Science.gov

Sample records for dependent vibrational properties

  1. Vibrational and thermal properties of ternary semiconductors and their isotopic dependence: chalcopyrite CuGaS2

    NASA Astrophysics Data System (ADS)

    Romero, Aldo; Cardona, M.; Kremer, R.; Lauck, R.; Muñoz, A.

    2011-03-01

    The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used in the past decade for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of a canonical ternary semiconductor of the chalcopyrite family: CuGaS2. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation. Supported by CONACYT under projects J-59853-F and J-83247-F.

  2. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus.

    PubMed

    Hu, Zhi-Xin; Kong, Xianghua; Qiao, Jingsi; Normand, Bruce; Ji, Wei

    2016-02-01

    Stacking two-dimensional (2D) materials into multi-layers or heterostructures, known as van der Waals (vdW) epitaxy, is an essential degree of freedom for tuning their properties on demand. Few-layer black phosphorus (FLBP), a material with high potential for nano- and optoelectronics applications, appears to have interlayer couplings much stronger than graphene and other 2D systems. Indeed, these couplings call into question whether the stacking of FLBP can be governed only by vdW interactions, which is of crucial importance for epitaxy and property refinement. Here, we perform a theoretical investigation of the vibrational properties of FLBP, which reflect directly its interlayer coupling, by discussing six Raman-observable phonons, including three optical, one breathing and two shear modes. With increasing sample thickness, we find anomalous redshifts of the frequencies for each optical mode but a blueshift for the armchair shear mode. Our calculations also show splitting of the phonon branches, due to anomalous surface phenomena, and strong phonon-phonon coupling. By computing uniaxial stress effects, inter-atomic force constants and electron densities, we provide a compelling demonstration that these properties are the consequence of strong and highly directional interlayer interactions arising from the electronic hybridization of the lone electron-pairs of FLBP, rather than from vdW interactions. This exceptional interlayer coupling mechanism controls the stacking stability of BP layers and thus opens a new avenue beyond vdW epitaxy for understanding the design of 2D heterostructures. PMID:26763557

  3. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-Xin; Kong, Xianghua; Qiao, Jingsi; Normand, Bruce; Ji, Wei

    2016-01-01

    Stacking two-dimensional (2D) materials into multi-layers or heterostructures, known as van der Waals (vdW) epitaxy, is an essential degree of freedom for tuning their properties on demand. Few-layer black phosphorus (FLBP), a material with high potential for nano- and optoelectronics applications, appears to have interlayer couplings much stronger than graphene and other 2D systems. Indeed, these couplings call into question whether the stacking of FLBP can be governed only by vdW interactions, which is of crucial importance for epitaxy and property refinement. Here, we perform a theoretical investigation of the vibrational properties of FLBP, which reflect directly its interlayer coupling, by discussing six Raman-observable phonons, including three optical, one breathing and two shear modes. With increasing sample thickness, we find anomalous redshifts of the frequencies for each optical mode but a blueshift for the armchair shear mode. Our calculations also show splitting of the phonon branches, due to anomalous surface phenomena, and strong phonon-phonon coupling. By computing uniaxial stress effects, inter-atomic force constants and electron densities, we provide a compelling demonstration that these properties are the consequence of strong and highly directional interlayer interactions arising from the electronic hybridization of the lone electron-pairs of FLBP, rather than from vdW interactions. This exceptional interlayer coupling mechanism controls the stacking stability of BP layers and thus opens a new avenue beyond vdW epitaxy for understanding the design of 2D heterostructures.Stacking two-dimensional (2D) materials into multi-layers or heterostructures, known as van der Waals (vdW) epitaxy, is an essential degree of freedom for tuning their properties on demand. Few-layer black phosphorus (FLBP), a material with high potential for nano- and optoelectronics applications, appears to have interlayer couplings much stronger than graphene and other 2D

  4. Isomer-dependent vibrational coherence in ultrafast photoisomerization

    NASA Astrophysics Data System (ADS)

    Léonard, J.; Briand, J.; Fusi, S.; Zanirato, V.; Olivucci, M.; Haacke, S.

    2013-10-01

    Molecular switches based on the N-alkylated indanylidene-pyrroline (NAIP) framework mimic some of the outstanding double bond photoisomerization properties of retinal Schiff bases in rhodopsin, most notably, the occurrence of vibrational coherences in the excited and photoproduct ground states. Focusing on the zwitterionic NAIP switch and using broadband transient absorption spectroscopy, our previous investigation of the Z to E photoisomerization dynamics is now extended to the study of the backward E to Z photoisomerization and to the role of the solvent on the vibrational coherence accompanying the photoreaction. Despite very similar signatures of excited-state vibrational coherence and similar isomerization times, the backward reaction has a significantly smaller isomerization yield than the forward reaction, and most interestingly, does not display ground state coherences. This indicates that both the quantum yield and vibrational dephasing depend critically on the photochemical reaction path followed to reach the ground potential energy surface. In addition, investigation of the effect of the solvent viscosity shows that vibrational dephasing is mainly an intramolecular process.

  5. Ab initio DFT calculations of vibrational properties

    NASA Astrophysics Data System (ADS)

    Story, S. M.; Vila, F. D.; Kas, J. J.; Rehr, J. J.

    2014-03-01

    Vibrational properties such as EXAFS and crystallographic Debye-Waller factors, vibrational free energies, phonon self-energies, and phonon contributions to the electron spectral function, are key to understanding many aspects of materials beyond ground state electronic structure. Thus, their simulation using first principles methods is of particular importance. Many of these vibrational properties can be calculated from the dynamical matrix and electron-phonon coupling coefficients obtained from DFT calculations. Here we present a code DMVP that calculates these properties from the output of electronic structure codes such as ABINIT, Gaussian, Quantum Espresso and VASP. Our modular interfacing tool AI2PS allows us to translate the different outputs into a DMVP compatible format and generate vibrational properties in an automated way. Finally, we present some current applications that take advantage of the modular form of AI2PS to extend its capabilities to the calculation of coefficients of thermal expansion and other properties of interest such as infrared spectra. This work was supported by DOE Grant DE-FG02-97ER45623.

  6. Mode-dependent vibrational autoionization in aniline

    SciTech Connect

    Raptis, C. A.; Pratt, S. T.

    2000-09-08

    High-resolution photoelectron spectroscopy is used to study the branching ratios for vibrational autoionization of Rydberg states of aniline (C{sub 6}H{sub 5}NH{sub 2}) converging to the ground electronic state of the ion. By using two-color double-resonance excitation, it is possible to prepare autoionizing resonances in which two different vibrational modes are excited. Determination of the vibrational state distribution in the product ion provides information on the relative rates of autoionization for the two modes. It is found that some normal modes appear to be especially effective at promoting vibrational autoionization, while others appear to be completely ineffective. (c) 2000 American Institute of Physics.

  7. Temperature dependence of vibrational energy transfer between vibrationally excited polyatomic molecules and bath gases

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Yakovlev, D. L.; Sambor, E. G.

    2000-08-01

    Efficiency of vibrational energy transfer (VET) in vibrational quasicontinuum of triplet states was estimated from the dependence of time-resolved delayed fluorescence of benzophenone and anthraquinone on bath gas pressure. The negative temperature dependence for vibration-vibration (V-V) and positive for vibration-translation (V-T) energy transfers from benzophenone and anthraquinone to bath gases (C 2H 4, SF 6, CCl 4, C 5H 12) were obtained between 373 and 553 K. Polarizability and dipole moment of colliding molecules seem to affect the efficiency of V-V relaxation. These data reflect the dominance of long-range attractive interactions in V-V energy transfer and short-range repulsive interactions in V-T energy transfer.

  8. Vibrational Properties of Ge Nanocrystals Determined by EXAFS

    SciTech Connect

    Araujo, L. L.; Kluth, P.; Ridgway, M. C.; Azevedo, G. de M.

    2007-02-02

    The vibrational properties of Ge nanocrystals (NCs) produced by ion implantation in SiO2 followed by thermal annealing were determined from temperature dependent Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy measurements. Using a correlated anharmonic Einstein model and thermodynamic perturbation theory it was possible to extract information about thermal and static disorder, thermal expansion and anharmonicity effects for the Ge NCs. Comparison with results for bulk crystalline and amorphous Ge indicates that the Ge NCs bonds are stiffer than those of both bulk phases of Ge. Also, the values of the anharmonic linear thermal expansion and the thermal expansion coefficient obtained for the Ge NCs were considerably smaller those for bulk crystalline Ge. Similar trends are reported in the literature for other semiconductor NC systems. They suggest that the increased surface to volume ratio of nanocrystals and the presence of the surrounding SiO2 matrix might be responsible for the different vibrational properties of the nanocrystal phase.

  9. Vibrational properties of model monatomic crystals under pressure

    NASA Astrophysics Data System (ADS)

    Wolf, George H.; Jeanloz, Raymond

    1985-12-01

    The roles of the attractive and repulsive forces in controlling the vibrational properties of monatomic crystals are systematically evaluated as a function of compression. Face-centered-cubic, hexagonal, and body-centered-cubic structures are considered with Lennard-Jones and Buckingham-type interatomic potentials. At zero pressure, the phonon frequencies and their mode-Grüneisen parameters deviate strongly from those of a reference state where the atoms interact solely through the corresponding purely repulsive potential. In detail, the degree of deviation depends on the structure, relative range of the repulsive and attractive forces, and the vibrational wavelength. With increasing pressure, the phonon frequencies asymptotically approach values of the purely repulsive reference state. Higher-order properties such as the mode-Grüneisen parameters and their logarithmic volume derivatives approach the repulsive limiting values more rapidly than do the frequencies, provided the associated modes do not become unstable. The close-packed lattices are dynamically stable at all positive pressures and display only a small variation among different orders of the frequency spectra Debye moments. However, this variation can be quite large for any structure at strains near that where the lattice is dynamically unstable. We find that the thermal Grüneisen parameter decreases with pressure, but the commonly assumed power-law relation of the thermal Grüneisen parameter with volume is violated. Average anharmonic vibrational properties are well described by a cell model in these monatomic systems at both low and high pressures. In addition, a strong correlation is found between the static-lattice compressional properties and the average vibrational properties; free-volume relations give good estimates of the high-temperature thermal properties, especially at high pressures.

  10. Lattice vibrational properties of americium selenide

    NASA Astrophysics Data System (ADS)

    Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.

    2016-05-01

    Lattice vibrational properties of AmSe have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmSe are presented follow the same trend as observed in uranium selenide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.

  11. Langevin model of the temperature and hydration dependence of protein vibrational dynamics.

    PubMed

    Moritsugu, Kei; Smith, Jeremy C

    2005-06-23

    The modification of internal vibrational modes in a protein due to intraprotein anharmonicity and solvation effects is determined by performing molecular dynamics (MD) simulations of myoglobin, analyzing them using a Langevin model of the vibrational dynamics and comparing the Langevin results to a harmonic, normal mode model of the protein in vacuum. The diagonal and off-diagonal Langevin friction matrix elements, which model the roughness of the vibrational potential energy surfaces, are determined together with the vibrational potentials of mean force from the MD trajectories at 120 K and 300 K in vacuum and in solution. The frictional properties are found to be describable using simple phenomenological functions of the mode frequency, the accessible surface area, and the intraprotein interaction (the displacement vector overlap of any given mode with the other modes in the protein). The frictional damping of a vibrational mode in vacuum is found to be directly proportional to the intraprotein interaction of the mode, whereas in solution, the friction is proportional to the accessible surface area of the mode. In vacuum, the MD frequencies are lower than those of the normal modes, indicating intramolecular anharmonic broadening of the associated potential energy surfaces. Solvation has the opposite effect, increasing the large-amplitude vibrational frequencies relative to in vacuum and thus vibrationally confining the protein atoms. Frictional damping of the low-frequency modes is highly frequency dependent. In contrast to the damping effect of the solvent, the vibrational frequency increase due to solvation is relatively temperature independent, indicating that it is primarily a structural effect. The MD-derived vibrational dynamic structure factor and density of states are well reproduced by a model in which the Langevin friction and potential of mean force parameters are applied to the harmonic normal modes. PMID:16852503

  12. Vibrational properties of Ge nanocrystals determined by EXAFS

    SciTech Connect

    Araujo, L. L.; Kluth, P.; Azevedo, G. de M; Ridgway, M. C.

    2006-11-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy was applied to probe the vibrational properties of bulk crystalline Ge (c-Ge) and Ge nanocrystals (Ge NCs) of 4.4 nm mean diameter produced by ion implantation in SiO{sub 2} followed by thermal annealing. EXAFS measurements around the Ge K edge were carried out in the temperature range from 8 to 300 K at beam line 10-2 of the Stanford Synchrotron Radiation Laboratory (SSRL). Original information about thermal and static disorder, thermal expansion, and anharmonicity effects have been obtained for c-Ge and Ge NCs from temperature dependent EXAFS measurements using a correlated anharmonic Einstein model and thermodynamic perturbation theory. It was observed that the Ge NCs were stiffer (showed a stronger bond force constant) than both amorphous Ge (a-Ge) and c-Ge. Also, the values of the linear thermal expansion (thermal evolution of the mean interatomic distance) obtained for the Ge NCs were smaller than the ones obtained for c-Ge. These results were compared to the ones obtained for other nanocrystalline systems. They suggest that the increased surface to volume ratio of the nanocrystalline form and the presence of the surrounding SiO{sub 2} matrix might be responsible for the different vibrational properties of c-Ge and Ge NCs.

  13. Vibration-translation energy transfer in anharmonic diatomic molecules. II - The vibrational quantum-number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.

  14. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  15. Vibrational State Dependent Large Amplitude Tunneling Dynamics in Malonaldehyde

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant; Nesbitt, David J.

    2011-06-01

    The quantum dynamics of intramolecular proton transfer in malonaldehyde has represented a major challenge for first principles theoretical calculation, in large measure due to the highly concerted motion of all 9 nuclei throughout the tunneling event. This talk describes efforts to predict quantum state dependent tunneling rates from high level ab initio calculations, exploiting the large amplitude motion (LAM) Hamiltonian methods of Hougen, Bunker and Johns.A An effective adiabatic potential surface for the tunneling path is constructed from CCSD(T)/AVnZ-F12 calculations using explicitly correlated basis set methods and extrapolated to the complete basis set (CBS) limit. This potential is adiabatically corrected by zero point excitation in the remaining 3N-7 = 20 vibrational modes, with the multidimensional tunneling dependence of the effective mass explicitly taken into AccountB and numerically solved with Numerov methods. Of special importance, this method permits calculation of mode dependent tunneling splittings as a function of vibrational quantum state, which offers interesting prospects for comparison with recent FTIR slit jet cooled data of Suhm and coworkers.C A J. T. Hougen, P. R. Bunker and J. W. C. Johns, J. Mol. Spectrosc. 34, 136 (1970). B D. J. Rush and K. B. Wiberg, J. Phys. Chem. A 101, 3143 (1997). C N. O. B. Luttschwager, T. N. Wassermann, S. Coussan and M. A. Suhm, Phys. Chem. Chem. Phys., DOI: 10.1039/c002345k (2010)

  16. Evolution of vibrational properties during a macromolecule's growth.

    PubMed

    Johari, G P; Wen, Ping; Venkateshan, K

    2006-04-21

    The elastic constants and vibrational contributions to thermal properties of three polymerizing liquids were investigated by using the available hypersonic velocity measured by Brillouin light scattering in real time. During the addition polymerization to a molecular network structure, Poisson's ratio upsilon(Poisson) decreases approximately according to exp[-(kt(polym))]n, where both k and n are composition dependent. The Debye frequency increases and the corresponding heat capacity, energy, and entropy approaching a limiting value. upsilon(Poisson) of the vitrified polymer continues to decrease but much more slowly, indicating its continued slow polymerization and structural relaxation with time. In the potential energy landscape interpretation, a polymerizing liquid's state point continuously shifts to another landscape's more curved, deeper minima. PMID:16674264

  17. Dependence of rate constants on vibrational temperatures - An Arrhenius description

    NASA Technical Reports Server (NTRS)

    Ford, D. I.; Johnson, R. E.

    1988-01-01

    An interpretation of the variation of rate constants with vibrational temperature is proposed which introduces parameters analogous to those of the classical Arrhenius expression. The constancy of vibrational activation energy is studied for the dissociaton of NO, the ion-molecular reaction of O(+) with N2, and the atom exchange reaction of I with H2. It is found that when a Boltzmann distribution for vibrational states is applicable, the variation of the rate constant with the vibrational temperature can be used to define a vibrational activation energy. The method has application to exchange reactions where a vibrational energy threshold exists.

  18. Vibrational properties of C_{20}-based solids

    NASA Astrophysics Data System (ADS)

    Spagnolatti, I.; Mussi, A.; Bernasconi, M.; Benedek, G.

    2004-01-01

    The phonon dispersion relations and IR spectrum of a C{20}-based solid recently identified experimentally [Iqbal et al., Eur. Phys. J. B 31, 509 (2003)] have been computed by density functional perturbation theory. Other competitive structures made by assembling C{20} clusters have been considered as well. In particular, we have computed the structure and the Raman spectra of two-dimensional polymeric phases of hydrogenated C{20} clusters which might be formed under different synthesis conditions. Fingerprints of the different phases have been identified in the vibrational spectra which could be used in the experimental search of C{20}-based solids.

  19. Pressure dependence of local vibrational modes in InP

    SciTech Connect

    McCluskey, M. D.; Zhuravlev, K. K.; Davidson, B. R.; Newman, R. C.

    2001-03-15

    Using infrared spectroscopy and a diamond-anvil cell, we have observed carbon and carbon-hydrogen local vibrational modes (LVM's) in InP at hydrostatic pressures as high as 5.5 GPa at liquid-helium temperatures. For pressures beyond 4.5 GPa, the carbon-hydrogen mode was not observed, perhaps as a result of a transformation of the complex into a different configuration. The LVM arising from carbon substitutional impurities varies linearly with pressure, whereas the shift of the carbon-hydrogen mode has a positive curvature. Both of these observations are in qualitative agreement with the pressure dependence of LVM's in GaAs. While the substitutional carbon impurities show very similar pressure shifts in the two materials, the linear pressure coefficient of the carbon-hydrogen stretch mode in InP is nearly three times that in GaAs. For all the measured modes, the Gru''neisen parameters increase with pressure.

  20. Probing the Glass Transition from Structural and Vibrational Properties of Zero-Temperature Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Xu, Ning

    2014-02-01

    We find that the density dependence of the glass transition temperature of Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) systems can be predicted from properties of the zero-temperature (T=0) glasses. Below a crossover density ρs, LJ and WCA glasses show different structures, leading to different vibrational properties and consequently making LJ glasses more stable with higher glass transition temperatures than WCA ones. Above ρs, structural and vibrational quantities of the T =0 glasses show scaling collapse. From scaling relations and dimensional analysis, we predict a density scaling of the glass transition temperature, in excellent agreement with simulation results. We also propose an empirical expression of the glass transition temperature using structural and vibrational properties of the T=0 glasses, which works well over a wide range of densities.

  1. Electronic and vibrational properties of vanadium-carbide nanowires

    NASA Astrophysics Data System (ADS)

    Singh, Poorva; Nautiyal, Tashi; Auluck, Sushil

    2012-09-01

    We have made an effort to understand the properties of transition metal carbide nanowires (NWs) and studied vanadium-carbide (VC) nanowires as a specific case. Different structures have been considered and their electronic and vibrational properties studied employing density functional theory. The effect of dimensionality is very well brought forth by these NWs, narrow/thinner structures have clear preference for magnetic state with sizeable magnetic moment at the V sites. As the thickness/width increases, the margin decreases and the magnetic moment disappears altogether for structures like square and rectangular NWs. The cohesive energy per atom increases with the increase in lateral dimensions of the NW, and it is about 88% of the bulk value for the rectangular NW, while it is only 50% for the linear chain. All the wires are conducting in nature, with the linear and zigzag wires having half-metallic character. Our calculations show that the V atoms decide the electronic and magnetic properties in these while compressibility, a mechanical property, is governed by the C atoms. The electron localization function beautifully illustrates the closeness of thicker/wider NWs to the bulk. It also reveals that electrons are highly localized around C atoms; however, the amount of charge transferred depends strongly on the structure of wire. The optical properties unfurl the impact of different spatial expanse in the cross section of NW in a nice way, e.g., ɛ2xx > ɛ2yy (ɛ2 is imaginary part of dielectric function) for all those with a larger expanse along X compared to Y and vice-versa. Thicker nanowires seem to be more suitable for optical applications. Site-resolved phonon density of states shows that presence of C atoms is responsible for high frequency branches. The heat capacity variation for various structures closely follows the magnitude of respective phonon density of states.

  2. Vibrational and Thermal Properties of β-HMX and TATB from Dispersion Corrected Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron; Oleynik, Ivan

    2015-06-01

    Dispersion Corrected Density Functional Theory (DFT+vdW) calculations are performed to predict vibrational and thermal properties of the bulk energetic materials (EMs) β-octahydrocyclotetramethylene-tetranitramine (β-HMX) and triaminotrinitrobenzene (TATB). DFT+vdW calculations of optimized unit cells along the hydrostatic equation of state are followed by frozen-phonon calculations of their respective vibration spectra. These are then used under the quasi-harmonic approximation to obtain zero-point and thermal free energy contributions to the pressure, resulting in PVT equations of state for each material that is in excellent agreement with experiment. Further, heat capacities, thermal expansion coefficients, and Gruneissen parameters as functions of temperature are calculated and compared with experiment. The vibrational properties, including phonon densities of states and pressure dependencies of individual modes, are also analyzed and compared with experiment.

  3. Temperature-dependent vibrational dephasing: Comparison of liquid and glassy solvents using frequency-selected vibrational echoes

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Hua; Fayer, M. D.

    2002-08-01

    Frequency-selected vibrational echo experiments were used to investigate the temperature dependences of vibrational dephasing associated with the 0-1 transition of the CO stretching mode of RuTPPCOPy (TPP=5,10,15,20-tetraphenylporphyrin, Py=pyridine) in two solvents: polymethylmethacrylate (PMMA) and 2-methyltetrahydrofuran (2-MTHF). In PMMA, a glass, the echo decay is exponential at all the temperatures studied, and the dephasing rate increases linearly with increasing temperature. In 2-MTHF, there is a change in the functional form of the temperature dependence when the solvent goes through the glass transition temperature (Tg). Below Tg, the dephasing rate increases linearly with temperature, while above Tg, it rises very steeply in a nonlinear manner. In the liquid at higher temperatures, the vibrational echo decays are nonexponential. A model frequency-frequency correlation function (FFCF) is proposed in which the FFCF differs for a glass and a liquid because of the intrinsic differences in the nature of the dynamics. At least two motions, inertial and diffusive, contribute to the vibrational dephasing in the liquids. The different temperature dependences of inertial and diffusive motions are discussed. Comparison of the model calculations of the vibrational echo temperature dependence and the data show reasonable, but not quantitative agreement.

  4. Temperature Dependent Studies of Conformational Vibrational Modes of Biological Molecules

    NASA Astrophysics Data System (ADS)

    Markelz, A. G.; Pawar, A.

    2001-03-01

    Low frequency vibrational modes of proteins are correlated to conformation and conformational change critical to biochemical activity, however direct measurements of these modes has been impeded by limitations in spectroscopic techniques. We are presently exploring the use of the high sensitivity FIR spectroscopic technique of pulsed terahertz spectroscopy to measure these modes as a function of conformational state. Initial measurements have been preformed using bovine heart cytochrome c and the chromophore of photoactive yellow protein, p-coumaric acid (PCA). We have measured the temperature dependence (77 K - 300 K) of the far infrared absorption (2-100 cm-1) using both solid state and solution samples. Sample preparation techniques to eliminate etalon in the spectra will be discussed. For cytochrome c, a distinct absorption at 10 cm-1 is seen at room temperature that narrows and slightly red shifts as the temperature decreases. For PCA, the FIR absorption remains broad at lower temperatures, with an overall increase in FIR absorption at lower temperatures. We will discuss the implications of these measurements for future studies of conformational dynamics in these proteins.

  5. High Pressure Vibrational Properties of WS2 Nanotubes.

    PubMed

    O'Neal, K R; Cherian, J G; Zak, A; Tenne, R; Liu, Z; Musfeldt, J L

    2016-02-10

    We bring together synchrotron-based infrared and Raman spectroscopies, diamond anvil cell techniques, and an analysis of frequency shifts and lattice dynamics to unveil the vibrational properties of multiwall WS2 nanotubes under compression. While most of the vibrational modes display similar hardening trends, the Raman-active A1g breathing mode is almost twice as responsive, suggesting that the nanotube breakdown pathway under strain proceeds through this displacement. At the same time, the previously unexplored high pressure infrared response provides unexpected insight into the electronic properties of the multiwall WS2 tubes. The development of the localized absorption is fit to a percolation model, indicating that the nanotubes display a modest macroscopic conductivity due to hopping from tube to tube. PMID:26675342

  6. Vibrational and electronic properties of painting lakes

    NASA Astrophysics Data System (ADS)

    Clementi, C.; Doherty, B.; Gentili, P. L.; Miliani, C.; Romani, A.; Brunetti, B. G.; Sgamellotti, A.

    2008-07-01

    Naturally occurring dyes have been used to produce painting pigments, called lakes, by precipitation or adsorption of an organic dyestuff onto an insoluble inorganic substrate. Most natural dyes link to metal cations, by means of coordination bonds. The stable complexes formed precipitate together with solid amorphous hydrous aluminum oxide in alkaline solutions, yielding a hybrid material called a lake. Conventional chromatographic methods for lake analysis require dye extraction from the substrate; as a consequence, they do not provide any information about the organo-metallic complexes. In this work a comprehensive investigation based on X-ray fluorescence, Fourier transform infrared and UV-visible absorption and emission spectroscopies was carried out on 13 organic pigments derived from eight different natural sources. Three different kinds of substrate containing aluminum hydroxide were distinguished dependent on different preparation procedures. Information concerning the recipe and the dye composition was obtained by UV-visible spectroscopies. Dyes from different sources (animal or vegetal) could be distinguished. This study shows that the combined use of different spectroscopic techniques provides complementary information to high-performance liquid chromatography and therefore can be proposed for a molecular non-invasive investigation of these materials on works of art.

  7. Electronic and vibrational properties of lithium doped graphene

    SciTech Connect

    Soni, Himadri R.; Seriani, Nicola; Jha, Prafulla K.

    2015-06-24

    In the frame-work of density functional theory calculation, using planewave pseudopotentials within local density approximation, the electronic and vibrational properties of graphene supercell by adsorption of lithium at three different sites top, hollow and bridge, have been systematically investigated and analyzed. We found that the hollow site is the most favorable site having lowest energy and positive phonon frequency throughout Brillouin zone indicating dynamical stability.

  8. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  9. Vibrational properties of LiNb1 -xTaxO3 mixed crystals

    NASA Astrophysics Data System (ADS)

    Rüsing, M.; Sanna, S.; Neufeld, S.; Berth, G.; Schmidt, W. G.; Zrenner, A.; Yu, H.; Wang, Y.; Zhang, H.

    2016-05-01

    Congruent lithium niobate and lithium tantalate mixed crystals have been grown over the complete compositional range with the Czochralski method. The structural and vibrational properties of the mixed crystals are studied extensively by x-ray diffraction measurements, Raman spectroscopy, and density functional theory. The measured lattice parameters and vibrational frequencies are in good agreement with our theoretical predictions. The observed dependence of the Raman frequencies on the crystal composition is discussed on the basis of the calculated phonon displacement patterns. The phononic contribution to the static dielectric tensor is calculated by means of the generalized Lyddane-Sachs-Teller relation. Due to the pronounced dependence of the optical response on the Ta concentration, lithium niobate tantalate mixed crystals represent a perfect model system to study the properties of uniaxial mixed ferroelectric materials for application in integrated optics.

  10. Vibration analysis of hard-coated composite beam considering the strain dependent characteristic of coating material

    NASA Astrophysics Data System (ADS)

    Sun, W.; Liu, Y.

    2016-08-01

    The strain dependent characteristics of hard coatings make the vibration analysis of hard-coated composite structure become a challenging task. In this study, the modeling and the analysis method of a hard-coated composite beam was developed considering the strain dependent characteristics of coating material. Firstly, based on analyzing the properties of hard-coating material, a high order polynomial was adopted to characterize the strain dependent characteristics of coating materials. Then, the analytical model of a hard-coated composite beam was created by the energy method. Next, using the numerical method to solve the vibration response and the resonance frequencies of the composite beam, a specific calculation flow was also proposed. Finally, a cantilever beam coated with MgO + Al2O3 hard coating was chosen as the study case; under different excitation levels, the resonance region responses and the resonance frequencies of the composite beam were calculated using the proposed method. The calculation results were compared with the experiment and the linear calculation, and the correctness of the created model was verified. The study shows that compared with the general linear calculation, the proposed method can still maintain an acceptable precision when the excitation level is larger.

  11. Vibration analysis of hard-coated composite beam considering the strain dependent characteristic of coating material

    NASA Astrophysics Data System (ADS)

    Sun, W.; Liu, Y.

    2016-05-01

    The strain dependent characteristics of hard coatings make the vibration analysis of hard-coated composite structure become a challenging task. In this study, the modeling and the analysis method of a hard-coated composite beam was developed considering the strain dependent characteristics of coating material. Firstly, based on analyzing the properties of hard-coating material, a high order polynomial was adopted to characterize the strain dependent characteristics of coating materials. Then, the analytical model of a hard-coated composite beam was created by the energy method. Next, using the numerical method to solve the vibration response and the resonance frequencies of the composite beam, a specific calculation flow was also proposed. Finally, a cantilever beam coated with MgO + Al2 O3 hard coating was chosen as the study case; under different excitation levels, the resonance region responses and the resonance frequencies of the composite beam were calculated using the proposed method. The calculation results were compared with the experiment and the linear calculation, and the correctness of the created model was verified. The study shows that compared with the general linear calculation, the proposed method can still maintain an acceptable precision when the excitation level is larger.

  12. Optical Properties of a Vibrationally Modulated Solid State Mott Insulator

    PubMed Central

    Kaiser, S.; Clark, S. R.; Nicoletti, D.; Cotugno, G.; Tobey, R. I.; Dean, N.; Lupi, S.; Okamoto, H.; Hasegawa, T.; Jaksch, D.; Cavalleri, A.

    2014-01-01

    Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F2TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode. PMID:24448171

  13. Synthesis, characterization and vibrational properties of p-fluorosulfinylaniline

    NASA Astrophysics Data System (ADS)

    Páez Jerez, Ana L.; Flores Antognini, Andrea; Cutin, Edgardo H.; Robles, Norma L.

    2015-02-01

    The reaction of p-fluoroaniline and SOCl2 rendered p-fluorosulfinylaniline in good yield. The obtained dark yellowish liquid compound was characterized by NMR, UV-visible, FT-IR and Raman spectroscopies. The observed features were consistent with the existence of only one conformer, belonging to the CS symmetry group. A tentative assignment of the vibrational modes was performed on the basis of experimental spectra and quantum chemical calculations at different levels of theory (B3LYP and MP2 with 6-31+G(d), 6-311+G(d) and 6-311+G(df) basis sets). The conformational and vibrational properties of p-fluorosulfinylaniline were in good agreement with experimental data reported for other substituted sulfinylanilines and p-halogenanilines.

  14. Synthesis, characterization and vibrational properties of p-fluorosulfinylaniline.

    PubMed

    Páez Jerez, Ana L; Flores Antognini, Andrea; Cutin, Edgardo H; Robles, Norma L

    2015-02-25

    The reaction of p-fluoroaniline and SOCl2 rendered p-fluorosulfinylaniline in good yield. The obtained dark yellowish liquid compound was characterized by NMR, UV-visible, FT-IR and Raman spectroscopies. The observed features were consistent with the existence of only one conformer, belonging to the CS symmetry group. A tentative assignment of the vibrational modes was performed on the basis of experimental spectra and quantum chemical calculations at different levels of theory (B3LYP and MP2 with 6-31+G(d), 6-311+G(d) and 6-311+G(df) basis sets). The conformational and vibrational properties of p-fluorosulfinylaniline were in good agreement with experimental data reported for other substituted sulfinylanilines and p-halogenanilines. PMID:25228038

  15. Structural and vibrational properties of Co nanoparticles formed by ion implantation

    NASA Astrophysics Data System (ADS)

    Sprouster, D. J.; Giulian, R.; Araujo, L. L.; Kluth, P.; Johannessen, B.; Cookson, D. J.; Foran, G. J.; Ridgway, M. C.

    2010-01-01

    We report on the structural and vibrational properties of Co nanoparticles formed by ion implantation and thermal annealing in amorphous silica. The evolution of the nanoparticle size, phase, and structural parameters were determined as a function of the formation conditions using transmission electron microscopy, small-angle x-ray scattering, and x-ray absorption spectroscopy. The implantation fluence and annealing temperature governed the spherical nanoparticle size and phase. To determine the latter, x-ray absorption near-edge structure analysis was used to quantify the hexagonal close packed, face-centered cubic and oxide fractions. The structural properties were characterized by extended x-ray absorption fine structure spectroscopy (EXAFS) and finite-size effects were readily apparent. With a decrease in nanoparticle size, an increase in structural disorder and a decrease in both coordination number and bondlength were observed as consistent with the non-negligible surface-area-to-volume ratio characteristic of nanoparticles. The surface tension of Co nanoparticles calculated using a liquid drop model was more than twice that of bulk material. The size-dependent vibrational properties were probed with temperature-dependent EXAFS measurements. Using a correlated anharmonic Einstein model and thermodynamic perturbation theory, Einstein temperatures for both nanoparticles and bulk material were determined. Compared to bulk Co, the mean vibrational frequency of the smallest nanoparticles was reduced as attributed to a greater influence of loosely bonded, undercoordinated surface atoms relative to the effect of capillary pressure generated by surface curvature.

  16. Intermediate State Dependence of Intramolecular Vibrations in Photoactive Yellow Protein

    NASA Astrophysics Data System (ADS)

    Deng, Yanting; Xu, Mengyang; Niessen, Katherine; Schmidt, Marius; Markelz, Andrea

    Photoactive proteins provide a testbed for the role of long-range collective motions in protein function. Long-range intramolecular vibrations of the protein scaffold may provide efficient energy relaxation, enhancement of chromophore vibrations that promote structural transitions and assistance in electron energy transfer. Photoactive yellow protein (PYP) is a cytoplasmic photocycling protein associated with the negative phototactic response to blue light in halohodospira halophile. We measure the intramolecular vibrations of PYP using crystal anisotropy terahertz microscopy (CATM) as a function of photoexcitation. Room temperature CATM measurements are performed in the dark and with continuous illumination at 488 nm, which is found to result in an approximately 20% steady photoexcited state (pB). We find a decrease in anisotropic absorption in frequency range 20-60 cm-1 with photoexcitation. This result may be due to an increase in sample disorder associated with the structural change in pB state. We compare the measured and calculated spectra using molecular dynamics and normal mode/quasiharmonic analysis to identify the nature of the motions giving rise to the resonant absorption bands.

  17. Measurement of stress strain and vibrational properties of tendons

    NASA Astrophysics Data System (ADS)

    Revel, Gian Marco; Scalise, Alessandro; Scalise, Lorenzo

    2003-08-01

    The authors present a new non-intrusive experimental procedure based on laser techniques for the measurement of mechanical properties of tendons. The procedure is based on the measurement of the first resonance frequency of the tendon by laser Doppler vibrometry during in vitro tensile experiments, with the final aim of establishing a measurement procedure to perform the mechanical characterization of tendons by extracting parameters such as the resonance frequency, also achievable during in vivo investigation. The experimental procedure is reported, taking into account the need to simulate the physiological conditions of the Achilles tendon, and the measurement technique used for the non-invasive determination of tendon cross-sectional area during tensile vibration tests at different load levels is described. The test procedure is based on a tensile machine, which measures longitudinal tendons undergoing controlled load conditions. Cross-sectional area is measured using a new non-contact procedure for the measurement of tendon perimeter (repeatability of 99% and accuracy of 2%). For each loading condition, vibration resonance frequency and damping, cross-sectional area and tensile force are measured, allowing thus a mechanical characterization of the tendon. Tendon stress-strain curves are reported. Stress-strain curves have been correlated to the first vibration resonance frequency and damping of the tendon measured using a single-point laser Doppler vibrometer. Moreover, experimental results have been compared with a theoretical model of a vibrating cord showing discrepancies. In vitro tests are reported, demonstrating the validity of the method for the comparison of different aged rabbit tendons.

  18. Vibrational, mechanical, and thermal properties of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dow, John D.

    1989-02-01

    Theories of the mechanical, vibrational, and electronic properties of 3 to 5 semiconductors were developed and applied to: (1) help determine the feasibility of InN-based visible and ultraviolet lasers and light detectors, (2) develop a theory of phonons in semiconductor alloys, (3) understand surface reconstruction of semiconductors, (4) predict the effects of atomic correlations on the light-scattering (Raman) properties of semiconductive alloys, (5) develop a new first principles pseudo-function implementation of local-density theory, (6) study the oxidation of GaAs, (7) develop a theory of scanning tunneling microscope images, and (8) understand the electronic and optical properties of highly strained artificial semiconductors and small semiconductor particles.

  19. Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure.

    PubMed

    Monteseguro, V; Rodríguez-Hernández, P; Ortiz, H M; Venkatramu, V; Manjón, F J; Jayasankar, C K; Lavín, V; Muñoz, A

    2015-04-14

    An ab initio study of the structural, elastic and vibrational properties of the lutetium gallium garnet (Lu3Ga5O12) under pressure has been performed in the framework of the density functional theory, up to 95 GPa. Pressure dependence of the elastic constants and the mechanical stability are analyzed, showing that the garnet structure is mechanically unstable above 87 GPa. Lattice-dynamics calculations in bulk at different pressures have been performed and compared with Raman scattering measurements of the nanocrystalline Tm(3+)-doped Lu3Ga5O12 up to 60 GPa. The theoretical frequencies and pressure coefficients of the Raman active modes for bulk Lu3Ga5O12 are in good agreement with the experimental data measured for the nano-crystals. The contributions of the different atoms to the vibrational modes have been analyzed based on the calculated total and partial phonon density of states. The vibrational modes have been discussed in relation to the internal and external modes of the GaO4 tetrahedron and the GaO6 octahedron. The calculated infrared modes and their pressure dependence are also reported. Our results show that with this nano-garnet size the sample has essentially bulk properties. PMID:25767835

  20. Vibrational and Thermophysical Properties of PETN from First Principles

    NASA Astrophysics Data System (ADS)

    Gonzalez, Joseph; Landerville, Aaron; Oleynik, Ivan

    2015-06-01

    Thermophysical properties are urgently sought as input for meso- and continuum-scale modeling of energetic materials (EMs). However, empirical data in this regard are often limited to specific pressures and temperatures. Such modeling of EMs can be greatly improved by inclusion of thermophysical properties over a wide range of pressures and temperatures, provided such data could be reliably obtained from theory. We demonstrate such a capability by calculating the equation of state, heat capacities, coefficients of thermal expansion, and Gruneissen parameters for pentaerythritol tetranitrate (PETN) using first-principles density functional theory, which includes proper description of van der Waals interactions and zero-point and thermal free energy contributions to pressure, the latter being calculated using the quasi-harmonic approximation. Further, we investigate the evolution of the vibration spectrum of PETN as a function of pressure.

  1. Vibration properties of mirror foils for hard x-ray telescope onboard satellite

    NASA Astrophysics Data System (ADS)

    Yoshimura, Takahiro; Kosaka, Tatsuro; Awaki, Hisamitsu; Ogi, Keiji; Ishida, Manabu; Maeda, Yoshitomo; Furuzawa, Akihiro; Miyazawa, Takuya; Yamane, Nobuyuki; Kato, Hiroyoshi; Kunieda, Hideyo

    2012-09-01

    ASTRO-H is a next version of Japanese X=ray astronomy satellite for lunch in 2014. The hard X-rray telescope (HXT) on board the satellite has a cylindrical mirror housing which contains reflection circular mirror foils. In the present paper, vibration properties of the mirror foils installed in the HXT on-board a satellite were investigated. Vibration tests and FEM analysis of mirror foils installed in the part model of HXT were conducted. From the experimental results, it appeared that the mirror had resonant frequenxcies at 64, 73 and 118Hz. The modal shapes of 64 and 73Hz peaks shhoed that the maximum amplitude appeared at edges of the foil. On the other hand, vibration amplitude became maximum at the center in the modal shape of 118 Hz peak. In addition, it appeared that the first peak of the edge mode decreased with increasing acceleration while the second peak had weak dependency on acceleration. These vibration behaviours are thought to be governed degree of constraint of the connections between the foil and alignment bars.

  2. Temperature-dependent THz vibrational spectra of clenbuterol hydrochloride

    NASA Astrophysics Data System (ADS)

    Yang, YuPing; Lei, XiangYun; Yue, Ai; Zhang, Zhenwei

    2013-04-01

    Using the high-resolution Terahertz Time-domain spectroscopy (THz-TDS) and the standard sample pellet technique, the far-infrared vibrational spectra of clenbuterol hydrochloride (CH), a β 2-adrenergic agonist for decreasing fat deposition and enhancing protein accretion, were measured in temperature range of 77-295 K. Between 0.2 and 3.6 THz (6.6-120.0 cm-1), seven highly resolved spectral features, strong line-narrowing and a frequency blue-shift were observed with cooling. However, ractopamine hydrochloride, with some structural and pharmacological similarities to clenbuterol hydrochloride, showed no spectral features, indicating high sensitivity and strong specificity of THz-TDS. These results could be used for the rapid and nondestructive CH residual detection in food safety control.

  3. Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2015-10-01

    The phenomenon of vibrational resonance is investigated in adaptive Newman-Watts small-world neuronal networks, where the strength of synaptic connections between neurons is modulated based on spike-timing-dependent plasticity. Numerical results demonstrate that there exists appropriate amplitude of high-frequency driving which is able to optimize the neural ensemble response to the weak low-frequency periodic signal. The effect of networked vibrational resonance can be significantly affected by spike-timing-dependent plasticity. It is shown that spike-timing-dependent plasticity with dominant depression can always improve the efficiency of vibrational resonance, and a small adjusting rate can promote the transmission of weak external signal in small-world neuronal networks. In addition, the network topology plays an important role in the vibrational resonance in spike-timing-dependent plasticity-induced neural systems, where the system response to the subthreshold signal is maximized by an optimal network structure. Furthermore, it is demonstrated that the introduction of inhibitory synapses can considerably weaken the phenomenon of vibrational resonance in the hybrid small-world neuronal networks with spike-timing-dependent plasticity.

  4. Comparison of pollination and defensive buzzes in bumblebees indicates species-specific and context-dependent vibrations

    NASA Astrophysics Data System (ADS)

    De Luca, Paul A.; Cox, Darryl A.; Vallejo-Marín, Mario

    2014-04-01

    Bees produce vibrations in many contexts, including for defense and while foraging. Buzz pollination is a unique foraging behavior in which bees vibrate the anthers of flowers to eject pollen which is then collected and used as food. The relationships between buzzing properties and pollen release are well understood, but it is less clear to what extent buzzing vibrations vary among species, even though such information is crucial to understanding the functional relationships between bees and buzz-pollinated plants. Our goals in this study were (1) to examine whether pollination buzzes differ from those produced during defense, (2) to evaluate the similarity of buzzes between different species of bumblebees ( Bombus spp.), and (3) to determine if body size affects the expression of buzzing properties. We found that relative peak amplitude, peak frequency, and duration were significantly different between species, but only relative peak amplitude differed between pollination and defensive buzzes. There were significant interactions between species and buzz type for peak frequency and duration, revealing that species differed in their patterns of expression in these buzz properties depending on the context. The only parameter affected by body size was duration, with larger bees producing shorter buzzes. Our findings suggest that although pollination and defensive buzzes differ in some properties, variability in buzz structure also exhibits a marked species-specific component. Species differences in pollination buzzes may have important implications for foraging preferences in bumblebees, especially if bees select flowers best matched to release pollen for their specific buzzing characteristics.

  5. Comparison of pollination and defensive buzzes in bumblebees indicates species-specific and context-dependent vibrations.

    PubMed

    De Luca, Paul A; Cox, Darryl A; Vallejo-Marín, Mario

    2014-04-01

    Bees produce vibrations in many contexts, including for defense and while foraging. Buzz pollination is a unique foraging behavior in which bees vibrate the anthers of flowers to eject pollen which is then collected and used as food. The relationships between buzzing properties and pollen release are well understood, but it is less clear to what extent buzzing vibrations vary among species, even though such information is crucial to understanding the functional relationships between bees and buzz-pollinated plants. Our goals in this study were (1) to examine whether pollination buzzes differ from those produced during defense, (2) to evaluate the similarity of buzzes between different species of bumblebees (Bombus spp.), and (3) to determine if body size affects the expression of buzzing properties. We found that relative peak amplitude, peak frequency, and duration were significantly different between species, but only relative peak amplitude differed between pollination and defensive buzzes. There were significant interactions between species and buzz type for peak frequency and duration, revealing that species differed in their patterns of expression in these buzz properties depending on the context. The only parameter affected by body size was duration, with larger bees producing shorter buzzes. Our findings suggest that although pollination and defensive buzzes differ in some properties, variability in buzz structure also exhibits a marked species-specific component. Species differences in pollination buzzes may have important implications for foraging preferences in bumblebees, especially if bees select flowers best matched to release pollen for their specific buzzing characteristics. PMID:24563100

  6. Hydrogrossular (Katoite): Vibrational, Crystal-Chemical and Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Dachs, E.; Geiger, C. A.

    2011-12-01

    There is great current interest in understanding interactions between H2O and its components and various Earth materials. Here, questions such as the bulk water content of the mantle, and what phases can incorporate OH- and in what concentrations come immediately to mind. In this regard, the hydrogarnet substitution (i.e., O4H4↔SiO4) has received special attention, because it is a verified mechanism for allowing the incorporation of OH- in garnet and possibly in other silicates as well. At relatively low temperatures there is complete solid solution between Ca3Al2Si3O12 and Ca3Al2O12H12. The latter, pure OH-containing end-member is termed katoite/hydrogrossular. Its crystal structure has been investigated by various workers using X-ray and neutron diffraction, including at high pressures. Little is known about its vibrational properties and its thermodynamic behavior is not fully understood. Thus, we studied the low temperature IR spectra and measured the heat capacity of katoite in order to investigate its vibrational, crystal-chemical and thermophysical properties. Katoite was synthesized hydrothermally in Au capsules at 250 °C and 3 kb water pressure. X-ray powder measurements show that about 98-99% katoite was obtained. Powder IR spectra were recorded between 298 K and 10 K. The spectra are considerably different in the high wavenumber region, where O-H stretching modes occur. At room temperature the IR-active O-H band located around 3662 cm-1 is broad and it narrows and shifts to higher wavenumbers and also develops structure below about 80 K. Concomitantly, additional weak intensity O-H bands located around 3600 cm-1 begin to appear and they become sharper and increase in intensity with further decreases in temperature. The spectra indicate that the vibrational behavior of individual OH groups and their collective interactions measurably affect the lattice dynamic (i.e. thermodynamic) behavior. The low temperature heat capacity behavior was investigated

  7. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.

    2015-06-01

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.

  8. Molecular structure, vibrational, electronic and thermal properties of 4-vinylcyclohexene by quantum chemical calculations.

    PubMed

    Nagabalasubramanian, P B; Periandy, S; Karabacak, Mehmet; Govindarajan, M

    2015-06-15

    The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100cm(-1). The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated. PMID:25795608

  9. Structural, Electronic and Vibrational Properties of Nax Si 136(0 < x < 24) Clathrates

    NASA Astrophysics Data System (ADS)

    Higgins, Craig; Nenghabi, Emmanuel; Myles, Charles; Biswas, Koushik; Beekman, Matt; Nolas, George

    2011-03-01

    CRAIG HIGGINS, EMMANUEL NENGHA BI† , CHARLES W. MYLES, Texas Tech U.; KOUSHIK BISWAS, Oak Ridge National Lab; MATT BEEKMAN, U. of Oregon; GEORGE S. NOLAS, U. of South Florida - Na x Si 136 is a Type II clathrate with important thermoelectric properties. It's face-centered cubic lattice contains polyhedral ``cages'' of silicon atoms with Na atom ``guests'' in the cages. This material is very interesting because powder X-ray diffraction experiments 1 for differing Na content x have shown that, for increasing x in the range 0 dependences of the structural, electronic and vibrational properties of NaxSi136 . Results are presented for the x dependences of the lattice constant, electronic bands, and vibrational modes. Our results for the x dependence of the lattice constant are in agreement with our X-ray data 1 . † Deceased. 1 M. Beekman, E.N. Nenghabi, K. Biswas, C.W. Myles, M. Baitinger, Y. Grin, G.S. Nolas, Inorg. Chem. 49, 5338--5340 (2010).

  10. Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates

    NASA Astrophysics Data System (ADS)

    Yan, Zhi

    2016-03-01

    The size-dependent bending and vibration behaviors of a clamped piezoelectric circular nanoplate are investigated by using a modified Kirchhoff plate model. The flexoelectricity, the surface effect and the non-local elastic effect are taken into account in the modified model by decomposing the electric Gibbs free energy into the bulk and surface parts and including the strain gradient and the electric field gradient terms into the bulk energy density function. Different from the results predicted by the classical plate model, the proposed model predicts size-dependent behaviors of the piezoelectric thin plate with nanoscale thickness. Comparisons among the models considering the flexoelectricity, the surface effect and the non-local elastic effect individually, the current model and the classical model are also given in this study. Simulation results indicate that the electromechanical coupling properties, the transverse displacements and the resonant frequencies of the plate are significantly influenced by each individual effect as well as their combined effects. It is also indicated that such effects are affected by the external applied electric potential and the plate geometries. Neglecting any individual effect may induce inaccurate characterization of the electromechanical coupling of the piezoelectric nanoplate. Therefore, the current plate model is expected to provide more accurate predictions of the electromechanical coupling and the mechanical behaviors of piezoelectric circular nanoplate-based devices in the nanoelectromechanical systems.

  11. Influence of inhomogeneous damping distribution on sound radiation properties of complex vibration modes in rectangular plates

    NASA Astrophysics Data System (ADS)

    Unruh, Oliver

    2016-09-01

    In order to reduce noise emitted by vibrating structures additional damping treatments such as constraint layer damping or embedded elastomer layers can be used. To save weight and cost, the additional damping is often placed at some critical locations of the structure, what leads to spatially inhomogeneous distribution of damping. This inhomogeneous distribution of structural damping leads to an occurrence of complex vibration modes, which are no longer dominated by pure standing waves, but by a superposition of travelling and standing waves. The existence of complex vibration modes raises the question about their influence on sound radiation. Previous studies on the sound radiation of complex modes of rectangular plates reveal, that, depending on the direction of travelling waves, the radiation efficiency of structural modes can slightly decrease or significantly increase. These observations have been made using a rectangular plate with a simple inhomogeneous damping configuration which includes a single plate boundary with a higher structural damping ratio. In order to answer the question about the influence of other possible damping configurations on the sound radiation properties, this paper addresses the self- and mutual-radiation efficiencies of the resulting complex vibration modes. Numerical simulations are used for the calculation of complex structural modes of different inhomogeneous damping configurations with varying geometrical form and symmetry. The evaluation of self- and mutual-radiation efficiencies reveals that primarily the symmetry properties of the inhomogeneous damping distribution affect the sound radiation characteristics. Especially the asymmetric distributions of inhomogeneous damping show a high influence on the investigated acoustic metrics. The presented study also reveals that the acoustic cross-coupling between structural modes, which is described by the mutual-radiation efficiencies, generally increases with the presence of

  12. Characterizing structural and vibrational properties of nanoparticles embedded in silica with XAS, SAXS and auxiliary techniques

    NASA Astrophysics Data System (ADS)

    Araujo, Leandro L.; Kluth, Patrick; Giulian, Raquel; Sprouster, David J.; Johannessen, Bernt; Foran, Garry J.; Cookson, David J.; Ridgway, Mark C.

    2009-01-01

    Synchrotron-based techniques were combined with conventional analysis methods to probe in detail the structural and vibrational properties of nanoparticles grown in a silica matrix by ion implantation and thermal annealing, as well as the evolution of such properties as a function of nanoparticle size. This original approach was successfully applied for several elemental nanoparticles (Au, Co, Cu, Ge, Pt) and the outcomes for Ge are reported here, illustrating the power of this combined methodology. The thorough analysis of XANES, EXAFS, SAXS, TEM and Raman data for Ge nanoparticles with mean diameters between 4 and 9 nm revealed that the peculiar properties of embedded Ge nanoparticles, like the existence of amorphous Ge layers between the silica matrix and the crystalline nanoparticle core, are strongly dependent on particle size and mainly governed by the variation in the surface area-to-volume ratio. Such detailed information provides valuable input for the efficient planning of technological applications.

  13. Characterizing structural and vibrational properties of nanoparticles embedded in silica with XAS, SAXS and auxiliary techniques

    SciTech Connect

    Araujo, Leandro L.; Kluth, Patrick; Giulian, Raquel; Sprouster, David J.; Ridgway, Mark C.; Johannessen, Bernt; Foran, Garry J.; Cookson, David J.

