified on 148 affected chromosomes out of 160 tested. Although mutation(s) were identified on only one chromosome of 11 of these patients, their parents showed a consistent pattern on DNA analysis. The only exception was that in one family, in which the parents each had a detectable mutation, a mutation was detected on only one allele of the patient. Most likely there is a mutation in the patient`s other allele that could have arisen de novo or was inherited from the parent and was not evident in the transmitting parent`s phenotype. When compared with the dot blot procedure, allele-specific PCR is more rapid, less labor-intensive, and avoids the use of radioactivity. 26 refs., 3 figs., 2 tabs.

  20. An on-line high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-deoxyribonucleic acid-4',6-diamidino-2-phenylindole-fluorescence detector system for screening the DNA-binding active compounds in Fufang Banbianlian Injection.

    PubMed

    Li, Sensen; Jiang, Haixiu; Lin, Zongtao; Deng, Shanshan; Guan, Yanqing; Wang, Hong; Chen, Shizhong

    2015-12-11

    Fufang Banbianlian Injection (FBI), a well-known traditional Chinese medicine formula, has been recently approved and extensively used as a newly anti-inflammatory and anti-tumor drug. This prescription comprises an equal ratio of three traditional Chinese herbs, Lobelia chinensis Lour, Scutellaria barbata D. Don and Hedyotis diffusa Willd. The relationships between its chemical compositions and activities have not been understood well yet. To investigate the ingredients and their DNA-binding activities in FBI, an on-line high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-deoxyribonucleic acid-4',6-diamidino-2-phenylindole-fluorescence detector (HPLC-DAD-MS(n)-DNA-DAPI-FLD) system was developed using a combination of chromatographic, mass spectrometric and fluorescent detection techniques. 4',6-Diamidino-2-phenylindole (DAPI) specifically binds to three ATT base pairs on the DNA minor groove, and thus can be used as a fluorescent probe for screening active compounds that compete ATT sequences with DAPI. Using this system, 21 of 58 identified or tentatively characterized compounds in FBI showed DNA-binding activities, with most of the active compounds being flavone glycosides. In addition, the structure-activity relationships of these active compounds suggested that conjugated planar structures are favorable for DNA-binding activities, and adjacent hydroxyl groups in flavonoids can significantly improve their activities. This is, to the best of our knowledge, the first application of DAPI as a fluorescent probe for the screening of DNA-binding active compounds in complex samples. PMID:26592560

  1. Nucleic acid based molecular devices.

    PubMed

    Krishnan, Yamuna; Simmel, Friedrich C

    2011-03-28

    In biology, nucleic acids are carriers of molecular information: DNA's base sequence stores and imparts genetic instructions, while RNA's sequence plays the role of a messenger and a regulator of gene expression. As biopolymers, nucleic acids also have exciting physicochemical properties, which can be rationally influenced by the base sequence in myriad ways. Consequently, in recent years nucleic acids have also become important building blocks for bottom-up nanotechnology: as molecules for the self-assembly of molecular nanostructures and also as a material for building machinelike nanodevices. In this Review we will cover the most important developments in this growing field of nucleic acid nanodevices. We also provide an overview of the biochemical and biophysical background of this field and the major "historical" influences that shaped its development. Particular emphasis is laid on DNA molecular motors, molecular robotics, molecular information processing, and applications of nucleic acid nanodevices in biology. PMID:21432950

  2. The theory of the deoxyribonucleic acid - ribonucleic acid hybridization reaction.

    PubMed Central

    Thomou, H; Katsanos, N A

    1976-01-01

    A general equation is derived describing data of DNA-RNA hybridization in the presence of a competing self-annealing reaction of RNA. The well known double-reciprocal relation and the Scatchard equation are shown to be limiting cases of this general equation. Some new hybridization data at various temperatures are presented and analysed by using the new equation. The results can only be explained if we assume that the behavior of DNA towards single RNA molecules is the same as that towards the annealed form, (RNA12. The variation of the equilibrium constant of the hybridization reaction with temperature is small, indicating a small heat of reaction. The maximum amount of hybridized RNA at equilibrium appears to be independent of temperature. PMID:1275887

  3. Molten fatty acid based microemulsions.

    PubMed

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  4. Contribution of light scattering to the circular dichroism of deoxyribonucleic acid films, deoxyribonucleic acid-polylysine complexes, and deoxyribonucleic acid particles in ethanolic buffers

    SciTech Connect

    Maestre, M.F.; Reich, C.

    1980-01-01

    The contribution of scattering to the circular dichroism (CD) of DNA films with twisted structures, DNA-polylysine complexes, and condensed DNA aggregates in ethanolic buffers of defined salt concentrations has been studied by the use of novel measuring techniques. These techniques include fluorscat cuvettes, fluorescence-detected circular dichroism (FDCD) methods, backscattering capturing devices, and beam-mounted goniometer detectors. The result of the experimental measurement is that DNA films can be made which have very large ellipticities or CD at sharp specific wavelengths. The sign of these ellipticities is related to the handedness of the twists, with a right-handed twist producing large positive rotations and a left-handed one producing negative rotations. The film shows nodal angles at which the interaction with light is minimal. The scattering patterns of both films, DNA-polylysine particles and DNA-EtOH condensates, show that the main interaction is light scattering produced by a resonance phenomenon similar to that produced in cholestric liquid crystals and twisted-nematic liquid crystals. It is proposed that the so-called psi-type CD spectrum is a manifestation of a side-by-side packing of DNA molecules with a long-range twisting order whose helical parameters match the helical parameter of circularly polarized light at specific resonance or critical wavelengths. Application of the Bragg law for cholesteric liquid crystals gives the periodicity of the long-range ordered structures. 9 figures.

  5. Use of an Acid-Base Table.

    ERIC Educational Resources Information Center

    Willis, Grover; And Others

    1986-01-01

    Identifies several ways in which an acid-base table can provide students with information about chemical reactions. Cites examples of the chart's use and includes a table which indicates the strengths of some common acids and bases. (ML)

  6. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  7. Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids

    PubMed Central

    Lawley, P. D.; Brookes, P.

    1968-01-01

    1. A quantitative study was made of the relationship between survival of colony-forming ability in Escherichia coli strains B/r and Bs–1 and the extents of alkylation of cellular DNA, RNA and protein after treatment with mono- or di-functional sulphur mustards, methyl methanesulphonate or iodoacetamide. 2. The mustards and methyl methanesulphonate react with nucleic acids in the cells, in the same way as found previously from chemical studies in vitro, and with proteins. Iodoacetamide reacts only with protein, principally with the thiol groups of cysteine residues. 3. The extents of alkylation of cellular constituents required to prevent cell division vary widely according to the strain of bacteria and the nature of the alkylating agent. 4. The extents of alkylation of the sensitive and resistant strains at a given dose of alkylating agent do not differ significantly. 5. Removal of alkyl groups from DNA of cells of the resistant strains B/r and 15T− after alkylation with difunctional sulphur mustard was demonstrated; the product di(guanin-7-ylethyl) sulphide, characteristic of di- as opposed to mono-functional alkylation, was selectively removed; the time-scale of this effect suggests an enzymic rather than a chemical mechanism. 6. The sensitive strain Bs–1 removed alkyl groups from DNA in this way only at very low extents of alkylation. When sensitized to mustard action by treatment with iodoacetamide, acriflavine or caffeine, the extent of alkylation of cellular DNA corresponding to a mean lethal dose was decreased to approximately 3 molecules of di(guanin-7-ylethyl) sulphide in the genome of this strain. 7. Relatively large numbers of monofunctional alkylations per genome can be withstood by this sensitive strain. Iodoacetamide had the weakest cytotoxic action of the agents investigated; methyl methanesulphonate was significantly weaker in effect than the monofunctional sulphur mustard, which was in turn weaker than the difunctional sulphur mustard. 8

