Sample records for deoxyribonucleic acid molecules

  1. Radiotherapy Measurements with a Deoxyribonucleic Acid Doublestrand-Break Dosimeter

    NASA Astrophysics Data System (ADS)

    Obeidat, Mohammad Ali

    Many types of dosimeters are used in the clinic to measure radiation dose for therapy but none of them directly measures the biological effect of this dose. The overall purpose of this work was to develop a dosimeter that measures biological damage in the form of double-strand breaks to deoxyribonucleic acid. This dosimeter could provide a more biologically relevant measure of radiation damage than the currently utilized dosimeters. A pair of oligonucleotides was designed to fabricate this dosimeter. One is labeled with a 5'-end biotin and the other with a 5'-end 6 Fluorescein amidite (fluorescent dye excited at 495?nanometer, with a peak emission at 520 nanometer). These were designed to adhere to certain locations on the pRS316 vector and serve as the primers for polymerase chain reactions. The end product of this reaction is a 4 kilo-base pair double strands deoxyribonucleic acid fragment with biotin on one end and 6 Fluorescein amidite oligonucleotide on the other attached to streptavidin beads. The biotin end connects the double strands deoxyribonucleic acid to the streptavidin bead. These bead-connected double strands deoxyribonucleic acid were suspended in 50 microliter of phosphate-buffered saline and placed into a tube for irradiation. Following irradiation of the deoxyribonucleic acid dosimeter, we take advantage of the magnetic properties of the streptavidin bead by placing our sample microtube against a magnet. The magnetic field pulls the streptavidin beads against the side of the tube. If a double-strand-break has occurred for a double strands deoxyribonucleic acid, the fluorescein end of the double strands deoxyribonucleic acid becomes free and is no longer attached to the bead or held against the side of the microtube. The free fluorescein following a double-strand-break in double strands deoxyribonucleic acid is referred to here as supernatant. The supernatant is extracted and placed in another microtube, while the unbroken double strands

  2. Differential diagnosis between complete mole and hydropic abortus by deoxyribonucleic acid fingerprints.

    PubMed

    Nobunaga, T; Azuma, C; Kimura, T; Tokugawa, Y; Takemura, M; Kamiura, S; Saji, F; Tanizawa, O

    1990-08-01

    We used a new method of deoxyribonucleic acid fingerprint analysis to obtain the differential diagnosis between complete mole and hydropic abortus. This method with a deoxyribonucleic acid minisatellite probe requires only a small amount of tissue sample and peripheral blood, and presents individual specific restriction fragment length polymorphisms (deoxyribonucleic acid "fingerprints") by simultaneous detection of many hypervariable regions (minisatellite regions) widely dispersed in the human genome. Southern blot hybridization showed that in cases of complete mole, all polymorphic fragments were exclusively inherited from the father. Some of the polymorphic bands of paternal deoxyribonucleic acid were not observed in molar deoxyribonucleic acid. However, in the hydropic abortus, the polymorphic fragments could be traced back to its parent. These results indicate that deoxyribonucleic acid fingerprints could distinguish the abnormal fertilization of complete mole (androgenesis) from the normal fertilization of hydropic abortus by identifying the difference in genetic variations between complete mole and hydropic abortus at the deoxyribonucleic acid level.

  3. Deoxyribonucleic acid-deficient strains of Candida albicans.

    PubMed

    Olaiya, A F; Steed, J R; Sogin, S J

    1980-03-01

    We analyzed a series of germ tube-negative variants isolated from Candida albicans 3153A for deoxyribonucleic acid content. As analyzed by flow microfluorometry, the deoxyribonucleic acid level in these variant strains was 50% of that of the parental strain and equivalent to that of haploid Saccharomyces cerevisiae. This finding was confirmed by comparison of survival rates when exposed to the mutagens ultraviolet light, ethyl methane sulfonate, and methyl methane sulfonate. The diameter of the variant cells as compared to the diameter of the parental 3153A strain showed a relationship similar to that of the diameters of haploid versus diploid S. cerevisiae. These results indicate that those strains may be representative of the imperfect stage of C. albicans.

  4. Optoelectronic studies on heterocyclic bases of deoxyribonucleic acid for DNA photonics.

    PubMed

    El-Diasty, Fouad; Abdel-Wahab, Fathy

    2015-10-01

    The optoelectronics study of large molecules, particularly π-stacking molecules, such as DNA is really an extremely difficult task. We perform first electronic structure calculations on the heterocyclic bases of 2'-deoxyribonucleic acid based on Lorentz-Fresnel dispersion theory. In the UV-VIS range of spectrum, many of the optoelectronic parameters for DNA four bases namely adenine, guanine, cytosine and thymine are calculated and discussed. The results demonstrate that adenine has the highest hyperpolarizability, whereas thymine has the lowest hyperpolarizability. Cytosine has the lower average oscillator energy and the higher lattice energy. Thymine infers the most stable nucleic base with the lower phonon energy. Thymine also has the highest average oscillator energy and the lower lattice energy. Moreover, the four nucleic acid bases have large band gap energies less than 5 eV with a semiconducting behavior. Guanine shows the smallest band gap and the highest Fermi level energy, whereas adenine elucidates the highest band gap energy. Copyright © 2015. Published by Elsevier B.V.

  5. Deoxyribonucleic acid (DNA)-based optical materials

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Heckman, Emily M.; Hagen, Joshua A.; Yaney, Perry P.; Subramanyam, Guru; Clarson, Stephen J.; Diggs, Darnell E.; Nelson, Robert L.; Zetts, John S.; Hopkins, F. Kenneth; Ogata, Naoya

    2004-12-01

    Optical materials for waveguiding applications must possess the desired optical and electromagnetic properties for optimal device performance. Purified deoxyribonucleic acid (DNA), derived from salmon sperm, has been investigated for use as an optical waveguide material. In this paper we present the materials processing and optical and electromagnetic characterization of this purified DNA to render a high quality, low loss optical waveguide material.

  6. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS NEW ANIMAL DRUGS IN GENETICALLY ENGINEERED ANIMALS § 528.1070 Bc6 recombinant deoxyribonucleic acid construct. (a) Specifications and indications for...

  7. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS NEW ANIMAL DRUGS IN GENETICALLY ENGINEERED ANIMALS § 528.1070 Bc6 recombinant deoxyribonucleic acid construct. (a) Specifications and indications for...

  8. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS NEW ANIMAL DRUGS IN GENETICALLY ENGINEERED ANIMALS § 528.1070 Bc6 recombinant deoxyribonucleic acid construct. (a) Specifications and indications for...

  9. Incorporation of Deoxyribonucleic Acid Precursors by T4 Deoxyribonucleic Acid-Protein Complexes Retained on Glass Fiber Filters

    PubMed Central

    Miller, Robert C.; Kozinski, Andrzej W.

    1970-01-01

    Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA. PMID:5497903

  10. Breaks induced in the deoxyribonucleic acid of aerosolized Escherichia coli by ozonized cyclohexene.

    PubMed Central

    De Mik, G; De Groot, I

    1978-01-01

    The inactivation of aerosolized Escherichia coli by ozone, cyclohexene, and ozonized cyclohexene was studied. The parameters for damage were loss of reproduction and introduction of breaks in the deoxyribonucleic acid (DNA). Aerosolization of E. coli in clean air at 80 percent relative humidity or in air containing either ozone or cyclohexene hardly affected survival; however, some breaks per DNA molecule were induced, as shown by sucrose gradient sedimentation of the DNA. Aerosolization of E. coli in air containing ozonized cyclohexene at 80 percent relative humidity decreased the survival by a factor of 10(3) or more after 1 h of exposure and induced many breaks in the DNA. PMID:341811

  11. Deoxyribonucleic Acid Probes Analyses for the Detection of Periodontal Pathogens.

    PubMed

    Al Yahfoufi, Zoubeida; Hadchiti, Wahib; Berberi, Antoine

    2015-09-01

    In clinical microbiology several techniques have been used to identify bacteria. Recently, Deoxyribonucleic acid (DNA)-based techniques have been introduced to detect human microbial pathogens in periodontal diseases. Deoxyribonucleic acid probes can detect bacteria at a very low level if we compared with the culture methods. These probes have shown rapid and cost-effective microbial diagnosis, good sensitivity and specificity for some periodontal pathogens in cases of severe periodontitis. Eighty-five patients were recruited for the study. Twenty-one subjects ranging between 22 and 48 years of age fulfilled the inclusion and exclusion criteria. Seventy-eight samples became available for DNA probe analysis from the deepest pockets in each quadrant. All 21 patients showed positive results for Prevotella intermedia; also, Prevotella gingivalis was identified in 19 subjects, Aggregatibacter actinomycetemcomitans in 6 subjects. P. intermedia was diagnosed positive in 82% of the subgingival samples taken, 79% for P. gingivalis, and 23% for A. actinomycetemcomitans. This study shows a high frequency of putative periodontal pathogens by using DNA probe technology, which is semi-quantitative in this study. Deoxyribonucleic acid probes can detect bacteria at very low level about 10(3) which is below the detection level of culture methods. The detection threshold of cultural methods. The three types of bacteria can be detected rapidly with high sensitivity by using the DNA probe by general practitioners, and thus can help in the diagnosis process and the treatment.

  12. Real-time detection of deoxyribonucleic acid bases via their negative differential conductance signature.

    PubMed

    Dragoman, D; Dragoman, M

    2009-08-01

    In this Brief Report, we present a method for the real-time detection of the bases of the deoxyribonucleic acid using their signatures in negative differential conductance measurements. The present methods of electronic detection of deoxyribonucleic acid bases are based on a statistical analysis because the electrical currents of the four bases are weak and do not differ significantly from one base to another. In contrast, we analyze a device that combines the accumulated knowledge in nanopore and scanning tunneling detection and which is able to provide very distinctive electronic signatures for the four bases.

  13. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  14. Kinetics of Bacteriophage λ Deoxyribonucleic Acid Infection of Escherichia coli

    PubMed Central

    Barnhart, Benjamin J.

    1965-01-01

    Barnhart, Benjamin J. (Los Alamos Scientific Laboratory, University of California, Los Alamos, N.M.). Kinetics of bacteriophage λ deoxyribonucleic acid infection of Escherichia coli. J. Bacteriol. 90:1617–1623. 1965.—The kinetics of Escherichia coli K-12 infection by phage λ deoxyribonucleic acid (DNA) were determined. An initial lag of 55 to 80 sec was found to be the time required for infecting DNA to become deoxyribonuclease-insensitive at 33 C. When cell-DNA interactions were stopped by washing away unbound DNA, the already bound DNA continued to infect the cell at rates described by linear kinetics with no apparent lag. Whereas the lag period was relatively insensitive to DNA and cell concentrations, both the lag and the subsequent linear portions of the rate curves were temperature-sensitive. Cell and DNA dose-response curves prescribed hyperbolic functions. Similarities between λ DNA infection of E. coli and bacterial transformation systems are discussed. PMID:5322721

  15. Linear, Single-Stranded Deoxyribonucleic Acid Isolated from Kilham Rat Virus

    PubMed Central

    Salzman, Lois Ann; White, Wesley L.; Kakefuda, Tsuyoshi

    1971-01-01

    Kilham rat virus (KRV) was grown in a rat nephroma cell line and was purified by two isopycnic centrifugations in cesium chloride. The virus contains single-stranded deoxyribonucleic acid (DNA) with a molecular weight of approximately 1.6 × 106. The DNA was extracted from the virion by both phenol extraction and by 2% sodium dodecyl sulfate at 50 C. KRV DNA, extracted by both procedures, was observed in an electron microscope by using a cytochrome c or diethylaminoethyldextran monolayer. The DNA was also exposed to exonuclease I, an enzyme which hydrolyzes specifically linear, single-stranded DNA. Hydrolysis of 70 to 80% of the DNA was observed. Both the enzymatic and the electron microscope studies support the conclusion that extracted KRV DNA is a single-stranded, linear molecule. The length of the DNA was measured in the electron microscope and determined to be 1.505 ± 0.206 μm. Images PMID:4327590

  16. Blood lymphocyte ultrastructure and deoxyribonucleic acid content in children with systemic lupus erythematosis.

    PubMed

    Ptasekas, R; Matulis, A; Urmonas, V; Graziene, V; Zukiene, G

    1980-01-01

    Two varieties of peripheral blood lymphocytes have been disclosed in systemic lupus erythematosus (SLE) cases: one showing signs of degradation and nuclear chromatine elimination and the other one manifesting a state of biological activation, possibly of an immunologic nature. This karyostructural lymphocyte heterogeneity in SLE may cause a great scattering of these cells on histograms in respect to their nuclear deoxyribonucleic acid content determined by cytophotometry. On the other hand, the expressiveness of the scattering and the degree of predominance of negative tendency towards proliferation (with a shift to the left from 2 n) may thereby serve as a very objective quantitative indication of nuclear structure degradation and of loss by lymphocytes of chromatine with deoxyribonucleic acid during SLE.

  17. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA

    PubMed Central

    Sigal, Nicole; Senez, Jacques C.; Le Gall, Jean; Sebald, Madeleine

    1963-01-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315–1318. 1963—The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c3 and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin (“nigrificans” and “orientis”) are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively. PMID:14047223

  18. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    PubMed

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  19. Effect of Bromouracil-containing Deoxyribonucleic Acid on Bacillus subtilis

    PubMed Central

    Gimlin, Dixie M.; Hardman, Sue D.; Kelley, Betty N.; Butler, Grace C.; Leach, Franklin R.

    1966-01-01

    Gimlin, Dixie M. (Oklahoma State University, Stillwater), Sue D. Hardman, Betty N. Kelley, Grace C. Butler, and Franklin R. Leach. Effect of bromouracil-containing deoxyribonucleic acid on Bacillus subtilis. J. Bacteriol. 92:366–374. 1966.—Replacement of one-half of the thymine with bromouracil in Bacillus subtilis transforming deoxyribonucleic acid (DNA) resulted in a slight decrease in transforming activity, but, when used at high concentrations, this DNA preparation inhibited cell growth. Acid-hydrolyzed DNA, or addition of equivalent concentrations of the free base bromouracil in a transforming mixture, was without effect on cell growth. Treatment of the DNA preparation with deoxyribonuclease completely destroyed transforming activity and killing effect, whereas treatments with ribonuclease and trypsin were without effect on either transformation or killing activity. Growth of competent B. subtilis cells in test tubes was inhibited by high concentrations of both normal and bromouracil-containing DNA, with the bromouracil-containing DNA being significantly more inhibitory. This type of inhibition was also reflected in the time of division of the cells. The inhibitory effect was not due to viscosity, or to mutagenicity. The time course of killing paralleled transformation, and competency was required. These results can be interpreted as being due to uptake of homologous but imperfect DNA (containing bromouracil instead of thymine) by means of the systems involved in transformation, followed by either integration (resulting in lethal transformation, activation of a defective, nonlytic but lethal prophage) or interference with the recombination mechanism. PMID:16562122

  20. Cell transformation mediated by chromosomal deoxyribonucleic acid of polyoma virus-transformed cells.

    PubMed Central

    Della Valle, G; Fenton, R G; Basilico, C

    1981-01-01

    To study the mechanism of deoxyribonucleic acid (DNA)-mediated gene transfer, normal rat cells were transfected with total cellular DNA extracted from polyoma virus-transformed cells. This resulted in the appearance of the transformed phenotype in 1 X 10(-6) to 3 X 10(-6) of the transfected cells. Transformation was invariably associated with the acquisition of integrated viral DNA sequences characteristic of the donor DNA. This was caused not by the integration of free DNA molecules, but by the transfer of large DNA fragments (10 to 20 kilobases) containing linked cellular and viral sequences. Although Southern blot analysis showed that integration did not appear to occur in a homologous region of the recipient chromosome, the frequency of transformation was rather high when compared with that of purified polyoma DNA, perhaps due to "position" effects or to the high efficiency of recombination of large DNA fragments. Images PMID:6100965

  1. Endonuclease from Micrococcus luteus Which Has Activity Toward Ultraviolet-Irradiated Deoxyribonucleic Acid: Its Action on Transforming Deoxyribonucleic Acid

    PubMed Central

    Setlow, R. B.; Setlow, Jane K.; Carrier, W. L.

    1970-01-01

    An endonuclease purified from Micrococcus luteus makes single-strand breaks in ultraviolet (UV)-irradiated, native deoxyribonucleic acid (DNA). The purified endonuclease is able to reactivate UV-inactivated transforming DNA of Haemophilus influenzae, especially when the DNA is assayed on a UV-sensitive mutant of H. influenzae. After extensive endonuclease action, there is a loss of transforming DNA when assayed on both UV-sensitive and -resistant cells. The endonuclease does not affect unirradiated DNA. The results indicate that the endonuclease function is involved in the repair of biological damage resulting from UV irradiation and that the UV-sensitive mutant is deficient in this step. We interpret the data as indicating that the various steps in the repair of DNA must be well coordinated if repair is to be effective. PMID:4314478

  2. Amino Acid Control over Deoxyribonucleic Acid Synthesis in Escherichia coli Infected With T-Even Bacteriophage

    PubMed Central

    Donini, Pierluigi

    1970-01-01

    Starvation for a required amino acid of normal or RCstrEscherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RCrelE. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RCstr phenotype but not in cells of RCrel phenotype. Inhibition of phage DNA synthesis in amino acid-starved RCstr host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought. PMID:4914067

  3. Adansonian Analysis and Deoxyribonucleic Acid Base Composition of Serratia marcescens

    PubMed Central

    Colwell, R. R.; Mandel, M.

    1965-01-01

    Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of Serratia marcescens. J. Bacteriol. 89:454–461. 1965.—A total of 33 strains of Serratia marcescens were subjected to Adansonian analysis for which more than 200 coded features for each of the organisms were included. In addition, the base composition [expressed as moles per cent guanine + cytosine (G + C)] of the deoxyribonucleic acid (DNA) prepared from each of the strains was determined. Except for four strains which were intermediate between Serratia and the Hafnia and Aerobacter group C of Edwards and Ewing, the S. marcescens species group proved to be extremely homogeneous, and the different strains showed high affinities for each other (mean similarity, ¯S = 77%). The G + C ratio of the DNA from the Serratia strains ranged from 56.2 to 58.4% G + C. Many species names have been listed for the genus, but only a single clustering of the strains was obtained at the species level, for which the species name S. marcescens was retained. S. kiliensis, S. indica, S. plymuthica, and S. marinorubra could not be distinguished from S. marcescens; it was concluded, therefore, that there is only a single species in the genus. The variety designation kiliensis does not appear to be valid, since no subspecies clustering of strains with negative Voges-Proskauer reactions could be detected. The characteristics of the species are listed, and a description of S. marcescens is presented. PMID:14255714

  4. Photodynamic Action on Native and Denatured Transforming Deoxyribonucleic Acid from Haemophilus influenzae

    PubMed Central

    León, Manuel Ponce-De; Cabrera-Juárez, Emiliano

    1970-01-01

    The photodynamic inactivation of native or denatured transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae is described. The inactivation at the same pH was higher for denatured than native DNA. At acidic pH, the inactivation both for native and denatured DNA was faster than at alkaline pH. The guanine content of photoinactivated native DNA at neutral pH was less than untreated DNA. The inactivation of biological activity was more extensive than the alteration of guanine. The absorption spectrum of photoinactivated native or denatured DNA was only slightly different than the control DNA at the different experimental conditions. PMID:5309576

  5. Agreement Between Deoxyribonucleic Acid Base Composition and Taxometric Classification of Gram-Positive Cocci1

    PubMed Central

    Silvestri, L. G.; Hill, L. R.

    1965-01-01

    Silvestri, L. G. (Università Statale, Milan, Italy), and L. R. Hill. Agreement between deoxyribonucleic acid base composition and taxometric classification of gram-positive cocci. J. Bacteriol. 90:136–140. 1965.—It had been previously proposed, from taxometric analyses, that gram-positive, catalase-positive cocci be divided into two subgroups. Thirteen strains, representative of both subgroups, were examined for deoxyribonucleic acid (DNA) base composition, determined from melting temperatures. Per cent GC (guanine + cytosine/total bases) values fell into two groups: 30.8 to 36.5% GC and 69 to 75% GC. Strains with low per cent GC values belonged to the Staphylococcus aureus–S. saprophyticus–S. lactis taxometric subgroups, and those with high per cent GC values belonged to the S. roseus–S. afermentans subgroup. The hypothetical nature of any classification is emphasized, and, in the present work, the hypothesis derived from taxometric analyses of division into two subgroups is confirmed by the study of DNA base ratios. The two subgroups correspond, respectively, to the genera Staphylococcus and Micrococcus. PMID:16562008

  6. Guanine Plus Cytosine Contents of the Deoxyribonucleic Acids of Some Sulfate-Reducing Bacteria: a Reassessment

    PubMed Central

    Skyring, G. W.; Jones, H. E.

    1972-01-01

    Guanine plus cytosine (GC) contents of the deoxyribonucleic acids of Desulfovibrio and Desulfotomaculum have been used as a basis for classification. Some of these data have been incorrectly calculated, resulting in errors of as much as 5% GC. This situation has been corrected by a reanalysis of existing data and by the contribution of new data. PMID:5011245

  7. tif-Stimulated deoxyribonucleic acid repair in Escherichia coli K-12.

    PubMed Central

    Castellazzi, M; Jacques, M; George, J

    1980-01-01

    Bacterial survival is significantly increased after ultraviolet irradiation in tif sfi cells, provided that the thermosensitive tif mutation has been expressed at 41 degrees C before irradiation. This tif-mediated "reactivation of ultraviolet irradiated bacteria" needs de novo protein synthesis, as is the case for the tif-mediated reactivation of ultraviolet-irradiated phage lambda. However, in striking contrast to the phage reactivation process, this tif-mediated reactivation is no longer associated with mutagenesis. It also requires the presence of the uvrA+ excision function. These results strongly suggest the existence in Escherichia coli K-12 of a repair pathway acting on bacterial deoxyribonucleic acid which is inducible, error free, and uvr dependent. PMID:6451614

  8. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    NASA Astrophysics Data System (ADS)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  9. Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth.

    PubMed

    Kreuzer, K N; Cozzarelli, N R

    1979-11-01

    Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [(3)H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [(3)H]uridine pulses and continuously administered [(3)H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages phiX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling

  10. Amplified spontaneous emission of Rhodamine 6G embedded in pure deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Rau, Ileana; Szukalski, Adam; Sznitko, Lech; Miniewicz, Andrzej; Bartkiewicz, Stanislaw; Kajzar, Francois; Sahraoui, Bouchta; Mysliwiec, Jaroslaw

    2012-10-01

    Deoxyribonucleic acid (DNA) is commonly viewed as a genetic information carrier. However, now it is recognized as a nanomaterial, rather than as a biological material, in the research field of nanotechnology. Here, we show that using pure DNA, doped with rhodamine 6G, we are able to observe amplified spontaneous emission (ASE) phenomenon. Moderate ASE threshold, photodegradation, and reasonable gain coefficient observed in this natural host gives some perspectives for practical applications of this system in biophotonics. Obtained results open the way and will be leading to construction of truly bio-lasers using nature made luminophores, such as anthocyanins.

  11. New Deoxyribonucleic Acid Polymerase Induced by Bacillus subtilis Bacteriophage PBS2

    PubMed Central

    Price, Alan R.; Cook, Sandra J.

    1972-01-01

    The deoxyribonucleic acid (DNA) of Bacillus subtilis phage PBS2 has been confirmed to contain uracil instead of thymine. PBS2 phage infection of wild-type cells or DNA polymerase-deficient cells results in an increase in the specific activity of DNA polymerase. This induction of DNA polymerase activity is prevented by actinomycin D and chloramphenicol. In contrast to the major B. subtilis DNA polymerase, which prefers deoxythymidine triphosphate (dTTP) to deoxyuridine triphosphate (dUTP), the DNA polymerase in crude extracts of PBS2-infected cells is equally active whether dTTP or dUTP is employed. This phage-induced polymerase may be responsible for the synthesis of uracil-containing DNA during PBS2 phage infection. PMID:4623224

  12. Interpretation of sucrose gradient sedimentation pattern of deoxyribonucleic acid fragments resulting from random breaks.

    PubMed

    Litwin, S; Shahn, E; Kozinski, A W

    1969-07-01

    Mass distribution in a sucrose gradient of deoxyribonucleic acid (DNA) fragments arising as a result of random breaks is predicted by analytical means from which computer evaluations are plotted. The analytical results are compared with the results of verifying experiments: (i) a Monte Carlo computer experiment in which simulated molecules of DNA were individuals of unit length subjected to random "breaks" applied by a random number generator, and (ii) an in vitro experiment in which molecules of T4 DNA, highly labeled with (32)P, were stored in liquid nitrogen for variable periods of time during which a precisely known number of (32)P atoms decayed, causing single-stranded breaks. The distribution of sizes of the resulting fragments was measured in an alkaline sucrose gradient. The profiles obtained in this fashion were compared with the mathematical predictions. Both experiments agree with the analytical approach and thus permit the use of the graphs obtained from the latter as a means of determining the average number of random breaks in DNA from distributions obtained experimentally in a sucrose gradient. An example of the application of this procedure to a previously unresolved problem is provided in the case of DNA from ultraviolet-irradiated phage which undergoes a dose-dependent intracellular breakdown. The relationship between the number of lethal hits and the number of single-stranded breaks was not previously established. A comparison of the calculated number of nicks per strand of DNA with the known dose in phage-lethal hits reveals a relationship closely approximating one lethal hit to one single-stranded break.

  13. Features of the damage produced by proflavine on transforming deoxyribonucleic acid.

    PubMed Central

    Cabrera-Juárez, E; Sánchez-Rincón, D A

    1979-01-01

    Proflavine formed a complex with transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae, with optimal formation at a ratio of proflavine to DNA of 0.06. The rate of dissociation of the complex by dialysis increased in the order: native, denatured, renatured DNA. The transforming activity of the DNA was reduced by its interaction with proflavine. This inactivation was dependent on the physical state of the DNA, the proflavine concentration, and the temperature. DNA that had been denatured and renatured was most sensitive; native DNA was much less sensitive. The inactivation remained after dialysis and was stable to prolonged storage. It is concluded that the inactivation of transforming DNA by proflavine takes place by a mechanism different from that of DNA-proflavine complex formation. PMID:312284

  14. Features of the damage produced by proflavine on transforming deoxyribonucleic acid.

    PubMed

    Cabrera-Juárez, E; Sánchez-Rincón, D A

    1979-03-01

    Proflavine formed a complex with transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae, with optimal formation at a ratio of proflavine to DNA of 0.06. The rate of dissociation of the complex by dialysis increased in the order: native, denatured, renatured DNA. The transforming activity of the DNA was reduced by its interaction with proflavine. This inactivation was dependent on the physical state of the DNA, the proflavine concentration, and the temperature. DNA that had been denatured and renatured was most sensitive; native DNA was much less sensitive. The inactivation remained after dialysis and was stable to prolonged storage. It is concluded that the inactivation of transforming DNA by proflavine takes place by a mechanism different from that of DNA-proflavine complex formation.

  15. Asymmetry and Extent of In Vivo Transcripition of R-Plasmid Deoxyribonucleic Acid in Escherichia coli

    PubMed Central

    Vapnek, Daniel; Spingler, Elizabeth

    1974-01-01

    Deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization studies have been performed with R-plasmid DNA (R538-1drd) and in vivo-synthesized RNA. R-plasmid DNA was isolated from Escherichia coli K-12, and the complementary strands were separated in cesium chloride-polyuridylic acid-polyguanylic acid gradients. DNA-RNA hybridization was performed with the separated DNA strands and RNA purified from R-plasmid-carrying cells. The results demonstrated that an asymmetric transcription of the R-plasmid DNA occurs in vivo. Hybridization was only detected with the H strand (denser strand in cesium chloride-polyuridylic acid-polyguanylic acid). By determining the density of the RNA-DNA hybrid in CsCl gradients, it was estimated that greater than 60% of the nucleotide sequences in the R-plasmid DNA are transcribed in logarithmically growing E. coli cells. No R-plasmid-specific RNA was detected in E. coli cells that did not carry the plasmid. PMID:4612013

  16. Genetic Control of the Secondary Modification of Deoxyribonucleic Acid in Escherichia coli1

    PubMed Central

    Mamelak, Linda; Boyer, Herbert W.

    1970-01-01

    The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure. PMID:4919756

  17. Synthesis of Deoxyribonucleic Acid After Ultraviolet Irradiation of Sensitive and Resistant Haemophilus influenzae

    PubMed Central

    Modak, Sohan P.; Setlow, Jane K.

    1969-01-01

    Synthesis of deoxyribonucleic acid (DNA) has been measured as a function of ultraviolet (UV) radiation dose in wild-type and seven UV-sensitive strains of Haemophilus influenzae. At the UV doses used, all strains were able to resume DNA synthesis, even those which are unable to excise pyrimidine dimers from their DNA. These excisionless strains showed longer UV-induced delays in DNA synthesis than all but one of the other strains. The longest delay was shown by DB117, a strain which can excise dimers but which is recombination deficient and unable to rejoin X ray-induced single-strand breaks. All strains showed a progressive decrease in sensitivity as they approached the stationary phase. PMID:5305934

  18. Ultraviolet-Induced Decrease in Integration of Haemophilus influenzae Transforming Deoxyribonucleic Acid in Sensitive and Resistant Cells

    PubMed Central

    Muhammed, Amir; Setlow, Jane K.

    1970-01-01

    The decrease in integration of transforming deoxyribonucleic acid (DNA) caused by ultraviolet irradiation of the DNA was found to be independent of the presence or absence of excision repair in the recipient cell. Much of the ultraviolet-induced inhibition of integration resulted from the presence in the transforming DNA of pyrimidine dimers, as judged by the photoreactivability of the inhibition with yeast photoreactivating enzyme. The inhibition of integration made only a small contribution to the inactivation of transforming ability of the DNA by ultraviolet radiation. PMID:5308769

  19. φX-174 Bacteriophage Structural Mutants Which Affect Deoxyribonucleic Acid Synthesis

    PubMed Central

    Siegel, Jeff E. D.; Hayashi, Masaki

    1969-01-01

    Seven cistrons in φX-174 were identified and one in particular was studied intensively: cistron A, which is assigned a protein in the mature phage. Amber mutants in this cistron synthesize a new deoxyribonucleic acid (DNA) form in addition to circular phage DNA upon infection of the restrictive host. This DNA is linear, non-infectious, and single-stranded; it is formed from the phage strand of replicative form φX-174 DNA. These mutants produce two different defective particles in the restrictive host. One particle contains circular phage DNA but is not infectious; the other contains the new DNA form and is similar to the 70S particles found in wild-type phage lysates. The mutant A gene product acts independently of normal A protein upon mixed infection of the restrictive host with an A mutant and a mutant from any other cistron or wild type. PMID:5823229

  20. Ultrastructure of Deoxyribonucleic Acid-Membrane Associations in Escherichia coli

    PubMed Central

    Altenburg, B. C.; Suit, Joan C.; Brinkley, B. R.

    1970-01-01

    Areas of contact between deoxyribonucleic acid (DNA) and intracytoplasmic membrane are frequently seen in the “extra” membrane-forming strain Escherichia coli 0111a1. By examination of serial sections, it has been estimated that these DNA-membrane associations occur in at least 60% of the extra membrane-containing cells. Most of the DNA masses contained only one contact area. Several cells in which the DNA had been stretched revealed individual fibers connecting to the membrane, suggesting a firm attachment of DNA to membrane. The areas of membrane associated with DNA fibers were usually between 100 and 500 nm in diameter, although some smaller areas were seen. Electron microscopic autoradiography of cells in which the replication forks were labeled showed grains over 24% of the profiles containing a contact area, whereas there were grains over only 16% of the profiles without a contact area. Data from autoradiographs of cells in which the label was “chased” away from the replication fork showed the reverse labeling pattern. These data indicate that the areas of contact between DNA and intracytoplasmic membranes seen in electron micrographs contain the DNA replication forks. Images PMID:4919755

  1. Specific Effect of Guanidine in the Programming of Poliovirus Inhibition of Deoxyribonucleic Acid Synthesis

    PubMed Central

    Powers, C. D.; Miller, B. A.; Kurtz, H.; Ackermann, W. W.

    1969-01-01

    Inhibition of HeLa cell deoxyribonucleic acid (DNA) synthesis, which occurred by the 4th to 5th hr after infection with poliovirus, could be blocked completely by guanidine only when it was present before the 2nd hr. At the 2nd hr, there was no significant ribonucleic acid (RNA)-replicase activity, and addition of guanidine inhibited all production of virus but allowed 57% of maximal DNA inhibition to develop. Maximum DNA inhibition developed in cells infected for 4 hr in the presence of guanidine when the guanidine was removed for a 10-min interval. RNA-replicase activity was not enzymatically detectable and viral multiplication did not develop in these cells unless the interval without guanidine was extended to 60 min. The interpretation of the data was that the effect of guanidine on viral-induced inhibition of DNA synthesis was distinct and not a consequence of the inhibition of RNA-replicase. PMID:4305675

  2. Studies on the accessibility of deoxyribonucleic acid in deoxyribonucleoprotein to cationic molecules

    PubMed Central

    Itzhaki, Ruth F.

    1971-01-01

    The binding of deoxyribonucleoprotein to Toluidine Blue, to cetylpyridinium chloride and to polylysine of various molecular weights was studied to determine the percentage of free DNA phosphate groups in deoxyribonucleoprotein. Binding was measured by addition of these reagents to deoxyribonucleoprotein at a range of concentrations such that complete precipitation of the deoxyribonucleoprotein occurred. With Toluidine Blue the binding corresponded to about 48% of the DNA phosphates in deoxyribonucleoprotein. The dye did not cause appreciable displacement of protein from the DNA. With cetylpyridinium chloride the binding corresponded to about 41% of the DNA phosphates. With polylysine preparations of molecular weight 1250 and 7790 the binding values for deoxyribonucleoprotein were 46 and 38% respectively. The results suggest that the free phosphates lie in stretches sufficiently long to accommodate most of each polylysine molecule. With polylysine of molecular weight 62000 cross-linking of free stretches of DNA on different deoxyribonucleoprotein molecules probably occurs. It is concluded that although most of the free phosphates are probably `hidden' beneath covering histone, corresponding perhaps to runs of non-basic residues in the latter, they are surprisingly accessible to very large molecules. The relevance of this finding to the problem of gene repression is discussed. PMID:5166331

  3. Transcription of exogenous and endogenous deoxyribonucleic acid templates in cold-shocked Bacillus subtilis.

    PubMed Central

    Kuhl, S J; Brown, L R

    1980-01-01

    Ribonucleic acid (RNA) synthesis was examined in cold-shocked Bacillus subtilis cells. The cells were grown to mid-log stage, harvested, and cold shocked. RNA synthesis was monitored by the incorporation of [3H]uridine triphosphate or [alpha 32P]adenosine triphosphate into trichloroacetic acid-precipitable material in the presence of all four nucleoside triphosphates. The inhibition of RNA synthesis in cold-shocked cells by lipiarmycin, ethidium bromide, rifampin. or streptolydigin was analyzed using mutant or wild-type cells. Also examined were the effects of temperature, salt concentration, and the addition of polyamines or highly phosphorylated nucleotides. In ultraviolet-irradiated and cold-shocked cells, RNA wynthesis decreased to low levels. The addition of exogenous phi 29 or TSP-1 template to these cells caused a 13- to 20-fold increase in RNA synthesis, as monitored by trichloroacetic acid-precipitable counts. RNA synthesized in the presence of phi 29 deoxyribonucleic acid (DNA) hybridizes mainly to EcoRI fragments A and C of phi 29 DBA, These two fragments direct transcription by purified RNA polymerase in vitro and hybridize to early phi 29 DNA produced in vivo. Our results with TSP-1 DNA in this system indicated that the RNA produced hybridizes to the same fragments as early RNA produced in vivo. Plasmic pUB110 DNA was not transcribed in this system. Images PMID:6157674

  4. Biophysical Properties of Frog Virus and Its Deoxyribonucleic Acid: Fate of Radioactive Virus in the Early Stage of Infection 1

    PubMed Central

    Smith, William R.; McAuslan, Brian R.

    1969-01-01

    Frog virus (FV-3) was banded by isopycnic centrifugation in cesium chloride, sucrose, or potassium tartrate. Two bands of infectivity were regularly found at positions in cesium chloride corresponding to densities of 1.26 and 1.30 g/cm3, respectively. Deoxyribonucleic acid from either band had the following characteristics: double-stranded; a Tm of 76.3 C in 0.1 SSC (0.015 m NaCl plus 0.015 m sodium citrate) and a buoyant density of 1.720 g/cm3 in cesium chloride, corresponding to a guanine plus cytosine content of 56 to 58% and a molecular weight of 130 × 106 daltons, determined by velocity sedimentation. These data, together with electron micrographs of sections of cells infected with material from either band suggest that two types of infectious frog virus particles exists, rather than a second virus in the frog virus stocks. The composition of frog virus was determined. It was found that highly purified preparations of frog virus were composed of 55.8% protein, 30.1% deoxyribonucleic acid, and 14.2% lipid. The kinetics of adsorption and uncoating of FV-3 was studied with radioactive virus. Uncoating is comparatively rapid and in contrast to poxvirus is unaffected by inhibitors of protein synthesis. Images PMID:4980848

  5. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi

    2015-08-01

    Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.

  6. Tunable mechanical properties of green solid films based on deoxyribonucleic acids

    NASA Astrophysics Data System (ADS)

    Matsuno, Hisao; Morimitsu, Yuma; Ohta, Noboru; Sekiguchi, Hiroshi; Takahara, Atsushi; Tanaka, Keiji

    Promoting green innovation to establish a worldwide low-carbon society is an urgent priority. We here show that solid films made from deoxyribonucleic acid (DNA) can be used as a structural material. The great advantage of DNA films over the ones made from synthetic polymers is that the mechanical properties are controllable, from glassy to rubbery, via semicrystalline by simply regulating the water content in the film. Why such unique mechanical properties can be manifested by the DNA films is determined from structural analyses using Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction measurements. With increasing water content, the conformation of DNA was changed from A-form in an amorphous state to B-form in a partially packed one. DNA in the B-form became densely packed as the film was stretched. Also, DNAs were intermolecularly cross-linked using 2,5-hexanedione based on reductive amination induced by 2-picoline borane in aqueous phase. Cross-linking points were directly observed by atomic force microscopy. The tensile properties of cross-linked films were much better than those of non-cross-linked DNA films.

  7. Characteristics of Deoxyribonucleic Acid Polymerase Isolated from Spores of Rhizopus stolonifer1

    PubMed Central

    Gong, Cheng-Shung; Dunkle, Larry D.; Van Etten, James L.

    1973-01-01

    Deoxyribonucleic acid (DNA)-dependent DNA polymerase was purified several hundredfold from germinated and ungerminated spores of the fungus Rhizopus stolonifer. The partially purified enzymes from both spore stages exhibited identical characteristics; incorporation of [3H]deoxythymidine monophosphate into DNA required Mg2+, DNA, a reducing agent, and the simultaneous presence of deoxyguanosine triphosphate, deoxycytidine triphosphate, and deoxyadenosine triphosphate. Heat-denatured and activated DNAs were better templates than were native DNAs. The buoyant density of the radioactive product of the reaction was similar to that of the template DNA. The enzyme is probably composed of a single polypeptide chain with an S value of 5.12 and an estimated molecular weight of 70,000 to 75,000. During the early stages of purification, the enzyme fraction from ungerminated spores required exogenous DNA for maximum activity, whereas the corresponding enzyme fraction from germinated spores did not require added DNA. Apparently DNA polymerase from germinated spores was more tightly bound to endogenous DNA than was the enzyme from ungerminated spores. PMID:4728271

  8. Deoxyribonucleic Acid Replication and Expression of Early and Late Bacteriophage Functions in Bacillus subtilis

    PubMed Central

    Pène, Jacques J.; Marmur, Julius

    1967-01-01

    The role of deoxyribonucleic acid (DNA) replication in the control of the synthesis of deoxycytidylate (dCMP) deaminase and lysozyme in Bacillus subtilis infected with bacteriophage 2C has been studied. These phage-induced enzymes are synthesized at different times during the latent period. It was shown by actinomycin inhibition that the formation of the late enzyme (lysozyme) required messenger ribonucleic acid (mRNA) synthesized de novo after the initiation of translation of mRNA which specifies the early function (dCMP deaminase). The inhibition of phage DNA synthesis by mitomycin C prevented the synthesis of lysozyme only when added before the onset of phage DNA replication, but it did not affect the synthesis or action of dCMP deaminase when added at any time during the latent period. Treatment of infected cells with mitomycin C after phage DNA synthesis had reached 8 to 10% of its maximal rate resulted in the production of normal amounts of lysozyme. These observations suggest that mRNA specifying early enzymes can be transcribed from parental (and probably also from progeny) DNA, whereas late functional messengers can be transcribed only after the formation of progeny DNA. PMID:4990039

  9. Relation Between Deoxyribonucleic Acid and Intracytoplasmic Membranes in Escherichia coli O111a11

    PubMed Central

    Altenburg, Betty C.; Suit, Joan C.