    2009-01-29

    Synchrotron-based techniques were combined with conventional analysis methods to probe in detail the structural and vibrational properties of nanoparticles grown in a silica matrix by ion implantation and thermal annealing, as well as the evolution of such properties as a function of nanoparticle size. This original approach was successfully applied for several elemental nanoparticles (Au, Co, Cu, Ge, Pt) and the outcomes for Ge are reported here, illustrating the power of this combined methodology. The thorough analysis of XANES, EXAFS, SAXS, TEM and Raman data for Ge nanoparticles with mean diameters between 4 and 9 nm revealed that the peculiar properties of embedded Ge nanoparticles, like the existence of amorphous Ge layers between the silica matrix and the crystalline nanoparticle core, are strongly dependent on particle size and mainly governed by the variation in the surface area-to-volume ratio. Such detailed information provides valuable input for the efficient planning of technological applications.

  14. The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}

    SciTech Connect

    Guberman, Steven L.

    2014-11-28

    Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller than 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.

  15. The No Vibrational Fundamental Band: Temperature Dependence of N2- Broadening Coefficients

    NASA Technical Reports Server (NTRS)

    Spencer, M. N.; Jr., C. Chackerian; Giver, L. P.; Brown, L. R.

    1995-01-01

    Rovibrational spectra of the vibrational fundamental of nitric oxide have been recorded under N2-broadening conditions using the Solar McMath FTS at the Kitt Peak National Observatory. The temperature range for the experiments was 296K to 183K. Qualitative as well as quantitative discrepancies are observed between these experimental determinations of the temperature dependence.

  16. XP-PCM Calculations of High Pressure Structural and Vibrational Properties of P4S3.

    PubMed

    Pagliai, Marco; Cammi, Roberto; Cardini, Gianni; Schettino, Vincenzo

    2016-07-14

    The structure and the vibrational properties of the P4S3 crystal at high pressures are discussed by application of the XP-PCM method. The vibrational assignment has been clarified. The structure and the electron distribution changes as a function of pressure are analyzed. The pressure effect on the vibrational frequencies is satisfactorily reproduced and discussed in terms of confinement and structure relaxation contributions. PMID:26943701

  17. Temperature-dependent vibrational spectroscopic and X-ray diffraction investigation of nanosized nickel chromite

    NASA Astrophysics Data System (ADS)

    Matulková, Irena; Holec, Petr; Němec, Ivan; Kitazawa, Hideaki; Furubayashi, Takao; Vejpravová, Jana

    2015-06-01

    The nanocrystalline nickel chromite (NiCr2O4) with particle size of ∼20 nm was prepared by auto-combustion method. The nanocrystals were characterized by powder X-ray diffraction, vibrational spectroscopy and magnetic measurements. The expected structural phase transitions (cubic-tetragonal-orthorhombic) were studied by methods of temperature-dependent X-ray powder diffraction and vibrational spectroscopy. The evolution of the Raman spectra and X-ray diffraction patterns collected from 350 K down to 4 K confirmed the cubic-to-tetragonal distortion at ∼250 K, whereas the tetragonal-to-orthorhombic transition was not confirmed in the nanocrystalline sample.

  18. Structural and vibrational properties of GaN

    NASA Astrophysics Data System (ADS)

    Deguchi, T.; Ichiryu, D.; Toshikawa, K.; Sekiguchi, K.; Sota, T.; Matsuo, R.; Azuhata, T.; Yamaguchi, M.; Yagi, T.; Chichibu, S.; Nakamura, S.

    1999-08-01

    Structural and vibrational properties of device quality pure GaN substrate grown using a lateral epitaxial overgrowth (LEO) technique were studied using x-ray diffraction, Brillouin, Raman, and infrared spectroscopy. Lattice constants were found to be a=3.1896±0.0002 Å and c=5.1855±0.0002 Å. Comparing the results with those on GaN epilayer directly grown on sapphire substrate, it is shown that the GaN substrate is indeed of high quality, i.e., the lattice is relaxed. However the GaN substrate has a small enough but finite residual strain arising from the pileup of the lateral growth front on SiO2 masks in the course of LEO. It was also found that the elastic stiffness constants C13 and C44, are more sensitive to the residual strain than the optical phonon frequencies. The high frequency and static dielectric constants were found to be 5.14 and 9.04. The Born and Callen effective charges were found to be 2.56 and 0.50.

  19. Vibrational properties of an adamantane monolayer on a gold surface

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Nguyen, Giang D.; Capaz, Rodrigo B.; Coh, Sinisa; Pechenezhskiy, Ivan V.; Hong, Xiaoping; Crommie, Michael F.; Wang, Feng; Saito, Susumu; Louie, Steven G.; Cohen, Marvin L.

    2014-03-01

    We study the vibrational properties of an adamantane monolayer on a Au(111) surface. The IR spectrum of a self-assembled monolayer of adamantane on Au(111) is measured by a newly developed infrared scanning tunneling microscopy (IRSTM) technique. We analyze the IR spectrum of this system by a density functional theory and find that the IR spectrum is severely modified by both adamantane-gold and adamantane-adamantane interactions. One of three gas-phase C-H bond stretching modes is significantly red-shifted due to the molecule-substrate interactions. The intermolecular interactions cause a suppression of the IR intensity of another gas-phase IR peak. The techniques used in this work can be applied for an independent estimate of molecule-substrate and intermolecular interactions in related diamondoid/metal-substrate systems. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.

  20. Theoretical study of the vibration-dependent electron anisotropy in O2^- photodetachment

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Greene, Chris H.

    2012-06-01

    Recent experimental work [1] reports observation of a significant vibrational dependence of the photoelectron angular distributions (PADs) recorded for the O2(X^3σg^?) <- O2^-(X^2πg) band. It is the aim of the theoretical model presented here to reproduce the experimental results, allow for a deeper insight into the mechanism of this process and explain the sensitivity of the PAD to vibronic coupling in the anion ground electronic state. The vibrational dynamics is treated using the vibrational frame transformation [2], the K-matrices in the fixed-nuclei approximation are obtained from the ab initio molecular R-matrix calculations. [4pt] [1] R. Mabbs et al., Phys. Rev. A 82 011401(R) (2010).[0pt] [2] H. Gao and C.H. Greene, Phys. Rev. A 42, 6946 (1990).

  1. Energy-dependent characteristics of collisinal vibration-energy exchange in vapors of polyatomic molcules

    SciTech Connect

    Zalesskaya, G.A.; Yakovlev, D.L.

    1995-02-01

    CO{sub 2} laser-induced delayed fluorescence was used to study the collisional vibration-energy exchange between the polyatomic molecules in gases. The efficiency of collisional exchange, the mean amount of energy transfer in one collision, as well as their correlation with the vibration energy and with the size of excited molecule were determined for diacetyl, acetophenone, benzophenone, and anthraquinone molecules form the experimentally observed pressure dependences of the decay rates and fluorescence intensities. It was shown that the mean amount of energy transfer per collision decreases with the molecular size and increases as E{sup m}, with m>2, with increasing the vibration energy. 25 refs., 4 figs., 1 tab.

  2. Electronic and Vibrational Properties of meso -Tetraphenylporphyrin on Silver Substrates

    SciTech Connect

    El-Khoury, Patrick Z.; Honkala, Karoliina; Hess, Wayne P.

    2014-09-18

    The electronic and vibrational properties of meso-tetraphenylporphyrin (mtpp) on silver substrates are investigated using UV–vis and surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Whereas the vibrational signatures associated with the tetrapyrrole backbone exhibit minor variations throughout sequences of consecutively recorded SERRS spectra, the C=C stretching vibrational modes localized on the meso-phenyl moieties of mtpp exhibit noticeable intensity fluctuations, masked in the average SERRS response. Finally, we attribute the observed vibrational-state-specific blinking events to conformational changes in mtpp, namely, torsional flexibility which mediates the coupling between the π-framework of the meso-phenyls and the underlying metal substrate.

  3. A Methodology for Protective Vibration Monitoring of Hydropower Units Based on the Mechanical Properties.

    PubMed

    Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov

    2013-07-01

    It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial

  4. A first-principles study of the vibrational properties of crystalline tetracene under pressure

    NASA Astrophysics Data System (ADS)

    Abdulla, Mayami; Refson, Keith; Friend, Richard H.; Haynes, Peter D.

    2015-09-01

    We present a comprehensive study of the hydrostatic pressure dependence of the vibrational properties of tetracene using periodic density-functional theory (DFT) within the local density approximation (LDA). Despite the lack of van der Waals dispersion forces in LDA we find good agreement with experiment and are able to assess the suitability of this approach for simulating conjugated organic molecular crystals. Starting from the reported x-ray structure at ambient pressure and low temperature, optimized structures at ambient pressure and under 280 MPa hydrostatic pressure were obtained and the vibrational properties calculated by the linear response method. We report the complete phonon dispersion relation for tetracene crystal and the Raman and infrared spectra at the centre of the Brillouin zone. The intermolecular modes with low frequencies exhibit high sensitivity to pressure and we report mode-specific Grüneisen parameters as well as an overall Grüneisen parameter γ =2.8 . Our results suggest that the experimentally reported improvement of the photocurrent under pressure may be ascribed to an increase in intermolecular interactions as also the dielectric tensor.

  5. A first-principles study of the vibrational properties of crystalline tetracene under pressure.

    PubMed

    Abdulla, Mayami; Refson, Keith; Friend, Richard H; Haynes, Peter D

    2015-09-23

    We present a comprehensive study of the hydrostatic pressure dependence of the vibrational properties of tetracene using periodic density-functional theory (DFT) within the local density approximation (LDA). Despite the lack of van der Waals dispersion forces in LDA we find good agreement with experiment and are able to assess the suitability of this approach for simulating conjugated organic molecular crystals. Starting from the reported x-ray structure at ambient pressure and low temperature, optimized structures at ambient pressure and under 280 MPa hydrostatic pressure were obtained and the vibrational properties calculated by the linear response method. We report the complete phonon dispersion relation for tetracene crystal and the Raman and infrared spectra at the centre of the Brillouin zone. The intermolecular modes with low frequencies exhibit high sensitivity to pressure and we report mode-specific Grüneisen parameters as well as an overall Grüneisen parameter [Formula: see text]. Our results suggest that the experimentally reported improvement of the photocurrent under pressure may be ascribed to an increase in intermolecular interactions as also the dielectric tensor. PMID:26328594

  6. How Far Does a Receptor Influence Vibrational Properties of an Odorant?

    PubMed Central

    Kongsted, Jacob; Solov’yov, Ilia A.

    2016-01-01

    The biophysical mechanism of the sense of smell, or olfaction, is still highly debated. The mainstream explanation argues for a shape-based recognition of odorant molecules by olfactory receptors, while recent investigations suggest the primary olfactory event to be triggered by a vibrationally-assisted electron transfer reaction. We consider this controversy by studying the influence of a receptor on the vibrational properties of an odorant in atomistic details as the coupling between electronic degrees of freedom of the receptor and the vibrations of the odorant is the key parameter of the vibrationally-assisted electron transfer. Through molecular dynamics simulations we elucidate the binding specificity of a receptor towards acetophenone odorant. The vibrational properties of acetophenone inside the receptor are then studied by the polarizable embedding density functional theory approach, allowing to quantify protein-odorant interactions. Finally, we judge whether the effects of the protein provide any indications towards the existing theories of olfaction. PMID:27014869

  7. Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Erpenbeck, A.; Härtle, R.; Bockstedte, M.; Thoss, M.

    2016-03-01

    We investigate the role of electronic-vibrational coupling in resonant electron transport through single-molecule junctions, taking into account that the corresponding coupling strengths may depend on the charge and excitation state of the molecular bridge. Within an effective-model Hamiltonian approach for a molecule with multiple electronic states, this requires to extend the commonly used model and include vibrationally dependent electron-electron interaction. We use Born-Markov master equation methods and consider selected models to exemplify the effect of the additional interaction on the transport characteristics of a single-molecule junction. In particular, we show that it has a significant influence on local cooling and heating mechanisms, it may result in negative differential resistance, and it may cause pronounced asymmetries in the conductance map of a single-molecule junction.

  8. Theoretical study of the vibration-dependent electron anisotropy in O-2 photodetachment

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Greene, Chris H.

    2012-11-01

    Recent experimental works report observations of a significant vibrational dependence of the photoelectron angular distributions (PADs) recorded for the O2(X3Σg) <-- O-2 (X2Πg) band. It is the aim of the theoretical model presented here to reproduce the experimental results, allow for a deeper insight into the mechanism of this process and explain the sensitivity of the PAD to vibronic coupling in the anion ground electronic state.

  9. Simultaneous Measurement of Temperature Dependent Thermophysical Properties

    NASA Astrophysics Data System (ADS)

    Czél, Balázs; Gróf, Gyula; Kiss, László

    2011-11-01

    A new evaluation method for a transient measurement of thermophysical properties is presented in this paper. The aim of the research was to couple a new automatic evaluation procedure to the BICOND thermophysical property measurement method to enhance the simultaneous determination of the temperature dependent thermal conductivity and volumetric heat capacity. The thermophysical properties of two different polymers were measured and compared with the literature data and with the measurement results that were done by well-known, traditional methods. The BICOND method involves a step-down cooling, recording the temperature histories of the inner and the outer surfaces of a hollow cylindrical sample and the thermophysical properties are evaluated from the solution of the corresponding inverse heat conduction using a genetic algorithm-based method (BIGEN) developed by the authors. The BIGEN is able to find the material properties with any kind of temperature dependency, that is illustrated through the measurement results of poly(tetrafluoroethylene) (PTFE) and polyamide (PA) samples.

  10. Terahertz vibrational properties of water nanoclusters relevant to biology.

    PubMed

    Johnson, Keith

    2012-01-01

    Water nanoclusters are shown from first-principles calculations to possess unique terahertz-frequency vibrational modes in the 1-6 THz range, corresponding to O-O-O "bending," "squashing," and "twisting" "surface" distortions of the clusters. The cluster molecular-orbital LUMOs are huge Rydberg-like "S," "P," "D," and "F" orbitals that accept an extra electron via optical excitation, ionization, or electron donation from interacting biomolecules. Dynamic Jahn-Teller coupling of these "hydrated-electron" orbitals to the THz vibrations promotes such water clusters as vibronically active "structured water" essential to biomolecular function such as protein folding. In biological microtubules, confined water-cluster THz vibrations may induce their "quantum coherence" communicated by Jahn-Teller phonons via coupling of the THz electromagnetic field to the water clusters' large electric dipole moments. PMID:23277672

  11. Vibrational Properties of Body-Centered Tetragonal C4

    NASA Astrophysics Data System (ADS)

    Lü, Zhen-Long; You, Jing-Han; Zhao, Yuan-Yuan; Wang, Hui

    2011-03-01

    Body-centered tetragonal C4 (bct C4) is a new form of crystalline sp3 carbon, which is found to be transparent, dynamically stable at zero pressure and more stable than graphite beyond 18.6 GPa. Symmetry analysis of the vibrational modes of bct C4 at Brillouin zone center is performed, Raman and infrared active modes are identified. The analysis results show that, different from cubic diamond and hexagonal diamond, there is an infrared active mode in bct C4. Based on first-principle method within the local density approximation, vibrational frequencies, Born effective charge tensors, and infrared absorption intensity of bct C4 are obtained. The vibrational modes of bct C4 are presented and compared with those of cubic diamond and hexagonal diamond in detail.

  12. Vibration properties of hard x-ray telescope on board satellite

    NASA Astrophysics Data System (ADS)

    Kosaka, Tatsuro; Igarashi, Takeyuki; Awaki, Hisamitsu; Ogi, Keiji; Itoh, Keitaro; Maeda, Yoshitomo; Ichida, Manabu; Furuzawa, Akihiro; Miyazawa, Takuya; Kunieda, Hideyo

    2010-07-01

    ASTRO-H is the new Japanese X-ray astronomy satellite for launch in 2013. HXT on board the satellite has a mirror housing which is a cylindrical case and contains reflection mirror foils, which are constrained by alignment bars. In order to investigate vibration properties of HXT on board the satellite, vibration tests and FEM analyses were conducted. From the results of x-vibration test, it was found that there were no resonant frequencies at frequency less than 120 Hz. It also appeared that foils move along grooves of alignment bars when the housing was vibrated because kinetic connection between foils and alignment bars is only friction force. From the simulated results, this loose connection used in the actual HXT housing is useful to suppress a strong resonance at 51Hz predicted by supposing tight connections such as adhesiveness. As for z-vibration properties, vibration property of the housing was complicated since foils leap when zacceleration becomes larger than 1G. However it could be confirmed that the distinct resonant peaks did not appear at frequency less than 200 Hz. From these results, it was found that HXT housing had not any resonant frequencies less than 120 Hz, which is the maximum frequency of sinusoidal vibrations applied when launched.

  13. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    SciTech Connect

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  14. Molecular simulation of the thermophysical properties and vibrational dynamics of finite and infinite polymer crystals

    NASA Astrophysics Data System (ADS)

    McGann, Mark Robert

    Molecular simulations are used to examine and elucidate the thermophysical properties of polyethylene and n-alkane crystals. The n-alkane crystals serve as models of semi-crystalline polyethylene, which is composed of nanoscale crystallites. These simulations emphasize the vibrational dynamics when interpreting the properties of these crystals. The unit cell dimensions, thermal expansion coefficients, heat capacities and melting temperatures of n-alkane crystals are shown to depend strongly on chain length. The results presented here are expected to be qualitatively similar to the effects of lamellar thickness in semi-crystalline polymers. Monte Carlo simulations are carried out on model n-alkane crystals to investigate the chain length dependence of the interlamellar spacing, which has implications with regard to the Raman spectra of n-alkane crystals. The results of these simulations show there to be no significant chain length dependence of the interlamellar spacing. Compression of perfect polyethylene crystals is shown to give rise to a long wavelength Euler buckling instability. The critical stress necessary to produce this buckling instability decreases as the wavelength of the instability increases, and it approaches the value of the lowest shear modulus in the limit of very long wavelength. The role of defects and the lamellar structure on the compressive failure mechanism of real polyethylene fibers is qualitatively addressed by simulations of n-alkane crystals. Heating crystalline polyethylene is shown to lead to an entropically-induced Euler buckling instability, associated with the softening of the long wavelength transverse acoustic vibrational modes propagating along the chain axis. This entropic effect is augmented by axial compressive stress, leading to a decrease in the instability temperature with applied stress. The stability limits of orthorhombic polyethylene crystals under compression, tension or shear are examined. In all cases, except shear

  15. Modelling the vibration of sandwich beams using frequency-dependent parameters

    NASA Astrophysics Data System (ADS)

    Backström, D.; Nilsson, A. C.

    2007-03-01

    Various types of sandwich beams with foam or honeycomb cores are currently used in the industry, indicating the need for simple methods describing the dynamics of these complex structures. By implementing frequency-dependent parameters, the vibration of sandwich composite beams can be approximated using simple fourth-order beam theory. A higher-order sandwich beam model is utilized in order to obtain estimates of the frequency-dependent bending stiffness and shear modulus of the equivalent Bernoulli-Euler and Timoshenko models. The resulting predicted eigenfrequencies and transfer accellerance functions are compared to the data obtained from the higher-order model and from measurements.

  16. A New Approach to Identify Optimal Properties of Shunting Elements for Maximum Damping of Structural Vibration Using Piezoelectric Patches

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.

  17. Vortex-Induced Vibration (VIV) Reduction Properties of Seal Whisker-Like Geometries

    NASA Astrophysics Data System (ADS)

    Hans, Hendrik; Miao, Jianmin; Triantafyllou, Michael

    2013-11-01

    Biological studies have shown that harbor seal whiskers are capable of reducing Vortex-Induced Vibrations (VIV). As the whiskers have convoluted geometry, it is necessary to evaluate the parameters that define their VIV reduction properties. Whisker-Like Geometries (WLGs) consisting of all but one feature on the true whisker geometry are designed. Comparison of VIV on these WLGs with VIV on circular and elliptical cylinders at Re = 500 is performed. Three-dimensional simulations of flow past these geometries, which are allowed to freely vibrate in crossflow, are performed with the Implicit Large Eddy Simulation as the turbulence model. The results indicate that the existence of axial undulations is the most dominant feature that affects the VIV reduction. The smallest VIV is observed on WLGs with dual-axial undulations and the largest VIV is observed on the circular cylinder. Variations in the features of the WLGs result in noticeable changes in their VIV. The circular cylinder is observed to response as a steady system while the WLGs with dual-axial undulations are observed to respond as a chaotic system. The response of WLGs with single-axial undulations is found to depend on their detailed features. I would like to acknowledge the support and funding from National Research Foundation (NRF) through CENSAM of Singapore-MIT Alliance for Research and Technology and Nanyang Technological University.

  18. Magnetoelastic vibration damping properties of TbDy alloys

    NASA Technical Reports Server (NTRS)

    Dooley, J. A.; Good, N. R.; White, C. V.; Leland, R. S.

    2002-01-01

    Damping of axial and bending mode vibrations in giant magnetoelastic polycrystalline TbDy alloys was studied at cryogenic temperatures. All specimens of TbDy were arc-melted in the proper composition ratio and dropped into a chilled copper mold. Additional treatments consisted of cold plane-rolling to induce crystallographic texture and then heat-treating to relieve internal stress. Mechanical hysteretic losses were measured at various strains, frequencies, and loading configurations down to 77 K. Both as-cast and textured polycrystalline TbDy samples were tested along with an aluminum specimen for comparison. Loss factors at multiple natural vibration frequencies of the samples were measured for axial modes. Larger damping rates were measured for axial mode vibrations than for bending mode vibrations, possibly reflecting the larger specimen volume contributing to magnetoelastic damping. At LN2 temperatures TbDy materials demonstrated q > 0.05 at 0.01 Hz and q > 0.1 at higher frequencies from 0.6-1.5 kHz.

  19. Simulation of Accurate Vibrationally Resolved Electronic Spectra: the Integrated Time-Dependent and Time-Independent Framework

    NASA Astrophysics Data System (ADS)

    Baiardi, Alberto; Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien

    2014-06-01

    Two parallel theories including Franck-Condon, Herzberg-Teller and Duschinsky (i.e., mode mixing) effects, allowing different approximations for the description of excited state PES have been developed in order to simulate realistic, asymmetric, electronic spectra line-shapes taking into account the vibrational structure: the so-called sum-over-states or time-independent (TI) method and the alternative time-dependent (TD) approach, which exploits the properties of the Fourier transform. The integrated TI-TD procedure included within a general purpose QM code [1,2], allows to compute one photon absorption, fluorescence, phosphorescence, electronic circular dichroism, circularly polarized luminescence and resonance Raman spectra. Combining both approaches, which use a single set of starting data, permits to profit from their respective advantages and minimize their respective limits: the time-dependent route automatically includes all vibrational states and, possibly, temperature effects, while the time-independent route allows to identify and assign single vibronic transitions. Interpretation, analysis and assignment of experimental spectra based on integrated TI-TD vibronic computations will be illustrated for challenging cases of medium-sized open-shell systems in the gas and condensed phases with inclusion of leading anharmonic effects. 1. V. Barone, A. Baiardi, M. Biczysko, J. Bloino, C. Cappelli, F. Lipparini Phys. Chem. Chem. Phys, 14, 12404, (2012) 2. A. Baiardi, V. Barone, J. Bloino J. Chem. Theory Comput., 9, 4097-4115 (2013)

  20. Mechanism of voltage production and frequency dependence of the ultrasonic vibration potential

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong K.; Wang, Shougang; Diebold, Gerald

    2009-05-01

    Imaging with the ultrasonic vibration potential is based on voltage generation by a colloidal or ionic suspension in response to the passage of ultrasound. The polarization within a body arising from the oscillatory displacement in the ultrasonic field produces a current in a pair of external electrodes that is measured as a function of time or frequency. Existing theory gives the current in the electrodes as arising from both a time varying polarization and ionic conduction. Here, experiments are reported that show the production of the polarization current is the dominant mechanism for current generation in soft tissue. Experiments are also reported giving the frequency dependence of the ultrasonic vibration current in canine blood and in several dilutions of aqueous silica suspensions.

  1. The No Vibrational Fundamental Band: Temperature Dependence of N2-Broadening Coefficients

    NASA Technical Reports Server (NTRS)

    Spencer, M. N.; Chackerian, C., Jr.; Giver, L. P.; Brown, L. R.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rovibrational spectra of the vibrational fundamental of nitric oxide have been recorded under N2-broadening conditions at 0.0056 cm(exp-1) resolution using the Solar McMath FTS at the Kitt Peak National Observatory. The temperature range for the experiments was 296 K to 183 K. The 30 cm absorption cell used for the measurements is cooled with a helium compressor and can operate at temperatures down to 60 K; vibration isolation of the cell allows its use with high performance Fourier Transform Spectrometers. From these spectra, N2-broadened line widths have been determined thru m = 16.5. Qualitative as well as quantitative discrepancies are observed between our experimental determinations of the temperature dependence of the broadening and theoretical calculations.

  2. Phase separation of full-Heusler nanostructures in half-Heusler thermoelectrics and vibrational properties from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Page, Alexander; Uher, Ctirad; Poudeu, Pierre Ferdinand; Van der Ven, Anton

    2015-11-01

    Previous studies have indicated that the figure of merit (ZT ) of half-Heusler (HH) alloys with composition M NiSn (M =Ti , Zr, or Hf) is greatly enhanced when the alloys contain a nano-scale full-Heusler (FH) MN i2Sn second phase. However, the formation mechanism of the FHnanostructures in the HH matrix and their vibrational properties are still not well understood. We report on first-principles studies of thermodynamic phase equilibria in the MNiSn-MN i2Sn pseudobinary system as well as HH and FH vibrational properties. Thermodynamic phase diagrams as functions of temperature and Ni concentration were developed using density functional theory (DFT) combined with a cluster expansion and Monte Carlo simulations. The phase diagrams show very low excess Ni solubility in HH alloys even at high temperatures, which indicates that any Ni excess will decompose into a two-phase mixture of HH and FH compounds. Vibrational properties of HH and FH alloys are compared. Imaginary vibrational modes in the calculated phonon dispersion diagram of TiN i2Sn indicate a dynamical instability with respect to cubic [001] transverse acoustic modulations. Displacing atoms along unstable vibrational modes in cubic TiN i2Sn reveals lower-energy structures with monoclinic symmetry. The energy of the monoclinic structures is found to depend strongly on the lattice parameter. The origin of the instability in cubic TiN i2Sn and its absence in cubic ZrN i2Sn and HfN i2Sn is attributed to the small size of the Ti 3 d shells compared to those of Zr and Hf atoms. Lattice constants and heat capacities calculated by DFT agree well with experiment.

  3. Temperature dependence of vibrational frequency fluctuation of N3- in D2O

    NASA Astrophysics Data System (ADS)

    Tayama, Jumpei; Ishihara, Akane; Banno, Motohiro; Ohta, Kaoru; Saito, Shinji; Tominaga, Keisuke

    2010-07-01

    We have studied the temperature dependence of the vibrational frequency fluctuation of the antisymmetric stretching mode of N3- in D2O by three-pulse infrared (IR) photon echo experiments. IR pump-probe measurements were also carried out to investigate the population relaxation and the orientational relaxation of the same band. It was found that the time-correlation function (TCF) of the frequency fluctuation of this mode is well described by a biexponential function with a quasistatic term. The faster decay component has a time constant of about 0.1 ps, and the slower component varies from 1.4 to 1.1 ps in the temperature range from 283 to 353 K. This result indicates that liquid dynamics related to the frequency fluctuation are not highly sensitive to temperature. We discuss the relationship between the temperature dependence of the vibrational frequency fluctuation and that of the molecular motion of the system to investigate the molecular origin of the frequency fluctuation of the solute. We compare the temperature dependence of the frequency fluctuation with that of other dynamics such as dielectric relaxation of water. In contrast to the Debye dielectric relaxation time of D2O, the two time constants of the TCF of the frequency fluctuation do not exhibit strong temperature dependence. We propose a simple theoretical model for the frequency fluctuation in solutions based on perturbation theory and the dipole-dipole interaction between the vibrational mode of the solute and the solvent molecules. This model suggests that the neighboring solvent molecules in the vicinity of the solute play an important role in the frequency fluctuation. We suggest that the picosecond component of the frequency fluctuation results from structural fluctuation of the hydrogen-bonding network in water.

  4. Elastic properties of graphene flakes: Boundary effects and lattice vibrations

    NASA Astrophysics Data System (ADS)

    Bera, S.; Arnold, A.; Evers, F.; Narayanan, R.; Wölfle, P.

    2010-11-01

    We present a phenomenological theory together with explicit calculations of the electronic ground-state energy, the surface contribution, and the elastic constants (“Lamé parameters,” i.e., Poisson ratio, Young’s modulus) of graphene flakes on the level of the density-functional theory employing different standard functionals. We observe that the Lamé parameters in small flakes can differ from the bulk values by 30% for hydrogenated zigzag edges. The change results from the edge of the flake that compresses the interior. When including the vibrational zero-point motion, we detect a decrease in the bending rigidity, κ , by ˜26% . The vibrational frequencies flow with growing N due to the release of the edge-induced compression. We calculate the corresponding Grüneisen parameters and find good agreement with previous authors.

  5. Vibrational properties of water under confinement: Electronic effects

    SciTech Connect

    Donadio, D; Cicero, G; Schwegler, E; Sharma, M; Galli, G

    2008-10-17

    We compare calculations of infrared (IR) spectra of water confined between non polar surfaces, carried out using ab initio and classical simulations. Ab-initio results show important differences between IR spectra and vibrational density of state, unlike classical simulations. These differences originate from electronic charge fluctuations at the interface, whose signature is present in IR spectra but not in the density of states. The implications of our findings for the interpretation of experimental data are discussed.

  6. Damping properties for vibration suppression in electrohydraulic servo-valve torque motor using magnetic fluid

    NASA Astrophysics Data System (ADS)

    Peng, Jinghui; Li, Songjing; Han, Hasiaoqier

    2014-04-01

    Aiming to suppress high frequency vibrations of a torque motor in electrohydraulic servo-valves, damping properties of an ester-based Fe3O4 magnetic fluid operating in the squeeze mode are studied in this Letter. The expression of damping forces due to the magnetic fluid on the torque motor is derived and simplified based on the measured magneto-viscosity property. Dynamic characteristics of the torque motor with and without the magnetic fluid are simulated and tested. Damping properties of magnetic fluid for the vibration suppression of a torque motor are verified by the good agreement between the predicted and tested results.

  7. Investigation of multilayer printed circuit board (PCB) film warpage using viscoelastic properties measured by a vibration test

    NASA Astrophysics Data System (ADS)

    Joo, Sung-Jun; Park, Buhm; Kim, Do-Hyoung; Kwak, Dong-Ok; Song, In-Sang; Park, Junhong; Kim, Hak-Sung

    2015-03-01

    Woven glass fabric/BT (bismaleimide triazine) composite laminate (BT core), copper (Cu), and photoimageable solder resist (PSR) are the most widely used materials for semiconductors in electronic devices. Among these materials, BT core and PSR contain polymeric materials that exhibit viscoelastic behavior. For this reason, these materials are considered to have time- and temperature-dependent moduli during warpage analysis. However, the thin geometry of multilayer printed circuit board (PCB) film makes it difficult to identify viscoelastic characteristics. In this work, a vibration test method was proposed for measuring the viscoelastic properties of a multilayer PCB film at different temperatures. The beam-shaped specimens, composed of a BT core, Cu laminated on a BT core, and PSR and Cu laminated on a BT core, were used in the vibration test. The frequency-dependent variation of the complex bending stiffness was determined using a transfer function method. The storage modulus (E‧) of the BT core, Cu, and PSR as a function of temperature and frequency were obtained, and their temperature-dependent variation was identified. The obtained properties were fitted using a viscoelastic model for the BT core and the PSR, and a linear elastic model for the Cu. Warpage of a line pattern specimen due to temperature variation was measured using a shadow Moiré analysis and compared to predictions using a finite element model. The results provide information on the mechanism of warpage, especially warpage due to temperature-dependent variation in viscoelastic properties.

  8. Transferable force-constant modeling of vibrational thermodynamic properties in fcc-based Al-TM ( TM=Ti , Zr, Hf) alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jefferson Z.; Ghosh, G.; van de Walle, A.; Asta, M.

    2007-03-01

    The vibrational thermodynamic properties of ordered and disordered fcc-based alloys in three aluminum transition-metal (TM) systems, Al-TM ( TM=Ti , Zr, and Hf), are computed by first principles methods employing supercell calculations and the transferable-force-constant (TFC) approach. In order to obtain accurate values for the high-temperature limit of the vibrational mixing entropies in these systems, it is necessary to parametrize the dependence of the force constants on both the equilibrium bond length and the TM concentration in the TFC method. Provided this concentration dependence is accounted for, the TFC approach is shown to lead to predictions for the vibrational mixing entropy accurate to within approximately 20%. The utility of the TFC method is demonstrated by its application to the calculation of vibrational entropies of mixing for approximately 30 structures in each of the three Al-TM systems, facilitating the construction of well converged vibrational-entropy cluster expansions. The calculations yield large and negative values for the vibrational mixing entropies of both ordered and disordered alloys, with an overall magnitude of up to 1.0kB /atom, and ordering entropies (i.e., the difference between the vibrational entropy of ordered and disordered phases at the same composition) in the range of 0.2-0.3kB /atom for concentrated alloys. Calculated results are shown to be in good agreement with experimental data available for the Al-Ti system.

  9. Studies of vibrational properties in Ga stabilized delta-Pu by extended X-ray absorption fine structure

    SciTech Connect

    Allen, P.G.; Henderson, A.L.; Sylwester, E.R.; Turchi, P.E.A.; Shen, T.H.; Gallegos, G.F.; Booth, C.H.

    2002-02-14

    Temperature dependent extended x-ray absorption fine structure (EXAFS) spectra were measured for a 3.3 at. % Ga stabilized Pu alloy over the range T= 20 - 300 K. EXAFS data were acquired at both the Ga K-edge and the Pu L{sub III} edge. Curve-fits were performed to the first shell interactions to obtain pair-distance distribution widths, {sigma}, as a function of temperature. The temperature dependence of {sigma}(T) was accurately modeled using a correlated-Debye model for the lattice vibrational properties, suggesting Debye-like behavior in this material. Using this formalism, we obtain pair-specific correlated-Debye temperatures, {Theta}{sub cD}, of 110.7 {+-} 1.7 K and 202.6 {+-} 3.7 K, for the Pu-Pu and Ga-Pu pairs, respectively. The result for the Pu-{Theta}{sub cD} value compares well with previous vibrational studies on {delta}-Pu. In addition, our results represent the first unambiguous determination of Ga-specific vibrational properties in Pu-Ga alloys, i.e, {Theta}{sub cD} for the Ga-Pu pair. Because the Debye temperature can be related to a measure of the lattice stiffness, these results indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu bonds. This effect has important implications for lattice stabilization mechanisms in these alloys.

  10. Temperature-Dependent Vibrational Relaxation of NO(v=1) by O Atoms

    NASA Astrophysics Data System (ADS)

    Hwang, E. S.; Castle, K. J.; Dodd, J. A.

    2001-12-01

    For altitudes above about 80 km, oxygen molecules are increasingly dissociated by solar VUV absorption, and O atoms, together with O2 and N2, become a principal constituent of the atmosphere. Collisions of O with ground vibrational state NO efficiently excite NO(v=1), cooling the upper atmosphere by converting a portion of the ambient kinetic energy into 5.3-μ m IR emission which escapes into space. In recent years our group has worked to better characterize the vibrational energy transfer (VET) efficiencies for the NO(v)-O system. In our experiments vibrational relaxation rates are measured; they can be related to the corresponding uppumping rates through detailed balance. The experiment employs a cw microwave source to form O atoms, combined with photolysis of a trace amount of added NO2 to produce vibrationally excited NO. A double-jacketed quartz injector allows the introduction of O and NO2 into the reaction volume while minimizing wall-induced recombination and thermal decomposition, respectively. Oxygen atoms are detected through two-photon laser-induced fluorescence, cross-calibrated against a normalized O-atom signal resulting from photolysis of a known concentration of NO2. The experiment has been used to perform updated 295 K measurements for NO(v=1,2)-O relaxation, and 295-825 K measurements for NO(v=1)-O relaxation. A modest temperature dependence is observed. The variable temperature measurements provide key information for the accurate modeling of the lower thermospheric energy budget and IR radiant intensities. We also present associated quasiclassical trajectory calculations and TIME-GCM predictions of atmospheric temperature and density.

  11. Occurrence of fatigue induced by a whole-body vibration session is not frequency dependent.

    PubMed

    Raphael, Zory F; Wesley, Aulbrook; Daniel, Keir A; Olivier, Serresse

    2013-09-01

    The aim of this study was to determine whether neuromuscular adaptations (magnitude and location) induced by isometric exercise performed on an oscillating platform are dependent on whole-body vibration (WBV) frequency. Eleven young men performed 4 separate fatigue sessions of static squatting exercise at 3 frequencies of WBV (V20, V40, and V60) and 1 session without vibration (V0). Isometric torque and electromyographic activity of the vastus lateralis, rectus femoris, and biceps femoris were recorded during maximal voluntary and evoked contractions of the knee extensor muscles before and after each fatigue session to examine both peripheral and central adaptations. Isometric torque decreased significantly after each of the 4 frequency sessions (V0: -9.4 ± 6.1%, p = 0.003; V20: -8.1 ± 9.9%, p = 0.010; V40: -11.9 ± 12.7%, p = 0.011; and V60: -7.8 ± 9.2%, p = 0.001, respectively), but this reduction was not significantly different between frequencies. The torque produced by evoked contraction significantly decreased from pre-exercise values after each session (V0: -14.9 ± 15.6%, p = 0.012; V20: -15.8 ± 16.4%, p = 0.010; V40: -21.0 ± 14.3%, p = 0.004; and V60: -17.3 ± 11.6%, p = 0.005, respectively); however, there was no effect of vibration frequency. In both conditions, the maximal voluntary contraction torque reduction observed was mainly attributable to peripheral fatigue and was not because of central modifications of the neuromuscular system. The present study demonstrates that the frequency of vibration does not significantly influence the magnitude and location of neuromuscular fatigue, suggesting that adding WBV to static squat exercise (on a vertically oscillating platform) does not provide an additional training stimulus. PMID:23249822

  12. Temperature Dependence of the Vibrational Relaxation of OH(υ = 1 and 2) by CO2

    NASA Astrophysics Data System (ADS)

    Romanescu, C.; Marakov, A.; Timmers, H.; Kalogerakis, K.; Copeland, R. A.

    2009-12-01

    The hydroxyl radical is a key species in the energy budget of the terrestrial atmospheres. The main source of OH, the reaction between H-atoms and ozone, produces OH radicals with up to nine quanta of vibrational energy. The energy of OH(υ ≥ 1) is either transferred to an ambient species via collisional relaxation or is emitted as an infrared or visible photon. The relative intensities of the OH emission bands depend strongly on the planet’s atmospheric composition and temperature. Recently, the Venus Express mission detected IR emissions corresponding to the (1-0) and (2-0) bands of ground state of OH at an altitude of around 95 km.1 In the atmosphere of Venus, the dynamics of the OH vibrational populations are controlled mainly by collisions with CO2 molecules. Therefore, the key input parameters to the OH kinetic models are the vibrational quenching rate constants by CO2 and the fractions of single- and multi-quantum relaxation steps at temperatures relevant to the altitudes where these emissions occur. Currently, there are no available data for the vibrational relaxation of OH(υ = 1, 2) by CO2 below 300 K. Given the importance of these rate constants for the understanding the OH radical emissions on Venus, we applied a two-laser approach to extract the rate constants for the vibrational relaxation of OH(υ = 1, 2) by CO2. The pathways for relaxation of OH((υ = 2) were also examined. Ozone is photolysed at 248 nm and a small fraction of resulting O(1D) reacts with H2O and form OH(υ ≤ 2). The remaining O(1D) atoms are quenched to O(3P) by collisions with N2 and CO2. The OH(υ = 1, 2) populations are monitored by using LIF. The transients corresponding to the decay of OH(υ) and kinetic simulations are used to extract the rate constants and the relaxation pathways. Experiments were performed at temperatures between 210 - 295 K. The results indicate that the rate constant increases as the temperature decreases. This temperature dependence needs to be

  13. HCl vibrational fundamental band - Line intensities and temperature dependence of self-broadening coefficients

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Goorvitch, D.; Giver, L. P.

    1985-01-01

    Self-broadening in the vibrational fundamental of HCl is inversely proportional to the temperature for transitions which lie near the Boltzmann rotational maximum and becomes monotonically less temperature-dependent as the rotational quantum number increases. The rotationless transition moment was found to have the value of 5.57 + or - 0.13 x 10 to the -3rd (Debye)-squared and the first Herman-Wallis factor, C = -2.543 + or - 0.019 x 10 to the -2nd.

  14. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn₂GaC

    SciTech Connect

    Thore, A. Dahlqvist, M. E-mail: bjoal@ifm.liu.se Alling, B. E-mail: bjoal@ifm.liu.se Rosén, J. E-mail: bjoal@ifm.liu.se

    2014-09-14

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn₂GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn₂GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M₂AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.

  15. Vibrational study, molecular properties and first-order molecular hyperpolarizability of Methyl 2-amino 5-bromobenzoate using DFT method

    NASA Astrophysics Data System (ADS)

    Saxena, Avinay; Agrawal, Megha; Gupta, Archana

    2015-08-01

    The molecular structure of Methyl 2-amino 5-bromobenzoate (M2A5B) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set. Harmonic vibrational wavenumber calculation along with the normal mode analysis has been carried out in order to obtain a complete description of molecular dynamics. A detailed interpretation of the Infrared and Raman spectra of M2A5B have been reported. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (PED) in terms of internal coordinates. The scaled vibrational wavenumbers corrected by a recommended set of scaling factors were compared with the experimental results and a fairly good agreement was obtained. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, excitation energy and frontier molecular orbitals energy, was performed by time dependent DFT (TD-DFT) approach. Additionally, major contribution from molecular orbitals to the electronic transition was investigated theoretically. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The theoretical 1H and 13C NMR chemical shifts have been calculated by GIAO method and compared with experimentally measured ones. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The prominent vibrational modes contributing to the NLO activity have been identified and examined from the concurrent IR and Raman activity. Thermodynamic

  16. Vibrational Properties of Nanograins and Interfaces in Nanocrystalline Materials

    SciTech Connect

    Stankov, S.; Sergueev, I.; Chumakov, A. I.; Rueffer, R.; Yue, Y. Z.; Hu, L.; Miglierini, M.; Sepiol, B.; Svec, P.

    2008-06-13

    The vibrational dynamics of nanocrystalline Fe{sub 90}Zr{sub 7}B{sub 3} was studied at various phases of crystallization. The density of phonon states (DOS) of the nanograins was separated from that of the interfaces for a wide range of grain sizes and interface thicknesses. The DOS of the nanograins does not vary with their size and down to 2 nm grains still closely resembles that of the bulk. The anomalous enhancement of the phonon states at low and high energies originates from the DOS of the interfaces and scales linearly to their atomic fraction.

  17. Electromagnetic properties of vibrational bands in 170Er

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Golubev, P.; Mattsson, K.; Rudolph, D.; de Angelis, G.; Aydin, S.; Deo, A. Y.; Farnea, E.; Farrelly, G.; Geibel, K.; He, C.; Iwanicki, J.; Kempley, R.; Marginean, N.; Menegazzo, R.; Mengoni, D.; Orlandi, R.; Podolyak, Z.; Recchia, F.; Reiter, P.; Sahin, E.; Smith, J.; Söderström, P. A.; Torres, D. A.; Tveten, G. M.; Ur, C. A.; Valiente-Dobón, J. J.; Wendt, A.; Zielińska, M.

    2011-02-01

    Excited states of the nucleus 170Er have been studied by Coulomb excitation using the GASP γ -ray detector system at the Laboratori Nazionali di Legnaro. The ground-state band along with a low-lying ensuremath K^{π}=0^+ band and γ -vibrational band were populated during the experiment. Based on the measured γ -ray yields, a set of interband and intraband matrix elements has been extracted using the Coulomb excitation code GOSIA. The resulting E2 matrix elements are compared to collective model predictions.

  18. Vibrational properties of Ba8Ga16Sn30 under high pressure

    NASA Astrophysics Data System (ADS)

    Sukemura, Tatsuo; Kume, Tetsuji; Sasaki, Shigeo; Onimaru, Takahiro; Takabatake, Toshiro

    2013-06-01

    Semiconductor clathrates consist of host cages made by group-14 (13 and 15) atoms with sp3 network, and guest atoms encapsulated into the host cages. Ba8Ga16Sn30 clathrate are well known to provide a typical rattling vibration of the guest. Because of the cage size much lager than guest ion size, the guest ions are located not at the center of the cage, leading to so-called off-center rattling vibration. The sizes of guest ion and/or host cage are important for the rattling nature. It is straightforward to apply the pressure for investigate the rattling vibration which is expected to be highly sensitive to the host cage size. In this paper, we provide the dependence of the rattling vibration of Ba8Ga16Sn30 on the pressure.

  19. Vibrational Properties of Nanocrystals from the Debye Scattering Equation

    PubMed Central

    Scardi, P.; Gelisio, L.

    2016-01-01

    One hundred years after the original formulation by Petrus J.W. Debije (aka Peter Debye), the Debye Scattering Equation (DSE) is still the most accurate expression to model the diffraction pattern from nanoparticle systems. A major limitation in the original form of the DSE is that it refers to a static domain, so that including thermal disorder usually requires rescaling the equation by a Debye-Waller thermal factor. The last is taken from the traditional diffraction theory developed in Reciprocal Space (RS), which is opposed to the atomistic paradigm of the DSE, usually referred to as Direct Space (DS) approach. Besides being a hybrid of DS and RS expressions, rescaling the DSE by the Debye-Waller factor is an approximation which completely misses the contribution of Temperature Diffuse Scattering (TDS). The present work proposes a solution to include thermal effects coherently with the atomistic approach of the DSE. A deeper insight into the vibrational dynamics of nanostructured materials can be obtained with few changes with respect to the standard formulation of the DSE, providing information on the correlated displacement of vibrating atoms. PMID:26916341

  20. Vibrational properties of nanocrystals from the Debye Scattering Equation

    DOE PAGESBeta

    Scardi, P.; Gelisio, L.

    2016-02-26

    One hundred years after the original formulation by Petrus J.W. Debije (aka Peter Debye), the Debye Scattering Equation (DSE) is still the most accurate expression to model the diffraction pattern from nanoparticle systems. A major limitation in the original form of the DSE is that it refers to a static domain, so that including thermal disorder usually requires rescaling the equation by a Debye-Waller thermal factor. The last is taken from the traditional diffraction theory developed in Reciprocal Space (RS), which is opposed to the atomistic paradigm of the DSE, usually referred to as Direct Space (DS) approach. Besides beingmore » a hybrid of DS and RS expressions, rescaling the DSE by the Debye-Waller factor is an approximation which completely misses the contribution of Temperature Diffuse Scattering (TDS). The present work proposes a solution to include thermal effects coherently with the atomistic approach of the DSE. Here, a deeper insight into the vibrational dynamics of nanostructured materials can be obtained with few changes with respect to the standard formulation of the DSE, providing information on the correlated displacement of vibrating atoms.« less

  1. Free Vibration of Size-Dependent Functionally Graded Microbeams Based on the Strain Gradient Reddy Beam Theory

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Gholami, R.; Sahmani, S.

    2014-09-01

    The microscale vibration characteristics of microbeams made of functionally graded materials (FGMs) are investigated based on the strain gradient Reddy beam theory capable of capturing the size effect. The non-classical governing differential equations, together with the corresponding boundary conditions, are obtained using Hamilton's principle. Then, the free vibration problem of simply supported FGM microbeams is solved using the Navier solution. The natural frequencies of FGM microbeams are calculated corresponding to a wide range of dimensionless length scale parameters, material property gradient indices, and aspect ratios to illustrate the influences of size effect on the vibrational response of FGM microbeams.

  2. Investigations of the Electronic, Vibrational and Structural Properties of Single and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Lui, Chun Hung

    . In particular, FLG can exist in various crystallographic stacking sequences, which strongly influence the material's electronic properties. We have developed an accurate and convenient method of characterizing stacking order in FLG using the lineshape of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and rhombohedral (ABC) stacking in trilayer and tetralayer graphene. We find that 15% of exfoliated graphene trilayers and tetralayers are comprised of micrometer-sized domains of rhombohedral stacking, rather than of usual Bernal stacking. The accurate identification of stacking domains in FLG allows us to investigate the influence of stacking order on the material's electronic properties. In particular, we have studied by means of IR spectroscopy the possibility of opening a band gap by the application of a strong perpendicular electric field in trilayer graphene. We observe an electrically tunable band gap exceeding 100 meV in ABC trilayers, while no band gap is found for ABA trilayers. We have also studied the influence of layer thickness and stacking order on the Raman response of the out-of-plane vibrations in FLG. We observe a Raman combination mode that involves the layer-breathing vibrations in FLG. This Raman mode is absent in SLG and exhibits a lineshape that depends sensitively on both the material's layer thickness and stacking sequence.

  3. The Roles of Disorder and Confinement on the Vibrational Properties of Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Green, Nicole L.

    In this thesis, we have used temperature-sensitive microgel colloidal particles to create crystals that combine topological order and interaction disorder. We directly calculate the vibrational density of states and normal modes' structures from instantaneous particle fluctuations without assuming any interaction potential, which we have separately measured in a dilute system. The heterogeneity and wide distribution of fluctuations is surprising as the distribution of nearest neighbor spacings remains narrow. We attribute this ambiguity to the microgel particles, which are known to have non-uniform distributions of polymer and crosslinker. Prior to this work, crystals with lattice have never been realized experimentally and remained a simple model amorphous system. We find that the density of states of these crystals with lattice disorder show a low frequency Debye plateau region and rise to a Boson peak, the former predicted for crystals and the latter characteristic to disordered systems. The spatial structure of the normal modes below the Boson peak are hybridizations of plane waves, with a dominant contribution coming from the transverse branch. We explore the possibility of volume fraction dependence in these systems and find that, despite increased fluctuations, the shape of the density of states remains consistent and can be scaled onto a master curve when normalized by the changing particle fluctuations. The spatial structure also remains consistent: plane wave character below the Boson peak and randomized beyond. We have also investigated the vibrational properties of the same disordered crystal system after subjecting it to 3D spherical confinement. We find that the confinement suppresses fluctuations that would otherwise lead to melting, as the system remains crystalline well below the volume fraction associated with melting. We again solve for the density of states and normal modes of these confined systems and find that while the spatial structure of

  4. Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Norouzzadeh, A.; Gholami, R.; Faghih Shojaei, M.; Hosseinzadeh, M.

    2014-07-01

    The size-dependent nonlinear free vibration and instability of fluid-conveying single-walled boron nitride nanotubes (SWBNNTs) embedded in thermal environment are studied in this paper. The fluid-conveying SWBNNT is modeled as a Timoshenko beam by which the effects of transverse shear deformation and rotary inertia is taken into consideration. The modified strain gradient theory is used to capture the size effect. To consider the nonlinear effect, the geometric nonlinearity, based on von Kármán's assumption is introduced to develop the nonlinear governing equations of motion. By employing Hamilton's principle, the governing equations and associated boundary conditions are derived. Thereafter, a numerical solution procedure based on the generalized differential quadrature (GDQ) is introduced, according to which the nonlinear governing equations and the corresponding boundary conditions are discretized via the operational matrix of differentiation. The discretized equations are then solved analytically through the harmonic balance approach. Effects of different parameters including material length scale parameter, spring and damping constants of surrounding viscoelastic medium, and flow velocity on the nonlinear free vibration and instability of SWBNNTs are examined.

  5. Determination of Rhealogical Properties from Vibrational Spectra Using Chemometric Two- Dimensional Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to predict viscoelastic properties from vibrational spectra of grain flours was investigated. Both dispersive near-infrared (NIR) and Fourier-transform Raman (FT-Raman) spectra were used to generate two-dimensional matrix maps versus Rapid Visco Analyzer (RVA) generated viscograms. Aft...

  6. Determination of mechanical properties of excised dog radii from lateral vibration experiments

    NASA Technical Reports Server (NTRS)

    Thompson, G. A.; Anliker, M.; Young, D. R.

    1973-01-01

    Experimental data which can be used as a guideline in developing a mathematical model for lateral vibrations of whole bone are reported. The study used wet and dry dog radii mounted in a cantilever configuration. Data are also given on the mechanical, geometric, and viscoelastic properties of bones.