  8. Unscheduled deoxyribonucleic acid (DNA) synthesis assays for toxicological studies. May 1977-March 1990 (A Bibliography from the NTIS data base). Report for May 1977-March 1990

    SciTech Connect

    Not Available

    1990-04-01

    This bibliography contains citations concerning the unscheduled DNA synthesis (UDS) assay for toxicological studies. UDS assays provide very sensitive measures of damage to DNA by detecting induction of DNA synthesis in non-S-phase cells. UDS toxicological studies analyzing gamma radiation, drugs, pesticides, nerve gas, jet engine fuels, ultraviolet light, chlorated organic compounds, and aromatic compounds are discussed. UDS studies using both human and animal tissue cultures are described. (Contains 57 citations fully indexed and including a title list.)

  9. 76 FR 72950 - Draft Guidance for Industry: Use of Nucleic Acid Tests on Pooled and Individual Samples From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... (HBV) deoxyribonucleic acid (DNA) and recommendations for product testing and disposition, donor...- licensed NAT to screen blood donors for HBV DNA. FDA is also providing these blood establishments...

  10. Intracellular deoxyribonucleic acid--modifying activity of intermittent phototherapy.

    PubMed

    Santella, R M; Rosenkranz, H S; Speck, W T

    1978-07-01

    Phototherapy is capable of damaging the genetic material of eukaryotic and prokaryotic cells at fluences considerably less than that received by irradiated infants. It has been suggested that intermittent phototherapy, with varying on-off cycles, may offer theoretical advantages since the total light dosage received by the exposed infant is reduced. The present study was undertaken to determine the effect of intermittent phototherapy on the genetic material of human cells in tissue culture. Intermittent illumination produced more DNA damage than a similar light dosage administered continuously. These results suggest that intermittent phototherapy regimens may prove more deleterious to irradiated infants than continuous phototherapy. PMID:650318

  11. Sedimentation studies on the interaction of proflavine with deoxyribonucleic acid

    PubMed Central

    Lloyd, P. H.; Prutton, R. N.; Peacocke, A. R.

    1968-01-01

    A method is described of using photography to measure the concentrations of a small ligand (proflavine) above and below the boundary of a macromolecule (DNA, both native and denatured) sedimenting in the ultracentrifuge. The measurements are used to determine the extent of the binding of proflavine to DNA, and the results compared with those obtained by a spectrophotometric method. The results obtained by the two methods agree within 10%, thus validating the spectrophotometric technique under these conditions. The variation of the sedimentation coefficient with the extent of binding of proflavine was also studied. The results are discussed in relation to previously observed changes in the viscosity of the solutions. PMID:5689838

  12. In vivo selection of CVI988 based vaccine, pCVI988-699-2: characterization of its efficacy and safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to increase the efficacy of current vaccines, we have constructed a bacterial artificial chromosome (BAC),id-based infectious clone of CVI 988 (Rispens) of low passage (p23), using deoxyribonucleic acid (DNA) provided from Merial, Inc., and obtained from the Central Veterinary Institute, Le...

  13. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  14. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  15. The activity of deoxyribonucleic acid polymerase and deoxyribonucleic acid synthesis in nuclei from brain fractionated by zonal centrifugation

    PubMed Central

    Stambolova, M. A.; Cox, D.; Mathias, A. P.

    1973-01-01

    1. The DNA polymerase (EC 2.7.7.7) activity in purified intact brain nuclei from infant rats was investigated. The effects of pH, Mg2+, glycerol, sonication and storage of the nuclei under different conditions were examined and a suitable assay system was established. 2. The nuclei from infant brain cells were fractionated by zonal centrifugation in a discontinuous sucrose gradient into five zones: zone (I) contained neuronal nuclei (59%) and astrocytic nuclei (41%); zone (II) contained astrocytic nuclei (81%) and neuronal nuclei (19%); zone (III) contained astrocytic nuclei (82%) and oligodendrocytic nuclei (18%); zone (IV) contained oligodendrocytic nuclei (92%) and zone (V) contained oligodendrocytic nuclei (100%). 3. The content of DNA, RNA and protein for each fraction was measured. 4. The distribution of DNA polymerase activity in the fractionated infant and adult rat brain nuclei was determined. The highest activity was found in the neuronal nuclei from zone (I) and the following zones exhibited a progressive decline. In contrast with the nuclei from infant rats those from adults had a much higher activity and expressed a preference for native DNA as template. 5. The deoxyribonuclease activity in all classes of nuclei was measured with [3H]DNA as substrate. A general correspondence in the pattern of the relative activities in the nuclear fractions with the distribution of DNA polymerase was found. 6. The incorporation of [3H]thymidine into nuclear DNA in infant and adult rat brain was investigated. The specific radioactivity of the DNA in the 10-day-old rats was highest in zone (V) whereas in the nuclei of adult rats, which exhibited a comparatively low incorporation, the highest specific radioactivity was associated with zones (I) and (V). PMID:4780694

  16. The Kidney and Acid-Base Regulation

    ERIC Educational Resources Information Center

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  17. Students' Alternate Conceptions on Acids and Bases

    ERIC Educational Resources Information Center

    Pan, Hanqing; Henriques, Laura

    2015-01-01

    Knowing what students bring to the classroom can and should influence how we teach them. This study is a review of the literature associated with secondary and postsecondary students' ideas about acids and bases. It was found that there are six types of alternate ideas about acids and bases that students hold. These are: macroscopic properties of…

  18. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  19. Fluorescent sensors based on boronic acids

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher R.; James, Tony D.

    1999-05-01

    Sensor systems have long been needed for detecting the presence in solution of certain chemically or biologically important species. Sensors are used in a wide range of applications from simple litmus paper that shows a single color change in acidic or basic environments to complex biological assays that use enzymes, antibodies and antigens to display binding events. With this work the use of boronic acids in the design and synthesis of sensors for saccharides (diols) will be presented. The fluorescent sensory systems rely on photoinduced electron transfer (PET) to modulate the observed fluorescence. When saccharides form cyclic boronate esters with boronic acids, the Lewis acidity of the boronic acid is enhanced and therefore the Lewis acid-base interaction between the boronic acid and a neighboring amine is strengthened. The strength of this acid-base interaction modulates the PET from the amine (acting as a quencher) to anthracene (acting as a fluorophore). These compounds show increased fluorescence at neutral pH through suppression of the PET from nitrogen to anthracene on saccharide binding. The general strategy for the development of saccharide selective systems will be discussed. The potential of the boronic acid based systems will be illustrated using the development of glucose and glucosamine selective fluorescent sensors as examples.

  20. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  1. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  2. [Kidney, Fluid, and Acid-Base Balance].