    1970-01-01

    The possibility of a relationship between intracytoplasmic membranes and deoxyribonucleic acid (DNA) in Escherichia coli O111a1 has been investigated. To facilitate this investigation, a simple enzymatic assay for the amount of internal membrane present in a culture was developed. This assay was then used to show that the appearance of intracytoplasmic membranes is accompanied by an increase in the DNA content of the cells. Electron micrographs have confirmed this observation and have shown DNA to be in contact with the intracytoplasmic membranes. Extensive membranes were observed at sites of apparently unsuccessful attempts at cell division. These observations led to the conclusion that the internal membrane formed by strain O111a1 represents “extra” membrane, which is functional in that it contains sites for DNA replication, but is produced in excess because the organism is somehow defective in its regulation of membrane synthesis. Images PMID:4192984

  10. Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Ogata, Naoya; Diggs, Darnell E.; Hopkins, Frank K.

    2003-07-01

    Nonlinear optic (NLO) polymer based electro-optic devices have been achieving world record low half wave voltages and high frequencies over the last 2-3 years. Part of the advancement is through the use of relatively more conductive polymers for the cladding layers. Based on the current materials available for these cladding materials, however, the desired optical and electromagnetic properites are being balanced for materials processability. One does not want the solvent present in one layer to dissovle the one deposited underneath, or be dissolved by the one being deposited on top. Optimized polymer cladding materials, to further enhance device performance, are continuing to be investigated. Thin films of deoxyribonucleic acid (DNA), derived from salmon sperm, show promise in providing both the desired optical and magnetic properties, as well as the desired resistance to various solvents used for NLO polymer device fabrication. Thin films of DNA were deposited on glass and silicon substrates and the film quality, optical and electromagnetic properties and resistance to various solvents were characterized.

  11. Stability of pathogenic colony types of Neisseria gonorrhoeae in liquid culture by using the parameters of colonial morphology and deoxyribonucleic acid transformation.

    PubMed Central

    La Scolea, L J; Dul, M J; Young, F E

    1975-01-01

    This investigation describes the surveillance of the colonial stability of the pathogenic type 1 from the gonococcal strain F62 to the nonvirulent types 3 and 4 in different liquid media. The maintenance of the colony types was monitored by the parameters of colonial morphology and deoxyribonucleic acid-mediated transformation. During growth in a complex medium, Mueller-Hinton broth, only 46.7% of the gonococcal population remained as type 1 after 12 h. The greatest change in the type 1 colony-forming units correlated with the decline in viable count. The conversion process could not be prevented by the continual maintenance of the gonococcus in logarithmic growth. The frequency of transformation from PRO(minus) (proline) to PRO(plus) was proportional to this decrease in type 1 colony-forming units. In contrast to Mueller-Hinton medium, the chemically defined minimal medium Gonococcal Genetic Medium (GGM) was capable of maintaining approximately 90% of the gonococcal population in the type 1 colonial form after 16 h of growth, despite a decrease in the viable count. Although the percentage of type 1 appeared to remain constant in GGM, the apparent transformation frequency increased approximately 24-fold from 0 to 12 h of growth. GGM appears to stimulate or maintain competence, as evidenced by an eightfold increase in transformation when cells are exposed to deoxyribonucleic acid in GGM as compared to Mueller-Hinton. PMID:809469

  12. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-01

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm2/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  13. Molecular Weight of Deoxyribonucleic Acid Synthesized During Initiation of Chromosome Replication in Escherichia coli

    PubMed Central

    Kuempel, Peter L.

    1972-01-01

    Alkaline sucrose gradients were used to study the molecular weight of deoxyribonucleic acid (DNA) synthesized during the initiation of chromosome replication in Escherichia coli 15 TAU-bar. The experiments were conducted to determine whether newly synthesized, replication origin DNA is attached to higher-molecular-weight parental DNA. Little of the DNA synthesized after readdition of required amino acids to cells previously deprived of the amino acids was present in DNA with a molecular weight comparable to that of the parental DNA. The newly synthesized, low-molecular-weight DNA rapidly appeared in higher-molecular-weight material, but there was an upper limit to the size of this intermediate-molecular-weight DNA. This limit was not observed when exponentially growing cells converted newly synthesized DNA to higher-molecular-weight material. The size of the intermediate-molecular-weight DNA was related to the age of the replication forks, and the size increased as the replication forks moved further from the replication origin. The results indicate that the newly synthesized replication origin DNA is not attached to parental DNA, but it is rapidly attached to the growing strands that extend from the replication fork to the replication origin, or to the other replication fork if replication is bidirectional. Experiments are reported which demonstrate that the DNA investigated was from the vicinity of the replication origin and was not plasmid DNA or DNA from random positions on the chromosome. PMID:4562387

  14. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Han, Shijiao; Huang, Wei

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role inmore » enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.« less

  15. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  16. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  17. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    PubMed

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  18. Dose dependence of the excision of ultraviolet-induced pyrimidine dimers from nuclear deoxyribonucleic acids of haploid and diploid Saccharomyces cerevisiae.

    PubMed Central

    Waters, R; Moustacchi, E

    1975-01-01

    The yield of ultraviolet-induced dimers is similar for a fixed dose in both haploid and diploid Saccharomyces cerevisiae. The excision of these photo-products from the nuclear deoxyribonucleic acids of cells of both ploidies after ultraviolet incident doses of 2 times 10-3 to 4 times 10-3 ergs/mm2 decreased with the corresponding increasing dose. Postirradiation incubation in saline followed by a further incubation in nutrient medium increases the excision as compared to that seen in either nutrient medium or saline alone. Previous data regarding both pyrimidine dimer removal and the survival of haploid and diploid cells after ultraviolet irradiation and either immediate or delayed plating are discussed. PMID:1090608

  19. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Integrity of nuclear genomic deoxyribonucleic acid in cooked meat: Implications for food traceability.

    PubMed

    Aslan, O; Hamill, R M; Sweeney, T; Reardon, W; Mullen, A M

    2009-01-01

    It is essential to isolate high-quality DNA from muscle tissue for PCR-based applications in traceability of animal origin. We wished to examine the impact of cooking meat to a range of core temperatures on the quality and quantity of subsequently isolated genomic (specifically, nuclear) DNA. Triplicate steak samples were cooked in a water bath (100 degrees C) until their final internal temperature was 75, 80, 85, 90, 95, or 100 degrees C, and DNA was extracted. Deoxyribonucleic acid quantity was significantly reduced in cooked meat samples compared with raw (6.5 vs. 56.6 ng/microL; P < 0.001), but there was no relationship with cooking temperature. Quality (A(260)/A(280), i.e., absorbance at 260 and 280 nm) was also affected by cooking (P < 0.001). For all 3 genes, large PCR amplicons (product size >800 bp) were observed only when using DNA from raw meat and steak cooked to lower core temperatures. Small amplicons (<200 bp) were present for all core temperatures. Cooking meat to high temperatures thus resulted in a reduced overall yield and probable fragmentation of DNA to sizes less than 800 bp. Although nuclear DNA is preferable to mitochondrial DNA for food authentication, it is less abundant, and results suggest that analyses should be designed to use small amplicon sizes for meat cooked to high core temperatures.

  1. Association of the Bacillus subtilis Chromosome with the Cell Membrane: Resolution of Free and Bound Deoxyribonucleic Acid on Renografin Gradients

    PubMed Central

    Ivarie, Robert D.; Pène, Jacques J.

    1970-01-01

    Linear density gradients of Renografin have resolved two components of bacterial deoxyribonucleic acid (DNA) in sheared lysates. Component 1, at equilibrium density after 5 hr of centrifugation, is enriched for newly synthesized DNA and markers near the origin and terminus of replication. It contains 5% of total cellular protein, 25% of the phospholipids, 30 to 50% of the DNA, 4 to 11% of unstable ribonucleic acid (RNA), RNA polymerase, and low amounts of DNA polymerase. The material is sensitive to Pronase and Sarkosyl. In unsheared lysates, all of the DNA forms a band at this position. Shearing the lysate generates a slow-sedimenting fraction of DNA (component 2) which contains more uniformly labeled than newly synthesized DNA. These observations suggest that replicating DNA and DNA at the origin and possibly the terminus of replication are associated with membrane. The amount of uniformly labeled DNA in component 1 and an estimate of the number of chromosomal fragments suggest that other parts of the chromosome are possibly associated with the membrane. PMID:4992373

  2. An optical deoxyribonucleic acid-based half-subtractor.

    PubMed

    Yang, Chia-Ning; Chen, Yi-Li; Lin, Hung-Yin; Hsu, Chun-Yu

    2013-10-09

    This study introduces an optical DNA-based logic circuit that mimics a half-subtractor. The system contains an Au-surface immobilized molecular-beacon molecule that serves as a dual-gate molecule and outputs two series of fluorescence signals following Boolean INH and XOR patterns after interacting with one or two single-stranded DNA molecules as input. To the best of our knowledge, the system reported herein is rather concise compared to other molecular logic gate systems.

  3. Uracil in formic acid hydrolysates of deoxyribonucleic acid

    PubMed Central

    Schein, Arnold H.

    1966-01-01

    1. When DNA is hydrolysed with formic acid for 30min. at 175° and the hydrolysate is chromatographed on paper with propan-2-ol–2n-hydrochloric acid, in addition to expected ultraviolet-absorbing spots corresponding to guanine, adenine, cytosine and thymine, an ultraviolet-absorbing region with RF similar to that of uracil can be detected. Uracil was separated from this region and identified by its spectra in acid and alkali, and by its RF in several solvent systems. 2. Cytosine, deoxyribocytidine and deoxyribocytidylic acid similarly treated with formic acid all yielded uracil, as did a mixture of deoxyribonucleotides. 3. Approx. 4% of deoxyribonucleotide cytosine was converted into uracil by the formic acid treatment. ImagesFig. 1. PMID:5949371

  4. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.

    PubMed

    Ge, Zhengwei; Wang, Wei; Yang, Chun

    2015-02-09

    This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A MapReduce approach to diminish imbalance parameters for big deoxyribonucleic acid dataset.

    PubMed

    Kamal, Sarwar; Ripon, Shamim Hasnat; Dey, Nilanjan; Ashour, Amira S; Santhi, V

    2016-07-01

    In the age of information superhighway, big data play a significant role in information processing, extractions, retrieving and management. In computational biology, the continuous challenge is to manage the biological data. Data mining techniques are sometimes imperfect for new space and time requirements. Thus, it is critical to process massive amounts of data to retrieve knowledge. The existing software and automated tools to handle big data sets are not sufficient. As a result, an expandable mining technique that enfolds the large storage and processing capability of distributed or parallel processing platforms is essential. In this analysis, a contemporary distributed clustering methodology for imbalance data reduction using k-nearest neighbor (K-NN) classification approach has been introduced. The pivotal objective of this work is to illustrate real training data sets with reduced amount of elements or instances. These reduced amounts of data sets will ensure faster data classification and standard storage management with less sensitivity. However, general data reduction methods cannot manage very big data sets. To minimize these difficulties, a MapReduce-oriented framework is designed using various clusters of automated contents, comprising multiple algorithmic approaches. To test the proposed approach, a real DNA (deoxyribonucleic acid) dataset that consists of 90 million pairs has been used. The proposed model reduces the imbalance data sets from large-scale data sets without loss of its accuracy. The obtained results depict that MapReduce based K-NN classifier provided accurate results for big data of DNA. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  7. Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro.

    PubMed

    Lirk, P; Hollmann, M W; Fleischer, M; Weber, N C; Fiegl, H

    2014-07-01

    Lidocaine demethylates deoxyribonucleic acid (DNA) in breast cancer cells. This modification of epigenetic information may be of therapeutic relevance in the perioperative period, because a decrease in methylation can reactivate tumour suppressor genes and inhibit tumour growth. The objectives of this study were to determine the effect of two amide local anaesthetics, ropivacaine and bupivacaine, on methylation in two breast cancer cell lines and to detect whether the combination of lidocaine with the chemotherapy agent 5-aza-2'-deoxycytidine (DAC) would result in additive demethylating effects. Breast cancer cell lines BT-20 [oestrogen receptor (ER)-negative] and MCF-7 (ER-positive) were incubated with lidocaine, bupivacaine, and ropivacaine to assess demethylating properties. Then, we tested varying concentrations of lidocaine and DAC to assess whether their demethylating effects were additive. Cell numbers and global methylation status were analysed. Lidocaine decreased methylation in BT-20 and MCF-7 cells, ropivacaine decreased methylation in BT-20 cells, and bupivacaine had no demethylating effect. When combined, lidocaine and DAC had additive demethylating effects. At clinically relevant doses, lidocaine and ropivacaine exert demethylating effects on specific breast cancer cell lines, but bupivacaine does not. The demethylating effects of lidocaine and DAC are indeed additive. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Kinetics of Nucleic Acid Synthesis in Human Embryonic Kidney Cultures Infected with Adenovirus 2 or 12: Inhibition of Cellular Deoxyribonucleic Acid Synthesis

    PubMed Central

    Ledinko, Nada; Fong, Caroline K. Y.

    1969-01-01

    Infection of human embryonic kidney (HEK) cell cultures with adenovirus types 2 or 12 resulted in an initial drop in the rate of incorporation of 3H-thymidine into deoxyribonucleic acid (DNA) during the early latent period of virus growth, followed by a marked rise in label uptake. It was shown by cesium chloride isopycnic centrifugation that, after adenovirus 2 infection, there was a decrease in the rate of incorporation of thymidine into cellular DNA. Moreover, DNA-DNA hybridization experiments revealed that, by 28 to 32 hr after infection with either adenovirus 2 or 12, the amount of isolated pulse-labeled DNA capable of hybridizing with HEK cell DNA was reduced by approximately 60 to 70%. Autoradiographic measurements showed that the inhibition of cellular DNA synthesis was due to a decrease in the ability of an infected cell to synthesize DNA. The adenovirus-induced inhibition of host cell DNA synthesis was not due to degradation of cellular DNA. 3H-thymidine incorporated into cellular DNA at the time of infection remained acid-precipitable, and labeled material was not incorporated into viral DNA. Furthermore, when zone sedimentation through neutral or alkaline sucrose density gradients was employed, no detectable change was observed in the sedimentation rate of this cellular DNA at various times after infection with adenovirus 2 or 12. In addition, there was no increase in deoxyribonuclease activity in cells infected with either virus. Cultures infected for 38 hr with adenovirus 2 or 12 incorporated three to four times as much 3H-uridine into ribonucleic acid (RNA) as did non-infected cultures. Furthermore, the net RNA synthesized by infected cultures substantially exceeded that of control cultures. The activity of thymidine kinase was induced, but there was no stimulation of uridine kinase. PMID:5806981

  9. Comparison of the effects of arabinosyladenine, arabinosylhypoxanthine, and arabinosyladenine 5'-monophosphate against herpes simplex virus, varicella-zoster virus, and cytomegalovirus with their effects on cellular deoxyribonucleic acid synthesis.

    PubMed Central

    Gephart, J F; Lerner, A M

    1981-01-01

    In a single line of human foreskin fibroblasts, minimum inhibitory concentrations (MICs) and the minimum intracellular virus inactivation concentrations (MIICs) of arabinosyladenine, arabinosylhypoxanthine, and arabinosyladenine 5'-monophosphate were assayed for a number of recent isolates of herpes simplex virus types 1 and 2 (HSV-1, HSV-2), varicella-zoster virus (VZV), and cytomegalovirus (CMV). (The term MIIC is used here to describe the selective qualitative intracellular inhibition of the virus inoculum in the primary tissue cultures. The inoculum is not recoverable in subcultures free of antiviral agent.) MICs and MIICs of each of the antiviral agents were readily obtained for each strain of HSV-1, HSV-2, and VZV tested, but all seven strains of CMV tested were much more resistant. At the endpoint, there was little variation in the MICs or MIICs among strans of the same virus. Final MIC results for HSV-1 and HSV-2 were complete after 3 days of incubation; CMV and VZV results required as long as 6 days. The MIC for each herpesvirus increased with incubation, but at the endpoint the MIC and MIIC were approximately equal. VZV was most susceptible to each drug, followed by HSV-1 and HSV-2. The latter two viruses were quite similar. There was no difference in antiviral susceptibilities among any of the strains of HSV-1, HSV-2, VZV, or CMV tested. The toxicities of arabinosyladenine, arabinosylhypoxanthine, and arabinosyladenine 5'-monophosphate were simultaneously compared by using both microscopic cytotoxicity and inhibition of uptakes of [14C]thymidine into cellular deoxyribonucleic acid and of 14C-labeled amino acids into protein. The selective inhibition of each antiviral agent against viral and cellular deoxyribonucleic acid polymerases was confirmed. Simultaneous assays of antiviral and anticellular activities of antiviral agents may be useful in projecting further in vivo experiments. PMID:6166244

  10. Morphokinetic Reaction of Cells of Streptococcus faecalis (ATCC 9790) to Specific Inhibition of Macromolecular Synthesis: Dependence of Mesosome Growth on Deoxyribonucleic Acid Synthesis

    PubMed Central

    Higgins, Michael L.; Daneo-Moore, Lolita

    1972-01-01

    The application of quantitative electron microscopy to thin sections of cells of Streptococcus faecalis specifically inhibited for deoxyribonucleic acid (DNA), ribonucleic acid, and protein synthesis shows that septal mesosomes (i) increase in size when protein synthesis is inhibited by at least 80% while DNA synthesis proceeds at no less than 50% of the control rate and (ii) decrease in size when DNA synthesis is inhibited 50% or more during the initial 10 min of treatment. This indicates that fluctuations in mesosome size are dependent on the extent of DNA synthesis. The fluctuations in mesosome areas observed on treatment do not correlate with the kinetics of glycerol incorporation per milliliter of a culture. However, when glycerol incorporation is placed on a per cell basis, a strong correlation is observed between increases in (i) the thickness of the electron-transparent layer of the cytoplasmic membrane and (ii) the amount of glycerol incorporated per cell. It seems that the electron-transparent membrane layer may thicken to accommodate changes in lipid content when protein and lipid synthesis are uncoupled. Images PMID:4110926

  11. Preliminary individualized chemotherapy for malignant astrocytomas based on O6-methylguanine-deoxyribonucleic acid methyltransferase methylation analysis.

    PubMed

    Watanabe, Takao; Katayama, Yoichi; Ogino, Akiyoshi; Ohta, Takashi; Yoshino, Atsuo; Fukushima, Takao

    2006-08-01

    O(6)-methylguanine-deoxyribonucleic acid methyltransferase gene (MGMT) methylation is apparently correlated with responsiveness to nitrosourea chemotherapy, suggesting this alkylating agent should be effective against MGMT-methylated tumors. MGMT appears not to be linked to platinum resistance, so platinum chemotherapy should be used for MGMT-unmethylated tumors. This study was a preliminary trial of individualized chemotherapy based on MGMT methylation status in a total of 20 patients with newly diagnosed malignant astrocytomas (9 anaplastic astrocytomas and 11 glioblastomas multiforme). The procarbazine, 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea, and vincristine (PAV) regimen was administered to seven patients with MGMT-methylated tumors, and the carboplatin and etoposide (CE) regimen was administered to 13 patients with MGMT-unmethylated tumors. Objective response to the PAV therapy was noted in all three patients with measurable residual tumor (2 complete responses and 1 partial response). Five of the seven patients continued to be disease-free after initiation of the PAV therapy. Objective response to the CE therapy was seen in only one of seven patients with measurable residual tumor (1 partial response). Three of the 13 patients were free from progression, whereas the remaining 10 patients showed early progression. The PAV regimen is effective against MGMT-methylated malignant astrocytomas, but the CE regimen is not useful at the given dose and schedule in MGMT-unmethylated tumors.

  12. Butyric acid - a well-known molecule revisited.

    PubMed

    Borycka-Kiciak, Katarzyna; Banasiewicz, Tomasz; Rydzewska, Grażyna

    2017-01-01

    The properties of butyric acid, and the role it plays in the gastrointestinal tract, have been known for many years. However, the newest research shows that butyric acid still remains a molecule with a potential that has not as yet been fully exploited. The article provides an outline of relevant up-to-date knowledge about butyric acid, and presents the expert position on the clinical benefits of using butyric acid products in the therapy of gastrointestinal diseases.

  13. Featured Molecules: Ascorbic Acid and Methylene Blue

    NASA Astrophysics Data System (ADS)

    Coleman, William F.; Wildman, Randall J.

    2003-05-01

    The WebWare molecules of the month for May are featured in several articles in this issue. "Arsenic: Not So Evil After All?" discusses the pharmaceutical uses of methylene blue and its development as the first synthetic drug used against a specific disease. The JCE Classroom Activity "Out of the Blue" and the article "Greening the Blue Bottle" feature methylene blue and ascorbic acid as two key ingredients in the formulation of the blue bottle. You can also see a colorful example of these two molecules in action on the cover. "Sailing on the 'C': A Vitamin Titration with a Twist" describes an experiment to determine the vitamin C (ascorbic acid) content of citrus fruits and challenges students, as eighteenth-century sea captains, to decide the best fruit to take on a long voyage. Fully manipulable (Chime) versions of these and other molecules are available at Only@JCE Online.

  14. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2016-08-01

    Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4)  M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase β

    PubMed Central

    Mendez, Frances; Kozin, Elliott; Bases, Robert

    2003-01-01

    Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase β, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase β was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase β repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase β also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood. PMID:14627201

  16. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    PubMed

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. © The Author(s) 2016. Published by Oxford University Press.

  17. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  18. Butyric acid – a well-known molecule revisited

    PubMed Central

    Banasiewicz, Tomasz; Rydzewska, Grażyna

    2017-01-01

    The properties of butyric acid, and the role it plays in the gastrointestinal tract, have been known for many years. However, the newest research shows that butyric acid still remains a molecule with a potential that has not as yet been fully exploited. The article provides an outline of relevant up-to-date knowledge about butyric acid, and presents the expert position on the clinical benefits of using butyric acid products in the therapy of gastrointestinal diseases. PMID:28702095

  19. [Microspeciation of amphoteric molecules of unusual acid-base properties].

    PubMed

    Kóczián, Kristóf

    2007-01-01

    The phisico-chemical properties of bio- and drug molecules greatly influence their interactions in the body and strongly effect the mechanism of drug action. Among these properties, macroscopic and site-specific protonation constants are of crucial importance. Latter one is the tool to calculate the relative concentration of the various microspecies in the compartments of the body at different pH values, and also, it is the versatile parameter to improve the pharmacokinetic properties of a new molecule in a particular family of drugs. In the present thesis work, the microspeciation of three molecules of great pharmaceutical importance and unusual acid-base properties, were carried out. The microconstants of tenoxicam, the non-steroidal anti-inflammatory drug, were described, introducing a novel deductive method using Hammett constants. For this purpose, a total of 8 tenoxicam and piroxicam derivatives were synthesised. To the best of our knowledge, the log k(N)O microconstant of tenoxicam obtained thus is the lowest enolate basicity value, which, however, can be well explained by the effects of the intramolecular environment. The developed evaluation procedure is suitable for microconstant determination of compounds in other molecule families. Besides, prodrug-type compounds and analogues similar to the structures of selective COX-2 isoenzyme inhibitors were synthesised. The other two molecules studied, the 6-aminopenicillanic acid and 7-cephalosporanic acid, the core molecules of the two most important beta-lactam antibiotic-types were derivatised and investigated by 1D and 2D NMR techniques. The NMR-pH titration on the parent compounds and their ester derivatives, combined with in situ pH-measurements allowed the microspeciation of these easily decomposing molecules. One of the protonation constant of 7-ACA (log kN(O) = 4.12), to the best of our knowledge, is the least non-aromatic basic amino-site among the natural compounds.

  20. Identification of Three Kinds of Citri Reticulatae Pericarpium Based on Deoxyribonucleic Acid Barcoding and High-performance Liquid Chromatography-diode Array Detection-electrospray Ionization/Mass Spectrometry/Mass Spectrometry Combined with Chemometric Analysis

    PubMed Central

    Yu, Xiaoxue; Zhang, Yafeng; Wang, Dongmei; Jiang, Lin; Xu, Xinjun

    2018-01-01

    Background: Citri Reticulatae Pericarpium is the dried mature pericarp of Citrus reticulata Blanco which can be divided into “Chenpi” and “Guangchenpi.” “Guangchenpi” is the genuine Chinese medicinal material in Xinhui, Guangdong province; based on the greatest quality and least amount, it is most expensive among others. Hesperidin is used as the marker to identify Citri Reticulatae Pericarpium described in the Chinese Pharmacopoeia 2010. However, both “Chenpi” and “Guangchenpi” contain hesperidin so that it is impossible to differentiate them by measuring hesperidin. Objective: Our study aims to develop an efficient and accurate method to separate and identify “Guangchenpi” from other Citri Reticulatae Pericarpium. Materials and Methods: The genomic deoxyribonucleic acid (DNA) of all the materials was extracted and then the internal transcribed spacer 2 was amplified, sequenced, aligned, and analyzed. The secondary structures were created in terms of the database and website established by Jörg Schultz et al. High-performance liquid chromatography-diode array detection-electrospray Ionization/mass spectrometry (HPLC-DAD-ESI-MS)/MS coupled with chemometric analysis was applied to compare the differences in chemical profiles of the three kinds of Citri Reticulatae Pericarpium. Results: A total of 22 samples were classified into three groups. The results of DNA barcoding were in accordance with principal component analysis and hierarchical cluster analysis. Eight compounds were deduced from HPLC-DAD-ESI-MS/MS. Conclusions: This method is a reliable and effective tool to differentiate the three Citri Reticulatae Pericarpium. SUMMARY The internal transcribed spacer 2 regions and the secondary structure among three kinds of Citri Reticulatae Pericarpium varied considerablyAll the 22 samples were analyzed by high-performance liquid chromatography (HPLC) to obtain the chemical profilesPrincipal component analysis and hierarchical cluster analysis

  1. Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.

    PubMed

    Sheth, Bhavisha P; Thaker, Vrinda S

    2015-10-01

    Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel

  2. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  3. Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.

    PubMed

    Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C

    2018-05-23

    Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In vivo transcription of R-plasmid deoxyribonucleic acid in Escherichia coli strains with altered antibiotic resistance levels and/or conjugal proficiency.

    PubMed Central

    Davis, R; Vapnek, D

    1976-01-01

    The amounts of plasmid deoxyribonucleic acid (DNA) and the levels of the in vivo transcription of the Escherichia coli plasmids R538-1 (repressed for conjugal transfer) and R538-1drd (derepressed for transfer) were determined by DNA-DNA hybridization and DNA-ribonucleic acid hybridization, respectively. The results demonstrate that the level of plasmid transcription is increased by two-fold in the strain carrying the derepressed plasmid, compared to an isogenic strain carrying the repressed plasmid, whereas the amount of plasmid DNA is approximately the same, suggesting that the transfer genes are under transcriptional control. Levels of plasmid DNA, plasmid DNA transcription, and chloramphenicol acetyltransferase activity were also compared in a mutant strain that carried the R538-1drd plasmid and was resistant to high levels of antibiotics. This strain produces about 13 copies of plasmid DNA per chromosome compared to five copies for the parent strain. The level of transcription of plasmid DNA was found to be twofold higher in the high-level resistant strain, whereas the level of chloramphenition, acetyltransferase activity was increased by 10-fold. In addition the levels of plasmid DNA transcription and chloramphenicol acetyltransferase activity in the high-level resistant strain were found to be further increased by the presence of high levels of chloramphenicol in the growth medium. The amount of plasmid DNA remained constant under these conditions, indicating that high levels of chloramphenicol can stimulate the expression of plasmid genes at the level of transcription in this strain. PMID:767321

  5. Therapeutic nucleic acids: current clinical status

    PubMed Central

    Sridharan, Kannan

    2016-01-01

    Abstract Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are simple linear polymers that have been the subject of considerable research in the last two decades and have now moved into the realm of being stand‐alone therapeutic agents. Much of this has stemmed from the appreciation that they carry out myriad functions that go beyond mere storage of genetic information and protein synthesis. Therapy with nucleic acids either uses unmodified DNA or RNA or closely related compounds. From both a development and regulatory perspective, they fall somewhere between small molecules and biologics. Several of these compounds are in clinical development and many have received regulatory approval for human use. This review addresses therapeutic uses of DNA based on antisense oligonucleotides, DNA aptamers and gene therapy; and therapeutic uses of RNA including micro RNAs, short interfering RNAs, ribozymes, RNA decoys and circular RNAs. With their specificity, functional diversity and limited toxicity, therapeutic nucleic acids hold enormous promise. However, challenges that need to be addressed include targeted delivery, mass production at low cost, sustaining efficacy and minimizing off‐target toxicity. Technological developments will hold the key to this and help accelerate drug approvals in the years to come. PMID:27111518

  6. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors

    NASA Astrophysics Data System (ADS)

    Zhan, Xiang-Mi; Hao, Mei-Lan; Wang, Quan; Li, Wei; Xiao, Hong-Ling; Feng, Chun; Jiang, Li-Juan; Wang, Cui-Mei; Wang, Xiao-Liang; Wang, Zhan-Guo

    2017-03-01

    Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AlInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current ( {V}{DS}=0.5 V) shows a clear decrease of 69 μA upon the introduction of 1 μmolL {}-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge. Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301, the National Natural Sciences Foundation of China under Grant No 61334002, and the National Science and Technology Major Project.

  7. Anion photoelectron spectroscopy of acid-base systems, solvated molecules and MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Eustis, Soren Newman

    Gas phase, mass-selected, anion photoelectron spectroscopic studies were performed on a variety of molecular systems. These studies can be grouped into three main themes: acid-base interactions, solvation, and ions of analytical interest. Acid-base interactions represent some of the most fundamental processes in chemistry. The study of these processes elucidates elementary principles such as inner and outer sphere complexes, hard and soft ions, and salt formation---to name a few. Apart from their appeal from a pedagogical standpoint, the ubiquity of chemical reactions which involve acids, bases or the resulting salts makes the study of their fundamental interactions both necessary and fruitful. With this in mind, the neutral and anionic series (NH3···HX) (X= F, Cl, Br, I) were examined experimentally and theoretically. The relatively small size of these systems, combined with the advances in computational methods, allowed our experimental results to be compared with very high level ab initio theoretical results. The synergy between theory and experiment yielded an understanding of the nature of the complexes that could not be achieved with either method in isolation. The second theme present in this body or work is molecular solvation. Solvation is a phenomenon which is present in biology, chemistry and physics. Many biological molecules do not become 'active' until they are solvated by water. Thus, the study of biologically relevant species solvated by water is one step in a bottom up approach to studying the biochemical interactions in living organisms. Furthermore, the hydration of acidic molecules in the atmosphere is what drives the formation of 'free' protons or hydronium ions which are the key players in acid driven chemistry. Here are presented two unique solvation studies, Adenine(H2O)-n and C6F6(H2O)-n, these systems are very distinct, but show somewhat similar responses to hydration. The last theme presented in this work is the electronic properties

  8. The effect of swim-up and gradient sperm preparation techniques on deoxyribonucleic acid (DNA) fragmentation in subfertile patients.

    PubMed

    Oguz, Yuksel; Guler, Ismail; Erdem, Ahmet; Mutlu, Mehmet Firat; Gumuslu, Seyhan; Oktem, Mesut; Bozkurt, Nuray; Erdem, Mehmet

    2018-03-23

    To compare the effect of two different sperm preparation techniques, including swim-up and gradient methods on sperm deoxyribonucleic acid (DNA) fragmentation status of semen samples from unexplained and mild male factor subfertile patients undergoing intrauterine insemination (IUI). A prospective randomized study was conducted in 65 subfertile patients, including 34 unexplained and 31 male factor infertility to compare basal and post-procedure DNA fragmentation rates in swim-up and gradient techniques. Sperm DNA fragmentation rates were evaluated by a sperm chromatin dispersion (SCD) test in two portions of each sample of semen that was prepared with either swim-up or gradient techniques. Sperm motility and morphology were also assessed based on WHO 2010 criteria. Swim-up but not gradient method yielded a statistically significant reduction in the DNA fragmented sperm rate after preparation as compared to basal rates, in the semen samples of both unexplained (41.85 ± 22.04 vs. 28.58 ± 21.93, p < 0.001 for swim-up; and 41.85 ± 22.04 vs. 38.79 ± 22.30, p = 0.160 for gradient) and mild male factor (46.61 ± 19.38 vs. 30.32 ± 18.20, p < 0.001 for swim-up and 46.61 ± 19.38 vs. 44.03 ± 20.87, p = 0.470 for gradient) subgroups. Swim-up method significantly reduces sperm DNA fragmentation rates and may have some prognostic value on intrauterine insemination in patients with decreased sperm DNA integrity.

  9. Exporters for Production of Amino Acids and Other Small Molecules.

    PubMed

    Eggeling, Lothar

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  10. Detection of toxins in single molecule level using deoxyribonucleic acid aptamers

    USDA-ARS?s Scientific Manuscript database

    Toxins in foodstuffs are always a threat to food safety Among many toxins related to food, ricin (category B toxin) from castor beans has been mentioned in some poisoning cases happened. Atomic Force Microscopy (AFM) is a widely used nanotechnology to detect biospecies in vitro and in situ. The AFM...

  11. Carcinogenic damage to deoxyribonucleic acid is induced by near-infrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption

    NASA Astrophysics Data System (ADS)

    Nadiarnykh, Oleg; Thomas, Giju; Van Voskuilen, Johan; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2012-11-01

    Nonlinear optical imaging modalities (multiphoton excited fluorescence, second and third harmonic generation) applied in vivo are increasingly promising for clinical diagnostics and the monitoring of cancer and other disorders, as they can probe tissue with high diffraction-limited resolution at near-infrared (IR) wavelengths. However, high peak intensity of femtosecond laser pulses required for two-photon processes causes formation of cyclobutane-pyrimidine-dimers (CPDs) in cellular deoxyribonucleic acid (DNA) similar to damage from exposure to solar ultraviolet (UV) light. Inaccurate repair of subsequent mutations increases the risk of carcinogenesis. In this study, we investigate CPD damage that results in Chinese hamster ovary cells in vitro from imaging them with two-photon excited autofluorescence. The CPD levels are quantified by immunofluorescent staining. We further evaluate the extent of CPD damage with respect to varied wavelength, pulse width at focal plane, and pixel dwell time as compared with more pronounced damage from UV sources. While CPD damage has been expected to result from three-photon absorption, our results reveal that CPDs are induced by competing two- and three-photon absorption processes, where the former accesses UVA absorption band. This finding is independently confirmed by nonlinear dependencies of damage on laser power, wavelength, and pulse width.

  12. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    NASA Technical Reports Server (NTRS)

    Childs-Disney, Jessica L. (Inventor); Disney, Matthew D. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  13. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  14. Diffusivity of dicarboxylic acids molecules to secondary organic material governed by particle phase state

    NASA Astrophysics Data System (ADS)

    Han, Y.; Gong, Z.; Liu, P.; de Sá, S. S.; McKinney, K. A.; Martin, S. T.

    2017-12-01

    Atmospheric secondary organic material (SOM) from oxidation of volatile organic compounds can exist in amorphous solid, semisolid, and liquid states depending on a range of factors such as relative humidity (RH), temperature, and reaction history. The phase state of SOM affects the dynamic exchange and reactivity between particles and gas-phase molecules. Dicarboxylic acids are ubiquitous in ambient atmosphere and the uptake of which may lead to substantial changes in hygroscopicity, absorption property, and light scattering of aerosol particles. This study investigates the diffusivity of dicarboxylic acids to the matrix of SOM particles. SOM was generated from dark ozonolysis of a-pinene in Harvard Environmental Chamber. The produced SOM particles were passed through an ozone scrubber to remove gas-phase chemistry before being led into a flask reactor, where gas-phase dicarboxylic acid was injected continuously and RH was varied from 5% to 85%. The probe dicarboxylic acids molecules including malonic acid and a-ketoglutaric acid have been investigated for the uptake to SOM particles. Organic composition in the outflow of the flask was measured with a high-resolution time-of-flight aerosol mass spectrometer. The mass fractions of tracer ions in total organic mass for both malonic acid and a-ketoglutaric acid increased substantially with the increase of RH values. The tracer ions of malonic acid were also more abundant in a-pinene SOM particles with increased gas-phase concentrations. These results suggest that the diffusion of the studied dicarboxylic acids molecules to a-pinene SOM particles was enhanced at increased RH values, which is possibly due to the phase transition of a-pinene SOM particles from non-liquid to liquid states. Therefore, particle phase state may be an important factor governing the diffusivity of dicarboxylic acids molecules to a-pinene SOM. Further dicarboxylic acids with various functional groups will be investigated to understand the

  15. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups.

    PubMed

    Zheng, Yan-Song; Hu, Yu-Jian; Li, Dong-Mi; Chen, Yi-Chang

    2010-01-15

    Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.

  16. Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera.

    PubMed

    Akbar, S M D; Sharma, H C; Jayalakshmi, S K; Sreeramulu, K

    2012-02-01

    The cotton bollworm, Helicoverpa armigera is a polyphagous pest in Asia, Africa, and the Mediterranean Europe. Salicylic acid (SA) and jasmonic acid (JA) are the cell signaling molecules produced in response to insect attack in plants. The effect of these signaling molecules was investigated on the oxidative phosphorylation and oxidative stress of H. armigera. SA significantly inhibited the state III and state IV respiration, respiratory control index (RCI), respiratory complexes I and II, induced mitochondrial swelling, and cytochrome c release in vitro. Under in vivo conditions, SA induced state IV respiration as well as oxidative stress in time- and dose-dependent manner, and also inhibited the larval growth. In contrast, JA did not affect the mitochondrial respiration and oxidative stress. SA affected the growth and development of H. armigera, in addition to its function as signaling molecules involved in both local defense reactions at feeding sites and the induction of systemic acquired resistance in plants.

  17. Effect of Thymine Starvation on Messenger Ribonucleic Acid Synthesis in Escherichia coli

    PubMed Central

    Luzzati, Denise

    1966-01-01

    Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435–1446. 1966.—During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation. PMID:5332402

  18. Single Molecule Spectroscopy of Amino Acids and Peptides by Recognition Tunneling

    PubMed Central

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, JongOne; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-01-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single molecule protein sequencing is a critical step in the search for protein biomarkers. Here we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules and measuring the electron tunneling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic ‘fingerprints’ associated with each binding motif. With this recognition tunneling technique, we are able to identify D, L enantiomers, a methylated amino acid, isobaric isomers, and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore. PMID:24705512

  19. Polylactic acid promotes healing of photodegraded disperse orange 11 molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Najee; Bridgewater, Mauricio; Stubbs, Micheala; Kabir, Amin; Crescimanno, Michael; Kuzyk, Mark G.; Dawson, Nathan J.

    2018-02-01

    We report on the recovery of a photodegraded organic molecule mediated by a biopolymer. Amplified spontaneous emission (ASE) from disperse orange 11 (DO11) dye-doped polylactic acid (PLA) was used to monitor photodegradation while the material was being damaged by a strong pump laser. The ASE signal fully recovers over two hours time when the pump beam is blocked. The fluorescence spectra was also observed to recover after partial photobleaching the dye-doped polymer. PLA is the first biopolymer known to mediate the recovery of a photodegraded organic dye molecule.

  20. Effect of Inhibition of Deoxyribonucleic Acid and Protein Synthesis on the Direction of Cell Wall Growth in Streptococcus faecalis

    PubMed Central

    Higgins, M. L.; Daneo-Moore, L.; Boothby, D.; Shockman, G. D.

    1974-01-01

    Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both. Images PMID:4133352

  1. Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules

    NASA Astrophysics Data System (ADS)

    Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro

    2016-08-01

    The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.

  2. Background of the Hammett equation as observed for isolated molecules: meta- and para-substituted benzoic acids.

    PubMed

    Exner, Otto; Böhm, Stanislav

    2002-09-06

    Fundamental model compounds for the Hammett equation, meta- and para-substituted benzoic acids, were investigated by the density functional theory at the B3LYP/6-311+G(d,p) level. Energies of 25 acids and of their anions were calculated in all possible conformations and from them the energies of the assumed mixture of conformers. Relative acidities correlated with the experimental gas-phase acidities almost within the experimental uncertainty, much more precisely than in the case of previous calculations at lower levels. Dissection of the substituent effects into those operating in the acid molecule and in the anion was carried out by means of isodesmic reactions starting from monosubstituted benzenes. Both effects are cooperating in the resulting effect on the acidity; those in the acid molecule are smaller but not negligible. They are also responsible for some deviations from the Hammett equation (through-resonance of para donor substituents) and for the weaker resonance in the acid molecule in meta derivatives; in the anions the inductive and resonance effects are almost equal. On the other hand, the cooperation of effects in the acid and in the anion makes the relative acidity more sensitive to electron withdrawing and is probably one of the reasons why the Hammett equation is so generally valid.