  7. Vibrational and thermodynamic properties of α-, β-, γ-, and 6, 6, 12-graphyne structures.

    PubMed

    Perkgöz, Nihan Kosku; Sevik, Cem

    2014-05-01

    Electronic, vibrational, and thermodynamic properties of different graphyne structures, namely α-, β-, γ-, and 6, 6, 12-graphyne, are investigated through first principles-based quasi-harmonic approximation by using phonon dispersions predicted from density-functional perturbation theory. Similar to graphene, graphyne was shown to exhibit a structure with extraordinary electronic features, mechanical hardness, thermal resistance, and very high conductivity from different calculation methods. Hence, characterizing its phonon dispersions and vibrational and thermodynamic properties in a systematic way is of great importance for both understanding its fundamental molecular properties and also figuring out its phase stability issues at different temperatures. Thus, in this research work, thermodynamic stability of different graphyne allotropes is assessed by investigating vibrational properties, lattice thermal expansion coefficients, and Gibbs free energy. According to our results, although the imaginary vibrational frequencies exist for β-graphyne, there is no such a negative behavior for α-, γ-, and 6, 6, 12-graphyne structures. In general, the Grüneisen parameters and linear thermal expansion coefficients of these structures are calculated to be rather more negative when compared to those of the graphene structure. In addition, the predicted difference between the binding energies per atom for the structures of graphene and graphyne points out that graphyne networks have relatively lower phase stability in comparison with the graphene structures. PMID:24737253

  8. Atomistic simulation of topaz: Structure, defect, and vibrational properties

    NASA Astrophysics Data System (ADS)

    Niu, Ji-Nan; Shen, Shai-Shai; Liu, Zhang-Sheng; Feng, Pei-Zhong; Ou, Xue-Mei; Qiang, Ying-Huai; Zhu, Zhen-Cai

    2015-09-01

    The clay force field (CLAYFF) was supplemented by fluorine potential parameters deriving from experimental structures and used to model various topazes. The calculated cell parameters agree well with the observed structures. The quasi-linear correlation of the b lattice parameter to different F/OH ratios calculated by changing fluorine contents in OH-topaz supports that the F content can be measured by an optical method. Hydrogen bond calculations reveal that the hydrogen bond interaction to H1 is stronger than that to H2, and the more fluorine in the structure, the stronger the hydrogen bond interaction of hydroxyl hydrogen. Defect calculations provide the formation energies of all common defects and can be used to judge the ease of formation of them. The calculated vibrational frequencies are fairly consistent with available experimental results, and the 1080-cm-1 frequency often occurring in natural OH-topaz samples can be attributed to Si-F stretching because of the F substitution to OH and the Al-Si exchange. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20140212) and the Fundamental Research Funds for the Central Universities China (Grant Nos. 2012QNA08).

  9. Solar Cycle Dependence of Coronal Hole Properties

    NASA Astrophysics Data System (ADS)

    Miralles, M. P.

    2005-07-01

    The SOHO Ultraviolet Coronagraph Spectrometer (UVCS) has been used to measure the properties of hundreds of large coronal holes, that produced a variety of high-speed solar wind streams, during the past nine years. In the cases where UVCS and in situ measurements were made of the same coronal-hole plasma, high speeds in excess of 600 km/s were found in interplanetary space. UVCS has been used to observe O VI (103.2 and 103.7 nm) and H I Lyman alpha (121.6 nm) emission lines as a function of heliocentric distance. The analysis of their spectroscopic parameters allows us to identify similarities and differences among coronal holes at different phases of the solar cycle. From such measurements we can derive plasma parameters (densities, temperatures, velocity distribution anisotropies, and outflow speeds) for O5+ and protons as a function of heliocentric distance in the coronal holes. These properties, combined with other observed quantities such as white-light polarization brightness and the magnetic fluxes measured on-disk, let us analyze the coronal hole plasma properties more fully than ever before. We will present the solar cycle dependence of the above plasma parameters from the last solar minimum in 1996 to present and compare them, where possible, with the in situ solar wind properties. This work is supported by NASA under Grant NNG04GE84G to the Smithsonian Astrophysical Observatory, by the Italian Space Agency, and by PRODEX (Swiss contribution).

  10. Temperature dependent phonon properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Broido, David; Fultz, Brent

    2015-03-01

    We present recent developments using the temperature dependent effective potential technique (TDEP) to model thermoelectric materials. We use ab initio molecular dynamics to generate an effective Hamiltonian that reproduce neutron scattering spectra, thermal conductivity, phonon self energies, and heat capacities. Results are presented for (among others) SnSe, Bi2Te3, and Cu2Se proving the necessity of careful modelling of finite temperature properties for strongly anharmonic materials. Supported by the Swedish Research Council (VR) Project Number 637-2013-7296.

  11. Electronic and Vibrational Properties of Low-Dimensional Heterogeneous Systems: Materials and Device Perspectives

    NASA Astrophysics Data System (ADS)

    Neupane, Mahesh Raj

    Due to the aggressive miniaturization of memory and logic devices, the current technologies based on silicon have nearly reached their ultimate size limit. One method to maintain the trend in device scaling observed by Moore's law is to create a heterostructure from existing materials and utilize the underlying electronic and optical properties. Another radical approach is the conceptualization of a new device design paradigm. The central objective of this thesis is to use both of these approaches to address issues associated with the aggressive scaling of memory and logic devices such as leakage current, leakage power, and minimizing gate oxide thickness and threshold voltage. In the first part of the dissertation, an atomistic, empirical tight binding method was used to perform a systematic investigation of the effect of physical (shape and size), and material dependent (heterogenity and strain) properties on the device related electronic and optical properties of the Germanium (Ge)/Silicon (Si) nanocrystal (NC) or quantum dot (QD). The device parameters pertaining to Ge-core/Si-shell NC-based floating gate memory and optical devices such as confinement energy, retention lifetimes and optical intensities are captured and analyzed. For both the memory and optical device applications, regardless of the shape and size, the Ge-core is found to play an important role in modifying the confinement energy and carrier dynamics. However, the variation in the thickness of outer Si-shell layer had no or minimal effect on the overall device parameters. In the second part of the dissertation, we present a systematic study of the effect of atomistic heterogeneity on the vibrational properties of quasi-2D systems and recently discovered 2D materials such as graphene, while investigating their applicabilities in future devices applications. At first, we investigate the vibrational properties of an experimentally observed misoriented bilayer graphene (MBG) system, a

  12. Parameter-dependent vibration-attenuation controller design for electro-hydraulic actuated linear structural systems

    NASA Astrophysics Data System (ADS)

    Weng, Falu; Mao, Weijie

    2012-03-01

    The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closedloop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.

  13. DFT studies on the structural and vibrational properties of polyenes.

    PubMed

    Kupka, Teobald; Buczek, Aneta; Broda, Małgorzata A; Stachów, Michał; Tarnowski, Przemysław

    2016-05-01

    Detailed density functional theory (DFT) calculations on the structure and harmonic frequencies of model all-trans and all-cis polyenes were undertaken. For the first time, we report on the convergence of selected B3LYP/6-311++G** and BLYP/6-311++G** calculated structural parameters resulting from a systematic increase in polyene size (chains containing 2 to 14 C = C units). The limiting values of the structural parameters for very long chains were estimated using simple three-parameter empirical formulae. BLYP/6-311++G** calculated ν(C = C) and ν(C-C) frequencies for all-trans and all-cis polyenes containing up to 14 carbon-carbon double bonds were used to estimate these values for very long chains. Correction of raw, unscaled vibrational data was performed by comparing theoretical and experimental wavenumbers for polyenes chains containing 3 to 12 conjugated C = C units with both ends substituted by tert-butyl groups. The corrected ν(C = C) and ν(C-C) wavenumbers for all-trans molecules were used to estimate the presence of 9 - 12 C = C units in all-trans polyene pigment in red coral. Graphical abstract Detailed density functional theory (DFT) calculations on the structure and harmonic frequencies of model all-trans and all-cis polyenes were undertaken. For the first time, we report on the convergence of selected B3LYP/6-311++G** and BLYP/6-311++G** calculated structural parameters resulting from a systematic increase in polyene size (chains containing 2 to 14 C=C units). The limiting values of the structural parameters for very long chains were estimated using simple three-parameter empirical formulae. PMID:27048200

  14. Parallel calculations of vibrational properties in complex materials: negative thermal expansion and elastic inhomogeneity

    NASA Astrophysics Data System (ADS)

    Vila, F. D.; Rehr, J. J.

    Effects of thermal vibrations are essential to obtain a more complete understanding of the properties of complex materials. For example, they are important in the analysis and simulation of x-ray absorption spectra (XAS). In previous work we introduced an ab initio approach for a variety of vibrational effects, such as crystallographic and XAS Debye-Waller factors, Debye and Einstein temperatures, and thermal expansion coefficients. This approach uses theoretical dynamical matrices from which the locally-projected vibrational densities of states are obtained using a Lanczos recursion algorithm. In this talk I present recent improvements to our implementation, which permit simulations of more complex materials with up to two orders of magnitude larger simulation cells. The method takes advantage of parallelization in calculations of the dynamical matrix with VASP. To illustrate these capabilities we discuss two problems of considerable interest: negative thermal expansion in ZrW2O8; and local inhomogeneities in the elastic properties of supported metal nanoparticles. Both cases highlight the importance of a local treatment of vibrational properties. Supported by DOE Grant DE-FG02-03ER15476, with computer support from DOE-NERSC.

  15. Electronic Properties of Si-Hx Vibrational Modes at Si Waveguide Interface.

    PubMed

    Bashouti, Muhammad Y; Yousefi, Peyman; Ristein, Jürgen; Christiansen, Silke H

    2015-10-01

    Attenuated total reflectance (ATR) and X-ray photoelectron spectroscopy in suite with Kelvin probe were conjugated to explore the electronic properties of Si-Hx vibrational modes by developing Si waveguide with large dynamic detection range compared with conventional IR. The Si 2p emission and work-function related to the formation and elimination of Si-Hx bonds at Si surfaces are monitored based on the detection of vibrational mode frequencies. A transition between various Si-Hx bonds and thus related vibrational modes is monitored for which effective momentum transfer could be demonstrated. The combination of the aforementioned methods provides for results that permit a model for the kinetics of hydrogen termination of Si surfaces with time and advanced surface characterizing of hybrid-terminated semiconducting solids. PMID:26722904

  16. A refined finite element analysis on the vibrational properties of ideal and degenerated carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Imani Yengejeh, Sadegh; Kazemi, Seyedeh Alieh; Ivasenko, Oleksandr; Öchsner, Andreas

    2016-04-01

    Different types of degenerated nanostructures were simulated and their eigenfrequencies and corresponding eigenmodes were evaluated by applying the well-established finite element method. In addition, the structural and vibrational stability of these nanoparticles was examined under the influence of microscopic modifications. For this purpose, four common types of atomic defects (i.e. different types of vacancy defects, perturbation, pentagon-heptagon pair defect and chemical doping) were introduced to the finite element models and their vibrational properties were obtained and finally compared to those of perfect, i.e. defect-free, structures. The detailed geometry around a defected area was calculated based on density functional theory and implemented in the finite element model. Based on the results, it was shown that all these structural modifications changes the natural frequency and as a result, reduce the vibrational stability of degenerated nano-materials.

  17. Electronic and vibrational properties of graphene monolayers with iron adatoms: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Dimakis, Nicholas; Navarro, Nestor E.; Velazquez, Julian; Salgado, Andres

    2015-04-01

    Periodic density functional calculations on graphene monolayers with and without an iron adatom have been used to elucidate iron-graphene adsorption and its effects on graphene electronic and vibrational properties. Density-of-states calculations and charge density contour plots reveal charge transfer from the iron s orbitals to the d orbitals, in agreement with past reports. Adsorbed iron atoms covalently bind to the graphene substrate, verified by the strong hybridization of iron d-states with the graphene bands in the energy region just below the Fermi level. This adsorption is weak and compared to the well-analyzed CO adsorption on Pt: It is indicated by its small adsorption energy and the minimal change of the substrate geometry due to the presence of the iron adatoms. Graphene vibrational spectra are analyzed though a systematic variation of the graphene supercell size. The shifts of graphene most prominent infrared active vibrational modes due to iron adsorption are explored using normal mode eigenvectors.

  18. Ab initio investigation of electronic and vibrational contributions to linear and nonlinear dielectric properties of ice

    SciTech Connect

    Casassa, S.; Baima, J.; Mahmoud, A.; Kirtman, B.

    2014-06-14

    Electronic and vibrational contributions to the static and dynamic (hyper)polarizability tensors of ice XI and model structures of ordinary hexagonal ice have been theoretically investigated. Calculations were carried out by the finite field nuclear relaxation method for periodic systems (FF-NR) recently implemented in the CRYSTAL code, using the coupled-perturbed Kohn-Sham approach (CPKS) for evaluating the required electronic properties. The effect of structure on the static electronic polarizabilities (dielectric constants) and second-hyperpolarizabilities is minimal. On the other hand, the vibrational contributions to the polarizabilities were found to be significant. A reliable evaluation of these (ionic) contributions allows one to discriminate amongst ice phases characterized by different degrees of proton-order, primarily through differences caused by librational motions. Transverse static and dynamic vibrational (hyper)polarizabilities were found by extrapolating calculations for slabs of increasing size, in order to eliminate substantial surface contributions.

  19. SMA actuators for vibration control and experimental determination of model parameters dependent on ambient airflow velocity

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.

    2016-05-01

    This article demonstrates the practical applicability of a method of modelling shape memory alloys (SMAs) as actuators. For this study, a pair of SMA wires was installed in an antagonistic manner to form an actuator, and a linear differential equation that describes the behaviour of the actuator’s generated force relative to its input voltage was derived for the limited range below the austenite onset temperature. In this range, hysteresis need not be considered, and the proposed SMA actuator can therefore be practically applied in linear control systems, which is significant because large deformations accompanied by hysteresis do not necessarily occur in most vibration control cases. When specific values of the parameters used in the differential equation were identified experimentally, it became clear that one of the parameters was dependent on ambient airflow velocity. The values of this dependent parameter were obtained using an additional SMA wire as a sensor. In these experiments, while the airflow distribution around the SMA wires was varied by changing the rotational speed of the fans in the wind tunnels, an input voltage was conveyed to the SMA actuator circuit, and the generated force was measured. In this way, the parameter dependent on airflow velocity was estimated in real time, and it was validated that the calculated force was consistent with the measured one.

  20. The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations

    NASA Astrophysics Data System (ADS)

    Erba, A.; Ferrabone, M.; Baima, J.; Orlando, R.; Rérat, M.; Dovesi, R.

    2013-02-01

    The vibration spectrum of single-walled zigzag boron nitride (BN) nanotubes is simulated with an ab initio periodic quantum chemical method. The trend towards the hexagonal monolayer (h-BN) in the limit of large tube radius R is explored for a variety of properties related to the vibrational spectrum: vibration frequencies, infrared intensities, oscillator strengths, and vibration contributions to the polarizability tensor. The (n,0) family is investigated in the range from n = 6 (24 atoms in the unit cell and tube radius R = 2.5 Å) to n = 60 (240 atoms in the cell and R = 24.0 Å). Simulations are performed using the CRYSTAL program which fully exploits the rich symmetry of this class of one-dimensional periodic systems: 4n symmetry operators for the general (n,0) tube. Three sets of infrared active phonon bands are found in the spectrum. The first one lies in the 0-600 cm-1 range and goes regularly to zero when R increases; the connection between these normal modes and the elastic and piezoelectric constants of h-BN is discussed. The second (600-800 cm-1) and third (1300-1600 cm-1) sets tend regularly, but with quite different speed, to the optical modes of the h-BN layer. The vibrational contribution of these modes to the two components (parallel and perpendicular) of the polarizability tensor is also discussed.

  1. Vibration and length-dependent flexural rigidity of protein microtubules using higher order shear deformation theory.

    PubMed

    Tounsi, Abdelouahed; Heireche, Houari; Benhassaini, Hachemi; Missouri, Miloud

    2010-09-21

    Microtubules are hollow cylindrical filaments of the eukaryotic cytoskeleton characterized by extremely low shear modulus. A remarkable controversy has occurred in the literature, regarding the length dependence of flexural rigidity of microtubules predicted by the classical elastic beam model. In this study, a higher order shear deformable beam model for microtubules is employed to study unexplained length-dependent flexural rigidity and Young's modulus of microtubules reported in the literature. The formulation allows for warping of the cross-section of the microtubule and eliminates the need for using arbitrary shear correction coefficients as in other theories. It is showed that vibration frequencies predicted by the present parabolic shear deformation theory (PSDT) are much lower than that given by the approximate isotropic beam model for shorter microtubules, although the two models give almost identical results for sufficiently long microtubules. It is confirmed that transverse shearing and the warping of the cross-section of microtubules are mainly responsible for the length-dependent flexural rigidity of an isolated microtubule reported in the literature, which cannot be explained by the widely used Euler-Bernoulli beam model. Indeed, the length-dependent flexural rigidity predicted by the present model is found to be in qualitative agreement with the existing experimental data (Kurachi et al., 1995; Pampaloni et al., 2006). These results recommend that the parabolic shear deformation-beam theory offers a unified simple 1D model, which can capture the length dependence of flexural rigidity and be applied to various static and dynamic problems of microtubule mechanics. PMID:20609368

  2. First-principles investigation on vibrational, anisotropic elastic and thermodynamic properties for L12 structure of Al3Er and Al3Yb under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Jiang, Wei

    2016-02-01

    To better clarify the physical properties for Al3RE precipitates, first-principles calculations are performed to investigate the vibrational, anisotropic elastic and thermodynamic properties of Al3Er and Al3Yb. The calculated results agree well with available experimental and theoretical ones. The vibrational properties indicate that Al3Er and Al3Yb will keep their dynamical stabilities with L12 structure up to 100 GPa. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 100 GPa. The mechanical anisotropy is predicted by anisotropic constants AG, AU, AZ and 3D curved surface of Young's modulus. The calculated results show that both Al3Er and Al3Yb are isotropic at zero pressure and obviously anisotropic under high pressure. Further, we systematically investigate the thermodynamic properties and provide the relationships between thermal parameters and pressure. Finally, the pressure-dependent behaviours of density of states, Mulliken charge and bond length are discussed.

  3. The Elastic and Vibrational Properties of Co to 120 GPa

    SciTech Connect

    Crowhurst, J; Goncharov, A F; Zaug, J M

    2003-11-21

    Impulsive stimulated light scattering and Raman spectroscopy measurements have been made on hcp cobalt to a static pressure of 120 GPa. This is the highest static pressure to date at which acoustic velocities have been directly measured. We find that at pressures above 60 GPa the shear elastic modulus and the Raman frequency of the E{sub 2g} transverse optical phonon exhibit a departure from a linear dependence on density. We relate this behavior to a collapse of the magnetic moment under pressure that has been predicted theoretically, but until now not observed experimentally.

  4. Isotope dependence of the vibrational lifetimes of light impurities in Si from first principles

    NASA Astrophysics Data System (ADS)

    West, D.; Estreicher, S. K.

    2007-02-01

    The vibrational lifetimes of a range of H-related defects and interstitial O (Oi) in Si, including isotopic substitutions, are calculated from first principles as a function of temperature. The theoretical approach is explained in detail. The vibrational lifetimes of highest-frequency local vibrational modes of HBC+ , D2* , HD* , DH* , HBC+ , DBC+ , HV•VH , DV•VH , DV•VD , IH2 , ID2 , and various O and Si isotopic combinations of Oi are predicted and the decay channels analyzed. We show that the complete vibrational spectrum of the defects must be known in order to predict vibrational lifetimes. We also show that the “frequency-gap law” is not always valid for high-frequency local vibrational modes.

  5. Structure dependent elastic properties of supergraphene

    NASA Astrophysics Data System (ADS)

    Hou, Juan; Yin, Zhengnan; Zhang, Yingyan; Chang, Tien-Chong

    2016-04-01

    Complete replacement of aromatic carbon bonds in graphene by carbyne chains gives rise to supergraphene whose mechanical properties are expected to depend on its structure. However, this dependence is to date unclear. In this paper, explicit expressions for the in-plane stiffness and Poisson's ratio of supergraphene are obtained using a molecular mechanics model. The theoretical results show that the in-plane stiffness of supergraphene is drastically (at least one order) smaller than that of graphene, whereas its Poisson's ratio is higher than 0.5. As the index number increases (i.e., the length of carbyne chains increases and the bond density decreases), the in-plane stiffness of supergraphene decreases while the Poisson's ratio increases. By analyzing the relation among the layer modulus, in-plane stiffness and Poisson's ratio, it is revealed that the mechanism of the faster decrease in the in-plane stiffness than the bond density is due to the increase of Poisson's ratio. These findings are useful for future applications of supergraphene in nanomechanical systems.

  6. Solvent dependent photophysical properties of dimethoxy curcumin

    NASA Astrophysics Data System (ADS)

    Barik, Atanu; Indira Priyadarsini, K.

    2013-03-01

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (ϕf) and fluorescence lifetime (τf) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ϕf increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.

  7. Solvent dependent photophysical properties of dimethoxy curcumin.

    PubMed

    Barik, Atanu; Indira Priyadarsini, K

    2013-03-15

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (φ(f)) and fluorescence lifetime (τ(f)) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, φ(f) increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes. PMID:23314392

  8. Size-dependent static bending and free vibration of 0–3 polarized PLZT microcantilevers

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Li, Zongjun; Chen, Ming; Wang, Hongtao

    2016-08-01

    In this paper, analytical solutions for size-dependent static bending and free vibration of a pure 0–3 polarized PbLaZrTi (PLZT) cantilever are developed. This paper also makes the first attempt to investigate the static bending of a cantilever metal beam bonded with discretized 0–3 polarized PLZT actuator based on the modified couple stress theory and composite laminated beam theory. These models involve an internal material length scale parameter used to capture the size effect. In the limit when the internal material length scale parameter goes to zero, this model reduces to classical (local) solutions available in the literature. Exact solutions for the normalized static deflection are obtained as a function of the actuator thickness and the internal material length scale parameter. The simulations show that the size-dependent results developed by the present models have a remarkable difference with those got by the classical solutions when the ratio of the actuator thickness to the internal material length scale parameter is small. It is also observed that an increase in the stiffness parameter of the substrate beam gives rise to an increase in the effect of the material length scale parameter on tip deflections of the cantilever metal beam.

  9. High pressure structural, elastic and vibrational properties of green energetic oxidizer ammonium dinitramide

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2016-08-01

    Ammonium DiNitramide (ADN) is one of the most promising green energetic oxidizers for future rocket propellant formulations. In the present work, we report a detailed theoretical study on structural, elastic, and vibrational properties of the emerging oxidizer under hydrostatic compression using various dispersion correction methods to capture weak intermolecular (van der Waals and hydrogen bonding) interactions. The calculated ground state lattice parameters, axial compressibilities, and equation of state are in good accord with the available experimental results. Strength of intermolecular interactions has been correlated using the calculated compressibility curves and elastic moduli. Apart from this, we also observe discontinuities in the structural parameters and elastic constants as a function of pressure. Pictorial representation and quantification of intermolecular interactions are described by the 3D Hirshfeld surfaces and 2D finger print maps. In addition, the computed infra-red (IR) spectra at ambient pressure reveal that ADN is found to have more hygroscopic nature over Ammonium Perchlorate (AP) due to the presence of strong hydrogen bonding. Pressure dependent IR spectra show blue- and red-shift of bending and stretching frequencies which leads to weakening and strengthening of the hydrogen bonding below and above 5 GPa, respectively. The abrupt changes in the calculated structural, mechanical, and IR spectra suggest that ADN might undergo a first order structural transformation to a high pressure phase around 5-6 GPa. From the predicted detonation properties, ADN is found to have high and low performance characteristics (DCJ = 8.09 km/s and PCJ = 25.54 GPa) when compared with ammonium based energetic oxidizers (DCJ = 6.50 km/s and PCJ = 17.64 GPa for AP, DCJ = 7.28 km/s and PCJ = 18.71 GPa for ammonium nitrate) and well-known secondary explosives for which DCJ = ˜8-10 km/s and PCJ = ˜30-50 GPa, respectively.

  10. First-principles study of structural, electronic, vibrational, dielectric and elastic properties of tetragonal Ba₂YTaO₆

    SciTech Connect

    Ganeshraj, C.; Santhosh, P. N.

    2014-10-14

    We report first-principles study of structural, electronic, vibrational, dielectric, and elastic properties of Ba₂YTaO₆, a pinning material in high temperature superconductors (HTS), by using density functional theory. By using different exchange-correlation potentials, the accuracy of the calculated lattice constants of Ba₂YTaO₆ has been achieved with GGA-RPBE, since many important physical quantities crucially depend on change in volume. We have calculated the electronic band structure dispersion, total and partial density of states to study the band gap origin and found that Ba₂YTaO₆ is an insulator with a direct band gap of 3.50 eV. From Mulliken population and charge density studies, we conclude that Ba₂YTaO₆ have a mixed ionic-covalent character. Moreover, the vibrational properties, born effective charges, and the dielectric permittivity tensor have been calculated using linear response method. Vibrational spectrum determined through our calculations agrees well with the observed Raman spectrum, and allows assignment of symmetry labels to modes. We perform a detailed analysis of the contribution of the various infrared-active modes to the static dielectric constant to explain its anisotropy, while electronic dielectric tensor of Ba₂YTaO₆ is nearly isotropic, and found that static dielectric constant is in good agreement with experimental value. The six independent elastic constants were calculated and found that tetragonal Ba₂YTaO₆ is mechanically stable. Other elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and elastic anisotropy ratios are also investigated and found that Poisson's ratio and Young's modulus of Ba₂YTaO₆ are similar to that of other pinning materials in HTS.

  11. Vibrational analysis, electronic structure and nonlinear optical properties of Levofloxacin by density functional theory

    NASA Astrophysics Data System (ADS)

    Gunasekaran, Sethu; Rajalakshmi, K.; Kumaresan, Subramanian

    2013-08-01

    The Fourier transform (FT-IR) spectrum of Levofloxacin was recorded in the region 4000-400 cm-1 and a complete vibrational assignment of fundamental vibrational modes of the molecule was carried out using density functional method. The observed fundamental modes have been compared with the harmonic vibrational frequencies computed using DFT (B3LYP) method by employing 6-31 G (d, p) basis sets. The most stable geometry of the molecule under investigation has been determined from the potential energy scan. The first-order hyperpolarizability (βo) and other related properties (μ, αo) of Levofloxacin are calculated using density functional theory (DFT) on a finite field approach. UV-vis spectrum of the molecule was recorded and the electronic properties, such as HOMO and LUMO energies were performed by DFT using 6-31 G (d, p) basis sets. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The other molecular properties like molecular electrostatic potential (MESP), Mulliken population analysis and thermodynamic properties of the title molecule have been calculated.

  12. Vibrational analysis, electronic structure and nonlinear optical properties of levofloxacin by density functional theory.

    PubMed

    Gunasekaran, Sethu; Rajalakshmi, K; Kumaresan, Subramanian

    2013-08-01

    The Fourier transform (FT-IR) spectrum of Levofloxacin was recorded in the region 4000-400 cm(-1) and a complete vibrational assignment of fundamental vibrational modes of the molecule was carried out using density functional method. The observed fundamental modes have been compared with the harmonic vibrational frequencies computed using DFT (B3LYP) method by employing 6-31 G (d, p) basis sets. The most stable geometry of the molecule under investigation has been determined from the potential energy scan. The first-order hyperpolarizability (βo) and other related properties (μ, αo) of Levofloxacin are calculated using density functional theory (DFT) on a finite field approach. UV-vis spectrum of the molecule was recorded and the electronic properties, such as HOMO and LUMO energies were performed by DFT using 6-31 G (d, p) basis sets. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The other molecular properties like molecular electrostatic potential (MESP), Mulliken population analysis and thermodynamic properties of the title molecule have been calculated. PMID:23685802

  13. Magnetic, electronic, and vibrational properties of metal and fluorinated metal phthalocyanines

    NASA Astrophysics Data System (ADS)

    Arillo-Flores, O. I.; Fadlallah, M. M.; Schuster, C.; Eckern, U.; Romero, A. H.

    2013-04-01

    The magnetic and electronic properties of metal phthalocyanines (MPc) and fluorinated metal phthalocyanines (F16MPc) are studied by means of spin density functional theory (SDFT). Several metals (M) such as Ca, all first d-row transition metals, and Ag are investigated. By considering different open shell transition metals it is possible to tune the electronic properties of MPc, in particular the electronic molecular gap and total magnetic moment. Besides determining the structural and electronic properties of MPc and F16MPc, the vibrational modes of the ScPc-ZnPc series have been studied.

  14. Time-dependent Navier-Stokes computations for flow-induced vibrations of vanes

    NASA Astrophysics Data System (ADS)

    Liu, B. L.; O'Farrel, J. M.; Holt, J. B.; Dougherty, N. S.

    Flows over two curved vane configurations were computed using a time-accurate compressible Navier-Stokes flow model. One configuration showed the presence of strong flow-induced vibrations at Strouhal numbers near 0.19 and 0.38 for bending and torsional excitation. In the other configuration, a simple modification reduced both types of response. Laminar flows were analyzed for the effects of flow-induced vibrations, and flow fields were solved for a rigid vane and a vane undergoing forced vibrations at prescribed amplitude and frequency simulating vibration response to a coupled vortex-shedding/elastic motion feedback cycle.

  15. Laboratory experiment of liquefaction under vertical vibration: parameter dependence of the resulting instabilities

    NASA Astrophysics Data System (ADS)

    Yasuda, N.; Sumita, I.

    2013-12-01

    Liquefaction is a phenomenon in which the inter-particle contact of a liquid-saturated granular matter is loosened by vibration and as a result, the bulk behaves like a fluid. Vibration resulting from earthquakes as well as impact can cause liquefaction which can manifest in the form of sand boils and mud volcanoes. Other possible consequences of liquefaction are flame structures in sedimentary rocks and peculiar topographic features on Mars. Liquefaction can also occur in a more viscous fluid, such as a magma chamber which may even result in volcanic eruption. Here we conduct an experimental study of liquefaction under a vertical vibration to understand the elementary process of liquefaction and fluid transport. We aim to explore the variety of phenomena which may occur, and to better constrain the conditions which cause these results. An experimental cell (cross section 22.0 mm x 99.4 mm, height 107.6 mm) is filled with glass beads and a liquid (water or glycerin-solution). The lower 33.7 mm is a two-layered granular medium; the upper and lower layers consist of packed beads with a size of 0.05 and 0.2 mm, respectively, such that the upper layer becomes a low-permeability layer. The cell is placed on a vertical shaker which vibrates sinusoidally with an acceleration of 2.0-42.2 m/s^2 and a frequency of 10-50 Hz. Here we describe the results for a water-saturated case. From a series of experiments, we find that as we increase the acceleration, there are 4 regimes of pore water discharge styles; No-change, Percolation, Transitional and Flame (i.e., Rayleigh-Taylor type instability). Under a small acceleration, there is no apparent change in the thickness of the granular medium and the two-layer boundary (No-change). As we increase the acceleration, the two-layered granular medium compacts by expelling the pore-water. First there is no apparent change in the form of the two-layer boundary (Percolation), but for larger accelerations, an instability appears

  16. Time-resolved infrared absorption studies of the solvent-dependent vibrational relaxation dynamics of chlorine dioxide

    NASA Astrophysics Data System (ADS)

    Bolinger, Joshua C.; Bixby, Teresa J.; Reid, Philip J.

    2005-08-01

    We report a series of time-resolved infrared absorption studies on chlorine dioxide (OClO) dissolved in H2O, D2O, and acetonitrile. Following the photoexcitation at 401 nm, the evolution in optical density for frequencies corresponding to asymmetric stretch of OClO is measured with a time resolution of 120±50fs. The experimentally determined optical-density evolution is compared with theoretical models of OClO vibrational relaxation derived from collisional models as well as classical molecular-dynamics (MD) studies. The vibrational relaxation rates in D2O are reduced by a factor of 3 relative to H2O consistent with the predictions of MD. This difference reflects modification of the frequency-dependent solvent-solute coupling accompanying isotopic substitution of the solvent. Also, the geminate-recombination quantum yield for the primary photofragments resulting in the reformation of ground-state OClO is reduced in D2O relative to H2O. It is proposed that this reduction reflects enhancement of the dissociation rate accompanying vibrational excitation along the asymmetric-stretch coordinate. In contrast to H2O and D2O, the vibrational-relaxation dynamics in acetonitrile are not well described by the theoretical models. Reproduction of the optical-density evolution in acetonitrile requires significant modification of the frequency-dependent solvent-solute coupling derived from MD. It is proposed that this modification reflects vibrational-energy transfer from the asymmetric stretch of OClO to the methyl rock of acetonitrile. In total, the results presented here provide a detailed description of the solvent-dependent geminate-recombination and vibrational-relaxation dynamics of OClO in solution.

  17. Time-resolved infrared absorption studies of the solvent-dependent vibrational relaxation dynamics of chlorine dioxide

    SciTech Connect

    Bolinger, Joshua C.; Bixby, Teresa J.; Reid, Philip J.

    2005-08-22

    We report a series of time-resolved infrared absorption studies on chlorine dioxide (OClO) dissolved in H{sub 2}O, D{sub 2}O, and acetonitrile. Following the photoexcitation at 401 nm, the evolution in optical density for frequencies corresponding to asymmetric stretch of OClO is measured with a time resolution of 120{+-}50 fs. The experimentally determined optical-density evolution is compared with theoretical models of OClO vibrational relaxation derived from collisional models as well as classical molecular-dynamics (MD) studies. The vibrational relaxation rates in D{sub 2}O are reduced by a factor of 3 relative to H{sub 2}O consistent with the predictions of MD. This difference reflects modification of the frequency-dependent solvent-solute coupling accompanying isotopic substitution of the solvent. Also, the geminate-recombination quantum yield for the primary photofragments resulting in the reformation of ground-state OClO is reduced in D{sub 2}O relative to H{sub 2}O. It is proposed that this reduction reflects enhancement of the dissociation rate accompanying vibrational excitation along the asymmetric-stretch coordinate. In contrast to H{sub 2}O and D{sub 2}O, the vibrational-relaxation dynamics in acetonitrile are not well described by the theoretical models. Reproduction of the optical-density evolution in acetonitrile requires significant modification of the frequency-dependent solvent-solute coupling derived from MD. It is proposed that this modification reflects vibrational-energy transfer from the asymmetric stretch of OClO to the methyl rock of acetonitrile. In total, the results presented here provide a detailed description of the solvent-dependent geminate-recombination and vibrational-relaxation dynamics of OClO in solution.

  18. Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; Düring, Gustavo; Bouchbinder, Eran

    2016-07-01

    Low-frequency vibrational modes play a central role in determining various basic properties of glasses, yet their statistical and mechanical properties are not fully understood. Using extensive numerical simulations of several model glasses in three dimensions, we show that in systems of linear size L sufficiently smaller than a crossover size LD, the low-frequency tail of the density of states follows D (ω )˜ω4 up to the vicinity of the lowest Goldstone mode frequency. We find that the sample-to-sample statistics of the minimal vibrational frequency in systems of size L

  19. Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20-C36.

    PubMed

    Małolepsza, Edyta; Witek, Henryk A; Irle, Stephan

    2007-07-26

    We employ the self-consistent-charge density-functional tight-binding (SCC-DFTB) method for computing geometric, electronic, and vibrational properties for various topological isomers of small fullerenes. We consider all 35 five- and six-member rings containing isomers of small fullerenes, C20, C24, C26, C28, C30, C32, C34, and C36, as first part of a larger effort to catalog CC distance distributions, valence CCC angle distributions, electronic densities of states (DOSs), vibrational densities of states (VDOSs), and infrared (IR) and Raman spectra for fullerenes C20-C180. Common features among the fullerenes are identified and properties characteristic for each specific fullerene isomer are discussed. PMID:17429953

  20. Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron

    SciTech Connect

    Lin, Jung-Fu; Liu, Jin; Jacobs, Caleb; Prakapenka, Vitali B.

    2012-05-10

    Ferromagnesite [(Mg,Fe)CO{sub 3}] has been proposed as a candidate host mineral for carbon in the Earth's mantle. Studying its physical and chemical properties at relevant pressures and temperatures helps our understanding of deep-carbon storage in the planet's interior and on its surface. Here we have studied high-pressure vibrational and elastic properties of magnesian siderite [(Mg{sub 0.35}Fe{sub 0.65})CO{sub 3}] across the electronic spin transition by Raman and X-ray diffraction spectroscopies in a diamond-anvil cell. Our results show an increase in Raman shift of the observed lattice modes of magnesian siderite across the spin transition at 45 GPa as a result of an {approx}8% unit-cell volume collapse and a 10% stiffer lattice (higher bulk modulus). C-O bond lengthening in the strong, rigid (CO{sub 3}){sup 2-} unit across the spin transition contributes to a competitive decrease in Raman shift, most evident in the Raman shift decrease of the symmetric stretching mode. Combined vibrational and elastic results are used to derive the mode Grueneisen parameter of each mode, which drops significantly across the transition. These results suggest that the low-spin state has distinctive vibrational and elastic properties compared to the high-spin state. Analyses of all recent experimental results on the (Mg,Fe)CO{sub 3} system show no appreciable compositional effect on the transition pressure, indicating weak iron-iron exchange interactions. Our results provide new insight into understanding the effects of the spin transition on the vibrational, elastic, and thermodynamic properties of (Mg,Fe)CO{sub 3} as a candidate carbon-host in the deep mantle.

  1. Temperature-Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 31tHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y2O3/La2Ti2O7 exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains.

  2. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): Incidence energy and surface temperature dependence

    SciTech Connect

    Shirhatti, Pranav R.; Werdecker, Jörn; Golibrzuch, Kai; Wodtke, Alec M.; Bartels, Christof

    2014-09-28

    We investigated the translational incidence energy (E{sub i}) and surface temperature (T{sub s}) dependence of CO vibrational excitation upon scattering from a clean Au(111) surface. We report absolute v = 0 → 1 excitation probabilities for E{sub i} between 0.16 and 0.84 eV and T{sub s} between 473 and 973 K. This is now only the second collision system where such comprehensive measurements are available – the first is NO on Au(111). For CO on Au(111), vibrational excitation occurs via direct inelastic scattering through electron hole pair mediated energy transfer – it is enhanced by incidence translation and the electronically non-adiabatic coupling is about 5 times weaker than in NO scattering from Au(111). Vibrational excitation via the trapping desorption channel dominates at E{sub i} = 0.16 eV and quickly disappears at higher E{sub i}.

  3. Vection depends on perceived surface properties.

    PubMed

    Kim, Juno; Khuu, Sieu; Palmisano, Stephen

    2016-05-01

    Optic flow provides important information for the perception of self-motion and can be generated by both diffuse and specular reflectance. Previous self-motion research using virtual environments has primarily considered the properties of diffuse optic flow, but not of specular flow. We used graphical simulations to examine the extent to which visually induced self-motion (vection) is robust against the variations in optic flow generated by different surface optics. We found that specular flow alone was capable of generating vection that was equivalent in strength to that generated by diffuse flow (Exp. 1). To test whether this specularly induced vection depends on midlevel visual processing, we measured vection strengths under conditions in which the luminance polarity of specular highlights was inverted. We found that inverting the luminance of specular reflections impaired vection strength, as compared with the vection generated by conditions with ecologically correct diffuse and/or specular flow (Exp. 2). We also found these variations in vection strength were correlated with the perceived relief heights of the surfaces depicted in the image sequences. These findings together suggest that vection can be induced by pure specular flow and that it requires processing beyond the computation of retinal motion velocities-most likely, processes involved in the recovery of 3-D surface shape. PMID:26951058

  4. The ultraviolet spectrum of OCS from first principles: Electronic transitions, vibrational structure and temperature dependence

    NASA Astrophysics Data System (ADS)

    Schmidt, J. A.; Johnson, M. S.; McBane, G. C.; Schinke, R.

    2012-08-01

    Global three dimensional potential energy surfaces and transition dipole moment functions are calculated for the lowest singlet and triplet states of carbonyl sulfide at the multireference configuration interaction level of theory. The first ultraviolet absorption band is then studied by means of quantum mechanical wave packet propagation. Excitation of the repulsive 2 1A' state gives the main contribution to the cross section. Excitation of the repulsive 1 1A″ state is about a factor of 20 weaker at the absorption peak (Eph ≈ 45 000 cm-1) but becomes comparable to the 2 1A' state absorption with decreasing energy (35 000 cm-1) and eventually exceeds it. Direct excitation of the repulsive triplet states is negligible except at photon energies Eph < 38 000 cm-1. The main structure observed in the cross section is caused by excitation of the bound 2 3A″ state, which is nearly degenerate with the 2 1A' state in the Franck-Condon region. The structure observed in the low energy tail of the spectrum is caused by excitation of quasi-bound bending vibrational states of the 2 1A' and 1 1A″ electronic states. The absorption cross sections agree well with experimental data and the temperature dependence of the cross section is well reproduced.

  5. Structural stability, vibrational, and bonding properties of potassium 1, 1'-dinitroamino-5, 5'-bistetrazolate: An emerging green primary explosive.

    PubMed

    Yedukondalu, N; Vaitheeswaran, G

    2015-08-14

    Potassium 1,1'-dinitroamino-5,5'-bistetrazolate (K2DNABT) is a nitrogen rich (50.3% by weight, K2C2N12O4) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K2DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (bdependent structural properties. The predicted equilibrium bulk modulus reveals that K2DNABT is softer than toxic lead azide and harder than the most sensitive cyanuric triazide. A complete assignment of all the vibrational modes has been made and compared with the available experimental results. The calculated zone center IR and Raman frequencies show a blue-shift which leads to a hardening of the lattice upon compression. In addition, we have also calculated the electronic structure and absorption spectra using recently developed Tran Blaha-modified Becke Johnson potential. It is found that K2DNABT is a direct band gap insulator with a band gap of 3.87 eV and the top of the valence band is mainly dominated by 2p-states of oxygen and nitrogen atoms. K2DNABT exhibits mixed ionic (between potassium and tetrazolate ions) and covalent character within tetrazolate molecule. The presence of ionic bonding suggests that the investigated compound is relatively stable and insensitive than covalent primaries. From the calculated absorption spectra, the material is found to decompose under ultra-violet light irradiation. PMID:26277146

  6. Structural stability, vibrational, and bonding properties of potassium 1, 1'-dinitroamino-5, 5'-bistetrazolate: An emerging green primary explosive

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Vaitheeswaran, G.

    2015-08-01

    Potassium 1,1'-dinitroamino-5,5'-bistetrazolate (K2DNABT) is a nitrogen rich (50.3% by weight, K2C2N12O4) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K2DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (bdependent structural properties. The predicted equilibrium bulk modulus reveals that K2DNABT is softer than toxic lead azide and harder than the most sensitive cyanuric triazide. A complete assignment of all the vibrational modes has been made and compared with the available experimental results. The calculated zone center IR and Raman frequencies show a blue-shift which leads to a hardening of the lattice upon compression. In addition, we have also calculated the electronic structure and absorption spectra using recently developed Tran Blaha-modified Becke Johnson potential. It is found that K2DNABT is a direct band gap insulator with a band gap of 3.87 eV and the top of the valence band is mainly dominated by 2p-states of oxygen and nitrogen atoms. K2DNABT exhibits mixed ionic (between potassium and tetrazolate ions) and covalent character within tetrazolate molecule. The presence of ionic bonding suggests that the investigated compound is relatively stable and insensitive than covalent primaries. From the calculated absorption spectra, the material is found to decompose under ultra-violet light irradiation.

  7. Time-dependent wave packet averaged vibrational frequencies from femtosecond stimulated Raman spectra

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Chao; Zhao, Bin; Lee, Soo-Y.

    2016-02-01

    Femtosecond stimulated Raman spectroscopy (FSRS) on the Stokes side arises from a third order polarization, P(3)(t), which is given by an overlap of a first order wave packet, |" separators=" Ψ2 ( 1 ) ( p u , t ) > , prepared by a narrow band (ps) Raman pump pulse, Epu(t), on the upper electronic e2 potential energy surface (PES), with a second order wave packet, <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | , that is prepared on the lower electronic e1 PES by a broadband (fs) probe pulse, Epr(t), acting on the first-order wave packet. In off-resonant FSRS, |" separators=" Ψ2 ( 1 ) ( p u , t ) > resembles the zeroth order wave packet |" separators=" Ψ1 ( 0 ) ( t ) > on the lower PES spatially, but with a force on |" separators=" Ψ2 ( 1 ) ( p u , t ) > along the coordinates of the reporter modes due to displacements in the equilibrium position, so that <" separators=" Ψ1 ( 2 ) ( p r ∗ , p u , t ) | will oscillate along those coordinates thus giving rise to similar oscillations in P(3)(t) with the frequencies of the reporter modes. So, by recovering P(3)(t) from the FSRS spectrum, we are able to deduce information on the time-dependent quantum-mechanical wave packet averaged frequencies, ω ¯ j ( t ) , of the reporter modes j along the trajectory of |" separators=" Ψ1 ( 0 ) ( t ) > . The observable FSRS Raman gain is related to the imaginary part of P(3)(ω). The imaginary and real parts of P(3)(ω) are related by the Kramers-Kronig relation. Hence, from the FSRS Raman gain, we can obtain the complex P(3)(ω), whose Fourier transform then gives us the complex P(3)(t) to analyze for ω ¯ j ( t ) . We apply the theory, first, to a two-dimensional model system with one conformational mode of low frequency and one reporter vibrational mode of higher frequency with good results, and then we apply it to the time-resolved FSRS spectra of the cis-trans isomerization of retinal in rhodopsin [P. Kukura et al., Science 310, 1006 (2005)]. We obtain the vibrational

  8. Vibrational and dielectric properties of magnesium aluminate spinel: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zeng, Qingfeng; Zhang, Litong; Zhang, Xian; Chen, Qichao; Feng, Zhiqiang; Cai, Yongqing; Cheng, Laifei; Weng, Zuohai

    2011-09-01

    The vibrational and dielectric properties of MgAl 2O 4 are investigated within the framework of density functional perturbation theory. Results of phonon frequencies at the Brillouin zone center, static dielectric constant, and electronic dielectric constant are reported. In comparison with experimental results, we find that the generalized gradient approximation potential results in more accurate phonon frequencies than local density approximation potential does. Dielectric, refractive index, extinction coefficient and infrared reflectance spectra of MgAl 2O 4 are given, and the figures suggest that MgAl 2O 4 presents good transmission properties in the spectrum range above 1000 cm and below 300 cm.

  9. Operational Safety Assessment of Turbo Generators with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals

    PubMed Central

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-01-01

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance. PMID:25894934

  10. Operational safety assessment of turbo generators with wavelet Rényi entropy from sensor-dependent vibration signals.

    PubMed

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-01-01

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals' wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance. PMID:25894934

  11. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    NASA Astrophysics Data System (ADS)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  12. Particle dynamics and vibrational properties of disordered colloidal packings with varying interparticle attraction strength

    NASA Astrophysics Data System (ADS)

    Habdas, Piotr; Gratale, Matthew; Davidson, Zoey; Still, Tim; Yodh, Arjun G.

    We experimentally study dynamical and vibrational properties of disordered colloidal packings as a function of the strength of the interparticle attraction. Specifically, we probe the structural and dynamical changes in disordered colloidal glasses as the interparticle interaction between constituent particles evolves from nearly hard-sphere repulsive to attractive. This increase of the interparticle attraction is achieved through use of temperature-tunable surfactant micelle depletants. The depletion-driven entropic attraction between particles in suspension grows with increasing temperature. Increasing temperature changes particle interactions in a dense colloidal packing from repulsive (weakly attractive) to strongly attractive, and accompanying variations in structure and dynamics is investigated. Preliminary experiments on these disordered systems show a continuous change in particle dynamics as attraction strength increases. Interestingly, vibrational properties show a more sudden change reflected in the behavior of the vibrational density of states. Z.B., G.H., and P.H. acknowledge financial support of the NSF Grant RUI-1306990. M.G., Z.D., T.S., and A.G.Y. acknowledge financial support of the NSF Grant DMR-1205463, NSF MRSEC Grant DMR-1120901, and NASA Grant NNX08AO0G.

  13. First principles investigation of the structure, elasticity, and vibrational property of the serpentine minerals. (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Tsuchiya, T.

    2011-12-01

    Serpentine is formed by reaction between peridotite and water which is released from hydrous mineral in subducting slab under pressure. Partially serpentinized peridotite may be a significant reservoir for water in the subducted cold slab and is considered to play an important role in subduction zone processes such as generation of arc magmatism. Precise determination of structure, vibrational and elastic properties of serpentine become the basis for understanding the transporting processes of water into deep Earth interior. Here we investigate by first principles calculation, the detailed structures, vibrational and elastic properties of lizardite, chlorite, and antigorite which are major hydrous minerals in the serpentinized peridotite. We found a very sudden softening of the elastic constants at high pressure condition. This anomaly is associated with a slight change in the compressibility of the c axis which corresponds to the layer normal direction. The calculated OH stretching frequencies also increase suddenly associated with the anomaly and these vibrational behaviors are consistent with the previous Raman measurements. Since other hydrous phyllosilicates such as clay minerals, and mica have similar crystal structures to these hydrous minerals, these anomalous softening is also expected in these minerals under pressure. Research supported in part by special coordination funds for promoting science and technology (Supporting Young Researchers with Fixed-term Appointments) and Grants-In-Aid for Scientific Research from the Japan Society for the Promotion of Science (Nos. 21740380, 20103005, and 24740357).

  14. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity

    PubMed Central

    van der Post, Sietse T.; Hsieh, Cho-Shuen; Okuno, Masanari; Nagata, Yuki; Bakker, Huib J.; Bonn, Mischa; Hunger, Johannes

    2015-01-01

    Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550 fs when the frequency is increased from 3,100 to 3,700 cm−1. For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface. PMID:26382651

  15. Moisture dependent physical properties of lathyrus.

    PubMed

    Kenghe, Rajendra Narayan; Nimkar, Prabhakar Manohar; Shirkole, Shivanand Shankarrao

    2013-10-01

    The moisture dependent physical properties of different lathyrus varieties namely NLK-40, Pratik and Ratan were studied at moisture content of 7.33 to 30.29, 6.75 to 29.95 and 7.90 to 30.90% (d.b.), respectively. The grain size, thousand grain weight, angle of repose, grain volume and surface area were found increased linearly. The grain size was found increased from 4.43 to 4.70, 4.96 to 5.32 and 5.08 to 5.49 mm. Thousand grain weight was found increased from 64.6 to 103.5, 69.1 to 105.3 and 85.3 to 125.6 g. The angle repose was increased from 28.3 to 35.4, 29.5 to 35.8 and 26.9 to 33.5°. The grain volume was increased from 9.13 to 10.38,11.73 to 13.24 and 12.22 to 14.15 mm(3) whereas, surface area increased from 54.78 to 62.29, 70.38 to 79.45 and 73.31 to 84.88 mm(2),respectively with the corresponding increase in moisture content, for NLK-40, Pratik and Ratan. The sphericity and porosity increased initially and then found decreased with increase in further moisture content. The bulk density values decreased linearly from 827.5 to 697.2, 851.3 to 726.3 and 856.0 to 727.4 kg/m(3). The true density values were found decreased from 1288.3 to 1074.3, 1324.0 to 1118.4 and 1277.7 to 1102.5 kg/m(3), respectively for these varieties with the corresponding increase in moisture content. PMID:24425992

  16. Analysis of vibrational, structural, and electronic properties of rivastigmine by density functional theory

    NASA Astrophysics Data System (ADS)

    Prasad, O.; Sinha, L.; Misra, N.; Narayan, V.; Kumar, N.; Kumar, A.

    2010-09-01

    The present work deals with the structural, electronic, and vibrational analysis of rivastigmine. Rivastigmine, an antidementia medicament, is credited with significant therapeutic effects on the cognitive, functional, and behavioural problems that are commonly associated with Alzheimer’s dementia. For rivastigmine, a number of minimum energy conformations are possible. The geometry of twelve possible conformers has been analyzed and the most stable conformer was further optimized at a higher basis set. The electronic properties and vibrational frequencies were then calculated using a density functional theory at the B3LYP level with the 6-311+G(d, p) basis set. The different molecular surfaces have also been drawn to understand the activity of the molecule. A narrower frontier orbital energy gap in rivastigmine makes it softer and more reactive than water and dimethylfuran. The calculated value of the dipole moment is 2.58 debye.

  17. Structural, vibrational, and thermal properties of densified silicates: Insights from molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauchy, M.

    2012-07-01

    Structural, vibrational, and thermal properties of densified sodium silicate (close to NS2) are investigated with classical molecular dynamics simulations of the glass and the liquid state. A systematic investigation of the glass structure with respect to density was performed. We observe a repolymerization of the network manifested by a transition from a tetrahedral to an octahedral silicon environment, the decrease of the amount of non-bridging oxygen atoms and the appearance of threefold coordinated oxygen atoms (triclusters). Anomalous changes in the medium range order are observed, the first sharp diffraction peak showing a minimum of its full-width at half maximum according to density. Generic vibrational trends are observed, such as the shift of the Boson peak intensity to higher frequencies and the decrease of its intensity. Finally, we show that the thermal behavior of the liquid can be reproduced by the Birch-Murnaghan equation of states, thus allowing us to compute the isothermal compressibility.

  18. Vibrational properties of ferroelectric {beta}-vinylidene fluoride polymers and oligomers.

    SciTech Connect

    Nakhmanson, S. M.; Korlacki, R.; Johnson, J. T.; Ducharme, S.; Ge, Z.; Takacs, J. M.; Materials Science Division; Univ.of Nebraska at Lincoln

    2010-01-01

    We utilize a plane-wave density-functional theory approach to investigate the vibrational properties of the all-trans ferroelectric phase of poly(vinylidene fluoride) ({beta}-PVDF) showing that its stable state corresponds to the Ama2 structure with ordered dihedral tilting of the VDF monomers along the polymer chains. We then combine our theoretical analysis with IR spectroscopy to examine vibrations in oligomer crystals that are structurally related to the {beta}-PVDF phase. We demonstrate that these materials - which can be grown in a highly crystalline form - exhibit IR activity similar to that of {beta}-PVDF, making them an attractive choice for the studies of electroactive phenomena and phase transitions in polymer ferroelectrics.

  19. Analysis of vibrational spectra (FT-IR and FT-Raman) and nonlinear optical properties of organic 2-chloro-p-xylene.

    PubMed

    Govindarajan, M; Karabacak, M

    2012-08-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000cm(-1) and 400-4000cm(-1) respectively, for the title molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree-Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other method. The influences due to the substitution of halogen bond and methyl group were investigated. The results of the calculations are applied to simulate the vibrational spectra of the title compound, which show excellent agreement with observed spectra. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), and thermodynamic properties were performed. Mulliken charges of the title molecule were also calculated and interpreted. The dipole moment, linear polarizability and first hyperpolarizability values were also computed. PMID:22510490

  20. Analysis of vibrational spectra (FT-IR and FT-Raman) and nonlinear optical properties of organic 2-chloro-p-xylene

    NASA Astrophysics Data System (ADS)

    Govindarajan, M.; Karabacak, M.