    PubMed

    Shioji, Naohiro; Hayashi, Masao; Morimatsu, Hiroshi

    2016-05-01

    Kidneys play an important role to maintain human homeostasis. They contribute to maintain body fluid, electrolytes, and acid-base balance. Especially in fluid control, we, physicians can intervene body fluid balance using fluid resuscitation and diuretics. In recent years, one type of fluid resuscitation, hydroxyl ethyl starch has been extensively studied in the field of intensive care. Although their effects on fluid resuscitation are reasonable, serious complications such as kidney injury requiring renal replacement therapy occur frequently. Now we have to pay more attention to this important complication. Another topic of fluid management is tolvaptan, a selective vasopressin-2 receptor antagonist Recent randomized trial suggested that tolvaptan has a similar supportive effect for fluid control and more cost effective compared to carperitide. In recent years, Stewart approach is recognized as one important tool to assess acid-base balance in critically ill patients. This approach has great value, especially to understand metabolic components in acid-base balance. Even for assessing the effects of kidneys on acid-base balance, this approach gives us interesting insight. We should appropriately use this new approach to treat acid-base abnormality in critically ill patients. PMID:27319095

  3. Student Concept Changes in Acids and Bases.

    ERIC Educational Resources Information Center

    Ye, Renmin; Wells, Raymond R.

    This study focuses on student concept changes in acids and bases. Variables include field dependent level, personal independence level, interest in science or chemistry, teaching strategy, and student gender. This study of Grade 10 students (N=81) provides information relevant to secondary school chemistry learning, teaching, and concept change.…

  4. Jigsaw Cooperative Learning: Acid-Base Theories

    ERIC Educational Resources Information Center

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  5. Cationic Lipid-Based Nucleic Acid Vectors.

    PubMed

    Jubeli, Emile; Goldring, William P D; Pungente, Michael D

    2016-01-01

    The delivery of nucleic acids into cells remains an important laboratory cell culture technique and potential clinical therapy, based upon the initial cellular uptake, then translation into protein (in the case of DNA), or gene deletion by RNA interference (RNAi). Although viral delivery vectors are more efficient, the high production costs, limited cargo capacity, and the potential for clinical adverse events make nonviral strategies attractive. Cationic lipids are the most widely applied and studied nonviral vectors; however, much remains to be solved to overcome limitations of these systems. Advances in the field of cationic lipid-based nucleic acid (lipoplex) delivery rely upon the development of robust and reproducible lipoplex formulations, together with the use of cell culture assays. This chapter provides detailed protocols towards the formulation, delivery, and assessment of in vitro cationic lipid-based delivery of DNA. PMID:27436310

  6. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties. PMID:26159785

  7. Chem I Supplement: Emphasis on Acids and Bases

    ERIC Educational Resources Information Center

    Journal of Chemical Education Staff

    1977-01-01

    Provides supplementary notes on acids and bases suitable for secondary school chemistry instruction, including acidity in solid and natural waters, acidity balance in body chemistry, acid and basic foods, pH values of common fluids, examples of drugs, and commercial preparation of nitric acid. (SL)

  8. Novel materials based on DNA-CTMA and lanthanide (Ce(3+) , Pr(3+) ).

    PubMed

    Lazar, Cosmina Andreea; Kajzar, François; Mihaly, Maria; Rogozea, Adina Elena; Petcu, Adina Roxana; Olteanu, Nicoleta Liliana; Rau, Ileana

    2016-09-01

    New, deoxyribonucleic acid (DNA) based compounds, functionalized with hexadecyltrimethylammonium chloride (CTMA) and lanthanide hydroxide nanoparticles were synthesized. The spectral measurements suggest that between the DNA-CTMA complex and the lanthanide (III) ions a chemical interaction takes place. The obtained materials exhibit an improved fluorescence efficiency, showing a potential interest for application in photonics, and more particularly, in light emitting devices. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 613-617, 2016. PMID:27120012

  9. The Bronsted-Lowery Acid-Base Concept.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1988-01-01

    Gives the background history of the simultaneous discovery of acid-base relationships by Johannes Bronsted and Thomas Lowry. Provides a brief biographical sketch of each. Discusses their concept of acids and bases in some detail. (CW)

  10. An Introductory Laboratory Exercise for Acids and Bases.

    ERIC Educational Resources Information Center

    Miller, Richard; Silberman, Robert

    1986-01-01

    Discusses an acid-base neutralization exercise requiring groups of students to determine: (1) combinations of solutions giving neutralization; (2) grouping solutions as acids or bases; and (3) ranking groups in order of concentration. (JM)

  11. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  12. Photocurable bioadhesive based on lactic acid.

    PubMed

    Marques, D S; Santos, J M C; Ferreira, P; Correia, T R; Correia, I J; Gil, M H; Baptista, C M S G

    2016-01-01

    Novel photocurable and low molecular weight oligomers based on l-lactic acid with proven interest to be used as bioadhesive were successfully manufactured. Preparation of lactic acid oligomers with methacrylic end functionalizations was carried out in the absence of catalyst or solvents by self-esterification in two reaction steps: telechelic lactic acid oligomerization with OH end groups and further functionalization with methacrylic anhydride. The final adhesive composition was achieved by the addition of a reported biocompatible photoinitiator (Irgacure® 2959). Preliminary in vitro biodegradability was investigated by hydrolytic degradation in PBS (pH=7.4) at 37 °C. The adhesion performance was evaluated using glued aminated substrates (gelatine pieces) subjected to pull-to-break test. Surface energy measured by contact angles is lower than the reported values of the skin and blood. The absence of cytoxicity was evaluated using human fibroblasts. A notable antimicrobial behaviour was observed using two bacterial models (Staphylococcus aureus and Escherichia coli). The cured material exhibited a strong thrombogenic character when placed in contact with blood, which can be predicted as a haemostatic effect for bleeding control. This novel material was subjected to an extensive characterization showing great potential for bioadhesive or other biomedical applications where biodegradable and biocompatible photocurable materials are required. PMID:26478350

  13. Bipolar Membranes for Acid Base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  14. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  15. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  16. [Progress in biotransformation of bio-based lactic acid ].

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2013-10-01

    Fermentative production of lactic acid, an important bio-based chemicals, has made considerable progress. In addition to the food industry and production of polylactic acid, lactic acid also can be used as an important platform chemical for the production of acrylic acid, pyruvic acid, 1,2-propanediol, and lactic acid esters. This article summarizes the recent progress in biocatalytic production of lactic acid derivatives by dehydration, dehydrogenation, reduction, and esterification. Trends in the biotransformation of lactic acid are also discussed. PMID:24432656

  17. Identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2005-02-08

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  18. Physiological roles of acid-base sensors.