  3. Comparison of the Deoxyribonucleic Acid Molecular Weights and Homologies of Plasmids Conferring Linked Resistance to Streptomycin and Sulfonamides

    PubMed Central

    Barth, Peter T.; Grinter, Nigel J.

    1974-01-01

    Bacterial strains showing linked resistance to streptomycin (Sm) and sulfonamides (Su) were chosen representing a wide taxonomic and geographical range. Their SmSu resistances were transferred to Escherichia coli K-12 and then plasmid deoxyribonucleic acid (DNA) was isolated by ethidium bromide CsCl centrifugation. The plasmid DNA was examined by electron microscopy and analyzed by sedimentation through 5 to 20% neutral sucrose gradients. Plasmid DNA from strains having transmissible SmSu resistance consisted of two or three molecular species, one of which had a molecular mass of about 5.7 Mdal (106 daltons), the others varying between 20 to 60 Mdal. By using transformation or F′ mobilization, we isolated the SmSu-resistance determinant from any fellow resident plasmids in each strain and again isolated the plasmid DNA. Cosedimentation of each of these with a differently labeled reference plasmid DNA (R300B) showed 9 out of 12 of the plasmids to have a molecular mass not significantly different from the reference (5.7 Mdal); two others were 6.3 and 9.2 Mdal, but PB165 consisted of three plasmids of 7.4, 14.7, and 21.4 Mdal. Three separate isolations of the SmSu determinant from PB165 gave the same three plasmids, which we conclude may be monomer, dimer, and trimer, respectively. DNA-DNA hybridizations at 75 C demonstrated 80 to 93% homology between reference R300B DNA and each isolated SmSu plasmid DNA, except for the 9.2-Mdal plasmid which had 45% homology and PB165 which had 35%. All the SmSu plasmids were present as multiple copies (about 10) per chromosome. The conjugative plasmid of R300 (present as 1.3 copies per chromosome) has been shown to have negligible effect on the number of copies of its accompanying SmSu plasmid R300B. We conclude that the SmSu plasmids are closely related and probably have a common evolutionary origin. Images PMID:4616941

  4. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine.

    PubMed

    Fleischman, R A; Cambell, J L; Richardson, C C

    1976-03-25

    Using the single-stranded circular DNA of bacteriophage fd as template, double-stranded circular DNA has been prepared in vitro with either 5-hydroxymethylcytosine ([hmdC]DNA) or cytosine ([dC]DNA) in the product strand. Extracts prepared from Escherichia coli cells restrictive to T-even phage containing nonglucosylated DNA degrade [hmdC]DNA to acid-soluble material in vitro, but do not degrade [dC]dna. In contrast, extracts prepared from E. coli K12 rglA- rglB-, a strain permissive to T-even phage containing nonglucosylated DNA, do not degrade [hmdC]DNA or [dC]DNA. In addition, glucosylation of the [hmdC]DNA renders it resistant to degradation by extracts from restrictive strains. The conversion of [hmdC]DNA to acid-soluble material in vitro consists of an HmCyt-specific endonucleolytic cleavage requiring the presence of the RglB gene product to form a linear molecule, followed by a non-HmCyt-specific hydrolysis of the linear DNA to acid-soluble fragments, catalyzed in part by exonuclease V. The RglB protein present in extracts of E. coli K12 rglA- rglB+ has been purified 200-fold by complementation with extracts from E. coli K12 rglA- rglB-. The purified RglB protein does not contain detectable HmCyt-specific endonuclease or exonuclease activity. In vitro endonucleolytic cleavage of [hmdC]DNA thus requires additional factors present in cell extracts.

  5. Resonant electron capture by aspartame and aspartic acid molecules.

    PubMed

    Muftakhov, M V; Shchukin, P V

    2016-12-30

    The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  7. Difficulties in Laboratory Studies and Astronomical Observations of Organic Molecules: Hydroxyacetone and Lactic Acid

    NASA Technical Reports Server (NTRS)

    Apponi, A. J.; Brewster, M. A.; Hoy, J.; Ziurys, L. M.

    2006-01-01

    For the past 35 years, radio astronomy has revealed a rich organic chemistry in the interstellar gas, which is exceptionally complex towards active star-forming regions. New solar systems condense out of this gas and may influence the evolution of life on newly formed planets. Much of the biologically important functionality is present among the some 130 gas-phase molecules found to date, including alcohols, aldehydes, ketones, acids, amines, amides and even the simplest sugar - glycolaldehyde. Still, many unidentified interstellar radio signals remain, and their identification relies on further laboratory study. The molecules hydroxyacetone and lactic acid are relatively small organic molecules, but possess rather complex rotational spectra owing to their high asymmetry. Hydroxyacetone is particularly problematic because it possess a very low barrier to internal rotation, and exhibits strong coupling of the free-rotor states with the overall rotation of the molecule. As in the case of acetamide, a full decomposition method was employed to order the resultant eigenstates onto normal asymmetric top eigenvectors.

  8. Nucleic Acid-Induced Resistance to Viral Infection

    PubMed Central

    Takano, Kouichi; Warren, Joel; Jensen, Keith E.; Neal, Alan L.

    1965-01-01

    Takano, Kouichi (Chas. Pfizer & Co., Inc., Terre Haute, Ind.), Joel Warren, Keith E. Jensen, and Alan L. Neal. Nucleic acid resistance to viral infection. J. Bacteriol. 90:1542–1547. 1965.—Administration of nonviral nucleic acids to mice increased their resistance to a subsequent infection with influenza or encephalomyocarditis viruses. Injection of ribonucleic acid or deoxyribonucleic acid by peripheral routes did not modify susceptibility to intranasal infection. Lung tissue extracts from animals previously treated with yeast nucleic acid inhibited the growth of vaccinia and influenza viruses. The protective effect of exogenous nucleic acids persisted in mice for several days, but gradually diminished to undetectable levels. PMID:4285332

  9. Modeling DNA

    ERIC Educational Resources Information Center

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  10. 76 FR 72950 - Draft Guidance for Industry: Use of Nucleic Acid Tests on Pooled and Individual Samples From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Hepatitis B Virus AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug... Risk of Transmission of Hepatitis B Virus (HBV), and Requalification of Donors Who Test HBV NAT...-licensed nucleic acid tests (NAT) to screen blood donors for hepatitis B virus (HBV) deoxyribonucleic acid...

  11. Crystal structure of a 2:1 piroxicam–gentisic acid co-crystal featuring neutral and zwitterionic piroxicam molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstman, Elizabeth M.; Bertke, Jeffery A.; Woods, Toby J.

    2016-11-04

    A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hydroxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ 6,2-benzothiazine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ 6,2-benzothiazine-3-amido)pyridin-1-ium–2,5-dihydroxybenzoic acid, 2C 15H 13N 3O 4S·C 7H 6O 4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam molecule is in its neutral form and an intramolecular O—H...O hydrogen bond is observed. The other piroxicam molecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intramolecular N—H...O hydrogen bonds occur. The gentisic acid molecule shows whole-molecule disorder over two sets of sites in a 0.809(2):0.191(2) ratio. In the crystal, extensive hydrogenmore » bonding between the components forms layers propagating in theabplane.« less

  12. Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks[C][W

    PubMed Central

    Savchenko, Tatyana; Walley, Justin W.; Chehab, E. Wassim; Xiao, Yanmei; Kaspi, Roy; Pye, Matthew F.; Mohamed, Maged E.; Lazarus, Colin M.; Bostock, Richard M.; Dehesh, Katayoon

    2010-01-01

    Fatty acid structure affects cellular activities through changes in membrane lipid composition and the generation of a diversity of bioactive derivatives. Eicosapolyenoic acids are released into plants upon infection by oomycete pathogens, suggesting they may elicit plant defenses. We exploited transgenic Arabidopsis thaliana plants (designated EP) producing eicosadienoic, eicosatrienoic, and arachidonic acid (AA), aimed at mimicking pathogen release of these compounds. We also examined their effect on biotic stress resistance by challenging EP plants with fungal, oomycete, and bacterial pathogens and an insect pest. EP plants exhibited enhanced resistance to all biotic challenges, except they were more susceptible to bacteria than the wild type. Levels of jasmonic acid (JA) were elevated and levels of salicylic acid (SA) were reduced in EP plants. Altered expression of JA and SA pathway genes in EP plants shows that eicosapolyenoic acids effectively modulate stress-responsive transcriptional networks. Exogenous application of various fatty acids to wild-type and JA-deficient mutants confirmed AA as the signaling molecule. Moreover, AA treatment elicited heightened expression of general stress-responsive genes. Importantly, tomato (Solanum lycopersicum) leaves treated with AA exhibited reduced susceptibility to Botrytis cinerea infection, confirming AA signaling in other plants. These studies support the role of AA, an ancient metazoan signaling molecule, in eliciting plant stress and defense signaling networks. PMID:20935246

  13. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid

    PubMed Central

    Long, Xi; Parks, Joseph W.; Stone, Michael D.

    2017-01-01

    Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. PMID:27320203

  14. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL.

    PubMed

    Cui, Yunxi; Koirala, Deepak; Kang, HyunJin; Dhakal, Soma; Yangyuoru, Philip; Hurley, Laurence H; Mao, Hanbin

    2014-05-01

    Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120-180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].

  15. Resonant electron capture by orotic acid molecules

    NASA Astrophysics Data System (ADS)

    Muftakhov, M. V.; Shchukin, P. V.; Khatymov, R. V.

    2017-09-01

    Resonant electron attachment by orotic acid molecules (6-COOH-uracil) are studied in the energy range of 0-14 eV via negative ion mass spectrometry. Molecular ions, whose lifetimes relative to electron autodetachment are found to be 300 μs are recorded in the region of thermal electron energies; they form in the valence state through a vibration-excited resonance mechanism. Unlike unsubstituted uracil, most dissociative processes occur in the low-energy region of <4 eV and are due to carboxylic anions. An absolute cross section of 2.4 × 10-17 cm2 is found for the most intense fragment ions [M-H]- at an output energy of 1.33 eV. The kinetics of decarboxylation is considered for these ions. This could be a model reaction for the last stage of uridine monophosphate biosynthesis.

  16. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation.

    PubMed

    Martínez-Soto, Juan Carlos; Domingo, Joan Carles; Cordobilla, Begoña; Nicolás, María; Fernández, Laura; Albero, Pilar; Gadea, Joaquín; Landeras, José

    2016-12-01

    The purpose of this study was to evaluate the effect of docosahexaenoic acid (DHA) dietary supplementation on semen quality, fatty acid composition, antioxidant capacity, and DNA fragmentation. In this randomized, double blind, placebo-controlled, parallel-group study, 74 subjects were recruited and randomly assigned to either the placebo group (n=32) or to the DHA group (n=42) to consume three 500-mg capsules of oil per day over 10 weeks. The placebo group received 1,500 mg/day of sunflower oil and the DHA group 1,500 mg/day of DHA-enriched oil. Seminal parameters (semen volume, sperm concentration, motility, morphology, and vitality), total antioxidant capacity, deoxyribonucleic acid fragmentation, and lipid composition were evaluated prior to the treatment and after 10 weeks. Finally, 57 subjects were included in the study with 25 in the placebo group and 32 in the DHA group. No differences were found in traditional sperm parameters or lipid composition of the sperm membrane after treatment. However, an increase in DHA and Omega-3 fatty acid content in seminal plasma, an improvement in antioxidant status, and a reduction in the percentage of spermatozoa with deoxyribonucleic acid damage were observed in the DHA group after 10 weeks of treatment.

  17. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid.

    PubMed

    Long, Xi; Parks, Joseph W; Stone, Michael D

    2016-08-01

    Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  19. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  1. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  2. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    PubMed

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  3. 2-Hydroxy-succinaldehyde, a lipid peroxidation product proving that polyunsaturated fatty acids are able to react with three molecules of oxygen.

    PubMed

    Mlakar, A; Spiteller, G

    1997-01-01

    2-Hydroxy-succinaldehyde was detected by a GC/MS analysis of trapped aldehydic compounds obtained after Fe2+/ascorbate lipid peroxidation of arachidonic acid. Precursor molecules of aldehydes are hydroperoxy compounds. Thus the generation of the two aldehydic groups in 2-hydroxysuccinaldehyde requires a precursor molecule with two hydroperoxy groups. The hydroxy group in 2-position is generated by a third hydroperoxidation reaction. The detection of 2-hydroxysuccinaldehyde--although found only in traces--is the first example for triple dioxigenation of unsaturated fatty acid. Linolenic acid produces 2-hydroxysuccinaldehyde in much lower amounts than arachidonic acid. A similar oxidation of linoleic acid was not observed.

  4. Adaptive resolution simulation of oligonucleotides

    NASA Astrophysics Data System (ADS)

    Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt

    2016-12-01

    Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.

  5. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    PubMed

    Calder, Philip C

    2017-10-15

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author

  6. Oleamide: a fatty acid amide signaling molecule in the cardiovascular system?

    PubMed

    Hiley, C Robin; Hoi, Pui Man

    2007-01-01

    Oleamide (cis-9,10-octadecenoamide), a fatty acid primary amide discovered in the cerebrospinal fluid of sleep-deprived cats, has a variety of actions that give it potential as a signaling molecule, although these actions have not been extensively investigated in the cardiovascular system. The synthetic pathway probably involves synthesis of oleoylglycine and then conversion to oleamide by peptidylglycine alpha-amidating monooxygenase (PAM); breakdown of oleamide is by fatty acid amide hydrolase (FAAH). Oleamide interacts with voltage-gated Na(+) channels and allosterically with GABA(A) and 5-HT(7) receptors as well as having cannabinoid-like actions. The latter have been suggested to be due to potentiation of the effects of endocannabinoids such as anandamide by inhibiting FAAH-mediated hydrolysis. This might underlie an "entourage effect" whereby co-released endogenous nonagonist congeners of endocannabinoids protect the active molecule from hydrolysis by FAAH. However, oleamide has direct agonist actions at CB(1) cannabinoid receptors and also activates the TRPV1 vanilloid receptor. Other actions include inhibition of gap-junctional communication, and this might give oleamide a role in myocardial development. Many of these actions are absent from the trans isomer of 9,10-octadecenoamide. One of the most potent actions of oleamide is vasodilation. In rat small mesenteric artery the response does not involve CB(1) cannabinoid receptors but another pertussis toxin-sensitive, G protein-coupled receptor, as yet unidentified. This receptor is sensitive to rimonabant and O-1918, an antagonist at the putative "abnormal-cannabidiol" or endothelial "anandamide" receptors. Vasodilation is mediated by endothelium-derived nitric oxide, endothelium-dependent hyperpolarization, and also through activation of TRPV1 receptors. A physiological role for oleamide in the heart and circulation has yet to be demonstrated, as has production by cells of the cardiovascular system, but

  7. Computational Study of the Bulk Properties of a Novel Molecule: alpha-Tocopherol-Ascorbic Acid Surfactant

    NASA Astrophysics Data System (ADS)

    Stirling, Shannon; Kim, Hye-Young

    Alpha-tocopherol-ascorbic acid surfactant (EC) is a novel amphiphilic molecule of antioxidant properties, which has a hydrophobic vitamin E and a hydrophilic vitamin C chemically linked. We have developed atomistic force fields (g54a7) for a protonated (neutral) EC molecule. Our goal is to carry out molecular dynamics (MD) simulations of protonated EC molecules using the newly developed force fields and study the molecular properties. First we ran energy minimization (EM) with one molecule in a vacuum to obtain the low energy molecular configuration with emtol =10. We then used Packmol to insert 125 EC molecules in a 3nm cube. We then performed MD simulations of the bulk system composed of 125 EC molecules, from which we measured the bulk density and the evaporation energy of the molecular system. Gromacs2016 is used for the EM and MD simulation studies. We will present the results of the ongoing research. National Institute Of General Medical Sciences of the National Institutes of Health under Award Number P20GM103424 (Kim). Computational resources were provided by the Louisiana Optical Network Initiative.

  8. Ascorbic acid derivatives as a new class of antiproliferative molecules.

    PubMed

    Bordignon, Benoit; Chiron, Julien; Fontés, Michel

    2013-09-28

    Ascorbic acid (AA) has long been described as an antiproliferative agent. However, the molecule has to be used at a very high concentrations, which necessitates i.v. injection, and the tight regulation of in-blood and in-cell AA concentrations making it impossible to hold very high concentrations for any substantial length of time. Here we report evidence that AA derivates are antiproliferative and cytotoxic molecules at an IC50 lower than AA itself. Among these new molecules, we selected K873 that has cytotoxic and antiproliferative effects on different human tumor cells at tenth micromolar concentration. In a further step, we demonstrated that K873 selectively to kills only cancer cells without being toxic for normal non-dividing (or poorly dividing) cells. Finally, we tested the effect of treatment with K873 (5-10 mg/kg/d by i.p. route) on tumor progression in xenografted immunodeficient mice (BALB/c Nude). Our data suggest that K873 administration strongly inhibits tumor progression. In a previous study using microarrays, we demonstrated that AA decreases the expression of two genes families involved in cell cycle progression, i.e. initiation factor of translation and tRNA synthetases. Here we show that K873 treatment also decreases the expression of four of these genes in xenografted tumors, in proportions similar to that previously observed with AA. Taken together, our data suggest that AA and K873 share similar action. Our findings suggest that AA derivatives could be a promising new class of anti-cancer drugs, either alone or in combination with other molecules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  10. Critical evaluation of dipolar, acid-base and charge interactions I. Electron displacement within and between molecules, liquids and semiconductors.

    PubMed

    Rosenholm, Jarl B

    2017-09-01

    Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights

  11. Different catalytic effects of a single water molecule: the gas-phase reaction of formic acid with hydroxyl radical in water vapor.

    PubMed

    Anglada, Josep M; Gonzalez, Javier

    2009-12-07

    The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).

  12. Noninvasive penetration of 5 nm hyaluronic acid molecules across the epidermal barrier (in vitro) and its interaction with human skin cells.

    PubMed

    Nashchekina, Yu A; Raydan, M

    2018-02-01

    Hyaluronic acid represents one of the major components of the extracellular environment. The main challenge remains in the ability to deliver these molecules noninvasively across the skin barrier, which can be overcome by the reduction in size to an extent that allows these molecules to pass across the skin barrier. The aim of this study was to measure the penetration and bioavailability of low molecular weight hyaluronic acid to cross an epidermal barrier model. Determining the quantity of hyaluronic acid in the test solutions was carried with method of photocolorimetry analysis. Investigation of the interaction of cells with LMWHA was studied with a confocal microscope. The study showed that LMWHA is able to cross the epidermis. Most effective penetration level is during the first 6 hours reaching 75%, and then the concentration started to decline and reached the equilibrium state within the following 2 hours. Confocal laser microscopy demonstrated different distribution and behavior of these molecules among the keratinocytes and fibroblasts. Reducing the size of hyaluronic acid to 5 nm enhance their transport across the epidermal layer. The concentration of hyaluronic acid molecules was higher on the fibroblast surface in comparison to their extracellular environment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Acid and alkali effects on the decomposition of HMX molecule: a computational study.

    PubMed

    Zhang, Chaoyang; Li, Yuzhen; Xiong, Ying; Wang, Xiaolin; Zhou, Mingfei

    2011-11-03

    The stored and wasted explosives are usually in an acid or alkali environment, leading to the importance of exploring the acid and alkali effects on the decomposition mechanism of explosives. The acid and alkali effects on the decomposition of HMX molecule in gaseous state and in aqueous solution at 298 K are studied using quantum chemistry and molecular force field calculations. The results show that both H(+) and OH(-) make the decomposition in gaseous state energetically favorable. However, the effect of H(+) is much different from that of OH(-) in aqueous solution: OH(-) can accelerate the decomposition but H(+) cannot. The difference is mainly caused by the large aqueous solvation energy difference between H(+) and OH(-). The results confirm that the dissociation of HMX is energetically favored only in the base solutions, in good agreement with previous HMX base hydrolysis experimental observations. The different acid and alkali effects on the HMX decomposition are dominated by the large aqueous solvation energy difference between H(+) and OH(-).

  14. 77 FR 68133 - Guidance for Industry: Use of Nucleic Acid Tests on Pooled and Individual Samples From Donors of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Blood and Blood Components, Including Source Plasma, To Reduce the Risk of Transmission of Hepatitis B... Components, including Source Plasma, to Reduce the Risk of Transmission of Hepatitis B Virus,'' dated October... (NAT) to screen blood donors for hepatitis B virus (HBV) deoxyribonucleic acid (DNA) and...

  15. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-01-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H]-) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. [Figure not available: see fulltext.

  16. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS.

    PubMed

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-04-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.

  17. Genetic Map of Bacteriophage φX174

    PubMed Central

    Benbow, R. M.; Hutchison, C. A.; Fabricant, J. D.; Sinsheimer, R. L.

    1971-01-01

    Bacteriophage φX174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 × 10−4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome. PMID:16789129

  18. Small molecule inhibitors of human adipocyte fatty acid binding protein (FABP4).

    PubMed

    Zhang, Mingming; Zhu, Weiliang; Li, Yingxia

    2014-06-01

    Fatty acid binding protein 4 (FABP4) is expressed in adipocytes and macrophages, and modulates inflammatory and metabolic response. Studies in FABP4-deficient mice have shown that this lipid carrier has a significant role within the field of metabolic syndrome, inflammation and atherosclerosis; thus, its inhibition may open up new opportunities to develop novel therapeutic agents. A number of potent small molecule inhibitors of FABP4 have been identified and found to have the potential to prevent and treat metabolic diseases such as type-2 diabetes and atherosclerosis. Due to the ubiquity of endogenous fatty acids and the high intracellular concentration of FABP4, the inhibitors need to have significantly greater intrinsic potency than endogenous fatty acids. Furthermore, heart-type FABP (FABP3), which is expressed in both heart and skeletal muscle, is involved in active fatty acid metabolism where it transports fatty acids from the cell membrane to mitochondria for oxidation. However, FABP3 shares high overall sequence identity and similar 3D structure with FABP4, but has a potential problem with selectivity. In this review, we would like to analyze the main inhibitors that have appeared in the literature in the last decade, focusing on chemical structures, biological properties, selectivity and structure-activity relationships.

  19. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL

    PubMed Central

    Cui, Yunxi; Koirala, Deepak; Kang, HyunJin; Dhakal, Soma; Yangyuoru, Philip; Hurley, Laurence H.; Mao, Hanbin

    2014-01-01

    Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120–180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules. PMID:24609386

  20. Visualizing biological reaction intermediates with DNA curtains

    NASA Astrophysics Data System (ADS)

    Zhao, Yiling; Jiang, Yanzhou; Qi, Zhi

    2017-04-01

    Single-molecule approaches have tremendous potential analyzing dynamic biological reaction with heterogeneity that cannot be effectively accessed via traditional ensemble-level biochemical approaches. The approach of deoxyribonucleic acid (DNA) curtains developed by Dr Eric Greene and his research team at Columbia University is a high-throughput single-molecule technique that utilizes fluorescent imaging to visualize protein-DNA interactions directly and allows the acquisition of statistically relevant information from hundreds or even thousands of individual reactions. This review aims to summarize the past, present, and future of DNA curtains, with an emphasis on its applications to solve important biological questions.

  1. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  3. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    PubMed

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.

  4. An ultrasensitive universal detector based on neutralizer displacement

    NASA Astrophysics Data System (ADS)

    Das, Jagotamoy; Cederquist, Kristin B.; Zaragoza, Alexandre A.; Lee, Paul E.; Sargent, Edward H.; Kelley, Shana O.

    2012-08-01

    Diagnostic technologies that can provide the simultaneous detection of nucleic acids for gene expression, proteins for host response and small molecules for profiling the human metabolome will have a significant advantage in providing comprehensive patient monitoring. Molecular sensors that report changes in the electrostatics of a sensor's surface on analyte binding have shown unprecedented sensitivity in the detection of charged biomolecules, but do not lend themselves to the detection of small molecules, which do not carry significant charge. Here, we introduce the neutralizer displacement assay that allows charge-based sensing to be applied to any class of molecule irrespective of the analyte charge. The neutralizer displacement assay starts with an aptamer probe bound to a neutralizer. When analyte binding occurs the neutralizer is displaced, which results in a dramatic change in the surface charge for all types of analytes. We have tested the sensitivity, speed and specificity of this system in the detection of a panel of molecules: (deoxy)ribonucleic acid, ribonucleic acid, cocaine, adenosine triphosphate and thrombin.

  5. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  6. Inhibition of protein synthesis in intact HeLa cells by Shigella dysenteriae 1 toxin.

    PubMed

    Brown, J E; Rothman, S W; Doctor, B P

    1980-07-01

    Shiga toxin purified to near homogeneity from cell lysates of Shigella dysenteriae 1 inhibited protein and deoxyribonucle acid syntheses in intact HeLa cells. Inhibition was dependent on toxin concentration and time of incubation. A minimal latent period of 30 min was observed with saturating doses of toxin. Ribonucleic acid synthesis, uptake of alpha-aminoisobutyric acid, and maintenance of intracellular K+ concentrations were not affected until well after maximal inhibition of protein and deoxyribonucleic acid syntheses. The inhibitory effect of toxin was sensitive to heat inactivation and was prevented by antibody neutralization. Several cytotoxic components were separated by polyacrylamide gel electrophoresis of the purified toxin preparations; all inhibited protein and deoxyribonucleic acid syntheses equally.

  7. The location of the thioglycolic acid molecules in intrafibrillar unordered areas of the human hair keratin structure.

    PubMed

    Zabashta, Y F; Kasprova, A V; Senchurov, S P; Grabovskii, Y E

    2012-06-01

    It has been established after conducting an X-ray diffraction study of the structure of hair treated with the thioglycolic acid solution that the preferable location of thioglycolic acid molecules should be the intrafibrillar unordered areas. Based on this fact it has been concluded that the redistribution of disulphide bonds of hair occurs mainly in the mentioned above areas when treated with thioglycolic acid solution. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  9. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium.

  10. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  11. Hypothesis of Lithocoding: Origin of the Genetic Code as a "Double Jigsaw Puzzle" of Nucleobase-Containing Molecules and Amino Acids Assembled by Sequential Filling of Apatite Mineral Cellules.

    PubMed

    Skoblikow, Nikolai E; Zimin, Andrei A

    2016-05-01

    The hypothesis of direct coding, assuming the direct contact of pairs of coding molecules with amino acid side chains in hollow unit cells (cellules) of a regular crystal-structure mineral is proposed. The coding nucleobase-containing molecules in each cellule (named "lithocodon") partially shield each other; the remaining free space determines the stereochemical character of the filling side chain. Apatite-group minerals are considered as the most preferable for this type of coding (named "lithocoding"). A scheme of the cellule with certain stereometric parameters, providing for the isomeric selection of contacting molecules is proposed. We modelled the filling of cellules with molecules involved in direct coding, with the possibility of coding by their single combination for a group of stereochemically similar amino acids. The regular ordered arrangement of cellules enables the polymerization of amino acids and nucleobase-containing molecules in the same direction (named "lithotranslation") preventing the shift of coding. A table of the presumed "LithoCode" (possible and optimal lithocodon assignments for abiogenically synthesized α-amino acids involved in lithocoding and lithotranslation) is proposed. The magmatic nature of the mineral, abiogenic synthesis of organic molecules and polymerization events are considered within the framework of the proposed "volcanic scenario".

  12. In silico Screening and Evaluation of the Anticonvulsant Activity of Docosahexaenoic Acid-Like Molecules in Experimental Models of Seizures.

    PubMed

    Gharibi Loron, Ali; Sardari, Soroush; Narenjkar, Jamshid; Sayyah, Mohammad

    2017-01-01

    Resistance to antiepileptic drugs and the intolerability in 20-30% of the patients raises demand for developing new drugs with improved efficacy and safety. Acceptable anticonvulsant activity, good tolerability, and inexpensiveness of docosahexaenoic acid (DHA) make it as a good candidate for designing and development of the new anticonvulsant medications. Ten DHA-based molecules were screened based on in silico screening of DHA-like molecules by root-mean-square deviation of atomic positions, the biological activity score of Professional Association for SQL Server, and structural requirements suggested by pharmacophore design. Anticonvulsant activity was tested against clonic seizures induced by pentylenetetrazole (PTZ, 60 mg/kg, i.p.) and tonic seizures induced by maximal electroshock (MES, 50 mA, 50 Hz, 1 ms duration) by intracerebroventricular (i.c.v.) injection of the screened compounds to mice. Among screened compounds, 4-Phenylbutyric acid, 4-Biphenylacetic acid, phenylacetic acid, and 2-Phenylbutyric acid showed significant protective activity in pentylenetetrazole test with ED50 values of 4, 5, 78, and 70 mM, respectively. In MES test, shikimic acid and 4-tert-Butylcyclo-hexanecarboxylic acid showed significant activity with ED50 values 29 and 637 mM, respectively. Effective compounds had no mortality in mice up to the maximum i.c.v. injectable dose of 1 mM. Common electrochemical features and three-dimensional spatial structures of the effective compounds suggest the involvement of the anticonvulsant mechanisms similar to the parent compound DHA.

  13. In silico Screening and Evaluation of the Anticonvulsant Activity of Docosahexaenoic Acid-Like Molecules in Experimental Models of Seizures

    PubMed Central

    Loron, Ali Gharibi; Sardari, Soroush; Narenjkar, Jamshid; Sayyah, Mohammad

    2017-01-01

    Background: Resistance to antiepileptic drugs and the intolerability in 20-30% of the patients raises demand for developing new drugs with improved efficacy and safety. Acceptable anticonvulsant activity, good tolerability, and inexpensiveness of docosahexaenoic acid (DHA) make it as a good candidate for designing and development of the new anticonvulsant medications. Methods: Ten DHA-based molecules were screened based on in silico screening of DHA-like molecules by root-mean-square deviation of atomic positions, the biological activity score of Professional Association for SQL Server, and structural requirements suggested by pharmacophore design. Anticonvulsant activity was tested against clonic seizures induced by pentylenetetrazole (PTZ, 60 mg/kg, i.p.) and tonic seizures induced by maximal electroshock (MES, 50 mA, 50 Hz, 1 ms duration) by intracerebroventricular (i.c.v.) injection of the screened compounds to mice. Results: Among screened compounds, 4-Phenylbutyric acid, 4-Biphenylacetic acid, phenylacetic acid, and 2-Phenylbutyric acid showed significant protective activity in pentylenetetrazole test with ED50 values of 4, 5, 78, and 70 mM, respectively. In MES test, shikimic acid and 4-tert-Butylcyclo-hexanecarboxylic acid showed significant activity with ED50 values 29 and 637 mM, respectively. Effective compounds had no mortality in mice up to the maximum i.c.v. injectable dose of 1 mM. Conclusion: Common electrochemical features and three-dimensional spatial structures of the effective compounds suggest the involvement of the anticonvulsant mechanisms similar to the parent compound DHA. PMID:27592363

  14. Mycosporine-like amino acids are multifunctional molecules in sea hares and their marine community

    PubMed Central

    Kicklighter, Cynthia E.; Kamio, Michiya; Nguyen, Linh; Germann, Markus W.; Derby, Charles D.

    2011-01-01

    Molecules of keystone significance are relatively rare, yet mediate a variety of interactions between organisms. They influence the distribution and abundance of species, the transfer of energy across multiple trophic levels, and thus they play significant roles in structuring ecosystems. Despite their potential importance in facilitating our understanding of ecological systems, only three molecules thus far have been proposed as molecules of keystone significance: saxitoxin and dimethyl sulfide in marine communities and tetrodotoxin in riparian communities. In the course of studying the neuroecology of chemical defenses, we identified three mycosporine-like amino acids (MAAs)—N-ethanol palythine (= asterina-330), N-isopropanol palythine (= aplysiapalythine A), and N-ethyl palythine (= aplysiapalythine B)—as intraspecific alarm cues for sea hares (Aplysia californica). These alarm cues are released in the ink secretion of sea hares and cause avoidance behaviors in neighboring conspecifics. Further, we show that these three bioactive MAAs, two [aplysiapalythine A (APA) and -B (APB)] being previously unknown molecules, are present in the algal diet of sea hares and are concentrated in their defensive secretion as well as in their skin. MAAs are known to be produced by algae, fungi, and cyanobacteria and are acquired by many aquatic animals through trophic interactions. MAAs are widely used as sunscreens, among other uses, but sea hares modify their function to serve a previously undocumented role, as intraspecific chemical cues. Our findings highlight the multifunctionality of MAAs and their role in ecological connectivity, suggesting that they may function as molecules of keystone significance in marine ecosystems. PMID:21709250

  15. Electrophilic properties of common MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Lippa, T. P.; Eustis, S. N.; Wang, D.; Bowen, K. H.

    2007-11-01

    The negative ion photoelectron spectra of the following MALDI matrix molecules have been measured: 3-carboxypyridine (nicotinic acid), 2,5-dihydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), 2,6-dihydroxyacetophenone (DHAP), 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid), 3-hydroxy-2-pyridinecarboxylic acid (3HPA), and 2,6-pyridinedicarboxylic acid (dipicolinic acid). Adiabatic electron affinities and vertical detachment energies were extracted from these spectra and reported. In addition, electron affinities were calculated for DHAP, ferulic acid, dipicolinic acid and sinapinic acid. Photoelectron spectra were also measured for the dimer anions of DHB and nicotinic acid and for the fragment anion in which alpha-cyano-cinnamic acid had lost a CO2 unit. Together, these results augment the database of presently available electrophilic data on common matrix molecules along with some of their dimers and fragments.

  16. Helicase-dependent amplification of nucleic acids.

    PubMed

    Cao, Yun; Kim, Hyun-Jin; Li, Ying; Kong, Huimin; Lemieux, Bertrand

    2013-10-11

    Helicase-dependent amplification (HDA) is a novel method for the isothermal in vitro amplification of nucleic acids. The HDA reaction selectively amplifies a target sequence by extension of two oligonucleotide primers. Unlike the polymerase chain reaction (PCR), HDA uses a helicase enzyme to separate the deoxyribonucleic acid (DNA) strands, rather than heat denaturation. This allows DNA amplification without the need for thermal cycling. The helicase used in HDA is a helicase super family II protein obtained from a thermophilic organism, Thermoanaerobacter tengcongensis (TteUvrD). This thermostable helicase is capable of unwinding blunt-end nucleic acid substrates at elevated temperatures (60° to 65°C). The HDA reaction can also be coupled with reverse transcription for ribonucleic acid (RNA) amplification. The products of this reaction can be detected during the reaction using fluorescent probes when incubations are conducted in a fluorimeter. Alternatively, products can be detected after amplification using a disposable amplicon containment device that contains an embedded lateral flow strip. Copyright © 2013 John Wiley & Sons, Inc.

  17. Reversible entrapment of plasmid deoxyribonucleic acid on different chromatographic supports.

    PubMed

    Gabor, Boštjan; Černigoj, Urh; Barut, Miloš; Štrancar, Aleš

    2013-10-11

    HPLC based analytical assay is a powerful technique that can be used to efficiently monitor plasmid DNA (pDNA) purity and quantity throughout the entire purification process. Anion exchange monolithic and non-porous particle based stationary phases were used to study the recovery of the different pDNA isoforms from the analytical column. Three differently sized pDNA molecules of 3.0kbp, 5.2kbp and 14.0kbp were used. Plasmid DNA was injected onto columns under the binding conditions and the separation of the isoforms took place by increasing the ionic strength of the elution buffer. While there was no substantial decrease of the recovered supercoiled and linear isoforms of the pDNA with the increase of the plasmid size and with the increase of the flow rate (recoveries in all cases larger than 75%), a pronounced decrease of the oc isoform recovery was observed. The entrapment of the oc pDNA isoform occurred under non-binding conditions as well. The partial oc isoform elution from the column could be achieved by decreasing the flow rate of the elution mobile phase. The results suggested a reversible entrapment of the oc isoform in the restrictions within the pores of the monolithic material as well as within the intra-particle space of the non-porous particles. This phenomenon was observed on both types of the stationary phase morphologies and could only be connected to the size of a void space through which the pDNA needs to migrate. A prediction of reversible pDNA entrapment was successfully estimated with the calculation of Peclet numbers, Pe, which defines the ratio between a convective and diffusive mass transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Tumor suppressor molecules and methods of use

    DOEpatents

    Welch, Peter J.; Barber, Jack R.

    2004-09-07

    The invention provides substantially pure tumor suppressor nucleic acid molecules and tumor suppressor polypeptides. The invention also provides hairpin ribozymes and antibodies selective for these tumor suppressor molecules. Also provided are methods of detecting a neoplastic cell in a sample using detectable agents specific for the tumor suppressor nucleic acids and polypeptides.

  19. Homology among tet determinants in conjugative elements of streptococci.

    PubMed Central

    Smith, M D; Hazum, S; Guild, W R

    1981-01-01

    A mutation to tetracycline sensitivity in a resistant strain of Streptococcus pneumoniae was shown by several criteria to be due to a point mutation in the conjugative omega (cat-tet) element found in the chromosomes of strains derived from BM6001, a clinical strain resistant to tetracycline and chloramphenicol. Strains carrying the mutation were transformed back to tetracycline resistance with the high efficiency of a point marker by donor deoxyribonucleic acids from its ancestral strain and from nine other clinical isolates of pneumococcus and by deoxyribonucleic acids from group D Streptococcus faecalis and group B Streptococcus agalactiae strains that also carry conjugative tet elements in their chromosomes. It was not transformed to resistance by tet plasmid deoxyribonucleic acids from either gram-negative or gram-positive species, except for one that carried transposon Tn916, the conjugative tet element present in the chromosomes of some S. faecalis strains. The results showed that the tet determinants in conjugative elements of several streptococcal species share a high degree of deoxyribonucleic acid sequence homology and suggested that they differ from other tet genes. PMID:6270063

  20. Complementary deoxyribonucleic acid cloning of spermatogonial stem cell renewal factor.

    PubMed

    Miura, Takeshi; Ohta, Takashi; Miura, Chiemi I; Yamauchi, Kohei

    2003-12-01

    Spermatogonial mitosis can be subdivided into two processes: spermatogonial stem cell renewal and spermatogonial proliferation toward meiosis. Recently it has been indicated that estrogen, estradiol-17beta, is involved in regulating the renewal of spermatogonial stem cells in eel. To determine the genes that directly regulate this process, we used expression screening to identify genes whose expression is regulated by estradiol-17beta in testes. We detected a previously unidentified cDNA clone that is up-regulated by estradiol-17beta stimulation and named it eel spermatogenesis-related substances 34 (eSRS34) cDNA. Homology searching showed that eSRS34 shares amino acid sequence similarity with human platelet-derived endothelial cell growth factor. We examined the function of eSRS34 using several in vitro systems. Recombinant eSRS34 produced by a baculovirus system induced spermatogonial mitosis in testicular organ culture. Furthermore, the addition of an antibody specific for eSRS34 prevented spermatogonial mitosis induced by estradiol-17beta stimulation in a germ cell/somatic cell coculture system. We therefore conclude that eSRS34 is a "spermatogonial stem cell renewal factor."

  1. Genetic Transformation of Streptococcus mutans

    PubMed Central

    Perry, Dennis; Kuramitsu, Howard K.

    1981-01-01

    Three strains of Streptococcus mutans belonging to serotypes a, c, and f were transformed to streptomycin resistance by deoxyribonucleic acids derived from homologous and heterologous streptomycin-resistant strains of S. mutans and Streptococcus sanguis strain Challis. Homologous transformation of S. mutans was less efficient than heterologous transformation by deoxyribonucleic acids from other strains of S. mutans. PMID:7251168

  2. Ordered Structure Formed by Biologically Related Molecules

    NASA Astrophysics Data System (ADS)

    Hatta, Ichiro; Nishino, Junichiro; Sumi, Akinori; Hibino, Masahiro

    1995-07-01

    The two-dimensional arrangement of biologically related molecules was studied by means of scanning probe microscopy. For monolayers of fatty acid molecules with a saturated hydrocarbon chain adsorbed on a graphite substrate, in the scanning tunneling microscope image, the position associated with the carbon atoms was clearly distinguished. In addition, based on the image for fatty acid molecules with an unsaturated hydrocarbon chain, at the position of a double bond, local electrical conductance was found to increase. Based on the images, it was pointed out that not the position of each carbon but the interaction between a graphite substrate and an alkyl chain plays an important role in imaging. On the other hand, for the surface of Langmuir-Blodgett films composed of phosphatidic acids with cations, the scanning force microscope image shows, for the first time, evidence of the methyl ends in the arrangement of phospholipid molecules.

  3. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  4. Small molecule annotation for the Protein Data Bank

    PubMed Central

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M.; Chen, Minyu; Conroy, Matthew J.; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P.; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A.