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000 cm-1 and 400-4000 cm-1 respectively, for the title molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartree-Fock (HF) and density functional theory (DFT) method with 6-311++G(d,p) basis set. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other method. The influences due to the substitution of halogen bond and methyl group were investigated. The results of the calculations are applied to simulate the vibrational spectra of the title compound, which show excellent agreement with observed spectra. The absorption energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT). Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), and thermodynamic properties were performed. Mulliken charges of the title molecule were also calculated and interpreted. The dipole moment, linear polarizability and first hyperpolarizability values were also computed.

  1. The vibration plethysmographic method of arterial compliance analysis in dependence on transmural pressure.

    PubMed

    Moudr, J; Svačinová, J; Závodná, E; Honzíková, N

    2014-01-01

    The aim of this study was to obtain a detailed analysis of the relationship between the finger arterial compliance C [ml/mm Hg] and the arterial transmural pressure P(t) [mm Hg]. We constructed a dynamic plethysmograph enabling us to set up a constant pressure P(css) [mm Hg] and a superimposed fast pressure vibration in the finger cuff (equipped with a source of infra-red light and a photoelectric sensor for the measurement of arterial volume). P(css) could be set on the required time interval in steps ranging between 30 and 170 mm Hg, and on sinusoidal pressure oscillation with an amplitude P(ca) (2 mm Hg) and a frequency f (20, 25, 30, 35, 40 Hz). At the same time continuous blood pressure BP was measured on the adjacent finger (Portapres). We described the volume dependence of a unitary arterial length on the time-varying transmural pressure acting on the arterial wall (externally P(css)+P(ca).sin(2pif), internally BP) by a second-order differential equation for volume. This equation was linearized within a small range of selected BP. In the next step, a Fourier transform was applied to obtain the frequency characteristic in analytic form of a complex linear combination of frequency functions. While series of oscillations [P(ca), f] were applied for each P(css), the corresponding response of the plethysmogram was measured. Amplitude spectra were obtained to estimate coefficients of the frequency characteristic by regression analysis. We determined the absolute value: elastance E, and its inverse value: compliance (C=1/E). Then, C=C(P(t)) was acquired by applying sequences of oscillations for different P(css) (and thus P(t)) by the above-described procedure. This methodology will be used for the study of finger arterial compliance in different physiological and pathological conditions. PMID:25669680

  2. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    SciTech Connect

    Radhika, B.; Sahoo, Rasmita; Srinath, S.

    2015-06-24

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ∼30nm and ∼48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  3. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    NASA Astrophysics Data System (ADS)

    Radhika, B.; Sahoo, Rasmita; Srinath, S.

    2015-06-01

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ˜30nm and ˜48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  4. Ab initio structural and vibrational properties of GaAs diamondoids and nanocrystals

    SciTech Connect

    Abdulsattar, Mudar Ahmed; Hussein, Mohammed T.; Hameed, Hadeel Ali

    2014-12-15

    Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d) level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å) is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm{sup -1}) compared to experimental 0.035 eV (285.2 cm{sup -1}). Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å). Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.

  5. Vibrational Spectroscopy and Phonon-Related Properties of the L-Aspartic Acid Anhydrous Monoclinic Crystal.

    PubMed

    Silva, A M; Costa, S N; Sales, F A M; Freire, V N; Bezerra, E M; Santos, R P; Fulco, U L; Albuquerque, E L; Caetano, E W S

    2015-12-10

    The infrared absorption and Raman scattering spectra of the monoclinic P21 l-aspartic acid anhydrous crystal were recorded and interpreted with the help of density functional theory (DFT) calculations. The effect of dispersive forces was taken into account, and the optimized unit cells allowed us to obtain the vibrational normal modes. The computed data exhibits good agreement with the measurements for low wavenumbers, allowing for a very good assignment of the infrared and Raman spectral features. The vibrational spectra of the two lowest energy conformers of the l-aspartic molecule were also evaluated using the hybrid B3LYP functional for the sake of comparison, showing that the molecular calculations give a limited description of the measured IR and Raman spectra of the l-aspartic acid crystal for wavenumbers below 1000 cm(-1). The results obtained reinforce the need to use solid-state calculations to describe the vibrational properties of molecular crystals instead of calculations for a single isolated molecule picture even for wavenumbers beyond the range usually associated with lattice modes (200 cm(-1) < ω < 1000 cm(-1)). PMID:26623495

  6. Optical and vibrational properties of PbSe nanoparticles synthesized in clinoptilolite

    NASA Astrophysics Data System (ADS)

    Flores-Valenzuela, J.; Cortez-Valadez, M.; Ramírez-Bon, R.; Arizpe-Chavez, H.; Román-Zamorano, J. F.; Flores-Acosta, M.

    2015-08-01

    In this work, the optical and vibrational properties of composites based on PbSe semiconductor immersed in a zeolite matrix are reported. The natural zeolite, (clinoptilolite) was used as the host material of PbSe nanoparticles. The method for obtaining these particles is also reported here, which is based on ion exchange processes inside the natural zeolite in alkaline aqueous solution that contains the precursor ions Pb2+ and Se2-. The process of synthesis was conducted temperature, volume, concentration and reaction time of the precursors. The samples were studied by powder X-ray diffraction, TEM (transmission electron microscopy), diffuse reflectance and Raman spectroscopy. The experimental results demonstrate that with this method, the particles with nanometric PbSe sizes were synthesized in the zeolite matrix. Vibrational Raman bands at low wave numbers were detected in these particles by the presence of a shoulder located at 135 cm-1 and a band at around 149 cm-1. The vibrational calculations for small clusters of PbSe at LSDA (Local Spin Density Approximation) level combined with the basis set LANDL2DZ (Los Alamos National Laboratory 2 double ζ), were considered through DFT (Density Functionl Theory). The "breathing" Raman modes located at 119-152 cm-1 were detected for this level of theory.

  7. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans

    PubMed Central

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-01-01

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083

  8. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans.

    PubMed

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-01-01

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083

  9. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.

    PubMed

    Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A

    2014-04-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  10. Temperature dependent terahertz properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Whitley, Von H.; Brown, Kathryn E.; Ahmed, Towfiq; Sorensen, Christian J.; Moore, David S.

    2016-04-01

    Reliable detection of energetic materials is still a formidable challenge which requires further investigation. The remote standoff detection of explosives using molecular fingerprints in the terahertz spectral range has been an evolving research area for the past two decades. Despite many efforts, identification of a particular explosive remains difficult as the spectral fingerprints often shift due to the working conditions of the sample such as temperature, crystal orientation, presence of binders, etc. In this work, we investigate the vibrational spectrum of energetic materials including RDX, PETN, AN, and 1,3-DNB diluted in a low loss PTFE host medium using terahertz time domain spectroscopy (THz-TDS) at cryogenic temperatures. The measured absorptions of these materials show spectral shifts of their characteristic peaks while changing their operating temperature from 300 to 7.5 K. We have developed a theoretical model based on first principles methods, which is able to predict most of the measured modes in 1, 3-DNB between 0.3 to 2.50 THz. These findings may further improve the security screening of explosives.

  11. Breathing mode vibrations and elastic properties of single-crystal and penta-twinned gold nanorods.

    PubMed

    Gan, Yong; Sun, Zheng; Chen, Zhen

    2016-08-10

    The acoustic vibrations of individual single-crystal and penta-twinned gold nanorods with widths from ∼7 to ∼26 nm are studied using atomic-level simulations and finite element calculations. It is demonstrated that the continuum model in the limit of an infinite rod length could be used to describe the breathing periods of nanorods with an aspect ratio as small as ∼2.5, in combination with bulk material elastic constants. The elastic moduli of gold nanorods are determined via their atomistically simulated extensional periods and the dispersion relation based on long-wavelength approximation. The twinned nanorods become stiffer as the width is reduced, which is in contrast to the size dependence of the modulus in single-crystal nanorods. Further finite element calculations for the breathing periods of nanorods are performed using isotropic elastic constants of bulk gold. We find that the breathing vibrations of the penta-twinned nanorods are more affected by the crystal structure effect than those of single-crystal nanorods, because a smaller range of crystal directions perpendicular to the long axis is involved in the breathing vibrations of twinned nanorods. PMID:27476532

  12. Molecular Dynamics and Room Temperature Vibrational Properties of Deprotonated Phosphorylated Serine.

    PubMed

    Cimas, A; Maitre, P; Ohanessian, G; Gaigeot, M-P

    2009-09-01

    The local structure of phosphorylated residues in peptides and proteins may have a decisive role on their functional properties. Recent IRMPD experiments have started to provide spectroscopic signatures of such structural details; however, a proper modeling of these signatures beyond the harmonic approximation, taking into account temperature and entropic effects, is still lacking. In order to bridge this gap, DFT-based Car-Parrinello molecular dynamics simulations have been carried out for the first time on a phosphorylated amino acid, gaseous deprotonated phosphoserine. It is found that all vibrational signatures are successfully reproduced, and new deconvolution techniques enable the assignment of the vibrational spectrum directly from the dynamics results and the comparison of vibrational modes at several temperatures. The lowest energy structure is found to involve a strong hydrogen bond between the deprotonated phosphate and the acid with relatively small free energy barriers to proton transfer; however, we find that proton shuttling between the two sites does not occur frequently. Anharmonicities turn out to be important to reproduce the frequencies and shapes of several experimental bands. Comparison of room temperature and 13 K, effectively harmonic dynamics, allows insight to be obtained into vibrational anharmonicities. In particular, a significant blue-shift and broadening of the C═O stretching frequency from 13 to 300 K can be ascribed to intrinsic anharmonicity rather than to anharmonic coupling to other modes. On the other hand, significant couplings are found for the stretching motions of the hydrogen bonded P-O bond and of the free P-OH bond, mainly with modes within the phosphate group. PMID:26616620

  13. Structural, topological and vibrational properties of an isothiazole derivatives series with antiviral activities

    NASA Astrophysics Data System (ADS)

    Romani, Davide; Márquez, María J.; Márquez, María B.; Brandán, Silvia A.

    2015-11-01

    In this work, the structural, topological and vibrational properties of an isothiazole derivatives series with antiviral activities in gas and aqueous solution phases were studied by using DFT calculations. The self consistent reaction field (SCRF) method was combined with the polarized continuum (PCM) model in order to study the solvent effects and to predict their reactivities and behaviours in both media. Thus, the 3-mercapto-5-phenyl-4-isothiazolecarbonitrile (I), 3-methylthio-5-phenyl-4-isothiazolecarbonitrile (II), 3-Ethylthio-5-phenyl-4-isothiazolecarbonitrile (III), S-[3-(4-cyano-5-phenyl)isothiazolyl] ethyl thiocarbonate (IV), 5-Phenyl-3-(4-cyano-5-phenylisothiazol-3-yl) disulphanyl-4-isothiazolecarbonitrile (V) and 1,2-Bis(4-cyano-5-phenylisothiazol-3-yl) sulphanyl Ethane (VI) derivatives were studied by using the hybrid B3LYP/6-31G* method. All the properties were compared and analyzed in function of the different R groups linked to the thiazole ring. This study clearly shows that the high polarity of (I) probably explains its elevated antiviral activity due to their facility to traverse biological membranes more rapidly than the other ones while in the (IV) and (V) derivatives the previous hydrolysis of both bonds increasing their antiviral properties inside the cell probably are related to their low S-R bond order values. In addition, the complete vibrational assignments and force constants are presented.

  14. Density functional theory studies on molecular structure, vibrational spectra and electronic properties of cyanuric acid

    NASA Astrophysics Data System (ADS)

    Prabhaharan, M.; Prabakaran, A. R.; Srinivasan, S.; Gunasekaran, S.

    2015-03-01

    The present work has been carried out a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of cyanuric acid. The FT-IR (100-4000 cm-1) and FT-Raman spectra (400-4000 cm-1) of cyanuric acid were recorded. In DFT methods, Becke's three parameter exchange-functional (B3) combined with gradient-corrected correlation functional of Lee, Yang and Parr (LYP) by implementing the split-valence polarized 6-31G(d,p) and 6-31++G(d,p) basis sets have been considered for the computation of the molecular structure optimization, vibrational frequencies, thermodynamic properties and energies of the optimized structures. The density functional theory (DFT) result complements the experimental findings. The electronic properties, such as HOMO-LUMO energies and molecular electrostatic potential (MESP) are also performed. Mulliken population analysis on atomic charges is also calculated. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ and Δα) are calculated using DFT/B3LYP/6-31G (d,p) and B3LYP/6-311++G(d,p) methods. The thermodynamic functions (heat capacity, entropy and enthalpy) from spectroscopic data by statistical methods were also obtained for the range of temperature 50-1000 K.

  15. Vibrational properties of inclusion complexes: the case of indomethacin-cyclodextrin.

    PubMed

    Rossi, Barbara; Verrocchio, Paolo; Viliani, Gabriele; Scarduelli, Giorgina; Guella, Graziano; Mancini, Ines

    2006-07-28

    Vibrational properties of inclusion complexes with cyclodextrins are studied by means of Raman spectroscopy and numerical simulation. In particular, Raman spectra of the nonsteroidal, anti-inflammatory drug indomethacin undergo notable changes in the energy range between 1600 and 1700 cm(-1) when inclusion complexes with cyclodextrins are formed. By using both ab initio quantum chemical calculations and molecular dynamics, we studied how to relate such changes to the geometry of the inclusion process, disentangling single-molecule effects, from changes in the solid state structure or dimerization processes. PMID:16942160

  16. High pressure structural, electronic and vibrational properties of InN and InP

    NASA Astrophysics Data System (ADS)

    Panchal, J. M.; Joshi, Mitesh; Gajjar, P. N.

    2016-03-01

    A first-principles plane wave self-consistent method with the Ultrasoftpseudopotential scheme in the framework of density functional theory is performed to study the high pressure structural, electronic and vibrational properties of InX (X = N, P) for the zinc-blende (ZnS/B3), rock-salt (NaCl/B1) and cesium-chloride (CsCl/B2) phases. We also calculate the phase transition pressures among these different phases. Conclusions based on electronic energy band structure, phonon dispersion and phonon density of states at high pressure phases along phase transition regions are outlined.

  17. Structural and vibrational properties of betainium perchlorate monohydrate crystal and character of its hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Ilczyszyn, Marek; Godzisz, Dorota; Ilczyszyn, Maria M.

    2002-06-01

    Betainium perchlorate monohydrate crystal ((CH 3) 3NCH 2COOH)(ClO 4)·H 2O) undergoes a continuous (second order) phase transition at ca. 180 K. X-ray data and vibrational spectroscopy studies at different temperatures are used for description of the phase transition mechanism, as well as of hydrogen bonds formed by water in this molecular system. Perturbation of monomer water by various surroundings (water vapour, low-temperature matrices, solvents, betaine-acid crystals) and properties of triple hydrogen bonds to water oxygen atom are discussed.

  18. Vibrational Properties of High- Superconductors Levitated Above a Bipolar Permanent Magnetic Guideway

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Wang, Jiasu

    2014-05-01

    A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.

  19. Scale dependence of effective media properties

    SciTech Connect

    Tidwell, V.C.; VonDoemming, J.D.; Martinez, K.

    1992-12-31

    For problems where media properties are measured at one scale and applied at another, scaling laws or models must be used in order to define effective properties at the scale of interest. The accuracy of such models will play a critical role in predicting flow and transport through the Yucca Mountain Test Site given the sensitivity of these calculations to the input property fields. Therefore, a research programhas been established to gain a fundamental understanding of how properties scale with the aim of developing and testing models that describe scaling behavior in a quantitative-manner. Scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas permeability data measured over a range of discrete scales. Also, various physical characteristics of property heterogeneity and the means by which the heterogeneity is measured and described are systematically investigated to evaluate their influence on scaling behavior. This paper summarizes the approach that isbeing taken toward this goal and presents the results of a scoping study that was conducted to evaluate the feasibility of the proposed research.

  20. Electrorheological vibration system

    NASA Astrophysics Data System (ADS)

    Korobko, Evguenia V.; Shulman, Zinovy P.; Korobko, Yulia O.

    2001-07-01

    The present paper is devoted to de3velopment and testing of an active vibration system. The system is intended for providing efficient motion of a piston in a hydraulic channel for creation of shocks and periodic vibrations in a low frequency range by means of the ER-valves based on an electrosensitive working me dium, i.e. electrorheological fluids. The latter manifests the electrorheological (ER) effect, i.e. a reversible change in the rheological characteristics of weak-conducting disperse compositions in the presence of constant and alternating electric fields. As a result of the experimental study of the dependence of viscoelastic properties of the ER-fluid on the magnitude and type of an electric field, the optimum dimensions of the vibrator and the its valves characteristics of the optimal electrical signal are determined. For control of an ER- vibrator having several valves we have designed a special type of a high-voltage two-channel impulse generator. Experiments were conducted at the frequencies ranged from 1- 10 Hz. It has been shown, that a peak force made 70% of the static force exercised by the vibrator rod. A phase shift between the input voltage and the load acceleration was less than 45 degree(s)C which allowed servocontrol and use of the vibrator for attendant operations. It was noted that a response of the vibrator to a stepwise signal has a delay only of several milliseconds.

  1. Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    NASA Astrophysics Data System (ADS)

    González, Manuel Á.; González, Miguel Á.

    2016-07-01

    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life.

  2. Basis Set Dependence of Vibrational Raman and Raman Optical Activity Intensities.

    PubMed

    Cheeseman, James R; Frisch, Michael J

    2011-10-11

    We present a systematic study of the basis set dependence of the backscattering vibrational Raman intensities and Raman Optical Activity (ROA) intensity differences. The accuracies of computed Raman intensities and ROA intensity differences for a series of commonly used basis sets are reported, relative to large reference basis sets, using the B3LYP density functional. This study attempts to separately quantify the relative accuracies obtained from particular basis set combinations: one for the geometry optimization and force field computation and the other for the computation of Raman and ROA tensors. We demonstrate here that the basis set requirements for the geometry and force fields are not similar to those of the Raman and ROA tensors. The Raman and ROA tensors require basis sets with diffuse functions, while geometry optimizations and force field computations typically do not. Eleven molecules were examined: (S)-methyloxirane, (S)-methylthirane, (R)-epichlorhydrin, (S)-CHFClBr, (1S,5S)-α-pinene, (1S,5S)-β-pinene, (1S,4S)-norborneneone, (M)-σ-[4]-helicene, an enone precursor to a cytotoxic sesquiterpene, the gauche-gauche conformer of the monosaccharide methyl-β-d-glucopyranose, and the dipeptide Ac-(alanine)2-NH2. For the molecules examined here, intensities and intensity differences obtained from Raman and ROA tensors computed using the aug-cc-pVDZ basis set are nearly equivalent to those computed with the larger aug-cc-pVTZ basis set. We find that modifying the aug-cc-pVDZ basis set by removing the set of diffuse d functions on all atoms (while keeping the diffuse s and p sets), denoted as aug(sp)-cc-pVDZ, results in a basis set which is significantly faster without much reduction in the overall accuracy. In addition, the popular rDPS basis set introduced by Zuber and Hug offers a good compromise between accuracy and efficiency. The combination of either the aug(sp)-pVDZ or rDPS basis for the computation of the Raman and ROA tensors with the 6-31G

  3. Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Soltanpour, Mahdi; Yazdi, Ali; Safi, Mohsen

    2016-05-01

    Free transverse vibration of a size-dependent cracked functionally graded (FG) Timoshenko nanobeam resting on a polymer elastic foundation is investigated in the present study. Also, all of the surface effects: surface density, surface elasticity and residual surface tension are studied. Moreover, satisfying the balance condition between the nanobeam and its surfaces was discussed. According to the power-law distribution, it is supposed that the material properties of the FG nanobeam are varying continuously across the thickness. Considering the small-scale effect, the Eringen's nonlocal theory is used; accounting the effect of polymer elastic foundation, the Winkler model is proposed. For this purpose, the equations of motion of the FG Timoshenko nanobeam and boundary conditions are obtained using Hamilton's principle. To find the analytical solutions for equations of motion of the FG nanobeam, the separation of variables method is employed. Two cases of boundary conditions, i.e., simply supported-simply supported (SS) and clamped-clamped (CC) are investigated in the present work. Numerical results are demonstrating a good agreement between the results of the present study and some available cases in the literature. The emphasis of the present study is on investigating the effect of various parameters such as crack severity, crack position, gradient index, mode number, nonlocal parameter, elastic foundation parameter and nanobeam length. It is clearly revealed that the vibrational behavior of a FG nanobeam is depending significantly on these effects. Also, these numerical results can be serving as benchmarks for future studies of FG nanobeams.

  4. Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses.

    PubMed

    Lerner, Edan; Düring, Gustavo; Bouchbinder, Eran

    2016-07-15

    Low-frequency vibrational modes play a central role in determining various basic properties of glasses, yet their statistical and mechanical properties are not fully understood. Using extensive numerical simulations of several model glasses in three dimensions, we show that in systems of linear size L sufficiently smaller than a crossover size L_{D}, the low-frequency tail of the density of states follows D(ω)∼ω^{4} up to the vicinity of the lowest Goldstone mode frequency. We find that the sample-to-sample statistics of the minimal vibrational frequency in systems of size L

  5. First-Principles Investigation of Vibrational Properties of CaTiO3 Crystal

    NASA Astrophysics Data System (ADS)

    Medeiros, Subenia; Araujo, Maeva

    2014-03-01

    The structural, electronic, vibrational, and optical properties of perovskite CaTiO3 in the cubic, orthorhombic, and tetragonal phase are calculated in the framework of density functional theory (DFT) with different exchange-correlation potentials by CASTEP package. The calculated band structure shows an indirect band gap of 1.88 eV at the Γ-R points in the Brillouin zone to the cubic structure, a direct band gap of 2.41 eV at the Γ- Γ points to the orthorhombic structure, and an indirect band gap of 2.31 eV at theM - Γ points to the tetragonal phase. I have concluded that the bonding between Ca and TiO2 is mainly ionic and that the TiO2 entities bond covalently. Unlike some perovskites the CaTiO3 does not exhibit a ferroelectric phase transition down to 4.2 K. It is still known that the CaTiO3 has a static dielectric constant that extrapolates to a value greater than 300 at zero temperature, and the dielectric response is dominated by low frequency (ν ~ 90cm-1) polar optical modes in which cation motion opposes oxygen motion. Our calculated lattice parameters, elastic constants, optical properties, and vibrational frequencies are found to be in good agreement with the available theoretical and experimental values. The results for the effective mass in the electron and hole carriers are also presented in this work.

  6. Vibrational properties and phase transitions in II-VI materials: lattice dynamics, ab initio studies and inelastic neutron scattering measurements.

    PubMed

    Basak, Tista; Rao, Mala N; Gupta, M K; Chaplot, S L

    2012-03-21

    Inelastic neutron scattering measurements were carried out to determine the phonon density of states of ZnSe and interpreted with lattice dynamical computations (ab initio as well as a potential model). Calculations are also reported for other II-VI compounds, ZnTe and ZnS. Vibrational (phonon spectra and Grüneisen parameters), and thermal (negative thermal expansion and non-Debye specific heat) properties have been calculated and found to be in good agreement with available experimental data. This model has been further employed to study the pressure-induced solid-solid phase transitions exhibited by these compounds and the results have been compared with experimental data. Total energy calculations for zincblende and SC16 phases of ZnSe were carried out employing the pseudopotential approach under the local density approximation (LDA) as well as the generalized gradient approximation (GGA). The density functional perturbation theory is applied to study the vibrational properties of the zincblende and SC16 phases of ZnSe. An investigation of the pressure dependence of the phonon frequencies shows that the existence of the (experimentally undetected) SC16 phase as a thermodynamically stable high pressure phase is impeded due to dynamical instabilities. A detailed investigation of the polarization of phonons of different energies for the various phases of these compounds indicates that in the case of the zincblende phase the low energy modes are librational, while in the rocksalt phase the low energy modes are bending modes. Further, in ZnTe the low energy bending modes display a larger amplitude of bending than that in ZnSe and ZnS. PMID:22354098

  7. Study of conformational stability, structural, electronic and charge transfer properties of cladrin using vibrational spectroscopy and DFT calculations.

    PubMed

    Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh

    2014-11-11

    In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule. PMID:24892542

  8. Study of conformational stability, structural, electronic and charge transfer properties of cladrin using vibrational spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh

    2014-11-01

    In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule.

  9. Role of surface vibrational properties on cooperative phenomena in spin-crossover nanomaterials

    NASA Astrophysics Data System (ADS)

    Mikolasek, Mirko; Félix, Gautier; Molnár, Gábor; Terki, Férial; Nicolazzi, William; Bousseksou, Azzedine

    2014-08-01

    The influence of surface/interface on the lattice dynamics of spin crossover nanoparticles has been investigated by a spring-ball model solved by Monte Carlo methods. The bond cohesion energy of the model has been extracted from Mössbauer spectroscopy measurements performed on the model compound Ni3[Fe(CN)6]. We show that the coupling between bulk and surface vibrational properties, which drastically affects the mechanical properties of the whole particle below a characteristic size, has a major impact on the phase stability of the particles. In the case of free surfaces, the Debye temperature decreases with the size and the first-order nature of the spin transition disappears. On the other hand, a hardening of the surface bonds leads to increasing particle stiffness with the size reduction. In this case, a persistence of the hysteretic behavior in the spin transition curve is also predicted in good agreement with previous theoretical and experimental results.

  10. Vibrational Sum Frequency Spectroscopy on Polyelectrolyte Multilayers: Effect of Molecular Surface Structure on Macroscopic Wetting Properties.

    PubMed

    Gustafsson, Emil; Hedberg, Jonas; Larsson, Per A; Wågberg, Lars; Johnson, C Magnus

    2015-04-21

    Adsorption of a single layer of molecules on a surface, or even a reorientation of already present molecules, can significantly affect the surface properties of a material. In this study, vibrational sum frequency spectroscopy (VSFS) has been used to study the change in molecular structure at the solid-air interface following thermal curing of polyelectrolyte multilayers of poly(allylamine hydrochloride) and poly(acrylic acid). Significant changes in the VSF spectra were observed after curing. These changes were accompanied by a distinct increase in the static water contact angle, showing how the properties of the layer-by-layer molecular structure are controlled not just by the polyelectrolyte in the outermost layer but ultimately by the orientation of the chemical constituents in the outermost layers. PMID:25859709

  11. Rate-dependent spallation properties of tantalum

    SciTech Connect

    Johnson, J.N.; Hixson, R.S.; Tonks, D.L.; Zurek, A.K.

    1995-09-01

    Spallation experiments are conducted on high-purity tantalum using VISAR instrumentation for impact stresses of 9.5 GPa and 6.0 GPa. The high-amplitude experiment exhibits very rapid initial spall separation, while the low-amplitude shot is only slightly above the threshold for void growth and thus exhibits distinct rate-dependent spallation behavior. These experiments are analyzed in terms of simple tensile fracture criteria, a standard rate-dependent void-growth model, and a rate-dependent void growth model in which the expected plastic volume strain makes no contribution to the relaxation of the mean stress. Recovery tests and VISAR measurements suggest an additional resistance to spallation that follows the rapid coalescence of voids; this effect is termed the secondary spall resistance and is due to the convoluted nature of the spall plane and the resulting interlocking fracture pattern that is developed and for which the stress remains unrelieved until the spall planes have separated several hundred microns.

  12. Numerical and Experimental Characterizations of Damping Properties of SMAs Composite for Vibration Control Systems

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Bassani, P.; Tuissi, A.; Carnevale, M.; Lecis, N.; LoConte, A.; Previtali, B.

    2012-12-01

    Shape memory alloys (SMAs) are very interesting smart materials not only for their shape memory and superelastic effects but also because of their significant intrinsic damping capacity. The latter is exhibited upon martensitic transformations and especially in martensitic state. The combination of these SMA properties with the mechanical and the lightweight of fiberglass-reinforced polymer (FGRP) is a promising solution for manufacturing of innovative composites for vibration suppression in structural applications. CuZnAl sheets, after laser patterning, were embedded in a laminated composite between a thick FGRP core and two thin outer layers with the aim of maximizing the damping capacity of the beam for passive vibration suppression. The selected SMA Cu66Zn24Al10 at.% was prepared by vacuum induction melting; the ingot was subsequently hot-and-cold rolled down to 0.2 mm thickness tape. The choice of a copper alloy is related to some advantages in comparison with NiTiCu SMA alloys, which was tested for the similar presented application in a previous study: lower cost, higher storage modulus and consequently higher damping properties in martensitic state. The patterning of the SMA sheets was performed by means of a pulsed fiber laser. After the laser processing, the SMA sheets were heat treated to obtain the desired martensitic state at room temperature. The transformation temperatures were measured by differential scanning calorimetry (DSC). The damping properties were determined, at room temperature, on full-scale sheet, using a universal testing machine (MTS), with cyclic tensile tests at different deformation amplitudes. Damping properties were also determined as a function of the temperature on miniature samples with a dynamical mechanical analyzer (DMA). Numerical modeling of the laminated composite, done with finite element method analysis and modal strain energy approaches, was performed to estimate the corresponding total damping capacity and then

  13. Thermodynamic Properties of the Magnesium-Olivine-Pyroxene System Derived From a Lattice Vibrational Technique

    NASA Astrophysics Data System (ADS)

    Jacobs, M. H.; van den Berg, A. P.; de Jong, B. H.

    2007-12-01

    We are currently constructing a thermodynamic database providing phase diagrams, thermophysical and thermochemical properties for materials with a geophysical relevance, applicable in the pressure and temperature regime of the Earth's mantle. The computational technique is based on Kieffer's (1979) approach to model the vibrational density of states of a substance, a key property to derive the Helmholtz energy. The developed thermodynamic framework, which allows the calculation of Vp and Vs sound wave velocities, uses model-input properties related to Raman and infrared spectroscopic data. It puts tighter constraints on thermodynamic properties compared to methods based on polynomial parameterizations of thermal expansivity, heat capacity and isothermal bulk modulus. Jacobs & de Jong (2005, 2007) showed that this framework discriminates, based on internal consistency, between the quality of disparate sets of experimental thermochemical, thermophysical and phase diagram data. The present work focuses on the application of vibrational modeling to the magnesium-olivine-pyroxene system, a system relevant to Earth's mantle. We show how our approach is used to point to inconsistencies in experimental datasets. Pressure calibration problems affecting the derivation of phase diagrams are discussed. The results, presented here, were used in a numerical model of convection in the Earth's mantle to reveal, effects of phase transitions on the degree of layering, mineral distribution and sound wave velocities in the transition zone, around 660 km depth in the Earth. References Kieffer S.W. (1979), Rev. Geophys. Space Physics, 17, 35-59. Jacobs M.H.G. and B.H.W.S. de Jong (2005), Phys. Chem. Minerals, 32, 614-626. Jacobs M.H.G., and de Jong B.H.W.S. (2007), Geochim. Cosmochim. Acta, 71, 3630-3655.

  14. Temperature Dependent Electrical Properties of PZT Wafer

    NASA Astrophysics Data System (ADS)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  15. Vibration and acoustic properties of honeycomb sandwich structures subject to variable incident plane-wave angle pressure loads

    NASA Astrophysics Data System (ADS)

    Yan, Jiaxue

    Honeycomb structures are widely used in many areas for their material characteristics such as high strength-to-weight ratio, stiffness-to-weight, sound transmission, and other properties. Honeycomb structures are generally constructed from periodically spaced tessellations of unit cells. It can be shown that the effective stiffness and mass properties of honeycomb are controlled by the local geometry and wall thickness of the particular unit cells used. Of particular interest are regular hexagonal (6-sided) honeycomb unit cell geometries which exhibit positive effective Poisson's ratio, and modified 6-sided auxetic honeycomb unit cells with Poisson's ratio which is effectively negative; a property not found in natural materials. One important honeycomb meta-structure is sandwich composites designed with a honeycomb core bonded between two panel layers. By changing the geometry of the repetitive unit cell, and overall depth and material properties of the honeycomb core, sandwich panels with different vibration and acoustic properties can be designed to shift resonant frequencies and improve intensity and Sound Transmission Loss (STL). In the present work, a honeycomb finite element model based on beam elements is programmed in MATLAB and verified with the commercial finite element software ABAQUS for frequency extraction and direct frequency response analysis. The MATLAB program was used to study the vibration and acoustic properties of different kinds of honeycomb sandwich panels undergoing in-plane loading with different incident pressure wave angles and frequency. Results for the root mean square intensity IRMS based on normal velocity on the transmitted side of the panel measure vibration magnitude are reported for frequencies between 0 and 1000 Hz. The relationship between the sound transmission loss computed with ABAQUS and the inverse of the intensity of surface velocity is established. In the present work it is demonstrated that the general trend between the

  16. Investigation of the effect of a bumpy base on granular segregation and transport properties under vertical vibration

    NASA Astrophysics Data System (ADS)

    Liao, C. C.; Hunt, M. L.; Hsiau, S. S.; Lu, S. H.

    2014-07-01

    This study experimentally investigates the effect of a bumpy base on the Brazil-nut phenomenon in a vertically vibrated granular bed. The rise dynamics of an intruder is determined by the particle tracking method. The results indicate that the rise time increases with an increase in the base roughness, and the variation of the rise time with different base factors is more pronounced with smaller vibration acceleration and higher vibration frequency. A theoretical model is employed to measure the penetration length of the intruder and the drag force between the intruder and the immersed beads. The penetration length is reduced and the drag force is enhanced with surface roughness of the base. Additionally, the transport properties of the vibrated glass beads are also measured and discussed. With greater base roughness, the strength of the diffusive and convective motion is reduced leading to a weaker Brazil-nut effect.

  17. On the particular importance of vibrational contributions to the static electrical properties of model linear molecules under spatial confinement.

    PubMed

    Zaleśny, Robert; Góra, Robert W; Luis, Josep M; Bartkowiak, Wojciech

    2015-09-14

    The influence of the spatial confinement on the electronic and vibrational contributions to longitudinal electric-dipole properties of model linear molecules including HCN, HCCH and CO2 is discussed. The effect of confinement is represented by two-dimensional harmonic oscillator potential of cylindrical symmetry, which mimics the key features of various types of trapping environments like, for instance, nanotubes or quantum well wires. Our results indicate that in general both (electronic and vibrational) contributions to (hyper)polarizabilities diminish upon spatial confinement. However, since the electronic term is particularly affected, the relative importance of vibrational contributions is larger for confined species. This effect increases also with the degree of anharmonicity of vibrational motion. PMID:26247540

  18. Crystal studies, vibrational spectra and non-linear optical properties of L-histidine chloride monohydrate.

    PubMed

    Ben Ahmed, A; Feki, H; Abid, Y; Boughzala, H; Minot, C

    2010-01-01

    This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a non-linear optical material L-histidine chloride monohydrate. Due to the lack of sufficiently precise information on geometric parameters available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine chloride monohydrate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro-symmetric space group P2(1)2(1)2(1) of orthorhombic system. IR spectrum has been recorded in the range [400-4000 cm(-1)]. All the experimental vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using DFT//B3LYP/6-31G (d) method show a good agreement with the experimental data. The calculated vibrational spectra are in well agreement with the experimental one. To investigate microscopic second-order non-linear optical NLO behavior of the examined complex, the electric dipole mu, the polarizability alpha and the hyperpolarizability beta were computed using DFT//B3LYP/6-31G (d) method. The time-dependent density functional theory (TD-DFT) was employed to descript the molecular electron structure of the title compound using the B3LYP/6-31G (d) method. According to our calculations, L-histidine chloride monohydrate exhibits non-zero beta value revealing microscopic second-order NLO behavior. PMID:19926520

  19. Crystal studies, vibrational spectra and non-linear optical properties of L-histidine chloride monohydrate

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Ben; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C.

    2010-01-01

    This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a non-linear optical material L-histidine chloride monohydrate. Due to the lack of sufficiently precise information on geometric parameters available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine chloride monohydrate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro-symmetric space group P2 12 12 1 of orthorhombic system. IR spectrum has been recorded in the range [400-4000 cm -1]. All the experimental vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using DFT//B3LYP/6-31G (d) method show a good agreement with the experimental data. The calculated vibrational spectra are in well agreement with the experimental one. To investigate microscopic second-order non-linear optical NLO behavior of the examined complex, the electric dipole μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-31G (d) method. The time-dependent density functional theory (TD-DFT) was employed to descript the molecular electron structure of the title compound using the B3LYP/6-31G (d) method. According to our calculations, L-histidine chloride monohydrate exhibits non-zero β value revealing microscopic second-order NLO behavior.

  20. The origins of vibration theory

    NASA Astrophysics Data System (ADS)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  1. Optical and vibrational properties of (ZnO)k In2O3 natural superlattice nanostructures

    NASA Astrophysics Data System (ADS)

    Margueron, Samuel; Pokorny, Jan; Skiadopoulou, Stella; Kamba, Stanislav; Liang, Xin; Clarke, David R.

    2016-05-01

    A thermodynamically stable series of superlattices, (ZnO)kIn2O3, form in the ZnO-In2O3 binary oxide system for InO1.5 concentrations from about 13 up to about 33 mole percent (m/o). These natural superlattices, which consist of a periodic stacking of single, two-dimensional sheets of InO6 octahedra, are found to give rise to systematic changes in the optical and vibrational properties of the superlattices. Low-frequency Raman scattering provides the evidence for the activation of acoustic phonons due to the folding of Brillouin zone. New vibrational modes at 520 and 620 cm-1, not present in either ZnO or In2O3, become Raman active. These new modes are attributed to collective plasmon oscillations localized at the two-dimensional InO1.5 sheets. Infrared reflectivity experiments, and simulations taking into account a negative dielectric susceptibility due to electron carriers in ZnO and interface modes of the dielectric layer of InO2, explain the occurrence of these new modes. We postulate that a localized electron gas forms at the ZnO/InO2 interface due to the electron band alignment and polarization effects. All our observations suggest that there are quantum contributions to the thermal and electrical conductivity in these natural superlattices.

  2. Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2013-01-01

    We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.

  3. The evolution of the structural, vibrational and electronic properties of the cyclic ethers - on ring size. An ab initio study

    NASA Astrophysics Data System (ADS)

    Ford, Thomas A.

    2014-09-01

    The molecular structures, vibrational spectra and atomic charges of the alicyclic ethers containing from two to five carbon atoms have been determined by means of ab initio calculations, at the level of second order Møller-Plesset perturbation theory and using Dunning's augmented correlation-consistent polarized valence triple-zeta basis set. Two isomers of the oxetane, tetrahydrofuran and tetrahydropyran molecules have been identified and their relative energies determined. Structural properties, such as the COC bond angles and the CH bond lengths, are found to increase steadily with increasing ring size and with decreasing ionization energy. The mean CH2 stretching and bending wavenumbers exhibit the reverse behaviour, while the mean wavenumbers of the CH2 wagging and twisting modes follow the same trend as the structural features. The ring mode wavenumbers vary in a less regular way. The charges of the oxygen, α-carbon and axial and equatorial α- and β-hydrogen atoms also do not show systematic dependences on ring size or ionization energy. The trends in the values of these properties have been rationalized.

  4. Vibrational, electronic and structural properties of wurtzite GaAs nanowires under hydrostatic pressure

    PubMed Central

    Zhou, Wei; Chen, Xiao-Jia; Zhang, Jian-Bo; Li, Xin-Hua; Wang, Yu-Qi; Goncharov, Alexander F.

    2014-01-01

    The structural, vibrational, and electronic properties of GaAs nanowires have been studied in the metastable wurtzite phase via Resonant Raman spectroscopy and synchrotron X-ray diffraction measurements in diamond anvil cells under hydrostatic conditions between 0 and 23 GPa. The direct band gap E0 and the crystal field split-off gap E0 + Δ of wurtzite GaAs increase with pressure and their values become close to those of zinc-blende GaAs at 5 GPa, while being reported slightly larger at lower pressures. Above 21 GPa, a complete structural transition from the wurtzite to an orthorhombic phase is observed in both Raman and X-ray diffraction experiments. PMID:25253566

  5. Vibrational, electronic and structural properties of wurtzite GaAs nanowires under hydrostatic pressure.

    PubMed

    Zhou, Wei; Chen, Xiao-Jia; Zhang, Jian-Bo; Li, Xin-Hua; Wang, Yu-Qi; Goncharov, Alexander F

    2014-01-01

    The structural, vibrational, and electronic properties of GaAs nanowires have been studied in the metastable wurtzite phase via Resonant Raman spectroscopy and synchrotron X-ray diffraction measurements in diamond anvil cells under hydrostatic conditions between 0 and 23 GPa. The direct band gap E0 and the crystal field split-off gap E0 + Δ of wurtzite GaAs increase with pressure and their values become close to those of zinc-blende GaAs at 5 GPa, while being reported slightly larger at lower pressures. Above 21 GPa, a complete structural transition from the wurtzite to an orthorhombic phase is observed in both Raman and X-ray diffraction experiments. PMID:25253566

  6. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Song, Yuxin; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan; Lu, Pengfei; Gong, Qian; Wang, Shumin

    2015-08-01

    Bi4Te3, as one of the phases of the binary Bi-Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  7. Structural, electronic and vibrational properties of lanthanide monophosphide at high pressure

    NASA Astrophysics Data System (ADS)

    Panchal, J. M.; Joshi, Mitesh; Gajjar, P. N.

    2016-05-01

    A first-principles plane wave self-consistent method with the ultra-soft-pseudopotential scheme in the framework of the density functional theory (DFT) is performed to study structural, electronic and vibrational properties of LaP for Rock-salt (NaCl/Bl) and Cesium-chloride (CsCl/B2) phases. The instability of Rock-salt (NaCl/Bl) phases around the transition is discussed. Conclusions based on electronic energy band structure, density of state, phonon dispersion and phonon density of states in both phases are outlined. The calculated results are consistence and confirm the successful applicability of quasi-harmonic phonon theory for structural instability studies for the alloys.

  8. Replicas of the Kondo peak due to electron-vibration interaction in molecular transport properties

    NASA Astrophysics Data System (ADS)

    Roura-Bas, P.; Tosi, L.; Aligia, A. A.

    2016-03-01

    The low temperature properties of single level molecular quantum dots including both electron-electron and electron-vibration interactions, are theoretically investigated. The calculated differential conductance in the Kondo regime exhibits not only the zero bias anomaly but also side peaks located at bias voltages which coincide with multiples of the energy of vibronic mode V ˜ℏ Ω /e . We obtain that the evolution with temperature of the two main satellite conductance peaks follows the corresponding one of the Kondo peak when ℏ Ω ≫kBTK , TK being the Kondo temperature, in agreement with recent transport measurements in molecular junctions. However, we find that this is no longer valid when ℏ Ω is of the order of a few times kBTK .

  9. Vibrationally mediated photodissociation of H 2O 2 (4 vOH): rotational state dependent photodissociation cross sections and vibrational state mixing

    NASA Astrophysics Data System (ADS)

    Brouard, M.; Mabbs, R.

    1993-03-01

    A reinvestigation of the vibrationally mediated photodissociation spectrum of the 3rd OH stretching overtone (4 vOH) of jetcooled H 2O 2, first observed by Crim and co-workers, reveals anomalous double resonance spectral intensities compared with those observed via high-resolution absorption spectroscopy. The origin of these intensity perturbations is traced to J' KaKc level dependent variations in the photodissociation cross section, δ 00, out of the intermediate overtone state. The photofragment OH(X, v=0) rotational state distribution generated by photodissociation of H 2O 2 (4 vOH, J' KaKc=2 02) has been determined. Combined with the relative cross-section data, these results imply that delocalization of the overtone state wavefunction into wideamplitude OO stretching regions of the ground state is profoundly influenced by parent molecular rotation, primarily about the a and b axes. The intermediate state with J'=0 is shown to be much more highly localized, and hence more likely to display mode selective behaviour, than its J' >0 counterparts.

  10. Role of Quantum Vibrations on the Structural, Electronic, and Optical Properties of 9-Methylguanine.

    PubMed

    Law, Yu Kay; Hassanali, Ali A

    2015-11-01

    In this work, we report theoretical predictions of the UV-absorption spectra of 9-methylguanine using time dependent density functional theory (TDDFT). Molecular dynamics simulations of the hydrated DNA base are peformed using an empirical force field, Born-Oppenheimer ab initio molecular dynamics (AIMD), and finally path-integral AIMD to understand the role of the underlying electronic potential, solvation, and nuclear quantum vibrations on the absorption spectra. It is shown that the conformational distributions, including hydrogen bonding interactions, are perturbed by the inclusion of nuclear quantum effects, leading to significant changes in the total charge and dipole fluctuations of the DNA base. The calculated absorption spectra using the different sampling protocols shows that the inclusion of nuclear quantum effects causes a significant broadening and red shift of the spectra bringing it into closer agreement with experiments. PMID:26444383

  11. Structural, vibrational and thermophysical properties of pyrophyllite by semi-empirical density functional modelling

    NASA Astrophysics Data System (ADS)

    Ulian, Gianfranco; Valdrè, Giovanni

    2015-07-01

    Pyrophyllite has a significant role in both geophysics as a hydrous phase, which can recycle water into the Earth's mantle, and many industrial applications, such as petroleum and civil engineering. However, very few works have been proposed to fully characterize the thermodynamic properties of this mineral, especially at atomic scale. In the present work, we report structural, vibrational, thermochemical and thermophysical properties of pyrophyllite, calculated at the density functional theory level with the hybrid B3LYP functional, all-electron Gaussian-type orbitals and taking into account a correction to include dispersive forces. V( P, T) data at 300 K fit with isothermal third-order Birch-Murnaghan equations of state and yield K T 0 = 46.57 GPa, K' = 10.51 and V 0 = 213.67 Å3, where K T 0 is the thermal bulk modulus at 0 GPa, K' is the first derivative and V 0 is the volume at zero pressure, in very good agreement with recent experimental results obtained by in situ single-crystal synchrotron XRD. The compressional behaviour is highly anisotropic, with axial compressibility in ratio β( a):β( b):β( c) = 1.218:1.000:4.188. Pyrophyllite bulk modulus, thermal expansion coefficients and heat capacity at different P- T conditions are provided. The results of this kind of analysis can be useful in both geophysical and technological applications of the mineral and expand the high-temperature and high-pressure knowledge of this phase at physical conditions that are still difficult to obtain by experimental means. The simulated vibrational spectrum can also be used as a guideline by other authors in their experimental investigation of pyrophyllite.

  12. Universal relation for size dependent thermodynamic properties of metallic nanoparticles.

    PubMed

    Xiong, Shiyun; Qi, Weihong; Cheng, Yajuan; Huang, Baiyun; Wang, Mingpu; Li, Yejun

    2011-06-14

    The previous model on surface free energy has been extended to calculate size dependent thermodynamic properties (i.e., melting temperature, melting enthalpy, melting entropy, evaporation temperature, Curie temperature, Debye temperature and specific heat capacity) of nanoparticles. According to the quantitative calculation of size effects on the calculated thermodynamic properties, it is found that most thermodynamic properties of nanoparticles vary linearly with 1/D as a first approximation. In other words, the size dependent thermodynamic properties P(n) have the form of P(n) = P(b)(1 -K/D), in which P(b) is the corresponding bulk value and K is the material constant. This may be regarded as a scaling law for most of the size dependent thermodynamic properties for different materials. The present predictions are consistent literature values. PMID:21523307

  13. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    SciTech Connect

    Fonari, A.; Corbin, N. S.; Coropceanu, V. E-mail: coropceanu@gatech.edu; Vermeulen, D.; McNeil, L. E.; Goetz, K. P.; Jurchescu, O. D.; Bredas, J. L. E-mail: coropceanu@gatech.edu

    2015-12-14

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoretical Raman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  14. Adsorption of linear alkanes on Cu(111): Temperature and chain-length dependence of the softened vibrational mode

    NASA Astrophysics Data System (ADS)

    Fosser, Kari A.; Kang, Joo H.; Nuzzo, Ralph G.; Wöll, Christof

    2007-05-01

    The vibrational spectra of linear alkanes, with lengths ranging from n-propane to n-octane, were examined on a copper surface by reflection-absorption infrared spectroscopy. The appearance and frequency of the "soft mode," a feature routinely seen in studies of saturated hydrocarbons adsorbed on metals, were examined and compared between the different adsorbates. The frequency of the mode was found to be dependent on both the number of methylene units of each alkane as well as specific aspects of the order of the monolayer phase. Studies of monolayer coverages at different temperatures provide insights into the nature of the two-dimensional (2D) melting transitions of these adlayer structures, ones that can be inferred from observed shifts in the soft vibrational modes appearing in the C-H stretching region of the infrared spectrum. These studies support recently reported hypotheses as to the origins of such soft modes: the metal-hydrogen interactions that mediate them and the dynamics that underlay their pronounced temperature dependencies. The present data strongly support a model for the 2D to one-dimensional order-order phase transition arising via a continuous rather than discrete first-order process.

  15. Static and vibrational properties of equiatomic Na-based binary alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-09-01

    The computations of the static and vibrational properties of four equiatomic Na-based binary alloys viz. Na0.5Li0.5, Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5, to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H), Ichimaru Utsumi (IU) and Sarkar et al. (S) are used to investigate the influence of the screening effects on the aforesaid properties. Results for the lattice constants C11, C12, C44, C12 C44, C12/C44 and bulk modulus B obtained using the H-local field correction function have higher values in comparison with the results obtained for the same properties using IU- and S-local field correction functions. The results for the Shear modulus (C‧), deviation from Cauchy's relation, Poisson's ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Na-based binary alloys.

  16. Energetic, Structural, and Vibrational Properties of 4,4'-Methylenediphenyl Diisocyanate with Relevance for Adhesion.

    PubMed

    Ramírez, Max; Vargas, Jorge; Springborg, Michael

    2016-06-23

    Through a polymerization process, the monomer 4,4'-methylenediphenyl diisocyanate can participate in glueing, whereby strong covalent bonds between the monomer and the substrates that will be glued have to be formed. In the present work, we use density functional theory (DFT) calculations to study a group of properties that are important for the initial steps of this process and for its experimental characterization. We focus on energetic and structural properties of a single monomer of 4,4'-methylenediphenyl diisocyanate as obtained using different theoretical approaches. We demonstrate that the molecule is chiral and that for each chirality, three different structures, differing in the orientations of the isocyanate groups, can be identified. The molecule is soft against certain geometry transformations and can, accordingly, easily take a structure that is optimal for the formation of covalent bonds with a substrate. Infrared spectroscopy may be used in identifying these covalent bonds, and therefore, these spectra were calculated, and we identify the most relevant vibrations in this context. Finally, changes in the properties when the monomer was modified or when it was allowed to interact with other molecules were studied, too. PMID:27232061

  17. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NASA Astrophysics Data System (ADS)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  18. Vibrational and optical properties of MoS2: From monolayer to bulk

    NASA Astrophysics Data System (ADS)

    Molina-Sánchez, Alejandro; Hummer, Kerstin; Wirtz, Ludger

    2015-12-01

    Molybdenum disulfide, MoS2, has recently gained considerable attention as a layered material where neighboring layers are only weakly interacting and can easily slide against each other. Therefore, mechanical exfoliation allows the fabrication of single and multi-layers and opens the possibility to generate atomically thin crystals with outstanding properties. In contrast to graphene, it has an optical gap of ~1.9 eV. This makes it a prominent candidate for transistor and opto-electronic applications. Single-layer MoS2 exhibits remarkably different physical properties compared to bulk MoS2 due to the absence of interlayer hybridization. For instance, while the band gap of bulk and multi-layer MoS2 is indirect, it becomes direct with decreasing number of layers. In this review, we analyze from a theoretical point of view the electronic, optical, and vibrational properties of single-layer, few-layer and bulk MoS2. In particular, we focus on the effects of spin-orbit interaction, number of layers, and applied tensile strain on the vibrational and optical properties. We examine the results obtained by different methodologies, mainly ab initio approaches. We also discuss which approximations are suitable for MoS2 and layered materials. The effect of external strain on the band gap of single-layer MoS2 and the crossover from indirect to direct band gap is investigated. We analyze the excitonic effects on the absorption spectra. The main features, such as the double peak at the absorption threshold and the high-energy exciton are presented. Furthermore, we report on the the phonon dispersion relations of single-layer, few-layer and bulk MoS2. Based on the latter, we explain the behavior of the Raman-active A1g and E2g1 modes as a function of the number of layers. Finally, we compare theoretical and experimental results of Raman, photoluminescence, and optical-absorption spectroscopy.

  19. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-12-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.

  20. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Sourki, R.; Hoseini, S. A. H.

    2016-04-01

    This paper investigates the analysis for free transverse vibration of a cracked microbeam based on the modified couple stress theory within the framework of Euler-Bernoulli beam theory. The governing equation and the related boundary conditions are derived by using Hamilton's principle. The cracked beam is modeled by dividing the beam into two segments connected by a rotational spring located at the cracked section. This model invokes the consideration of the additional strain energy caused by the crack and promotes a discontinuity in the bending slope. In this investigation, the influence of diverse crack position, crack severity, material length scale parameter as well as various Poisson's ratio on natural frequencies is studied. A comparison with the previously published studies is made, in which a good agreement is observed. The results illustrate that the aforementioned parameters are playing a significant role on the dynamic behavior of the microbeam.

  1. The vibrational dependence of dissociative recombination: Cross sections for N2+

    NASA Astrophysics Data System (ADS)

    Guberman, Steven L.