    PubMed

    Levin, Lonny R; Buck, Jochen

    2015-01-01

    Acid-base homeostasis is essential for life. The macromolecules upon which living organisms depend are sensitive to pH changes, and physiological systems use the equilibrium between carbon dioxide, bicarbonate, and protons to buffer their pH. Biological processes and environmental insults are constantly challenging an organism's pH; therefore, to maintain a consistent and proper pH, organisms need sensors that measure pH and that elicit appropriate responses. Mammals use multiple sensors for measuring both intracellular and extracellular pH, and although some mammalian pH sensors directly measure protons, it has recently become apparent that many pH-sensing systems measure pH via bicarbonate-sensing soluble adenylyl cyclase. PMID:25340964

  19. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. PMID:26275817

  20. Renal acid-base metabolism after ischemia.

    PubMed

    Holloway, J C; Phifer, T; Henderson, R; Welbourne, T C

    1986-05-01

    The response of the kidney to ischemia-induced cellular acidosis was followed over the immediate one hr post-ischemia reflow period. Clearance and extraction experiments as well as measurement of cortical intracellular pH (pHi) were performed on Inactin-anesthetized Sprague-Dawley rats. Arteriovenous concentration differences and para-aminohippurate extraction were obtained by cannulating the left renal vein. Base production was monitored as bicarbonate released into the renal vein and urine; net base production was related to the renal handling of glutamine and ammonia as well as to renal oxygen consumption and pHi. After a 15 min control period, the left renal artery was snared for one-half hr followed by release and four consecutive 15 min reflow periods. During the control period, cortical cell pHi measured by [14C]-5,5-Dimethyl-2,4-Oxazolidinedione distribution was 7.07 +/- 0.08, and Q-O2 was 14.1 +/- 2.2 micromoles/min; neither net glutamine utilization nor net bicarbonate generation occurred. After 30 min of ischemia, renal tissue pH fell to 6.6 +/- 0.15. However, within 45 min of reflow, cortical cell pH returned and exceeded the control value, 7.33 +/- 0.06 vs. 7.15 +/- 0.08. This increase in pHi was associated with a significant rise in cellular metabolic rate, Q-O2 increased to 20.3 +/- 6.4 micromoles/min. Corresponding with cellular alkalosis was a net production of bicarbonate and a net ammonia uptake and glutamine release; urinary acidification was abolished. These results are consistent with a nonexcretory renal metabolic base generating mechanism governing cellular acid base homeostasis following ischemia. PMID:3723929

  1. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  2. History of medical understanding and misunderstanding of Acid base balance.

    PubMed

    Aiken, Christopher Geoffrey Alexander

    2013-09-01

    To establish how controversies in understanding acid base balance arose, the literature on acid base balance was reviewed from 1909, when Henderson described how the neutral reaction of blood is determined by carbonic and organic acids being in equilibrium with an excess of mineral bases over mineral acids. From 1914 to 1930, Van Slyke and others established our acid base principles. They recognised that carbonic acid converts into bicarbonate all non-volatile mineral bases not bound by mineral acids and determined therefore that bicarbonate represents the alkaline reserve of the body and should be a physiological constant. They showed that standard bicarbonate is a good measure of acidosis caused by increased production or decreased elimination of organic acids. However, they recognised that bicarbonate improved low plasma bicarbonate but not high urine acid excretion in diabetic ketoacidosis, and that increasing pCO2 caused chloride to shift into cells raising plasma titratable alkali. Both indicate that minerals influence pH. In 1945 Darrow showed that hyperchloraemic metabolic acidosis in preterm infants fed milk with 5.7 mmol of chloride and 2.0 mmol of sodium per 100 kcal was caused by retention of chloride in excess of sodium. Similar findings were made but not recognised in later studies of metabolic acidosis in preterm infants. Shohl in 1921 and Kildeberg in 1978 presented the theory that carbonic and organic acids are neutralised by mineral base, where mineral base is the excess of mineral cations over anions and organic acid is the difference between mineral base, bicarbonate and protein anion. The degree of metabolic acidosis measured as base excess is determined by deviation in both mineral base and organic acid from normal. PMID:24179938

  3. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  4. Chip-based sequencing nucleic acids

    DOEpatents

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  5. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  7. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  8. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  9. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    NASA Astrophysics Data System (ADS)

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  10. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  11. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  12. What is the Ultimate Goal in Acid-Base Regulation?

    ERIC Educational Resources Information Center

    Balakrishnan, Selvakumar; Gopalakrishnan, Maya; Alagesan, Murali; Prakash, E. Sankaranarayanan

    2007-01-01

    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial PCO [subscript 2] (Pa[subscript CO[subscript 2

  13. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  14. Connecting Acids and Bases with Encapsulation... and Chemistry with Nanotechnology

    ERIC Educational Resources Information Center

    Criswell, Brett

    2007-01-01

    The features and the development of various new acids and bases activity sets that combines chemistry with nanotechnology are being described. These sets lead to the generation of many nanotechnology-based pharmaceuticals for the treatment of various diseases.

  15. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  16. Nucleic acid duplexes incorporating a dissociable covalent base pair.

    PubMed

    Gao, K; Orgel, L E

    1999-12-21

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299

  17. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  18. Analysis of amino acids network based on distance matrix

    NASA Astrophysics Data System (ADS)

    Ali, Tazid; Akhtar, Adil; Gohain, Nisha

    2016-06-01

    In this paper we have constructed a distance matrix of the amino acids. The distance is defined based on the relative evolutionary importance of the base position of the corresponding codons. From this distance matrix a network of the amino acids is obtained. We have argued that this network depicts the evolutionary pattern of the amino acids. To examine the relative importance of the amino acids with respect to this network we have discussed different measures of centrality. We have also investigated the correlation coefficients between different measures of centrality. Further we have explored clustering coefficient as well as degree of distribution.

  19. Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII

    SciTech Connect

    Rosa, M.D.; Gottlieb, E.; Lerner, M.R.; Steitz, J.A.

    1981-09-01

    The nucleotide sequence of the region of the Epstein-Barr virus genome that specified two small ribonucleic acids (RNAs), EBER 1 and EBER 2, has been determined. Both of these RNAs are encoded by the right-hand 1,000 base pairs of the EcoRI J fragment of EBV deoxyribonucleic acid. EBER 1 is 166 (167) nucleotides long and EBER 2 is 172 +- 1 nucleotides long; the heterogeneity resides at the 3' termini. The EBER genes are separated by 161 base pairs and are transcribed from the same deoxyribonucleic acid strand. In vitro, both EBER genes can be transcribed by RNA polymerase III; sequences homologous to previously identified RNA polymerase III intragenic transcription control regions are present. Striking similarities are therefore apparent both between the EBERs and the two adenovirus-associated RNAs, VAI and VAII, and between the regions of the two viral genomes that specify these small RNAs. We have shown that VAII RNA as well as VAI RNA and the EBERs exist in ribonucleoprotein complexes which are precipitable by anti-La antibodies associated with systemic lupus erythematosus. Finally the authors have demonstrated that the binding of protein(s) from uninfected cells confers antigenicity on each of the four virus-encoded small RNAs.

  20. Multiple forms of mammalian deoxyribonucleic acid polymerase. An attempt to relate their interactions with nuclei and free deoxyribonucleic acid in vitro with their possible functions in vivo

    PubMed Central

    Wallace, Patricia G.; Hewish, D. R.; Venning, M. M.; Burgoyne, L. A.

    1971-01-01

    The DNA polymerases of the following eukaryotic tissues were studied: regenerating rat liver, normal rat liver, rat thymus, normal mouse liver and Ehrlich ascites-tumour cells. In all cases two main polymerase forms are observed, one of mol.wt. 200000, preferring denatured DNA to native calf thymus DNA primer, designated type I, and the other, designated type II, of mol.wt. 100000, showing a variable and slight preference for native calf thymus DNA primer. Some catalytic properties of these polymerases are described. Nuclei have been isolated from some of these tissues by using two different buffer systems. The ionic composition of the isolation medium is found to affect greatly the amounts and types of polymerase that bind to the nuclei, and also affects the kinetic properties of the polymerases. The way the polymerases and nuclei change properties as the ionic composition of the buffers is changed suggests that ionic effects may be a significant factor in the control of DNA synthesis in vivo. These ionic effects also explain much of the previous confusion over the localization of specific DNA polymerases. PMID:5158922

  1. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  2. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  3. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  4. Polymerization of amino acids containing nucleotide bases

    NASA Technical Reports Server (NTRS)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  5. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  6. Nucleic Acid-Based Nanodevices in Biological Imaging.