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100 000 structures contain more than 20 000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. PMID:25425036

  5. Small molecule annotation for the Protein Data Bank.

    PubMed

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. © The Author(s) 2014. Published by Oxford University Press.

  6. Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules

    PubMed Central

    Gifford, Lida K.; Opalinska, Joanna B.; Jordan, David; Pattanayak, Vikram; Greenham, Paul; Kalota, Anna; Robbins, Michelle; Vernovsky, Kathy; Rodriguez, Lesbeth C.; Do, Bao T.; Lu, Ponzy; Gewirtz, Alan M.

    2005-01-01

    We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells. PMID:15718294

  7. Aberrant Expression of Retinoic Acid Signaling Molecules Influences Patient Survival in Astrocytic Gliomas

    PubMed Central

    Campos, Benito; Centner, Franz-Simon; Bermejo, Justo Lorenzo; Ali, Ramadan; Dorsch, Katharina; Wan, Feng; Felsberg, Jörg; Ahmadi, Rezvan; Grabe, Niels; Reifenberger, Guido; Unterberg, Andreas; Burhenne, Jürgen; Herold-Mende, Christel

    2011-01-01

    Undifferentiated cell populations may influence tumor growth in malignant glioma. We investigated potential disruptions in the retinoic acid (RA) differentiation pathway that could lead to a loss of differentiation capacity, influencing patient prognosis. Expression of key molecules belonging to the RA differentiation pathway was analyzed in 283 astrocytic gliomas and was correlated with tumor proliferation, tumor differentiation, and patient survival. In addition, in situ concentrations of retinoids were measured in tumors, and RA signaling events were studied in vitro. Unlike other tumors, in gliomas expression of most RA signaling molecules increased with malignancy and was associated with augmented intratumoral retinoid levels in high-grade gliomas. Aberrantly expressed RA signaling molecules included i) the retinol-binding protein CRBP1, which facilitates cellular retinoid uptake; ii) ALDH1A1, capable of activating RA precursors; iii) the RA-degrading enzyme CYP26B1; and iv) the RA-binding protein FABP5, which can inhibit RA-induced differentiation. In contrast, expression of the RA-binding protein CRABP2, which fosters differentiation, was decreased in high-grade tumors. Moreover, expression of CRBP1 correlated with tumor proliferation, and FABP5 expression correlated with an undifferentiated tumor phenotype. CRBP1 and ALDH1A1 were independent prognostic markers for adverse patient survival. Our data indicate a complex and clinically relevant deregulation of RA signaling, which seems to be a central event in glioma pathogenesis. PMID:21514413

  8. An unusual mode of DNA duplex association: Watson-Crick interaction of all-purine deoxyribonucleic acids.

    PubMed

    Battersby, Thomas R; Albalos, Maria; Friesenhahn, Michel J

    2007-05-01

    Nucleic acid duplexes associating through purine-purine base pairing have been constructed and characterized in a remarkable demonstration of nucleic acids with mixed sequence and a natural backbone in an alternative duplex structure. The antiparallel deoxyribose all-purine duplexes associate specifically through Watson-Crick pairing, violating the nucleobase size-complementarity pairing convention found in Nature. Sequence-specific recognition displayed by these structures makes the duplexes suitable, in principle, for information storage and replication fundamental to molecular evolution in all living organisms. All-purine duplexes can be formed through association of purines found in natural ribonucleosides. Key to the formation of these duplexes is the N(3)-H tautomer of isoguanine, preferred in the duplex, but not in aqueous solution. The duplexes have relevance to evolution of the modern genetic code and can be used for molecular recognition of natural nucleic acids.

  9. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    PubMed Central

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  10. Specific intermolecular interactions of conserved water molecules with amino acids in the Galectin-1 carbohydrate recognition domain

    NASA Astrophysics Data System (ADS)

    Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.

    2010-08-01

    Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.

  11. A comparative study of the vibrational spectra of the anticancer drug melphalan and its fundamental molecules 3-phenylpropionic acid and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Khan, Ibrahim

    2016-04-01

    The structural stability and the vibrational spectra of the anticancer drug melphalan and its parent compounds 3-phenylpropionic acid and L-phenylalanine were investigated by the DFT B3LYP/6-311G** calculations. Melphalan and its fundamental compounds were predicted to exist predominantly in non-planar structures. The vibrational frequencies of the low energy structures of melphalan, 3-phenylpropionic acid, and phenylalanine were computed at the DFT B3LYP level of theory. Complete vibrational assignments of the normal modes of melphalan, 3-phenylpropionic acid, and phenylalanine were provided by combined theoretical and experimental data of the molecules. The experimental infrared spectra of phenylalanine and melphalan show a significantly different pattern of the Cdbnd O stretching mode as compared to those of normal carboxylic acids. A comparison of the 3700-2000 cm-1 infrared spectral region of the three molecules suggests the presence of similar intermolecular H-bonding in their condensed phases. The observed infrared and Raman spectra are consistent with the presence of one predominant melphalan conformation at room temperature.

  12. Quantitative single molecule measurements on the interaction forces of poly(L-glutamic acid) with calcite crystals.

    PubMed

    Sonnenberg, Lars; Luo, Yufei; Schlaad, Helmut; Seitz, Markus; Cölfen, Helmut; Gaub, Hermann E

    2007-12-12

    The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).

  13. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  14. Open-framework gallium borate with boric and metaboric acid molecules inside structural channels showing photocatalysis to water splitting.

    PubMed

    Gao, Wenliang; Jing, Yan; Yang, Jia; Zhou, Zhengyang; Yang, Dingfeng; Sun, Junliang; Lin, Jianhua; Cong, Rihong; Yang, Tao

    2014-03-03

    An open-framework gallium borate with intrinsic photocatalytic activities to water splitting has been discovered. Small inorganic molecules, H3BO3 and H3B3O6, are confined inside structural channels by multiple hydrogen bonds. It is the first example to experimentally show the structural template effect of boric acid in flux synthesis.

  15. DNA-Based Applications in Nanobiotechnology

    PubMed Central

    Abu-Salah, Khalid M.; Ansari, Anees A.; Alrokayan, Salman A.

    2010-01-01

    Biological molecules such as deoxyribonucleic acid (DNA) have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated. PMID:20652049

  16. DNA-based applications in nanobiotechnology.

    PubMed

    Abu-Salah, Khalid M; Ansari, Anees A; Alrokayan, Salman A

    2010-01-01

    Biological molecules such as deoxyribonucleic acid (DNA) have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated.

  17. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles.

    PubMed

    Jones, Rachel A; Cheung, Charles Y; Black, Fiona E; Zia, Jasmine K; Stayton, Patrick S; Hoffman, Allan S; Wilson, Mark R

    2003-05-15

    The permeability barrier posed by cell membranes represents a challenge for the delivery of hydrophilic molecules into cells. We previously proposed that poly(2-alkylacrylic acid)s are endocytosed by cells into acidified vesicles and are there triggered by low pH to disrupt membranes and release the contents of endosomes/lysosomes to the cytosol. If this hypothesis is correct, these polymers could be valuable in drug-delivery applications. The present paper reports functional comparisons of a family of three poly(2-alkylacrylic acid)s. Poly(2-propylacrylic acid) (PPAA), poly(2-ethylacrylic acid) (PEAA) and poly(2-methylacrylic acid) (PMAA) were compared in red-blood-cell haemolysis assays and in a lipoplex (liposome-DNA complex) assay. We also directly examined the ability of these polymers to disrupt endosomes and lysosomes in cultured human cells. Our results show that: (i) unlike membrane-disruptive peptides, the endosomal-disruptive ability of poly(2-alkylacrylic acid)s cannot necessarily be predicted from their haemolytic activity at low pH, (ii) PPAA (but not PEAA or PMAA) potently facilitates gene transfection by cationic lipoplexes and (iii) endocytosed poly(2-alkylacrylic acid)s are triggered by luminal acidification to selectively disrupt endosomes (not lysosomes) and release their contents to the cytosol. These results will facilitate the rational design of future endosomal-disrupting polymers for drug delivery.

  18. Medical Services: Medical Record Administration and Health Care Documentation

    DTIC Science & Technology

    1999-05-03

    prepared for each patient who must have one. (5) Ensure that a blood sample for deoxyribonucleic acid ( DNA ) identification is on file with the DNA ...degenerative joint disease DM diabetes mellitus DNA deoxyribonucleic acid DNR do not resuscitate DO Doctor of Osteopathy DOA dead on arrival DOB date...vein thrombosis DWI driving while intoxicated Dx diagnosis EBL estimated blood loss EBV Epstein-Barr virus ECG; EKG electrocardiogram E. coli

  19. Development of Solid-State Nanopore Technology for Life Detection

    NASA Technical Reports Server (NTRS)

    Bywaters, K. B.; Schmidt, H.; Vercoutere, W.; Deamer, D.; Hawkins, A. R.; Quinn, R. C.; Burton, A. S.; Mckay, C. P.

    2017-01-01

    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA.

  20. Deoxyribonucleic acid base compositions of dermatophytes.

    PubMed

    Davison, F D; Mackenzie, D W; Owen, R J

    1980-06-01

    DNA was extracted and purified from 55 dermatophyte isolates representing 34 species of Trichophyton, Microsporum and Epidermophyton. The base compositions of the chromosomal DNA were determined by CsCl density gradient centrifugation and were found to be in the narrow range of 48.7 to 50.3 mol % G + C. A satellite DNA component assumed to be of mitochondrial origin was present in most strains, with a G + C content ranging from 14.7 to 30.8 mol % G + C. Heterogeneity in microscopic and colonial characteristics was not reflected in differences in the mean G + C content of the chromosomal DNAs. Strains varied in the G + C contents of satelite DNA, but these did not correlate with traditional species concepts.

  1. The deoxyribonucleic acid of Micrococcus radiodurans

    PubMed Central

    Schein, Arnold H.

    1966-01-01

    The DNA of Micrococcus radiodurans was prepared by three methods. Although the recovery of DNA varied considerably, the percentage molar base ratios of the DNA from the three preparations were essentially the same: guanine, 33±2; adenine, 18±1; cytosine, 33±2; thymine, 17±1. Base compositions calculated from Tm values and from density in caesium chloride gradients also yielded guanine+cytosine contents of 66 and 68% of total bases respectively. No unusual bases were observed. The S20,w values were characteristic of high-molecular-weight DNA. Electron microscopy showed the purified DNA in long strands; occasionally these were coiled. Images(a)(b)(c)(d)(e)Fig. 1. PMID:16742439

  2. Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules

    NASA Astrophysics Data System (ADS)

    Fionov, Alexander V.

    2002-06-01

    Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.

  3. Hydrogen bonding in hydrates with one acetic acid molecule.

    PubMed

    Pu, Liang; Sun, Yueming; Zhang, Zhibing

    2010-10-14

    Hydrogen bonding (H-bond) interaction significantly influences the separation of acetic acid (HAc) from the HAc/H(2)O mixtures, especially the dilute solution, in distillation processes. It has been examined from the HAc mono-, di-, tri-, and tetrahydrates by analyzing the structures, binding energies, and infrared vibrational frequencies from quantum chemical calculations. For the first coordinate shell the 6-membered head-on ring is surely the most favorable structure because it has (1) the most favorable H-bonding parameters, (2) almost the largest binding energy per H-bond, (3) the biggest wavenumber shifts, and (4) the highest ring distribution (the AIMD simulations). Moreover, the comparison of the calculations with the experiments (the X-ray scattering data and IR frequencies) suggests that the possible structures in dilute aqueous solution are those involving two or more coordinate shells. The H-bonding in these water-surrounded HAc hydrates are the origin of the low-efficiency problem of isolating HAc from the dilute HAc/H(2)O mixtures. It is apparently a tougher work to break the H-bonds among HAc and the surrounded H(2)O molecules with respect to the case of more concentrated solutions, where the dominant structures are HAc or H(2)O aggregates.

  4. Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy.

    PubMed

    Dhobale, Madhavi; Joshi, Sadhana

    2012-04-01

    Preterm pregnancies account for approximately 10% of the total pregnancies and are associated with low birth weight (LBW) babies. Recent studies have shown that LBW babies are at an increased risk of developing brain disorders such as cognitive dysfunction and psychiatric disorders. Maternal nutrition, particularly, micronutrients involved in one-carbon metabolism (folic acid, vitamin B(12), and docosahexaenoic acid (DHA)) have a major role during pregnancy for developing fetus and are important determinants of epigenesis. A series of our studies in pregnancy complications have well established the importance of omega 3 fatty acids especially DHA. DHA regulates levels of neurotrophins like brain-derived neurotrophic factor and nerve growth factor, which are required for normal neurological development. We have recently described that in one carbon metabolic pathway, membrane phospholipids are major methyl group acceptors and reduced DHA levels may result in diversion of methyl groups toward deoxyribonucleic acid (DNA) ultimately resulting in DNA methylation. In this review, we propose that altered maternal micronutrients (folic acid, vitamin B(12)), increased homocysteine, and oxidative stress levels that cause epigenetic modifications may be one of the mechanisms that contribute to preterm birth and poor fetal outcome, increasing risk for behavioural disorders in children.

  5. The missing organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Devine, K. G.; Matveeva, L. N.; Powell, D. H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  6. The missing organic molecules on Mars

    PubMed Central

    Benner, Steven A.; Devine, Kevin G.; Matveeva, Lidia N.; Powell, David H.

    2000-01-01

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m2 of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life. PMID:10706606

  7. The missing organic molecules on Mars.

    PubMed

    Benner, S A; Devine, K G; Matveeva, L N; Powell, D H

    2000-03-14

    GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.

  8. Structural and vibrational spectroscopy investigation of the 5-[(diphenyl) amino] isophthalic acid molecule

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.

    2014-10-01

    The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  9. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket

    PubMed Central

    Debler, Erik W.; Müller, Roger; Hilvert, Donald; Wilson, Ian A.

    2009-01-01

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes AspH35 and GluL34 to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the GluL34 to alanine mutant, leads to an impressive 109-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations. PMID:19846764

  10. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    PubMed Central

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  11. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket.

    PubMed

    Debler, Erik W; Müller, Roger; Hilvert, Donald; Wilson, Ian A

    2009-11-03

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp(H35) and Glu(L34) to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu(L34) to alanine mutant, leads to an impressive 10(9)-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.

  12. Molecules coating magnetic nanoparticles for oil-field applications

    NASA Astrophysics Data System (ADS)

    Zuluaga, Sebastian; Manchanda, Priyanka; Pantelides, Sokrates

    Magnetic nanoparticles have recently attracted significant attention in scientific and industrial communities due to their use in the fields of catalysis, spintronics, biomedical applications, and oil recovery and reservoir characterization. However, these nanoparticles have to be protected with a coating layer of molecules that prevents the nanoparticles from oxidation, which is known to occur in air, and from agglomeration into larger nanoparticles. Therefore, the binding of the molecules to the nanoparticles is critical before a large scale implementation can be done. Here we report results of density functional theory calculations on several molecules (methylamine, acetic acid, boronic acid, ethyl phosphate, and ethyl trihydroxysilane) and magnetic nanoparticles (Fe3O4, NiFe2O4, and Fe3C). We focus on two main points: 1) the bond strength between the organic molecule and the nano particle, and 2) how, H2O and H+ in the oil well may facilitate the desorption of the molecules. The results show that H+ and H2O molecules facilitate the desorption of molecules reducing the bond strength by several eV. On the other hand, the results allow us to identify and design molecules that exhibit the best performance in protecting each nanoparticle. Supported by a Grant from the Petroleum Institute, Abu Dhabi.

  13. Nucleic Acid Homologies Among Oxidase-Negative Moraxella Species

    PubMed Central

    Johnson, John L.; Anderson, Robert S.; Ordal, Erling J.

    1970-01-01

    The deoxyribonucleic acid (DNA) base composition and DNA homologies of more than 40 strains of oxidase-negative Moraxella species were determined. These bacteria have also been identified as belonging to the Mima-Herellea-Acinetobacter group and the Bacterium anitratum group, as well as to several other genera including Achromobacter and Alcaligenes. The DNA base content of these strains ranged from 40 to 46% guanine plus cytosine. DNA–DNA competition experiments distinguished five groups whose members were determined by showing 50% or more homology to one of the reference strains: B. anitratum type B5W, Achromobacter haemolyticus var. haemolyticus, Alcaligenes haemolysans, Achromobacter metalcaligenes, and Moraxella lwoffi. A sixth group comprised those strains showing less than 50% homology to any of the reference strains. Negligible homology was found between strains of oxidase-negative and oxidase-positive Moraxella species in DNA–DNA competition experiments. However, evidence of a distant relationship between the two groups was obtained in competition experiments by using ribosomal ribonucleic acid. PMID:5413826

  14. MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections

    NASA Astrophysics Data System (ADS)

    Rzagalinski, Ignacy; Hainz, Nadine; Meier, Carola; Tschernig, Thomas; Volmer, Dietrich A.

    2018-02-01

    Bile acids (BAs) play two vital roles in living organisms, as they are involved in (1) the secretion of cholesterol from liver, and (2) the lipid digestion/absorption in the intestine. Abnormal bile acid synthesis or secretion can lead to severe liver disorders. Even though there is extensive literature on the mass spectrometric determination of BAs in biofluids and tissue homogenates, there are no reports on the spatial distribution in the biliary network of the liver. Here, we demonstrate the application of high mass resolution/mass accuracy matrix-assisted laser desorption/ionization (MALDI)-Fourier-transform ion cyclotron resonance (FTICR) to MS imaging (MSI) of BAs at high spatial resolutions (pixel size, 25 μm). The results show chemical heterogeneity of the mouse liver sections with a number of branching biliary and blood ducts. In addition to ion signals from deprotonation of the BA molecules, MALDI-MSI generated several further intense signals at larger m/z for the BAs. These signals were spatially co-localized with the deprotonated molecules and easily misinterpreted as additional products of BA biotransformations. In-depth analysis of accurate mass shifts and additional electrospray ionization and MALDI-FTICR experiments, however, confirmed them as proton-bound dimers. Interestingly, dimers of bile acids, but also unusual mixed dimers of different taurine-conjugated bile acids and free taurine, were identified. Since formation of these complexes will negatively influence signal intensities of the desired [M - H]- ions and significantly complicate mass spectral interpretations, two simple broadband techniques were proposed for non-selective dissociation of dimers that lead to increased signals for the deprotonated BAs. [Figure not available: see fulltext.

  15. DNA tetrominoes: the construction of DNA nanostructures using self-organised heterogeneous deoxyribonucleic acids shapes.

    PubMed

    Ong, Hui San; Rahim, Mohd Syafiq; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan

    2015-01-01

    The unique programmability of nucleic acids offers alternative in constructing excitable and functional nanostructures. This work introduces an autonomous protocol to construct DNA Tetris shapes (L-Shape, B-Shape, T-Shape and I-Shape) using modular DNA blocks. The protocol exploits the rich number of sequence combinations available from the nucleic acid alphabets, thus allowing for diversity to be applied in designing various DNA nanostructures. Instead of a deterministic set of sequences corresponding to a particular design, the protocol promotes a large pool of DNA shapes that can assemble to conform to any desired structures. By utilising evolutionary programming in the design stage, DNA blocks are subjected to processes such as sequence insertion, deletion and base shifting in order to enrich the diversity of the resulting shapes based on a set of cascading filters. The optimisation algorithm allows mutation to be exerted indefinitely on the candidate sequences until these sequences complied with all the four fitness criteria. Generated candidates from the protocol are in agreement with the filter cascades and thermodynamic simulation. Further validation using gel electrophoresis indicated the formation of the designed shapes. Thus, supporting the plausibility of constructing DNA nanostructures in a more hierarchical, modular, and interchangeable manner.

  16. Efficient Enrichment and Analysis of Vicinal-Diol-Containing Flavonoid Molecules Using Boronic-Acid-Functionalized Particles and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Kim, Eunjin; Kang, Hyunook; Choi, Insung; Song, Jihyeon; Mok, Hyejung; Jung, Woong; Yeo, Woon-Seok

    2018-05-09

    Detection and quantitation of flavonoids are relatively difficult compared to those of other small-molecule analytes because flavonoids undergo rapid metabolic processes, resulting in their elimination from the body. Here, we report an efficient enrichment method for facilitating the analysis of vicinal-diol-containing flavonoid molecules using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In our strategy, boronic-acid-functionalized polyacrylamide particles were used, where boronic acids bound to vicinal diols to form boronate monoesters at basic pH. This complex remained intact during the enrichment processes, and the vicinal-diol-containing flavonoids were easily separated by centrifugation and subsequent acidic treatments. The selectivity and limit of detection of our strategy were confirmed by mass spectrometry analysis, and the validity was assessed by performing the detection and quantitation of quercetin in mouse organs.

  17. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  18. Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst.

    PubMed

    Vara, Brandon A; Struble, Thomas J; Wang, Weiwei; Dobish, Mark C; Johnston, Jeffrey N

    2015-06-17

    Carbon dioxide exhibits many of the qualities of an ideal reagent: it is nontoxic, plentiful, and inexpensive. Unlike other gaseous reagents, however, it has found limited use in enantioselective synthesis. Moreover, unprecedented is a tool that merges one of the simplest biological approaches to catalysis-Brønsted acid/base activation-with this abundant reagent. We describe a metal-free small molecule catalyst that achieves the three component reaction between a homoallylic alcohol, carbon dioxide, and an electrophilic source of iodine. Cyclic carbonates are formed enantioselectively.

  19. Streptococcus mutans in a Wild, Sucrose-Eating Rat Population

    PubMed Central

    Coykendall, Alan L.; Specht, Patricia A.; Samol, Harry H.

    1974-01-01

    Streptococcus mutans, an organism implicated in dental caries and not previously found outside of man and certain laboratory animals, was isolated from the mouths of wild rats which ate sugar cane. The strains isolated fermented mannitol and sorbitol, and failed to grow in 6.5% NaCl or at 45 C. They formed in vitro plaques on nichrome wires when grown in sucrose broth. They also stored intracellular polysaccharide which could be catabolized by washed, resting cells. Deoxyribonucleic acid-deoxyribonucleic acid reassociations revealed two genetic types. One type shared extensive deoxyribonucleic acid base sequences with S. mutans strains HS6 and OMZ61, two members of a genetic type found in man and laboratory hamsters. The other type seemed unrelated to any S. mutans genetic type previously encountered. It is concluded that the ecological triad of tooth-sucrose-S. mutans is not a phenomenon unique to man and experimental animals. Images PMID:4601769

  20. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    PubMed

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  1. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  2. Ice photochemistry as a source of amino acids and other organic molecules in meteorites, and implications for the origin of life and the search for life in the Solar System

    NASA Technical Reports Server (NTRS)

    Bernstein, Max

    2005-01-01

    The tons of extraterrestrial organic material that come to the Earth every day probably helped to made the Earth habitable, and possibly played a role in the origin of life. At the astrochemistry lab (http://www.astrochem.orq) we investigate the formation and distribution of organic molecules in space and consider the impact such molecules may have on the habitability of planets and the search for life in the Solar System. The organic compounds in meteorites include amino acids, aromatics of various sorts including purine and pyrimidine bases, and fatty acids that form bi-layer vesicles. The origin of many of these species remains mysterious, but in recent years we and others have performed experiments that suggest low temperature radiation chemistry could account for the presence and deuterium enrichment of many of these molecules. . I will present our laboratory experiments that show the viability of low temperature radiation chemistry as a source of organic molecules such as;amino acids (Nature, 2002, 416, 401-403), amphiphiles (Astrobiology, 2003, 2, 371, Proc. Nat. Acad. Sci. 2001, 98, 815), quinones (Science, 1999, 283, 1135) and other functionalized aromatic compounds (Meteoritics, 2001, 36, 351 ; Astrophysical Journal., 2003, 582, L25), some of which were invoked as potential biomarkers in the Alan Hills 84001 Martian meteorite. Understanding how components of proteins and DNA could form in sterile space environments is also of relevance to our search for life elsewhere in the Solar System, the great task now ahead of NASA. If we find evidence of Life elsewhere in the Solar System it will probably be in form of chemical biomarkers, quintessentially biological molecules that indicate the presence of micro-organisms. While most people think of molecules such as amino acids, and nucleo-bases as good candidate biomarkers, these molecules are produced non-biotically in space and are expected to be present on the surface of other planets even in the absence of

  3. Effect of DNA-CTMA complex on optical properties of LDS 821 dye

    NASA Astrophysics Data System (ADS)

    Udayan, Sony; Ramachandran, Vijesh Kavumoottil; Sebastian, Mathew; Chandran, Pradeep; Nampoori, Vadakkedath Parameswaran Narayanan; Thomas, Sheenu

    2017-07-01

    We have investigated the fluorescence behavior of LDS 821 dye (Styryl 9 M) with deoxyribonucleic acid attached with cetyltrimethyl-ammonium (DNA-CTMA). Optical absorption studies confirm the intercalation of the dye molecules with DNA-CTMA. Fluorescence studies show an enhancement of fluorescence intensity of dye with DNA-CTMA, which suggest the reduction of TICT states of the dye molecule. The FWHM of the fluorescence spectrum increases from 95 nm to 161 nm indicating the formation of new energy levels when DNA-CTMA forms a complex with LDS 821 dye. Fluorescence lifetime measurements shows that lifetime of LDS 821 varies from 507ps to 953 ps with the addition of DNA-CTMA, which also confirms the deactivation of TICT states of dye molecule. Results show that the incorporation of DNA-CTMA with LDS 821 dye improves the optical characteristics of LDS 821 dye and therefore, can be used as a good fluorescence probe for DNA visualization as well as in lasing applications.

  4. Soft magnetic tweezers: a proof of principle.

    PubMed

    Mosconi, Francesco; Allemand, Jean François; Croquette, Vincent

    2011-03-01

    We present here the principle of soft magnetic tweezers which improve the traditional magnetic tweezers allowing the simultaneous application and measurement of an arbitrary torque to a deoxyribonucleic acid (DNA) molecule. They take advantage of a nonlinear coupling regime that appears when a fast rotating magnetic field is applied to a superparamagnetic bead immersed in a viscous fluid. In this work, we present the development of the technique and we compare it with other techniques capable of measuring the torque applied to the DNA molecule. In this proof of principle, we use standard electromagnets to achieve our experiments. Despite technical difficulties related to the present implementation of these electromagnets, the agreement of measurements with previous experiments is remarkable. Finally, we propose a simple way to modify the experimental design of electromagnets that should bring the performances of the device to a competitive level.

  5. DFT study of adsorption of picric acid molecule on the surface of single-walled ZnO nanotube; as potential new chemical sensor

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Tabari, Leila

    2015-01-01

    Using density functional theory (DFT), we have investigated the adsorption of picric acid (PA) molecule on the surface of (8,0) single-walled ZnO nanotube (ZnONT). The results show that the PA molecule can be chemisorbed on the surface of ZnONT with adsorption energies of -82.01 and -75.26 kJ/mol in gas and aqueous phase, respectively. Frontier molecular orbital analysis show that HOMO/LUMO gap of ZnONT reduces from 1.66 and 1.75 eV in the pristine nanotube to 0.83 and 0.72 eV in PA-adsorbed form in gas and aqueous phase, respectively. It suggests that the process can affect the electronic properties of the studied nanotube which would lead to its conductance change upon the adsorption of PA molecule. The modifying effect on the electrical conductance of ZnONT underlies the working mechanism of gas sensors for detecting the PA molecules. Analyses of the adsorption behavior of the electrically charged ZnONT toward PA molecule in the gas phase show that the PA molecule can be strongly adsorbed on the negatively charged ZnONT surface with significant adsorption energy (-135.1 kJ/mol). However, from the HOMO/LUMO gap changes, it can be concluded that the positive ZnONT might sensitively detect the PA molecule in comparison to the negative tube. These results can provide helpful information for experimental investigation to develop novel nanotube-based sensors.

  6. Electrorheological crystallization of proteins and other molecules

    DOEpatents

    Craig, George D.; Rupp, Bernhard

    1996-01-01

    An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an x-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the x-ray diffraction pattern.

  7. Binding of the water of primary hydration to the sodium and cesium salts of deoxyribonucleic acid and potassium hyaluronate

    NASA Astrophysics Data System (ADS)

    Whitson, K. B.; Lukan, A. M.; Marlowe, R. L.; Lee, S. A.; Anthony, L.; Rupprecht, A.

    1998-08-01

    Differential scanning calorimetry (DSC) has been used to evaluate the average enthalpy of desorption of the water of primary hydration bound to wet-spun films of potassium hyaluronate (KHA) and CsDNA. The enthalpies were measured to be 0.24+/-0.08 eV/H2O molecule for KHA and 0.32+/-0.10 eV/H2O molecule for CsDNA. A Kissinger analysis was used to extract the net activation energy (0.61+/-0.04 eV) for the desorption of this water from KHA by analyzing DSC data acquired at different heating rates. The average effective force constants at 295 K of this water bound to KHA (63+/-3 μdyn/Å) and NaDNA (17+/-4 μdyn/Å) are determined from Rayleigh scattering of Mossbauer radiation data [G. Albanese, A. Deriu, F. Cavatorta, and A. Rupprecht, Hyperfine Interact. 95, 97 (1995)] via a harmonic approximation.

  8. Functional attributes of a new molecule-2-hydroxymethyl-benzoic acid 2'-hydroxy-tetradecyl ester isolated from Talaromyces purpureogenus CFRM02.

    PubMed

    Pandit, Saritha Gopal; Puttananjaih, Mohankumari H; Harohally, Nanishankar V; Dhale, Mohan Appasaheb

    2018-07-30

    An account of antioxidant and antimicrobial characteristics displayed by ethyl acetate extract of Talaromyces purpureogenus CFRM-02 cultivated by submerged fermentation on bengal gram husk (BegH) led to the isolation of a new molecule, which was purified via silica gel column chromatography. The TLC and HPLC data revealed the purity of the isolated compound. By employing an array of spectroscopic techniques, structural elucidation was accomplished, and the molecule was identified as 2-hydroxymethyl-benzoic acid 2'-hydroxy-tetradecyl ester and was also designated with a familiar name pentalsamonin. The pentalsamonin molecule scavenged DPPH (24%), H 2 O 2 (64%), superoxide anion (58%) with a reducing power (0.989 AU) at the given concentration. The MIC and MBC of pentalsamonin against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae are in the range 62.5-125 and 125-250 µg/ml, respectively. The antioxidant and antibacterial functional attributes of pentalsamonin suggest useful applications in food and nutraceuticals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized bymore » interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.« less

  10. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-01

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  11. Nanotechnology on duty in medical applications.

    PubMed

    Kubik, T; Bogunia-Kubik, K; Sugisaka, M

    2005-02-01

    At the beginning of 21(st) century, fifty years after discovery of deoxyribonucleic acid (DNA) double helix structure, scientific world is faced with a great progress in many disciplines of biological research, especially in the field of molecular biology and operating on nucleid acid molecules. Many molecular biology techniques have been implemented successfully in biology, biotechnology, medical science, diagnostics, and many more. The introduction of polymerase chain reaction (PCR) resulted in improving old and designing new laboratory devices for PCR amplification and analysis of amplified DNA fragments. In parallel to these efforts, the nature of DNA molecules and their construction have attracted many researchers. In addition, some studies concerning mimicking living systems, as well as developing and constructing artificial nanodevices, such as biomolecular sensors and artificial cells, have been conducted. This review is focused on the potential of nanotechnology in health care and medicine, including the development of nanoparticles for diagnostic and screening purposes, the manufacture of unique drug delivery systems, antisense and gene therapy applications and the enablement of tissue engineering, including the future of nanorobot construction.

  12. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    PubMed

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.

  13. The Chemical Structure and Acid Deterioration of Paper.

    ERIC Educational Resources Information Center

    Hollinger, William K., Jr.

    1984-01-01

    Describes the chemical structure of paper, including subatomic particles, atoms and molecules, and the forces that bond atoms into molecules, molecules into chains, chains into sheets, and sheets into layers. Acid is defined, and the deleterious role of acid in breaking the forces that bond atoms into molecules is detailed. (EJS)

  14. Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Mishra, P. C.

    1996-04-01

    Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.

  15. Single molecule views of Nature's nano-machines

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2006-03-01

    We are interested in the perturbational analysis of biological molecules to better understand their mechanisms. Our readout is the fluorescence signal from individual biomolecules, mainly in the form of single molecule fluorescence resonance energy transfer (FRET). We are pioneering approaches to perturb and control biomolecular conformations using external force (combination of single molecule FRET and optical trap) or other biological motifs (DNA hybridization, G-quadruplex, aptamers,.). In this talk, I will present our latest results on mapping the conformational energy landscape of the Holliday junction through simultaneous fluorescence and force measurements. In addition, a new nanomechanical device called single molecule nano-metronome will be discussed with an outlook toward controlling protein conformations using nucleic acids motifs.

  16. Influence of amine and thiol modifications at the 3' ends of single stranded DNA molecules on their adsorption on gold surface and the efficiency of their hybridization.

    PubMed

    Jaworska, Aleksandra; Jablonska, Anna; Wilanowski, Tomasz; Palys, Barbara; Sek, Slawomir; Kudelski, Andrzej

    2018-05-24

    Adsorption of molecules of DNA (deoxyribonucleic acid) or modified DNA on gold surfaces is often the first step in construction of many various biosensors, including biosensors for detection of DNA with a particular sequence. In this work we study the influence of amine and thiol modifications at the 3' ends of single stranded DNA (ssDNA) molecules on their adsorption on the surface of gold substrates and on the efficiency of hybridization of immobilized DNA with the complementary single stranded DNA. The characterization of formed layers has been carried out using infrared spectroscopy and atomic force microscopy. As model single stranded DNA we used DNA containing 20 adenine bases, whereas the complementary DNA contained 20 thymine bases. We found that the bands in polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS) spectra of layers formed from thiol-modified DNA are significantly narrower and sharper, indicating their higher regularity in the orientation of DNA on gold surface when using thiol linker. Also, hybridization of the layer of thiol-modified DNA containing 20 adenine bases with the respective DNA containing thymine bases leads to formation of much more organized structures than in the case of unmodified DNA or DNA with the amine linker. We conclude that the thiol-modified ssDNA is more promising for the preparation of biosensors, in comparison with the amine-modified or unmodified ssDNA. We have also found that the above-mentioned modifications at the 3' end of ssDNA significantly influence the IR spectrum (and hence the structure) of polycrystalline films formed from such compounds, even though adsorbed fragments contain less than 5% of the DNA chain. This effect should be taken into account when comparing IR spectra of various polycrystalline films formed from modified and unmodified DNA. Copyright © 2018. Published by Elsevier B.V.

  17. 1 H NMR-based water-soluble lower molecule characterization and fatty acid composition of boiled Wuding chicken during processing.

    PubMed

    Xiao, Zhichao; Luo, Yuting; Wang, Guiying; Ge, Changrong; Zhou, Guanghong; Zhang, Wangang; Liao, Guozhou

    2018-06-13

    Boiled Wuding chicken was produced using whole chicken by washing, boiling 1 h with salt, deep frying and boiling 2 h. The effect of process on the WLOM (water-soluble lower molecule) profiles of products was characterized using proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) and fatty acid composition of products was analyzed using gas chromatography-mass spectrometry (GC-MS). The metabonome was dominated by 49 WLOM and 22 fatty acid compounds were detected. PC1 and PC2 explained a total of 93.4% and 3% of variance, respectively. Compared with control group, the total WLOM and fatty acid content of the chicken breast were significantly decreased in other three processing stages (P<0.05). Comprehensive multivariate data analysis showed significant differences about precursor substance between the different processing including creatine, lactate, creatinine, glucose, taurine, anserine and acetate (P<0.05). These results contribute to a more accurate understanding of precursor substance changes of flavor in chicken meat during processing. Boiled treated chicken had significant effects on fatty acid and WLOM compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Enhanced SH3/Linker Interaction Overcomes Abl Kinase Activation by Gatekeeper and Myristic Acid Binding Pocket Mutations and Increases Sensitivity to Small Molecule Inhibitors*

    PubMed Central

    Panjarian, Shoghag; Iacob, Roxana E.; Chen, Shugui; Wales, Thomas E.; Engen, John R.; Smithgall, Thomas E.

    2013-01-01

    Multidomain kinases such as c-Src and c-Abl are regulated by complex allosteric interactions involving their noncatalytic SH3 and SH2 domains. Here we show that enhancing natural allosteric control of kinase activity by SH3/linker engagement has long-range suppressive effects on the kinase activity of the c-Abl core. Surprisingly, enhanced SH3/linker interaction also dramatically sensitized the Bcr-Abl tyrosine kinase associated with chronic myelogenous leukemia to small molecule inhibitors that target either the active site or the myristic acid binding pocket in the kinase domain C-lobe. Dynamics analyses using hydrogen exchange mass spectrometry revealed a remarkable allosteric network linking the SH3 domain, the myristic acid binding pocket, and the active site of the c-Abl core, providing a structural basis for the biological observations. These results suggest a rational strategy for enhanced drug targeting of Bcr-Abl and other multidomain kinase systems that use multiple small molecules to exploit natural mechanisms of kinase control. PMID:23303187

  19. Electrorheological crystallization of proteins and other molecules

    DOEpatents

    Craig, G.D.; Rupp, B.

    1996-06-11

    An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an X-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the X-ray diffraction pattern. 4 figs.

  20. Evaluation of genotoxicity testing of FDA approved large molecule therapeutics.

    PubMed

    Sawant, Satin G; Fielden, Mark R; Black, Kurt A

    2014-10-01

    Large molecule therapeutics (MW>1000daltons) are not expected to enter the cell and thus have reduced potential to interact directly with DNA or related physiological processes. Genotoxicity studies are therefore not relevant and typically not required for large molecule therapeutic candidates. Regulatory guidance supports this approach; however there are examples of marketed large molecule therapeutics where sponsors have conducted genotoxicity studies. A retrospective analysis was performed on genotoxicity studies of United States FDA approved large molecule therapeutics since 1998 identified through the Drugs@FDA website. This information was used to provide a data-driven rationale for genotoxicity evaluations of large molecule therapeutics. Fifty-three of the 99 therapeutics identified were tested for genotoxic potential. None of the therapeutics tested showed a positive outcome in any study except the peptide glucagon (GlucaGen®) showing equivocal in vitro results, as stated in the product labeling. Scientific rationale and data from this review indicate that testing of a majority of large molecule modalities do not add value to risk assessment and support current regulatory guidance. Similarly, the data do not support testing of peptides containing only natural amino acids. Peptides containing non-natural amino acids and small molecules in conjugated products may need to be tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Communication: Alamethicin can capture lipid-like molecules in the membrane

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Ekaterina F.; Syryamina, Victoria N.; Dzuba, Sergei A.

    2017-01-01

    Alamethicin (Alm) is a 19-mer antimicrobial peptide produced by fungus Trichoderma viride. Above a threshold concentration, Alm forms pores across the membrane, providing a mechanism of its antimicrobial action. Here we show that at a small concentration which is below the threshold value, Alm participates in formation of nanoscale lipid-mediated clusters of guest lipid-like molecules in the membrane. These results are obtained by electron spin echo (ESE) technique—a pulsed version of electron paramagnetic resonance—on spin-labeled stearic acid in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer with Alm added at 1/200 peptide-to-lipid ratio. ESE decay measurements are interpreted assuming that stearic acid molecules in the membrane are assembling around the Alm molecule. One may suggest that this Alm capturing effect on the guest lipid-like molecules could be important for the peptide antimicrobial action.

  2. Two Electrophoresis Experiments for Freshmen in the Health Professions.

    ERIC Educational Resources Information Center

    Brabson, G. Dana; Waugh, David S.

    1986-01-01

    Describes procedures involved with paper electrophoresis separation of amino acids, gel electrophoresis separation of DNA, and design of an electrophoresis tank. Describes experiments using paper (amino acids) and gel (deoxyribonucleic acid fragments). Provides material lists, procedures, and discussion. (JM)

  3. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  4. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas.

    PubMed

    Yabuuchi, E; Yano, I; Oyaizu, H; Hashimoto, Y; Ezaki, T; Yamamoto, H

    1990-01-01

    Based on the partial nucleotide sequence analysis of 16S ribosomal ribonucleic acid (rRNA), presence of unique sphingoglycolipids in cellular lipid, and the major type of ubiquinone (Q10), we propose Sphingomonas gen. nov. with the type species Sphingomonas paucimobilis (Holmes et al, 1977) comb. nov. From the homology values of deoxyribonucleic acid-deoxyribonucleic acid hybridization and the phenotypic characteristics, three new species, Sphingomonas parapaucimobilis, Sphingomonas yanoikuyae, Sphingomonas adhaesiva, and one new combination, Sphingomonas capsulata, are described. S. parapaucimobilis JCM 7510 (= GIFU 11387), S. yanoikuyae JCM 7371 (= GIFU 9882), and S. adhaesiva JCM 7370 (= GIFU 11458) are designated as the type strains of the three new species. Emended description of the type strain of S. capsulata is presented.