    2013-09-01

    Theoretical ab initio calculations are reported of the cross sections for dissociative recombination of the lowest four excited vibrational levels of N_2^ + at electron energies from 0.001 to 1.0 eV. Rydberg vibrational levels contributing to the cross section structures are identified as are dissociative channels contributing more than 10-16 cm2 to the total cross sections. In contrast to the prior study of v = 0 (S. L. Guberman, J. Chem. Phys. 137, 074309 (2012)), which showed 2 3Πu to be the dominant dissociative channel, 43Πu is dominant for v = 1. Both 2 and 43Πu are major routes for dissociative recombination from v = 2-4. Other routes including 23 Σ _u^{+ }, 33Πu, 21Πu, 23Πg, 21 Σ _g^ +, 11Δg, and b^' 1} Σ _u^{+ } are significant in narrow energy ranges. The results show that minor dissociative routes, included here for N_2^ +, must be included in theoretical studies of other molecular ions (including the simplest ions H_2^ + and H_3^ +) if cross section agreement is to be found with future high resolution dissociative recombination experiments. The calculated predissociation lifetimes of the Rydberg resonances are used in a detailed comparison to two prior storage ring experiments in order to determine if the prior assumption of isotropic atomic angular distributions at "zero" electron energy is justified. The prior experimental assumption of comparable cross sections for v = 0-3 is shown to be the case at "zero" but not at nonzero electron energies. Circumstances are identified in which indirect recombination may be visualized as a firefly effect.

  2. Molecular vibrational states during a collision

    NASA Technical Reports Server (NTRS)

    Recamier, Jose A.; Jauregui, Rocio

    1995-01-01

    Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.

  3. Angle dependent phonon spectra and thermal properties of misoriented bilayer graphene

    NASA Astrophysics Data System (ADS)

    Neupane, Mahesh; Ramnani, Pankaj; Ge, Supeng; Mulchandani, Ashok; Lake, Roger

    2015-03-01

    The Raman spectra of misoriented bilayer graphene (MBG) show angle dependent signatures of the misorientation angle (θ) in the low frequency breathing modes. We investigate these low frequency modes using molecular dynamics including temperature dependent phonon anharmonicity. The calculated vibrational and thermal properties are compared against our experimental data. Our theoretical investigations reveal that the layer breathing mode (LBM) frequencies at 100 +/- 10 cm-1 for angles 6° <= θ <= 30° are consistent with the observed frequencies of ZO modes in the Raman spectrum. For the smaller θ (or larger L), the reduced BZ leads to the zone-folding of the phonon spectrum at the zone center, and leads to broadened optical phonons width in the vibrational density of states. Finally, increasing θ in the MBG leads to a reduction in the lattice specific heat capacity. This work is supported in part by the National Science Foundation (NSF) Grant No: 1307671, and FAME, one of six centers of STARnet, a SRC program sponsored by MARCO and DARPA, and a U.S. Dept. of Education GAANN Fellowship.

  4. Ab initio study of the structural, elastic, thermodynamic, electronic and vibration properties of TbMg intermetallic compound

    NASA Astrophysics Data System (ADS)

    Mogulkoc, Y.; Ciftci, Y. O.; Kabak, M.; Colakoglu, K.

    2014-07-01

    The structural, elastic, thermodynamic, electronic and vibrational properties of CsCl-type TbMg have been studied by performing ab initio calculations based on density functional theory using the Vienna Ab initio Simulation Package (VASP). The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The calculated structural parameters, such as the lattice constant, bulk modulus, its pressure derivative, formation energy and second-order elastic constants are presented in this paper. The obtained results are compared with related experimental and theoretical studies. The electronic band calculations, total density of states (DOS), partial DOS and charge density are also presented. Formation enthalpy and Cauchy pressure are determined. In order to obtain more information the elastic properties such as Zener anisotropy factor, Poisson’s ratio, Young modulus, isotropic shear modulus, Debye temperature and melting point have been carried out. The elastic constants are calculated in zero and different pressure ranges (0-50 GPa) with bulk modulus. We have performed the thermodynamic properties of TbMg by using quasi-harmonic Debye model. The temperature and pressure variation of the volume, bulk modulus, and thermal expansion coefficient have been predicted over a pressure range of 0-25 GPa for of TbMg. Pressure dependence of the anisotropy factors, Young’s modulus, Poisson’s ratios, bulk modulus and axis compressibility of TbMg are presented along different directions and planes. Finally, the phonon dispersion curves are presented for TbMg.

  5. Thermal and vibrational properties of thermoelectric ZnSb: Exploring the origin of low thermal conductivity

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Scheidt, E.-W.; Scherer, W.; Benson, D. E.; Wu, Y.; Eklöf, D.; Häussermann, U.

    2015-06-01

    The intermetallic compound ZnSb is an interesting thermoelectric material largely due to its low lattice thermal conductivity. The origin of the low thermal conductivity has so far been speculative. Using multitemperature single crystal x-ray diffraction (9-400 K) and powder x-ray diffraction (300-725 K) measurements, we characterized the volume expansion and the evolution of structural properties with temperature and identified an increasingly anharmonic behavior of the Zn atoms. From a combination of Raman spectroscopy and first principles calculations of phonons, we consolidate the presence of low-energy optic modes with wave numbers below 60 cm-1 . Heat capacity measurements between 2 and 400 K can be well described by a Debye-Einstein model containing one Debye and two Einstein contributions with temperatures ΘD=195 K , ΘE 1=78 K , and ΘE 2=277 K as well as a significant contribution due to anharmonicity above 150 K. The presence of a multitude of weakly dispersed low-energy optical modes (which couple with the acoustic, heat carrying phonons) combined with anharmonic thermal behavior provides an effective mechanism for low lattice thermal conductivity. The peculiar vibrational properties of ZnSb are attributed to its chemical bonding properties, which are characterized by multicenter bonded structural entities. We argue that the proposed mechanism to explain the low lattice thermal conductivity of ZnSb might also control the thermoelectric properties of other electron poor semiconductors, such as Zn4Sb3 , CdSb, Cd4Sb3 , Cd13 -xInyZn10 , and Zn5Sb4In2 -δ .

  6. Conformational properties, torsional potential, and vibrational force field for methacryloyl fluoride - An ab initio investigation

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Jaffe, R. L.; Komornicki, A.

    1985-01-01

    The structure, torsional potentials, vibrational spectra, and harmonic force fields for s-cis and s-trans isomers of methacryloyl fluoride are examined to understand the conformational properties of the molecules and their relationship to macroscopic polymer properties. The structure is found to be in good agreement with experiment. It is shown by calculations that the energy difference between the cis and the transisomers is less than 1 kcal/mol at both the split valence and the split valence polarized levels, with the trans form favored. Analysis of the torsional potentials indicates that a rigid rotor model provides a reasonable description of the motion of the COF group in the molecule. The torsional barrier to interconvert the s-trans to the s-cis form is found to be 7.0 kcal/mol. A fit of the data to a three-term Fourier series shows that it is possible to reproduce the experimentally derived barrier, even though a direct determination indicates that the barrier is higher.

  7. Theoretical study of the structural, vibrational and dielectric properties of PbSnTe alloys

    NASA Astrophysics Data System (ADS)

    Leite Alves, Horacio W.; Neto, Antonio R. R.; Petersen, John E.; Borges, Pablo D.; Scolfaro, Luisa M. R.

    2015-03-01

    Thermoelectric devices have promise in dealing with the challenges of the growing demand for alternative clean energy and Te-based materials well-known candidates for them. Recently, we have shown that the high values for the dielectric constant, together with anharmonic LA-TO coupling, reduces the lattice thermal conductivity and enhances the electronic conductivity in PbTe. Also, it was shown that by alloying this material with Se, the electronic conductivity of the alloys is also enhanced. But, it is not clear if the same occurs when alloying with Sn. We show, in this work, our ab initio results for the structural, vibrational and dielectric properties of Pb1-xSnxTe alloys. The calculations were carried out by using the Density Functional Theory, and the alloys were described by the Virtual Crystal Approximation. Our results show that their structural properties do not obey the Vegard rule. However, we have detected that the anharmonic LA-TO coupling still exists and the obtained values for the dielectric constant show higher values than that obtained for PbTe.

  8. Mass properties calibration of the NASA Langley low frequency vibration test apparatus

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Russell, James W.

    1995-01-01

    This report presents a description and calibration results of the modified NASA Langley Low Frequency Vibration Test Apparatus. The description includes both the suspension system and the data acquisition system. The test apparatus consists of a 2 inch thick, 21 inch diameter aluminum plate that is suspended from an advanced suspension system using a 40 foot long cable system. The test apparatus employed three orthogonally aligned pairs of Sundstrand QA-700 servo accelerometers that can measure accelerations as low as 1 micro-g. The calibration involved deriving the mass and moments of inertia of the test platform from measured input forces and measured acceleration responses. The derived mass and moments were compared to test platform mass properties obtained initially from measurements with a special mass properties instrument. Results of the calibration tests showed that using the product of the test apparatus mass and the measured accelerations, the disturbance force at the center of gravity (CG) can be determined within 4 percent on all three axes. Similarly the disturbance moments about the X, Y, and Z axes can be determined within 5 percent by using the product of the measured moments of inertia and the angular accelerations about the X, Y, and Z axes.

  9. Hybrid density functional study on lattice vibration, thermodynamic properties, and chemical bonding of plutonium monocarbide

    NASA Astrophysics Data System (ADS)

    Rong, Yang; Bin, Tang; Tao, Gao; BingYun, Ao

    2016-06-01

    Hybrid density functional theory is employed to systematically investigate the structural, magnetic, vibrational, thermodynamic properties of plutonium monocarbide (PuC and PuC0.75). For comparison, the results obtained by DFT, DFT + U are also given. For PuC and PuC0.75, Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic (AFM) structure. The calculated phonon spectra suggest that PuC and PuC0.75 are dynamically stable. Values of the Helmholtz free energy ΔF, internal energy ΔE, entropy S, and constant-volume specific heat C v of PuC and PuC0.75 are given. The results are in good agreement with available experimental or theoretical data. As for the chemical bonding nature, the difference charge densities, the partial densities of states and the Bader charge analysis suggest that the Pu–C bonds of PuC and PuC0.75 have a mixture of covalent character and ionic character. The effect of carbon vacancy on the chemical bonding is also discussed in detail. We expect that our study can provide some useful reference for further experimental research on the phonon density of states, thermodynamic properties of the plutonium monocarbide. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).

  10. The structures of interstitial hydrogen centers in VO2 in the dilute limit from their vibrational properties and theory.

    PubMed

    Yin, Weikai; Qin, Ying; Fowler, W Beall; Stavola, Michael; Boatner, Lynn A

    2016-10-01

    The introduction of a large concentration of H into VO2 is known to suppress the insulating phase of the metal-insulator transition that occurs upon cooling below 340 K. We have used infrared spectroscopy and complementary theory to study the properties of interstitial H and D in VO2 in the dilute limit to determine the vibrational frequencies, thermal stabilities, and equilibrium positions of isolated interstitial H and D centers. The vibrational lines of several OH and OD centers were observed to have thermal stabilities similar to that of the hydrogen that suppresses the insulating phase. Theory associates two of the four possible OH configurations for Hi in the insulating VO2 monoclinic phase with OH lines seen by experiment. Furthermore, theory predicts the energies and vibrational frequencies for configurations with Hi trapped near a substitutional impurity and suggests such defects as candidates for additional OH centers that have been observed. PMID:27465290

  11. The structures of interstitial hydrogen centers in VO2 in the dilute limit from their vibrational properties and theory

    DOE PAGESBeta

    Yin, W.; Qin, Ying; Fowler, W. B.; Stavola, M.; Boatner, Lynn A.

    2016-07-28

    The introduction of a large concentration of H into VO2 is known to suppress the insulating phase of the metal-insulator transition that occurs upon cooling below 340 K. We have used infrared spectroscopy and complementary theory to study the properties of interstitial H and D in VO2 in the dilute limit to determine the vibrational frequencies, thermal stabilities, and equilibrium positions of isolated interstitial H and D centers. The vibrational lines of several OH and OD centers were observed to have thermal stabilities similar to that of the hydrogen that suppresses the insulating phase. Theory associates two of the fourmore » possible OH configurations for Hi in the insulating VO2 monoclinic phase with OH lines seen by experiment. Furthermore, theory predicts the energies and vibrational frequencies for configurations with Hi trapped near a substitutional impurity and suggests such defects as candidates for additional OH centers that have been observed.« less

  12. Vibrational spectroscopic study, charge transfer interaction and nonlinear optical properties of L-asparaginium picrate: A density functional theoretical approach

    NASA Astrophysics Data System (ADS)

    Elleuch, Nabil; Amamou, Walid; Ben Ahmed, Ali; Abid, Younes; Feki, Habib

    2014-07-01

    Single crystals of L-asparaginium picrate (LASP) were grown by slow evaporation technique at room temperature and were the subject of an X-ray powder diffraction study to confirm the crystalline nature of the synthesized compound. FT-IR and Raman spectra were recorded and analyzed with the aid of the density functional theory (DFT) calculations in order to make a suitable assignment of the observed bands. The optimum molecular geometry, normal mode wavenumbers, infrared and Raman intensities and the first hyperpolarizability were investigated with the help of B3LYP method using 6-31G(d) basis set. The theoretical FT-IR and Raman spectra of LASP were simulated and compared with the experimental data. A good agreement was shown and a reliable vibrational assignment was made. Natural bond orbital (NBO) analysis was carried out to demonstrate the various inter and intramolecular interactions that are responsible for the stabilization of the title compound leading to high NLO activity. A study on the electronic properties was performed by time-dependent DFT (TD-DFT) approach. The lowering in the HOMO and LUMO energy gap explains the eventual charge transfer interactions that take place within the molecules.

  13. Ab initio study of the structural, vibrational and thermal properties of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Odhiambo, Henry; Othieno, Herick

    2015-05-01

    The structural, vibrational and thermal properties of hexagonal as well as cubic Ge2Sb2Te5 (GST) have been calculated from first principles. The relative stability of the possible stacking sequences of hexagonal GST has been confirmed to depend on the choice for the exchange-correlation (XC) energy functional. It is apparent that without the inclusion of the Te 4d orbitals in the valence states, the lattice parameters can be underestimated by as much as 3.9% compared to experiment and all-electron calculations. From phonon dispersion curves, it has been confirmed that the hexagonal phase is, indeed, stable whereas the cubic phase is metastable. In particular, calculations based on the quasi-harmonic approximation (QHA) reveal an extra heat capacity beyond the Dulong-Petit limit at high temperatures for both hexagonal and cubic GST. Moreover, cubic GST exhibits a residual entropy at 0 K, in agreement with experimental studies which attribute this phenomenon to substitutional disorder on the Sb/Ge/v sublattice.

  14. Thermodynamic properties and equation of state of fcc aluminum and bcc iron, derived from a lattice vibrational method

    NASA Astrophysics Data System (ADS)

    Jacobs, Michel H. G.; Schmid-Fetzer, Rainer

    2010-12-01

    We use a lattice vibrational technique to derive thermophysical and thermochemical properties of the pure elements aluminum and iron in pressure-temperature space. This semi-empirical technique is based on either the Mie-Grüneisen-Debye (MGD) approach or an extension of Kieffer's model to incorporate details of the phonon spectrum. It includes treatment of intrinsic anharmonicity, electronic effects based on the free electron gas model, and magnetic effects based on the Calphad approach. We show that Keane's equation of state for the static lattice is better suitable to represent thermodynamic data for aluminum from 1 bar to pressures in the multi-megabar region relative to Vinet's universal and the Birch-Murnaghan equation of state. It appears that the MGD and Mie-Grüneisen-Kieffer approach produce similar results, but that the last one better represents heat capacity below room temperature. For iron we show that the high temperature behavior of thermal expansivity can be explained within the Calphad approach by a pressure-dependent Curie temperature with a slope between -1 and 0 K/GPa.

  15. Electronic and vibrational properties of the Na16Rb8Si136 and K16Rb8Si136 clathrates

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik; Myles, Charles W.

    2006-10-01

    We have studied the electronic and vibrational properties of the Na16Rb8Si136 and K16Rb8Si136 clathrate compounds using first principles calculations. In qualitative agreement with the rigid-band model, the electronic band structures display no major modifications due to the inclusion of the alkali metal guests. The guest atom valence electrons occupy the Si136 conduction band states, resulting in a shift of the Fermi level into the conduction band of the ``parent'' Si136 framework. Unlike pristine Si136, the electronic density of states of the filled clathrates show two sharply peaked structures and a dip near the Fermi level. This feature may help to qualitatively explain the temperature-dependent Knight shift observed for the NMR active nuclei in Na16Rb8Si136. The phonon dispersion curves for the filled clathrates reveal low frequency, localized ``rattling'' modes for the Na (or K) and Rb guest atoms. These flat rattler modes compress the highly dispersive host acoustic mode band width. As a consequence, the rattler modes may efficiently scatter the heat-carrying host acoustic phonons, potentially suppressing the lattice thermal conductivity. S. Latturner, B. B. Iversen, J. Sepa, V. Srdanov, and G. Stucky, Phys. Rev B 63, 125403 (2001).

  16. Electronic and vibrational properties of the Na16Rb8Si136 and K16Rb8Si136 clathrates

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik; Myles, Charles W.

    2006-10-01

    We have studied the electronic and vibrational properties of the Na16Rb8Si136 and K16Rb8Si136 clathrate compounds using first principles calculations. In qualitative agreement with the rigid-band model, the electronic band structures display no major modifications due to the inclusion of the alkali metal guests. The guest atom valence electrons occupy the Si136 conduction band states, resulting in a shift of the Fermi level into the conduction band of the ``parent'' Si136 framework. Unlike pristine Si136, the electronic density of states of the filled clathrates show two sharply peaked structures and a dip near the Fermi level. This feature may help to qualitatively explain the temperature-dependent Knight shift observed for the NMR active nuclei in Na16Rb8Si136. S. Latturner, B. B. Iversen, J. Sepa, V. Srdanov, and G. Stucky, Phys. Rev B 63, 125403 (2001). The phonon dispersion curves for the filled clathrates reveal low frequency, localized ``rattling'' modes for the Na (or K) and Rb guest atoms. These flat rattler modes compress the highly dispersive host acoustic mode band width. As a consequence, the rattler modes may efficiently scatter the heat-carrying host acoustic phonons, potentially suppressing the lattice thermal conductivity.

  17. Properties Affecting the Angle of Repose in a Vertically Vibrated Container of Granular Materials

    NASA Astrophysics Data System (ADS)

    Fox, Odysseus; Quinn, Paul; Tweddle, Thomas

    2014-03-01

    Experiments are conducted using various granular materials subject to a vertical vibration. The angle of repose is studied while varying certain parameters of the system, such as vibration amplitude, vibration frequency, initial height, grain size, container size, and container shape. Empirical relationships are found for the angle of repose as a function of each of these variables. In particular, we compare the results when using a homogeneous material as compared to an inhomogeneous material with varied sizes of particles. We also examine the surface structure and relate it to the propagation of energy through the vibrating system of particles.

  18. Effects of Vibration in Forced Posture on Biochemical Bone Metabolism Indices, and Morphometric and Mechanical Properties of the Lumbar Vertebra

    PubMed Central

    Zhang, Li; Ju, Xiaowei; Zhu, Lvgang; Huang, Changlin; Huang, Tao; Zuo, Xincheng; Gao, Chunfang

    2013-01-01

    Epidemiological studies have shown a relatively strong association between occupational lower back pain (LBP) and long-term exposure to vibration. However, there is limited knowledge of the impact of vibration and sedentariness on bone metabolism of the lumbar vertebra and the mechanism of bone-derived LBP. The aim of this study was to investigate the effects of vibration in forced posture (a seated posture) on biochemical bone metabolism indices, and morphometric and mechanical properties of the lumbar vertebra, and provide a scientific theoretical basis for the mechanism of bone-derived LBP, serum levels of Ca2+, (HPO4)2−, tartrate-resistant acid phosphatase (TRAP), bone-specific alkaline phosphatase (BALP), and bone gla protein (BGP),the pathological changes and biomechanics of lumbar vertebra of New Zealand white rabbits were studied. The results demonstrate that both forced posture and vibration can cause pathological changes to the lumbar vertebra, which can result in bone-derived LBP, and vibration combined with a seated posture could cause further damage to bone metabolism. Serological changes can be used as early markers for clinical diagnosis of bone-derived LBP. PMID:24265702

  19. Studies of the molecular geometry, vibrational spectra, Frontier molecular orbital, nonlinear optical and thermodynamics properties of Aceclofenac by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    The solid phase FT-IR and FT-Raman spectra of 2-[2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl] oxyacetic acid (Aceclofenac) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies were scaled and have been compared with experimental by obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method employed to study its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) were also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  20. Effects of Heme Electronic Structure and Distal Polar Interaction on Functional and Vibrational Properties of Myoglobin.

    PubMed

    Kanai, Yuki; Nishimura, Ryu; Nishiyama, Kotaro; Shibata, Tomokazu; Yanagisawa, Sachiko; Ogura, Takashi; Matsuo, Takashi; Hirota, Shun; Neya, Saburo; Suzuki, Akihiro; Yamamoto, Yasuhiko

    2016-02-15

    We analyzed the oxygen (O2) and carbon monoxide (CO) binding properties, autoxidation reaction rate, and FeO2 and FeCO vibrational frequencies of the H64Q mutant of sperm whale myoglobin (Mb) reconstituted with chemically modified heme cofactors possessing a variety of heme Fe electron densities (ρFe), and the results were compared with those for the previously studied native [Shibata, T. et al. J. Am. Chem. Soc. 2010 , 132 , 6091 - 6098 ], and H64L [Nishimura, R. et al. Inorg. Chem. 2014 , 53 , 1091 - 1099 ], and L29F [Nishimura, R. et al. Inorg. Chem. 2014 , 53 , 9156 - 9165 ] mutants in order to elucidate the effect of changes in the heme electronic structure and distal polar interaction contributing to stabilization of the Fe-bound ligand on the functional and vibrational properties of the protein. The study revealed that, as in the cases of the previously studied native protein [Shibata, T. et al. Inorg. Chem. 2012 , 51 , 11955 - 11960 ], the O2 affinity and autoxidation reaction rate of the H64Q mutant decreased with a decrease in ρFe, as expected from the effect of a change in ρFe on the resonance between the Fe(2+)-O2 bond and Fe(3+)-O2(-)-like species in the O2 form, while the CO affinity of the protein is independent of a change in ρFe. We also found that the well-known inverse correlation between the frequencies of Fe-bound CO (νCO) and Fe-C (νFeC) stretching [Li, X.-Y.; Spiro, T. G. J. Am. Chem. Soc. 1988 , 110 , 6024 - 6033 ] is affected differently by changes in ρFe and the distal polar interaction, indicating that the effects of the two electronic perturbations due to the chemical modification of a heme cofactor and the replacement of nearby amino acid residues on the resonance between the two alternative canonical forms of the FeCO fragment in the protein are slightly different from each other. These findings provide a new insight for deeper understanding of the functional regulation of the protein. PMID:26814981

  1. The wavelength dependence of Martian atmospheric dust radiative properties

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Ockert-Bell, M. E.; Arvidson, R.; Shepard, M.

    1993-01-01

    One of the key radiative agents in the atmosphere of Mars is the suspended dust particles. A new analysis of two data sets of the Martian atmosphere is being carried out in order to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the size distribution, optical constants, and other radiative properties, such as the single-scattering albedo and phase function. Of prime importance is the wavelength dependence of these radiative properties throughout the visible and near-infrared wavelengths. Understanding the wavelength dependence of absorption and scattering characteristics will provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere.

  2. Elastic, vibrational and thermodynamic properties of α-Sn based group IV semiconductors and GeC under pressure

    NASA Astrophysics Data System (ADS)

    Souadkia, M.; Bennecer, B.; Kalarasse, F.

    2013-11-01

    We present first-principles calculations of the structural, elastic, vibrational and thermodynamic properties of SnSi, SnGe, SnC and GeC. We employ the density-functional perturbation theory (DFPT) within the local density approximation in conjunction with the quasi-harmonic approximation. The calculated lattice parameters, which are obtained by minimizing the total energy, are in the range of those reported in the literature for the binary compounds and in good agreement with the measured ones for the elemental components. Our results for the elastic properties show that c44 softens as pressure increases for SnSi and SnGe. The phonon spectra, the density of states and the Born effective charge at zero pressure are calculated and the phonon frequencies are positive. A pressure induced soft transverse acoustic phonon mode is identified at the zone boundary X point of the Brillouin zone at pressure of 12.95 and 12.45 GPa for SnSi and SnGe respectively. The linear expansion coefficient for the elemental components is calculated and compared to experiment. The temperature and pressure dependence of the thermal expansion, the overall Grüneisen parameter, the bulk modulus and the heat capacity is predicted. The thermal expansion coefficient decreases with increasing pressure and does not show any negative behavior for GeC and this is due to the positive transverse acoustic mode Grüneisen parameters. Our results for SnxGe alloys using the supercell method indicate that the variation of the Grüneisen parameter and the thermal expansion with concentration has the same trend and the bulk modulus softens.

  3. Ab initio calculations of the vibrational and dielectric properties of PbSnTe alloys

    NASA Astrophysics Data System (ADS)

    Scolfaro, Luisa; Rezende Neto, A. R.; Leite Alves, H. W.; Petersen, J. E.; Myers, T. H.; Borges, P. D.

    Thermoelectric devices have promise in dealing with the challenges of the growing demand for alternative clean energy and Te-based materials well-known candidates for them. Recently, we have shown that the high values for the dielectric constant, together with anharmonic LA-TO coupling, reduces the lattice thermal conductivity and enhances the electronic conductivity in PbTe. Also, it was shown that by alloying this material with Se, the electronic conductivity of the alloys is also enhanced. But, it is not clear if the same occurs when alloying with Sn. We show, in this work, our ab initio results for the vibrational and dielectric properties of Pb1-xSnxTe alloys. The calculations were carried out by using the Density Functional Theory, and the alloys were described by both the Virtual Crystal Approximation and Cluster Expansion Method. Our results show that the anharmonic LA-TO coupling enhances and reach its maximum for Sn concentration values of 0.75, corresponding to the maximum value for the dielectric constant, which is higher than that obtained for PbTe

  4. Investigations on structural, vibrational and dielectric properties of nanosized Cu doped Mg-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Yadav, Anand; Rajpoot, Rambabu; Dar, M. A.; Varshney, Dinesh

    2016-05-01

    Transition metal Cu2+ doped Mg-Zn ferrite [Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5)] were prepared by sol gel auto combustion (SGAC) method to probe the structural, vibrational and electrical properties. X-ray diffraction (XRD) pattern reveals a single-phase cubic spinel structure without the presence of any secondary phase corresponding to other structure. The average particle size of the parent Mg0.5Zn0.5Fe2O4 is found to be ~29.8 nm and is found to increase with Cu2+ doping. Progressive reduction in lattice parameter of Mg0.5Zn0.5Fe2O4 has been observed due to difference in ionic radii of cations with improved Cu doping. Spinel cubic structure is further confirmed by Raman spectroscopy. Small shift in Raman modes towards higher wave number has been observed in doped Mg-Zn ferrites. The permittivity and dielectric loss decreases at lower doping and increases at higher order doping of Cu2+.

  5. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  6. Temperature dependence of the magnetic and electrical properties of Permalloy/gadolinium/Permalloy thin films

    NASA Astrophysics Data System (ADS)

    Ranchal, R.; Aroca, C.; Maicas, M.; López, E.

    2007-09-01

    The magnetic and electrical properties of Permalloy/gadolinium/Permalloy (Py/Gd/Py) trilayers have been studied as a function of temperature by using vibrating sample magnetometer and transport measurements with current in plane configuration. The observed dependence of the magnetic moment with temperature can be explained by a paramagnetic contribution. Electrical measurements show that this contribution is originated by the formation of Gd1-xNix alloys at the Py/Gd interfaces because of the Ni diffusion. Despite the Ni diffusion, we find no evidence of amorphization from either the Py layer or the Py/Gd interfaces. We also obtain the Curie temperature of the Gd1-xNix alloys by the position of inflexion points in the resistance versus temperature curve.

  7. Size-dependent characterization of embedded Ge nanocrystals: Structural and thermal properties

    NASA Astrophysics Data System (ADS)

    Araujo, L. L.; Giulian, R.; Sprouster, D. J.; Schnohr, C. S.; Llewellyn, D. J.; Kluth, P.; Cookson, D. J.; Foran, G. J.; Ridgway, M. C.

    2008-09-01

    A combination of conventional and synchrotron-based techniques has been used to characterize the size-dependent structural and thermal properties of Ge nanocrystals (NCs) embedded in a silica (a-SiO2) matrix. Ge NC size distributions with four different diameters ranging from 4.0 to 9.0 nm were produced by ion implantation and thermal annealing as characterized with small-angle x-ray scattering and transmission electron microscopy. The NCs were well represented by the superposition of bulklike crystalline and amorphous environments, suggesting the formation of an amorphous layer separating the crystalline NC core and the a-SiO2 matrix. The amorphous fraction was quantified with x-ray-absorption near-edge spectroscopy and increased as the NC diameter decreased, consistent with the increase in surface-to-volume ratio. The structural parameters of the first three nearest-neighbor shells were determined with extended x-ray-absorption fine-structure (EXAFS) spectroscopy and evolved linearly with inverse NC diameter. Specifically, increases in total disorder, interatomic distance, and the asymmetry in the distribution of distances were observed as the NC size decreased, demonstrating that finite-size effects govern the structural properties of embedded Ge NCs. Temperature-dependent EXAFS measurements in the range of 15-300 K were employed to probe the mean vibrational frequency and the variation of the interatomic distance distribution (mean value, variance, and asymmetry) with temperature for all NC distributions. A clear trend of increased stiffness (higher vibrational frequency) and decreased thermal expansion with decreasing NC size was evident, confirming the close relationship between the variation of structural and thermal/vibrational properties with size for embedded Ge NCs. The increase in surface-to-volume ratio and the presence of an amorphous Ge layer separating the matrix and crystalline NC core are identified as the main factors responsible for the observed

  8. Time-Dependent Interfacial Properties and DNAPL Mobility

    SciTech Connect

    Tuck, D.M.

    1999-03-10

    Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.

  9. Process depending morphology and resulting physical properties of TPU

    SciTech Connect

    Frick, Achim Spadaro, Marcel

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  10. Process depending morphology and resulting physical properties of TPU

    NASA Astrophysics Data System (ADS)

    Frick, Achim; Spadaro, Marcel

    2015-12-01

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  11. Structural, electronic and vibrational properties of few-layer 2H- and 1T-TaSe2

    PubMed Central

    Yan, Jia-An; Cruz, Mack A. Dela; Cook, Brandon; Varga, Kalman

    2015-01-01

    Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first- principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as the phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra. PMID:26568454

  12. Structural, electronic and vibrational properties of few-layer 2H- and 1T-TaSe2.

    PubMed

    Yan, Jia-An; Cruz, Mack A Dela; Cook, Brandon; Varga, Kalman

    2015-01-01

    Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first- principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as the phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra. PMID:26568454

  13. Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe2

    DOE PAGESBeta

    Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; Varga, Kalman

    2015-11-16

    Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as the phononmore » dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.« less

  14. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling?

    NASA Astrophysics Data System (ADS)

    Johnston, Clifford T.; Swanson, Basil I.

    1985-03-01

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.

  15. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Faraji Oskouie, M.; Gholami, R.

    2016-01-01

    In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.

  16. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhua; Sun, Jie; Li, Jianfeng

    2014-12-01

    Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La2O3 mixed powder. The effect of La2O3 on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La2O3 on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La2O3 content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La2O3 are improved significantly; and (c) the machining vibrations of laser cladding layer with La2O3 are obviously reduced and the chatter is effectively avoided occurring.

  17. Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules

    SciTech Connect

    Li, C.; Ru, C.Q. . E-mail: c.ru@ualberta.ca; Mioduchowski, A.

    2006-10-27

    Unexplained length-dependence of flexural rigidity and Young's modulus of microtubules is studied using an orthotropic elastic shell model. It is showed that vibration frequencies and buckling load predicted by the accurate orthotropic shell model are much lower than that given by the approximate isotropic beam model for shorter microtubules, although the two models give almost identical results for sufficiently long microtubules. It is this inaccuracy of the isotropic beam model used by all previous researchers that leads to reported lower flexural rigidity and Young's modulus for shorter microtubules. In particular, much lower shear modulus and circumferential Young's modulus, which only weaken flexural rigidity of shorter microtubules, are responsible for the observed length-dependence of the flexural rigidity. These results confirm that longitudinal Young's modulus of microtubules is length-independent, and the observed length-dependence of the flexural rigidity and Young's modulus is a result of strongly anisotropic elastic properties of microtubules which have a length-dependent weakening effect on flexural rigidity of shorter microtubules.

  18. Structural stability, vibrational, and bonding properties of potassium 1, 1′-dinitroamino-5, 5′-bistetrazolate: An emerging green primary explosive

    SciTech Connect

    Yedukondalu, N.; Vaitheeswaran, G.

    2015-08-14

    Potassium 1,1′-dinitroamino-5,5′-bistetrazolate (K{sub 2}DNABT) is a nitrogen rich (50.3% by weight, K{sub 2}C{sub 2}N{sub 12}O{sub 4}) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K{sub 2}DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (bdependent structural properties. The predicted equilibrium bulk modulus reveals that K{sub 2}DNABT is softer than toxic lead azide and harder than the most sensitive cyanuric triazide. A complete assignment of all the vibrational modes has been made and compared with the available experimental results. The calculated zone center IR and Raman frequencies show a blue-shift which leads to a hardening of the lattice upon compression. In addition, we have also calculated the electronic structure and absorption spectra using recently developed Tran Blaha-modified Becke Johnson potential. It is found that K{sub 2}DNABT is a direct band gap insulator with a band gap of 3.87 eV and the top of the valence band is mainly dominated by 2p-states of oxygen and nitrogen atoms. K{sub 2}DNABT exhibits mixed ionic (between potassium and tetrazolate ions) and covalent character within tetrazolate molecule. The presence of ionic bonding suggests that the investigated compound is relatively stable and insensitive than covalent primaries. From the calculated absorption spectra, the material is found to decompose under ultra-violet light irradiation.

  19. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    PubMed

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-01

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. PMID:25498827

  20. FT-IR, FT-Raman, UV-Visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol

    NASA Astrophysics Data System (ADS)

    Chain, Fernando E.; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A.

    2015-03-01

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G∗ basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated 1H NMR and 13C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations.

  1. Models for predicting temperature dependence of material properties of aluminum

    NASA Astrophysics Data System (ADS)

    Marla, Deepak; Bhandarkar, Upendra V.; Joshi, Suhas S.

    2014-03-01

    A number of processes such as laser ablation, laser welding, electric discharge machining, etc involve high temperatures. Most of the processes involve temperatures much higher than the target melting and normal boiling point. Such large variation in target temperature causes a significant variation in its material properties. Due to the unavailability of experimental data on material properties at elevated temperatures, usually the data at lower temperatures is often erroneously extrapolated during modelling of these processes. Therefore, this paper attempts to evaluate the variation in material properties with temperature using some general and empirical theories, along with the available experimental data for aluminum. The evaluated properties of Al using the proposed models show a significant variation with temperature. Between room temperature and near-critical temperature (0.9Tc), surface reflectivity of Al varies from more than 90% to less than 50%, absorption coefficient decreases by a factor of 7, thermal conductivity decreases by a factor of 5, density decreases by a factor of 4, specific heat and latent heat of vapourization vary by a factor between 1.5 and 2. Applying these temperature-dependent material properties for modelling laser ablation suggest that optical properties have a greater influence on the process than thermophysical properties. The numerical predictions of the phase explosion threshold in laser ablation are within 5% of the experimental values.

  2. Determining the frequency dependence of elastic properties of fractured rocks

    NASA Astrophysics Data System (ADS)

    Ahrens, Benedikt; Renner, Jörg

    2016-04-01

    In the brittle crust, rocks often contain joints or faults on various length scales that have a profound effect on fluid flow and heat transport, as well as on the elastic properties of rocks. Improving the understanding of the effect of fractures and the role of stress state and heterogeneity along the fractures on elastic properties of rocks is potentially important for the characterization of deep geothermal reservoirs. Seismic surveys, typically covering a frequency range of about 1 to 1000 Hz, are a valuable tool to investigate fractured rocks but the extraction of fracture properties remains difficult. The elementary frequency-dependent interaction between fractured rock matrix and viscous pore fluids and the resulting effects on wave propagation require well-founded dispersion analyses of heterogeneous rocks. In this laboratory study, we investigate the stress dependence of the effective elastic properties of fractured reservoir rocks over a broad frequency range. To assess the effect of faults on the effective elastic properties, we performed cyclic axial loading tests on intact and fractured samples of Solnhofen limestone and Padang granodiorite. The samples contained an idealized fault, which was created by stacking two sample discs on top of each other that experienced various surface treatments to vary their roughness. The dynamic loading tests were conducted with frequencies up to 10 Hz and amplitudes reaching 10% of the statically applied stress. Simultaneously, P- and S-wave measurements were performed in the ultrasonic frequency range (above 100 kHz) with a total of 16 sensors, whose positioning above and below the samples guarantees a wide range of transmission and reflection angles. Preliminary results of static and dynamic elastic properties of intact Padang granodiorite show a pronounced increase in Young's moduli and Poisson's ratio with increasing axial stress. Stress relaxation is accompanied by a decrease of the modulus and the Poisson

  3. Feasibility of controlling speed-dependent low-frequency brake vibration amplification by modulating actuation pressure

    NASA Astrophysics Data System (ADS)

    Sen, Osman Taha; Dreyer, Jason T.; Singh, Rajendra

    2014-12-01

    In this article, a feasibility study of controlling the low frequency torque response of a disc brake system with modulated actuation pressure (in the open loop mode) is conducted. First, a quasi-linear model of the torsional system is introduced, and analytical solutions are proposed to incorporate the modulation effect. Tractable expressions for three different modulation schemes are obtained, and conditions that would lead to a reduction in the oscillatory amplitudes are identified. Second, these conditions are evaluated with a numerical model of the torsional system with clearance nonlinearity, and analytical solutions are verified in terms of the trends observed. Finally, a laboratory experiment with a solenoid valve is built to modulate actuation pressure with a constant duty cycle, and time-frequency domain data are acquired. Measurements are utilized to assess analytical observations, and all methods show that the speed-dependent brake torque amplitudes can be altered with an appropriate modulation of actuation pressure.

  4. Temperature-dependent study of vibration and polymorphism of oligoacenes and their derivatives

    NASA Astrophysics Data System (ADS)

    Ren, Zhongqiao; McNeil, Laurie; Kloc, Christian

    2008-10-01

    Raman measurements have been performed on a series of oligoacenes and their derivatives (anthracene, tetracene, pentacene and diphenyl-anthracene, rubrene) in a wide temperature range (50-300K). It has been observed that different phases co-exist in several of these crystals depending on sample preparation and history, and that transitions between polymorphs can be observed as a function of temperature. Comparisons among crystals with similar molecular structure will be made to clarify the changes in the inter- and intra-molecular modes as the structure changes with temperature. Simulated calculations of the inter-molecular modes between multiple molecules, and the intra-molecular modes of the isolated molecules will also be presented.

  5. a Body Mass Dependent Mechanical Impedance Model for Applications in Vibration Seat Testing

    NASA Astrophysics Data System (ADS)

    BOILEAU, P.-É.; RAKHEJA, S.; WU, X.

    2002-05-01

    A three degree-of-freedom model is proposed to predict the biodynamic responses of the seated human body of different masses. A baseline model is initially derived to satisfy both the mean apparent mass and seat-to-head transmissibility responses proposed in ISO/DIS 5982:2000 applicable for mean body mass of 75 kg. The validity of the resultant generic mass dependent model is verified by comparing the apparent mass and driving-point mechanical impedance responses computed for total body masses of 55, 75 and 90 kg with the range of idealized values proposed for body masses within the 49-93 kg range. Considering the lack of data that could be found to define the apparent mass/mechanical impedance of subjects with different body masses when applying the experimental conditions defined in ISO/DIS 5982:2000, an attempt is made to adapt the parameters of the base model to fit the measured apparent mass data applicable to groups of automobile occupants within different mass ranges. This is achieved through constrained parametric optimization which consists of minimizing the sum of squared errors between the computed response and the mean apparent mass data measured for automobile occupants within four mass groups: less than 60 kg, 60·5-70·5 kg, 70·5-80 kg and above 80 kg. The results show a reasonably good agreement between the model responses and the measured apparent mass data, particularly at frequencies below 10 Hz. The results suggest that the proposed mass dependent model can effectively predict the apparent mass responses of automobile occupants over a wide range of body masses and for two different postures: passenger (hands-in-lap) and driver (hands-on-steering wheel) postures.

  6. Room temperature structure vibrational and dielectric properties of Ho modified YMnO3

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Sharma, Poorva; Kumar, Ashwini

    2015-07-01

    The structural, vibrational, and dielectric properties of bulk Ho-doped Y1-xHoxMnO3 (x = 0, 0.03, 0.05) solids prepared by standard solid-state reaction route were investigated. X-ray diffraction (XRD) patterns confirmed the hexagonal P63cm structure of Y1-xHoxMnO3 (x = 0.0, 0.03, 0.05) ceramics. Rietveld refinements of XRD data revealed that the doping ions led to unit cell contraction in three directions due to nearly equal ionic radii of Ho3+ ion (0.901 Å) substituted at the Y-site ion. The grain size of Ho-doped solids varied from 5 to 10 μm. For pristine h-YMnO3, the experimentally observed Raman scattering lines at around 151, 305, 460, and 682 cm-1 are of A1 symmetry, those at 410 cm-1 are of E1 symmetry, and the lines at 139 and 219 cm-1 are of E2 symmetry. Another interesting observation is the existence of an A1 line at 682 cm-1 and an E1 line at about 410 cm-1 which are much stronger than the remaining lines of A1 and E1 symmetries, respectively. The high value of dielectric constant and dielectric loss tangent at low frequency is explained by space charge polarization and the saturation in the high-frequency region is due to the electric dipoles not being in pace with the frequency of the applied electric field.

  7. Change in the vibrational properties of bulk metal glass with time

    NASA Astrophysics Data System (ADS)

    Wen, P.; Johari, G. P.; Wang, R. J.; Wang, W. H.

    2006-06-01

    The velocity of ultrasonic longitudinal and transverse waves in Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metal glass has been measured at 298K after its annealing for different times at 523K , a temperature 97K below its apparent Tg . Elastic constants and vibrational contribution to thermodynamic properties have also been determined. At 298K , the normalized value of the instantaneous bulk and shear moduli, K and G , increases with the annealing time, t , according to the relation [1-exp-(kt)n] with k=7.4×10-6s , n=0.5 . It is found that K(t)=a+bG(t) , where a and b are constants. In terms of a recent model for viscous flow, an extrapolated increase in G with t corresponds to an approximate three-fold increase in viscosity and 5% decrease in the mean-square atomic displacement at 298K . The increase in K and G corresponds to a 2.4% increase in the Debye frequency, and 0.3% and 2.4% decrease, respectively, in the Debye heat capacity and entropy, and 0.86% increase in the Debye energy. The Poisson’s ratio decreases with t , i.e., the glass becomes laterally stiffer. The K(t)=a+bG(t) relation is consistent with a relation obtained for Lennard-Jones interactions. In the potential energy landscape paradigm, annealing appears to shift the state point of a glass to a deeper and more-curved minimum.

  8. Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires

    NASA Astrophysics Data System (ADS)

    Zuev, Yuri; Lee, Jin Sook; Park, Hongkun; Kim, Philip

    2010-03-01

    We report measurements of electronic, thermoelectric, and galvanometric properties of individual semimetallic single crystal antimony telluride (Sb2Te3) nanowires. Microfabricated heater and thermometer electrodes were used to probe the transport properties of the nanowires with diameters in the range of 22 - 95nm and temperatures in the range of 2 - 300K. Temperature dependent resistivity varies depending on nanowire diameter. Thermoelectric power (TEP) measurements indicate hole dominant diffusive thermoelectric generation, with an enhancement of the TEP for smaller diameter wires. The large surface-to-volume ratio of Sb2Te3 nanowires makes them an excellent platform to explore novel phenomena in this predicted topological insulator. We investigate mesoscopic magnetoresistance effects in magnetic fields both parallel and perpendicular to the nanowire axis.

  9. Colloidal Gold Nanocups with Orientation-Dependent Plasmonic Properties.

    PubMed

    Jiang, Ruibin; Qin, Feng; Liu, Yejing; Ling, Xing Yi; Guo, Jun; Tang, Minghua; Cheng, Si; Wang, Jianfang

    2016-08-01

    Colloidal gold nanocups are synthesized through single-vertex-initiated gold deposition on PbS nanooctahedrons and subsequent selective dissolution of the PbS component. They possess strong magnetic plasmon resonance and exhibit remarkable orientation-dependent plasmonic properties when deposited on flat substrates. They can also effectively couple s-polarized light into the interfacial region between the nanocup and substrate. PMID:27167721

  10. Local Structure and Vibrational Properties of alpha-Pu, alpha-U, and the alpha-U Charge Density Wave

    SciTech Connect

    Nelson, E J; Allen, P G; Blobaum, K M; Wall, M A; Booth, C H

    2004-08-10

    The local atomic environment and vibrational properties of atoms in monoclinic pure {alpha}-plutonium as well as orthorhombic pure {alpha}-uranium and its low-temperature charge-density-wave (CDW) modulation are examined by extended x-ray absorption fine structure spectroscopy (EXAFS). Pu L{sub III}-edge and U L{sub III}-edge EXAFS data measured at low temperatures verify the crystal structures of {alpha}-U and {alpha}-Pu samples previously determined by x-ray diffraction and neutron scattering. Debye-Waller factors from temperature-dependent EXAFS measurements are fit with a correlated Debye model. The observed Pu-Pu bond correlated Debye temperature of {theta}{sub cD}({alpha}-Pu) = 162 {+-} 5 K for the pure {alpha}-Pu phase agrees with our previous measurement of the correlated Debye temperature of the gallium-containing {alpha}'-Pu phase in a mixed phase 1.9 at% Ga-doped {alpha}'-Pu/{delta}-Pu alloy. The temperature dependence of the U-U nearest neighbor Debye-Waller factor exhibits a sharp discontinuity in slope near T{sub CDW} = 43 K, the transition temperature at which the charge-density wave (CDW) in {alpha}-U condenses from a soft phonon mode along the (100) direction. Our measurement of the CDW using EXAFS is the first observation of the structure of the CDW in polycrystalline {alpha}-U. The different temperature dependence of the Debye-Waller factor for T < T{sub CDW} can be modeled by the change in bond length distributions resulting from condensation of the charge density wave. For T > T{sub CDW}, the observed correlated Debye temperature of {theta}{sub cD}({alpha}-U) = 199 {+-} 3 K is in good agreement with other measurements of the Debye temperature for polycrystalline {alpha}-U. CDW structural models fit to the {alpha}-U EXAFS data support a squared CDW at the lowest temperatures, with a displacement amplitude of {var_epsilon} = 0.05 {+-} 0.02 {angstrom}.

  11. Local structure and vibrational properties of alpha-Pu, alpha-Uand the alpha-U charge density wave

    SciTech Connect

    Nelson, E.J.; Allen, P.G.; Blobaum, K.J.M.; Wall, W.A.; Booth, C.H.

    2004-08-10

    The local atomic environment and vibrational properties of atoms in monoclinic pure {alpha}-plutonium as well as orthorhombic pure a-uranium and its low-temperature charge-density-wave (CDW) modulation are examined by extended x-ray absorption fine structure spectroscopy (EXAFS). Pu L{sub III}-edge and U L{sub III}-edge EXAFS data measured at low temperatures verify the crystal structures of {alpha}-U and {alpha}-Pu samples previously determined by x-ray diffraction and neutron scattering. Debye-Waller factors from temperature-dependent EXAFS measurements are fit with a correlated Debye model. The observed Pu-Pu bond correlated Debye temperature of {theta}{sub cD}({alpha}-Pu) = 162 {+-} 5 K for the pure {alpha}-Pu phase agrees with our previous measurement of the correlated Debye temperature of the gallium-containing {alpha}{prime}-Pu phase in a mixed phase 1.9 at% Ga-doped {alpha}{prime}-Pu/{delta}-Pu alloy. The temperature dependence of the U-U nearest neighbor Debye-Waller factor exhibits a sharp discontinuity in slope near T{sub CDW} = 43 K, the transition temperature at which the charge-density wave (CDW) in {alpha}-U condenses from a soft phonon mode along the (100) direction. Our measurement of the CDW using EXAFS is the first observation of the structure of the CDW in polycrystalline {alpha}-U. The different temperature dependence of the Debye-Waller factor for T < T{sub CDW} can be modeled by the change in bond length distributions resulting from condensation of the charge density wave. For T > T{sub CDW}, the observed correlated Debye temperature of {theta}{sub cD}({alpha}-U) = 199 {+-} 3 K is in good agreement with other measurements of the Debye temperature for polycrystalline {alpha}-U. CDW structural models fit to the {alpha}-U EXAFS data support a squared CDW at the lowest temperatures, with a displacement amplitude of {var_epsilon} = 0.05 {+-} 0.02 {angstrom}.

  12. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-01-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature (T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  13. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  14. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles

    NASA Astrophysics Data System (ADS)

    Mohamad, N.; Mazlan, S. A.; Ubaidillah; Choi, Seung-Bok; Nordin, M. F. M.

    2016-09-01

    This paper presents dynamic viscoelastic properties of magnetorheological (MR) grease under variation of magnetic fields and magnetic particle fractions. The tests to discern the field-dependent properties are undertaken using both rotational and oscillatory shear rheometers. As a first step, the MR grease is developed by dispersing the carbonyl iron (CI) particles into grease medium with a mechanical stirrer. Experimental data are obtained by changing the magnetic field from 0 to 0.7 T at room temperature of 25 °C. It is found that a strong Payne effect limits the linear viscoelastic region of MR grease at strains above 0.1%. The results exhibit a high dynamic yield stress which is equivalent to Bingham plastic rheological model, and show relatively good MR effect at high shear rate of 2000 s‑1. In addition, high dispersion of the magnetic particles and good thermal properties are proven. The results presented in this work directly indicate that MR grease is a smart material candidate that could be widely applicable to various fields including vibration control.

  15. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    SciTech Connect

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-21

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  16. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: Electronic and vibrational properties

    NASA Astrophysics Data System (ADS)

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  17. Influence of vibrations and rotations of diatomic molecules on their physical properties: I. Dipole moment and static dipole polarizability

    NASA Astrophysics Data System (ADS)

    Loukhovitski, Boris I.; Sharipov, Alexander S.; Starik, Alexander M.

    2016-06-01

    Electronic dipole moment and static polarizability functions for some diatomic molecules (H2, N2, O2, NO, OH, CO, CH, HF and HCl) that are important for combustion and atmospheric chemistry are calculated by using ab initio methods over a broad range of internuclear distances. Using the ab initio calculated data on the electric properties and potential energy functions, the effective values of dipole moment and static polarizability as well as the energy levels of these molecules in individual vibrational and rotational states until the dissociation threshold are determined. It is revealed that, for the ground electronic states of molecules under study, the excitation of molecule vibrations can affect the averaged dipole moment and static polarizability substantially, whereas the effect of excitation of the rotational states is less pronounced.

  18. Structural and vibrational properties of α-MoO3 from van der Waals corrected density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Ray, Keith G.; Ozolins, Vidvuds; Asta, Mark

    2012-01-01

    Structural and vibrational properties of α-MoO3 are studied employing two recently proposed methodologies for incorporating van der Waals (vdW) contributions in density functional theory (DFT) based calculations. The DFT-D2 [S. Grimme, J. Comput. Chem.JCCHDD0192-865110.1002/jcc.20495 27, 1787 (2006)] and optB88 vdW-DFT [J. Klimeš , J. Phys.: Condens. MatterPRBMDO0953-898410.1088/0953-8984/22/2/022201 22, 022201 (2010)] methods are shown to give rise to increased accuracy in predicted lattice parameters, relative to conventional DFT methods. Calculated vibrational frequencies agree with measurements to within 5% and 10% for modes involving bonded and nonbonded interactions in this compound, respectively.

  19. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gao, Guanghua; Cagin, Tahir; Goddard, William A., III

    1998-09-01

    In this paper, we present extensive molecular mechanics and molecular dynamics studies on the energy, structure, mechanical and vibrational properties of single-wall carbon nanotubes. In our study we employed an accurate interaction potential derived from quantum mechanics. We explored the stability domains of circular and collapsed cross section structures of armchair 0957-4484/9/3/007/img2, zigzag 0957-4484/9/3/007/img3, and chiral 0957-4484/9/3/007/img4 isolated single-walled carbon nanotubes (SWNTs) up to a circular cross section radius of 170 Å. We have found three different stability regions based on circular cross section radius. Below 10 Å radius only the circular cross section tubules are stable. Between 10 and 30 Å both circular and collapsed forms are possible, however, the circular cross section SWNTs are energetically favorable. Beyond 30 Å (crossover radius) the collapsed form becomes favorable for all three types of SWNTs. We report the behavior of the SWNTs with radii close to the crossover radius ((45, 45), (80, 0), (70, 35)) under uniaxial compressive and tensile loads. Using classical thin-plane approximation and variation of strain energy as a function of curvature, we calculated the bending modulus of the SWNTs. The calculated bending moduli are 0957-4484/9/3/007/img5, 0957-4484/9/3/007/img6, and 0957-4484/9/3/007/img7. We also calculated the interlayer spacing between the opposite sides of the tubes and found 0957-4484/9/3/007/img8, 0957-4484/9/3/007/img9, and 0957-4484/9/3/007/img10. Using an enthalpy optimization method, we have determined the crystal structure and Young's modulus of (10,10) armchair, 0957-4484/9/3/007/img11 zigzag and (12, 6) chiral forms (which have similar diameter as (10,10)). They all pack in a triangular pattern in two dimensions. Calculated lattice parameters are 0957-4484/9/3/007/img12, 0957-4484/9/3/007/img13 and 0957-4484/9/3/007/img14. Using the second derivatives of potential we calculated Young's modulus

  20. Temperature Dependence of Electron Drift Velocity and Electron Collision Cross Section Sets for Ground State and Vibrationally Excited State of the CO2 Molecule

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Nakamura, Y.