    PubMed

    Chakraborty, Kasturi; Veetil, Aneesh T; Jaffrey, Samie R; Krishnan, Yamuna

    2016-06-01

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand. PMID:27294440

  7. Nucleic acid based fluorescent sensor for mercury detection

    DOEpatents

    Lu, Yi; Liu, Juewen

    2013-02-05

    A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.

  8. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  9. Oligonucleotide-based label-free detection with optical microresonators: strategies and challenges.

    PubMed

    Toren, Pelin; Ozgur, Erol; Bayindir, Mehmet

    2016-07-01

    This review targets diversified oligonucleotide-based biodetection techniques, focusing on the use of microresonators of whispering gallery mode (WGM) type as optical biosensors mostly integrated with lab-on-a-chip systems. On-chip and microfluidics combined devices along with optical microresonators provide rapid, robust, reproducible and multiplexed biodetection abilities in considerably small volumes. We present a detailed overview of the studies conducted so far, including biodetection of various oligonucleotide biomarkers as well as deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs) and proteins. We particularly advert to chemical surface modifications for specific and selective biosensing. PMID:27306702

  10. An Olfactory Indicator for Acid-Base Titrations.

    ERIC Educational Resources Information Center

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  11. TRANSFUSIONS—Hazardous Acid-Base Changes with Citrated Blood

    PubMed Central

    Pedro, Jovita M. San; Iwai, Seizo; Hattori, Mitsuo; Leigh, M. Digby

    1962-01-01

    In a study of the acid-base changes in the blood of rabbits during and following transfusions of citrated blood and of heparinized blood, it was observed that, with citrated blood, pH decreased and carbon dioxide tensions rose. With heparinized blood, the acid-base balance was maintained within normal limits following transfusions. The potential hazards of rapid massive citrated blood transfusions in the anesthetized patient during operation must be kept in mind. PMID:14496706

  12. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  13. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  14. Synthesis of polyacrylic-acid-based thermochromic polymers

    NASA Astrophysics Data System (ADS)

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  15. Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance.

    PubMed

    Mackenzie, W

    1986-02-01

    Atkinson and colleagues recently proposed several concepts that contrast with traditional views: first, that acid-base balance is regulated chiefly by the reactions leading to urea production in the liver; second, that ammonium excretion by the kidney plays no role in acid-base homeostasis; and third, that ammonium does not stimulate ureagenesis (except indirectly). To examine these concepts, plasma ions other than bicarbonate are categorized as 1) fixed cations (Na+, K+, Ca2+, and Mg2+, symbolized M+) and anions (Cl-), 2) buffer anions (A-), 3) other anions (X-), and 4) ammonium plus charged amino groups (N+). Since electroneutrality dictates that M+ + N+ = Cl- + HCO3- + A- + X-, it follows that delta HCO3- = delta(M+ - Cl-) - delta A- - delta X- + delta N+. Therefore acid-base disturbances (changes in HCO3-) can be categorized as to how they affect bodily content and hence plasma concentration of each of these four types of ions. The stoichiometry of ureagenesis, glutamine hydrolysis, ammonium and titratable acid excretion, oxidation of neutral, acidic, and basic amino acids, and oxidation of methionine, phosphoserine, and protein are examined to see how they alter these quantities. It is concluded that 1) although ureagenesis is pH dependent and also counteracts a tendency of amino acid oxidation to cause alkalosis, this tendency is inherently limited by the hyperammonemia (delta N+) that necessarily accompanies it, 2) ammonium excretion is equivalent to hydrogen excretion in its effects on acid-base balance if, and only if, it occurs in exchange for sodium or is accompanied by chloride excretion and only when the glutamate generated by glutamine hydrolysis is oxidized.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3511732

  16. Poly (ricinoleic acid) based novel thermosetting elastomer.

    PubMed

    Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi

    2008-01-01

    A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%. PMID:18469493

  17. A symmetry-based formal synthesis of zaragozic acid A.

    PubMed

    Freeman-Cook, K D; Halcomb, R L

    2000-09-22

    A symmetry-based strategy for the synthesis of the zaragozic acids is reported. Two enantioselective dihydroxylations were used to establish the absolute configuration of a C(2) symmetric intermediate. Noteworthy transformations include a group-selective lactonization, which accomplished an end-differentiation of a pseudo-C(2) symmetric intermediate. Late stage protecting group adjustments and oxidations accomplished a formal synthesis of zaragozic acid A. PMID:10987953

  18. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    ERIC Educational Resources Information Center

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  19. High School Students' Concepts of Acids and Bases.

    ERIC Educational Resources Information Center

    Ross, Bertram H. B.

    An investigation of Ontario high school students' understanding of acids and bases with quantitative and qualitative methods revealed misconceptions. A concept map, based on the objectives of the Chemistry Curriculum Guideline, generated multiple-choice items and interview questions. The multiple-choice test was administered to 34 grade 12…

  20. Pyrolytic Behavior of Amino Acids and Nucleic Acid Bases: Implications for Their Survival during Extraterrestrial Delivery

    NASA Astrophysics Data System (ADS)

    Basiuk, Vladimir A.; Navarro-González, Rafael

    1998-08-01

    The idea of extraterrestrial delivery of organic matter (by comets, asteroids, meteorites, and interplanetary dust particles) to the early Earth is very popular at present. A strong argument for its favor is the detection of a large variety of organic compounds, including amino acids and nucleic acid bases, in carbonaceous chondrites. Whether these compounds can be delivered by other space bodies is unclear and depends primarily on capability of the biomolecules to survive high temperature regimes during atmospheric deceleration and impacts to the terrestrial surface. Although some indirect estimates of simple biomolecules' survivability have been reported, there is an evident lack of experimental data. In the present study we demonstrate that some simple amino acids, purines, and pyrimidines do not completely decompose even under volatilization at 500°C in a nitrogen atmosphere at normal pressure, with the percentage of survival of the order of 1-10%. In the case of amino acids, several types of condensation products form (piperazine-2,5-diones, bicyclic amidines, hydantoins, etc.) with total yields in the same percentage range, preserving amino acid residues intact and being able to release free amino acids upon hydrolysis. Taking into account the property of amino acids as well as nucleic acid bases to sublime in vacuum under temperatures of about 200°C, one should expect that the biomolecules in the dust particles actually do not experience the temperatures as much as 400-500°C and rapidly sublime during the atmospheric passage, dissipating in the upper atmosphere. The biomolecules' survival during catastrophic airbursts of comets is also possible, but very unlikely for asteroidal impacts to the terrestrial surface (at least for those resulting in complete pulverization and evaporation of the projectiles).