  5. Newly detected molecules in dense interstellar clouds

    NASA Astrophysics Data System (ADS)

    Irvine, William M.; Avery, L. W.; Friberg, P.; Matthews, H. E.; Ziurys, L. M.

    Several new interstellar molecules have been identified including C2S, C3S, C5H, C6H and (probably) HC2CHO in the cold, dark cloud TMC-1; and the discovery of the first interstellar phosphorus-containing molecule, PN, in the Orion "plateau" source. Further results include the observations of 13C3H2 and C3HD, and the first detection of HCOOH (formic acid) in a cold cloud.

  6. Molecular spectroscopic studies on the interaction of ferulic acid with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Qu, Fengli; Kong, Rongmei

    2013-08-01

    The interaction between ferulic acid and calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. Results indicated that a complex of ferulic acid with ctDNA was formed with a binding constant of K290K = 7.60 × 104 L mol-1 and K310K = 4.90 × 104 L mol-1. The thermodynamic parameters enthalpy change (ΔH°), entropy change (ΔS°) and Gibbs free energy (ΔG°) were calculated to be -1.69 × 104 J mol-1, 35.36 J K-1 mol-1 and -2.79 × 104 J mol-1 at 310 K, respectively. The acting forces between ferulic acid and DNA mainly included hydrophobic interaction and hydrogen bonds. Acridine orange displacement studies revealed that ferulic acid can substitute for AO probe in the AO-DNA complex which was indicative of intercalation binding. Thermal denaturation study suggested that the interaction of ferulic acid with DNA could result in the increase of the denaturation temperature, which indicated that the stabilization of the DNA helix was increased in the presence of ferulic acid. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between ferulic acid and ctDNA.

  7. Semisynthetic protein nanoreactor for single-molecule chemistry

    PubMed Central

    Lee, Joongoo; Bayley, Hagan

    2015-01-01

    The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach. PMID:26504203

  8. A pliable electroporation patch (ep-Patch) for efficient delivery of nucleic acid molecules into animal tissues with irregular surface shapes.

    PubMed

    Wei, Zewen; Huang, Yuanyu; Zhao, Deyao; Hu, Zhiyuan; Li, Zhihong; Liang, Zicai

    2015-01-05

    Delivery of nucleic acids into animal tissues by electroporation is an appealing approach for various types of gene therapy, but efficiency of existing methodsis not satisfactory. Here we present the validation of novel electroporation patch (ep-Patch) for efficient delivery of DNA and siRNA into mouse tissues. Using micromachining technology, closely spaced gold electrodes were made on the pliable parylene substrate to form a patch-like electroporation metrics. It enabled large coverage of the target tissues and close surface contact between the tissues and electrodes, thus providing a uniform electric field to deliver nucleic acids into tissues, even beneath intact skin. Using this ep-Patch for efficiently delivery of both DNA and siRNA, non-invasive electroporation of healthy mouse muscle tissue was successfully achieved. Delivery of these nucleic acids was performed to intact tumors with satisfactory results. Silencing of tumor genes using the ep-Patch was also demonstrated on mice. This pliable electroporation patch method constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs to circumvent the disadvantages of existing methodologies for in vivo delivery of nucleic acid molecules.

  9. Recombinant Clone Heterogeneity in ESCHERICHIA COLI Conjunction: Effect of Ph and Partially Replicated Recipient Deoxyribonucleic Acid

    PubMed Central

    Ou, Jonathan T.

    1975-01-01

    At pH 6.8, a substantial fraction of recombinant colonies obtained from conjugation with an HfrH donor contained multiple recombinant classes in a single colony (polygenotypic colony). In contrast, when the conjugation was performed at pH 7.6, the number of polygenotypic colonies was drastically reduced, and the recombinant colonies were predominantly monogenotypic or digenotypic. Genetic analysis revealed that the digenotypic recombinants differ in those donor markers near the origin of DNA replication but share those donor markers near the terminus. This integration pattern suggests that the formation of digenotypic recombinants involves recombination of a single copy of the exogenome with a partially replicated recipient DNA molecule. This suggestion was supported by examination of the genotype of recombinant colonies recovered from crosses with an HfrKL96 donor which was derived from HfrH but transfers its chromosome in the reverse direction. PMID:8360

  10. Nucleic acid analysis using terminal-phosphate-labeled nucleotides

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-04-22

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  11. Micro injector sample delivery system for charged molecules

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    1999-11-09

    A micro injector sample delivery system for charged molecules. The injector is used for collecting and delivering controlled amounts of charged molecule samples for subsequent analysis. The injector delivery system can be scaled to large numbers (>96) for sample delivery to massively parallel high throughput analysis systems. The essence of the injector system is an electric field controllable loading tip including a section of porous material. By applying the appropriate polarity bias potential to the injector tip, charged molecules will migrate into porous material, and by reversing the polarity bias potential the molecules are ejected or forced away from the tip. The invention has application for uptake of charged biological molecules (e.g. proteins, nucleic acids, polymers, etc.) for delivery to analytical systems, and can be used in automated sample delivery systems.

  12. FlavorDB: a database of flavor molecules.

    PubMed

    Garg, Neelansh; Sethupathy, Apuroop; Tuwani, Rudraksh; Nk, Rakhi; Dokania, Shubham; Iyer, Arvind; Gupta, Ayushi; Agrawal, Shubhra; Singh, Navjot; Shukla, Shubham; Kathuria, Kriti; Badhwar, Rahul; Kanji, Rakesh; Jain, Anupam; Kaur, Avneet; Nagpal, Rashmi; Bagler, Ganesh

    2018-01-04

    Flavor is an expression of olfactory and gustatory sensations experienced through a multitude of chemical processes triggered by molecules. Beyond their key role in defining taste and smell, flavor molecules also regulate metabolic processes with consequences to health. Such molecules present in natural sources have been an integral part of human history with limited success in attempts to create synthetic alternatives. Given their utility in various spheres of life such as food and fragrances, it is valuable to have a repository of flavor molecules, their natural sources, physicochemical properties, and sensory responses. FlavorDB (http://cosylab.iiitd.edu.in/flavordb) comprises of 25,595 flavor molecules representing an array of tastes and odors. Among these 2254 molecules are associated with 936 natural ingredients belonging to 34 categories. The dynamic, user-friendly interface of the resource facilitates exploration of flavor molecules for divergent applications: finding molecules matching a desired flavor or structure; exploring molecules of an ingredient; discovering novel food pairings; finding the molecular essence of food ingredients; associating chemical features with a flavor and more. Data-driven studies based on FlavorDB can pave the way for an improved understanding of flavor mechanisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Molecules for Fluorescence Detection of Specific Chemicals

    NASA Technical Reports Server (NTRS)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  14. Orphenadrinium picrate picric acid.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B P; Yathirajan, H S; Narayana, B

    2010-02-24

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl-phen-yl)phenyl-meth-oxy]ethanaminium picrate picric acid, C(18)H(24)NO(+)·C(6)H(2)N(3)O(7) (-)·C(6)H(3)N(3)O(7), contains one orphenadrinium cation, one picrate anion and one picric acid mol-ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra-molecular O-H⋯O hydrogen bond in the picric acid mol-ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol-ecules are connected by strong inter-molecular N-H⋯O hydrogen bonds, π⋯π inter-actions between the benzene rings of cations and anions [centroid-centroid distance = 3.5603 (9) Å] and weak C-H⋯O hydrogen bonds, forming a three-dimensional network.

  15. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  16. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  17. The botanical molecule p-hydroxycinnamic acid as a new osteogenic agent: insight into the treatment of cancer bone metastases.

    PubMed

    Yamaguchi, Masayoshi

    2016-10-01

    Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss with aging is induced by decreasing in osteoblastic bone formation and increasing in osteoclastic bone resorption, thereby leading to osteoporosis. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public heath problem. Pharmacologic and nutritional factors may play a role in the prevention and treatment of bone loss with aging. p-Hydroxycinnamic acid (HCA), which stimulates bone mineralization in mouse bone tissues in vitro, has been found to be present in the leafstalk of wasabi (Wasabi japonica MATSUM) among various food and plants. Other phenolic acids including cinnamic acid, ferulic acid, caffeic acid and 3,4-dimethoxycinnamic acid did not have osteogenic effects. HCA was demonstrated to stimulate osteoblastic bone formation and suppresses osteoclastic bone resorption in vitro by antagonizing activation of the nuclear factor kappa B. Oral administration of HCA was found to exhibit restorative effects on bone loss induced by ovariectomy and diabetic states, supporting a role in the treatment of osteoporosis. Moreover, HCA was demonstrated to prevent the suppressed osteoblastic mineralization and the enhanced osteoclastogenesis in mouse bone marrow cells cocultured with bone metastatic MDA-MB-231 human breast cancer cells in vitro. The botanical molecule HCA, as a new osteogenic agent, is suggested to play a role in the treatment of cancer bone metastases. This review will discuss an advanced recent finding that HCA may be a useful agent to treat bone metabolic disorder.

  18. Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria

    PubMed Central

    Richter, Stefan G.; Elli, Derek; Kim, Hwan Keun; Hendrickx, Antoni P. A.; Sorg, Joseph A.; Schneewind, Olaf; Missiakas, Dominique

    2013-01-01

    The current epidemic of infections caused by antibiotic-resistant Gram-positive bacteria requires the discovery of new drug targets and the development of new therapeutics. Lipoteichoic acid (LTA), a cell wall polymer of Gram-positive bacteria, consists of 1,3-polyglycerol-phosphate linked to glycolipid. LTA synthase (LtaS) polymerizes polyglycerol-phosphate from phosphatidylglycerol, a reaction that is essential for the growth of Gram-positive bacteria. We screened small molecule libraries for compounds inhibiting growth of Staphylococcus aureus but not of Gram-negative bacteria. Compound 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] blocked phosphatidylglycerol binding to LtaS and inhibited LTA synthesis in S. aureus and in Escherichia coli expressing ltaS. Compound 1771 inhibited the growth of antibiotic-resistant Gram-positive bacteria and prolonged the survival of mice with lethal S. aureus challenge, validating LtaS as a target for the development of antibiotics. PMID:23401520

  19. Programming of a Mn-coordinated 4-4‧-biphenyl dicarboxylic acid nanosystem on Au(1 1 1) and investigation of the non-covalent binding of C60 molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Feng; Zhu, Na; Komeda, T.

    The fabrication of Mn-based coordination networks on a Au(1 1 1) substrate with 4-4 '-biphenyl dicarboxylic acid (BDA) as the linker molecule was investigated by scanning tunneling microscopy. Intriguing structures of ladder and rectangular-shaped networks were obtained by controlling the ratios of deposited amount of BDA molecules and Mn atoms. These structures are well explained by models in which BDA molecules occupy the perimeter of the rectangles and a pair of two Mn atoms are placed at the lattice points. For the rectangular structure, further two phases of a rectangular and a square networks were identified in which the paired Mn atoms were directing an identical direction and 90° rotated in an alternate manner, respectively. In addition, it was revealed that the open space surrounded by rectangle BDA molecules could capture a dimer of C60 molecules which were deposited on the Mn-based BDA networks.

  20. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.

    Quantum chemical calculations were employed to model the interactions of the [(NH 4 +) 4(HSO 4 -) 4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH 4 +) 4(SOmore » 4 -) 4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less

  1. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    DOE PAGES

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.; ...

    2015-10-21

    Quantum chemical calculations were employed to model the interactions of the [(NH 4 +) 4(HSO 4 -) 4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH 4 +) 4(SOmore » 4 -) 4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less

  2. Manganese(III) Formate: A Three-Dimensional Framework That Traps Carbon Dioxide Molecules.

    PubMed

    Cornia, Andrea; Caneschi, Andrea; Dapporto, Paolo; Fabretti, Antonio C; Gatteschi, Dante; Malavasi, Wanda; Sangregorio, Claudio; Sessoli, Roberta

    1999-06-14

    Carbon dioxide, formic acid, and water molecules are trapped in the crystal lattice of manganese(III) formate (see 1), which was obtained by reducing permanganate with formic acid. Each CO 2 guest molecule exhibits four C-H⋅⋅⋅O-C-O interactions with the three-dimensional host framework of Mn(HCOO) 3 units. Compound 1 undergoes an antiferromagnetic phase transition at 27 K. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  3. Adsorption of organic molecules on a porous polymer surface modified with the supramolecular structure of melamine-cyanuric acid

    NASA Astrophysics Data System (ADS)

    Gainullina, Yu. Yu.; Guskov, V. Yu.

    2017-10-01

    The adsorption of organic molecules on the surface of a porous polymeric sorbent modified with a mixed cyanuric acid-melamine supramolecular structure is studied. The parameters of thermodynamic adsorption are considered and the contributions from intermolecular interactions to the Helmholtz energy of adsorption are assessed. Analysis of the molar changes in internal energy and adsorption entropy shows that the supramolecular structure formed on the surface could not exhibit dimension effects, indicating there were no cavities. The contributions from nonspecific interactions to the Helmholtz energy of adsorption generally fall, while those of specific interactions increase, indicating an increase in the polarity of the sorbent surface.

  4. Gamma-aminobutyric acid and related molecules in the sea fan Eunicella cavolini (Cnidaria: Octocorallia): a biochemical and immunohistochemical approach.

    PubMed

    Girosi, Laura; Ferrando, Sara; Beltrame, Francesco; Ciarcia, Gaetano; Diaspro, Alberto; Fato, Marco; Magnone, Mirko; Raiteri, Luca; Ramoino, Paola; Tagliafierro, Grazia

    2007-07-01

    The aim of this study has been the biochemical demonstration of the presence of gamma-aminobutyric acid (GABA) in the Mediterranean sea fan Eunicella cavolini by means of high-performance liquid chromatography, and the description of the distribution pattern of GABA and its related molecules, glutamic acid decarboxylase (GAD), vesicular GABA transporter (VGAT) and one of the GABA receptors (GABA(B) R) by immunohistochemical methods. The interrelationships of GABA, GAD and GABA receptor immunoreactivity have been established by using double-immunohistochemical methods and confocal microscopy. The immunodetection of monoclonal and/or polyclonal antibodies has revealed GABA immunoreactivity throughout the polyp tissue, both in neuronal and non-neuronal elements. GAD immunoreactivity has been mostly localized in the neuronal compartment, contacting epithelial and muscular elements. GABA(B) R immunoreactivity appears particularly intense in the nematocytes and in the oocyte envelope; its presence in GAD-immunoreactive neurons in the tentacles suggests an autocrine type of regulation. Western blot analysis has confirmed that a GABA(B) R, with a molecular weight of 142 kDa, similar to that of rat brain, is present in E. cavolini polyp tissue. The identification of the sites of the synthesis, vesicular transport, storage and reception of GABA strongly suggests the presence of an almost complete set of GABA-related molecules for the functioning of the GABAergic system in this simple nervous system. The distribution of these different immunoreactivities has allowed us to hypothesize GABA involvement in nematocyst discharge, in body wall and enteric muscular contraction, in neuronal integration and in male gametocyte differentiation.

  5. Raman Optical Activity of Biological Molecules

    NASA Astrophysics Data System (ADS)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  6. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  7. Molecular spectroscopic studies on the interaction of ferulic acid with calf thymus DNA.

    PubMed

    Zhang, Shufang; Sun, Xuejun; Qu, Fengli; Kong, Rongmei

    2013-08-01

    The interaction between ferulic acid and calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. Results indicated that a complex of ferulic acid with ctDNA was formed with a binding constant of K(290K)=7.60×10(4) L mol(-1) and K(310K)=4.90×10(4) L mol(-1). The thermodynamic parameters enthalpy change (ΔH°), entropy change (ΔS°) and Gibbs free energy (ΔG°) were calculated to be -1.69×10(4) J mol(-1), 35.36 J K(-1) mol(-1) and -2.79×10(4) J mol(-1) at 310 K, respectively. The acting forces between ferulic acid and DNA mainly included hydrophobic interaction and hydrogen bonds. Acridine orange displacement studies revealed that ferulic acid can substitute for AO probe in the AO-DNA complex which was indicative of intercalation binding. Thermal denaturation study suggested that the interaction of ferulic acid with DNA could result in the increase of the denaturation temperature, which indicated that the stabilization of the DNA helix was increased in the presence of ferulic acid. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between ferulic acid and ctDNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Revisiting the Central Dogma One Molecule at a Time

    PubMed Central

    Bustamante, Carlos; Cheng, Wei; Meija, Yara

    2011-01-01

    The faithful relay and timely expression of genetic information depend on specialized molecular machines, many of which function as nucleic acid translocases. The emergence over the last decade of single-molecule fluorescence detection and manipulation techniques with nm and Å resolution, and their application to the study of nucleic acid translocases are painting an increasingly sharp picture of the inner workings of these machines, the dynamics and coordination of their moving parts, their thermodynamic efficiency, and the nature of their transient intermediates. Here we present an overview of the main results arrived at by the application of single-molecule methods to the study of the main machines of the central dogma. PMID:21335233

  9. Murine cytomegalovirus: detection of latent infection by nucleic acid hybridization technique.

    PubMed Central

    Cheung, K S; Huang, E S; Lang, D J

    1980-01-01

    The technique of nucleic acid hybridization was used to detect the presence of murine cytomegalovirus (MCMV)-specific deoxyribonucleic acid (DNA) in cell cultures and salivary gland tissues. The presence of approximately 4.5 and 0.2 genome equivalents per cell of MCMV-specific DNA was identified in cultures of salivary (ISG2) and prostate gland (IP) cells, respectively. These cells, derived from animals with experimentally induced latent infections, were negative for virus-specific antigens by immunofluorescence and on electron microscopy revealed no visible evidence of the presence of herpesviruses. A cell line derived from the salivary gland of an uninoculated animal (NSG2) was also found to possess MCMV-specific DNA (0.2 genome equivalents per cell). For this reason, salivary gland tissues from uninoculated animals supplied as "specific pathogen-free" mice by three commercial sources were tested upon arrival for the presence of MCMC-specific DNA. MCMV-specific DNA was detectable in pooled salivary gland extracts from uninoculated animals derived from two commercial sources. All of these animals were seronegative and virus negative by conventional infectivity assays. PMID:6247281

  10. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  11. Large low-field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Yue, F. J.; Wang, S.; Lin, L.; Zhang, F. M.; Li, C. H.; Zuo, J. L.; Du, Y. W.; Wu, D.

    2011-01-01

    Acetic acid molecule-coated Fe3O4 nanoparticles, 450-650 nm in size, have been synthesized using a chemical solvothermal reduction method. Fourier transform infrared spectroscopy measurements confirm one monolayer acetic acid molecules chemically bond to the Fe3O4 nanoparticles. The low-field magnetoresistance (LFMR) of more than -10% at room temperature and -23% at 140 K is achieved with saturation field of less than 2 kOe. In comparison, the resistivity of cold-pressed bare Fe3O4 nanoparticles is six orders of magnitudes smaller than that of Fe3O4/molecule nanoparticles, and the LFMR ratio is one order of magnitude smaller. Our results indicate that the large LFMR in Fe3O4/molecule nanoparticles is associated with spin-polarized electrons tunnelling through molecules instead of direct nanoparticle contacts. These results suggest that magnetic oxide-molecule hybrid materials are an alternative type of materials to develop spin-based devices by a simple low-cost approach.

  12. Mechanisms for the Formations of the Thymine Under Astrophysical Conditions and Implications for the Origin of Life

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.; Lee, Timothy J.

    2016-01-01

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.

  13. Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.; Lee, Timothy J.

    2016-04-01

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.

  14. Binding of radiation-induced phenylalanine radicals to DNA: influence on the biological activity of the DNA and on its sensitivity to the induction of breaks by gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderschans, G.P.; Vanrijn, C.J.S.; Bleichrodt, J.F.

    1975-11-01

    When an aqueous solution of double-stranded deoxyribonucleic acid (DNA) of bacteriophage PM2 containing phenylalanine and saturated with N2O is irradiated with gamma rays, radiation induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA most of the phenylalanine radicals bound are nonlethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. Theremore » are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules. (Author) (GRA)« less

  15. Crystal Structures of Fatty Acid Amide Hydrolase Bound to the Carbamate Inhibitor URB597: Discovery of a Deacylating Water Molecule and Insight into Enzyme Inactivation

    PubMed Central

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C.; Benson, Timothy E.; Cravatt, Benjamin F.; Stevens, Raymond C.

    2010-01-01

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 Å resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network, and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH’s catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 Å) than previously reported. The higher resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggest a functional convergence between the amidase signature enzymes and serine proteases. PMID:20493882

  16. Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597: discovery of a deacylating water molecule and insight into enzyme inactivation.

    PubMed

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C; Benson, Timothy E; Cravatt, Benjamin F; Stevens, Raymond C

    2010-07-23

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 A resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 A) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Neural network consistent empirical physical formula construction for density functional theory based nonlinear vibrational absorbance and intensity of 6-choloronicotinic acid molecule

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan

    2012-05-01

    Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar

  18. Neural network consistent empirical physical formula construction for density functional theory based nonlinear vibrational absorbance and intensity of 6-choloronicotinic acid molecule.

    PubMed

    Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan

    2012-05-01

    Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar

  19. A study of competitive adsorption of organic molecules onto mineral oxides using DRIFTS

    DOE PAGES

    Joan E. Thomas; Kelley, Michael J.

    2009-10-20

    In this study, analysis of DRIFTS spectra was used for a quantitative study of competitive adsorption of myristic and salicylic acids onto kaolinite or γ-alumina. Peaks unique to the ring or the chain were selected and single molecule studies used as calibration. Samples were exposed to hexane solution containing equal molecular quantities of each acid. The surface loading of salicylic acid was not influenced by the presence of myristic acid on either mineral but the maximum loading of myristic acid was decreased (46-50%) by salicylic acid. Displacement of myristic acid from {gamma}-alumina, but not kaolinite, was observed when excess salicylicmore » acid remained in solution. A 25% increase in the maximum loading was observed for kaolinite, but not for{gamma}-alumina. On {gamma}-alumina, after a loading of 1 molecule per nm 2, increased exposure resulted in salicylic acid adsorption only, this value is approximately the same for salicylic acid adsorption from aqueous solution or for water washed hexane treated samples. Thus a set of sites for adsorption of either acid is indicated together with other energetically less favorable sites, which can be occupied by salicylic, but not by myristic, acid.« less

  20. Histamine monolith versatility to purify supercoiled plasmid deoxyribonucleic acid from Escherichia coli lysate.

    PubMed

    Sousa, A; Almeida, A M; Černigoj, U; Sousa, F; Queiroz, J A

    2014-08-15

    Preparation of high quantities of supercoiled plasmid DNA of pharmaceutical grade purity is a research area where intensive investigation is being performed. From this standpoint, several downstream methods have been proposed, among them the monolithic chromatographic strategies owing to excellent mass transfer properties of monolithic supports and their high binding capacity for large biomolecules. The present study explores the physicochemical properties of histamine ligand in a supercoiled plasmid DNA purification process from an Escherichia coli clarified lysate, where the emphasis is given to the elution strategy that allows higher selectivity and efficient removal of other impurities besides the open circular isoform. The combination of high NaCl concentration and acidic pH allowed the elimination of 89% of RNA during the preparative loading of the lysate sample. The results of the purification strategy with ascending sodium chloride gradient revealed that 97% of supercoiled plasmid DNA was recovered with a purity degree of 99%. In addition, using a combined purification strategy with ascending sodium chloride (capture step) and then descending ammonium sulfate (polishing step) gradient, it was achieved a lower supercoiled plasmid DNA recovery yield of 79% with a purity degree of 92%, although the dynamic binding capacity under these conditions was higher than in the previous strategy. A significant reduction of host contents, such as proteins, RNA and genomic DNA, was obtained in both purification strategies. Accordingly, histamine is a useful and versatile ligand that allows the desirable supercoiled plasmid purification with high yield and purity level. Copyright © 2014. Published by Elsevier B.V.

  1. Post-Training Intrahippocampal Injection of Synthetic Poly-Alpha-2,8-Sialic Acid-Neural Cell Adhesion Molecule Mimetic Peptide Improves Spatial Long-Term Performance in Mice

    ERIC Educational Resources Information Center

    Florian, Cedrick; Foltz, Jane; Norreel, Jean-Chretien; Rougon, Genevieve; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their…

  2. Sol-gel method for encapsulating molecules

    DOEpatents

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  3. Mapping the Small Molecule Interactome by Mass Spectrometry.

    PubMed

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  4. Large magnetoresistance in Fe3O4/molecule nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.; Yue, F. J.; Lin, L.; Shi, Y. J.; Wu, D.

    2010-08-01

    In this work, we successfully fabricate Fe3O4 nanoparticles self-assembled with molecules to explore a new approach of studying the molecular spintronics. Fourier transform infrared spectroscopy measurements indicate that one monolayer molecules chemically bonds to the Fe3O4 nanoparticles and the physically absorbed molecules do not exist in the samples. The magnetoresistance (MR) of molecule fully coated ~10 nm size nanoparticles is up to 7.3% at room temperature and 17.5% at 115 K under a field of 5.8 kOe. And the MR ratio is more than two times larger than that of pure Fe3O4 nanoparticles. This enhanced MR is likely arising from weak spin scattering while carriers transport through the molecules. Moreover, a very large low field magnetoresistance is also observed with ~500nm ferromagnetic Fe3O4 nanoparticles coated with acetic acid molecules. Those features open a door for the development of future spin-based molecular electronics.

  5. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity.

    PubMed

    Martini, Laura; Meyer, Adam J; Ellefson, Jared W; Milligan, John N; Forlin, Michele; Ellington, Andrew D; Mansy, Sheref S

    2015-10-16

    An in vitro selection method for ligand-responsive RNA sensors was developed that exploited strand displacement reactions. The RNA library was based on the thiamine pyrophosphate (TPP) riboswitch, and RNA sequences capable of hybridizing to a target duplex DNA in a TPP regulated manner were identified. After three rounds of selection, RNA molecules that mediated a strand exchange reaction upon TPP binding were enriched. The enriched sequences also showed riboswitch activity. Our results demonstrated that small-molecule-responsive nucleic acid sensors can be selected to control the activity of target nucleic acid circuitry.

  6. Effect of chain length on binding of fatty acids to Pluronics in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O

    2008-03-15

    We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.

  7. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  8. Tris[(6S)-6-hy-droxy-4-epi-shikimic acid] monohydrate: an enanti-omerically pure hy-droxy-lated shikimic acid derived from methyl shikimate.

    PubMed

    Griesbeck, Axel G; Miara, Claus; Neudörfl, Jörg-M

    2012-11-01

    The title compound, 3C(7)H(10)O(6)·H(2)O, is the enanti-omerically pure product of a multi-step synthesis from the enanti-omerically pure natural shikimic acid. The asymmetric unit contains three mol-ecules of the acid and one mol-ecule of water. The cyclo-hexene rings of the acids have half-chair conformations. The carboxyl-ate, the four hydroxide groups and the additional water mol-ecule form a complex three-dimensional hydrogen-bonding network.

  9. Direct Isolation of Purines and Pyrimidines from Nucleic Acids Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Schubert, Michael; Bada, Jeffrey L.

    2003-01-01

    A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (approx. 0.5 Torr) at temperatures of >150 C. With the exception of guanine, approximately 60 -75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 C. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

  10. Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI.

    PubMed Central

    Chater, K F; Wilde, L C

    1976-01-01

    The bacteriophage Pa16, isolated from soil on Streptomyces albus G, was restricted when transferred from an alternative host back to S. albus G. Extracted unmodified Pa16 deoxyribonucleic acid was cleaved at a single site by a cell-free extract of S. albus G. Fractions cleaving Pal6 deoxyribonucleic acid contained the endonuclease SalI first described by J. Arrand, P. Myers, and R. J. Roberts (unpublished data). A mutant of S. albus G was isolated which was defective in both restriction and modification of Pal6. This mutant lacked SalI activity. It is concluded that SalI is the agent of restriction of Pal6 by S. albus G. Images PMID:977549

  11. Influenza virus site recognized by a murine helper T cell specific for H1 strains. Localization to a nine amino acid sequence in the hemagglutinin molecule.

    PubMed

    Hackett, C J; Dietzschold, B; Gerhard, W; Ghrist, B; Knorr, R; Gillessen, D; Melchers, F

    1983-08-01

    The functional helper T cell line Vir-2, derived from a PR8 (H1N1) influenza virus-immunized BALB/c mouse, proliferates in response to syngeneic antigen-presenting cells and naturally occurring strains of subtype H1 human influenza virus from 1934-1957 and 1977-1980 isolates. A conserved region of the hemagglutinin molecule around amino acid position 115 in the heavy chain (HA1) was implicated as being important in this recognition by the lack of stimulatory activity associated with a glutamic acid to lysine substitution at position 115 in the laboratory mutant RV6, derived from wild-type PR8. Characterization of the stimulatory determinant on the wild-type hemagglutinin molecule was then undertaken using cleavage products and synthetic peptides. Vir-2 cells recognized the reduced and alkylated purified HA1 of PR8 virus, and this reactivity was retained after cleavage at methionine and tryptophan residues. High-pressure liquid chromatography separation of cleavage fragments indicated that a short sequence of the HA1 containing residue 115 was being recognized. This recognition was localized to a nine amino acid segment (positions 111-119) by assaying stimulation with synthetic peptide homologues of different lengths from that region. As with native hemagglutinin, Vir-2 cells responded to active peptides when presented by H-2d but not H-2k antigen-presenting cells.

  12. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D

    2017-03-22

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  13. Behavior of atypical amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Ko, John

    1997-08-01

    The physical behavior of several atypical amphiphilic molecules was studied in various environments including micelles, model bilayer membranes, and emulsions. The molecules under investigation were nor-chenodeoxycholic acid (nor-CDCA), ursodeoxycholic acid (UDCA), sphingosine (Sp), sphingosine hydrochloride (SpċHCl), and tetrahydrolipstatin (THL). The bile acids, nor-CDCA and UDCA, were studied using 13C-Nuclear Magnetic Resonance ([13C) -NMR) in micelles of taurocholate and in bilayers of phosphatidylcholine. The pK a values of the bile acids in each environment were determined by [13C) -NMR and are as follows: 6.08 ±.03 for nor-CDCA and 6.27 ±.01 for UDCA in micelles, and 7.04 ± 12 for nor-CDCA and 6.89 ±.05 for UDCA in vesicles. Using line shape analysis, the transbilayer movement rate at 36oC for nor-CDCA and UDCA was calculated to be 580 sec--1 and 409 sec-1, respectively. [13C) -NMR titration of Sp gave pK a values of 9.09 ±.02 in micelles and 9.69 ±.21 in bilayers. Differential scanning calorimetry (DSC) and X-ray diffraction were used to establish the Spċwater and SpċHClċwater phase diagrams. Anhydrous and hydrated samples ranging from 5- 90% water were analyzed. The DSC thermograms traced out the transition temperatures of each molecule while the X- ray diffraction patterns revealed their chain and crystalline lattice packing structures. In general, sphingosine exists as a hydrated crystal with β packing phase below 43oC and melts into an Lα phase. Sphingosine hydrochloride, however, exists as a gel phase (L_beta or /beta/sp') below 42oC that swells to 61% hydration. At low water concentrations (0-64%), a lamellar liquid crystal phase (L_alpha) is formed above the chain melting transition of 42oC. At medium concentration (65%), a Hexagonal I phase is present, and at high water concentrations (66-90%), a micellar phase is present. THL, a specific inhibitor of lipases, was analyzed with [ 13C) -NMR to study its behavior in various environments

  14. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  15. Electric dipole moments of nanosolvated acid molecules in water clusters.

    PubMed

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V

    2015-01-30

    The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  16. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with cellular nuclear double-stranded deoxyribonucleic acid (DNA) or other nuclear constituents that are specifically diagnostic of SLE. Measurement of nuclear double-stranded DNA antibodies aids in the...

  17. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with cellular nuclear double-stranded deoxyribonucleic acid (DNA) or other nuclear constituents that are specifically diagnostic of SLE. Measurement of nuclear double-stranded DNA antibodies aids in the...

  18. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... with cellular nuclear double-stranded deoxyribonucleic acid (DNA) or other nuclear constituents that are specifically diagnostic of SLE. Measurement of nuclear double-stranded DNA antibodies aids in the...

  19. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with cellular nuclear double-stranded deoxyribonucleic acid (DNA) or other nuclear constituents that are specifically diagnostic of SLE. Measurement of nuclear double-stranded DNA antibodies aids in the...

  20. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration

    PubMed Central

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. PMID:23836972

  1. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration.

    PubMed

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

  2. [Acatalasemia and type 2 diabetes mellitus].

    PubMed

    Góth, László; Nagy, Teréz; Káplár, Miklós

    2015-03-08

    The catalase enzyme decomposes the toxic concentrations of hydrogen peroxide into oxygen and water. Hydrogen peroxide is a highly reactive small molecule and its excessive concentration may cause significant damages to proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Acatalasemia refers to inherited deficiency of the catalase enzyme. In this review the authors discuss the possible role of the human catalase enzyme, the metabolism of hydrogen peroxide, and the phenomenon of hydrogen peroxide paradox. In addition, they review data obtained from Hungarian acatalasemic patients indicating an increased frequency of type 2 diabetes mellitus, especially in female patients, and an early onset of type 2 diabetes in these patients. There are 10 catalase gene variants which appear to be responsible for decreased blood catalase activity in acatalasemic patients with type 2 diabetes. It is assumed that low levels of blood catalase may cause an increased concentration of hydrogen peroxide which may contribute to the pathogenesis of type 2 diabetes mellitus.

  3. Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).

    PubMed

    Schneider, Uffe Vest

    2012-01-01

    This thesis establishes oligonucleotide design rules and applications of a novel group of DNA stabilizing molecules collectively called Twisted Intercalating Nucleic Acid - TINA. Three peer-reviewed publications form the basis for the thesis. One publication describes an improved and rapid method for determination of DNA melting points and two publications describe the effects of positioning TINA molecules in parallel triplex helix and antiparallel duplex helix forming DNA structures. The third publication establishes that TINA molecules containing oligonucleotides improve an antiparallel duplex hybridization based capture assay's analytical sensitivity compared to conventionel DNA oligonucleotides. Clinical microbiology is traditionally based on pathogenic microorganisms' culture and serological tests. The introduction of DNA target amplification methods like PCR has improved the analytical sensitivity and total turn around time involved in clinical diagnostics of infections. Due to the relatively weak hybridization between the two strands of double stranded DNA, a number of nucleic acid stabilizing molecules have been developed to improve the sensitivity of DNA based diagnostics through superior binding properties. A short introduction is given to Watson-Crick and Hoogsteen based DNA binding and the derived DNA structures. A number of other nucleic acid stabilizing molecules are described. The stabilizing effect of TINA molecules on different DNA structures is discussed and considered in relation to other nucleic acid stabilizing molecules and in relation to future use of TINA containing oligonucleotides in clinical diagnostics and therapy. In conclusion, design of TINA modified oligonucleotides for antiparallel duplex helixes and parallel triplex helixes follows simple purpose dependent rules. TINA molecules are well suited for improving multiplex PCR assays and can be used as part of novel technologies. Future research should test whether combinations of TINA

  4. Interaction of Gas Phase Oxalic Acid with Ammonia and its Atmospheric Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiu-Qiu; Liu, Yi-Rong; Huang, Teng

    Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that themore » heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.« less

  5. Self-assembly modes of glycyrrhetinic acid esters in view of the crystal packing of related triterpene molecules.

    PubMed

    Langer, Dominik; Wicher, Barbara; Szczołko, Wojciech; Gdaniec, Maria; Tykarska, Ewa

    2016-08-01

    The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds.

  6. Selective Attachment of Nucleic Acid Molecules to Patterned Self-Assembled Surfaces.

    DTIC Science & Technology

    1994-12-01

    of different sequence is accomplished by placement of 8 liquid portions of nucleic acids at the desired position on the 9 filter. This method is...acids are selectively 24 bound from regions to which nucleic acids are excluded, other than 25 by placement of liquid aliquots (generally >1 Al) of...is typically non-covalent (i.e., ionic 16 bonding, or, less often, hydrogen bonding). Advantageously, non- 17 covalent bonding of nucleic acid

  7. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    ERIC Educational Resources Information Center

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  8. Remarkable Enhancement of the Hole Mobility in Several Organic Small-Molecules, Polymers, and Small-Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p-Dopant B(C6F5)3.

    PubMed

    Panidi, Julianna; Paterson, Alexandra F; Khim, Dongyoon; Fei, Zhuping; Han, Yang; Tsetseris, Leonidas; Vourlias, George; Patsalas, Panos A; Heeney, Martin; Anthopoulos, Thomas D

    2018-01-01

    Improving the charge carrier mobility of solution-processable organic semiconductors is critical for the development of advanced organic thin-film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small-molecules, polymers, and small-molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C 6 F 5 ) 3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C 6 F 5 ) 3 is shown to have a remarkable impact are the blends of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF-TESADT:PTAA) and 2,7-dioctyl[1]-benzothieno[3,2-b][1]benzothiophene:poly(indacenodithiophene-co-benzothiadiazole) (C8-BTBT:C16-IDTBT), for which hole mobilities of 8 and 11 cm 2 V -1 s -1 , respectively, are obtained. Doping of the 6,13-bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C 6 F 5 ) 3 is also shown to increase the maximum hole mobility to 3.7 cm 2 V -1 s -1 . Analysis of the single and multicomponent materials reveals that B(C 6 F 5 ) 3 plays a dual role, first acting as an efficient p-dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p-doping and dopant-induced long-range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.

  9. The Amazing Molecule Race: A WebQuest for 8th Grade Science

    NASA Astrophysics Data System (ADS)

    Soehl, Diana; Moats, S. J.; Langston, G. I.

    2009-01-01

    Did you ever wonder if life exists beyond Earth? The molecules that helped make up you and your friends are the same floating in outer space! The Race is ON to discover as many molecules in space as possible and to find the most important molecules for life: amino acids, DNA and RNA! As aspiring astronomers and astrobiologists, you will explore how these molecules are detected on Earth and in space. The `Search for Life’ is a pretty big task considering the size of the Universe. By learning how to find evidence of life forming molecules you will be able to provide conclusions that will shape policy regarding space missions, funding and technology development during your lifetime.

  10. Epigenomics

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  11. Genetic Mapping

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  12. Biological Pathways

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  13. Cloning

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  14. Chromosomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  15. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  16. Transcriptome

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  17. Sampling and Analysis of Organic Molecules in the Plumes of Enceladus

    NASA Astrophysics Data System (ADS)

    Monroe, A. A.; Williams, P.; Anbar, A. D.; Tsou, P.

    2012-12-01

    The recent detection of organic molecules in the plumes of Enceladus, which also contain water and nitrogen (Waite et al., 2006; Matson et al., 2007), suggests that the geologically active South polar region contains habitable, subsurface water (McKay et al., 2008). Characterizing these molecules will be a high priority for any future mission to Enceladus. Sample return is highly desirable, but can it capture useful samples at Enceladus? Using Stardust mission parameters for comparison, we consider the survival of complex organic molecules during collection to assess the feasibility of one aspect of a sample return mission. A successful sample return mission must include the capability to capture and recover intact or partly intact molecules of particular astrobiological interest: lipids, amino and nucleic acids, polypeptides, and polynucleotides. The Stardust mission to comet Wild 2 successfully captured amino acids, amines, and PAHs using a combination of aerogel and Al foil (Sandford et al., 2006, 2010). For larger and more fragile molecules, particularly polypeptides and polynucleotides, low collisional damage is achieved by impact on low molecular weight surfaces. A particularly intriguing possibility is a capture surface pre-coated with organic matrices identified as ideal for analysis of various biomolecules using MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry) (Hillenkamp and Karas, 2007). MALDI is a standard technique with attomole sensitivity, exceptional mass resolution, and (bio)molecular specificity (Vestal, 2011). Capture surfaces appropriate for MALDI-MS analysis could be analyzed directly without post-return manipulation, minimizing post-capture damage to these molecules and the risk of contamination during handling. A hypothetical sample collection encounter speed of ~ 5 km/s corresponds to ~0.13 eV kinetic energy per amu. Studies of molecule survival and fragmentation exist for free hexapeptides impacting hydrocarbon

  18. Developing Potential Energy Curves of Acidic and Basic Amino Acids Using Quantum Computational Techniques

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.

    2017-04-01

    Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).

  19. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  20. Construction and enzymatic degradation of multilayered poly-l-lysine/DNA films.