    1998-10-01

    The electron drift velocity in carbon dioxide was calculated at gas temperatures ranging from 193 to 573 K and at E/N values up to 100 Td, assuming that the gas was a mixture of ground state and vibrationally excited molecules and that the mix-ratio was determined by the gas temperature. The elastic momentum cross sections for the ground and the vibrationally excited molecules used in the present calculation were based on the compilation of Hayashi (1990) and recent experiments of Nakamura (1995) and Strakeljahn (1998). We also assumed that all other inelastic cross sections for the ground and the vibrationally excited molecules were the same (Schulz 1969, Srivastava 1983). The calculated electron drift velocity showed marked temperature dependence which agreed fairly well with the measurement of Elford (1980).

  1. Temperature dependence of thermodynamic and electrical properties of CuIrRhS4

    NASA Astrophysics Data System (ADS)

    Ito, Masakazu; Ebisu, Shuji; Nagata, Shoichi

    2016-05-01

    We have investigated the thermodynamic and electrical properties of spinel CuIrRhS4. The temperature (T) dependence of the electrical resistivity (ρ) shows metallic behaviour defined as ∂ ρ / ∂ T > 0, in the range of 5 ≤ T ≤ 300 K. The T dependence of thermal conductivity, κ(T), has a broad peak resulting from the Umklapp process at 35 K and increases gradually above 80 K with increasing T. κ(T) can be reproduced by the combination of the usual Debye model and the localized-vibrations hopping model. Thermoelectric power, S(T), changes from negative to positive at 32 K and gradually increases with increasing T. The positive value of S(T) is due to carrier diffusion, which shows a hole-like band dispersion at the Fermi level. On the other hand, the negative value originates from phonon drag and variable-range hopping. We also estimated the T dependence of the dimensionless figure of merit, ZT, from ρ(T) , κ(T), and S(T).

  2. Vibrational contributions to the dynamic electric properties of the NaF molecule

    NASA Astrophysics Data System (ADS)

    Pessoa, Renato; Castro, Marcos A.; Amaral, Orlando A. V.; Fonseca, Tertius L.

    2004-11-01

    In this work, we report calculations of the vibrational corrections to the dynamic polarizability and first hyperpolarizability of the NaF molecule performed through the CPHF method. We have considered frequencies varying from 0 to 0.12 hartree. Results obtained show that the zpva contributions are small in comparison with the corresponding electronic contributions. It is shown that both contributions can be well described by quartic polynomial fits. The pv contributions are important on the vibrational range of frequencies but negligible on the visible region, except for βxxz(-ω; ω,0) and βzzz(-ω; ω, 0). A detailed study of the pv contributions over the range of vibrational frequencies, including an electron correlation treatment at the CCSD(T) level, is presented.

  3. Quantum chemical vibrational study, molecular property, FTIR, FT-Raman spectra, NBO, HOMO-LUMO energies and thermodynamic properties of 1-methyl-2-phenyl benzimidazole

    NASA Astrophysics Data System (ADS)

    Karnan, M.; Balachandran, V.; Murugan, M.; Murali, M. K.

    2014-09-01

    The solid phase FT-IR and FT-Raman spectra of 1-methyl-2-phenyl benzimidazole (MPBZ) have been recorded in the condensed state. In this work, experimental and theoretical study on the molecular structure, quantum chemical calculations of energies and vibrational wavenumbers of MPBZ is presented. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311+G(d,p) and 6-311++G(d,p) basis set for optimized geometry and were compared with Fourier transform infrared spectrum (FTIR) in the region of 4000-400 cm-1 and with Fourier transform Raman spectrum in the region of 4000-100 cm-1. Complete vibrational assignments, analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. The study is extended to calculate the HOMO-LUMO energy gap, NBO, mapped molecular electrostatic potential (MEP) surfaces, polarizability, Mulliken charges and thermodynamic properties of the title compound.

  4. The influence of a 5-wk whole body vibration on electrophysiological properties of rat hindlimb spinal motoneurons.

    PubMed

    Baczyk, M; Hałuszka, A; Mrówczyński, W; Celichowski, J; Krutki, P

    2013-06-01

    The study aimed at determining the influence of a whole body vibration (WBV) on electrophysiological properties of spinal motoneurons. The WBV training was performed on adult male Wistar rats, 5 days a week, for 5 wk, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Motoneuron properties were investigated intracellularly during experiments on deeply anesthetized animals. The experimental group subjected to the WBV consisted of seven rats, and the control group of nine rats. The WBV treatment induced no significant changes in the passive membrane properties of motoneurons. However, the WBV-evoked adaptations in excitability and firing properties were observed, and they were limited to fast-type motoneurons. A significant decrease in rheobase current and a decrease in the minimum and the maximum currents required to evoke steady-state firing in motoneurons were revealed. These changes resulted in a leftward shift of the frequency-current relationship, combined with an increase in slope of this curve. The functional relevance of the described adaptive changes is the ability of fast motoneurons of rats subjected to the WBV to produce series of action potentials at higher frequencies in a response to the same intensity of activation. Previous studies proved that WBV induces changes in the contractile parameters predominantly of fast motor units (MUs). The data obtained in our experiment shed a new light to possible explanation of these results, suggesting that neuronal factors also play a substantial role in MU adaptation. PMID:23486208

  5. Prevention of Carbody Vibration of Railway Vehicles Induced by Imbalanced Wheelsets with Displacement-Dependent Rubber Bush

    NASA Astrophysics Data System (ADS)

    Tomioka, Takahiro; Takigami, Tadao; Fukuyama, Atsushi; Suzuki, Takashi

    This paper discusses the issue of carbody excitation of railway vehicles due to rotation of imbalanced wheelsets and proposes a simple and cost-effective countermeasure. The basic mechanisms of the carbody excitation are first described, then a displacement-dependent rubber bush, which is used for the connection between bogie frame and carbody, is proposed. The displacement-dependent property is realized by introducing a small gap between the rubber and the inner fixture, and the transmission of excitation force with high-frequency and small displacement are isolated by the gap. The small gap can be created naturally just by skipping the bonding process of rubber and inner fixture, so it is very simple and cost-effective countermeasure against this issue. The stiffness property can be tailored to meet the requirements from motional properties of the bogie by applying a Finite Element Analysis (FEA). The effectiveness and validity of the displacement-dependent rubber bushes applied for traction links are investigated and confirmed by both numerical calculation and excitation test using a full-scale test vehicle in the rolling stock testing plant.

  6. Measurement of Thermal Dependencies of PBG Fiber Properties

    SciTech Connect

    Laouar, Rachik

    2011-07-06

    Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so called photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air ({gamma}{sub SiO{sub 2}} = 1.19 x 10{sup -6} 1/K, {gamma}{sub air} = -9 x 10{sup -7} 1/K with {gamma} = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k{sub z}) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE{sub 00}), and the experimental demonstration of TM-like mode propagation in the HC-633

  7. Size-dependent pyroelectric properties of gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Wang, Chengyuan

    2016-04-01

    The size scale effect on the pyroelectric properties is studied for gallium nitride (GaN) nanowires (NWs) based on molecular dynamics simulations and the theoretical analysis. Due to the significant influence of the surface thermoelasticity and piezoelectricity at the nanoscale, the pyroelectric coefficient of GaN NWs is found to depend on the cross-sectional size. This size-dependent pyroelectric coefficient of GaN NWs together with the size-dependent dielectric constant reported in our previous study is employed to study the pyroelectric potential of GaN NWs subjected to heating. The results show that the size scale effect is significant for thin NWs (cross-sectional size in nanometers) and may raise the pyroelectric potential of GaN NWs by over 10 times. Such a size scale effect on the pyroelectric properties of NWs originates from the influence of thermoelasticity, piezoelectricity, and dielectricity at the nanoscale and decreases with increasing cross-section of GaN NWs. It is expected that the present study may have strong implication in the field of energy harvesting at the nanoscale, as pyroelectricity offers a new avenue to the design of novel nanogenerators.

  8. Thermodynamic properties and equations of state for Ag, Al, Au, Cu and MgO using a lattice vibrational method

    NASA Astrophysics Data System (ADS)

    Jacobs, M.; Schmid-Fetzer, R.

    2012-04-01

    A prerequisite for the determination of pressure in static high pressure measurements, such as in diamond anvil cells is the availability of accurate equations of state for reference materials. These materials serve as luminescence gauges or as X-ray gauges and equations of state for these materials serve as secondary pressure scales. Recently, successful progress has been made in the development of consistency between static, dynamic shock-wave and ultrasonic measurements of equations of state (e.g. Dewaele et al. Phys. Rev. B70, 094112, 2004, Dorogokupets and Oganov, Doklady Earth Sciences, 410, 1091-1095, 2006, Holzapfel, High Pressure Research 30, 372-394, 2010) allowing testing models to arrive at consistent thermodynamic descriptions for X-ray gauges. Apart from applications of metallic elements in high-pressure work, thermodynamic properties of metallic elements are also of mandatory interest in the field of metallurgy for studying phase equilibria of alloys, kinetics of phase transformation and diffusion related problems, requiring accurate thermodynamic properties in the low pressure regime. Our aim is to develop a thermodynamic data base for metallic alloy systems containing Ag, Al, Au, Cu, Fe, Ni, Pt, from which volume properties in P-T space can be predicted when it is coupled to vibrational models. This mandates the description of metallic elements as a first step aiming not only at consistency in the pressure scales for the elements, but also at accurate representations of thermodynamic properties in the low pressure regime commonly addressed in metallurgical applications. In previous works (e.g. Jacobs and de Jong, Geochim. Cosmochim. Acta, 71, 3630-3655, 2007, Jacobs and van den Berg, Phys. Earth Planet. Inter., 186, 36-48, 2011) it was demonstrated that a lattice vibrational framework based on Kieffer's model for the vibrational density of states, is suitable to construct a thermodynamic database for Earth mantle materials. Such a database aims at

  9. Anisotropic bias dependent transport property of defective phosphorene layer

    PubMed Central

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  10. Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles.

    PubMed

    Hua, Yi; Chandra, Kavita; Dam, Duncan Hieu M; Wiederrecht, Gary P; Odom, Teri W

    2015-12-17

    This Letter reports the shape-dependent third-order nonlinear optical properties of anisotropic gold nanoparticles. We characterized the nonlinear absorption coefficients of nanorods, nanostars, and nanoshells using femtosecond Z-scan measurements. By comparing nanoparticle solutions with a similar linear extinction at the laser excitation wavelength, we separated shape effects from that of the localized surface plasmon wavelength. We found that the nonlinear response depended on particle shape. Using pump-probe spectroscopy, we measured the ultrafast transient response of nanoparticles, which supported the strong saturable absorption observed in nanorods and weak nonlinear response in nanoshells. We found that the magnitude of saturable absorption as well as the ultrafast spectral responses of nanoparticles were affected by the linear absorption of the nanoparticles. PMID:26595327

  11. Temperature-dependent dielectric properties of a thermoplastic gelatin

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Neitzert, Heinz C.; Sorrentino, Andrea

    2016-05-01

    The frequency and the temperature dependence of the dielectric properties of a thermoplastic gelatin based bio-material have been investigated. At lower frequencies the dielectric response is strongly affected by charge carrier accumulation at the electrodes which modifies the dominating hopping conduction mechanism. The variation of the ac conductivity with frequency obeys a Jonscher type power law except for a small deviation in the low frequency range due to the electrode polarization effect. The master curve of the ac conductivity data shows that the conductivity relaxation of the gelatin is temperature independent.

  12. Structure-Dependent Viscoelastic Properties of C(9)-Alkanethiol Monolayers

    SciTech Connect

    Mayer, Thomas M.; Michalske, Terry A.; Shinn, Neal D.

    1999-08-10

    Quartz crystal microbalance techniques and in situ spectroscopic ellipsometry are used to probe the structure-dependent intrinsic viscoelastic properties of self-assembled CH{sub 3}(CH{sub 2}){sub 8}SH alkanethiol monolayer adsorbed from the gas phase onto Au(111)-textured substrates. Physisorbed molecules, mixed chemisorbed-fluid/solid phases and solid-phase domain boundaries make sequentially dominant contributions to the measured energy dissipation in the growing monolayer. Deviations from Langmuir adsorption kinetics reveal a precursor-mediated adsorption channel. These studies reveal the impact of structural heterogeneity in tribological studies of monolayer lubricants.

  13. Electronic and vibrational properties of ultrasmall single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Zhaoming

    A single-walled carbon nanotube (SWCN) is a hollow cylinder of a single shell carbon atoms. The smallest SWCNs that can ever be manipulated are 4 angstroms in diameter, which are grown by pyrolysis of hydrocarbon molecules in one-dimensional channels of zeolite single crystals (Tang, 1998). These carbon nanotubes are mono-sized and parallel in alignment. They offer the opportunity to study the intrinsic anisotropic physical properties of 4 A SWCNs in the form of macroscopic samples. The followed experimental results presented in the thesis are intimately connected with the successful fabrication of 0.4-nm SWCNs. In Chapter 3, I present the measurements of polarized optical absorption spectra. Three possible structures: (5, 0), (4, 2), and (3, 3) contribute to three bands at 1.37, 2.1, and 3.1 eV in optical absorption spectra. The direct correspondence between chiralities and absorption bands is identified by density functional calculations. In Chapter 4, I develop a symmetry-adapted lattice-dynamical model for SWCNs, which can calculate the phonon dispersions efficiently for any nanotube chirality. The model is applicable, but not limited to 0.4-nm SWCNs. The programming codes are included in the Appendix. In Chapter 5, I show that features of the resonant Raman spectrum can be assigned to van Hove singularities in calculated phonon density of states. In the low-frequency region, two peaks at 510 and 550 cm -1 are attributed to the radial breathing modes of the (4, 2) and (5, 0) tubes. After removing the zeolite framework, the radial breathing mode frequencies downshift by ˜10 cm-1. The electronic properties of 0.4-nm SWCNs can be modified by adding electrons one by one to their discrete electronic states through Li doping. In particular, the tube zeolite composite exhibits very high lithium affinity. The Li doped 0.4-nm SWCNs are candidates of high temperature superconductors in view of the superconductivity in pure 0.4-nm SWCNs below 15 K. In Chapter 6, I

  14. Assessment of long-range corrected and conventional DFT functional for the prediction of second - Order NLO properties and other molecular properties of N-(2-cyanoethyl)-N-butylaniline - A vibrational spectroscopy study

    NASA Astrophysics Data System (ADS)

    Anitha, K.; Balachandran, V.

    2015-07-01

    Vibrational spectral analysis and quantum chemical computations based on density functional theory have been performed on the N-(2-cyanoethyl)-N-butylaniline. The geometry, structural properties, intermolecular hydrogen bond, and harmonic vibrational frequencies of the title molecule have been investigated with the help of DFT (B3LYP) and LC-DFT (CAM-B3LYP) method. Molecular electrostatic potential (MEP) have been performed. The various intramolecular interactions have been exposed by natural bond orbital analysis. The distribution of atomic charges and bending of natural hybrid orbitals also reflect the presence of intramolecular hydrogen bonding. Global reactivity and local reactivity descriptors of the title molecule have been calculated. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and low value of energy gap indicated the electron transport in the molecule and thereby NLO activity. The effect of solvent on second-order NLO properties has been studied using polarized continuum model (PCM) in the tetrahydrofuran (THF) solution. The solvent leads to a slight enhancement of the NLO responses for the studied complexes relevant to their NLO responses in gas phase. The electronic absorption spectra were investigated by the TDDFT methods. The frequency-dependent first hyperpolarizabilities of the N-(2-cyanoethyl)-N-butylaniline were also evaluated. The 1H and 13C NMR chemical shifts have been calculated by gauge-indepedent atomic orbital (GIAO) method with B3LYP/6-311++G(d, p) approach.

  15. Shape-dependent light scattering properties of subwavelength silicon nanoblocks.

    PubMed

    Ee, Ho-Seok; Kang, Ju-Hyung; Brongersma, Mark L; Seo, Min-Kyo

    2015-03-11

    We explore the shape-dependent light scattering properties of silicon (Si) nanoblocks and their physical origin. These high-refractive-index nanostructures are easily fabricated using planar fabrication technologies and support strong, leaky-mode resonances that enable light manipulation beyond the optical diffraction limit. Dark-field microscopy and a numerical modal analysis show that the nanoblocks can be viewed as truncated Si waveguides, and the waveguide dispersion strongly controls the resonant properties. This explains why the lowest-order transverse magnetic (TM01) mode resonance can be widely tuned over the entire visible wavelength range depending on the nanoblock length, whereas the wavelength-scale TM11 mode resonance does not change greatly. For sufficiently short lengths, the TM01 and TM11 modes can be made to spectrally overlap, and a substantial scattering efficiency, which is defined as the ratio of the scattering cross section to the physical cross section of the nanoblock, of ∼9.95, approaching the theoretical lowest-order single-channel scattering limit, is achievable. Control over the subwavelength-scale leaky-mode resonance allows Si nanoblocks to generate vivid structural color, manipulate forward and backward scattering, and act as excellent photonic artificial atoms for metasurfaces. PMID:25668601

  16. The dependence of low-energy electron attachment to CF3Br on electron and vibrational energy.

    PubMed

    Marienfeld, S; Sunagawa, T; Fabrikant, I I; Braun, M; Ruf, M-W; Hotop, H

    2006-04-21

    In a joint experimental and theoretical effort, we have studied dissociative electron attachment (DEA) to the CF3Br molecule at electron energies below 2 eV. Using two variants of the laser photoelectron attachment method with a thermal gas target (T(G) = 300 K), we measured the energy dependent yield for Br- formation over the range E = 3-1200 meV with resolutions of about 3 meV (E < 200 meV) and 35 meV. At the onsets for excitation of one and two quanta for the C-Br stretching mode nu3, downward cusps are detected. With reference to the recommended thermal (300 K) attachment rate coefficient k(A)(CF3Br) = 1.4 x 10(-8) cm3 s(-1), absolute cross sections have been determined for Br- formation. In addition, we studied Br- and (CF3Br)Br- formations with a seeded supersonic target beam (10% CF3Br in helium carrier gas, with a stagnation pressure of 1-4 bars and nozzle temperatures of 300 and 600 K) and found prominent structure in the anion yields due to cluster formation. Using the microwave pulse radiolysis swarm technique, allowing for controlled variation of the electron temperature by microwave heating, we studied the dependence of the absolute DEA rate coefficient on the mean electron energy E over the range of 0.04-2 eV at gas temperatures T(G) ranging from 173 to 600 K. For comparison with the experimental results, semiempirical resonance R-matrix calculations have been carried out. The input for the theory includes the known energetic and structural parameters of the neutral molecule and its anion; the parameters of the resonant anion curves are chosen with reference to the known thermal rate coefficient for the DEA process. For the gas temperature T(G) = 300 K, good overall agreement of the theoretical DEA cross section with the experimental results is observed; moreover, rate coefficients for Br- formation due to Rydberg electron transfer, calculated with both the experimental and the theoretical DEA cross sections, are found to agree with the previously

  17. Mechanical properties of fibroblasts depend on level of cancer transformation.

    PubMed

    Efremov, Yu M; Lomakina, M E; Bagrov, D V; Makhnovskiy, P I; Alexandrova, A Y; Kirpichnikov, M P; Shaitan, K V

    2014-05-01

    Recently, it was revealed that tumor cells are significantly softer than normal cells. Although this phenomenon is well known, it is connected with many questions which are still unanswered. Among these questions are the molecular mechanisms which cause the change in stiffness and the correlation between cell mechanical properties and their metastatic potential. We studied mechanical properties of cells with different levels of cancer transformation. Transformed cells in three systems with different transformation types (monooncogenic N-RAS, viral and cells of tumor origin) were characterized according to their morphology, actin cytoskeleton and focal adhesion organization. Transformation led to reduction of cell spreading and thus decreasing the cell area, disorganization of actin cytoskeleton, lack of actin stress fibers and decline in the number and size of focal adhesions. These alterations manifested in a varying degree depending on type of transformation. Force spectroscopy by atomic force microscopy with spherical probes was carried out to measure the Young's modulus of cells. In all cases the Young's moduli were fitted well by log-normal distribution. All the transformed cell lines were found to be 40-80% softer than the corresponding normal ones. For the cell system with a low level of transformation the difference in stiffness was less pronounced than for the two other systems. This suggests that cell mechanical properties change upon transformation, and acquisition of invasive capabilities is accompanied by significant softening. PMID:24530505

  18. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    PubMed Central

    Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  19. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: A Raman scattering and molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2009-12-01

    The low-frequency (ω <400 cm-1) vibrational properties of lysozyme in aqueous solutions of three well-known protecting sugars, namely, trehalose, maltose, and sucrose, have been investigated by means of complementary Raman scattering experiments and molecular dynamics simulations. The comparison of the Raman susceptibility χ″(ω) of lysozyme/water and lysozyme/sugar/water solutions at a concentration of 40 wt % with the χ″ of dry lysozyme suggests that the protein dynamics mostly appears in the broad peak around 60-80 cm-1 that reflects the vibrations experienced by atoms within the cage formed by their neighbors, whereas the broad shoulder around 170 cm-1 mainly stems from the intermolecular O-H⋯O stretching vibrations of water. The addition of sugars essentially induces a significant high frequency shift and intensity reduction of this band that reveal a slowing down of water dynamics and a distortion of the tetrahedral hydrogen bond network of water, respectively. Furthermore, the lysozyme vibrational densities of states (VDOS) have been determined from simulations of lysozyme in 37-60 wt % disaccharide aqueous solutions. They exhibit an additional broad peak around 290 cm-1, in line with the VDOS of globular proteins obtained in neutron scattering experiments. The influence of sugars on the computed VDOS mostly appears on the first peak as a slight high-frequency shift and intensity reduction in the low-frequency range (ω <50 cm-1), which increase with the sugar concentration and with the exposition of protein residues to the solvent. These results suggest that sugars stiffen the environment experienced by lysozyme atoms, thereby counteracting the softening of protein vibrational modes upon denaturation, observed at high temperature in the Raman susceptibility of the lysozyme/water solution and in the computed VDOS of unfolded lysozyme in water. Finally, the Raman susceptibility of sugar/water solutions and the calculated VDOS of water in the

  20. Temperature dependence of optical properties of GaAs

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.; Woollam, John A.

    1991-01-01

    The effect of temperature on the optical properties of GaAs was investigated using spectroscopic ellipsometry measurements, between room temperature and about 610 C in increments of 50 C, of pseudodielectric functions and related optical constants of GaAs. A quantitative analysis of the pseudodielectric function spectrum was carried out using a harmonic-oscillator approximation (HOA) to fit the measured dielectric functions. Good fits were obtained with this model, which provides a convenient means of reproducing the GaAs dielectric function at any temperature, by using the temperature-dependent oscillator parameters. The HOA analysis also provides information about band-gap variation with temperature. Using the measured optical constants at a number of fixed temperatures, an algorithm was developed for computing the dielectric function spectrum at an arbitrary temperature in the range 22-610 C.

  1. Temperature dependence of the properties of vapor-deposited polyimide

    NASA Astrophysics Data System (ADS)

    Tsai, F. Y.; Blanton, T. N.; Harding, D. R.; Chen, S. H.

    2003-04-01

    The Young's modulus and helium gas permeability of vapor-deposited poly(4,4'-oxydiphenylenepyromellitimide) were measured at cryogenic and elevated temperatures (10-573 K). The Young's modulus decreased with increasing temperature from 5.5 GPa at 10 K to 1.8 GPa at 573 K. The temperature dependency of the permeability followed the Arrhenius' relationship, with different activation energy for permeation for samples imidized under different conditions. The effect of the imidization conditions on the permeation properties could be explained in terms of morphology/crystallinity as determined by x-ray diffraction techniques. Imidizing in air instead of nitrogen increased the permeability while lowering the activation energy for permeation and crystallinity. Imidizing at higher heating rates (in nitrogen) resulted in higher permeability, lower activation energy for permeation, and larger and fewer crystallites with better-aligned lattice planes.

  2. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review

    NASA Astrophysics Data System (ADS)

    Cole, Milton W.; Crespi, Vincent H.; Dresselhaus, Mildred S.; Dresselhaus, Gene; Fischer, John E.; Gutierrez, Humberto R.; Kojima, K.; Mahan, Gerald D.; Rao, Apparao M.; Sofo, Jorge O.; Tachibana, M.; Wako, K.; Xiong, Qihua

    2010-08-01

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C60 and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  3. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.

    PubMed

    Cole, Milton W; Crespi, Vincent H; Dresselhaus, Mildred S; Dresselhaus, Gene; Fischer, John E; Gutierrez, Humberto R; Kojima, K; Mahan, Gerald D; Rao, Apparao M; Sofo, Jorge O; Tachibana, M; Wako, K; Xiong, Qihua

    2010-08-25

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  4. Investigating the Size Dependent Material Properties of Nanoceria

    NASA Astrophysics Data System (ADS)

    Alam, Bushra B.

    Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet defined and one of the limitations has been the challenge of obtaining quantitative measurements of the antioxidant properties. In this work, we create our own library of ceria nanoparticles of various size distributions by two synthesis methods: sol-gel peroxo and thermal decomposition/calcination and annealing in open atmosphere at three different temperatures. The synthesis methods and conditions produce characteristic sizes and morphologies of ceria nanoparticles. Qualitative and quantitative approaches are used for characterization and to predict reactivity. Qualitative approaches include Brunauer-Emmett-Teller (BET) surface area measurements and Raman analysis while quantitative approaches include a combination of powder X-ray diffraction (XRD) Rietveld analysis, Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) to measure crystallite sizes, lattice parameters, oxygen site occupancies, and the relative abundance of Ce(III) ions in a nanoceria sample. These methods are discussed in detail in addition to their limitations and challenges. These methods are used to predict nanocrystalline or bulk-like behavior of ceria nanoparticles. The investigation of the material properties is also extended to test the redox properties of ceria

  5. pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles

    PubMed Central

    Berezin, Mikhail Y.; Kao, Jeff; Achilefu, Samuel

    2010-01-01

    An imidazole moiety is often found as an integral part of fluorophores in a variety of fluorescent proteins and many such proteins possess pH dependent light emission. In contrast, synthetic fluorescent compounds with incorporated imidazoles are rare and have not been studied as pH probes. In this report, the richness of imidazole optical properties, including pH sensitivity, was demonstrated via a novel imidazole-based fluorophore 1H-imidazol-5-yl-vinyl-benz[e]indolium. Three species corresponding to protonated, neutral and deprotonated imidazoles were identified in the broad range of pH 1-12. The absorption and emission bands of each species were assigned by comparative spectral analysis with synthesized mono- and di-N-methylated fluorescent imidazole analogues. pKa analysis in the ground and the excited states showed photoacidic properties of the fluorescent imidazoles due to the excited state proton transfer (ESPT). This effect was negligible for substituted imidazoles. The assessment of a pH sensitive center in the imidazole ring revealed the switching of the pH sensitive centers from 1-N in the ground state to 3-N in the excited state. The effect was attributed to the unique kind of the excited state charge transfer (ESCT) resulting in a positive charge swapping between two nitrogens. PMID:19212987

  6. Temperature dependence of elastic properties in alkali borate binary glasses

    NASA Astrophysics Data System (ADS)

    Kawashima, Mitsuru; Matsuda, Yu; Kojima, Seiji

    2011-05-01

    The elastic properties of alkali borate glasses, xM 2O·(100 - x)B 2O 3 (M = Li, Na, K, Rb, Cs, x = 14, 28), have been investigated by Brillouin scattering spectroscopy from room temperature up to 1100 °C. Above the glass transition temperature, Tg, the longitudinal sound velocity, VL, decreases markedly on heating. Such significant changes of the elastic properties result from the breakdown of the glass network above Tg. Alkali borate family with the same x shows the similar behavior in the temperature variations of VL up to around Tg. The absorption coefficient, αL, increases gradually above Tg. With the increase of the size of an alkali ion, the slope of VL just above Tg decreases. Since the fragility is related to the slope, the present results suggest that the fragility of alkali borate glasses increases as the size of alkali ion decreases. Such an alkali dependence of the fragility is discussed on the basis of the fluctuation of the boron coordination number.

  7. Vibrational properties of Ba8Ga16Sn30 under high pressure

    NASA Astrophysics Data System (ADS)

    Sukemura, T.; Kume, T.; Matsuoka, T.; Sasaki, S.; Onimaru, T.; Takabatake, T.

    2014-05-01

    High-pressure Raman scattering experiments were performed for type-I Sn based clathrates, Ba8Ga16Sn30, at room temperature up to 6.9 GPa. We observed irreversible amorphization at 6 GPa. The rattling vibrations of the guest atoms in the cages were investigated up to 5.8 GPa. Pressure induced evolution of spectral shape of the rattling suggested that the reduction in the cage size causes the displacement of the guest atoms from the off center to the center in the cage.

  8. Diameter Dependent Thermoelectric Properties of Individual SnTe Nanowires

    NASA Astrophysics Data System (ADS)

    Xu, E. Z.; Li, Z.; Martinez, J.; Sinitsyn, N.; Htoon, H.; Li, N.; Swartzentruber, B.; Hollingsworth, J.; Wang, J.; Zhang, S. X.

    2015-03-01

    Tin telluride (SnTe), a newly discovered topological crystalline insulator, has recently been suggested to be a promising thermoelectric material. In this work, we report on a systematic study of the thermoelectric properties of individual single-crystalline SnTe nanowires with different diameters. Measurements of thermopower, electrical conductivity and thermal conductivity were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, we found that the thermopower increases by a factor of two when the nanowire diameter is decreased from 913 nm to 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may be attributed to the enhanced phonon - surface boundary scattering and phonon-defect scattering. We further calculated the temperature dependent figure of merit ZT for each individual nanowire. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). We acknowledge support by the Los Alamos LDRD program.

  9. Thermal dependency of RAG1 self-association properties

    PubMed Central

    De, Pallabi; Zhao, Shuying; Gwyn, Lori M; Godderz, LeAnn J; Peak, Mandy M; Rodgers, Karla K

    2008-01-01

    Background Functional immunoglobulin and T cell receptor genes are produced in developing lymphocytes by V(D)J recombination. The initial site-specific DNA cleavage steps in this process are catalyzed by the V(D)J recombinase, consisting of RAG1 and RAG2, which is directed to appropriate DNA cleavage sites by recognition of the conserved recombination signal sequence (RSS). RAG1 contains both the active site and the RSS binding domains, although RAG2 is also required for DNA cleavage activity. An understanding of the physicochemical properties of the RAG proteins, their association, and their interaction with the RSS is not yet well developed. Results Here, we further our investigations into the self-association properties of RAG1 by demonstrating that despite the presence of multiple RAG1 oligomers, only the dimeric form maintains the ability to interact with RAG2 and the RSS. However, facile aggregation of the dimeric form at physiological temperature may render this protein inactive in the absence of RAG2. Upon addition of RAG2 at 37°C, the preferentially stabilized V(D)J recombinase:RSS complex contains a single dimer of RAG1. Conclusion Together these results confirm that the functional form of RAG1 in V(D)J recombination is in the dimeric state, and that its stability under physiological conditions likely requires complex formation with RAG2. Additionally, in future structural and functional studies of RAG1, it will be important to take into account the temperature-dependent self-association properties of RAG1 described in this study. PMID:18234093

  10. Temperature dependence of the electrical properties of hydrogen titanate nanotubes

    SciTech Connect

    Alves, Diego C. B.; Brandão, Frederico D.; Krambrock, Klaus; Ferlauto, Andre S.; Fonseca, Fabio C.

    2014-11-14

    The temperature dependence of the electrical properties of hydrogen-rich titanate nanotubes (H-TNTs) in the 90–270 °C range was investigated by impedance spectroscopy. Three types of dominant conduction were found which depend on the previous thermal treatment of the samples. For untreated samples, at low temperatures (T < 100 °C), electrical conductivity is relatively high (>10{sup −4} S/cm at T ≈ 90 °C) and is dominated by protonic transport within structural water molecules. For thermal annealing in inert atmosphere up to 150 °C, water molecules are released from the nanotube structure resulting in a dehydrated H{sub 2}Ti{sub 3}O{sub 7} phase. Such phase has a low, thermally-dependent, electrical conductivity (10{sup −8} S/cm at T ≈ 90 °C) with activation energy of 0.68 eV. For samples annealed up to 260 °C, loss of OH groups, and consequent generation of oxygen vacancies, occurs that result in the non-stoichiometric H{sub 2(1−z)}Ti{sub 3}O{sub 7−z} phase. This phase has much higher conductivity (10{sup −5} S/cm at T ≈ 90 °C) and lower associated activation energy (0.40 eV). The generation of oxygen vacancies is confirmed by electron paramagnetic resonance measurements at room temperature, which revealed the presence of single-electron-trapped oxygen vacancies. The activation energy value found is consistent with the thermal ionization energy of the oxygen vacancies. Such defect formation represents the initial stage of the phase transformation from titanate to TiO{sub 2} (B). X-ray diffraction and Raman spectroscopy measurements also support such interpretation.

  11. DEPENDENCE OF BARRED GALAXY FRACTION ON GALAXY PROPERTIES AND ENVIRONMENT

    SciTech Connect

    Lee, Gwang-Ho; Lee, Myung Gyoon; Park, Changbom; Choi, Yun-Young E-mail: mglee@astro.snu.ac.kr E-mail: yy.choi@khu.ac.kr

    2012-02-01

    We investigate the dependence of the occurrence of bars in galaxies on galaxy properties and environment. We use a volume-limited sample of 33,391 galaxies brighter than M{sub r} = -19.5 + 5logh at 0.02 {<=} z {<=} 0.05489, drawn from the Sloan Digital Sky Survey Data Release 7. We classify the galaxies into early and late types, and identify bars by visual inspection. Among 10,674 late-type galaxies with axis ratio b/a > 0.60, we find 3240 barred galaxies (f{sub bar} = 30.4%) which divide into 2542 strong bars (f{sub SB1} = 23.8%) and 698 weak bars (f{sub SB2} = 6.5%). We find that f{sub SB1} increases as u - r color becomes redder and that it has a maximum value at intermediate velocity dispersion ({sigma} {approx_equal}150 km s{sup -1}). This trend suggests that strong bars are dominantly hosted by intermediate-mass systems. Weak bars prefer bluer galaxies with lower mass and lower concentration. In the case of strong bars, their dependence on the concentration index appears only for massive galaxies with {sigma} > 150 km s{sup -1}. We also find that f{sub bar} does not directly depend on the large-scale background density when other physical parameters (u - r color or {sigma}) are fixed. We discover that f{sub SB1} decreases as the separation to the nearest neighbor galaxy becomes smaller than 0.1 times the virial radius of the neighbor regardless of neighbor's morphology. These results imply that strong bars are likely to be destroyed during strong tidal interactions and that the mechanism for this phenomenon is gravitational and not hydrodynamical. The fraction of weak bars has no correlation with environmental parameters. We do not find any direct evidence for environmental stimulation of bar formation.

  12. Stability, diffusivity, and vibrational properties of monatomic and molecular hydrogen in wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Limpijumnong, Sukit; van de Walle, Chris G.

    2003-12-01

    The stability and diffusivity of monatomic (H+ and H-) and molecular (H2) hydrogen in wurtzite GaN are studied via first-principles calculations. Stable configurations are identified and the formation energies are studied as a function of the Fermi level. Diffusion barriers in the direction parallel to [0001] (||c) and perpendicular to [0001] (⊥c) are calculated. For H+ the diffusion barriers are slightly higher than in the zinc-blende phase and modestly anisotropic (0.85 eV ⊥c, 0.94 eV ||c). For H- the diffusion barriers are lower than in zinc-blende GaN, with values of 1.99 eV and 2.17 eV for ||c and ⊥c, respectively. The diffusion barriers for H2 are relatively high (2.0 eV for ||c and 2.2 eV for ⊥c), and we propose that diffusion of H2 is more likely to proceed by dissociation followed by diffusion of monatomic H+. The vibrational frequency of the molecule in wurtzite GaN is redshifted from the free molecule; for wurtzite GaN the frequency is 129 cm-1 lower than in free H2. Finally, we find that the H*2 complex is only slightly higher in energy than interstitial H2, and we calculate its vibrational frequencies.

  13. Calculated and Experimental Vibrational Properties of P700 and the Iron Sulfur Cluster in Photosystem I

    NASA Astrophysics Data System (ADS)

    Lamichhane, Hari; Hastings, Gary

    2009-11-01

    Density functional theory (DFT) based vibrational frequency calculations of Fe4S4(SR)4^n- clusters show that the intense iron-sulfur stretching modes lie in the frequency region between 300-400 cm-1. Among them the iron-sulfur ligand (Fe-S^t) stretching modes are more intense and ˜ 30 cm-1 lower in frequency than the iron-sulfur body (Fe-S^b) stretching modes. Calculations in tetrahydrofuran (THF) show that all these iron-sulfur stretching modes of vibration downshift by ˜ 20 cm-1 upon reduction of the molecule. On the other hand, we have not observed any intense bands from chlorophyll a in the frequency region 400 to 320 cm-1 from the calculations. In an attempt to detect modes associated with iron sulfur clusters in PS I we have obtained light induced (P700^+ - P700) FTIR difference spectra for PSI particles from S. 6803 in the far infrared region. We observe difference bands at many frequencies in the 600-300 cm-1 region. Based on our calculations and literature values we claim that the negative bands at 388 cm-1 and 353 cm-1 in the (P700^+ - P700) FTIR difference spectra be assigned to Fe-S^b and Fe-S^t stretching modes of the ground state of the iron-sulfur cluster FB.

  14. Revealing structural properties of the marine nanolayer from vibrational sum frequency generation spectra

    NASA Astrophysics Data System (ADS)

    Laß, K.; Friedrichs, G.

    2011-08-01

    Natural nanolayers originating from sea surface and subsurface water samples collected in the Baltic Sea have been investigated using surface-sensitive vibrational sum frequency generation (VSFG) spectroscopy. Distinct spectral signatures of CH and OH bond stretch vibrations have been detected at wavenumbers ranging from 2700 to 3900 cm-1. Measured water-air interface spectra as well as observed signal intensity trends are discussed in terms of composition and structure of the natural organic nanolayer. Reasoning was based on the comparison with reference spectra, spectral trends inferred from previous VSFG studies, reported average composition of dissolved organic matter in seawater, and simplified assumption that surfactants can be classified as soluble (wet) and insoluble (dry) surfactants. Wet surfactants have been found to be dominant, and often lipid-like compounds form a very dense surfactant nanolayer. Supported by comparison spectra of xanthan gum solutions, the observed VSFG spectral signatures were tentatively assigned to lipopolysaccharides or other lipid-like compounds embedded in colloidal matrices of polymeric material. In addition, VSFG spectra of a polluted harbor water sample and a water sample covered with diesel oil are reported.

  15. Vibrational Properties of {alpha}- and {sigma}-phase Fe-Cr alloy.

    SciTech Connect

    Dubiel, S. M.; Cieslak, J.; Sturhahn, W.; Sternik, M.; Piekarz, P.; Stankov, S.; Parlinski, K.; AGH Univ. of Science and Technology; Polish Academy of Sciences; Karlsruher Inst. of Tech.

    2010-01-01

    Experimental and theoretical studies, of the Fe-partial phonon density of states (PDOS) for Fe{sub 52.5}Cr{sub 47.5} alloy having {alpha} and {sigma} phases were carried out. The former using the nuclear resonant inelastic x-ray scattering method, and the latter with the direct one. Characteristic features of PDOS, which distinguish one phase from the other, were revealed and successfully reproduced by the theory. Data pertinent to the dynamics such as the Lamb-Moessbauer factor, f, the kinetic energy per atom, E{sub k}, and the mean force constant, D, were directly derived, while vibrational specific heat at constant volume, C{sub V}, and vibrational entropy, S were calculated using the Fe partial PDOS. Based on the values of f and C{sub V}, we determined Debye temperatures, {Theta}{sub D}. An excellent agreement for some quantities derived from experiment and first-principles theory, like C{sub V} and quite good ones for others like D and S were obtained.

  16. Temperature-dependent elastic properties of Ti1-xAlxN alloys

    NASA Astrophysics Data System (ADS)

    Shulumba, Nina; Hellman, Olle; Rogström, Lina; Raza, Zamaan; Tasnádi, Ferenc; Abrikosov, Igor A.; Odén, Magnus

    2015-12-01

    Ti1-xAlxN is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the symmetry imposed force constant temperature dependent effective potential method, which include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C11 decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.

  17. Automated calculation of anharmonic vibrational contributions to first hyperpolarizabilities: Quadratic response functions from vibrational configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Hansen, Mikkel Bo; Christiansen, Ove; Hättig, Christof

    2009-10-01

    Quadratic response functions are derived and implemented for a vibrational configuration interaction state. Combined electronic and vibrational quadratic response functions are derived using Born-Oppenheimer vibronic product wave functions. Computational tractable expressions are derived for determining the total quadratic response contribution as a sum of contributions involving both electronic and vibrational linear and quadratic response functions. In the general frequency-dependent case this includes a new and more troublesome type of electronic linear response function. Pilot calculations for the FH, H2O, CH2O, and pyrrole molecules demonstrate the importance of vibrational contributions for accurate comparison to experiment and that the vibrational contributions in some cases can be very large. The calculation of transition properties between vibrational states is combined with sum-over-states expressions for analysis purposes. On the basis of this some simple analysis methods are suggested. Also, a preliminary study of the effect of finite lifetimes on quadratic response functions is presented.

  18. Vanillin and isovanillin: Comparative vibrational spectroscopic studies, conformational stability and NLO properties by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Balachandran, V.; Parimala, K.

    This study is a comparative analysis of FT-IR and FT-Raman spectra of vanillin (3-methoxy-4-hydroxybenzaldehyde) and isovanillin (3-hydroxy-4-methoxybenzaldehyde). The molecular structure, vibrational wavenumbers, infrared intensities, Raman scattering activities were calculated for both molecules using the B3LYP density functional theory (DFT) with the standard 6-311++G∗∗ basis set. The computed values of frequencies are scaled using multiple scaling factors to yield good coherence with the observed values. The calculated harmonic vibrational frequencies are compared with experimental FT-IR and FT-Raman spectra. The geometrical parameters and total energies of vanillin and isovanillin were obtained for all the eight conformers (a-h) from DFT/B3LYP method with 6-311++G∗∗ basis set. The computational results identified the most stable conformer of vanillin and isovanillin as in the "a" form. Non-linear properties such as electric dipole moment (μ), polarizability (α), and hyperpolarizability (β) values of the investigated molecules have been computed using B3LYP quantum chemical calculation. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.

  19. Crystal structure, vibrational studies, optical properties and DFT calculations of 2-amino-5-diethyl-aminopentanium tetrachlorocadmate (II).

    PubMed

    Baklouti, Yosra; chaari, Najla; Feki, Habib; Chniba-Boudjada, Nassira; Zouari, Fatma

    2015-02-01

    Single crystals of a new organic-inorganic compound (C9H24N2) CdCl4 were grown by the slow evaporation technique and characterized by X-ray diffraction, infrared absorption Raman spectroscopy scattering, optical absorption, differential scanning calorimetry (DSC) analysis and dielectric measurements. The title compound belongs to the orthorhombic space group Pbca with the following unit cell parameters: a=11.397(7), b=13.843(4), c=22.678(5)Å and Z=8. In crystal structure, the tetrachlorocadmate anion is connected to organic cations through N-H⋯Cl hydrogen bonds. Theoretical calculations were performed using density functional theory (DFT) with the B3LYP/LanL2DZ level of theory for studying the molecular structure and vibrational spectra of the title compound. Good consistency is found between the calculated results and the experimental structure, IR, and Raman spectra. The detailed interpretation of the vibrational modes was carried out on the basis on our DFT calculations as primary source of assignment and by comparison with spectroscopic studies of similar compounds. The optical properties were investigated by optical absorption and show three bands at 300, 329 and 513 nm. PMID:25311521

  20. Real-space pseudopotential study of vibrational properties and Raman spectra in Si-Ge core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Bobbitt, N. Scott; Chelikowsky, James R.

    2016-03-01

    We examine the vibrational properties and Raman spectra of Si-Ge core-shell nanostructures using real-space pseudopotentials constructed within density functional theory. Our method uses no empirical parameters, unlike many popular methods for predicting Raman spectra for nanocrystals. We find the dominant features of the Raman spectrum for the Si-Ge core-shell structure to be a superposition of the Raman spectra of the Ge and Si nanocrystals with optical peaks around 300 and 500 cm-1, respectively. We also find a Si-Ge "interface" peak at 400 cm-1. The Ge shell causes the Si core to expand from the equilibrium structure. This strain induces significant redshift in the Si contribution to the vibrational and Raman spectra, while the Ge shell is largely unstrained and does not exhibit this shift. We find that the ratio of peak heights is strongly related to the relative size of the core and shell regions. This finding suggests that Raman spectroscopy may be used to characterize the size of the core and shell in these structures.

  1. Electronic transport and atomic vibrational properties of semiconducting (Mg{sub 2}{sup 119}Sn) thin film.

    SciTech Connect

    Sahoo, B.; Adeagbo, W. A.; Stromberg, F.; Keune, W.; Schuster, E.; Peters, R.; Entel, P.; Luttjohann, S.; Gondorf, A.; Sturhahn, W.; Zhao, J.; Toellner, T.S.; Alp, E.E.; X-Ray Science Division; Univ. of Duisburg-Essen

    2006-12-26

    A polycrystalline Mg{sub 2}Sn thin film has been prepared by thermal co-evaporation in ultrahigh vacuum of Mg and Sn onto a naturally oxidized Si(100) substrate at -140 C. The structure of the sample was characterized by X-ray diffraction (XRD) and {sup 119}Sn conversion electron M{umlt o}ssbauer spectroscopy (CEMS). The semiconducting property of the Mg{sub 2}Sn thin film was confirmed by electrical resistance, magnetoresistance, Hall-effect and infrared spectroscopy measurements, and a value of {approx}0.2 eV was found for the electronic gap energy. The {sup 119}Sn-projected partial vibrational density of states (VDOS), g(E), has been measured by nuclear resonant inelastic X-ray scattering (NRIXS) of 23.878 keV synchrotron radiation. Together with g(E), other thermodynamic quantities such as the probability of recoilless absorption (f-factor), the average kinetic energy per Sn atom, the average force constant, and the vibrational entropy per Sn atom are obtained. The partial VDOS of both elements (Mg and Sn) has been calculated theoretically and reasonable agreement with the measured {sup 119}Sn-projected VDOS is observed. g(E) is characterized by a phonon energy gap ranging from {approx}17 to {approx}21 meV.

  2. Noninvasive Determination of Bone Mechanical Properties Using Vibration Response: A Refined Model and Validation in vivo

    NASA Technical Reports Server (NTRS)

    Roberts, S. G.; Hutchinson, T. M.; Arnaud, S. B.; Kiratli, B. J; Steele, C. R.

    1996-01-01

    Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical response tissue analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(sub MRTA) and theoretical EI values for padded aluminum rods was R(sup 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal bone mineral density (BMD) measurements were also made. The relationship between EI(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(sup 2) = 0.947) and better than that using the older model (R(sup 2) = 0.645). EI(sub MRTA) and BMD are also highly correlated (R(sup 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(sup 2) = 0.915 and R(sup 2) = 0.894, respectively). This is the first biological validation of a non- invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.

  3. Noninvasive Determination of Bone Mechanical Properties using Vibration Response: A Refined Model and Validation in vivo

    NASA Technical Reports Server (NTRS)

    Roberts, S. G.; Hutchinson, T. M.; Arnaud, S. B.; Steele, C. R.; Kiratli, B. J.; Martin, R. B.

    1996-01-01

    Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical Response Tissue Analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(MRTA) and theoretical EI values for padded aluminum rods was R(exp 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal Bone Mineral Density (BMD) measurements were also made. The relationship between E(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(exp 2) = 0.947) and better than that using the older model (R(exp 2) = 0.645). EI(MRTA) and BMD are also highly correlated (R(exp 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(exp 2) = 0.915 and R(exp 2) = 0.894, respectively). This is the first biological validation of a non-invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.

  4. Melting and vibrational properties of planetary materials under deep Earth conditions

    NASA Astrophysics Data System (ADS)

    Jackson, Jennifer

    2013-06-01

    The large chemical, density, and dynamical contrasts associated with the juxtaposition of a liquid iron-dominant alloy and silicates at Earth's core-mantle boundary (CMB) are associated with a rich range of complex seismological features. For example, seismic heterogeneity at this boundary includes small patches of anomalously low sound velocities, called ultralow-velocity zones. Their small size (5 to 40 km thick) and depth (about 2800 km) present unique challenges for seismic characterization and geochemical interpretation. In this contribution, we will present recent nuclear resonant inelastic x-ray scattering measurements on iron-bearing silicates, oxides, and metals, and their application towards our understanding of Earth's interior. Specifically, we will present measurements on silicates and oxide minerals that are important in Earth's upper and lower mantles, as well as iron to over 1 megabar in pressure. The nuclear resonant inelastic x-ray scattering method provides specific vibrational information, e.g., the phonon density of states, and in combination with compression data permits the determination of sound velocities and other vibrational information under high pressure and high temperature. For example, accurate determination of the sound velocities and density of chemically complex Earth materials is essential for understanding the distribution and behavior of minerals and iron-alloys with depth. The high statistical quality of the data in combination with high energy resolution and a small x-ray focus size permit accurate evaluation of the vibrational-related quantities of iron-bearing Earth materials as a function of pressure, such as the Grüneisen parameter, thermal pressure, sound velocities, and iron isotope fractionation quantities. Finally, we will present a novel method detecting the solid-liquid phase boundary of compressed iron at high temperatures using synchrotron Mössbauer spectroscopy. Our approach is unique because the dynamics of

  5. Material properties of femoral cancellous bone in axial loading. Part II: Time dependent properties.

    PubMed

    Zilch, H; Rohlmann, A; Bergmann, G; Kölbel, R

    1980-01-01

    In part I of this communication we reported on some time independent material properties of cancellous bone specimens from different regions of human femora. In part II we will report on our investigations of the time dependent behaviour, i.e. stress relaxation and creep. Cylindrical specimens were obtained from the head and condyles of pairs of cadaveric femora and subjected to axial loading. The data were evaluated statistically. The medianL values for relaxation of cancellous bone were greater in the femoral head than in the condyles, greater proximally than distally and greater medially than laterally in the condyles. The distribution of creep was found to be the reverse. The correlation analysis showed that a linear correlation between compressive strength, apparent density and the time dependent properties cannot be assumed. The time dependent properties reported here would appear to demonstrate the visco-elastic behaviour of cancellous bone. An experimental foundation and explanation is presented for the clinical practice of re-tightening cancellous bone screws one time only. PMID:7458609

  6. Microstructural and vibrational properties of PVT grown Sb2Te3 crystals

    NASA Astrophysics Data System (ADS)

    Kokh, K. A.; Atuchin, V. V.; Gavrilova, T. A.; Kuratieva, N. V.; Pervukhina, N. V.; Surovtsev, N. V.

    2014-01-01

    High-quality Sb2Te3 microcrystals have been grown by the physical vapor transport (PVT) method without using a foreign transport agent. The microcrystals grown under optimal temperature gradient are well facetted and they have dimensions up to ~200 μm. The phase composition of the grown crystals has been identified by the X-ray single crystal structure analysis in space group R-3m, a=4.2706(1), b=30.4758(8) Ǻ, Z=3 (R=0.0286). Raman microspectrometry has been used to describe the vibration parameters of Sb2Te3 microcrystals. The FWHM parameters obtained for representative Raman lines at 69 and 111 cm-1 are as low as 5 and 8.6 cm-1, respectively.

  7. Local vibrational properties of GaAs studied by extended X-ray absorption fine structure.

    PubMed

    Ahmed, S I; Aquilanti, G; Novello, N; Olivi, L; Grisenti, R; Fornasini, P

    2013-10-28

    Extended X-ray absorption fine structure (EXAFS) has been measured at both the K edges of gallium and arsenic in GaAs, from 14 to 300 K, to investigate the local vibrational and thermodynamic behaviour in terms of bond expansion, parallel, and perpendicular mean square relative displacements and third cumulant. The separate analysis of the two edges allows a self-consistent check of the results and suggests that a residual influence of Ga EXAFS at the As edge cannot be excluded. The relation between bond expansion, lattice expansion, and expansion due to anharmonicity of the effective potential is quantitatively clarified. The comparison with previous EXAFS results on other crystals with the diamond or zincblende structure shows that the values of a number of parameters determined from EXAFS are clearly correlated with the fractional ionicity and with the strength and temperature interval of the lattice negative expansion. PMID:24182054

  8. Structural, energetic and vibrational properties of some van der Waals complexes of CO2, OCS and OCSe

    NASA Astrophysics Data System (ADS)

    Ramasami, Ponnadurai; Ford, Thomas A.