  1. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi

    2014-05-01

    The paper studies a recently developed evolutionary-based image encryption algorithm. A novel image encryption algorithm based on a hybrid model of deoxyribonucleic acid (DNA) masking, a genetic algorithm (GA) and a logistic map is proposed. This study uses DNA and logistic map functions to create the number of initial DNA masks and applies GA to determine the best mask for encryption. The significant advantage of this approach is improving the quality of DNA masks to obtain the best mask that is compatible with plain images. The experimental results and computer simulations both confirm that the proposed scheme not only demonstrates excellent encryption but also resists various typical attacks.

  2. Nucleic acid-based nanoengineering: novel structures for biomedical applications

    PubMed Central

    Li, Hanying; LaBean, Thomas H.; Leong, Kam W.

    2011-01-01

    Nanoengineering exploits the interactions of materials at the nanometre scale to create functional nanostructures. It relies on the precise organization of nanomaterials to achieve unique functionality. There are no interactions more elegant than those governing nucleic acids via Watson–Crick base-pairing rules. The infinite combinations of DNA/RNA base pairs and their remarkable molecular recognition capability can give rise to interesting nanostructures that are only limited by our imagination. Over the past years, creative assembly of nucleic acids has fashioned a plethora of two-dimensional and three-dimensional nanostructures with precisely controlled size, shape and spatial functionalization. These nanostructures have been precisely patterned with molecules, proteins and gold nanoparticles for the observation of chemical reactions at the single molecule level, activation of enzymatic cascade and novel modality of photonic detection, respectively. Recently, they have also been engineered to encapsulate and release bioactive agents in a stimulus-responsive manner for therapeutic applications. The future of nucleic acid-based nanoengineering is bright and exciting. In this review, we will discuss the strategies to control the assembly of nucleic acids and highlight the recent efforts to build functional nucleic acid nanodevices for nanomedicine. PMID:23050076

  3. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  4. ACID PRECIPITATION IN NORTH AMERICA: 1984 ANNUAL DATA SUMMARY FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1984 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  5. ACID PRECIPITATION IN NORTH AMERICA: 1983 ANNUAL DATA SUMMARY FROM ACID DEPOSITION SYSTEM DATA BASE

    EPA Science Inventory

    The report gives a summary of 1983 wet deposition precipitation chemistry data collected in North America and available in the Acid Deposition System (ADS) data base. North American wet deposition monitoring networks with data in ADS are NADP/NTN, CANSAP, APN, UAPSP, MAP3S/PCN, W...

  6. Acid/base account and minesoils: A review

    SciTech Connect

    Hossner, L.R.; Brandt, J.E.

    1997-12-31

    Generation of acidity from the oxidation of iron sulfides (FeS{sub 2}) is a common feature of geological materials exposed to the atmosphere by mining activities. Acid/base accounting (ABA) has been the primary method to evaluate the acid- or alkaline-potential of geological materials and to predict if weathering of these materials will have an adverse effect on terrestrial and aquatic environments. The ABA procedure has also been used to evaluate minesoils at different stages of weathering and, in some cases, to estimate lime requirements. Conflicting assessments of the methodology have been reported in the literature. The ABA is the fastest and easiest way to evaluate the acid-forming characteristics of overburden materials; however, accurate evaluations sometimes require that ABA data be examined in conjunction with additional sample information and results from other analytical procedures. The end use of ABA data, whether it be for minesoil evaluation or water quality prediction, will dictate the method`s interpretive criteria. Reaction kinetics and stoichiometry may vary and are not clearly defined for all situations. There is an increasing awareness of the potential for interfering compounds, particularly siderite (FeCO{sub 3}), to be present in geological materials associated with coal mines. Hardrock mines, with possible mixed sulfide mineralogy, offer a challenge to the ABA, since acid generation may be caused by minerals other than pyrite. A combination of methods, static and kinetic, is appropriate to properly evaluate the presence of acid-forming materials.

  7. Acid-Base Disorders--A Computer Simulation.

    ERIC Educational Resources Information Center

    Maude, David L.

    1985-01-01

    Describes and lists a program for Apple Pascal Version 1.1 which investigates the behavior of the bicarbonate-carbon dioxide buffer system in acid-base disorders. Designed specifically for the preclinical medical student, the program has proven easy to use and enables students to use blood gas parameters to arrive at diagnoses. (DH)

  8. Turkish Prospective Chemistry Teachers' Alternative Conceptions about Acids and Bases

    ERIC Educational Resources Information Center

    Boz, Yezdan

    2009-01-01

    The purpose of this study was to obtain prospective chemistry teachers' conceptions about acids and bases concepts. Thirty-eight prospective chemistry teachers were the participants. Data were collected by means of an open-ended questionnaire and semi-structured interviews. Analysis of data indicated that most prospective teachers did not have…

  9. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  10. Using Spreadsheets to Produce Acid-Base Titration Curves.

    ERIC Educational Resources Information Center

    Cawley, Martin James; Parkinson, John

    1995-01-01

    Describes two spreadsheets for producing acid-base titration curves, one uses relatively simple cell formulae that can be written into the spreadsheet by inexperienced students and the second uses more complex formulae that are best written by the teacher. (JRH)

  11. Manganese-deoxyribonucleic acid binding modes. Nuclear magnetic relaxation dispersion results.

    PubMed Central

    Kennedy, S D; Bryant, R G

    1986-01-01

    Ion-DNA interactions are discussed and the applied magnetic field strength dependence of water proton spin-lattice relaxation rates is used to study the Mn(II)-DNA interaction both qualitatively and quantitatively. Associations in which the manganese II (Mn(II)) ion is completely immobilized on the DNA are identified as well as a range of associations in which the ion is only partially reorientationally restricted. Quantitative analysis of the strength of the association in which manganese is immobilized is carried out both with and without a counter-ion condensation correction for electrostatic attraction of the mobile ions. From competition experiments with manganese the relative strengths of the interactions of magnesium and calcium with DNA are found to be identical but less than that of manganese with DNA and the affinity of lithium for DNA is found to be slightly higher than that of sodium. The data demonstrate that the reduced mobility of nonsite-bound ions may have a significant effect on DNA-ion binding analyses performed using magnetic resonance and relaxation methods. PMID:3779006

  12. DNA (DEOXYRIBONUCLEIC ACID) SYNTHESIS FOLLOWING MICROINJECTION OF HETEROLOGOUS SPERM AND SOMATIC CELL NUCLEI INTO HAMSTER OOCYTES

    EPA Science Inventory

    The authors have investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in 3H-thymidine after being parthenogenetically activated by sha...

  13. Detection of toxins in single molecule level using deoxyribonucleic acid aptamers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxins in foodstuffs are always a threat to food safety Among many toxins related to food, ricin (category B toxin) from castor beans has been mentioned in some poisoning cases happened. Atomic Force Microscopy (AFM) is a widely used nanotechnology to detect biospecies in vitro and in situ. The AFM...