    PubMed

    Ren, Kefeng; Ji, Jian; Shen, Jiacong

    2006-03-01

    The layer-by-layer (LbL) self-assembly of poly-l-lysine (PLL) and deoxyribonucleic acid (DNA) was used to construct the enzymatic biodegradable multilayered films. The LbL build up of DNA multilayers was monitored by UV-vis spectrometry, and atomic force microscopy (AFM). AFM, UV-vis spectrometry and fluorescence spectrometry measurements indicated that 90% of DNA within the films was released almost linearly under 5 U mL(-1)alpha-chymotrypsin in PBS at 37 degrees C in 35 h. TEM and zeta potential experiments revealed that the released DNA molecules were condensed into the slight positive complexes with size from 20 to several hundred nanometers. The well-structured, easy processed enzymatic biodegradable multilayered film may have great potential for gene applications in tissue engineering, medical implants, etc.

  1. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules

    PubMed Central

    Wen, Xingxing; Ding, Shan; Cai, Hui; Wang, Junyi; Wen, Lu; Yang, Fan; Chen, Gang

    2016-01-01

    Targeted drug delivery to outer hair cells (OHCs) in the cochlea by nanomedicine strategies forms an effective therapeutic approach for treating hearing loss. Surface chemistry plays a deciding role in nanoparticle (NP) biodistribution, but its influence on such distribution in the cochlea remains largely unknown. Herein, we report the first systematic comparison of poly(lactic/glycolic acid) nanoparticles (PLGA NPs) with or without surface modification of hydrophilic molecules for optimizing the delivery to OHCs both in vitro and in vivo. NPs that were surface modified with poloxamer 407 (P407), chitosan, or methoxy poly(ethylene glycol) and the unmodified NPs were highly biocompatible with L929 and House Ear Institute-organ of Corti 1 cells as well as cochlear tissues. Interestingly, among all the examined NPs, P407-PLGA NPs showed the greatest cellular uptake and prominent fluorescence in cochlear imaging. More importantly, we provide novel evidence that the surface-modified NPs reached the organ of Corti and were transported into the OHCs at a higher level. Together, these observations suggest that surface modification with hydrophilic molecules will allow future clinical applications of PLGA NPs, especially P407-PLGA NPs, in efficient hearing loss therapy. PMID:27877041

  2. The dimerization of half-molecule fragments of transferrin.

    PubMed Central

    Williams, J; Moreton, K

    1988-01-01

    Partial proteolysis was used to prepare half-molecule fragments of hen ovotransferrin. N-Terminal and C-terminal fragments associate to form an N-terminal fragment-C-terminal fragment dimer. Variant forms of the N- and C-terminal fragments can be prepared in which a few amino acid residues are lacking from the C-terminal ends of the fragments. These variant fragments are partially or completely unable to associate; the suggestion that the molecular recognition sites are located in these C-terminal stretches of the N-terminal half-molecule (320-332) and of the C-terminal half-molecule (683-686) is in agreement with X-ray-crystallography data for human lactotransferrin [Anderson, Baker, Dodson, Norris, Rumball, Waters & Baker (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1769-1773]. PMID:3415649

  3. Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, Matthew K.; Francisco, Joseph S.; Verdicchio, Marco

    2015-05-14

    The hydrolysis of ketene (H2C=C=O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C=O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C=C double bond to directly produce acetic acid becomes the kinetically favored pathway formore » temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H(2)O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C=C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C=O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H(2)O + FA), the barrier for the direct addition of water across the C=C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C=O bond. In fact, the hydrolysis barrier for the H2C2O + 2H(2)O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the

  4. Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA

    PubMed Central

    2017-01-01

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif–small molecule interactions identified via selection. Named High Throughput Structure–Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif–small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule–RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs. PMID:28386598

  5. Effect of Hydroxyurea on Staphylococcus epidermidis and Micrococcus lysodeikticus: Thickening of the Cell Wall

    PubMed Central

    Feiner, Rose R.; Coward, Joe E.; Rosenkranz, Herbert S.

    1973-01-01

    Hydroxyurea-sensitive strains of Staphylococcus epidermidis and Micrococcus lysodeikticus showed marked thickening of cell walls and reduction in deoxyribonucleic acid synthesis when grown in the presence of hydroxyurea. Images PMID:4790602

  6. From designer Lewis acid to designer Brønsted acid towards more reactive and selective acid catalysis

    PubMed Central

    YAMAMOTO, Hisashi

    2008-01-01

    This review focuses on the development of acid catalysis for selective organic transformations conducted in our laboratories for the past 30 years. Several important concepts in designing of catalysts are described with some examples. Further, recent developments in super Brønsted acid and their applications in a one-pot procedure to construct complex molecules with high diastereoselectivities are described. PMID:18941293

  7. Supramolecular Amino Acid Based Hydrogels: Probing the Contribution of Additive Molecules using NMR Spectroscopy

    PubMed Central

    Ramalhete, Susana M.; Nartowski, Karol P.; Sarathchandra, Nichola; Foster, Jamie S.; Round, Andrew N.; Angulo, Jesús

    2017-01-01

    Abstract Supramolecular hydrogels are composed of self‐assembled solid networks that restrict the flow of water. l‐Phenylalanine is the smallest molecule reported to date to form gel networks in water, and it is of particular interest due to its crystalline gel state. Single and multi‐component hydrogels of l‐phenylalanine are used herein as model materials to develop an NMR‐based analytical approach to gain insight into the mechanisms of supramolecular gelation. Structure and composition of the gel fibres were probed using PXRD, solid‐state NMR experiments and microscopic techniques. Solution‐state NMR studies probed the properties of free gelator molecules in an equilibrium with bound molecules. The dynamics of exchange at the gel/solution interfaces was investigated further using high‐resolution magic angle spinning (HR‐MAS) and saturation transfer difference (STD) NMR experiments. This approach allowed the identification of which additive molecules contributed in modifying the material properties. PMID:28401991

  8. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttmann, David M.; Hart, Lori; Du, Kevin

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cellmore » lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.« less

  9. Inhibition of Hsp27 radiosensitizes head-and-neck cancer by modulating deoxyribonucleic acid repair.

    PubMed

    Guttmann, David M; Hart, Lori; Du, Kevin; Seletsky, Andrew; Koumenis, Constantinos

    2013-09-01

    To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer. Copyright © 2013. Published by Elsevier Inc.

  10. Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells.

    PubMed

    Mhlongo, M I; Tugizimana, F; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A

    2017-01-22

    To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Kohn, Alexandra; Mathiesen, Svein D.; Præsteng, Kirsti E.

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer ( Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 × 2.0-3.5 μm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  12. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches.

    PubMed

    Rossetti, Marianna; Ippodrino, Rudy; Marini, Bruna; Palleschi, Giuseppe; Porchetta, Alessandro

    2018-06-13

    The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.

  13. Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Partha P., E-mail: Partha.P.Bera@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov; Nuevo, Michel; Materese, Christopher K.

    Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H{sub 2}O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantummore » chemical studies confirmed that the reaction pathways were favorable provided that several H{sub 2}O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H{sub 2}O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.« less

  14. Reverse Transcriptase-Containing Particles Induced in Rous Sarcoma Virus-Transformed Rat Cells by Arginine Deprivation

    PubMed Central

    Kotler, Moshe; Weinberg, Eynat; Haspel, Osnat; Becker, Yechiel

    1972-01-01

    Incubation of rat cells transformed by Rous sarcoma virus (RSV) in an arginine-deficient medium resulted in accumulation of particles in the culture medium. Such particles did not appear when the transformed rat cells were incubated in a complete medium nor in the medium of primary rat cells which were incubated either in arginine-deficient or complete media. The particles which were released from the arginine-deprived transformed rat cells resemble C-type particles in their properties. These particles band in sucrose gradients at a density of 1.16 g/ml and contain 35S ribonucleic acid (RNA) molecules and a reverse transcriptase activity. Analysis of the cytoplasm of transformed and primary rat cells, deprived and undeprived of arginine, revealed the presence of reverse transcriptase-containing particles which banded in sucrose gradients at a density of 1.14 g/ml. These particles differed from the particles released into the medium by the arginine-deprived RSV-transformed rat cells. The deoxyribonucleic acid (DNA) molecules synthesized in vitro by the reverse transcriptase present in the particles isolated from the medium of arginine-deprived cells hybridized to RSV RNA, whereas the DNA synthesized by the cell-bound enzyme had no homology to RSV RNA. PMID:4116137

  15. From molecular biology to nanotechnology and nanomedicine.

    PubMed

    Bogunia-Kubik, Katarzyna; Sugisaka, Masanori

    2002-01-01

    Great progress in the development of molecular biology techniques has been seen since the discovery of the structure of deoxyribonucleic acid (DNA) and the implementation of a polymerase chain reaction (PCR) method. This started a new era of research on the structure of nucleic acids molecules, the development of new analytical tools, and DNA-based analyses. The latter included not only diagnostic procedures but also, for example, DNA-based computational approaches. On the other hand, people have started to be more interested in mimicking real life, and modeling the structures and organisms that already exist in nature for the further evaluation and insight into their behavior and evolution. These factors, among others, have led to the description of artificial organelles or cells, and the construction of nanoscale devices. These nanomachines and nanoobjects might soon find a practical implementation, especially in the field of medical research and diagnostics. The paper presents some examples, illustrating the progress in multidisciplinary research in the nanoscale area. It is focused especially on immunogenetics-related aspects and the wide usage of DNA molecules in various fields of science. In addition, some proposals for nanoparticles and nanoscale tools and their applications in medicine are reviewed and discussed.

  16. Human papilloma virus prevalence in laryngeal squamous cell carcinoma.

    PubMed

    Gungor, A; Cincik, H; Baloglu, H; Cekin, E; Dogru, S; Dursun, E

    2007-08-01

    To determine the prevalence and type of human papilloma virus deoxyribonucleic acid (DNA) in cases of laryngeal squamous cell carcinoma. We analysed the prevalence of human papilloma virus infection in archived paraffin block specimens taken from 99 cases of laryngeal squamous cell carcinoma between 1990 and 2005, using polymerase chain reaction techniques. Biopsy specimens from five proven verrucous skin lesions were used as positive controls, and peripheral blood samples from five healthy volunteers were used as negative controls. Four test samples were found to have inadequate deoxyribonucleic acid purity and were therefore excluded from the study. Human papilloma virus deoxyribonucleic acid was detected in seven of 95 cases of laryngeal squamous cell carcinoma (7.36 per cent). Human papilloma virus genotyping revealed double human papilloma virus infection in three cases and single human papilloma virus infection in the remaining four cases. The human papilloma virus genotypes detected were 6, 11 and 16 (the latter detected in only one case). In our series, a very low human papilloma virus prevalence was found among laryngeal squamous cell carcinoma cases. The human papilloma virus genotypes detected were mostly 6 and/or 11, and 16 in only one case. To the best of our knowledge, this is the first report of human papilloma virus prevalence in laryngeal squamous cell carcinoma, based on polymerase chain reaction genotyping in a Turkish population.

  17. Remarkable Enhancement of the Hole Mobility in Several Organic Small‐Molecules, Polymers, and Small‐Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p‐Dopant B(C6F5)3

    PubMed Central

    Panidi, Julianna; Paterson, Alexandra F.; Khim, Dongyoon; Fei, Zhuping; Han, Yang; Tsetseris, Leonidas; Vourlias, George; Patsalas, Panos A.; Heeney, Martin

    2017-01-01

    Abstract Improving the charge carrier mobility of solution‐processable organic semiconductors is critical for the development of advanced organic thin‐film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small‐molecules, polymers, and small‐molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C6F5)3 in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C6F5)3 is shown to have a remarkable impact are the blends of 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF‐TESADT:PTAA) and 2,7‐dioctyl[1]‐benzothieno[3,2‐b][1]benzothiophene:poly(indacenodithiophene‐co‐benzothiadiazole) (C8‐BTBT:C16‐IDTBT), for which hole mobilities of 8 and 11 cm2 V−1 s−1, respectively, are obtained. Doping of the 6,13‐bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C6F5)3 is also shown to increase the maximum hole mobility to 3.7 cm2 V−1 s−1. Analysis of the single and multicomponent materials reveals that B(C6F5)3 plays a dual role, first acting as an efficient p‐dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p‐doping and dopant‐induced long‐range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics. PMID:29375962

  18. 42 CFR 71.54 - Import regulations for infectious biological agents, infectious substances, and vectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... segmented configuration and may be positive sense (same polarity as mRNA), negative sense, or ambisense... material. Deoxyribonucleic acid (DNA) or Ribonucleic acid (RNA) comprising the genome or organism's... threat to public health and safety as listed in 42 CFR 73.3 and 73.4. Vector. Any animals (vertebrate or...

  19. 42 CFR 71.54 - Import regulations for infectious biological agents, infectious substances, and vectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... segmented configuration and may be positive sense (same polarity as mRNA), negative sense, or ambisense... material. Deoxyribonucleic acid (DNA) or Ribonucleic acid (RNA) comprising the genome or organism's... threat to public health and safety as listed in 42 CFR 73.3 and 73.4. Vector. Any animals (vertebrate or...

  20. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  1. Amide and Ester-Functionalized Humic Acid for Fuel Combustion Enhancement

    NASA Astrophysics Data System (ADS)

    Riggs, Mark

    Humic acid is a class of naturally occurring molecules composed of large sheet-like regions of cyclic aromatic hydrocarbon networks with surface and edge functional groups including phenols, carboxylic acids, and epoxides. These naturally occurring molecules are found in brown coal deposits near lignite formations. Humic acid has gained attention from the scientific community as a precursor for graphene. Graphene is a 2-dimensional honeycomb structure of fully unsaturated carbon atoms that has exceptional material properties and inherent aromaticity. Graphene's incredible properties are matched by the difficulty associated with reproducibly manufacturing it on a large scale. This issue has limited the use of graphene for commercial applications. The polar functional groups of humic acid contribute to the hydrophilic nature of the molecule, limiting its miscibility in any alkyl-based solvent. Surfactants containing long alkyl chains can affect the miscibility of the molecule in an organic solvent. Surfactants are often difficult to remove from the system. It is theorized that alkylation of the functional sites of humic acid can affect the hydrophilic nature of the molecule, and effectively enable its dispersion into organic solvents without simultaneous incorporation of surfactants. This dissertation investigated the amidation and esterification of humic acid molecules extracted from leonardite. The resulting change in the modified humic acid dispersibility in organic solvents and its potential usage as a fuel additive were evaluated. Butyl, hexyl, octyl, and decyl amide-modified and ester-modified humic acids were synthesized. These products were characterized to confirm successful chemical reaction through thermogravimetric analysis, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The decyl-modified humic acids remained suspended in kerosene mixtures for longer than 1 week. Other organo-humic acids showed varying degrees of flocculation

  2. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate-Impacted Groundwater (Longhorn Army Ammunition Plant)

    DTIC Science & Technology

    2009-01-01

    citric acid , or ethanol have been used in field applications, and it may be possible to use mobile forms of emulsified vegetable oil, methyl esters and...70 5.7.5 Results of Volatile Fatty Acids Analysis .................................................................. 77 5.7.6 Results of...gases DNA deoxyribonucleic acid do dissolved oxygen DoD Department of Defense DOE Department of Energy DOT Department of Transportation EISB

  3. High-Resolution Electrospray Ionization/Ion Mobility Spectrometer for Detection of Abiotic Amino Acids

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.

    2003-01-01

    One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.

  4. Current status of the prebiotic synthesis of small molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1986-01-01

    Experiments designed to simulate conditions on the primitive earth and to demonstrate how the organic compounds that made up the first living organisms were synthesized are described. Simulated atmospheres with CH4, N2, NH3, and H2O were found to be most effective for synthesis of small prebiotic molecules, although atmospheres with H2, CO, N2, and H2O, and with H2, CO2, N2, and H2O also give good yields of organic compounds provided the H2/CO and H2/CO2 ratios are above 1 and 2, respectively. The spark discharge (which is a good source of HCN) and UV light are also important. Reasonable prebiotic syntheses were worked out for the amino acids that occur in proteins (with the exception of lysine, arginine, and histidine), and for purines, pyrimidines, sugars, and nicotinic acid. Many of the molecules that have been produced in these simulated primitive-earth experiments are found in carbonaceous chondrites.

  5. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  6. Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum

    PubMed Central

    Mitsuda, Satoshi; Yokomichi, Tomonobu; Yokoigawa, Junpei; Kataoka, Takao

    2014-01-01

    Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1) in response to interleukin-1α (IL-1α). We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum. PMID:24649404

  7. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration

    PubMed Central

    Gerardy-Schahn, Rita; Hildebrandt, Herbert

    2014-01-01

    Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity

  8. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang; Xie, Lin-Run; Li, Xiao-Juan

    2015-04-01

    Salicylic acid (SA), 2-hydroxy benzoic acid, is a small phenolic compound with multifunction that is involved in plant growth, development, and the acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but cross talk between SA and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment of maize seedlings with SA improved the survival percentage of seedlings under heat stress, indicating that SA pretreatment could improve the heat tolerance of maize seedlings. In addition, treatment with SA enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S. Interestingly, SA-induced heat tolerance was enhanced by addition of NaHS, a H2S donor, but weakened by specific inhibitors of H2S biosynthesis DL-propargylglycine (PAG) and its scavenger hydroxylamine (HT). Furthermore, pretreatment with paclobutrazol (PAC) and 2-aminoindan-2-phosphonic acid (AIP), inhibitors of SA biosynthesis, had no significant effect on NaHS-induced heat tolerance of maize seedlings. Similarly, significant change in the activities of phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H), the key enzymes in SA biosynthesis, and the content of endogenous SA, was not observed in maize seedlings by NaHS treatment. All of the above-mentioned results suggest that SA pretreatment could improve the heat tolerance of maize seedlings, and H2S might be a novel downstream signal molecule in SA-induced heat tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    NASA Astrophysics Data System (ADS)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  10. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  11. Small-molecule pheromones and hormones controlling nematode development.

    PubMed

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  12. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH < 7 show dynamic broadenings. The lineshape analysis of these signals has provided information on the kinetics of the processes running in the dynamic acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.

  13. Computer display and manipulation of biological molecules

    NASA Technical Reports Server (NTRS)

    Coeckelenbergh, Y.; Macelroy, R. D.; Hart, J.; Rein, R.

    1978-01-01

    This paper describes a computer model that was designed to investigate the conformation of molecules, macromolecules and subsequent complexes. Utilizing an advanced 3-D dynamic computer display system, the model is sufficiently versatile to accommodate a large variety of molecular input and to generate data for multiple purposes such as visual representation of conformational changes, and calculation of conformation and interaction energy. Molecules can be built on the basis of several levels of information. These include the specification of atomic coordinates and connectivities and the grouping of building blocks and duplicated substructures using symmetry rules found in crystals and polymers such as proteins and nucleic acids. Called AIMS (Ames Interactive Molecular modeling System), the model is now being used to study pre-biotic molecular evolution toward life.

  14. Investigation of the Hydantoin Monomer and its Interaction with Water Molecules

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    Hydantoin (Imidazolidine-2,4-dione, C_3H_4N_2O_2) is a five-membered heterocyclic compound of astrobiological interest. This molecule has been detected in carbonaceous chondrites [1], and its formation can rise from the presence of glycolic acid and urea, two prebiotic molecules [2]. The hydrolysis of hydantoin under acidic conditions can also produce glycine [3], an amino acid actively searched for in the interstellar medium. Spectroscopic data of hydantoin is very limited and mostly dedicated to the solid phase. The high resolution study in gas phase is restricted to the work recently published by Ozeki et al. reporting the pure rotational spectra of the ground state and two vibrational states of the molecule in the millimeter-wave region (90-370 GHz)[4]. Using chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, we recorded the jet-cooled rotational spectra of hydantoin with water between 2 to 8 GHz. We observed the ground state of hydantoin monomer and several water complexes with one or two water molecules. All the observed species exhibit a hyperfine structure due to the two nitrogen atoms present in the molecule, which were fully resolved and analyzed. Additional experiments with a ^{18}O enriched water sample were realized to determine the oxygen-atom positions of the water monomers. These experiments yielded accurate structural information on the preferred water binding sites. The observed complexes and the interactions that hold them together, mainly strong directional hydrogen bonds, will be presented and discussed. [1] Shimoyama, A. and Ogasawara, R., Orig. Life Evol. Biosph., 32, 165-179, 2002. DOI:10.1023/A:1016015319112. [2] Menor-Salván, C. and Marín-Yaseli, M.R., Chem. Soc. Rev., 41(16), 5404-5415, 2012. DOI:10.1039/c2cs35060b. [3] De Marcellus P., Bertrand M., Nuevo M., Westall F. and Le Sergeant d'Hendecourt L., Astrobiology. 11(9), 847-854, 2011. DOI:10.1089/ast.2011.0677. [4] Ozeki, H., Miyahara R., Ihara H., Todaka S., Kobayashi

  15. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli

    PubMed Central

    Howard, Thomas P.; Middelhaufe, Sabine; Moore, Karen; Edner, Christoph; Kolak, Dagmara M.; Taylor, George N.; Parker, David A.; Lee, Rob; Smirnoff, Nicholas; Aves, Stephen J.; Love, John

    2013-01-01

    Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules. PMID:23610415

  16. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  17. Amino acids in the cultivation of mammalian cells.

    PubMed

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  18. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers.

    PubMed

    Garnacho, Carmen; Dhami, Rajwinder; Simone, Eric; Dziubla, Thomas; Leferovich, John; Schuchman, Edward H; Muzykantov, Vladimir; Muro, Silvia

    2008-05-01

    Type B Niemann-Pick disease (NPD) is a multiorgan system disorder caused by a genetic deficiency of acid sphingomyelinase (ASM), for which lung is an important and challenging therapeutic target. In this study, we designed and evaluated new delivery vehicles for enzyme replacement therapy of type B NPD, consisting of polystyrene and poly(lactic-coglycolic) acid polymer nanocarriers targeted to intercellular adhesion molecule (ICAM)-1, an endothelial surface protein up-regulated in many pathologies, including type B NPD. Real-time vascular imaging using intravital microscopy and postmortem imaging of mouse organs showed rapid, uniform, and efficient binding of fluorescently labeled ICAM-1-targeted ASM nanocarriers (anti-ICAM/ASM nanocarriers) to endothelium after i.v. injection in mice. Fluorescence microscopy of lung alveoli actin, tissue histology, and 125I-albumin blood-to-lung transport showed that anti-ICAM nanocarriers cause neither detectable lung injury, nor abnormal vascular permeability in animals. Radioisotope tracing showed rapid disappearance from the circulation and enhanced accumulation of anti-ICAM/125I-ASM nanocarriers over the nontargeted naked enzyme in kidney, heart, liver, spleen, and primarily lung, both in wild-type and ASM knockout mice. These data demonstrate that ICAM-1-targeted nanocarriers may enhance enzyme replacement therapy for type B NPD and perhaps other lysosomal storage disorders.

  19. Fatty acid bile acid conjugates (FABACs)—New molecules for the prevention of cholesterol crystallisation in bile

    PubMed Central

    Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.

    2001-01-01

    BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity.
AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo.
METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice.
RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet.
CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in

  20. Relationship Between Radiation Response and the Deoxyribonucleic Acid Replication Cycle in Bacteria: Dependence on the Excision-Repair System

    PubMed Central

    Billen, Daniel; Bruns, Laura

    1970-01-01

    Prestarvation of Escherichia coli for required amino acids results in a marked enhancement in both ultraviolet light (UV) or X-ray resistance for selective strains. Preventing protein synthesis by starvation for required amino acids results in completion of the cycle of chromosomal replication then underway. We have investigated the relationship between starvation-induced resistance enhancement (SIRE) and the excision-repair (Hcr) system in several E. coli strains including E. coli B/r hcr+ and its isogenic mutant E. coli B/r hcr−. The following observations were made. (i) The Hcr system is the major component of SIRE in UV-irradiated strain B/r. By using the Hcr+ strain, SIRE increases the 10% survival dose from ∼400 ergs to ∼1,200 ergs/mm2. With the Hcr cells, the increase is from ∼45 ergs to 60 ergs/mm2. (ii) Although prestarvation leads to a moderate enhancement of resistance to X irradiation, this effect is not dependent on the Hcr system. (iii) The double mutant, E. coli Bs–1 (hcr−exr−) is completely unable to express SIRE whether studied with UV or X irradiation. It is concluded that the Hcr system is the major system responsible for SIRE in UV-treated cells, whereas Exr (resistance to X rays) may be involved to a minor extent. The Exr character appears to be required for SIRE expression in X-ray exposed cells. PMID:4914566

  1. Prebiotic synthesis of carboxylic acids, amino acids and nucleic acid bases from formamide under photochemical conditions⋆

    NASA Astrophysics Data System (ADS)

    Botta, Lorenzo; Mattia Bizzarri, Bruno; Piccinino, Davide; Fornaro, Teresa; Robert Brucato, John; Saladino, Raffaele

    2017-07-01

    The photochemical transformation of formamide in the presence of a mixture of TiO2 and ZnO metal oxides as catalysts afforded a large panel of molecules of biological relevance, including carboxylic acids, amino acids and nucleic acid bases. The reaction was less effective when performed in the presence of only one mineral, highlighting the role of synergic effects between the photoactive catalysts. Taken together, these results suggest that the synthesis of chemical precursors for both the genetic and the metabolic apparatuses might have occurred in a simple environment, consisting of formamide, photoactive metal oxides and UV-radiation.

  2. Molecular structure and charge density analysis of p-methoxybenzoic acid (anisic acid)

    NASA Astrophysics Data System (ADS)

    Fausto, R.; Matos-Beja, A.; Paixão, J. A.

    1997-12-01

    A concerted X-ray and ab initio SCF-MO study of the structure and charge density of p-methoxybenzoic acid (anisic acid) is reported. An extensive X-ray data set (7401 reflections) was measured on a single crystal using Mo K α radiation and the structure refined with 2121 unique reflections, leading to a final R( F)-factor of 0.047 calculated for reflections with I>2 σ. The molecular geometry of crystalline anisic acid, where the molecules dimerize via a moderately strong CO-H⋯O hydrogen bond, is compared with that of the isolated molecule, resulting from SCF-MO ab initio calculations. A topological analysis of the molecular charge density was performed using Bader's method to gain insight into the dominant intra- and intermolecular interactions in this compound. In particular, the effects of the substituents on the observed distortions of the benzene ring were investigated as well as the internal rotation of the methyl group.

  3. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that

  4. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    DOE PAGES

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.; ...

    2017-01-23

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. We used fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, inmore » part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Furthermore, structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants.« less

  5. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA

    NASA Astrophysics Data System (ADS)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-01

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  6. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  7. Preservation of organic molecules at Mars' near-surface

    NASA Astrophysics Data System (ADS)

    Freissinet, Caroline

    2016-07-01

    One of the biggest concerns for the in situ detection of organics on extraterrestrial environment is the preservation potential of the molecules at the surface and subsurface given the harsh radiation conditions and oxidants they are exposed to. The Mars Science Laboratory (MSL) search for hydrocarbons is designed to understand taphonomic windows of organic preservation in the Mars' near-surface. The Sample Analysis at Mars (SAM) instrument on the MSL Curiosity rover discovered chlorohydrocarbon indigenous to a mudstone drilled sample, Cumberland (CB). The discovery of chlorohydrocarbons in the martian surface means that reduced material with covalent bonds has survived despite the severe degrading conditions. However, the precursors of the chlorohydrocarbons detected by pyrolysis at CB remain unknown. Organic compounds in this ancient sedimentary rock on Mars could include polycyclic aromatic hydrocarbons and refractory organic material, either formed on Mars from igneous, hydrothermal, atmospheric, or biological processes or, alternatively, delivered directly to Mars via meteorites, comets, or interplanetary dust particles. It has been postulated that organic compounds in near-surface rocks may undergo successive oxidation reactions that eventually form metastable benzenecarboxylates, including phthalic and mellitic acids. These benzenecarboxylates are good candidates as the precursors of the chlorohydrocarbons detected in SAM pyrolysis at CB. Indeed, recently, SAM performed a derivatization experiments on a CB sample, using the residual vapor of N-methyl-N-tertbutylsilyltrifluoroacetamide (MTBSTFA) leaking into the system. The preliminary interpretations are compatible with the presence of benzocarboxylates, coincidently with long chain carboxylic acids and alcohols. The analysis of this interesting data set to identify these derivatization products, as well as future SAM measurements on Mt Sharp, should shed additional light on the chemical nature and the

  8. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid

    NASA Astrophysics Data System (ADS)

    Dereven'kov, I. A.; Thi, Thu Thuy Bui; Salnikov, D. S.; Makarov, S. V.

    2016-03-01

    The kinetics of the reaction between one-electron-reduced cobalamin (cobalamin(II), Cb(II)) and the two-electron-oxidized form of vitamin C (dehydroascorbic acid, DHA) with amino acids in an acidic medium is studied by conventional UV-Vis spectroscopy. It is shown that the oxidation of Cbl(II) by dehydroascorbic acid proceeds only in the presence of sulfur-containing amino acids (cysteine, acetylcysteine). A proposed reaction mechanism includes the step of amino acid coordination on the Co(II)-center through the sulfur atom, along with that of the interaction between this complex and DHA molecules, which results in the formation of ascorbyl radical and the corresponding Co(III) thiolate complex.

  9. An Organic Puzzle Using Meldrum's Acid

    NASA Astrophysics Data System (ADS)

    Crouch, R. David; Holden, Michael S.

    2002-04-01

    Meldrum's acid or 2,2-dimethyl-1,3-dioxane-4,6-dione undergoes a Knoevenagel condensation with formaldehyde to form an active Michael acceptor for a second molecule of Meldrum's acid. The structure of the resulting product is determined by correlation of the products of possible reactions of Meldrum's acid and formaldehyde with the NMR spectrum of the product.

  10. High speed nucleic acid sequencing

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid. Each type of labeled nucleotide comprises an acceptor fluorophore attached to a phosphate portion of the nucleotide such that the fluorophore is removed upon incorporation into a growing strand. Fluorescent signal is emitted via fluorescent resonance energy transfer between the donor fluorophore and the acceptor fluorophore as each nucleotide is incorporated into the growing strand. The sequence is deduced by identifying which base is being incorporated into the growing strand.

  11. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  12. Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form

    NASA Astrophysics Data System (ADS)

    Qiao, Hai; Hu, Na; Bai, Jin; Ren, Lili; Liu, Qing; Fang, Liaoqiong; Wang, Zhibiao

    2017-12-01

    Protocells are believed to consist of a lipid membrane and encapsulated nucleic acid. As the lipid membrane is impermeable to macromolecules like nucleic acids, the processes by which nucleic acids become encapsulated inside lipid membrane compartments are still unknown. In this paper, a freeze-thaw method was modified and applied to giant unilamellar vesicles (GUVs) and deoxyribonucleic acid (DNA) in mixed solution resulting in the efficient encapsulation of 6.4 kb plasmid DNA and similar length linear DNA into GUVs. The mechanism of encapsulation was followed by observing the effect of freeze-thaw temperatures on GUV morphological change, DNA encapsulation and ice crystal formation, and analyzing their correlation. Following ice crystal formation, the shape of spherical GUVs was altered and membrane integrity was damaged and this was found to be a necessary condition for encapsulation. Heating alone had no effects on DNA encapsulation, but was helpful for restoring the spherical shape and membrane integrity of GUVs damaged during freezing. These results suggested that freeze-thaw could promote the encapsulation of DNA into GUVs by a mechanism: the vesicle membrane was breached by ice crystal formation during freezing, DNA entered into damaged GUVs through these membrane gaps and was encapsulated after the membrane was resealed during the thawing process. The process described herein therefore describes a simple way for the encapsulation of nucleic acids and potentially other macromolecules into lipid vesicles, a process by which early protocells might have formed.

  13. Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule.

    PubMed

    Bhopatkar, Deepak; Feng, Tao; Chen, Feng; Zhang, Genyi; Carignano, Marcelo; Park, Sung Hyun; Zhuang, Haining; Campanella, Osvaldo H; Hamaker, Bruce R

    2015-05-06

    A previously reported nanoparticle formed through the self-assembly of common food constituents (amylose, protein, and fatty acids) was shown to have the capacity to carry a sparingly soluble small molecule (1-naphthol) in a dispersed system. Potentiometric titration showed that 1-naphthol locates in the lumen of the amylose helix of the nanoparticle. This finding was further supported by calorimetric measurements, showing higher enthalpies of dissociation and reassociation in the presence of 1-naphthol. Visually, the 1-naphthol-loaded nanoparticle appeared to be well-dispersed in aqueous solution. Molecular dynamics simulation showed that the self-assembly was favorable, and at 500 ns, the 1-naphthol molecule resided in the helix of the amylose lumen in proximity to the hydrophobic tail of the fatty acid. Thus, sparingly soluble small molecules, such as some nutraceuticals or drugs, could be incorporated and delivered by this soft nanoparticle carrier.

  14. Uric acid promotes an acute inflammatory response to sterile cell death in mice

    PubMed Central

    Kono, Hajime; Chen, Chun-Jen; Ontiveros, Fernando; Rock, Kenneth L.

    2010-01-01

    Necrosis stimulates inflammation, and this response is medically relevant because it contributes to the pathogenesis of a number of diseases. It is thought that necrosis stimulates inflammation because dying cells release proinflammatory molecules that are recognized by the immune system. However, relatively little is known about the molecular identity of these molecules and their contribution to responses in vivo. Here, we investigated the role of uric acid in the inflammatory response to necrotic cells in mice. We found that dead cells not only released intracellular stores of uric acid but also produced it in large amounts postmortem as nucleic acids were degraded. Using newly developed Tg mice that have reduced levels of uric acid either intracellularly and/or extracellularly, we found that uric acid depletion substantially reduces the cell death–induced inflammatory response. Similar results were obtained with pharmacological treatments that reduced uric acid levels either by blocking its synthesis or hydrolyzing it in the extracellular fluids. Importantly, uric acid depletion selectively inhibited the inflammatory response to dying cells but not to microbial molecules or sterile irritant particles. Collectively, our data identify uric acid as a proinflammatory molecule released from dying cells that contributes significantly to the cell death–induced inflammatory responses in vivo. PMID:20501947

  15. Water molecule-enhanced CO{sub 2} insertion in lanthanide coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Liushan; Huang Xiaoyuan; Wang Ning

    2009-08-15

    Two new lanthanide coordination polymers H{sub 2}N(CH{sub 3}){sub 2}.[Eu{sup III}{sub 2}(L{sub 1}){sub 3}(L{sub 2})] (1, L{sub 1}=isophthalic acid dianion, L{sub 2}=formic acid anion) and [La{sup III}(2,5-PDC)(L{sub 2})](2, 2,5-PDC=2,5-pyridinedicarboxylate dianion) were synthesized under solvothermal conditions. It is of interest that the formic ligand (L{sub 2}) is not contained in the stating materials, but arises from the water molecule-enhanced CO{sub 2} insertion during the solvothermal process. Both of the two compounds exhibit complicated three dimensional sandwich-like frameworks. - Graphical abstract: Two new lanthanide coordination polymers involving water molecule-enhanced CO{sub 2} insertion resulting in the formation of formic anion and dimethylammonium cation weremore » synthesized under solvothermal conditions.« less

  16. Chiral Sensitivity in Electron-Molecule Interactions

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan

    2015-09-01

    All molecular forms of life possess a chiral asymmetry, with amino acids and sugars found respectively in L- and D-enantiomers only. The primordial origin of this enantiomeric excess is unknown. One possible explanation is given by the Vester- Ulbricht hypothesis, which suggests that left-handed electrons present in beta-radiation, produced by parity-violating weak decays, interacted with biological precursors and preferentially destroyed one of the two enantiomers. Experimental tests of this idea have thus far yielded inconclusive results. We show direct evidence for chirally-dependent bond breaking through a dissociative electron attachment (DEA) reaction when spin-polarized electrons are incident on gas-phase chiral molecules. This provides unambiguous evidence for a well-defined, chirally-sensitive destructive molecular process and, as such, circumstantial evidence for the Vester-Ulbricht hypothesis. I will also present the results of our systematic study of the DEA asymmetry for different chiral halocamphor molecules. Three halocamphor molecules were investigated: 3-bromocamphor (C10H15BrO), 3-iodocamphor(C10H15IO), and 10-iodocamphor. The DEA asymmetries collected for bromocamphor and iodocamphor are qualitatively different, suggesting that the atomic number of the heaviest atom in the molecule plays a crucial role in the asymmetric interactions. The DEA asymmetry data for 3- and 10-iodocamphor have the same qualitative behavior, but the 10-iodocamphor asymmetry is about twice as large at the lowest energies investigated, so the location of the heavy atom in the camphor molecule also affects the asymmetries. This work was performed at the University of Nebraska-Lincoln. This project is funded by NSF Grant PHY-1206067.

  17. A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type.

    PubMed

    Natsch, Andreas; Derrer, Samuel; Flachsmann, Felix; Schmid, Joachim

    2006-01-01

    Human body odor is to a large part determined by secretions of glands in the axillary regions. Two key odoriferous principles, 3-methylhex-2-enoic acid (3MH2; 4/5) and 3-hydroxy-3-methylhexanoic acid (HMHA; 6) have been shown to be released from glutamine conjugates secreted in the axilla by a specific N(alpha)-acyl-glutamine aminoacylase (N-AGA) obtained from axilla isolates of Corynebacteria sp. However, the low number of different odorants reported in humans stands in contrast to the observed high inter-individual variability in body odors. Axilla secretions of individual donors were, therefore, analyzed in detail. The secretions were treated with N-AGA, analyzed by GC/MS, and compared to undigested controls. Over 28 different carboxylic acids were released by this enzyme from odorless axilla secretions (Table 1). Many of these body odorants have not been reported before from a natural source, and they include several aliphatic 3-hydroxy acids with 4-Me branches, 3,4-unsaturated, 4-Et-branched aliphatic acids, and a variety of degradation products of amino acids. The odor threshold of some of the acids was found to be in the range of 1 ng. Most of these compounds were present in all donors tested, but in highly variable relative amounts, and they are, thus, candidate molecules as key components of a 'compound odor' determining the individual types of human body odor.

  18. Introduction to fatty acids and lipids.

    PubMed

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  19. Triptycene: A Nucleic Acid Three-Way Junction Binder Scaffold

    NASA Astrophysics Data System (ADS)

    Yoon, Ina

    Nucleic acids play a critical role in many biological processes such as gene regulation and replication. The development of small molecules that modulate nucleic acids with sequence or structure specificity would provide new strategies for regulating disease states at the nucleic acid level. However, this remains challenging mainly because of the nonspecific interactions between nucleic acids and small molecules. Three-way junctions are critical structural elements of nucleic acids. They are present in many important targets such as trinucleotide repeat junctions related to Huntington's disease, a temperature sensor sigma32 in E. coli, Dengue virus, and HIV. Triptycene-derived small molecules have been shown to bind to nucleic acid three-way junctions, resulting from their shape complementary. To develop a better understanding of designing molecules for targeting different junctions, a rapid screening of triptycene-based small molecules is needed. We envisioned that the installation of a linker at C9 position of the bicyclic core would allow for a rapid solid phase diversification. To achieve this aim, we synthesized 9-substituted triptycene scaffolds by using two different synthetic routes. The first synthetic route installed the linker from the amidation reaction between carboxylic acid at C9 position of the triptycene and an amine linker, beta-alanine ethyl ester. This new 9-substituted triptycene scaffold was then attached to a 2-chlorotrityl chloride resin for solid-phase diversification. This enabled a rapid diversification and an easy purification of mono-, di-, and tri-peptide triptycene derivatives. The binding affinities of these compounds were investigated towards a (CAG)˙(CTG) trinucleotide repeat junction. In the modified second synthetic route, we utilized a combined Heck coupling/benzyne Diels-Alder strategy. This improved synthetic strategy reduced the number of steps and total reaction times, increased the overall yield, improved solubilities of

  20. Acidic amino acids: A new-type of enzyme mimics with application to biosensing and evaluating of antioxidant behaviour.

    PubMed

    Shi, Ying; Liu, Li; Yu, Yuanyuan; Long, Yijuan; Zheng, Huzhi

    2018-08-05

    Nanomaterials have triggered tremendous interest to mimick peroxidase but rarely attention has been paid to small molecules. Herein we first found that acidic amino acids including l-glutamic acid (L-Glu) and l-aspartic acid (L-Asp) exhibited an intrinsic peroxidase-like activity, endowing acidic amino acids with the capability of catalysing the oxidation of the peroxidase substrates 3,3',5,5'-tetramethylbenzidine (TMB) to produce color reaction in the presence of H 2 O 2 . Reaction mechanism was further investigated by means of electron spin resonance spectroscopy (ESR), enzyme kinetics assay and quantum theoretical calculations, to verify and provide a good deal of insight into the catalytic process. Based on the above discovery, a colorimetric platform was successfully developed for sensing glucose in the range of 0.10 μM to 10 μM with a detection limit of 40 nM, as well as evaluating the inhibitory effect of antioxidants on reactive oxygen species. This extraordinary finding not only extends the new biological function of acidic amino acids, but also opens new opportunities to deepen the knowledge of the new class of small molecule enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    PubMed

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  2. May the Best Molecule Win: Competition ESI Mass Spectrometry

    PubMed Central

    Laughlin, Sarah; Wilson, W. David

    2015-01-01

    Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262

  3. Comparison of four species-delimitation methods applied to a DNA barcode data set of insect larvae for use in routine bioassessment for use in routine bioassessment

    EPA Science Inventory

    Species delimitation (grouping individuals into distinct taxonomic groups) is an essential part of evolutionary, conservation, and molecular ecology. Deoxyribonucleic acid (DNA) barcodes, short fragments of the cytochrome c oxidase subunit I (COI) gene, are being used in environm...