    2014-03-01

    As part of a study of the properties of some chalcogen-bonded complexes with NH3, H2O, PH3 and H2S, we have investigated the oxygen-bound species containing CO2, OCS and OCSe by means of molecular orbital calculations at the ab initio level. The structures of the NH3, H2O and PH3 complexes are all similar, with a primary C…X interaction (X = N, O, P) and one of the hydrogen atoms approaching an oxygen atom in a weak secondary attraction. The H2S complexes show a greater variety of alternative structures. The changes in the monomer geometrical parameters, the interaction energies and the harmonic vibrational spectra vary in general in a systematic way as the acid and the base are changed. Deviations from this systematic behaviour have been rationalised.

  9. Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: The role of the potential

    SciTech Connect

    Bauchy, M.

    2014-07-14

    We study a calcium aluminosilicate glass of composition (SiO{sub 2}){sub 0.60}(Al{sub 2}O{sub 3}){sub 0.10}(CaO){sub 0.30} by means of molecular dynamics. To this end, we conduct parallel simulations, following a consistent methodology, but using three different potentials. Structural and elastic properties are analyzed and compared to available experimental data. This allows assessing the respective abilities of the potentials to produce a realistic glass. We report that, although all these potentials offer a reasonable glass structure, featuring tricluster oxygen atoms, their respective vibrational and elastic predictions differ. This allows us to draw some general conclusions about the crucial role, or otherwise, of the interaction potential in silicate systems.

  10. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  11. Soft self-assembled nanoparticles with temperature-dependent properties.

    PubMed

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N

    2016-02-14

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology. PMID:26467391

  12. Radiosensitizing Properties of Bortezomib Depend on Therapeutic Schedule

    SciTech Connect

    Labussiere, Marianne; Pinel, Sophie; Vandamme, Marc; Plenat, Francois; Chastagner, Pascal

    2011-03-01

    Purpose: To investigate the influence of the bortezomib (BTZ) on malignant glioma radiosensitivity in two xenograft models. Methods and Materials: For TCG3 and U87 models, we evaluated the antitumor activity of BTZ, radiotherapy, and BTZ plus radiothearapy according to two therapeutic schedules: a 'nonfractionated' schedule corresponding to a single dose of treatment per week, and a 'fractionated' schedule corresponding to the same weekly dose divided into 5 fractions. Treatments influence on proliferation and apoptosis indexes, cell cycle distribution, and nuclear factor-{kappa}B pathway were explored. Results: The radiosensitizing properties of BTZ observed with the nonfractionated schedule were lost with the fractionated schedule. Bortezomib-mediated radiosensitization was associated with an increased apoptosis response and major changes in cell proliferation, but the nuclear factor-{kappa}B pathway was not involved. Most of the cellular effects induced by BTZ when tumors received a single irradiation were cancelled out if radiotherapy was fractionated. Conclusion: The influence of BTZ on glioma radiosensitivity seems to depend on the treatment fractionation schedule, emphasizing the need to clarify the mechanisms underlying BTZ's radiosensitizing effects before further clinical trials are initiated.

  13. Soft self-assembled nanoparticles with temperature-dependent properties

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N.

    2016-02-01

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology.

  14. Force field dependent solution properties of glycine oligomers

    PubMed Central

    Drake, Justin A.

    2015-01-01

    Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly3 and Gly10 in aqueous solution from all-atom, microsecond MD simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly3 and Gly10 were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g. end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB. PMID:25952623

  15. Force field-dependent solution properties of glycine oligomers.

    PubMed

    Drake, Justin A; Pettitt, B Montgomery

    2015-06-30

    Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly(3) and Gly(10) in aqueous solution from all atom, microsecond molecular dynamics (MD) simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly(3) and Gly(10) were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g., end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB. PMID:25952623

  16. Vibrational and structural properties of amorphous n-butanol: A complementary Raman spectroscopy and X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Hédoux, Alain; Guinet, Yannick; Paccou, L.; Derollez, P.; Danède, F.

    2013-06-01

    Raman spectroscopy and X-ray diffraction experiments were performed in the liquid, undercooled liquid, and glassy states of n-butanol. Clear correlated signatures are obtained below the melting temperature, from both temperature dependences of the low-wavenumber vibrational excitations and the intermediate-range order characterized by a prepeak detected in the different amorphous states. It was found that these features are related to molecular associations via strong hydrogen bonds, which preferentially develop at low temperature, and which are not compatible with the long-range order of the crystal. This study provides information on structural heterogeneities developing in hydrogen-bonded liquids, associated to the undercooled regime and the inherent glass transition. The analysis of the isothermal abortive crystallization, 2 K above the glass transition temperature, has given the opportunity to analyze the early stages of the crystallization and to describe the origin of the frustration responsible for an uncompleted crystallization.

  17. Spectroscopic Studies of the Vibrational and Electronic Properties of Hydrogen at High Pressure-Temperature Conditions

    SciTech Connect

    Goncharov, A F; Gregoryanz, E; Hemley, R J; Mao, H K

    2003-02-04

    The behavior of hydrogen at high densities has been widely explored in recent years both experimentally and theoretically, yielding a wealth of information on the material (e.g., Ref. 1). Detailed information has been obtained from static compression experiments generally limited to low-temperature studies (<300 K) and maximum pressures of {approx}300 GPa (e.g., Refs. [2,3]). However, there are now numerous questions regarding the behavior of hydrogen at high pressures and temperatures, results that have important implications for both fundamental physics and planetary science. We report here [2] Raman scattering and visible to near-infrared absorption spectra of solid hydrogen under static pressure up to 285 GPa at 85-140 K. We obtain pressure dependences of vibron and phonon modes in agreement with previously determined to lower pressures. The results indicate the stability of the ordered molecular phase III to the highest pressure reached and provide constraints on the insulator-to-metal transition pressure. Extrapolations of the vibron and phonon frequencies suggest transformation to a monoatomic state below 495 GPa. On the other hand, considerations of the absorption edge indicate the pressure of metallization at 325-385 GPa on the basis of tentative extrapolation of the direct band gap energy. Although complicated by affects of stressed-induced diamond absorption and possible differences between the behavior of the direct and indirect gap, there appears to be an emerging consistence between various experimental and theoretical results, with a predicted transition at 325-495 GPa. We also report high P-T Raman measurements of solid and fluid hydrogen to above 1100 K and to 155 GPa [4]. These conditions, which were previously inaccessible by static compression experiments, provide new insight into the behavior of the material under extreme conditions. The data give a direct measure of the melting curve (Fig. 1) that extends previous optical investigations by up

  18. Comparative study of time-dependent effects of 4 and 8 Hz mechanical vibration at infrasound frequency on E. coli K-12 cells proliferation.

    PubMed

    Martirosyan, Varsik; Ayrapetyan, Sinerik

    2015-01-01

    The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth. PMID:24725172

  19. The Effects of Strain and Vacancies on the Electric and Vibrational Properties of Ferroelectric BaTiO3 from First-principles

    NASA Astrophysics Data System (ADS)

    Raeliarijaona, Aldo

    Optical and Transverse Optical vibration mode is rigorously defined in this work, and shown to depend on mode mixing. The evolution of important quantities such as dielectric constant is also presented in this work. Finally, the results of investigations on the influence of vacancies on ferroelectric and ferromagnetic properties will be presented in this dissertation. First, the studies of vacancy formation energy are highlighted, which shows the type and charge character of the vacancy that are most likely to occur under any given growth conditions. Afterward, I present the effect of vacancies on polarization and polarization switching in tetragonal BTO, demonstrating the relevance of polarization change in charged polar system, and proposing a method of calculating the polarization and an new polarization-switching pathway in FE BTO in the presence of charged vacancies. Then, I reveal the possibility of vacancy-induced ferromagnetism in BTO, and the microscopic origin of this ferromagnetism.

  20. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Park, Changbom E-mail: cbp@kias.re.k

    2010-09-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z < 0.03 that contain 8904 satellite galaxies. Using this sample, we construct a catalog of 635 satellites associated with 215 host galaxies whose spin directions are determined by our inspection of the SDSS color images and/or by spectroscopic observations in the literature. We divide satellite galaxies into prograde and retrograde orbit subsamples depending on their orbital motion with respect to the spin direction of the host. We find that the number of galaxies in prograde orbit is nearly equal to that of retrograde orbit galaxies: the fraction of satellites in prograde orbit is 50% {+-} 2%. The velocity distribution of satellites with respect to their hosts is found to be almost symmetric: the median bulk rotation of satellites is -1 {+-} 8 km s{sup -1}. It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R < 0.1r{sub vir,host}), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through

  1. Vibrational properties of the amide group in acetanilide: A molecular-dynamics study

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Giansanti, Andrea; Tenenbaum, Alexander

    1987-09-01

    A simplified classical model of acetanilide crystal is built in order to study the mechanisms of vibrational energy transduction in a hydrogen-bonded solid. The intermolecular hydrogen bond is modeled by an electrostatic interaction between neighboring excess charges on hydrogen and oxygen atoms. The intramolecular interaction in the peptide group is provided by a dipole-charge interaction. Forces are calculated up to second-order terms in the atomic displacements from equilibrium positions; the model is thus a chain of nonlinear coupled oscillators. Numerical molecular-dynamics experiments are performed on chain segments of five molecules. The dynamics is ordered, at all temperatures. Energy is widely exchanged between the stretching and the bending of the N-H bond, with characteristic times of the order of 0.2 ps. Energy transduction through the H bond is somewhat slower and of smaller amplitude, and is strongly reduced when the energies of the two bound molecules are very different: This could reduce the dissipation of localized energy fluctuations.

  2. The influence of bearing stiffness on the vibration properties of statically overdetermined gearboxes

    NASA Astrophysics Data System (ADS)

    Razpotnik, M.; Bischof, T.; Boltežar, M.

    2015-09-01

    In the design process of every modern car, the appropriate acoustic behaviour of each integral part is of great importance. This is particularly so for gearboxes. The stiffness of a rolling-element bearing is one of the main contributors to the transmission of vibrations from the interior of the gearbox to the housing. Many methods have been proposed to determine the bearing stiffness; this stiffness is related to the load in a nonlinear way. In this article, a new method for defining the proper bearing stiffness of statically overdetermined gearboxes is proposed. To achieve this an iterative process is conducted, with an initial guess for the loads on the bearings, which provides the initial values for their stiffnesses. The calculated stiffnesses are then inserted into a finite element method (FEM) model of a gearbox, where the new load vectors on the bearings are calculated. The described process runs until the convergence of the loads on the bearings is reached. Afterwards, the frequency-response functions (FRFs) are numerically calculated. As a reference point for our calculations, the measured FRFs are obtained. The measurements were performed on a simple, but statically overdetermined, gearbox with the option for moment adjustments between the two shafts. The calculated results in the form of FRFs are compared with the measurements.

  3. Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry

    SciTech Connect

    Nabeel A. Riza

    2007-03-31

    The goals of the this part of the Continuation Phase 2 period (Oct. 1, 06 to March 31, 07) of this project were to (a) fabricate laser-doped SiC wafers and start testing the SiC chips for individual gas species sensing under high temperature and pressure conditions and (b) demonstrate the designs and workings of a temperature probe suited for industrial power generation turbine environment. A focus of the reported work done via Kar UCF LAMP lab. is to fabricate the embedded optical phase or doped microstructures based SiC chips, namely, Chromium (C), Boron (B) and Aluminum (Al) doped 4H-SiC, and to eventually deploy such laser-doped chips to enable gas species sensing under high temperature and pressure. Experimental data is provided from SiC chip optical response for various gas species such as pure N2 and mixtures of N2 and H{sub 2}, N{sub 2} and CO, N{sub 2} and CO{sub 2}, and N{sub 2} and CH{sub 4}. Another main focus of the reported work was a temperature sensor probe assembly design and initial testing. The probe transmit-receive fiber optics were designed and tested for electrically controlled alignment. This probe design was provided to overcome mechanical vibrations in typical industrial scenarios. All these goals have been achieved and are described in detail in the report.

  4. Temperature Dependence of the Vibrational Relaxation of OH(\\upsilon = 1, 2) by O, O{_2}, and CO{_2}

    NASA Astrophysics Data System (ADS)

    Romanescu, C.; Timmers, H.; Kalogerakis, K. S.; Smith, G. P.; Copeland, R. A.

    2009-06-01

    The hydroxyl radical is a key reactant in the energy budget of the atmospheres of terrestrial planets. In the Earth's upper atmosphere, OH(\\upsilon ≤ 9) is formed by the H + O{_3} reaction. Recently, OH(\\upsilon = 1 and 2) emission has been observed in the atmosphere of Venus. The magnitude of this emission is controlled by the competition between radiative decay and vibrational relaxation by the most abundant collider, CO{_2}. The data needed to model the emission rates of vibrationally excited OH radical include the vibrational quenching rates at temperatures relevant to the planetary atmospheres and the branching ratio between single- and multi- quantum relaxation steps. The latter parameter plays a crucial role in establishing the emission rates, as demonstrated by recent model calculations. Given the importance of rate constants and branching ratios for understanding the behavior of atmospheric OH on both Earth and Venus, we applied a two-laser approach to measure the rate constants for the vibrational relaxation of OH(\\upsilon = 1, 2) by O-atoms, O{_2}, and CO{_2}. In these experiments, ozone is almost completely photolyzed at 248 nm and most of the resulting O(^{1}D) atoms quenched to O(^{3}P) by collisions with N{_2} and CO{_2}. A small fraction of O(^{1}D) reacts with H{_2}O, forming OH(\\upsilon ≤ 2). The temporal evolutions of OH(\\upsilon = 1, 2) are measured using laser induced fluorescence and kinetic simulations are used to extract the rate constants and the relaxation branching ratios. Experiments were performed at temperatures between 210 and 300 K. We find that the collisional removal rate constants for OH(\\upsilon = 2) increase as the temperature decreases. The CO{_2} branching ratio indicates that most of OH(\\upsilon = 2) relaxes to OH(\\upsilon = 1) following collisions with CO{_2}, i.e., the cascading removal pathway is predominant. This work was supported by NASA Geospace Science and Planetary Atmospheres Programs. The participation

  5. Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique

    NASA Astrophysics Data System (ADS)

    Tianmin, Wu; Tianjun, Wang; Xian, Chen; Bin, Fang; Ruiting, Zhang; Wei, Zhuang

    2016-01-01

    We herein review our studies on simulating the thermal unfolding Fourier transform infrared and two-dimensional infrared spectra of peptides. The peptide-water configuration ensembles, required forspectrum modeling, aregenerated at a series of temperatures using the GBOBC implicit solvent model and the integrated tempering sampling technique. The fluctuating vibrational Hamiltonians of the amide I vibrational band are constructed using the Frenkel exciton model. The signals are calculated using nonlinear exciton propagation. The simulated spectral features such as the intensity and ellipticity are consistent with the experimental observations. Comparing the signals for two beta-hairpin polypeptides with similar structures suggests that this technique is sensitive to peptide folding landscapes. Project supported by the National Natural Science Foundation of China (Grant No. 21203178), the National Natural Science Foundation of China (Grant No. 21373201), the National Natural Science Foundation of China (Grant No. 21433014), the Science and Technological Ministry of China (Grant No. 2011YQ09000505), and “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB10040304 and XDB100202002).

  6. Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry

    SciTech Connect

    Nabeel A. Riza

    2006-09-30

    The goals of the Year 2006 Continuation Phase 2 three months period (April 1 to Sept. 30) of this project were to (a) conduct a probe elements industrial environment feasibility study and (b) fabricate embedded optical phase or microstructured SiC chips for individual gas species sensing. Specifically, SiC chips for temperature and pressure probe industrial applications were batch fabricated. Next, these chips were subject to a quality test for use in the probe sensor. A batch of the best chips for probe design were selected and subject to further tests that included sensor performance based on corrosive chemical exposure, power plant soot exposure, light polarization variations, and extreme temperature soaking. Experimental data were investigated in detail to analyze these mentioned industrial parameters relevant to a power plant. Probe design was provided to overcome mechanical vibrations. All these goals have been achieved and are described in detail in the report. The other main focus of the reported work is to modify the SiC chip by fabricating an embedded optical phase or microstructures within the chip to enable gas species sensing under high temperature and pressure. This has been done in the Kar UCF Lab. using a laser-based system whose design and operation is explained. Experimental data from the embedded optical phase-based chip for changing temperatures is provided and shown to be isolated from gas pressure and species. These design and experimentation results are summarized to give positive conclusions on the proposed high temperature high pressure gas species detection optical sensor technology.

  7. Electronic structure and vibrational properties of KRbAl{sub 2}B{sub 2}O{sub 7}

    SciTech Connect

    Atuchin, V.V.; Adichtchev, S.V.; Bazarov, B.G.; Bazarova, Zh.G.; Gavrilova, T.A.; Grossman, V.G.; Kesler, V.G.; Meng, G.S.; Lin, Z.S.; Surovtsev, N.V.

    2013-03-15

    Graphical abstract: With the KRbAl{sub 2}B{sub 2}O{sub 7} powder formed by solid state synthesis (left), Raman spectrum (right upper) and XPS valence electronic states (right lower) were measured, agreed with the first-principles results. Highlights: ► KRbAl{sub 2}B{sub 2}O{sub 7} powder was obtained by solid state synthesis. ► Vibrational properties of KRbAl{sub 2}B{sub 2}O{sub 7} were determined by unpolarized Raman spectrum. ► Electronic structures of KRbAl{sub 2}B{sub 2}O{sub 7} were measured by XPS. ► Experimental electronic structure is consistent with the first-principles result. ► KRbAl{sub 2}B{sub 2}O{sub 7} has a noticeable refractive indices increase and small NLO effects decrease compared to K{sub 2}Al{sub 2}B{sub 2}O{sub 7}. - Abstract: The physical properties of KRbAl{sub 2}B{sub 2}O{sub 7} have been considered in comparison with those of K{sub 2}Al{sub 2}B{sub 2}O{sub 7} and Rb{sub 2}Al{sub 2}B{sub 2}O{sub 7}. The vibrational parameters of KRbAl{sub 2}B{sub 2}O{sub 7} have been measured by Raman spectroscopy as very similar to those of K{sub 2}Al{sub 2}B{sub 2}O{sub 7}. The electronic structures of KRbAl{sub 2}B{sub 2}O{sub 7} have been evaluated by X-ray photoelectron spectroscopy and ab initio computations using CASTEP package. A noticeable refractive indices increase and small decrease of nonlinear optical properties have been found in KRbAl{sub 2}B{sub 2}O{sub 7} in reference to optical parameters of K{sub 2}Al{sub 2}B{sub 2}O{sub 7}.

  8. Dependence of Long Bone Flexural Properties on Bone Mineral Distribution

    NASA Technical Reports Server (NTRS)

    Katz, BethAnn; Cleek, Tammy M.; Whalen, Robert T.; Connolly, James P. (Technical Monitor)

    1995-01-01

    The objective of this study is to assess whether a non-invasive determination of long bone cross-sectional areal properties using bone densitometry accurately estimates true long bone flexural properties. In this study, section properties of two pairs of human female embalmed tibiae were compared using two methods: special analysis of bone densitometry data, and experimental determination of flexural regidities from bone surface strain measurements during controlled loading.

  9. Spectroscopic and theoretical study of the charge transfer interaction effect on the vibrational modes and nonlinear optical properties in L-asparaginium nitrate crystal

    NASA Astrophysics Data System (ADS)

    Elleuch, Nabil; Abid, Younes; Feki, Habib

    2016-09-01

    Single crystals of L-asparaginium nitrate (LAsnN) were grown by slow evaporation technique. To confirm the crystalline nature of the obtained compound, samples were the subject of an XRPD. The density functional theory (DFT) computations were carried out at B3LYP/6-31G (d) level to reach the optimized geometry, the vibrational spectra and the NLO properties. The excellent agreement between simulated and observed vibrational spectra led to a reliable vibrational assignment. To demonstrate the various charge transfer interactions that stabilize the compound and led to the high nonlinear optical activity, NBO analysis was performed. Also, owing to the hydrogen bond formation, a lowering in the HOMO-LUMO energy gap is noticed. Moreover, as a result of the charge transfer interactions, the symmetry of the nitrate ions was lost and some forbidden modes were excited.

  10. Finite element analysis of effective mechanical properties, vibration and acoustic performance of auxetic chiral core sandwich structures

    NASA Astrophysics Data System (ADS)

    Joshi, Hrishikesh Ravindra

    Honeycomb cellular materials are widely used in engineering applications due to their high strength to weight ratio and controllable effective mechanical properties. The effective properties are controlled by varying the geometry of the repetitive unit cells of honeycomb structure. Sandwich panels made of honeycomb cores are beneficial in many applications including vibration isolation and sound transmission reduction. Sandwich panels with standard honeycomb core configurations have previously been studied with regards to sound transmission behavior. It has been established that the auxetic honeycomb cores, having negative in-plane Poisson's ratio, exhibit higher sound transmission loss as compared to regular honeycomb cores. In this study, the vibration and sound transmission response of novel auxetic chiral honeycomb structures (both hexa-chiral and anti-tetra chiral), have been investigated in detail using finite element analysis with two-dimensional plane elasticity elements. Chiral honeycomb structures are made up of a linear tessellation of periodic unit cell, which consists of circular nodes of radius ' r ' connected to each other by tangent ligaments of length ' L '. The distance between two adjacent circular nodes is ' R '. These geometric parameters are tailored to obtain the chiral structure with desired effective mechanical properties of in-plane Poisson's ratio, Young's modulus and shear modulus. Results show that, for both the hexa-chiral and anti-tetra-chiral configurations with same thickness, structures with smaller node radius 'r' have higher in-plane negative Poisson's ratio, effective Young's modulus, and shear modulus. The Poisson's ratio of anti-tetra-chiral structure with small node radius and thickness is found to approach the limit of -1. A steady state dynamic response of the chiral honeycomb sandwich panel subjected to uniform pressure load on the bottom face-sheet is also investigated over a frequency range of 1 Hz to 2000 Hz. It is

  11. Pore-size dependent effects on structure and vibrations of 1-ethyl-3-methylimidazolium tetrafluoroborate in nanoporous carbon

    NASA Astrophysics Data System (ADS)

    Thürmer, Stephan; Kobayashi, Yoshikazu; Ohba, Tomonori; Kanoh, Hirofumi

    2015-09-01

    We report XRD and IR measurements of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) adsorbed in activated carbons, molecular sieving carbon, and single wall carbon nanohorn, where we specifically chose a wide range of pore sizes from 0.5 nm to 2.5 nm. Electron radial distribution function analysis reveals denser packing upon adsorption in two steps, for pore widths larger and comparable to the ion size. Average ion-distance was decreased by 0.05 nm in the latter case. With support of DFT calculations we identify a suppression of specific vibrational modes, which are interpreted as constrainment by the pore walls. Possible consequences for supercapacitor application are discussed.

  12. Licensers and Meanings: Structural Properties of Dependent Indefinites

    ERIC Educational Resources Information Center

    Fitzgibbons, Natalia Viktorovna

    2010-01-01

    This dissertation investigates licensing conditions of dependent indefinite pronouns, such as negative concord items and pronouns that depend on the presence of a c-commanding quantifier. In Chapter 2, I examine freestanding negative concord items in Russian. I provide a novel empirical generalization that freestanding negative concord items…

  13. Structural, electronic, thermodynamical and charge transfer properties of Chloramphenicol Palmitate using vibrational spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Srivastava, Anubha; Sharma, Anamika; Tandon, Poonam; Baraldi, Cecilia; Gamberini, Maria Christina

    2013-01-01

    The global problem of advancing bacterial resistance to newer drugs has led to renewed interest in the use of Chloramphenicol Palmitate (C27H42Cl2N2O6) [Palmitic acid alpha ester with D-threo-(-),2-dichloro-N-(beta-hydroxy-alpha-(hydroxymethyl)-p-nitrophenethyl)acetamide also known as Detereopal]. The characterization of the three polymorphic forms of Chloramphenicol Palmitate (CPP) was done spectroscopically by employing FT-IR and FT-Raman techniques. The equilibrium geometry, various bonding features, and harmonic wavenumbers have been investigated for most stable form A with the help of DFT calculations and a good correlation was found between experimental data and theoretical values. Electronic properties have been analyzed employing TD-DFT for both gaseous and solvent phase. The theoretical calculation of thermodynamical properties along with NBO analysis has also been performed to have a deep insight into the molecule for further applications.

  14. First-principles determination of the structural, vibrational, and thermodynamic properties of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Saidi, Wissam; Wissam Saidi Team

    Intrinsic energy-loss processes in solar cells ultimately increase the operational temperature, which can have profound effect on the power conversion efficiency of solar cells. Here I report investigations on the temperature effects on structural and mechanical properties of CH3NH3PbI3 using well-converged first-principles calculations with van der Waals dispersion corrections. The computed lattice parameters for cubic and tetragonal phases at finite temperature are found within 1% of experimentally measured values. Furthermore, the finite-temperature potential energy surface shows how the mechanical properties of the cubic and tetragonal phases of CH3NH3PbI3 evolve with temperature. Finally, I discuss the implications of these calculations on the nature of the tetragonal-to-cubic phase transition, and show that the underpinnings of this transition can be largely attributed to the phonons associated with methylammonium cations.

  15. Temperature dependence of diffusion properties of soft sticky dipole water

    NASA Astrophysics Data System (ADS)

    Tan, Ming-Liang; Brooks, Bernard R.; Ichiye, Toshiko

    2006-04-01

    The isobaric diffusivities for the soft sticky dipole water model between 230 and 330 K were studied in molecular dynamics simulations using Ewald summations for the long-range interactions. This simple single-point, angularly dependent model with parameters optimized at room temperature reproduces the experimental diffusion rates over a wide range of temperatures better than multi-point models. Its ability to reproduce the unusual temperature dependence of the diffusivities of supercooled water indicates the tetrahedral nature of water is important. Moreover, comparisons with other models indicate more tetrahedral potentials correlate with increasing the so-called Angell critical temperature and decreasing power of the temperature dependence.

  16. Surface coating influence on elastic properties of spruce wood by means of holographic vibration mode visualization

    NASA Astrophysics Data System (ADS)

    Bongova, M.; Urgela, Stanislav

    1999-07-01

    Physicoacoustical properties of wood influenced by surface coating are studied by modal analysis. Resonant spruce plates were coated by stain, nitrocellulose varnish, special violin paint and shellac. The modal testing was performed by electronic speckle pattern interferometry. For this purpose, equipment called VIBROVIZER was used. The collected values of physicoacoustical characteristics (density, Young's modulus, acoustic constant) were compared using the graphic plots of data. The 3D plots help to evaluate wooden plates from a viewpoint of the quality control. This fact offers new opportunity for musical instrument manufacturers.

  17. Thermodynamics of water dimer dissociation in the primary hydration shell of the iodide ion with temperature-dependent vibrational predissociation spectroscopy.

    PubMed

    Wolke, Conrad T; Menges, Fabian S; Tötsch, Niklas; Gorlova, Olga; Fournier, Joseph A; Weddle, Gary H; Johnson, Mark A; Heine, Nadja; Esser, Tim K; Knorke, Harald; Asmis, Knut R; McCoy, Anne B; Arismendi-Arrieta, Daniel J; Prosmiti, Rita; Paesani, Francesco

    2015-03-12

    The strong temperature dependence of the I(-)·(H2O)2 vibrational predissociation spectrum is traced to the intracluster dissociation of the ion-bound water dimer into independent water monomers that remain tethered to the ion. The thermodynamics of this process is determined using van't Hoff analysis of key features that quantify the relative populations of H-bonded and independent water molecules. The dissociation enthalpy of the isolated water dimer is thus observed to be reduced by roughly a factor of three upon attachment to the ion. The cause of this reduction is explored with electronic structure calculations of the potential energy profile for dissociation of the dimer, which suggest that both reduction of the intrinsic binding energy and vibrational zero-point effects act to weaken the intermolecular interaction between the water molecules in the first hydration shell. Additional insights are obtained by analyzing how classical trajectories of the I(-)·(H2O)2 system sample the extended potential energy surface with increasing temperature. PMID:25647222

  18. Temperature dependent structural variations of OH(-)(H2O)n, n = 4-7: effects on vibrational and photoelectron spectra.

    PubMed

    Lin, Ren-Jie; Nguyen, Quoc Chinh; Ong, Yew-Soon; Takahashi, Kaito; Kuo, Jer-Lai

    2015-07-15

    In this work, we identified a large number of structurally distinct isomers of midsized deprotonated water clusters, OH(-)(H2O)n=4-7, using first-principles methods. The temperature dependence of the structural variation in the solvation shell of OH(-) for these clusters was examined under the harmonic superposition approximation. We simulated the vibrational and photoelectron spectra based on these thermodynamic calculations. We found that the isomers with 3-coordinated hydroxide dominate the population in these midsized clusters. Furthermore, an increase in temperature causes a topological change from compact isomers with many intermolecular hydrogen bonds to open isomers with fewer but more directional intermolecular hydrogen bonds. We showed that this evolution in structure can be observed through the change in the vibrational spectra at 3200-3400 cm(-1). In addition, the increase in directional hydrogen bonded isomers, which have outer hydration shell with OH bonds pointing to the hydroxide, causes the vertical detachment energy to increase at higher temperatures. Lastly, we also performed studies to understand the variation in the aforementioned spectral quantities with the variation in the coordination number of the hydroxide. PMID:26134890

  19. A first-principle study of Os-based compounds: Electronic structure and vibrational properties

    NASA Astrophysics Data System (ADS)

    Arıkan, N.; Örnek, O.; Charifi, Z.; Baaziz, H.; Uğur, Ş.; Uğur, G.

    2016-09-01

    The electronic structure, elastic, and phonon properties of OsM (M=Hf, Ti, Y and Zr) compounds are studied using first-principles calculations. Elastic constants of OsY and specific heat capacity of OsM (M=Hf, Ti, Y, and Zr) are reported for the first time. The predicted equilibrium lattice constants are in excellent agreement with experiment. The calculated values of bulk moduli are considerably high but are much smaller than that of Osmium, which is around 400 GPa. The phase stability of the OsM (M=Hf, Ti, Y and Zr) compounds were studied by DOS calculations and the results suggest that OsY is unstable in the B2 phase. The brittleness and ductility properties of OsM (M=Hf, Ti, Y and Zr) are determined. OsM (M=Hf, Ti, Y and Zr) compounds are predicted to be ductile materials. The electronic structure and phonon frequency curves of OsM (M=Hf, Ti, Y and Zr) compounds are obtained. The position of Fermi level of these systems was calculated and discussed in terms of the pseudo gaps. The finite and small DOS at the Fermi level 0.335, 0.375, 1.063, and 0.383 electrons/eV for OsHf, OsTi, OsY, and OsZr, respectively, suggest that OsM (M=Hf, Ti, Y and Zr) compounds are weak metals.

  20. Development of Artificial Neural Network Model for Diesel Fuel Properties Prediction using Vibrational Spectroscopy.

    PubMed

    Bolanča, Tomislav; Marinović, Slavica; Ukić, Sime; Jukić, Ante; Rukavina, Vinko

    2012-06-01

    This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K-nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement. PMID:24061237

  1. Vibrational properties of epitaxial Bi{sub 4}Te{sub 3} films as studied by Raman spectroscopy

    SciTech Connect

    Xu, Hao; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan; Song, Yuxin E-mail: shumin@chalmers.se; Gong, Qian; Lu, Pengfei; Wang, Shumin E-mail: shumin@chalmers.se

    2015-08-15

    Bi{sub 4}Te{sub 3}, as one of the phases of the binary Bi–Te system, shares many similarities with Bi{sub 2}Te{sub 3}, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi{sub 4}Te{sub 3} films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi{sub 4}Te{sub 3} films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi{sub 4}Te{sub 3} films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi{sub 4}Te{sub 3} films, it is found that the Raman-active phonon oscillations in Bi{sub 4}Te{sub 3} films exhibit the vibrational properties of those in both Bi and Bi{sub 2}Te{sub 3} films.

  2. Composition dependence of fluid thermophysical properties: Theory and modeling

    SciTech Connect

    Ely, J.F.

    1993-03-29

    Objectives are studies of equilibrium/nonequilibrium properties of asymmetric fluid mixtures through computer simulation (CS), development of predictive theories of mixture equilibrium properties, development and application of selection algorithm methodology for mixture equations of state, and use of theory to develop new engineering design models for fluid mixtures. Kirwood charging method CS of Lennard-Jones mixtures with large size ratios verified the Kirkwood-Buff/Baxter method of calculating chemical potentials. CS of n-butane showed that the rheology is not a function of system size. A modified stepwise regression algorithm was developed and applied to HFC R134a. An analytical expression was developed for conformal solution size correction for mixtures. The extended corresponding states theory (ECST) can be applied to systems having large polarity differences; an accurate representation was developed of bulk phase properties of water-hydrocarbon systems. It was found how to force ECST to reach the correct virial limit.

  3. Processing dependence of mechanical properties of metallic glass nanowires

    SciTech Connect

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2015-02-16

    Compared to their crystalline counterparts, nanowires made of metallic glass have not only superb properties but also remarkable processing ability. They can be processed easily and cheaply like plastics via a wide range of methods. To date, the underlying mechanisms of how these different processing routes affect the wires' properties as well as the atomic structure remains largely unknown. Here, by using atomistic modeling, we show that different processing methods can greatly influence the mechanical properties. The nanowires made via focused ion beam milling and embossing exhibit higher strength but localized plastic deformation, whereas that made by casting from liquid shows excellent ductility with homogeneous deformation but reduced strength. The different responses are reflected sensitively in the underlying atomic structure and packing density, some of which have been observed experimentally. The presence of the gradient of alloy concentration and surface effect will be discussed.

  4. Controllable Fluids:. the Temperature Dependence of Post-Yield Properties

    NASA Astrophysics Data System (ADS)

    Weiss, Keith D.; Duclos, Theodore G.

    This paper represents the first detailed description of the affect of temperature on the properties exhibited by state-of-the-art electrorheological (ER) and magnetorheological (MR) fluids. In particular, shear stress versus shear strain rate curves, dynamic and static yield stress values, zero-field viscosity data, and current density measurements are discussed. Specific comments concerning the stability of both mechanical and electrical properties over broad temperature ranges are provided. Finally, insight into the advantages associated with using electrorheological and magnetorheological fluids in a controllable device is provided.

  5. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Uğur; Özden, Ayberk; Perkgöz, Nihan K.; Ay, Feridun; Sevik, Cem

    2016-08-01

    MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of {{{M}}}n+1 X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties.

  6. Determination Of Mechanical Property Of Synthetic Rubber Using Optical Mouse As A Vibration Sensor

    NASA Astrophysics Data System (ADS)

    Gupta*, N.; Sharma, M.; Sarangi, S.; Bhattacharyya, R.

    Synthetic rubber is an incompressible isotropic hyper-elastic material. Its mechanical property is described only by rigidity modulus at undeformed configuration which is one third of Young's modulus at the same configuration. This paper describes an indirect method to determine its rigidity modulus by measuring the frequency of oscillation of a loaded rubber string. Small superimposed oscillation at static equilibrium stretch is measured with an optical mouse. The obtained data is processed to determine the frequency of oscillation. This process of acquiring data and processing it to obtain the desired information is known as Data Acquisition. Post processing and interpretation of the signal is done with help of MATLAB. The rigidity modulus of synthetic rubber is thus determined.

  7. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation.

    PubMed

    Yorulmaz, Uğur; Özden, Ayberk; Perkgöz, Nihan K; Ay, Feridun; Sevik, Cem

    2016-08-19

    MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of [Formula: see text] X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties. PMID:27377143

  8. Structural, elastic, electronic, magnetic and vibrational properties of CuCoMnGa under pressure

    SciTech Connect

    İyigör, Ahmet; Uğur, Şule

    2014-10-06

    First principles calculations for the structural, electronic, elastic and phonon properties of the cubic quaternary heusler alloy CuCoMnGa on pressure have been reported by density functional theory (DFT) within generalized gradient approximation (GGA). The calculated values of the elastic constants were used for estimations of the Debye temperatures, the bulk modulus, the shear modulus, the young modulus E, the poisson's ratio σ and the B/G ratio. The elastic constants satisfy all of the mechanical stability criteria. The electronic structures of the ferromagnetic configuration for CuCoMnGa have a metallic character. The estimated magnetic moment per formula unit is 3.76 μ{sub B}. The phonon dispersion is studied using the supercell approach, and the stable nature at 0.2 GPa pressure is observed.

  9. Density-dependent acoustic properties of PBX 9502

    SciTech Connect

    Brown, Geoffrey W; Thompson, Darla G; Deluca, Racci; Hartline, Ernest L; Hagelberg, Stephanie I

    2009-07-31

    We have measured the longitudinal and shear acoustic velocities of PBX 9502 as a function of density for die-pressed samples over the range 1.795 g/cc to 1.888 g/cc. The density dependence of the velocities is linear. Thermal cycling of PBX 9502 is known to induce irreversible volume growth. We have measured this volume growth dependence on density for a subset of the pressed parts and find that the most growth occurs for the samples with lowest initial density. The acoustic velocity changes due to the volume growth are significant and reflect damage in the samples.

  10. Matching properties, and voltage and temperature dependence of MOS capacitors

    NASA Astrophysics Data System (ADS)

    McCreary, J. L.

    1981-12-01

    A technique for designing MOS capacitor arrays is discussed, which includes a method of calculating capacitance ratio errors and subsequent total yield. Data illustrating the sensitivity of the ratio matching to capacitor layout, structures, and technology are presented, and measured voltage coefficients of MOS capacitors as function of surface concentration are compared with the calculated coefficients. It is demonstrated that the temperature dependence of space charge capacitance, thermal expansion, and temperature dependence of the dielectric constant are the major components of the temperature coefficient of capacitance. It is also shown that to a first-order, heavily doped polysilicon accumulates and depletes similar to crystalline silicon.

  11. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    DOE PAGESBeta

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, whichmore » is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.« less

  12. The effects of whole-body vibration exercise on isokinetic muscular function of the knee and jump performance depending on squatting position

    PubMed Central

    Kim, Jaeyuong; Park, Yunjin; Seo, Yonggon; Kang, Gyumin; Park, Sangseo; Cho, Hyeyoung; Moon, Hyunghoon; Kim, Myungki; Yu, Jaeho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of whole-body vibration exercise (WBVE) on isokinetic muscular function of the knee and jump performance depending on different squatting positions. [Subjects] The subjects were 12 healthy adult men who did not exercise regularly between the ages of 27 and 34. [Methods] WBVE was performed with high squat position (SP), middle SP, and low SP. Before and after the intervention, isokinetic muscular function of the knees and jump performance were measured. [Results] Knee flexion peak torque at 60°/s and total work at 180°/s were significantly increased after implementing WBVE. Jump height also significantly increased after completing the exercise at all positions in comparison with the pre-exercise programs. [Conclusion] The results of this study suggest that SP during WBVE is an important factor stimulating positive effects on muscular function. PMID:26957749

  13. The effects of whole-body vibration exercise on isokinetic muscular function of the knee and jump performance depending on squatting position.

    PubMed

    Kim, Jaeyuong; Park, Yunjin; Seo, Yonggon; Kang, Gyumin; Park, Sangseo; Cho, Hyeyoung; Moon, Hyunghoon; Kim, Myungki; Yu, Jaeho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of whole-body vibration exercise (WBVE) on isokinetic muscular function of the knee and jump performance depending on different squatting positions. [Subjects] The subjects were 12 healthy adult men who did not exercise regularly between the ages of 27 and 34. [Methods] WBVE was performed with high squat position (SP), middle SP, and low SP. Before and after the intervention, isokinetic muscular function of the knees and jump performance were measured. [Results] Knee flexion peak torque at 60°/s and total work at 180°/s were significantly increased after implementing WBVE. Jump height also significantly increased after completing the exercise at all positions in comparison with the pre-exercise programs. [Conclusion] The results of this study suggest that SP during WBVE is an important factor stimulating positive effects on muscular function. PMID:26957749

  14. Calculation of the vibrational excited states of malonaldehyde and their tunneling splittings with the multi-configuration time-dependent Hartree method

    NASA Astrophysics Data System (ADS)

    Schröder, Markus; Meyer, Hans-Dieter

    2014-07-01

    We report energies and tunneling splittings of vibrational excited states of malonaldehyde which have been obtained using full dimensional quantum mechanical calculations. To this end we employed the multi configuration time-dependent Hartree method. The results have been obtained using a recently published potential energy surface [Y. Wang, B. J. Braams, J. M. Bowman, S. Carter, and D. P. Tew, J. Chem. Phys. 128, 224314 (2008)] which has been brought into a suitable form by a modified version of the n-mode representation which was used with two different arrangements of coordinates. The relevant terms of the expansion have been identified with a Metropolis algorithm and a diffusion Monte-Carlo technique, respectively.

  15. Does the temperature dependence at constant volume of the hyperfine field of heavy impurities in ferromagnetic metals depend explicitly upon the amplitude of lattice vibrations?

    NASA Astrophysics Data System (ADS)

    Riedi, P. C.; Webber, G. D.

    1983-12-01

    Lattice dynamics seem to have little effect on the temperature dependence of the hyperfine field of pure iron and nickel and of most impurities in these metals but it is shown that Au in iron may be an exception to this rule. The hyperfine fields of other heavy impurities ( FeRu, FeIr, NiPt) were found to have a normal temperature dependence.

  16. Ice Nucleation properties of Air-Plane Soot Surrogates Using Vibrational Micro-spectroscopy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Ismael; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand

    2015-04-01

    microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated. Careful calibration of the sample's surface temperature was performed beforehand while monitoring the deliquescence and efflorescence of micrometer-size NaCl crystals at various temperatures. The ice nucleation potential of different soot surrogates can be studied. A correlation with their physico-chemical properties via FTIR, Raman and mass spectrometry analyses is underway. [1] Anderson et al., Geophys.Res. Lett. 25, 1689-1692, (1998) [2] Hyashida et al. Fuel. 128, 148-154. (2014) [3] Popovicheva & Starik. Atmospheric and Oceanic Physics. 43, 121-141. (2007) [4] Manninen et al. Boreal Environment Research. 19, 383-405. (2014) [5] Hoose & Möhler. Atmospheric Chemistry and Physics. 12, 9817-9854. (2012) [6] Haag et al., Atmos. Chem. Phys., 3, 1791-1806 (2003)

  17. Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagon-bearing isomers of fullerenes C38, C40, and C42

    NASA Astrophysics Data System (ADS)

    Małolepsza, Edyta; Lee, Yuan-Pern; Witek, Henryk A.; Irle, Stephan; Lin, Chun-Fu; Hsieh, Horng-Ming

    The self-consistent-charge density-functional tight-binding (SCC-DFTB) method is employed for computing geometric, electronic, and vibrational properties for various topological isomers of small fullerenes. We consider all pentagon/hexagon-bearing isomers of C38, C40, and C42 as the second part of a larger effort to catalogue the CC distance distributions, valence CCC angle distributions, electronic densities of states (DOSs), vibrational densities of states (VDOSs), and infrared (IR) and Raman spectra for fullerenes C20=C180 [analogous data for C20=C36 were published previously in Małolepsza et al., J Phys Chem A, 2007, 111, 6649]. Common features among the fullerenes are identified and properties characteristic for each specific fullerene cage size are discussed.

  18. Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe2

    SciTech Connect

    Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; Varga, Kalman

    2015-11-16

    Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as the phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.

  19. Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.

    Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical

  20. Structural, vibrational and luminescence properties of the (1−x)CaWO{sub 4}−xCdWO{sub 4} system

    SciTech Connect

    Taoufyq, A.; Guinneton, F.; Valmalette, J-C.; Arab, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; and others

    2014-11-15

    In the present work, we investigate the structural, microstructural, vibrational and luminescence properties of the system (1−x)CaWO{sub 4}−xCdWO{sub 4} with x ranging between 0 and 1. Polycrystalline samples were elaborated using a coprecipitation technique followed by thermal treatment at 1000 °C. The samples were then characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and luminescence analyses. X-ray diffraction profile analyses using Rietveld method showed that two kinds of solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} having scheelite and wolframite structures, with respectively tetragonal and monoclinic crystal cells, were observed, with a biphasic system for compositions x=0.6 and 0.7. The scanning electron microscopy experiments showed a complex evolution of morphologies and crystallite sizes as x increased. The vibration modes of Raman spectra were characteristic of composition-dependent disordered solid solutions with decreasing wavenumbers as x increased. Luminescence experiments were performed under UV-laser light irradiation. The energies of emission bands increased linearly with cadmium composition x. The integrated intensity of luminescence reached a maximum value for the substituted wolframite phase with composition x=0.8. - Graphical abstract: Luminescence on UV excitation (364.5 nm) of (1−x)CaWO{sub 4−x}CdWO{sub 4} system, elaborated from coprecipitation technique at 1000 °C, with 0

  1. Pressure-induced variation of structural, elastic, vibrational, electronic, thermodynamic properties and hardness of Ruthenium Carbides

    NASA Astrophysics Data System (ADS)

    Gopalakrishna Pillai, Harikrishnan; Kulangara Madam, Ajith; Natarajan, Sathish; Chandra, Sharat; Mundachali Cheruvalath, Valsakumar

    2016-07-01

    Three of the five structures obtained from the evolutionary algorithm based structure search of Ruthenium Carbide systems in the stoichiometries RuC, Ru2C and Ru3C are relaxed at different pressures in the range 0-200 GPa and the pressure-induced variation of their structural, elastic, dynamical, electronic and thermodynamic properties as well as hardness is investigated in detail. No structural transition is present for these systems in this pressure range. RuC-Zinc blende is mechanically and dynamically unstable close to 100 GPa. RuC-Rhombohedral and Ru3C-Hexagonal retain mechanical and dynamical stability up to 200 GPa. For all three systems the electronic bands and density of states spread out with pressure and the band gap increases with pressure for the semiconducting RuC-Zinc blende. From the computed IR spectrum of RuC-Zinc blende at 50 GPa it is noted that the IR frequency increases with pressure. Using a semi-empirical model for hardness it is estimated that hardness of all three systems consistently increases with pressure. The hardness of RuC-Zinc blende increases towards the superhard regime up to the limiting pressure of its mechanical stability while that of RuC-Rhombohedral becomes 30 GPa at the pressure of 150 GPa.

  2. Nuclear resonant inelastic x-ray scattering: Methodology and extraction of vibrational properties of minerals

    NASA Astrophysics Data System (ADS)

    Hu, M. Y.; Alp, E. E.; Bi, W.; Sturhahn, W.; Toellner, T. S.; Zhao, J.

    2013-12-01

    Nuclear resonant inelastic x-ray scattering (NRIXS) is a synchrotron radiation based experimental method [1]. Since its introduction almost 20 years ago [2], NRIXS has found an expanding range of applications of studying lattice dynamics in condensed matter physics, materials science, high-pressure research, geosciences, and biophysics. After the first high pressure application in geophysics of measuring sound velocity of iron up to 153 GPa [3], it has become a widely used method to investigate deep earth compositions through sound velocity measurements [4,5]. Thermodynamic properties are also explored, in particular Grueneisen parameters [6]. Later, it was realized that isotope fractionaton factors can be derived from NRIXS measurements [7,8]. Sum rules and moments of NRIXS is a critical part of this methodology [9,10]. We will discuss this and in general the data analysis of NRIXS which enables the above mentioned applications. [1] Alp et al. Hyperfine Interactions 144/145, 3 (2002) [2] Sturhahn et al., PRL 74, 3832 (1995) [3] Mao et al., Science 292, 914 (2001) [4] Hu et al., PRB 67, 094304 (2003) [5] Sturhahn & Jackson, GSA special paper 421 (2007) [6] Murphy et al., Geophys. Res. Lett. 38, L24306 (2011) [7] Polyakov, Science 323, 912 (2009) [8] Dauphas et al., Geochimica et Cosmochimica Acta 94, 254 (2012) [9] Lipkin, PRB 52, 10073 (1995) [10] Hu et al., PRB 87, 064301 (2013)

  3. Ionothermal synthesis, properties and vibrational spectra of zinc (II) complex with nicotinamide.

    PubMed

    Li, Chunyan; Cui, Fenghua; Zhang, Heng; Xuan, Xiaopeng

    2015-01-01

    The zinc (II) complex with nicotinamide, (C₆H₁₁N₂)[ZnBr₃(C₆H₆N₂O)], was prepared under ionothermal condition by using the ionic liquid 1-ethyl-3-methylimidazolium bromide ([EMIM]Br) as a solvent. At the same time, [EMIM]Br also functions as a structure-directing agent, leading to a framework structure different from those obtained by the conventional methods. Single-crystal X-ray analysis revealed that the coordinated compound crystallizes in monoclinic space group P2(1)/c, and the Zn (II) ion is four-coordinated by one pyridine ring N atom and three bromide anions in a slightly distorted tetrahedron arrangement. The [EMIM](+) cations acting as the extra framework charge balancing species occupy the channels of this asymmetric unit. In the crystal structure, intermolecular NH⋯Br and NH⋯O hydrogen bonds link the molecules to form a supramolecular structure. In addition, this compound was further characterized by FT-IR and Raman spectroscopic techniques, and the observed important bands were assigned. Thermogravimetric analysis (TG), Differential Scanning Calorimetry (DSC) and fluorescent properties of solid samples were also studied at room temperature. PMID:25025308

  4. First-principles simulations of vibrational states and spectra for H5(+) and D5(+) clusters using multiconfiguration time-dependent Hartree approach.

    PubMed

    Valdés, Álvaro; Prosmiti, Rita

    2014-02-01

    Simulations of the infrared (IR) spectra of the H5(+) and D5(+) clusters are carried out in the whole energy range, using a recent, reliable "on the fly" DFT-based potential energy surface, and its corresponding dipole moment surface. For the present study we adopted a recently proposed four-dimensional quantum model to describe the proton transfer motion between the two vibrating H2 or D2 units. Time-dependent and time-independent approaches within the multiconfiguration time-dependent Hartree method are employed for investigating the vibrational dynamics of the complexes. The obtained spectra are compared with recent experimental data available for energies up to 4500 and 3500 cm(-1) for the H5(+) and D5(+), respectively. Even though the present results are based on a reduced dimensional model, the infrared spectra are shown to be in good qualitative accord with those observed experimentally. Also as the reported data are subject to the potential energy surface, comparisons with previous theoretical calculations based on an analytical ab initio parameterized surface are also presented. The differences on the topology of the potentials are discussed in connection with their effect on the spectral features. We found that the main characteristics of the experimentally observed spectra are reproduced by both surfaces, evaluating in this way the sensitivity of such computations on the quality of the underlying potential. This finding serves to connect aspects of the potential surface of these systems to their spectral complexity, and could be indicative to calibrate intrinsic errors in their calculation for future studies. PMID:23763866

  5. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    PubMed

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous. PMID:26809017

  6. Void galaxy properties depending on void filament straightness

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-08-01

    We investigate the properties of galaxies belonging to the filaments in cosmic void regions, using the void catalogue constructed by Pan et al. (2012) from the SDSS DR7. To identify galaxy filaments within a void, voids with 30 or more galaxies are selected as a sample. We identify 3172 filaments in 1055 voids by applying the filament finding algorithm utilizing minimal spanning tree (MST) which is an unique linear pattern into which connects all the galaxies in a void. We study the correlations between galaxy properties and the specific size of filament which quantifies the degree of the filament straightness. For example, the average magnitude and the magnitude of the faintest galaxy in filament decrease as the straightness of the filament increases. We also find that the correlations become stronger in rich filaments with many member galaxies than in poor ones. We discuss a physical explanation to our findings and their cosmological implications.

  7. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  8. Temperature dependent mechanical property testing of nitrate thermal storage salts.

    SciTech Connect

    Iverson, Brian DeVon; Broome, Scott Thomas; Siegel, Nathan Phillip

    2010-08-01

    Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts.

  9. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  10. Salt-dependent properties of proteins from extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1974-01-01

    Based on information concerning the interaction of salts and macromolecules the literature of the enzymes of halophilic bacteria and their constituents is examined. Although in halophilic systems the salt requirement of enzyme activity is variable the enzymes investigated show a time-dependent inactivation at lower salt concentrations especially in the absence of salt. The studies described show that in some halophilic systems the effect of salt may be restricted to a small region on the protein molecule. The concept of the hydrophobic bond to consider certain solvent-dependent phenomena is introduced. It is shown that some halophilic enzymes are unable to maintain their structure without the involvement of hydrophobic interactions that are usually not supported by water. A table lists indices of hydrophobicity and polarity for various halophilic and nonhalophilic proteins.