  14. Relationship between pregnancy, embryo development, and sperm deoxyribonucleic acid fragmentation dynamics.

    PubMed

    Wdowiak, Artur; Bojar, Iwona

    2016-09-01

    The way the dynamics of DNA fragmentation affects the growth of embryos in real time, and effectiveness of infertility treatment using the ICSI procedure were determined in 148 couples treated with the ICSI technique. The percentage of sperm with fragmented DNA (known as the DNA fragmentation index [DFI]) in semen samples was determined at 3, 6 and 12 h. Embryo culture was assessed continuously during 12 h of observation monitoring. Statistically significant difference was found in DFI at 12 h and outcome of treatment. For the remaining time intervals, no statistically significant differences were noted. An analysis of relationship between the DFI dynamics over time at individual measurements and achievement of pregnancy, confirmed a statistically significant relationship between the rate measured at 6-12 h of observations of DFI changes (DFI 12 h%/h), and achieving pregnancy. Correlation was observed between DFI (during 0, 3, 6 and 12 h), the growth rate in DFI, and time of embryo development. A statistically significant relationship was found between the rate from the start to the end of observations of the DFI, and outcome of treatment. Intensity level regarding fragmentation of sperm DNA and its growth rate affected the time of embryo development in the ICSI procedure. The most significant prognostic factor for achieving pregnancy was intensification of sperm DNA fragmentation after 12 h. PMID:27579009

  15. Adenovirus coded deoxyribonucleic acid binding protein. Isolation, physical properties, and effects of proteolytic digestion

    SciTech Connect

    Schechter, N.M.; Davies, W.; Anderson, C.W.

    1980-01-01

    A procedure has been developed for the purification of adenovirus type 2 DNA-binding protein (DBP) from nuclei of infected HeLa cells. This procedure routinely yields 0.2 to 0.6 mg of protein per 10/sup 9/ cells that is greater than 98% DBP. Binding protein so prepared does not precipitate at low ionic strength, interacts with both single- and double-stranded DNA, and complements Ad5 ts125 function in an in vitro DNA synthesizing system dependent upon exogenous DBP. An examination of the hydrodynamic properties of Ad2 DBP indicated that DBP undergoes a concentration-dependent self-association process. In high ionic strength solutions (1.0 M NaCl), self-association is a limited process observed at DBP concentrations above about 0.1 mg/mL; the product is a unit having a molecular weight of a trimer. At low ionic strengths (0.1 M NaCl), self-association is more extensive and is observed at lower protein concentrations. Our findings suggest that units other than the 72,000 molecular weight monomer may interact with DNA in the cell. Purified Ad2 DBP was digested with several proteolytic enzymes to determine if smaller DNA-binding products could be generated that resemble the 48,000 molecular weight species observed in extracts of infected cells. Digestion of purified DBP with Pronase or chymotrypsin produced relatively stable fragments with molecular weights of 45,000 and 53,000, respectively. Trypsin cleavage produced a 51,000 molecular weight fragment that upon continued incubation was further digested to produce a 35,000-M/sub r/ peptide. The production of the 35,000-M/sub r/ peptide by trypsin cleavage of the 51,000-M/sub r/ fragment was not observed if a sufficient amount of DNA was added to the DBP solution prior to trypsin digestion. This result indicates that bound DNA protects a trypsin-sensitive site(s) in the 51,000-M/sub r/ fragment, and it suggests that the 51,000-M/sub r/ fragment contains at least a part of the binding site for single-stranded DNA.

  16. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 155-92 site in a specific hemizygous diploid line of dairy breeds of domestic goats (Capra aegagrus... of humans) in the mammary gland of goats derived from lineage progenitor 155-92. (b) Sponsor. See No. 042976 in § 510.600 of this chapter. (c) Limitations. Food or feed from GTC-155-92 goats is not...

  17. [Epigenetic heredity (deoxyribonucleic acid methylation): Clinical context in neurodegenerative disorders and ATXN2 gene].

    PubMed

    Laffita-Mesa, José Miguel; Bauer, Peter

    2014-10-21

    Epigenetics is the group of changes in the phenotype which are related with the process independently of the primary DNA sequence. These changes are intimately related with changes in the gene expression level and its profile across the body. These are mediated by histone tail modifications, DNA methylation, micro-RNAs, with chromatin remodeling remaining as the foundation of epigenetic changes. DNA methylation involves the covalent addition of methyl group to cytosine of the DNA, which is mediated by methyltransferases enzymes. DNA methylation regulates gene expression by repressing transcription, while de-methylation activates gene transcription. Several human diseases are related with the epigenetic process: cancer, Alzheimer disease, stroke, Parkinson disease, and diabetes. We present here the basis of epigenetic inheritance and show the pathogenic mechanisms relating epigenetics in human diseases, specifically with regard to neurodegeneration. We discuss current concepts aimed at understanding the contribution of epigenetics to human neurodegenerative diseases. We also discuss recent findings obtained in our and other centers regarding the ATXN2 gene that causes spinocerebellar ataxia 2 and amyotrophic lateral sclerosis. Epigenetics play a pivotal role in the pathogenesis of human diseases and in several neurodegenerative disorders, and this knowledge will illuminate the pathways in the diagnostic and therapeutic field, which ultimately will be translated into the clinic context of neurodegenerative diseases. PMID:24485162

  18. Transcription of Azotobacter phage deoxyribonucleic acid. Salt-dependent equilibrium between steps in initiation.

    PubMed

    Domingo, E; Escarmis, C; Warner, R C

    1975-04-25

    The transcription of Azotobacter phage A21 DNA by Escherichia coli or Azotobacter vinelandii RNA polymerase differs from that of some other DNAs in its inhibition by moderate concentrations of KCl. This characteristic results in an apparent low template activity for this DNA as compared with T4 DNA under standard assay conditions. From an analysis of the dependence of the various steps in initiation on KCl it is concluded that the effect is exerted on an equilibrium between an inactive polymerase-DNA complex and an active preintitiation complex. This salt-sensitive equilibrium favors the inactive complex at a lower KCl concentration than with other templates. It can be approached from other low or high salt concentrations at a measurably slow rate. PMID:1091643

  19. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 155-92 site in a specific hemizygous diploid line of dairy breeds of domestic goats (Capra aegagrus... of humans) in the mammary gland of goats derived from lineage progenitor 155-92. (b) Sponsor. See No. 042976 in § 510.600 of this chapter. (c) Limitations. Food or feed from GTC-155-92 goats is not...

  20. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 155-92 site in a specific hemizygous diploid line of dairy breeds of domestic goats (Capra aegagrus... of humans) in the mammary gland of goats derived from lineage progenitor 155-92. (b) Sponsor. See No. 042976 in § 510.600 of this chapter. (c) Limitations. Food or feed from GTC-155-92 goats is not...

  1. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 155-92 site in a specific hemizygous diploid line of dairy breeds of domestic goats (Capra aegagrus... of humans) in the mammary gland of goats derived from lineage progenitor 155-92. (b) Sponsor. See No. 042976 in § 510.600 of this chapter. (c) Limitations. Food or feed from GTC-155-92 goats is not...

  2. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 155-92 site in a specific hemizygous diploid line of dairy breeds of domestic goats (Capra aegagrus... of humans) in the mammary gland of goats derived from lineage progenitor 155-92. (b) Sponsor. See No. 042976 in § 510.600 of this chapter. (c) Limitations. Food or feed from GTC-155-92 goats is not...

  3. Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid.