  4. Fine-structure mapping of the firA gene, a locus involved in the phenotypic expression of rifampin resistance in Escherichia.

    PubMed

    Lathe, R

    1977-09-01

    The firA (Ts)200 mutation not only eliminates the resistance to rifampin of certain genetically resistant strains, but, moreover, renders ribonucleic acid synthesis thermolabile. The firA gene has been mapped by P1 tranduction and is located extremely close to the structural gene for deoxyribonucleic acid polymerase III at 4 min on the Escherichia coli linkage map.

  5. High-Throughput Screening of Australian Marine Organism Extracts for Bioactive Molecules Affecting the Cellular Storage of Neutral Lipids

    PubMed Central

    Rae, James; Fontaine, Frank; Salim, Angela A.; Lo, Harriet P.; Capon, Robert J.; Parton, Robert G.; Martin, Sally

    2011-01-01

    Mammalian cells store excess fatty acids as neutral lipids in specialised organelles called lipid droplets (LDs). Using a simple cell-based assay and open-source software we established a high throughput screen for LD formation in A431 cells in order to identify small bioactive molecules affecting lipid storage. Screening an n-butanol extract library from Australian marine organisms we identified 114 extracts that produced either an increase or a decrease in LD formation in fatty acid-treated A431 cells with varying degrees of cytotoxicity. We selected for further analysis a non-cytotoxic extract derived from the genus Spongia (Heterofibria). Solvent partitioning, HPLC fractionation and spectroscopic analysis (NMR, MS) identified a family of related molecules within this extract with unique structural features, a subset of which reduced LD formation. We selected one of these molecules, heterofibrin A1, for more detailed cellular analysis. Inhibition of LD biogenesis by heterofibrin A1 was observed in both A431 cells and AML12 hepatocytes. The activity of heterofibrin A1 was dose dependent with 20 µM inhibiting LD formation and triglyceride accumulation by ∼50% in the presence of 50 µM oleic acid. Using a fluorescent fatty acid analogue we found that heterofibrin A1 significantly reduces the intracellular accumulation of fatty acids and results in the formation of distinct fatty acid metabolites in both cultured cells and in embryos of the zebrafish Danio rerio. In summary we have shown using readily accessible software and a relatively simple assay system that we can identify and isolate bioactive molecules from marine extracts, which affect the formation of LDs and the metabolism of fatty acids both in vitro and in vivo. PMID:21857959

  6. New small-molecule inhibitor class targeting human immunodeficiency virus type 1 virion maturation.

    PubMed

    Blair, Wade S; Cao, Joan; Fok-Seang, Juin; Griffin, Paul; Isaacson, Jason; Jackson, R Lynn; Murray, Edward; Patick, Amy K; Peng, Qinghai; Perros, Manos; Pickford, Chris; Wu, Hua; Butler, Scott L

    2009-12-01

    A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically inhibits the processing of capsid (CA)/spacer peptide 1 (SP1) (p25), resulting in the accumulation of CA/SP1 (p25) precursor proteins and blocked maturation of the viral core particle. Viral variants resistant to PF-46396 contain a single amino acid substitution in HIV-1 CA sequences (CAI201V), distal to the CA/SP1 cleavage site in the primary structure, which we demonstrate is sufficient to confer significant resistance to PF-46396 and 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB), a previously described maturation inhibitor. Conversely, a single amino substitution in SP1 (SP1A1V), which was previously associated with DSB in vitro resistance, was sufficient to confer resistance to DSB and PF-46396. Further, the CAI201V substitution restored CA/SP1 processing in HIV-1-infected cells treated with PF-46396 or DSB. Our results demonstrate that PF-46396 acts through a mechanism that is similar to DSB to inhibit the maturation of HIV-1 virions. To our knowledge, PF-46396 represents the first small-molecule HIV-1 maturation inhibitor that is distinct in chemical class from betulinic acid-derived maturation inhibitors (e.g., DSB), demonstrating that molecules of diverse chemical classes can inhibit this mechanism.

  7. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  8. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light.

    PubMed

    Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J

    2018-07-01

    Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Single-Molecule Studies of Hyaluronic Acid Conformation

    NASA Astrophysics Data System (ADS)

    Innes-Gold, Sarah; Berezney, John; Saleh, Omar

    Hyaluronic acid (HA) is a charged linear polysaccharide abundant in extracellular spaces. Its solution conformation and mechanical properties help define the environment outside of cells, play key roles in cell motility and adhesion processes, and are of interest for the development of HA biomaterials. Intra-chain hydrogen bonds and electrostatic repulsion contribute to HAs physical structure, but the nature of this structure, as well as its dependence on solution electrostatics, are not well-understood. To address this problem, we have investigated HA conformation and mechanical properties under a range of solution conditions systematically designed to affect charge screening or hydrogen bonding. We used magnetic tweezers to apply biological-scale stretching forces to individual HA chains under varying solution conditions.

  10. Toxicity of nalidixic acid on candida albicans, Saccharomyces cerevisiae, and Kluyveromyces lactis.

    PubMed

    Sobieski, R J; Brewer, A R

    1976-03-01

    The antibacterial drug nalidixic acid (Nal) can suppress the growth of Candida albicans at levels of the drug normally found in urine. Growth suppression increases as drug levels are increased, and Nal also causes a similar proportional inhibition of the synthesis of all cellular macromolecules. However, growth temperature (25 versus 37 C) and the divalent cations Mg(2+) and Mn(2+) can increase C. albicans resistance to Nal. Also, nitrogen depletion of Candida shows that Nal-treated and untreated cells exhibit no difference in leucine uptake during readaptation to nitrogen. In Nal-treated, nitrogen-starved cells, ribonucleic acid and deoxyribonucleic acid (DNA) biosynthesis are less affected than in unstarved Nal-treated cells, but of the two nucleic acids DNA synthesis is the most affected. Nal-resistant strains of C. albicans exhibit a slight toxicity for macromolecular synthesis. Nal treatment of a synchronized population of Saccharomyces cerevisiae results in an increase in the culture mean doubling time of, at most, 20%, but Nal causes the loss of synchronous cell division. With a synchronized population of Kluyveromyces lactis, Nal causes an increase in the mean doubling time of upwards of 300%, with synchrony of cell division being maintained. It is known that S. cerevisiae asynchronously synthesizes mitochondrial DNA during the cell cycle, whereas with K. lactis it is synchronous. Thus, with C. albicans Nal toxicity is dependent both on the dose and the physiological state of the cell. Furthermore, Nal inhibits growth of yeast with synchronous mitochondrial DNA synthesis more adversely than yeast with asynchronous mitochondrial DNA synthesis.

  11. Self-Organizing Hidden Markov Model Map (SOHMMM).

    PubMed

    Ferles, Christos; Stafylopatis, Andreas

    2013-12-01

    A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Pyrrolidone - a new solvent for the methylation of humic acid

    USGS Publications Warehouse

    Wershaw, R. L.; Pinckney, D.J.; Booker, S.E.

    1975-01-01

    In the past, humic acid has been methylated by suspending it in a solution of diazomethane in diethyl ether, and degrading the partly methylated humic acid to release those parts of the molecule that were methylated. Only small fragments of the molecule have been identified by this technique. In the procedure described here the humic acid is dissolved in 2-pyrrolidone and methylated by the addition of diazomethane in diethyl ether and ethanol to the solution. Because the humic acid is completely dissolved in the reaction medium, disaggregation of the humic acid particles takes place and much more complete methylation is obtained. The methylated products may be fractionated by countercurrent distribution and analyzed by mass spectrometry.

  13. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    PubMed

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.

  14. Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry.

    PubMed

    Feng, Dan; Xia, Yan

    2018-07-19

    Covalent organic framework (COF) was explored as a novel matrix with a high desorption/ionization efficiency for direct detection of small molecules by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). By using COF as an LDI MS matrix, we could detect not only biological micro molecules such as amino acids and fatty acids, but also emerging environmental pollutants like bisphenol S (BPS) and pyrene. With COF as the matrix, higher desorption/ionization efficiency, and less background interference were achieved than the conventional organic matrices. Good salt tolerance (as high as 500 mM NaCl) and repeatability allowed the detection limit of amino acids was 90 fmol. In addition, COF matrix performed well for amino acids analysis in the honey sample. The ionization mechanism was also discussed. These results demonstrate that COF is a powerful matrix for small molecules analysis in real samples by MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Electron-induced chemistry in microhydrated sulfuric acid clusters

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-11-01

    We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.

  16. Theoretical studies on the coupling interactions in H2SO4···HOO˙···(H2O)n (n = 0-2) clusters: toward understanding the role of water molecules in the uptake of HOO˙ radical by sulfuric acid aerosols.

    PubMed

    Li, Ping; Ma, Zhiying; Wang, Weihua; Zhai, Yazhou; Sun, Haitao; Bi, Siwei; Bu, Yuxiang

    2011-01-21

    A detailed knowledge of coupling interactions among sulfuric acid (H(2)SO(4)), the hydroperoxyl radical (HOO˙), and water molecules (H(2)O) is crucial for the better understanding of the uptake of HOO˙ radicals by sulfuric acid aerosols at different atmospheric humidities. In the present study, the equilibrium structures, binding energies, equilibrium distributions, and the nature of the coupling interactions in H(2)SO(4)···HOO˙···(H(2)O)(n) (n = 0-2) clusters have been systematically investigated at the B3LYP/6-311++G(3df,3pd) level of theory in combination with the atoms in molecules (AIM) theory, natural bond orbital (NBO) method, energy decomposition analyses, and ab initio molecular dynamics. Two binary, five ternary, and twelve tetramer clusters possessing multiple intermolecular H-bonds have been located on their potential energy surfaces. Two different modes for water molecules have been observed to influence the coupling interactions between H(2)SO(4) and HOO˙ through the formations of intermolecular H-bonds with or without breaking the original intermolecular H-bonds in the binary H(2)SO(4)···HOO˙ cluster. It was found that the introduction of one or two water molecules can efficiently enhance the interactions between H(2)SO(4) and HOO˙, implying the positive role of water molecules in the uptake of the HOO˙ radical by sulfuric acid aerosols. Additionally, the coupling interaction modes of the most stable clusters under study have been verified by the ab initio molecular dynamics.

  17. Using the QCM Biosensor-Based T7 Phage Display Combined with Bioinformatics Analysis for Target Identification of Bioactive Small Molecule.

    PubMed

    Takakusagi, Yoichi; Takakusagi, Kaori; Sugawara, Fumio; Sakaguchi, Kengo

    2018-01-01

    Identification of target proteins that directly bind to bioactive small molecule is of great interest in terms of clarifying the mode of action of the small molecule as well as elucidating the biological phenomena at the molecular level. Of the experimental technologies available, T7 phage display allows comprehensive screening of small molecule-recognizing amino acid sequence from the peptide libraries displayed on the T7 phage capsid. Here, we describe the T7 phage display strategy that is combined with quartz-crystal microbalance (QCM) biosensor for affinity selection platform and bioinformatics analysis for small molecule-recognizing short peptides. This method dramatically enhances efficacy and throughput of the screening for small molecule-recognizing amino acid sequences without repeated rounds of selection. Subsequent execution of bioinformatics programs allows combinatorial and comprehensive target protein discovery of small molecules with its binding site, regardless of protein sample insolubility, instability, or inaccessibility of the fixed small molecules to internally located binding site on larger target proteins when conventional proteomics approaches are used.

  18. Supramolecular hydrogen-bonding patterns in 1:1 cocrystals of 5-fluorouracil with 4-methylbenzoic acid and 3-nitrobenzoic acid.

    PubMed

    Mohana, Marimuthu; Muthiah, Packianathan Thomas; McMillen, Colin D

    2017-03-01

    The design of a pharmaceutical cocrystal is based on the identification of specific hydrogen-bond donor and acceptor groups in active pharmaceutical ingredients (APIs) in order to choose a `complementary interacting' molecule that can act as an efficient coformer. 5-Fluorouracil (5FU) is a pyrimidine derivative with two N-H donors and C=O acceptors and shows a diversity of hydrogen-bonding motifs. Two 1:1 cocrystals of 5-fluorouracil (5FU), namely 5-fluorouracil-4-methylbenzoic acid (5FU-MBA), C 4 H 3 FN 2 O 2 ·C 8 H 8 O 2 , (I), and 5-fluorouracil-3-nitrobenzoic acid (5FU-NBA), C 4 H 3 FN 2 O 2 ·C 7 H 5 NO 4 , (II), have been prepared and characterized by single-crystal X-ray diffraction. In (I), the MBA molecules form carboxylic acid dimers [R 2 2 (8) homosynthon]. Similarly, the 5FU molecules form two types of base pair via a pair of N-H...O hydrogen bonds [R 2 2 (8) homosynthon]. In (II), 5FU interacts with the carboxylic acid group of NBA via N-H...O and O-H...O hydrogen bonds, generating an R 2 2 (8) ring motif (heterosynthon). Furthermore, the 5FU molecules form base pairs [R 2 2 (8) homosynthon] via N-H...O hydrogen bonds. Both of the crystal structures are stabilized by C-H...F interactions.

  19. Frictional response of fatty acids on steel.

    PubMed

    Sahoo, Rashmi R; Biswas, S K

    2009-05-15

    Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the surface as carboxylate in a bidentate manner. To explore the effect of saturation in the carbon backbone on friction in sliding tribology, we study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. It is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.

  20. Microhydration and the Enhanced Acidity of Free Radicals.

    PubMed

    Walton, John C

    2018-02-14

    Recent theoretical research employing a continuum solvent model predicted that radical centers would enhance the acidity (RED-shift) of certain proton-donor molecules. Microhydration studies employing a DFT method are reported here with the aim of establishing the effect of the solvent micro-structure on the acidity of radicals with and without RED-shifts. Microhydration cluster structures were obtained for carboxyl, carboxy-ethynyl, carboxy-methyl, and hydroperoxyl radicals. The numbers of water molecules needed to induce spontaneous ionization were determined. The hydration clusters formed primarily round the CO₂ units of the carboxylate-containing radicals. Only 4 or 5 water molecules were needed to induce ionization of carboxyl and carboxy-ethynyl radicals, thus corroborating their large RED-shifts.

  1. Physicochemical Profiling of α-Lipoic Acid and Related Compounds.

    PubMed

    Mirzahosseini, Arash; Szilvay, András; Noszál, Béla

    2016-07-01

    Lipoic acid, the biomolecule of vital importance following glycolysis, shows diversity in its thiol/disulfide equilibria and also in its eight different protonation forms of the reduced molecule. In this paper, lipoic acid, lipoamide, and their dihydro derivatives were studied to quantify their solubility, acid-base, and lipophilicity properties at a submolecular level. The acid-base properties are characterized in terms of six macroscopic, 12 microscopic protonation constants, and three interactivity parameters. The species-specific basicities, the pH-dependent distribution of the microspecies, and lipophilicity parameters are interpreted by various intramolecular effects, and contribute to understanding the antioxidant, chelate-forming, and enzyme cofactor behavior of the molecules observed. © 2016 Wiley-VHCA AG, Zürich.

  2. Target molecules in 3T3-L1 adipocytes differentiation are regulated by maslinic acid, a natural triterpene from Olea europaea.

    PubMed

    Pérez-Jiménez, Amalia; Rufino-Palomares, Eva E; Fernández-Gallego, Nieves; Ortuño-Costela, M Carmen; Reyes-Zurita, Fernando J; Peragón, Juan; García-Salguero, Leticia; Mokhtari, Khalida; Medina, Pedro P; Lupiáñez, José A

    2016-11-15

    Metabolic syndrome is a set of pathologies among which stand out the obesity, which is related to the lipid droplet accumulation and changes to cellular morphology regulated by several molecules and transcription factors. Maslinic acid (MA) is a natural product with demonstrated pharmacological functions including anti-inflammation, anti-tumor and anti-oxidation, among others. Here we report the effects of MA on the adipogenesis process in 3T3-L1 cells. Cell viability, glucose uptake, cytoplasmic triglyceride droplets, triglycerides quantification, gene transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid-binding protein (aP2) and intracellular Ca 2+ levels were determined in pre-adipocytes and adipocytes of 3T3-L1 cells. MA increased glucose uptake. MA also decreased lipid droplets and triglyceride levels, which is in concordance with the down-regulation of PPARγ and aP2. Finally, MA increased the intracellular Ca 2+ concentration, which could also be involved in the demonstrated antiadipogenic effect of this triterpene. MA has been demonstrated as potential antiadipogenic compound in 3T3-L1 cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Organic Molecules in Meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (<30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochemistry [2-4]. Different carbonaceous meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10

  4. Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer

    NASA Astrophysics Data System (ADS)

    Howard, B. J.; Steer, E.; Page, F.; Tayler, M.; Ouyang, B.; Leung, H. O.; Marshall, M. D.; Muenter, J. S.

    2012-06-01

    The rotational spectrum of the doubly hydrogen-bonded {hetero} dimer formed between formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrent tunnelling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetic acid. We present a full assignment of the spectrum for {J} = 1 to {J} = 7 for these four torsion/tunnelling states. Spectra have been observed for the main isotopic species, with deuterium substitution at the C of the formic acid and all 13C species in natural abundance, The observed transitions are fitted to within a few kilohertz using a molecule-fixed effective rotational Hamiltonian for the separate {A} and {E} vibrational species of the G12 permutation-inversion group which is applicable to this complex. To reduce the effects of internal angular momentum, a non-principal axis system is used throughout. Interpretation of the internal motion uses an internal-vibration and overall rotation scheme, and full sets of rotational and centrifugal distortion constants are determined. The proton tunnelling rates and the internal angular momentum of the methyl group in the {E} states is interpreted in terms of a dynamical model which involves coupled proton transfer and internal rotation. The resulting potential energy surface not only describes these internal motions, but can also explain the observed shifts in rotational constants between {A} and {E} species, and the deviations of the tunnelling frequencies from the expected 2:1 ratio. It also permits the determination of spectral constants free from the contamination effects of the internal dynamics. M.C.D. Tayler, B. Ouyang and B.J. Howard, J. Chem. Phys., {134}, 054316 (2011).

  5. IR spectral studies of the formation of prebiological organic molecules in ion-bombarded ices

    NASA Astrophysics Data System (ADS)

    Hudson, R.; Moore, M.

    To better understand the formation of C- and CN-containing molecules in cold cosmic environments we have performed a variety of processing experiments on icy mixtures. We will discuss details of condensed-phase synthetic pathways for several acids, alcohols, and aldehydes. For N2 -rich ices containing CH4 , we will show that several CN-bonded acids are easily formed. We will compare carbonic and formic acid production in H O-, CO- and CO2 -dominated ices.2 Condensed-phase pathways for the synthesis of several alcohols including methanol and ethylene glycol, along with several aldehydes including formaldehyde and acetaldehyde, will be discussed. While warming irradiated ices, IR spectra help track the formation of new species from, for example, radical or acid-base reactions, and the loss of species due to vaporization. These experiments demonstrate that condensed-phase reactions lead to cometary and interstellar molecules of varying volatilities. Several newly synthesized species are particularly relevant to recent radio detections, and are of high interest to astronomers and astrobiologists. This research is funded through NRA 344-33-01 and 344-02-57.

  6. Naumovozyma Kurtzman (2008)

    USDA-ARS?s Scientific Manuscript database

    This chapter describes the ascomycetous yeast genus Naumovozyma, which was recognized from multigene deoxyribonucleic acid (DNA) sequence analysis. The genus has two describes species, which were formerly classified in the genus Saccharomyces. The species reproduce by multilateral budding but do not...

  7. MOLECULAR EVALUATION OF CHANGES IN PLANKTONIC BACTERIAL POPULATIONS RESULTING FROM EQUINE FECAL CONTAMINATION IN A SUB-WATERSHED

    EPA Science Inventory

    Considerable emphasis has been placed on developing watershed-based strategies with the potential to reduce non-point-source fecal contamination. Molecular methods applied used 16S-ribosomal-deoxyribonucleic-acid (rDNA) to try to determine sources of fecal contamination. Objectiv...

  8. Does DNA barcoding improve performance of traditional stream bioassessment metrics?

    EPA Science Inventory

    Benthic macroinvertebrate community composition is used to assess wetland and stream condition and to help differentiate the effects of stressors among sites. Deoxyribonucleic acid (DNA) barcoding has been promoted as a way to increase taxonomic resolution and, thereby, to increa...

  9. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors.

    PubMed

    Bucher, Tabitha; Kartvelishvily, Elena; Kolodkin-Gal, Ilana

    2016-10-09

    This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

  10. Crystal structures of 4-meth-oxy-benzoic acid-1,3-bis-(pyridin-4-yl)propane (2/1) and biphenyl-4,4'-di-carb-oxy-lic acid-4-meth-oxy-pyridine (1/2).

    PubMed

    Gotoh, Kazuma; Ishida, Hiroyuki

    2017-07-01

    The crystal structures of two hydrogen-bonded compounds, namely 4-meth-oxy-benzoic acid-1,3-bis-(pyridin-4-yl)propane (2/1), C 13 H 14.59 N 2 ·C 8 H 7.67 O 3 ·C 8 H 7.74 O 3 , (I), and biphenyl-4,4'-di-carb-oxy-lic acid-4-meth-oxy-pyridine (1/2), C 14 H 9.43 O 4 ·C 6 H 7.32 NO·C 6 H 7.25 NO, (II), have been determined at 93 K. In (I), the asymmetric unit consists of two crystallographically independent 4-meth-oxy-benzoic acid mol-ecules and one 1,3-bis-(pyridin-4-yl)propane mol-ecule. The asymmetric unit of (II) comprises one biphenyl-4,4'-di-carb-oxy-lic acid mol-ecule and two independent 4-meth-oxy-pyridine mol-ecules. In each crystal, the acid and base mol-ecules are linked by short O-H⋯N/N-H⋯O hydrogen bonds, in which H atoms are disordered over the acid O-atom and base N-atom sites, forming a linear hydrogen-bonded 2:1 or 1:2 unit of the acid and the base. The 2:1 units of (I) are linked via C-H⋯π, π-π and C-H⋯O inter-actions into a tape structure along [101], while the 1:2 units of (II) form a double-chain structure along [-101] through π-π and C-H⋯O inter-actions.

  11. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to

  12. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    PubMed

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  13. Pyrolysis of humic and fulvic acids

    USGS Publications Warehouse

    Wershaw, R. L.; Bohner, G.E.

    1969-01-01

    Pyrolysis of humic and fulvic acids isolated from a North Carolina soil yields a variety of aromatic, heterocyclic and straight chain organ compounds. The pyrolysis products identified by gas chromatography and mass spectrometry indicate that humic and fulvic acids have aromatic and polysaccharide structures in their molecules. ?? 1969.

  14. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-08-09

    A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.

  15. Molecules Without Atoms

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Collins, Laura; Gomes, Kenjiro; Janko, Boldizsar

    We present a real-space representation of molecules which results in the normal bonding rules and electronic structure of chemistry without atom-centered coulomb potentials. Using a simple mapping, we can generate atomless molecules from the structure of real molecules. Additionally, molecules without atoms show similar covalent bonding energies and transfer of charge in ionic bonds as real molecules. The atomless molecules contain only the valence and conduction electronic structure of the real molecule. Using the framework of the Atoms in Molecules (AIM) theory of Bader, we prove that the topological features of the valence charge distribution of molecules without atoms are identical to that of real molecules. In particular, the charge basins of atomless molecules show identical location and quantities of representative charge. We compare the accuracy, computational cost, and intuition gained from electronic structure calculations of molecules without atoms with the use of pseudopotentials to represent atomic cores in density functional theory. A. R. acknowledges support from a NASA Space Technology Research Fellowship.

  16. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.

    Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less

  17. Effect of Solvent and Substrate on the Surface Binding Mode of Carboxylate-Functionalized Aromatic Molecules

    DOE PAGES

    Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.; ...

    2018-04-25

    Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less

  18. Gas-phase binding energies for non-covalent Aβ-40 peptide/small molecule complexes from CID mass spectrometry and RRKM theory.

    PubMed

    Mayer, Paul M; Martineau, Eric

    2011-03-21

    The gas-phase binding of small molecules to the Amyloid β-40 peptide generated by electrospray ionization has been explored with collision-induced dissociation mass spectrometry and kinetic rate theory. This study discusses a simple procedure used to theoretically model the experimental breakdown diagrams for the Aβ-40 peptide complexed with a series of aminosulfonate small molecules, namely homotaurine, 3-cyclohexylamino-2-hydroxy-1-propanesulfonic acid (CAPSO), 3-(1,3,4,9-tetrahydro-2H-β-carbolin-2-yl)propane-1-sulfonic acid, 3-(1,3,4,9-tetrahydro-2H-β-carbolin-2-yl)butane-1-sulfonic acid, and 3-(cyclohexylamino)propane-1-sulfonic acid. An alternative procedure employing an extrapolation procedure for k(E) is also discussed.

  19. Crystal structure of (E)-undec-2-enoic acid.

    PubMed

    Sonneck, Marcel; Peppel, Tim; Spannenberg, Anke; Wohlrab, Sebastian

    2015-06-01

    In the mol-ecule of the title low-melting α,β-unsaturated carb-oxy-lic acid, C11H20O2, the least-squares mean line through the octyl chain forms an angle of 60.10 (13)° with the normal to plane of the acrylic acid fragment (r.m.s. deviation = 0.008 Å). In the crystal, centrosymmetrically related mol-ecules are linked by pairs of O-H⋯O hydrogen bonds into dimers, forming layers parallel to the (041) plane.

  20. Rational Design of Diketopyrrolopyrrole-Based Small Molecules as Donating Materials for Organic Solar Cells

    PubMed Central

    Jin, Ruifa; Wang, Kai

    2015-01-01

    A series of diketopyrrolopyrrole-based small molecules have been designed to explore their optical, electronic, and charge transport properties as organic solar cell (OSCs) materials. The calculation results showed that the designed molecules can lower the band gap and extend the absorption spectrum towards longer wavelengths. The designed molecules own the large longest wavelength of absorption spectra, the oscillator strength, and absorption region values. The optical, electronic, and charge transport properties of the designed molecules are affected by the introduction of different π-bridges and end groups. We have also predicted the mobility of the designed molecule with the lowest total energies. Our results reveal that the designed molecules are expected to be promising candidates for OSC materials. Additionally, the designed molecules are expected to be promising candidates for electron and/or hole transport materials. On the basis of our results, we suggest that molecules under investigation are suitable donors for [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its derivatives as acceptors of OSCs. PMID:26343640

  1. Fine-structure mapping of the firA gene, a locus involved in the phenotypic expression of rifampin resistance in Escherichia.

    PubMed Central

    Lathe, R

    1977-01-01

    The firA (Ts)200 mutation not only eliminates the resistance to rifampin of certain genetically resistant strains, but, moreover, renders ribonucleic acid synthesis thermolabile. The firA gene has been mapped by P1 tranduction and is located extremely close to the structural gene for deoxyribonucleic acid polymerase III at 4 min on the Escherichia coli linkage map. PMID:330494

  2. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Interaction of Humic Acids with Organic Toxicants

    NASA Astrophysics Data System (ADS)

    Tchaikovskaya, O. N.; Yudina, N. V.; Maltseva, E. V.; Nechaev, L. V.; Svetlichnyi, V. A.

    2016-08-01

    Interaction of humic acids with polyaromatic hydrocarbons (PAH) (naphthalene and anthracene) and triazole series fungicides (cyproconazole (CC) and tebuconazole (TC)) is investigated by the method of fluorescence quenching depending on the concentration of substances in solutions and their structural features. Humic acids were modified by mechanochemical activation in a planetary mill. The complex character of intermolecular interactions between PAH and fungicides with humic acids, including donor-acceptor and hydrophobic binding, is established. Thermodynamically stable conformations of biocide molecules were estimated using ChemOffice CS Chem3D 8.0 by methods of molecular mechanics (MM2) and molecular dynamics. Biocide molecules with pH 7 are in energetically favorable position when the benzene and triazole rings are almost parallel to each other. After acidification of solutions to pH 4.5, the CC molecule retains the geometry for which donor-acceptor interactions are possible: the benzene ring in the molecule represents the electron donor, and triazole is the acceptor. In this case, the electron density in CC is redistributed easier, which is explained by a smaller number of carbon atoms between the triazole and benzene rings, unlike TC. As a result, the TC triazole ring is protonated to a greater degree, acquiring a positive charge, and enters into donoracceptor interactions with humic acid (HA) samples. The above-indicated bond types allow HA to participate actively in sorption processes and to provide their interaction with biocides and PAH and hence, to act as detoxifying agents for recultivation of the polluted environment.

  4. Conformation-dependent chemical reaction of formic acid with an oxygen atom.

    PubMed

    Khriachtchev, Leonid; Domanskaya, Alexandra; Marushkevich, Kseniya; Räsänen, Markku; Grigorenko, Bella; Ermilov, Alexander; Andrijchenko, Natalya; Nemukhin, Alexander

    2009-07-23

    Conformation dictates many physical and chemical properties of molecules. The importance of conformation in the selectivity and function of biologically active molecules is widely accepted. However, clear examples of conformation-dependent bimolecular chemical reactions are lacking. Here we consider a case of formic acid (HCOOH) that is a valuable model system containing the -COOH carboxyl functional group, similar to many biomolecules including the standard amino acids. We have found a strong case of conformation-dependent reaction between formic acid and atomic oxygen obtained in cryogenic matrices. The reaction surprisingly leads to peroxyformic acid only from the ground-state trans conformer of formic acid, and it results in the hydrogen-bonded complex for the higher-energy cis conformer.

  5. [Modification of L-asparaginase with colominic acid and the new characteristics of the modified enzyme].

    PubMed

    Wang, Y D; Guo, L; Qian, S J; Meng, G Z; Zhang, S Z

    2000-07-01

    The colominic acid was covalently coupled to L-asparaginase molecule by reductive amination. Depending on the molar ratios of colominic acid-asparaginase (30:1, 50:1 and 100:1), a modified enzyme molecule contained 4.7, 7.2 and 12 colominic acid molecule, they retained 58%, 56% and 33.2% of the initial asparaginase activity, respectively. In comparison with the native enzyme, modified enzyme had lower immunogenicity and antigenicity, longer half-life time (in vitro), more resistance ability to trypsin proteolysis, and similar Km value for L-asparagine.

  6. Wickerhamiella van der Walt (1973)

    USDA-ARS?s Scientific Manuscript database

    This chapter describes the ascomycetous yeast genus Wickerhamiella, which has five described species and has been defined from multigene deoxyribonucleic acid (DNA) sequence analysis. The species reproduce by multilateral budding but do not form hyphae or pseudohyphae. Asci typically form a single a...

  7. An oligonucleotide microarray to characterize multidrug resistant plasmids

    USDA-ARS?s Scientific Manuscript database

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic drug resistance. Many of the Enterobacteriaceae carry multiple drug resistance (MDR) genes on large plasmids of replic...

  8. How SNP chips will advance our knowledge of factors controlling puberty and aid in selecting replacement females

    USDA-ARS?s Scientific Manuscript database

    The promise of genomic selection is that genetic potential can be accurately predicted from genotypes. Simple deoxyribonucleic acid (DNA) tests might replace low accuracy predictions based on performance and pedigree for expensive or lowly heritable measures of puberty and fertility. The promise i...

  9. Pre-biotic molecules in shocks: the case of L1157

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Lefloch, Bertrand; López-Sepulcre, Ana; Ceccarelli, Cecilia; Codella, Claudio; Boechat-Roberty, Heloisa M.; Bachiller, Rafael

    2015-08-01

    Interstellar molecules with a peptide link -NH-C(=O)-, like formamide (NH2CHO) and isocyanic acid (HNCO) are notably interesting for their potential role in pre-biotic chemistry. For first time, we report the detection of both molecules towards the protostellar shock L1157-B1 and L1157-B2, with the IRAM 30m telescope. Analysis of the line profiles shows that the emission arises from the outflow cavities associated with B1 and B2. From a simple rotational diagram analysis, molecular abundance of ≈ (0.4-1.1)×10-8 and (3.3-8.8)×10-8 are derived for NH2CHO and HNCO, respectively. The shock regions B1 and B2 appear to be among the richest Galactic sources of HNCO and NH2CHO molecules. We have observed a narrow linear correlation between their abundances, suggesting that the two species are chemically related. Comparison with astrochemical models favours molecule formation on ice grain mantles, with NH2CHO generated from hydrogenation of HNCO.

  10. EFFECTS OF X IRRADIATION ON THE LEVEL OF NUCLEIC ACIDS AND PROTEINS OF THE UTERUS AND VAGINA OF PREPUBERTAL MICE SUBMITTED TO INDUCED HYPERPLASIA (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledoux, L.; Charles, P.

    1961-12-01

    In 20-day-old mice injected subcutaneously with a single 10 ug. dose of estradiol benzoate the deoxyribonucleic acid (DNA) content rose 100% in uterus and 50% in vagina 72 hr later. Ribonucleic acid (RNA) content rose 250 and 100%, respectively, and protein content rose in parallel with DNA. Similarly treated mice were exposed to x rays (150 to 850 r) 24 hr before, simultaneously with, or 24 to 48 hr after injection of estradiol. Irradiation with 750 r before or with the injection inhibited the rise of DNA and RNA 50 to 80% but did not affect the increase in proteins.more » Irradiation of uninjected control mice diminished DNA and RNA. Irradiation 24 to 38 hr after the injection immediately suppressed the increases of DNA and RNA in uterus and vagina and of protein in uterus. Protein content of vagina was not influenced. (H.H.D.)« less

  11. Evidence for the binding of the carcinogen 3-methylcholanthrene to both the purine and the pyrimidine bases of hamster fibroblast deoxyribonucleic acid (Short Communication)

    PubMed Central

    Jones, Peter A.; Gevers, Wieland; Hawtrey, Arthur O.

    1973-01-01

    The binding of [3H]3-methylcholanthrene to the DNA of hamster fibroblasts was studied by using chemical methods for DNA degradation. DNA depurinated by mild acid hydrolysis released approximately half of the radioactivity at the same rate as the purine bases, but the resulting apurinic acid still contained radioactive carcinogen. PMID:4797167

  12. Charge Transport in 2D DNA Tunnel Junction Diodes.

    PubMed

    Yoon, Minho; Min, Sung-Wook; Dugasani, Sreekantha Reddy; Lee, Yong Uk; Oh, Min Suk; Anthopoulos, Thomas D; Park, Sung Ha; Im, Seongil

    2017-12-01

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiO x junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiO x ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA.

    PubMed

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-15

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Electrochemical assembly of organic molecules by the reduction of iodonium salts

    DOEpatents

    Dirk, Shawn M [Albuquerque, NM; Howell, Stephen W [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2009-06-23

    Methods are described for the electrochemical assembly of organic molecules on silicon, or other conducting or semiconducting substrates, using iodonium salt precursors. Iodonium molecules do not assemble on conducting surfaces without a negative bias. Accordingly, the iodonium salts are preferred for patterning applications that rely on direct writing with negative bias. The stability of the iodonium molecule to acidic conditions allows them to be used with standard silicon processing. As a directed assembly process, the use of iodonium salts provides for small features while maintaining the ability to work on a surface and create structures on a wafer level. Therefore, the process is amenable for mass production. Furthermore, the assembled monolayer (or multilayer) is chemically robust, allowing for subsequent chemical manipulations and the introduction of various molecular functionalities for various chemical and biological applications.

  15. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges.

    PubMed

    Qing, Taiping; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Wen, Li; Shangguan, Jingfang; Mao, Zhengui; Lei, Yanli

    2016-04-01

    Owing to their highly efficient catalytic effects and substrate specificity, the nucleic acid tool enzymes are applied as 'nano-tools' for manipulating different nucleic acid substrates both in the test-tube and in living organisms. In addition to the function as molecular scissors and molecular glue in genetic engineering, the application of nucleic acid tool enzymes in biochemical analysis has also been extensively developed in the past few decades. Used as amplifying labels for biorecognition events, the nucleic acid tool enzymes are mainly applied in nucleic acids amplification sensing, as well as the amplification sensing of biorelated variations of nucleic acids. With the introduction of aptamers, which can bind different target molecules, the nucleic acid tool enzymes-aided signal amplification strategies can also be used to sense non-nucleic targets (e.g., ions, small molecules, proteins, and cells). This review describes and discusses the amplification strategies of nucleic acid tool enzymes-aided biosensors for biochemical analysis applications. Various analytes, including nucleic acids, ions, small molecules, proteins, and cells, are reviewed briefly. This work also addresses the future trends and outlooks for signal amplification in nucleic acid tool enzymes-aided biosensors.

  16. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  17. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  18. SEM (Symmetry Equivalent Molecules): a web-based GUI to generate and visualize the macromolecules

    PubMed Central

    Hussain, A. S. Z.; Kumar, Ch. Kiran; Rajesh, C. K.; Sheik, S. S.; Sekar, K.

    2003-01-01

    SEM, Symmetry Equivalent Molecules, is a web-based graphical user interface to generate and visualize the symmetry equivalent molecules (proteins and nucleic acids). In addition, the program allows the users to save the three-dimensional atomic coordinates of the symmetry equivalent molecules in the local machine. The widely recognized graphics program RasMol has been deployed to visualize the reference (input atomic coordinates) and the symmetry equivalent molecules. This program is written using CGI/Perl scripts and has been interfaced with all the three-dimensional structures (solved using X-ray crystallography) available in the Protein Data Bank. The program, SEM, can be accessed over the World Wide Web interface at http://dicsoft2.physics.iisc.ernet.in/sem/ or http://144.16.71.11/sem/. PMID:12824326

  19. A Survey of Large Molecules toward the Protoplanetary Nebula CRL 61 8

    NASA Technical Reports Server (NTRS)

    Remijan, Anthony J.; Wyrowski, Friedrich; Friedel, Douglas N.; Meier, David S.; Snyder, Lewis E.

    2005-01-01

    We present the results of our survey toward the protoplanetary nebula CRL 618 for several large, highly saturated, oxygen bearing organic molecules of biological importance including acetaldehyde (CH3CHO), acetic acid (CH3OOH), dimethyl ether (CH3OCH3), ethanol (CH3CH2OH), formic acid (HCOOH) and methyl formate (HCOOCH3); large carbon chain molecules including methyl cyanide (CH3CN) , methylcyanoacetylene (CH3C3N), cyanoacetylene (HC3N), cyanodiacetylene (HC5N), and C6H; and finally smaller molecules including SO-34, SO2, O(C-34)S and MgNC. No biologically important organic molecules were detected. However, we report the first interferometric detections of CH3CN and vibrationally excited HC3N and HC5N toward this source. The temperature and distribution of CH3CN toward CRL 618 indicates it is formed in the outer envelope surrounding the UC HII region. Furthermore, the P-Cygni line profile and corresponding channel maps of vibrationally excited HC5N supports its distribution in the extended envelope expanding radially from the central star. The detection of vibrationally excited HC3N confirmed the temperature structure and column density of HC3N in the inner envelope found by Wyrowski and colleagues (2003). Finally, our observations clearly indicate that CRL 618 is a good source of large carbon chain species but is a very poor source to detect or produce organic species of biological importance.

  20. Genotoxicity of corrosion eluates obtained from endosseous implants.

    PubMed

    Ribeiro, Daniel Araki; Matsumoto, Mariza Akemi; Padovan, Luís Eduardo Marques; Marques, Mariângela Esther Alencar; Salvadori, Daisy Maria Fávero

    2007-03-01

    Commercially pure titanium alloys are currently used as metallic biomaterials in implantology. Corrosion phenomena appear to play a decisive role in metallic implant long-term behavior. Thus, the goal of this study was to examine the genotoxic potential of corrosion eluates obtained from dental implants using Chinese ovary hamster cells in vitro by the single-cell gel (comet) assay. This technique detects deoxyribonucleic acid strand breaks in individual cells in alkaline conditions. The materials tested included 3 dental implants commercially available. Each of the tested materials was corroded in a solution consisting of equal amounts of acetic acid and sodium chloride (0.1 M) for 1, 3, 7, 14, and 21 days. The Chinese ovary hamster cultures were then exposed to all corrosion eluates obtained from endosseous dental implants for 30 minutes at 37 degrees C. None of the eluates was found to exhibit genotoxicity, regardless of the type of dental implant used. The results suggest that all dental implants tested in this study did not induce deoxyribonucleic acid breakage as depicted by the single-cell gel (comet) assay.