    PubMed

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-05-01

    Interaction of the food additive tartrazine with double-stranded DNA was studied by spectroscopic and calorimetric techniques. Absorbance studies revealed that tartrazine exhibited hypochromism in the presence of DNA without any bathochromic effects. Minor groove displacement assay of DAPI and Hoechst 33258 suggested that tartrazine binds in the minor groove of DNA. The complexation was predominantly entropy driven with a smaller but favorable enthalpic contribution to the standard molar Gibbs energy. The equilibrium constant was evaluated to be (3.68 ± .08) × 10(4) M(-1) at 298.15 K. The negative standard molar heat capacity value along with an enthalpy-entropy compensation phenomenon proposed the involvement of dominant hydrophobic forces in the binding process. Tartrazine enhanced the thermal stability of DNA by 7.53 K under saturation conditions. PMID:26159358

  4. A Complex Deoxyribonucleic Acid Looping Configuration Associated with the Silencing of the Maternal Igf2 Allele

    PubMed Central

    Qiu, Xinwen; Vu, Thanh H.; Lu, Qiucheng; Ling, Jian Qun; Li, Tao; Hou, Aiju; Wang, Shu Kui; Chen, Hui Ling; Hu, Ji Fan; Hoffman, Andrew R.

    2008-01-01

    Alternate interactions between the H19 imprinting control region (ICR) and one of the two Igf2 differentially methylated regions has been proposed as a model regulating the reciprocal imprinting of Igf2 and H19. To study the conformation of this imprint switch, we performed a systematic structural analysis across the 140 kb of the mouse Igf2-H19 region, which includes enhancers located both between the two genes as well as downstream of H19, by using a scanning chromosome conformation capture (3C) technique. Our results suggest that on the active paternal Igf2 allele, the various enhancers have direct access to the Igf2 promoters, whereas the imprinted silent maternal Igf2 allele assumes a complex three-dimensional knotted loop that keeps the enhancers away from the Igf2 promoters and allows them to interact with the H19 promoter. This complex DNA looping of the maternal allele is formed by interactions involving differentially methylated region 1, the ICR, and enhancers. Binding of CTC-binding factor to the maternal, unmethylated ICR in conjunction with the presence of multicomplex components including interchromosomal interactions, create a barrier blocking the access of all enhancers to Igf2, thereby silencing the maternal Igf2. This silencing configuration exists in newborn liver, mouse embryonic fibroblast, and embryonic stem cells and persists during mitosis, conferring a mechanism for epigenetic memory. PMID:18356289

  5. Interactions between the lysine-rich histone F1 and deoxyribonucleic acid.

    PubMed

    Johns, E W; Forrester, S

    1969-02-01

    1. The interactions of the lysine-rich histone F1 with DNA have been studied at various histone to DNA ratios, in water and in the presence of uni- and bi-valent cations. In water only, histone F1, even in fourfold excess, is unable to precipitate all the DNA. In 0.14m-sodium chloride, 0.8mg. of histone F1 is required to precipitate 1mg. of DNA, whereas in 0.07m-magnesium chloride only 0.4mg. is required. 2. Bivalent cations are also shown to be more effective in dissociating the DNA-histone complex. Histone F1 can be selectively removed from deoxyribonucleoprotein with 0.1m-magnesium chloride. 3. The precipitation of DNA by histone F1 is a reversible process and the complex can be taken in and out of solution by changing the ionic environment. 4. The bearing of these results on the observed ability of various DNA-histone complexes to act as templates for RNA synthesis is discussed. PMID:4975020

  6. Quantitation of pyrimidine dimer contents of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels

    SciTech Connect

    Sutherland, B.M.; Shih, A.G.

    1983-02-15

    We have developed a method of quantitating the pyrimidine dimer content of nonradioactive DNAs. DNA samples are treated with the UV-endonuclease from Micrococcus luteus and then separated according to molecular weight by electrophoresis on alkaline agarose gels. From their migration relative to known molecular weight standards, their median molecular weight and thus the number of dimers per DNA molecule in each sample can be calculated. Results of action spectra for dimer formation in T7 bacteriophage measured by this method agree well with action spectra for T7 killing. In addition, the method gives dimer yields in good agreement with those obtained by others using alkaline sucrose gradient sedimentation.

  7. DNA (deoxyribonucleic acid) synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes

    SciTech Connect

    Naish, S.J.; Perreault, S.D.; Zirkin, B.R.

    1987-01-01

    The authors investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in /sup 3/H-thymidine after being parthenogenetically activated by sham microinjection, or microinjected with hamster, mouse, rabbit, or fish sperm nuclei, or hamster hepatocyte nuclei. Within 6 hr of sham or nucleus microinjection, nuclei of each type underwent transformation into pronuclei and synthesized DNA. These results demonstrated that the hamster egg can access and utilize its own and each type of template provided, whether homologous or heterologous. However, pronuclei derived from hamster sperm nuclei were more likely to be synthesizing DNA at 6 hr than pronuclei derived from sperm nuclei of other species. The authors conclude that the mechanisms employed by the hamster oocyte to transform hamster sperm nuclei into pronuclei and to effect DNA synthesis in these nuclei are not specific for the hamster sperm nucleus. Nevertheless, these mechanisms apparently operate more efficiently when the hamster sperm nucleus, rather than a heterologous sperm nucleus, is present.

  8. Investigation of complexes formed by interaction of cationic gemini surfactants with deoxyribonucleic acid.

    PubMed

    Wang, Chuanzhong; Li, Xingfu; Wettig, Shawn D; Badea, Ildiko; Foldvari, Marianna; Verrall, Ronald E

    2007-04-01

    Cationic gemini surfactants, N,N-bis(dimethylalkyl)-alpha,omega-alkanediammonium dibromide [C(m)H(2m+1)(CH(3))(2)N(+)(CH(2))(s)N(+)(CH(3))(2)C(m)H(2m+1) x 2 Br(-), or m-s-m], have proven to be effective synthetic vectors for gene delivery (transfection). Complexes (lipoplexes) of gemini compounds, where m = 12, s = 3, 12 and m = 18 : 1(oleyl), s = 2, 3, 6, with DNA have been investigated using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), zeta potential, atomic force microscopy (AFM) and circular dichroism (CD) techniques. The results show that lipoplex properties depend on the structural properties of the gemini surfactants, the presence of the helper lipid dioleoylphosphatidylethanolamine (DOPE), and the titration sequence. ITC data show that the interaction between DNA and gemini surfactants is endothermic and the observed enthalpy vs. charge ratio profile depends upon the titration sequence. Isoelectric points (IP) of lipoplex formation were estimated from the zeta potential measurements and show good agreement with the reaction endpoints (RP) obtained from ITC. DLS data indicate that DNA is condensed in the lipoplex. AFM images suggest that the lipoplex morphology changes from isolated globular-like aggregated particles to larger-size aggregates with great diversity in morphology. This change is further accentuated by the presence of DOPE in the lipoplexes. The results are interpreted in terms of some current models of lipoplex formation. PMID:17429555

  9. Primordial transport of sugars and amino acids via Schiff bases

    NASA Astrophysics Data System (ADS)

    Stillwell, William; Rau, Aruna

    1981-09-01

    Experimental support is given for a model concerning the origin of a primordial transport system. The model is based on the facilitated diffusion of amino acids stimulated by aliphatic aldehyde carriers and sugars stimulated by aliphatic amine carriers. The lipid-soluble diffusing species is the Schiff base. The possible role of this simple transport system in the origin of an early protocell is discussed.

  10. Acid-base transport in pancreas—new challenges

    PubMed Central

    Novak, Ivana; Haanes, Kristian A.; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO−3) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO−3 and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H+-K+-ATPases), as well as the calcium-activated K+ and Cl− channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer. PMID:24391597