  1. Surface Passivation for Single-molecule Protein Studies

    PubMed Central

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  2. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    PubMed

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of < or =1-2 nm. These results expand our understanding of the interactions between ssDNA and SWCNTs and provide an efficient approach for positioning Pt and other metal particles, with uniform sizes and without aggregations, along the nanotube surfaces for applications in direct ethanol/methanol fuel cells and nanoscale electronics.

  3. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions.

    PubMed

    Gutjahr, Caroline; Paszkowski, Uta

    2009-07-01

    Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.

  4. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways.

    PubMed

    Sun, Kai; Li, Shunyao; Waigi, Michael Gatheru; Huang, Qingguo

    2018-05-01

    It has been shown that manganese dioxide (MnO 2 ) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO 2 -mediated systems were still unclear. In this study, it was proven that nano-MnO 2 were effective in transforming triclosan under acidic conditions (pH 3.5-5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k = 0.0599-1.5314 h -1 ) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO 2 was enhanced in the presence of low-concentration humic acid (1-10 mg L -1 ). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO 2 -mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO 2 . A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO 2 in complex water matrices.

  5. Discovery and Characterization of a Novel Small-Molecule Agonist for Medium-Chain Free Fatty Acid Receptor G Protein-Coupled Receptor 84.

    PubMed

    Zhang, Qing; Yang, Hui; Li, Jing; Xie, Xin

    2016-05-01

    G protein-coupled receptor 84 (GPR84) is a free fatty acid receptor activated by medium-chain free fatty acids with 9-14 carbons. It is expressed mainly in the immune-related tissues, such as spleen, bone marrow, and peripheral blood leukocytes. GPR84 plays significant roles in inflammatory processes and may represent a novel drug target for the treatment of immune-mediated diseases. However, the lack of potent and specific ligands for GPR84 hindered the study of its functions and the development of potential clinical applications. Here, we report the screen of 160,000 small-molecule compounds with a calcium mobilization assay using a human embryonic kidney 293 cell line stably expressing GPR84 and Gα16, and the identification of 2-(hexylthio)pyrimidine-4,6-diol (ZQ-16) as a potent and selective agonist of GPR84 with a novel structure. ZQ-16 activates several GPR84-mediated signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, phosphorylation of extracellular signal-regulated protein kinase 1/2, receptor desensitization and internalization, and receptor-β-arrestin interaction. This compound may be a useful tool to study the functions of GPR84 and a potential candidate for further structural optimization. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Cellular Fatty Acid Metabolism and Cancer

    PubMed Central

    Currie, Erin; Schulze, Almut; Zechner, Rudolf; Walther, Tobias C.; Farese, Robert V.

    2013-01-01

    Cancer cells commonly have characteristic changes in metabolism. Cellular proliferation, a common feature of all cancers, requires fatty acids for synthesis of membranes and signaling molecules. Here, we provide a view of cancer cell metabolism from a lipid perspective, and we summarize evidence that limiting fatty acid availability can control cancer cell proliferation. PMID:23791484

  7. Monitoring Single-Molecule Protein Dynamics with a Carbon Nanotube Transistor

    NASA Astrophysics Data System (ADS)

    Collins, Philip G.

    2014-03-01

    Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. Single-walled carbon nanotubes press this concept further by not just detecting molecules but also monitoring their dynamics in real time. Recent measurements have demonstrated this premise by monitoring the single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. With all three enzymes, single molecules tethered to nanotube transistors were electronically monitored for 10 or more minutes, allowing us to directly observe a range of activity including rare transitions to chemically inactive and hyperactive conformations. The high bandwidth of the nanotube transistors further allow every individual chemical event to be clearly resolved, providing excellent statistics from tens of thousands of turnovers by a single enzyme. Initial success with three different enzymes indicates the generality and attractiveness of the nanotube devices as a new tool to complement other single-molecule techniques. Research on transduction mechanisms provides the design rules necessary to further generalize this architecture and apply it to other proteins. The purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule sensors from a wide range of enzymes or proteins.

  8. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  9. Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids

    PubMed Central

    2018-01-01

    Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles. PMID:29806009

  10. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  11. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  12. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  13. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  14. 76 FR 43666 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... which result in a contrary determination. ADDRESSES: You may submit comments, identified by docket... test results; Deoxyribonucleic Acid (DNA); dental care eligibility codes and dental x-rays. Patient... to collect any resulting over payment (38 U.S.C. 5304(c)). (2) Providing military personnel and...

  15. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

  16. Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerlings, P.; Tariel, N.; Botrel, A.

    1984-11-08

    A study has been conducted to explain the interaction mechanisms of (bridging and terminal) surface hydroxyl groups with molecules, using ab initio, EHT, and CNDO/2-FA quantum-chemical calculations. Bond strength variations and charge shifts were found to be in complete agreement with Gutmann's rules, and provide a basis for the understanding of the Bronsted acid properties of zeolites and amorphous silica-alumina. A quantitative measure of the interaction strength is possible by referring to the experimentally determined donor number (Gutmann) following many molecules, but care should be taken for those molecules for which the donor strength was determined by indirect methods. Onlymore » a few exceptions to Gutmann's rules should exist, e.g., in those cases where the atom interacting with the proton is not the most electronegative of the donor molecule (such as for CO). Individual bonds in a given complex are more susceptible to perturbations (changes in composition and interactions with adsorbing molecules) if the coordination number increases. These rules are in agreement with the observations and apply to all reactions (inter- or intramolecular) involving a change in coordination. 52 references, 6 figures, 4 tables.« less

  17. Effect of treatment with the antioxidant alpha-lipoic (thioctic) acid on heart and kidney microvasculature in spontaneously hypertensive rats.

    PubMed

    Tayebati, Seyed Khosrow; Tomassoni, Daniele; Di Cesare Mannelli, Lorenzo; Amenta, Francesco

    2016-01-01

    Endothelial cells represent an important vascular site of signaling and development of damage during ischemia, inflammation and other pathological conditions. Excessive reactive oxygen species production causes pathological activation of endothelium including exposure of cell to adhesion molecules. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) are members of the immunoglobulin super-family which are present on the surface of endothelial cells. These molecules represent important markers of endothelial inflammation. The present study was designed to investigate, with immunochemical and immunohistochemical techniques, the effect of treatment with (+/-)-alpha lipoic (thioctic) acid and its enantiomers on heart and kidney endothelium in spontaneously hypertensive rats (SHR). Arterial hypertension is accompanied by an increased oxidative stress status in the heart characterized by thiobarbituric acid reactive substances (TBARS) and nucleic acid oxidation increase. The higher oxidative stress also modifies adhesion molecules expression. In the heart VCAM-1, which was higher than ICAM-1 and PECAM-1, was increased in SHR. ICAM-1, VCAM-1 and PECAM-1 expression was significantly greater in the renal endothelium of SHR. (+/-)-Alpha lipoic acid and (+)-alpha lipoic acid treatment significantly decreased TBARS levels, the nucleic acid oxidation and prevented adhesion molecules expression in cardiac and renal vascular endothelium. These data suggest that endothelial molecules may be used for studying the mechanisms of vascular injury on target organs of hypertension. The effects observed after treatment with (+)-alpha lipoic acid could open new perspectives for countering heart and kidney microvascular injury which represent a common feature in hypertensive end-organs damage.

  18. Nucleic Acid Nanostructures: Bottom-Up Control of Geometry on the Nanoscale

    PubMed Central

    Seeman, Nadrian C.; Lukeman, Philip S.

    2012-01-01

    DNA may seem an unlikely molecule from which to build nanostructures, but this is not correct. The specificity of interaction that enables DNA to function so successfully as genetic material also enables its use as a smart molecule for construction on the nanoscale. The key to using DNA for this purpose is the design of stable branched molecules, which expand its ability to interact specifically with other nucleic acid molecules. The same interactions used by genetic engineers can be used to make cohesive interactions with other DNA molecules that lead to a variety of new species. Branched DNA molecules are easy to design, and the can assume a variety of structural motifs. These can be used for purposes both of specific construction, such as polyhedra, and for the assembly of topological targets. A variety of two-dimensional periodic arrays with specific patterns have been made. DNA nanomechanical devices have been built with a series of different triggers, small molecules, nucleic acid molecules and proteins. Recently, progress has been made in self-replication of DNA nano-constructs, and in the scaffolding of other species into DNA arrangements. PMID:25152542

  19. Quantum Computational Calculations of the Ionization Energies of Acidic and Basic Amino Acids: Aspartate, Glutamate, Arginine, Lysine, and Histidine

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.

    An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.

  20. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification.

    PubMed

    Yao, Yongpeng; Li, Shanshan; Cao, Jiaqian; Liu, Weiwei; Fan, Keqiang; Xiang, Wensheng; Yang, Keqian; Kong, Deming; Wang, Weishan

    2018-05-08

    Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.

  1. Exogenous adenosine 5'-phosphoramidate behaves as a signal molecule in plants; it augments metabolism of phenylpropanoids and salicylic acid in Arabidopsis thaliana seedlings.

    PubMed

    Pietrowska-Borek, Małgorzata; Nuc, Katarzyna; Guranowski, Andrzej

    2015-09-01

    Cells contain various congeners of the canonical nucleotides. Some of these accumulate in cells under stress and may function as signal molecules. Their cellular levels are enzymatically controlled. Previously, we demonstrated a signaling function for diadenosine polyphosphates and cyclic nucleotides in Arabidopsis thaliana and grape, Vitis vinifera. These compounds increased the expression of genes for and the specific activity of enzymes of phenylpropanoid pathways resulting in the accumulation of certain products of these pathways. Here, we show that adenosine 5'-phosphoramidate, whose level can be controlled by HIT-family proteins, induced similar effects. This natural nucleotide, when added to A. thaliana seedlings, activated the genes for phenylalanine:ammonia lyase, 4-coumarate:coenzyme A ligase, cinnamate-4-hydroxylase, chalcone synthase, cinnamoyl-coenzyme A:NADP oxidoreductase and isochorismate synthase, which encode proteins catalyzing key reactions of phenylpropanoid pathways, and caused accumulation of lignins, anthocyanins and salicylic acid. Adenosine 5'-phosphofluoridate, a synthetic congener of adenosine 5'-phosphoramidate, behaved similarly. The results allow us to postulate that adenosine 5'-phosphoramidate should be considered as a novel signaling molecule. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Identification of the GnRH-(1-5) Receptor and Signaling Pathway

    DTIC Science & Technology

    2013-03-22

    Coimmunoprecipitation DAG Diacylglycerol DNA Deoxyribonucleic Acid DR Aspartic Acid/ Aspargine Motif ED Embryonic Day ELISA Enzyme -Linked...candidate GnRH-(1-5) receptors by using a high-throughput enzyme fragment complementation assay (DiscoveRx, Fremont, CA). The results from the assay...for an orphan GPCR is of paramount significance since there are greater than 100 orphan GPCRs considered potential targets for the development of

  3. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    PubMed Central

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  4. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 155-92 site in a specific hemizygous diploid line of dairy breeds of domestic goats (Capra aegagrus... of humans) in the mammary gland of goats derived from lineage progenitor 155-92. (b) Sponsor. See No. 042976 in § 510.600 of this chapter. (c) Limitations. Food or feed from GTC-155-92 goats is not permitted...

  5. 21 CFR 528.1070 - Bc6 recombinant deoxyribonucleic acid construct.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 155-92 site in a specific hemizygous diploid line of dairy breeds of domestic goats (Capra aegagrus... of humans) in the mammary gland of goats derived from lineage progenitor 155-92. (b) Sponsor. See No. 042976 in § 510.600 of this chapter. (c) Limitations. Food or feed from GTC-155-92 goats is not permitted...

  6. Purification of influenza deoxyribonucleic acid-based vaccine using agmatine monolith.

    PubMed

    Bicho, D; Caramelo-Nunes, C; Sousa, A; Sousa, F; Queiroz, J A; Tomaz, C T

    2016-02-15

    Lately, researchers have made several efforts to improve vaccine production to fight highly contagious respiratory diseases like influenza. One of the most promising options for reducing the impact of this virus is DNA vaccination. However, a large quantity of highly pure plasmid DNA (pDNA) is necessary to attain this goal. The present work describes the production and purification of the plasmid NTC7482-41H-VA2HA expressing influenza virus hemagglutinin using an agmatine monolith. This ligand was chosen to purify supercoiled (sc) pDNA from complex lysates because of its versatile multimodal character. Its natural intervention in several biological systems together with its similarity with the highly studied arginine ligand allowed the development of a simpler and more specific purification process. Agmatine works under two strategies: descending ammonium sulfate gradient and ascending sodium chloride gradient. Furthermore, pH manipulation revealed an important role in pDNA isoforms selectivity. Dynamic binding capacity (DBC) experiments were performed varying different parameters and showed an increase with pDNA concentration, while high flow rate and high pH had the opposite effect. Sc pDNA was purified with high yield and was efficient with respect to cell transfection and cell viability. This monolith showed to be appropriate to purify the plasmid NTC7482-41H-VA2HA, providing a valuable tool for pDNA influenza vaccines preparation. Copyright © 2016. Published by Elsevier B.V.

  7. Molecular Recognition of Azelaic Acid and Related Molecules with DNA Polymerase I Investigated by Molecular Modeling Calculations.

    PubMed

    Shawon, Jakaria; Khan, Akib Mahmud; Rahman, Adhip; Hoque, Mohammad Mazharol; Khan, Mohammad Abdul Kader; Sarwar, Mohammed G; Halim, Mohammad A

    2016-10-01

    Molecular recognition has central role on the development of rational drug design. Binding affinity and interactions are two key components which aid to understand the molecular recognition in drug-receptor complex and crucial for structure-based drug design in medicinal chemistry. Herein, we report the binding affinity and the nonbonding interactions of azelaic acid and related compounds with the receptor DNA polymerase I (2KFN). Quantum mechanical calculation was employed to optimize the modified drugs using B3LYP/6-31G(d,p) level of theory. Charge distribution, dipole moment and thermodynamic properties such as electronic energy, enthalpy and free energy of these optimized drugs are also explored to evaluate how modifications impact the drug properties. Molecular docking calculation was performed to evaluate the binding affinity and nonbonding interactions between designed molecules and the receptor protein. We notice that all modified drugs are thermodynamically more stable and some of them are more chemically reactive than the unmodified drug. Promise in enhancing hydrogen bonds is found in case of fluorine-directed modifications as well as in the addition of trifluoroacetyl group. Fluorine participates in forming fluorine bonds and also stimulates alkyl, pi-alkyl interactions in some drugs. Designed drugs revealed increased binding affinity toward 2KFN. A1, A2 and A3 showed binding affinities of -8.7, -8.6 and -7.9 kcal/mol, respectively against 2KFN compared to the binding affinity -6.7 kcal/mol of the parent drug. Significant interactions observed between the drugs and Thr358 and Asp355 residues of 2KFN. Moreover, designed drugs demonstrated improved pharmacokinetic properties. This study disclosed that 9-octadecenoic acid and drugs containing trifluoroacetyl and trifluoromethyl groups are the best 2KFN inhibitors. Overall, these results can be useful for the design of new potential candidates against DNA polymerase I.

  8. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease.

    PubMed

    Hirakawa, Yosuke; Tanaka, Tetsuhiro; Nangaku, Masaomi

    2017-05-01

    Diabetic kidney disease (DKD) is a worldwide public health problem. The definition of DKD is under discussion. Although the term DKD was originally defined as 'kidney disease specific to diabetes,' DKD frequently means chronic kidney disease with diabetes mellitus and includes not only classical diabetic nephropathy, but also kidney dysfunction as a result of nephrosclerosis and other causes. Metabolic memory plays a crucial role in the progression of various complications of diabetes, including DKD. The mechanisms of metabolic memory in DKD are supposed to include advanced glycation end-products, deoxyribonucleic acid methylation, histone modifications and non-coding ribonucleic acid including micro ribonucleic acid. Regardless of the presence of diabetes mellitus, the final common pathway in chronic kidney disease is chronic kidney hypoxia, which influences epigenetic processes, including deoxyribonucleic acid methylation, histone modification, and conformational changes in micro ribonucleic acid and chromatin. Therefore, hypoxia and oxidative stress are appropriate targets of therapies against DKD. Prolyl hydroxylase domain inhibitor enhances the defensive mechanisms against hypoxia. Bardoxolone methyl protects against oxidative stress, and can even reverse impaired renal function; a phase 2 trial with considerable attention to heart complications is currently ongoing in Japan. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  9. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life.

    PubMed

    Griffith, Elizabeth C; Shoemaker, Richard K; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  10. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    PubMed

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  11. Construction of Eu(III)- and Tb(III)-MOFs with photoluminescence for sensing small molecules based on furan-2,5-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Zhao, Shuai; Hao, Xue-Min; Liu, Jia-Lin; Wu, Lin-Wei; Wang, Hao; Wu, Yi-Bo; Yang, Dan; Guo, Wen-Li

    2017-11-01

    Two isostructural lanthanide MOFs, [Ln3K2(FDA)4(NO3)3(MeCN)2]n (Ln = Eu 1, Tb 2) (H2FDA= furan-2,5-dicarboxylic acid), have been constructed under solvothermal conditions. Structures analyses demonstrate two complexes possess three-dimensional network with monoclinic space group C2/c. The topology analysis shows that the whole framework can be simplified to a 3,8T24 topology constructed from trinuclear {Ln3} as secondary building units (SBUs) without considering K+ ions. Solid state luminescent studies indicate that 1 and 2 show the characteristic red and green emissions of the corresponding Ln3+ ions, respectively. The luminescence lifetimes of 1 and 2 are approximately 1.04 ms and 0.41 ms. In addition, activated 1 exhibits excellent fluorescence sensing for small molecules, especially for nitrobenzene.

  12. Abundance of complex organic molecules in comets

    NASA Astrophysics Data System (ADS)

    Biver, N.; Bockelée-Morvan, D.; Debout, V.; Crovisier, J.; Moreno, R.; Boissier, J.; Lis, D.; Colom, P.; Paubert, G.; Dello Russo, N.; Vervack, R.; Weaver, H.

    2014-07-01

    The IRAM-30m submillimetre radio telescope has now an improved sensitivity and versality thanks to its wide-band EMIR receivers and high-resolution FFT spectrometer. Since 2012, we have undertaken ~70 GHz wide spectral surveys in the 1-mm band in several comets: C/2009 P1 (Garradd), C/2011 L4 (PanSTARRS), C/2012 F6 (Lemmon), C/2012 S1 (ISON), and C/2013 R1 (Lovejoy). Since their discovery in comet C/1995 O1 (Hale-Bopp) in 1997 (Bockelée-Morvan et al. 2000, Crovisier et al. 2004a, 2004b), we have detected complex CHO(N)-molecules such as formic acid (HCOOH), formamide (NH_2CHO), acetaldehyde (CH_3CHO), and ethylene glycol ((CH_2OH)_2) in several other comets. HCOOH has now been detected in 6 other comets since 2004, and formamide, ethylene glycol, and acetaldehyde were re-detected for the first time in comets Lemmon or Lovejoy in 2013 (Biver et al. 2014). We will present the abundances relative to water we derive for these species, and the sensitive upper limits we obtain for other complex CHO-bearing molecules. We will discuss the implication of these findings on the origin of cometary material in comparison with observations of such molecules in the interstellar medium.

  13. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  14. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  15. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  16. Nanopore Device for Reversible Ion and Molecule Sensing or Migration

    NASA Technical Reports Server (NTRS)

    Seger, R. Adam (Inventor); Pourmand, Nader (Inventor); Actis, Paolo (Inventor); Singaram, Bakthan (Inventor); Vilozny, Boaz (Inventor)

    2015-01-01

    Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.

  17. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions

    NASA Astrophysics Data System (ADS)

    McCann, Kathleen; Laane, Jaan

    2008-11-01

    The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.

  18. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less

  19. N-(6-Methylpyridin-2-yl)mesitylenesulfonamide and acetic acid--a salt, a cocrystal or both?

    PubMed

    Pan, Fangfang; Kalf, Irmgard; Englert, Ulli

    2015-08-01

    In the solid obtained from N-(6-methylpyridin-2-yl)mesitylenesulfonamide and acetic acid, the constituents interact via two N-H···O hydrogen bonds. The H atom situated in one of these short contacts is disordered over two positions: one of these positions is formally associated with an adduct of the neutral sulfonamide molecule and the neutral acetic acid molecule, and corresponds to a cocrystal, while the alternative site is associated with salt formation between a protonated sulfonamide molecule and deprotonated acetic acid molecule. Site-occupancy refinements and electron densities from difference Fourier maps suggest a trend with temperature, albeit of limited significance; the cocrystal is more relevant at 100 K, whereas the intensity data collected at room temperature match the description as cocrystal and salt equally well.

  20. Ultrasound-microbubble-mediated intercellular adhesion molecule-1 small interfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice.

    PubMed

    Suzuki, Jun-ichi; Ogawa, Masahito; Takayama, Kiyoshi; Taniyama, Yoshiaki; Morishita, Ryuichi; Hirata, Yasunobu; Nagai, Ryozo; Isobe, Mitsuaki

    2010-03-02

    The purpose of this study was to investigate the efficiency of small interfering ribonucleic acid (siRNA) in murine arteries. We transfected it using a nonviral ultrasound-microbubble-mediated in vivo gene delivery system. siRNA is an effective methodology to suppress gene function. The siRNA can be synthesized easily; however, a major obstacle in the use of siRNA as therapeutics is the difficulty involved in effective in vivo delivery. To investigate the efficiency of nonviral ultrasound-microbubble-mediated in vivo siRNA delivery, we used a fluorescein-labeled siRNA, green fluorescent protein (GFP) siRNA, and intercellular adhesion molecule (ICAM)-1 siRNA in murine arteries. Murine femoral arteries were injured using flexible wires to establish arterial injury. The fluorescein-labeled siRNA and GFP siRNA showed that this nonviral approach could deliver siRNA into target arteries effectively without any tissue damage and systemic adverse effects. ICAM-1 siRNA transfection into murine injured arteries significantly suppressed the development of neointimal formation in comparison to those in the control group. Immunohistochemistry revealed that accumulation of T cells and adhesion molecule positive cells was observed in nontreated injured arteries, whereas siRNA suppressed accumulation. The nonviral ultrasound-microbubble delivery of siRNA ensures effective transfection into target arteries. ICAM-1 siRNA has the potential to suppress arterial neointimal formation. Transfection of siRNA can be beneficial for the clinical treatment of cardiovascular and other inflammatory diseases. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  2. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  3. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.

    PubMed

    Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M

    2018-05-31

    Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.

  4. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  5. Is DNA Alive? a Study of Conceptual Change through Targeted Instruction

    ERIC Educational Resources Information Center

    Witzig, Stephen B.; Freyermuth, Sharyn K.; Siegel, Marcelle A.; Izci, Kemal; Pires, J. Chris

    2013-01-01

    We are involved in a project to incorporate innovative assessments within a reform-based large-lecture biochemistry course for nonmajors. We not only assessed misconceptions but purposefully changed instruction throughout the semester to confront student ideas. Our research questions targeted student conceptions of deoxyribonucleic acid (DNA)…

  6. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  7. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  8. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  9. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  10. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  11. 28 CFR 28.11 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection, Analysis, and Indexing § 28.11 Definitions. DNA analysis means analysis of the deoxyribonucleic acid (DNA) identification information in a bodily sample. DNA sample means a tissue, fluid, or other bodily sample of an individual on...

  12. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  13. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  14. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  15. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  16. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  17. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  18. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  19. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  20. Prenatal Diagnosis: Current Procedures and Implications for Early Interventionists Working with Families.

    ERIC Educational Resources Information Center

    Blasco, Patricia M.; And Others

    1994-01-01

    This article provides an overview of procedures commonly used in prenatal screening and diagnosis including ultrasound, amniocentesis, chorionic villus biopsy, maternal serum alpha-fetoprotein, and deoxyribonucleic acid (DNA) analysis. Emphasis is on the role of the early interventionist in supporting families during prenatal diagnosis. (Author/DB)

  1. [Innovative application of small molecules to influence -pathogenicity of dental plaque].

    PubMed

    Janus, M M; Volgenant, C M C; Krom, B P

    2018-05-01

    Current preventive measures against infectious oral diseases are mainly focussed on plaque removal and promoting a healthy lifestyle. This in vitro study investigated a third preventive method: maintaining healthy dental plaque with the use of small molecules. As a model of dental plaque, in vitro biofilms were cultivated under conditions that induce pathogenic characteristics. The effect of erythritol and other small molecules on the pathogenic characteristics and bacterial composition of the biofilm was evaluated. The artificial sweetener erythritol and the molecule 3-Oxo-N-(2-oxycyclohexyl)dodecanamide (3-Oxo-N) had no clinically relevant effect on total biofilm formation. Erythritol did, however, lower the gingivitis related protease activity of the biofilm, while 3-Oxo-N blocked the caries related lactic acid accumulation. Furthermore, both substances ensured the biofilm maintained a young, non-pathogenic microbial composition. This shows it is possible to influence the dental plaque in a positive manner in vitro with the help of small molecules. Further research is necessary before this manipulation of dental plaque can be applied.

  2. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application

    NASA Astrophysics Data System (ADS)

    Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet

    2016-09-01

    A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.

  3. RNA targeting by small molecule alkaloids: Studies on the binding of berberine and palmatine to polyribonucleotides and comparison to ethidium

    NASA Astrophysics Data System (ADS)

    Islam, Md. Maidul; Suresh Kumar, Gopinatha

    2008-03-01

    The binding affinity, energetics and conformational aspects of the interaction of isoquinoline alkaloids berberine and palmatine to four single stranded polyribonucleotides polyguanylic acid [poly(G)], polyinosinic acid [poly(I)], polycytidylic acid [poly(C)] and polyuridylic acid [poly(U)] were studied by absorption, fluorescence, isothermal titration calorimetry and circular dichroism spectroscopy and compared with ethidium. Berberine, palmatine and ethidium binds strongly with poly(G) and poly(I) with affinity in the order 10 5 M -1 while their binding to poly(C) and poly(U) were very weak or practically nil. The same conclusions have also emerged from isothermal titration calorimetric studies. The binding of all the three compounds to poly(C) and poly(I) was exothermic and favored by both negative enthalpy change and positive entropy change. Conformational change in the polymer associated with the binding was observed in poly(I) with all the three molecules and poly(U) with ethidium but not in poly(G) and poly(C) revealing differences in the orientation of the bound molecules in the hitherto different helical organization of these polymers. These fundamental results may be useful and serve as database for the development of futuristic RNA based small molecule therapeutics.

  4. [Effect of phosphatidic acid on the reaction of linoleic acid oxidation by 5-lipooxygenase from potatoes].

    PubMed

    Skaterna, T D; Kharchenko, O V

    2008-01-01

    Influence of anionogenic phospholipid of phosphatidic acid (PA) on oxidation of linoleic acid by 5-lipoxygenase (5-LO) from Solanum tuberosum was studied. The influence of PA was studied in micellar system which consisted of mixed micelles of linolenic acid (LK), Lubrol PX and different quantity of enzyme effector PA. The reaction was initiated by addition of 5-LO. It was established that 5-LO had two pHopt. in the presence of 50 microM phosphatidic acid: pH 5.0 and 6.9. In concentration of 50 microM PA was able to activate 5-LO 15 times at pH 5.0. The reaction maximum velocity (Vmax) coincided with Vmax of lipoxygenase reaction without the effector at pH 6.9 under such conditions. It was found that 30-50 microM phospholipid in the reaction mixture decreased the concentration of half saturation by the substrate by 43-67%. The enzyme demonstrated positive cooperation in respect of the substrate, the reaction is described by the Hill equation. Hill coefficient value (h) of the substrate was 3.34 +/- 0.22 (pH 6.9) and 5.61 +/- 0.88 (pH 5.0), that is with the change of pH to acidic region the number of substrate molecules increased and they could interact with the enzyme molecule. In case of substrate insufficiency the enzyme demonstrated positive cooperation of PA, it added from 4 to 3 effectors' molecules at pH 5.0, that is the phospholipid acted as the allosteric regulator of 5-LO. A comparative analysis of the influence of 4-hydroxy-TEMPO displayed, that the level of nonenzymatic processes in the case of physiological pH values was lower by 15-50% in the presence of PA in the range of 30-80 microM than without the effector.

  5. Vibrational Energy in Molecules and Nanoparticles: Applications to Energetic Materials

    DTIC Science & Technology

    2009-01-30

    of vibrational energy in a polyatomic molecule, nitromethane . Work on water and amino acids partially supported by AFOSR are developmental in nature...have characterized the surface vibrations of HMX explosive and their interaction with polymer binders. We have introduced a major improvement in SFG...Vibrational energy in nitromethane and benzene E. Time resolved spectroscopy of chemistry in flash-heated nanoenergetic materials F. Complete

  6. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production

    PubMed Central

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid

    2015-01-01

    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. PMID:25757029

  7. [A regenerative anemia in infants: 2 cases of Pearson´s syndrome].

    PubMed

    Martínez de Zabarte Fernández, José M; Rodríguez-Vigil Iturrate, Carmen; Martínez Faci, Cristina; García Jiménez, Inmaculada; Murillo Sanjuan, Laura; Muñoz Mellado, Ascensión

    2017-02-01

    Anemia is very common in infants. Although its causes are usually not severe and treatable, proper etiologic diagnosis should be established. When anemia is non-regenerative, it can be caused by aplastic anemia, myelodysplastic syndrome, bone marrow infiltration or hematopoietic factors deficiencies. Another possible cause is Pearson's syndrome, a rare mitochondrial disease that causes non-regenerative anemia associated with other cytopenias, pancreatic insufficiency, lactic acidosis and great variability in clinical presentation conditioned by heteroplasmy. It is characteristic to find in bone marrow studies variable vacuolization in erythroblastic progenitors and ring sideroblasts. The diagnosis is established by genetic study of mitochondrial deoxyribonucleic acid performed by Southern blot analysis (complete mitochondrial deoxyribonucleic acid amplification by polymerase chain reaction -long), obtaining 70-80% deletion of 4977 bp (NMD 8343-13459). There is no curative therapy and support treatment is the only available nowadays. Death is frequent in early years of life. Sociedad Argentina de Pediatría.

  8. Highly Stable Nanocontainer of APTES-Anchored Layered Titanate Nanosheet for Reliable Protection/Recovery of Nucleic Acid

    NASA Astrophysics Data System (ADS)

    Kim, Tae Woo; Kim, In Young; Park, Dae-Hwan; Choy, Jin-Ho; Hwang, Seong-Ju

    2016-02-01

    A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with various biological and inorganic anions. The encapsulation of deoxyribonucleic acid (DNA) in the cationic APTES-anchored titanate lattice makes possible the reliable long-term protection of DNA against enzymatic, chemical, and UV-vis light corrosions. The encapsulated DNA can be easily released from the titanate lattice via sonication, underscoring the functionality of the cationic APTES-anchored titanate nanosheet as a stable nanocontainer for DNA. The APTES-anchored titanate nanosheet can be also used as an efficient CO2 adsorbent and a versatile host material for various inorganic anions like polyoxometalates, leading to the synthesis of novel intercalative nanohybrids with unexplored properties and useful functionalities.

  9. Highly Stable Nanocontainer of APTES-Anchored Layered Titanate Nanosheet for Reliable Protection/Recovery of Nucleic Acid.

    PubMed

    Kim, Tae Woo; Kim, In Young; Park, Dae-Hwan; Choy, Jin-Ho; Hwang, Seong-Ju

    2016-02-24

    A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with various biological and inorganic anions. The encapsulation of deoxyribonucleic acid (DNA) in the cationic APTES-anchored titanate lattice makes possible the reliable long-term protection of DNA against enzymatic, chemical, and UV-vis light corrosions. The encapsulated DNA can be easily released from the titanate lattice via sonication, underscoring the functionality of the cationic APTES-anchored titanate nanosheet as a stable nanocontainer for DNA. The APTES-anchored titanate nanosheet can be also used as an efficient CO2 adsorbent and a versatile host material for various inorganic anions like polyoxometalates, leading to the synthesis of novel intercalative nanohybrids with unexplored properties and useful functionalities.

  10. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    PubMed

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  11. Encapsulating fatty acid esters of bioactive compounds in starch

    NASA Astrophysics Data System (ADS)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  12. Impact of dehydration of purslane on retention of bioactive molecules and antioxidant activity.

    PubMed

    Shanker, Niharika; Debnath, Sukumar

    2015-10-01

    Purslane (Portulaca oleracea L.) has several health benefits, such as it reduces risk of CVD, obesity and diabetes. The objective of the study was to investigate the effect of different drying on retention of bioactive molecules, such as omega-3 fatty acids, total phenolic content and antiradical activity of purslane. Five different dehydration methods including microwave (100 MW, 5 min), tray, vacuum, low temperature low humidity, infrared were used at 55-60 °C for 5-7 h for dehydration of purslane. Three solvents, viz. water, ethanol and methanol were used for extraction of bioactive molecules from purslane. Total polyphenol content, antiradical activity and rehydration ratio of the bioactive molecules were determined. Results revealed that total PUFA, α-linolenic acid (ALA), total polyphenol content and antiradical activity were found to retain in the dried purslane in the range of (47.9-59.9 %), (42.5-50 %), (188-408GAE/100 g) and (33.0-88.8 mg/100 g) respectively. The highest values of ALA, total polyphenol content and antiradical activity were found to obtain in the vacuum dried sample. Rehydration ratio was found in the range of 3.2-4.3 and vacuum dried purslane showed maximum rehydration. It could be concluded that vacuum dehydration of purslane is an effective method for retention of bioactive molecules and good rehydration behaviour of dried purslane.

  13. Enantioselective Fluorescent Recognition of Chiral Acids by Cyclohexane-1,2-diamine-Based Bisbinaphthyl Molecules

    PubMed Central

    Li, Zi-Bo; Lin, Jing; Sabat, Michal; Hyacinth, Marilise; Pu, Lin

    2008-01-01

    The cyclohexane-1,2-diamine-based bisbinaphthyl macrocycles (S)-/(R)-5 and their cyclic and acyclic analogs are synthesized. The interactions of these compounds with various chiral acids are studied. Compounds (S)-/(R)-5 exhibit highly enantioselective fluorescent responses and high fluorescent sensitivity toward α-hydroxycarboxylic acids and N-protected amino acids. Among these interactions, (S)-mandelic acid (10−3 M) led to over 20 fold fluorescence enhancement of (S)-5 (1.0 × 10−5 M in benzene/0.05% DME) at the monomer emission and (S)-hexahydromandelic acid (10−3 M) led to over 80 fold fluorescence enhancement. These results demonstrate that (S)-5 is useful as an enantioselective fluorescent sensor for the recognition of the chiral acids. On the basis of the study of the structures of (S)-5 and the previously reported 1,2-diphenylethylenediamine-based bisbinaphthyl macrocycle (S)-4, the large fluorescence enhancement of (S)-5 with achirality-matched α-hydroxycarboxylic acid is attributed to the formation of a structurally rigidified host-guest complex and the further interaction of this complex with the acid to suppress the photo-induced electron transfer fluorescent quenching caused by the nitrogens in (S)-5. PMID:17530897

  14. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method.

    PubMed

    Ncube, Efficient N; Mhlongo, Msizi I; Piater, Lizelle A; Steenkamp, Paul A; Dubery, Ian A; Madala, Ntakadzeni E

    2014-01-01

    Chlorogenic acids (CGAs) are a class of phytochemicals that are formed as esters between different derivatives of cinnamic acid and quinic acid molecules. In plants, accumulation of these compounds has been linked to several physiological responses against various stress factors; however, biochemical synthesis differs from one plant to another. Although structurally simple, the analysis of CGA molecules with modern analytical platforms poses an analytical challenge. The objective of the study was to perform a comparison of the CGA profiles and related derivatives from differentiated tobacco leaf tissues and undifferentiated cell suspension cultures. Using an UHPLC-Q-TOF-MS/MS fingerprinting method based on the in-source collision induced dissociation (ISCID) approach, a total of 19 different metabolites with a cinnamic acid core moiety were identified. These metabolites were either present in both leaf tissue and cell suspension samples or in only one of the two plant systems. Profile differences point to underlying biochemical similarities or differences thereof. Using this method, the regio- and geometric-isomer profiles of chlorogenic acids of the two tissue types of Nicotiana tabacum were achieved. The method was also shown to be applicable for the detection of other related molecules containing a cinnamic acid core.

  15. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  16. Bactericidal Activity of Usnic Acid-Loaded Electrospun Fibers.

    PubMed

    Araújo, Evando S; Pereira, Eugênia C; da Costa, Mateus M; da Silva, Nicácio H; de Oliveira, Helinando P

    2016-01-01

    Usnic acid has been progressively reported in the literature as one of the most important lichen metabolites characterized by a rich diversity of applications such as antifungal, antimicrobial, antiprotozoal and antiviral agent. Particularly, antimicrobial activity of usnic acid can be improved by encapsulation of active molecules in enteric electrospun fibers, allowing the controlled release of active molecule at specific pH. Few relevant patents to the topic have been reviewed and cited. Bactericidal activity of usnic acid-loaded electrospun fibers of Eudragit L-100 and polyvinylpyrrolidone was examined against Staphylococcus aureus using inhibition hales methodology. The controlled release of active material at high pH is established after 10 minutes of interaction with media and results in reasonable activity against S. aureus, as detected by inhibition hales. The strong biological activity of usnic acid-loaded electrospun fibers provides a promising application for corresponding material as a bactericidal agent for wound healing treatment.

  17. Ionic scattering factors of atoms that compose biological molecules

    PubMed Central

    Matsuoka, Rei; Yamashita, Yoshiki; Yamane, Tsutomu; Kidera, Akinori; Maki-Yonekura, Saori

    2018-01-01

    Ionic scattering factors of atoms that compose biological molecules have been computed by the multi-configuration Dirac–Fock method. These ions are chemically unstable and their scattering factors had not been reported except for O−. Yet these factors are required for the estimation of partial charges in protein molecules and nucleic acids. The electron scattering factors of these ions are particularly important as the electron scattering curves vary considerably between neutral and charged atoms in the spatial-resolution range explored in structural biology. The calculated X-ray and electron scattering factors have then been parameterized for the major scattering curve models used in X-ray and electron protein crystallography and single-particle cryo-EM. The X-ray and electron scattering factors and the fitting parameters are presented for future reference. PMID:29755750

  18. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    PubMed

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration

    PubMed Central

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Background & Aims Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). Methods C57BL/6J mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. Results ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with down-regulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4+ and CD8+ T-lymphocytes in blood and MLN and regulatory T-cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. Conclusions We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. PMID:20236740

  20. Three polymorphs of an inclusion compound of 2,2'-(disulfanediyl)dibenzoic acid and trimethylamine.

    PubMed

    Yang, Yunxia; Li, Lihua; Zhang, Li; Dong, Wenjing; Ding, Keying

    2016-12-01

    Polymorphism is the ability of a solid material to exist in more than one form or crystal structure and this is of interest in the fields of crystal engineering and solid-state chemistry. 2,2'-(Disulfanediyl)dibenzoic acid (also called 2,2'-dithiosalicylic acid, DTSA) is able to form different hydrogen bonds using its carboxyl groups. The central bridging S atoms allow the two terminal arene rings to rotate freely to generate various hydrogen-bonded linking modes. DTSA can act as a potential host molecule with suitable guest molecules to develop new inclusion compounds. We report here the crystal structures of three new polymorphs of the inclusion compound of DTSA and trimethylamine, namely trimethylazanium 2-[(2-carboxyphenyl)disulfanyl]benzoate 2,2'-(disulfanediyl)dibenzoic acid monosolvate, C 3 H 10 N + ·C 14 H 9 O 4 S 2 - ·C 14 H 10 O 4 S 2 , (1), tetrakis(trimethylazanium) bis{2-[(2-carboxyphenyl)disulfanyl]benzoate} 2,2'-(disulfanediyl)dibenzoate 2,2'-(disulfanediyl)dibenzoic acid monosolvate, 4C 3 H 10 N + ·2C 14 H 9 O 4 S 2 - ·C 14 H 8 O 4 S 2 2- ·C 14 H 10 O 4 S 2 , (2), and trimethylazanium 2-[(2-carboxyphenyl)disulfanyl]benzoate, C 3 H 10 N + ·C 14 H 9 O 4 S 2 - , (3). In the three polymorphs, DTSA utilizes its carboxyl groups to form conventional O-H...O hydrogen bonds to generate different host lattices. The central N atoms of the guest amine molecules accept H atoms from DTSA molecules to give the corresponding cations, which act as counter-ions to produce the stable crystal structures via N-H...O hydrogen bonding between the host acid and the guest molecule. It is noticeable that although these three compounds are composed of the same components, the final crystal structures are totally different due to the various configurations of the host acid, the number of guest molecules and the inducer (i.e. ancillary experimental acid).