  11. Frequency dependence of viscoelastic properties of medical grade silicones.

    PubMed

    Mahomed, A; Chidi, N M; Hukins, D W L; Kukureka, S N; Shepherd, D E T

    2009-04-01

    Cylinders of medical grade silicone elastomers, (29 mm in diameter and 13 mm thick), immersed in physiological saline solution at 37 degrees C, were investigated by dynamic mechanical analysis (DMA). A sinusoidal cyclic compression of 40 +/- 5 N was applied over a frequency range, f, of 0.02-100 Hz. Values of the storage, E', and loss, E'', moduli for the cylinders were found to depend on f; the dependence of E' or E'' on the logarithm (base 10) of f was represented by a third-order polynomial. Above about 0.3 Hz, the cylindrical specimens appeared to be undergoing the onset of a transition from the rubbery to the glassy state. There was no significant difference between results obtained at 37 and 23 degrees C; pretreatment of specimens in physiological saline at 37 degrees C for 24 h and 29 days had no appreciable effect on the results. PMID:18823017

  12. Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry

    SciTech Connect

    Nabeel A. Riza

    2006-01-26

    The goals of the second six months of the Phase 2 of this project were to conduct first time experimental studies using optical designs and some initial hardware developed in the first 6 months of Phase 2. One focus is to modify the SiC chip optical properties to enable gas species sensing with a specific gas species under high temperature and pressure. The goal was to acquire sensing test data using two example inert and safe gases and show gas discrimination abilities. A high pressure gas mixing chamber was to be designed and assembled to achieve the mentioned gas sensing needs. Another goal was to initiate high temperature probe design by developing and testing a probe design that leads to accurately measuring the thickness of the deployed SiC sensor chip to enable accurate overall sensor system design. The third goal of this phase of the project was to test the SiC chip under high pressure conditions using the earlier designed calibration cell to enable it to act as a pressure sensor when doing gas detection. In this case, experiments using a controlled pressure system were to deliver repeatable pressure measurement data. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs or schematics of the fabricated hardware are provided. Experimental data from the three optical sensor systems (i.e., Thickness, pressure, and gas species) is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

  13. Vibrational Properties of Random Alloys: a Formalism to Treat Off-diagonal Disorder

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhradip; Leath, Paul L.; Cohen, Morrel H.

    2002-03-01

    A substitutional defect at a site in a crystal produces three types of disorder. In the electronic tight-binding model the diagonal perturbations correspond to changes in the energy level at the defect site, the off-diagonal perturbations changes the interatomic hopping to and from the defect site and the environmental disorder brings in changes in the vicinity of the defects due to effects such as charge transfer and lattice relaxation. In the case of phonon or other Goldstone systems, the treatment of environmental disorder is a necessity because there, it is coupled with other types of disorder by translational or rotational symmetry of the system. The most successful analytic theory for disordered systems has been the single-site coherent-potential approximation(CPA). Due to its single site nature, it fails to include the effects of off-diagonal and environmental disorders in case of phonons in random alloys. However, a realistic study of phonons in random alloys should capture the effects of random force constants and multisite scattering. Various generalizations of the single-site CPA work only for certain limiting cases or are non-analytic. Here, we propose a generalized formalism capable of tackling all three kinds of disorder and producing reliable results for phonon properties. We have applied the formalism to study phonons in substitutionally-disordered NiPt alloys which have large force-constant disorder. We have calculated dispersion curves, spectral densities and densities of states and compare our results with those of single-site CPA and with experiment.

  14. Solvent Effects on Molecular Structure, Vibrational Frequencies, and NLO Properties of N-(2,3-Dichlorophenyl)-2-Nitrobenzene-Sulfonamide: a Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Benhalima, Nadia; Boukabcha, Nourdine; Tamer, Ömer; Chouaih, Abdelkader; Avcı, Davut; Atalay, Yusuf; Hamzaoui, Fodil

    2016-04-01

    Density functional theory (DFT) calculations have been performed to obtain optimized geometries, vibrational wavenumbers, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies, nonlinear optical (NLO), and thermodynamic properties as well as molecular surfaces for N-(2,3-dichlorophenyl)-2-nitrobenzene-sulfonamide in different solvents. B3LYP level gives similar results for geometric parameters and vibration frequencies in gas phase, water, and ethanol solvents. The most stable structure, which is defined by the highest energy gap between HOMO and LUMO, is obtained in gas phase (∆E = 10.7376 eV). Obtained small energy gaps between HOMO and LUMO demonstrate the high-charge mobility in the titled compound. The magnitude of first static hyperpolarizability (β) parameter increases by the decreasing HOMO-LUMO energy gap. The intensive interactions between bonding and antibonding orbitals of titled compound are responsible for movement of π-electron cloud from donor to acceptor, i.e., intramolecular charge transfer (ICT), inducing the nonlinear optical properties. So, the β parameter for title compound is found to be in the range of 5.5255-3.7187 × 10-30 esu, indicating the considerable NLO character. All of these calculations have been performed in gas phase as well as water and ethanol solvents in order to demonstrate solvent effect on molecular structure, vibration frequencies, NLO properties, etc.

  15. Structural, electronic, topological and vibrational properties of a series of N-benzylamides derived from Maca (Lepidium meyenii) combining spectroscopic studies with ONION calculations

    NASA Astrophysics Data System (ADS)

    Chain, Fernando E.; Ladetto, María Florencia; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2016-02-01

    In the present work, the structural, topological and vibrational properties of four members of the N-benzylamides series derived from Maca (Lepidium meyenii) whose names are, N-benzylpentadecanamide, N-benzylhexadecanamide, N-benzylheptadecanamide and N-benzyloctadecanamide, were studied combining the FTIR, FT-Raman and 1H and 13C-NMR spectroscopies with density functional theory (DFT) and ONION calculations. Furthermore, the N-benzylacetamide, N-benzylpropilamide and N-benzyl hexanamide derivatives were also studied in order to compare their properties with those computed for the four macamides. These seven N-benzylamides series have a common structure, C8H8NO-R, being R the side chain [-(CH2)n-CH3] with a variable n number of CH2 groups. Here, the atomic charges, molecular electrostatic potentials, stabilization energies, topological properties of those macamides were analyzed as a function of the number of C atoms of the side chain while the frontier orbitals were used to compute the gap energies and some descriptors in order to predict their reactivities and behaviors in function of the longitude of the side chain. Here, the force fields, the complete vibrational assignments and the corresponding force constants were only reported for N-benzylacetamide, N-benzyl hexanamide and N-benzylpentadecanamide due to the high number of vibration normal modes that present the remains macamides.

  16. Solvent Effects on Molecular Structure, Vibrational Frequencies, and NLO Properties of N-(2,3-Dichlorophenyl)-2-Nitrobenzene-Sulfonamide: a Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Benhalima, Nadia; Boukabcha, Nourdine; Tamer, Ömer; Chouaih, Abdelkader; Avcı, Davut; Atalay, Yusuf; Hamzaoui, Fodil

    2016-08-01

    Density functional theory (DFT) calculations have been performed to obtain optimized geometries, vibrational wavenumbers, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies, nonlinear optical (NLO), and thermodynamic properties as well as molecular surfaces for N-(2,3-dichlorophenyl)-2-nitrobenzene-sulfonamide in different solvents. B3LYP level gives similar results for geometric parameters and vibration frequencies in gas phase, water, and ethanol solvents. The most stable structure, which is defined by the highest energy gap between HOMO and LUMO, is obtained in gas phase (∆ E = 10.7376 eV). Obtained small energy gaps between HOMO and LUMO demonstrate the high-charge mobility in the titled compound. The magnitude of first static hyperpolarizability ( β) parameter increases by the decreasing HOMO-LUMO energy gap. The intensive interactions between bonding and antibonding orbitals of titled compound are responsible for movement of π-electron cloud from donor to acceptor, i.e., intramolecular charge transfer (ICT), inducing the nonlinear optical properties. So, the β parameter for title compound is found to be in the range of 5.5255-3.7187 × 10-30 esu, indicating the considerable NLO character. All of these calculations have been performed in gas phase as well as water and ethanol solvents in order to demonstrate solvent effect on molecular structure, vibration frequencies, NLO properties, etc.

  17. Moisture-dependent frictional and aerodynamic properties of safflower seeds

    NASA Astrophysics Data System (ADS)

    Kara, M.; Bastaban, S.; Öztürk, I.; Kalkan, F.; Yildiz, C.

    2012-04-01

    The seeds of two safflower cultivars were investigated in order to determine their frictional and aerodynamic properties as a function of moisture content. The coefficients of dynamic friction of cultivars on aluminium, plywood, fibreglass and steel surfaces increased by 87, 56, 78, and 129% for cv. Remzibey-05 seed, and by 91, 31, 71, and 131% for cv. Dinçer seed, respectively, between the initial and final moisture content levels. The terminal velocities of the Remzibey-05 and Dinçer seeds increased by 15 and 11%, respectively, with increase in moisture content between the initial and final levels.

  18. Temperature dependence of electronic transport property in ferroelectric polymer films

    NASA Astrophysics Data System (ADS)

    Zhao, X. L.; Wang, J. L.; Tian, B. B.; Liu, B. L.; Zou, Y. H.; Wang, X. D.; Sun, S.; Sun, J. L.; Meng, X. J.; Chu, J. H.

    2014-10-01

    The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir-Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel-Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  19. Temperature dependence of gas properties in polynomial form

    NASA Astrophysics Data System (ADS)

    Andrews, J. R.; Biblarz, O.

    1981-01-01

    Based on a least-squares polynomial approximation, a procedure is introduced for calculating existing tabular values of thermodynamic and transport properties for common gases. The specific heat at constant pressure is given for 238 gases, the thermal conductivity for 55 gases, the dynamic viscocity for 58 gases, and the second and third virial coefficients for 14 gases. At sufficiently low pressures, ideal gas behavior prevails and temperature may be used as the single independent variable. The algorithm for nested multiplication is presented, optimized for hand-held or desktop electronic calculators. Using the polynomial approximations and a suitable calculator, it is possible to duplicate existing reference source tabular values directly, obviating the need for interpolation or further reference to the tables per se. The accuracy of the calculated values can be within 0.5% of the tabular values. The polynomial coefficients are given in the International System of Units (SI). Methods are presented to calculate the temperature corresponding to a given property value. Extrapolation features of the polynomials are discussed.

  20. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGESBeta

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity σ, and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While σ does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowiremore » diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.« less

  1. Diameter dependent thermoelectric properties of individual SnTe nanowires

    SciTech Connect

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity σ, and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While σ does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowire diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.

  2. Time-dependent motor properties of multipedal molecular spiders

    NASA Astrophysics Data System (ADS)

    Samii, Laleh; Blab, Gerhard A.; Bromley, Elizabeth H. C.; Linke, Heiner; Curmi, Paul M. G.; Zuckermann, Martin J.; Forde, Nancy R.

    2011-09-01

    Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders’ processivity and binding time but not their mean velocity. However, we can increase the mean velocity of spiders with simultaneous tuning of the span and the unbinding rate of a spider leg from a substrate site. To study the efficiency of molecular spiders, we introduce a time-dependent expression for the thermodynamic efficiency of a molecular motor, allowing us to account for the behavior of spider populations as a function of time. Based on this definition, we find that spiders exhibit transient motor function over time scales of many hours and have a maximum efficiency on the order of 1%, weak compared to other types of molecular motors.

  3. Diameter dependent thermoelectric properties of individual SnTe nanowires.

    PubMed

    Xu, E Z; Li, Z; Martinez, J A; Sinitsyn, N; Htoon, H; Li, Nan; Swartzentruber, B; Hollingsworth, J A; Wang, Jian; Zhang, S X

    2015-02-21

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a promising thermoelectric material. In this work, we report on the first thermoelectric study of individual single-crystalline SnTe nanowires with different diameters ranging from ∼218 to ∼913 nm. Measurements of thermopower S, electrical conductivity σ and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25-300 K. While the electrical conductivity does not show a strong diameter dependence, the thermopower increases by a factor of two when the nanowire diameter is decreased from ∼913 nm to ∼218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may arise from the enhanced phonon - surface boundary scattering and phonon-defect scattering. Temperature dependent figure of merit ZT was determined for individual nanowires and the achieved maximum value at room temperature is about three times higher than that in bulk samples of comparable carrier density. PMID:25623253

  4. Light-Dependent Protochlorophyllide Oxidoreductase: Phylogeny, Regulation, and Catalytic Properties.

    PubMed

    Gabruk, Michal; Mysliwa-Kurdziel, Beata

    2015-09-01

    This Current Topic focuses on light-dependent protochlorophyllide oxidoreductase (POR, EC 1.3.1.33). POR catalyzes the penultimate reaction of chlorophyll biosynthesis, i.e., the light-triggered reduction of protochlorophyllide to chlorophyllide. In this reaction, the chlorin ring of the chlorophyll molecule is formed, which is crucial for photosynthesis. POR is one of very few enzymes that are driven by light; however, it is unique in the need for its substrate to absorb photons to induce the conformational changes in the enzyme, which are required for its catalytic activation. Moreover, the enzyme is also involved in the negative feedback of the chlorophyll biosynthesis pathway and controls chlorophyll content via its light-dependent activity. Even though it has been almost 70 years since the first isolation of active POR complexes, our knowledge of them has markedly advanced in recent years. In this review, we summarize the current state of knowledge of POR, including the phylogenetic roots of POR, the mechanisms of the regulation of POR genes expression, the regulation of POR activity, the import of POR into plastids, the role of POR in PLB formation, and the molecular mechanism of protochlorophyllide reduction by POR. To the best of our knowledge, no previous review has compiled such a broad set of recent findings about POR. PMID:26230427

  5. Strain rate dependent properties of human craniovertebral ligaments.

    PubMed

    Mattucci, Stephen F E; Moulton, Jeffrey A; Chandrashekar, Naveen; Cronin, Duane S

    2013-07-01

    Craniovertebral ligaments were tested to failure under tensile loading. Ligaments tested included: transverse ligament, anterior atlanto occipital membrane, posterior atlanto occipital membrane, capsular ligaments between Skull-C1 and C1-C2, anterior atlantoaxial membrane, posterior atlantoaxial membrane and the tectorial membrane/vertical cruciate/apical/alar ligament complex. The objective of this study was to obtain mechanical properties of craniovertebral ligaments of a younger population, at varying strain rates representative of automotive crash scenarios, and investigate rate and gender effects for use in numerical models of the cervical spine. There have been few studies conducted on the mechanical properties of human craniovertebral ligaments. Only one study has tested all of the ligaments, and previous studies use older age specimens (mean age 67, from most complete study). Further, tests were often not performed at elongation rates representative of car crash scenarios. Previous studies did not perform tests in an environment resembling in vivo conditions, which has been shown to have a significant effect on ligament tensile behaviour. Fifty-four craniovertebral ligaments were isolated from twenty-one spines, and tested to failure in tension under simulated in vivo temperature and hydration levels, at quasi-static (0.5 s(-1)) and high strain rates (150 s(-1)). Values for failure force, failure elongation, stiffness, and toe region elongation were obtained from force-displacement curves. Values were analyzed for strain rate and gender effects. Increased strain rate produced several significant effects including: higher failure forces for the transverse ligament and capsular ligament (Skull-C1), lower failure elongation for the tectorial membrane complex, higher stiffness for the tectorial membrane complex and capsular ligament (Skull-C1), and lower toe region elongation for capsular ligament (Skull-C1). Gender effects were limited. Ligament tests

  6. Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinet, Gunjan; Kumar, Ravindra; Sajal, Vivek

    2013-07-01

    With a view to study structural, optical, vibrational, and magnetic properties of solgel derived Zn1-xNixO (x = 0.02, 0.04, and 0.06) nanoparticles, systematic investigations have been carried out. The Rietveld refinement of X-ray powder diffraction data revealed a single hexagonal phase with space group P63mc. The secondary phase of NiO appeared only in 6% Ni doped sample. Phonon modes in Ni doped ZnO nanoparticles were studied through Fourier transform infrared measurements. Furthermore, the enhancement in optical band gap with Ni doping from 3.29 to 3.32 eV has been observed through UV-visible spectroscopic analysis. Photoluminescence spectra of Zn1-xNixO show the UV-emission peak showing the blue shift with increase in doping concentration followed by broad visible (blue) emission corresponding to the defect emission whose intensity decreased with increasing Ni concentration. A clear room temperature ferromagnetism is observed in all samples but saturation magnetization decreased with increasing Ni content. The suitability of bound magnetic polarons (BMP) model is checked and numbers of BMPs are found to be of the order 1015 per cm3, which is very small for the percolation in ZnO. In the present case, oxygen rich stoichiometry with enhanced Zn-O bonding favours the indirect Ni-O-Ni ferromagnetic exchange coupling and reduction of oxygen vacancies leading to strong hybridization of Ni in ZnO host matrix responsible for room temperature ferromagnetism.

  7. Fitness-Dependent Topological Properties of the World Trade Web

    NASA Astrophysics Data System (ADS)

    Garlaschelli, Diego; Loffredo, Maria I.

    2004-10-01

    Among the proposed network models, the hidden variable (or good get richer) one is particularly interesting, even if an explicit empirical test of its hypotheses has not yet been performed on a real network. Here we provide the first empirical test of this mechanism on the world trade web, the network defined by the trade relationships between world countries. We find that the power-law distributed gross domestic product can be successfully identified with the hidden variable (or fitness) determining the topology of the world trade web: all previously studied properties up to third-order correlation structure (degree distribution, degree correlations, and hierarchy) are found to be in excellent agreement with the predictions of the model. The choice of the connection probability is such that all realizations of the network with the same degree sequence are equiprobable.

  8. Shape-dependent catalytic properties of Pt nanoparticles.

    PubMed

    Mostafa, Simon; Behafarid, Farzad; Croy, Jason R; Ono, Luis K; Li, Long; Yang, Judith C; Frenkel, Anatoly I; Cuenya, Beatriz Roldan

    2010-11-10

    Tailoring the chemical reactivity of nanomaterials at the atomic level is one of the most important challenges in catalysis research. In order to achieve this elusive goal, fundamental understanding of the geometric and electronic structure of these complex systems at the atomic level must be obtained. This article reports the influence of the nanoparticle shape on the reactivity of Pt nanocatalysts supported on γ-Al(2)O(3). Nanoparticles with analogous average size distributions (∼0.8-1 nm), but with different shapes, synthesized by inverse micelle encapsulation, were found to display distinct reactivities for the oxidation of 2-propanol. A correlation between the number of undercoordinated atoms at the nanoparticle surface and the onset temperature for 2-propanol oxidation was observed, demonstrating that catalytic properties can be controlled through shape-selective synthesis. PMID:20949968

  9. Shape-Dependent Catalytic Properties of Pt Nanoparticles

    SciTech Connect

    S Mostafa; F Behafarid; J Croy; L Ono; L Li; J Yang; A Frenkel; B Roldan Cuenya

    2011-12-31

    Tailoring the chemical reactivity of nanomaterials at the atomic level is one of the most important challenges in catalysis research. In order to achieve this elusive goal, fundamental understanding of the geometric and electronic structure of these complex systems at the atomic level must be obtained. This article reports the influence of the nanoparticle shape on the reactivity of Pt nanocatalysts supported on {gamma}-Al{sub 2}O{sub 3}. Nanoparticles with analogous average size distributions ({approx}0.8-1 nm), but with different shapes, synthesized by inverse micelle encapsulation, were found to display distinct reactivities for the oxidation of 2-propanol. A correlation between the number of undercoordinated atoms at the nanoparticle surface and the onset temperature for 2-propanol oxidation was observed, demonstrating that catalytic properties can be controlled through shape-selective synthesis.

  10. On the dependence of bulk properties on surfaces

    NASA Astrophysics Data System (ADS)

    Springborg, Michael; Kirtman, Bernard; Tevekeliyska, Violina

    2012-12-01

    By modifying the surfaces of large, regular systems it is possible to modify the polarization of the macroscopic system, although the polarization can only be modified in units of a lattice vector times the elemental charge. Alternatively, when treating the system as being infinite and periodic, there is no surface. In that case the definition of the polarization contains a so-far undefined additive constant of a lattice vector times the elemental charge. We show that the two cases are equivalent, although the reasons behind the 'unknown' additive constants in the two cases are very different. Subsequently, we show that the response of extended systems to electrostatic fields, including internal structure, piezoelectricity, bulk charge density, and (hyper)polarizabilities, depends on the additive constants, i.e., on the surfaces.

  11. The effect of cross-linking yield of PVK on the vibrational and emissive properties of new copolymer based on vinylcarbazole and phenylene-vinylene units

    NASA Astrophysics Data System (ADS)

    Mbarek, M.; Abbassi, F.; Alimi, K.

    2016-09-01

    The Phenylene-Vinylene (PV) unit's was successfully incorporated in the Vinylarbazole (VC) skeleton using the oxidative way via an anhydrous FeCl3. Dramatic changes in the vibrational and emissive properties are founded by varying the FeCl3 amount in the synthesis way due to the cross-linking of PVK units. SEM analysis showing a modified morphology structures of three compounds. However the percentage of the oxidant account induces the modulation of copolymer properties particularly theirs emissive proprieties. A red shifting of the maximum of photoluminescence, a quenching of luminescence and a fast decay time was observed with increasing of the oxidation yields.

  12. Phase transitions, dielectric properties, and vibrational study of stannates perovskites Sr{sub 1−x}Er{sub x}SnO{sub 3−δ}

    SciTech Connect

    Ouni, S.; Nouri, S.; Khemakhem, H.; Ben Hassen, R.

    2014-03-01

    Graphical abstract: The diffuseness of the phase transition of the Sr{sub 1−x}Er{sub x}SnO{sub 3−δ} enhances with the increasing of erbium content. These compounds were found to undergo phase transitions with increasing temperature. - Highlights: • Substitution Sr/Er in the alkaline earth cage modifies the thermally induced disorder. • Two phase transitions have been observed by DSC. • The dielectric constant increases with erbium substitution. • Dielectric loss increases exponentially with temperature. • The conductivity contribution is mainly due to hopping process. - Abstract: A polycrystalline stannates perovskites Sr{sub 1−x}Er{sub x}SnO{sub 3−δ} (x = 0.00, 0.01 and 0.03) were synthesized by sol–gel method and their vibrational properties were investigated using Raman scattering. The substitution of Er in the Sr site, results in a slight change of the position of the Raman spectrum bands. The differential scanning calorimetry (DSC) shows two phase transitions at 532 K and 634 K for Sr{sub 0.99}Er{sub 0.01}SnO{sub 3−δ}. The dielectric behavior of each solid solution (x = 0.01 and x = 0.03) has been studied as a function of temperature and frequency and has confirmed the observed phase transitions. The diffuseness of the phase transitions of these materials enhances with the increasing of erbium content. The dielectric constant showed a strong increase near the phase transitions temperature which value depends with frequency. This phenomenon is usually observed in relaxor materials. The conduction and the dielectric relaxation are attributed to hopping of electrons among Sn{sup 2+} and Sn{sup 4+} ions.

  13. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  14. Thickness dependence of superconducting properties in magnesium diboride thin films

    NASA Astrophysics Data System (ADS)

    Beringer, Douglas; Clavero, Cesar; Tan, Teng; Xi, Xiaoxing; Lukaszew, Rosa

    2013-03-01

    Thin film MgB2 is a promising material currently researched for improvements in superconducting radio frequency (SRF) technology and applications. At present, bulk niobium SRF accelerating cavities suffer from a fundamental upper limit in maximally sustained accelerating gradients; however, a scheme involving multi-layered superstructures consisting of superconducting-insulating-superconducting (SIS) layers has been proposed to overcome this fundamental material limit of 50 MV/m. The SIS multi-layer paradigm is reliant upon implementing a thin shielding material with a suitably high Hc1 which may prevent early field penetration in a bulk material layer and consequently delay the high field breakdown. It has been predicted that for thin superconducting films -- thickness less than the London penetration depth (~ 140 nm in the case of MgB2) -- the lower critical field Hc1 will be enhanced with decreasing thickness. Thus, MgB2, with a high bulk Hc1 value is a prime candidate for such SIS structures. Here we present our study on the structure, surface morphology and superconducting properties on a series of MgB2 thin films and correlate the effects of film thickness and surface morphology on Hc1. This work was supported in part by the U.S. Department of Energy (DE-SC0004410 and DE-AC05-06OR23177) and Defense Threat Reduction Agency (HDTRA1-10-1-0072).

  15. Chain-configuration dependent rheological properties in transient networks

    NASA Astrophysics Data System (ADS)

    Sing, Michelle; Wang, Zhen-Gang; McKinley, Gareth; Olsen, Bradley

    2014-03-01

    Complex associative networks capable of shear thinning followed by recovery on the order of seconds are of interest as injectable biomaterials. However, there is a limited understanding of the molecular mechanisms that contribute to rheological properties such as the network's yield stress and rate of self-healing. Here we present a transient network theory for associative physical gels arising from the chemical kinetic form of the Smoluchowski Equation capable of modeling the full chain end-to-end distance distribution while tracking the fraction of looped, bridged, and free chain configurations in the gel. By varying the equilibrium association rate relative to the material relaxation time, we are able to track the evolution of loop and bridge chain fraction as the system undergoes stress instabilities. We have evidence that these instabilities result from non-monotonic trends in loop and bridge chain fraction when the end group association rate is high relative to the dissociation rate. This behavior provides insight into the complex kinetic interactions responsible for certain mechanical behaviors while serving as a valuable predictive tool for gel design. Institute for Soldier Nanotechnologies, Department of Defense National Defense Science and Engineering Fellowship Program

  16. Finite Volume Dependence of Hadron Properties and Lattice QCD

    SciTech Connect

    Anthony W. Thomas; Jonathan D. Ashley; Derek B. Leinweber; Ross D. Young

    2005-02-01

    Because the time needed for a simulation in lattice QCD varies at a rate exceeding the fourth power of the lattice size, it is important to understand how small one can make a lattice without altering the physics beyond recognition. It is common to use a rule of thumb that the pion mass times the lattice size should be greater than (ideally much greater than) four (i.e., m{sub {pi}} L >> 4). By considering a relatively simple chiral quark model we are led to suggest that a more realistic constraint would be m{sub {pi}} (L - 2R) >> 4, where R is the radius of the confinement region, which for these purposes could be taken to be around 0.8-1.0 fm. Within the model we demonstrate that violating the second condition can lead to unphysical behavior of hadronic properties as a function of pion mass. In particular, the axial charge of the nucleon is found to decrease quite rapidly as the chiral limit is approached.

  17. The optical, vibrational, structural and elasto-optic properties of Zn0.25Cd0.75SySe1-y quaternary alloys

    NASA Astrophysics Data System (ADS)

    Paliwal, U.; Swarkar, C. B.; Sharma, M. D.; Joshi, K. B.

    2016-05-01

    The optical, vibrational, structural and elasto-optic properties of quaternary II-VI alloys Zn0.25Cd0.75S0.25Se0.75, Zn0.25Cd0.75S0.50Se0.50 and Zn0.25Cd0.75S0.75Se0.25 are presented. Within the empirical pseudopotential method (EPM) the disorder effects are modeled via modified virtual crystal approximation (MVCA). The computed bandgaps and the refined form factors are utilized to evaluate optical, vibrational, structural and elasto-optic properties. The refractive index (n), static (ɛ0) and high frequency dielectric (ɛ∞) constants are calculated to reveal optical behavior of alloys. The longitudinal ωLO(0) and transverse ωTO(0) optical frequencies are obtained to see vibrational characteristics. Moreover, the elastic constants (cij) and bulk moduli (B) are computed by combining the EPM with Harrison bond orbital model. The elasto-optic nature of alloys is examined by computing the photo-elastic constants. These values are significant with regard to the opto-electronic applications especially when no experimental data are available on this system.

  18. Temperature dependent optical properties of pentacene films on zinc oxide

    SciTech Connect

    Helzel, J.; Jankowski, S.; El Helou, M.; Witte, G.; Heimbrodt, W.

    2011-11-21

    The optical transitions of pentacene films deposited on ZnO have been studied by absorption spectroscopy as a function of temperature in the range of room temperature down to 10 K. The pentacene films were prepared with thicknesses of 10 nm, 20 nm, and 100 nm on the ZnO-O(000-1) surface by molecular beam deposition. A unique temperature dependence has been observed for the two Davydov components of the excitons for different film thicknesses. At room temperature, the energetic positions of the respective absorption bands are the same for all films, whereas the positions differ more than 20 meV at 10 K caused by the very different expansion coefficients of pentacene and ZnO. Although the pentacene is just bonded via van der Waals interaction to the ZnO substrate, the very first pentacene monolayer (adlayer) is forced to keep the initial position on the ZnO surface and suffering, therefore, a substantial tensile strain. For all the subsequent pentacene monolayers, the strain is reduced step by step resulting electronically in a strong potential gradient at the interface.

  19. Hypervelocity capture of particles in aerogel: Dependence on aerogel properties

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Fairey, S. A. J.; Foster, N. J.; Cole, M. J.

    2009-01-01

    Capture of high-speed (hypervelocity) particles in aerogel at ambient temperatures of 175-763 K is reported. This extends previous work which has mostly focussed on conducting experiments at ambient laboratory temperatures, even though aerogels are intended for use in cosmic dust capture cells in space environments which may experience a range of temperatures (e.g., the NASA Stardust mission which collected dust at 1.81 AU and putative Mars atmospheric sampling missions). No significant change in track length (normalised to impactor size) was found over the range 175-600 K, although at 763 K a significant reduction (30%) was found. By contrast, entrance hole diameter remained constant only up to 400 K, above this sudden changes of up to 50% were observed. Experiments were also carried out at normal laboratory temperature using a wide range of aerogel densities and particle sizes. It was found that track length normalised to particle size varies inversely with aerogel density. This is a power law dependence and not linear as previously reported, with longer tracks at lower densities. Glass projectiles (up to 100 μm size) were found to undergo a variety of degrees of damage during capture. In addition to the well known acquisition of a coating (partial or complete) of molten aerogel the mechanical damage includes pitting and meridian fractures. Larger (500 μm diameter) stainless steel spheres also showed damage during capture. In this case melting and ablation occurs, suggesting surficial temperatures during impact in excess of 1400 °C. The response of the aerogel itself to passage of particles through it is reported. The presence of fan-like fractures around the tracks is attributed to cone cracking similar to that in glasses of normal density, with the difference that here it is a repetitive process as the particles pass through the aerogel.

  20. Aspect ratio dependent cytotoxicity and antimicrobial properties of nanoclay.

    PubMed

    Rawat, Kamla; Agarwal, Shweta; Tyagi, Aakriti; Verma, Anita K; Bohidar, H B

    2014-10-01

    Nanoclays may enter human body through various routes such as through the respiratory and gastrointestinal tract, skin, blood, etc. There is dearth of such studies evaluating the interaction of clay nanoparticles with human cells. In particular, the interaction of proteins and nucleic acids with nanoparticles of different aspect ratio remains a domain that is very poorly probed and understood. In the present study, we address the issue of cytotoxicity and antimicrobial attributes of two distinct nanoclay platelets namely, laponite (diameter = 25 nm and thickness = 1 nm) and montmorillonite (MMT, diameter = 300 nm and thickness = 1 nm), having different aspect ratio (25:1 vs 300:1). Cytotoxicity was assessed in both prokatyotes: Escherichia coli, eukaryotes-human embryonic kidney (HEK), and cervical cancer SiHa cell lines, and a comparative size-based analysis of the toxicity were made at different exposure time points by MTT assay. The antimicrobial activity of the nanoclays was evaluated by disc diffusion method (Kirbey-Bauer protocol). Laponite exhibited maximum efficacy as an antimicrobial agent against E. coli. Comparatively smaller size laponite could preferentially enter the cells, leading to relatively wider or larger zone of inhibition. On contradictory; laponite showed 74.67 % survival while MMT showed 89.02 % survival in eukaryotic cells at 0.00001 % (w/v) concentration. In summary, both MMT and laponite indicated cytotoxicity at 0.05 % concentration within 24 h of exposure on HEK and cervical cancer (SiHa) cell lines. The toxicity was possibly dependent on size, aspect ratio, and concentration. PMID:24894661

  1. An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-visible and NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Chain, Fernando; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César Atilio Nazareno; Fortuna, Mario Antonio; Brandán, Silvia Antonia

    2014-05-01

    An experimental and theoretical investigation of cnicin is presented, combining the use of infrared, Raman, NMR and UV-visible spectroscopies with density functional theory (DFT) that employs hybrid B3LYP exchange correlation functional and a 6-31G∗ basis set. The molecular electrostatic potentials, atomic charges, bond orders, stabilization energies, topological properties and energy gap are presented by performing NBO, AIM and HOMO-LUMO calculations at the same level of theory as cnicin. A complete vibrational compound assignment was performed by employing internal coordinate analysis and a scaled quantum mechanical force field (SQMFF) methodology. Comparisons between the theoretical and experimental vibrational and ultraviolet-visible spectra show a strong concordance. The geometrical parameters and NBO studies suggest a probable negative Cotton effect for cnicin, which can be attributed to the π → π∗ transition for an α,β-unsaturated γ-lactone, as reported in the literature.

  2. Vibrational properties, phonon spectrum and related thermal parameters of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study.

    PubMed

    Qian, Wen; Zhang, Weibin; Zong, Hehou; Gao, Guofang; Zhou, Yang; Zhang, Chaoyang

    2016-01-01

    The vibrational spectrum, phonon dispersion curve, and phonon density of states (DOS) of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) crystal were obtained by molecular simulation and calculations. As results, it was found that the peaks at low frequency (0-2.5 THz) are comparable with the experimental Terahertz absorption and the molecular vibrational modes are in agreement with previous reports. Thermodynamic properties including Gibbs free energy, enthalpy, and heat capacity as functions of temperature were obtained based on the calculated phonon spectrum. The heat capacity at normal temperature was calculated using linear fitting method, with a result consistent with experiments. Graphical Abstract Phonon spectrum and heat capacity of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine from DFT calculation. PMID:26669878

  3. Vibrational rainbows

    SciTech Connect

    Drolshagen, G.; Mayne, H.R.; Toennies, J.P.

    1981-07-01

    We extend the theory of inelastic rainbows to include vibrationally inelastic scattering, showing how the existence of vibrational rainbows can be deduced from collinear classical scattering theory. Exact close-coupling calculations are carried out for a breathing sphere potential, and rainbow structures are, in fact, observed. The location of the rainbows generally agrees well with the classical prediction. In addition, the sensitivity of the location of the rainbow to changes in the vibrational coupling has been investigated. It is shown that vibrational rainbows persist in the presence of anisotropy. Experimental results (R. David, M. Faubel, and J. P. Toennies, Chem. Phys. Lett. 18, 87 (1973)) are examined for evidence of vibrational rainbow structure, and it is shown that vibrational rainbow theory is not inconsistent with these results.

  4. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    NASA Technical Reports Server (NTRS)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  5. Self-Motion Depending on the Physicochemical Properties of Esters as the Driving Force

    ERIC Educational Resources Information Center

    Nakata, Satoshi; Matsuo, Kyoko; Kirisaka, Junko

    2007-01-01

    The self-motion of an ester boat is investigated depending on the physicochemical properties of the surface-active substance. The results show that the ester boat moves towards the higher surface tension generating as the driving force.

  6. Gold Nanocups: Colloidal Gold Nanocups with Orientation-Dependent Plasmonic Properties (Adv. Mater. 30/2016).

    PubMed

    Jiang, Ruibin; Qin, Feng; Liu, Yejing; Ling, Xing Yi; Guo, Jun; Tang, Minghua; Cheng, Si; Wang, Jianfang

    2016-08-01

    On page 6322, J. F. Wang and co-workers report a wet-chemistry method for the preparation of colloidal Au nanocups and their plasmonic properties. The Au nanocups are prepared through single-vertex-initiated Au deposition on PbS nano-octahedrons and subsequent selective dissolution of PbS. Owing to the orientation-dependent coupling strengths, the obtained Au nanocups display orientation-dependent plasmonic properties and Raman enhancements when deposited on substrates. PMID:27493069

  7. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    SciTech Connect

    Nguyen, Trung Dung; Gu, YuanTong

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  8. Vibrational and Electronic Properties of Fullerene and Carbon-Based Clustors. Final Reports for period July 1, 1997 - June 30, 2001

    SciTech Connect

    Xi, X.

    2002-11-26

    Lattice dynamics is of central importance for the mechanism of ferroelectricity. In particular, the soft mode behaviors are directly related to many of their ferroelectric and dielectric properties. In this project, we have carried out experimental studies of the vibrational spectra of SrTiO{sub 3} films grown by pulsed laser deposition using a metal-oxide bilayer structure. Raman scattering, with and without bias electric field, and Fourier-transform far-infrared ellipsometry were utilized. These results are compared with the low-frequency dielectric properties. We found that in the films the soft mode is harder compared to that in bulk crystals, in agreement with the Lyddane-Sachs-Teller (LST) formalism. We have studied electric field-induced Raman scattering in SrTiO{sub 3} thin films using an indium-tin oxide/SrTiO{sub 3}/SrRuO{sub 3} structure. The soft mode polarized along the field becomes Raman active. Experimental data for electric field-induced hardening of the soft modes and the tuning of the static dielectric constant are in agreement described by the LST formalism. The markedly different behavior of the soft modes in thin films from that in the bulk is explained by the existence of local polar regions. The study was extended to Ba{sub x}Sr{sub 1-x}TiO{sub 3} films with Ba contents x = 0.05, 0.1, 0.2 and 0.5. The temperature dependence of the soft mode frequency shows evidence of the ferroelectric phase transition in the films. Relative Raman intensity of hard phonon modes shows the ferroelectric phase transition occurs over a broad range of temperatures in thin films, which is different from bulk behavior. Comparison of temperature evolution of Raman spectra for films grown on SrTiO{sub 3} and LaAlO{sub 3} substrates shows the influence of strain on the temperature of ferroelectric phase transition.

  9. Management-dependent soil property variability of Southeastern U.S. Coastal Plain plinthic kandiudults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Cooperative Soil Survey (NCSS) defines a management or use-dependent property as a type of dynamic soil property which changes on a human time-scale due to anthropogenic disturbances (indicative of soil change). Interest in soil change and C sequestration has led to increased emphasis ...

  10. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.

    PubMed

    Killgore, Jason P; Tung, Ryan C; Hurley, Donna C

    2014-08-29

    Combining heated-tip atomic force microscopy (HT-AFM) with quantitative methods for determining surface mechanical properties, such as contact resonance force microscopy, creates an avenue for nanoscale thermomechanical property characterization. For nanomechanical methods that employ an atomic force microscope cantilever's vibrational modes, it is essential to understand how the vibrations of the U-shaped HT-AFM cantilever differ from those of a more traditional rectangular lever, for which analytical techniques are better developed. Here we show, with a combination of finite element analysis (FEA) and experiments, that the HT-AFM cantilever exhibits many more readily-excited vibrational modes over typical AFM frequencies compared to a rectangular cantilever. The arms of U-shaped HT-AFM cantilevers exhibit two distinct forms of flexural vibrations that differ depending on whether the two arms are vibrating in-phase or out-of-phase with one another. The in-phase vibrations are qualitatively similar to flexural vibrations in rectangular cantilevers and generally show larger sensitivity to surface stiffness changes than the out-of-phase vibrations. Vibration types can be identified from their frequency and by considering vibration amplitudes in the horizontal and vertical channels of the AFM at different laser spot positions on the cantilever. For identifying contact resonance vibrational modes, we also consider the sensitivity of the resonant frequencies to a change in applied force and hence to tip-sample contact stiffness. Finally, we assess how existing analytical models can be used to accurately predict contact stiffness from contact-resonance HT-AFM results. A simple two-parameter Euler-Bernoulli beam model provided good agreement with FEA for in-phase modes up to a contact stiffness 500 times the cantilever spring constant. By providing insight into cantilever vibrations and exploring the potential of current analysis techniques, our results lay the groundwork

  11. Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex.

    PubMed

    Schulze, Jan; Shibl, Mohamed F; Al-Marri, Mohammed J; Kühn, Oliver

    2016-05-14

    The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motion and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation. PMID:27179506

  12. Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex

    NASA Astrophysics Data System (ADS)

    Schulze, Jan; Shibl, Mohamed F.; Al-Marri, Mohammed J.; Kühn, Oliver

    2016-05-01

    The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motion and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.

  13. Size dependence of surface thermodynamic properties of nanoparticles and its determination method by reaction rate constant

    NASA Astrophysics Data System (ADS)

    Li, Wenjiao; Xue, Yongqiang; Cui, Zixiang

    2016-08-01

    Surface thermodynamic properties are the fundamental properties of nanomaterials, and these properties depend on the size of nanoparticles. In this paper, relations of molar surface thermodynamic properties and surface heat capacity at constant pressure of nanoparticles with particle size were derived theoretically, and the method of obtaining the surface thermodynamic properties by reaction rate constant was put forward. The reaction of nano-MgO with sodium bisulfate solution was taken as a research system. The influence regularities of the particle size on the surface thermodynamic properties were discussed theoretically and experimentally, which show that the experimental regularities are in accordance with the corresponding theoretical relations. With the decreasing of nanoparticle size, the molar surface thermodynamic properties increase, while the surface heat capacity decreases (the absolute value increases). In addition, the surface thermodynamic properties are linearly related to the reciprocal of nanoparticle diameter, respectively.

  14. Triple threat treatment: Exploiting the dependence receptor properties of metabotropic glutamate receptor 1 against melanoma

    PubMed Central

    Gelb, Tara; Hathaway, Hannah A; Wroblewski, Jarda T

    2014-01-01

    Melanoma cells that express metabotropic glutamate 1 (mGlu1) receptors depend on glutamate for their survival and proliferation. The dependence receptor properties of mGlu1 allow us to propose and justify three promising approaches for melanoma treatment: glutamate depletion, mGlu1 receptor antagonism, and targeting of mGlu1 receptor signaling.

  15. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    PubMed

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-01

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. PMID:25440584

  16. Vibration isolation

    NASA Technical Reports Server (NTRS)

    Bastin, Paul

    1990-01-01

    Viewgraphs on vibration isolation are presented. Techniques to control and isolate centrifuge disturbances were identified. Topics covered include: disturbance sources in the microgravity environment; microgravity assessment criteria; life sciences centrifuge; flight support equipment for launch; active vibration isolation system; active balancing system; and fuzzy logic control.

  17. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  18. Vibrational Coupling

    SciTech Connect

    2011-01-01

    By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to "slosh" onto a gold surface (left), while others do not (right). The vibrations that cause this "sloshing" behavior yield a stronger SERS signal.

  19. Process condition dependence of mechanical and physical properties of silicon nitride thin films

    NASA Astrophysics Data System (ADS)

    Walmsley, B. A.; Keating, A. J.; Liu, Y.; Hu, X. Z.; Bush, M. B.; Dell, J. M.; Faraone, L.

    2007-11-01

    This study uses a resonance method to determine Young's modulus (E), shear modulus (G), and Poisson's ratio (ν) of plasma-enhanced chemical vapor deposited silicon nitride (SiNxHy) thin films deposited under varying process conditions. The resonance method involves exciting the bending and torsional vibration modes of a microcantilever beam fabricated from a film. The E and G values can be extracted directly from the bending and torsional vibration modes, and the ν value can be determined from the calculated E and G values. The density (ρ) of the films was determined using a quartz crystal microbalance method. In order to determine the validity of the resonance method, finite element modeling was used to determine its dependence on microcantilever beam dimensions. Over a deposition temperature range of 100-300°C, measured E, G, and ν values varied within 54-193GPa, 22-77GPa, and 0.20-0.26 with changes in process conditions, respectively. Over the same deposition range, measured ρ values varied within 1.55-2.80g/cm3 with changes in process conditions.

  20. Theoretical investigations on vibrational properties and thermal conductivities of ternary antimonides TiXSb, ZrXSb and HfXSb (X = Si, Ge)

    NASA Astrophysics Data System (ADS)

    Deligoz, E.; Ozyar, U. F.; Ozisik, H. B.

    2016-06-01

    We have performed density functional calculations of the vibrational and thermodynamic properties of the ternary antimonides TiXSb, ZrXSb and HfXSb (X = Si, Ge). The direct method is used to calculate the phonon dispersion relation and phonon density of states for these compounds as well as their infrared and Raman active mode frequencies for the first time. Their dynamical stability is confirmed by phonon spectra. The lattice thermal conductivities of these compounds have been calculated from third-order force constants and plotted as a function of temperature. We have also evaluated the high temperature thermal conductivity by means of the Clarke's model and Cahill's model. Some selected thermodynamical properties, e.g. Gibbs free energy, entropy and heat capacity at constant volume are predicted theoretically and discussed. We have showed the relationships between thermodynamical properties and temperature. The numerical calculations reported in this paper were partially performed at Aksaray University, Science and Technology Application and Research Center.

  1. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR THE SAME STAR FORMATION ACTIVITIES

    SciTech Connect

    Deng Xinfa; Bei Yang; He Jizhou; Tang Xiaoxun

    2010-01-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 above and below the value of M*, we have investigated the environmental dependence of other galaxy properties for the same star formation activities. Only in the luminous passive class, a strong environmental dependence of the g - r color is observed, but the environmental dependence of other properties in this class is very weak. In other classes, we can conclude that the local density dependence of luminosity, g - r color, concentration index ci, and morphologies for star-forming galaxies and passive ones is much weaker than that obtained in the volume-limited Main galaxy samples. This suggests that star formation activity is a galaxy property very predictive of the local environment. In addition, we also note that passive galaxies are more luminous, redder, highly concentrated, and preferentially 'early type'.

  2. Ab initio variational calculations of the vibrational properties of Li + 3, Li2Na + , LiNa + 2, and KLiNa +

    NASA Astrophysics Data System (ADS)

    Searles, D. J.; von Nagy-Felsobuki, E. I.

    1991-07-01

    A rovibrational Hamiltonian has been derived in terms of rectilinear displacement coordinates which is based on the Watson Hamiltonian. Moreover, it is a generalization of the Carney and Porter analysis for D3h triatomic systems [J. Chem. Phys. 65, 3547 (1976)] and Carney et al. analysis for C2v triatomic systems [J. Chem. Phys. 66, 3724 (1977)]. It is therefore the most general form of the Watson Hamiltonian which is applicable to a bent triatomic system. Ab initio variational calculations using this Hamiltonian are presented for vibrational properties of Li+3, Li2Na+, LiNa+2, and KLiNa+.

  3. Temperature-dependent elastic properties of Ti{sub 1−x}Al{sub x}N alloys

    SciTech Connect

    Shulumba, Nina; Hellman, Olle; Rogström, Lina; Raza, Zamaan; Tasnádi, Ferenc; Odén, Magnus; Abrikosov, Igor A.

    2015-12-07

    Ti{sub 1−x}Al{sub x}N is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the symmetry imposed force constant temperature dependent effective potential method, which include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C{sub 11} decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.

  4. The effects of vibration-reducing gloves on finger vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  5. Temperature-dependent magnetic properties of Ni nanotubes synthesized by atomic layer deposition.

    PubMed

    Pereira, Alejandro; Palma, Juan L; Denardin, Juliano C; Escrig, Juan

    2016-08-26

    Highly-ordered and conformal Ni nanotube arrays were prepared by combining atomic layer deposition (ALD) in a porous alumina matrix with a subsequent thermal reduction process. In order to obtain NiO tubes, one ALD NiCp2/O3 cycle was repeated 2000 times. After the ALD process, the sample is reduced from NiO to metallic Ni under hydrogen atmosphere. Their magnetic properties such as coercivity and squareness have been determined in a vibrating sample magnetometer in the temperature range from 5-300 K for applied magnetic fields parallel and perpendicular to the nanotube axis. Ni nanotubes synthesized by ALD provide a promising opportunity for potential applications in spintronics, data storage and bio-applications. PMID:27454022

  6. Temperature-dependent magnetic properties of Ni nanotubes synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pereira, Alejandro; Palma, Juan L.; Denardin, Juliano C.; Escrig, Juan

    2016-08-01

    Highly-ordered and conformal Ni nanotube arrays were prepared by combining atomic layer deposition (ALD) in a porous alumina matrix with a subsequent thermal reduction process. In order to obtain NiO tubes, one ALD NiCp2/O3 cycle was repeated 2000 times. After the ALD process, the sample is reduced from NiO to metallic Ni under hydrogen atmosphere. Their magnetic properties such as coercivity and squareness have been determined in a vibrating sample magnetometer in the temperature range from 5–300 K for applied magnetic fields parallel and perpendicular to the nanotube axis. Ni nanotubes synthesized by ALD provide a promising opportunity for potential applications in spintronics, data storage and bio-applications.

  7. Self- and N2-broadening of CH3Br ro-vibrational lines in the ν2 band: The J and K dependence

    NASA Astrophysics Data System (ADS)

    Boussetta, Z.; Kwabia Tchana, F.; Aroui, H.

    2015-02-01

    Methyl bromide (CH3Br) is the major source of inorganic bromine in the atmosphere and contributes significantly to ozone depletion. Indeed, CH3Br is dissociated by UV radiation, producing Br radicals that catalyze the destruction of ozone. In this paper, we report measured Lorentz self- and N2-broadening coefficients of CH3Br in the ν2 fundamental band using a mono-spectrum non-linear least squares fitting of Voigt profiles which appeared to properly model the observed molecular line shapes within the noise level. These measurements were made by analyzing 12 laboratory absorption spectra recorded at high resolution (0.005, 0.003 or 0.002 cm-1) using the Fourier transform spectrometer Bruker IF125HR located at the LISA facility in Créteil. The spectra were obtained at room temperature using a White-type multipass cell with an optical path of 0.849 m and various pressures. We have been able to determine the self- and N2-broadening coefficients of 948 ν2 transitions with quantum numbers as high as J = 49 and K = 10. The measured self-broadening coefficients range from 0.1542 to 0.4930 cm-1 atm-1 and the N2-broadening coefficients range from 0.0737 to 0.1284 cm-1 atm-1 at 295 K. The accuracy of the broadening coefficients measured in this work is between 4% and 8%, depending on the studied transition. Comparisons with measurements taken in the ν5 and ν6 bands of CH3Br did not show any clear vibrational dependence. The J and K dependences of the self- and N2-broadening coefficients have been observed and the rotational K dependence has been modeled using empirical polynomial expression. On average, the empirical expression reproduce the measured broadening coefficients to within 6%. The data obtained represent a significant contribution to the determination of broadening coefficients of CH3Br useful for atmospheric remote sensing and applications. Note: The assignment column gives the isotopologue (79 for CH379Br and 81 for CH381Br) for which the transition is

  8. Vibrational energy relaxation of water in Aerosol OT reverse micelle

    NASA Astrophysics Data System (ADS)

    Pang, Yoonsoo; Deak, John; Dlott, Dana

    2005-03-01

    An IR-Raman technique with mid-IR pump and anti-Stokes Raman probe is used to investigate reverse micelle mixture of Aerosol OT, water, and carbon tetrachloride, where polar water phase and nonpolar oil phase is separated by a monolayer of surfactant molecules. Anti-Stokes Raman scattering is only dependent on the population of vibrationally excited states, thus time-dependent population changes of parent/daughter vibrations can be monitored with this technique. Vibrational energy from nanodroplet of water is transferred to the surfactant head group in 1.8 ps and then out to solvent in 10 ps. Vibrational energy directly pumped into the surfactant tail group results in a slower 20-40 ps energy transfer to solvent. This energy transfer cannot be explained by ordinary heat transfer, but the specific vibrational energy relaxation pathway such as sulfonate stretch of surfactant molecules should be used. We can change the water-to-solvent energy transfer rate by adopting different size of reverse micelles or changing pump frequency over the broad OH stretch mode of water due to hydrogen bond network. Water molecules confined in nanometer scale reverse micelles have very different properties from bulk water and we have found many differences between the vibrational dynamics of water in these reverse micelles and those of bulk water.

  9. Experimental and theoretical studies of vibrational spectrum and molecular structure and related properties of pyridoxine (vitamin B6).

    PubMed

    Srivastava, Mayuri; Rani, P; Singh, N P; Yadav, R A

    2014-01-01

    Vibrational spectrum of pyridoxine has been investigated using experimental IR and Raman spectroscopic and density functional theory (DFT) methods. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed. Optimized geometrical parameters suggest that if the OH groups of the two methyl groups are replaced by H atoms the resulting molecule has Cs point group symmetry. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule. PMID:24184922

  10. Influence of vibrations and rotations of diatomic molecules on their physical properties: II. Refractive index, reactivity and diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Sharipov, Alexander S.; Loukhovitski, Boris I.; Starik, Alexander M.

    2016-06-01

    The influence of the excitation of vibrational and rotational states of diatomic molecules (H2, N2, O2, NO, OH, CO, CH, HF and HCl) on refractive index, reactivity and transport coefficients was analyzed by using ab initio calculated data on the effective state-specific dipole moment and static polarizability obtained in the preceding paper of the present series. It has been revealed that, for non-polar molecules, the excitation both of vibrational and rotational degrees of freedom increases the averaged polarizability and, as a consequence, the refractive index. Meanwhile, for polar molecules, the effect of molecule excitation is more complex: it can either increase or decrease the refractive index. It was also shown that the excitation of molecules slightly influences the rate constants of barrierless chemical reactions between neutral particles; whereas, for ion–molecule reactions, this effect can be more pronounced. Analysis of the variation of diffusion coefficients, taking into account the effect of molecule excitation both on the collision diameter and on the well depth of intermolecular potential, exhibited that, for non-polar molecules, the effect associated with the change of collision diameter prevails. However, for polar molecules, the effect of the excitation of vibrational states on the well depth of intermolecular potential can compensate or even exceed the decrease of diffusion coefficient due to the averaged collision diameter rise.

  11. Inclusion of Measured - and Amplitude-Dependent Mount Properties in Vehicle or Machinery Models

    NASA Astrophysics Data System (ADS)

    JEONG, T.; SINGH, R.

    2001-08-01

    This article proposes several new or refined analytical methods for vehicle or machinery system models that include measured dynamic stiffness of vibration isolators or mounts. Complications arising due to the spectrally varying and/or amplitude-dependent parameters are categorized, and the associated eigenvalue and frequency response problems are defined. First, the real and complex eigenvalue problems that include both viscous and visco-elastic damping models are critically examined and illustrated via examples. Second, a non-linear eigenvalue problem is formulated and the resulting eigensolutions are determined for a two-degree-of-freedom system with frequency-dependent elastic and dissipative parameters. Several approximate methods, including the modal expansion method, are also proposed to calculate the forced harmonic response, and their solution errors are assessed. Third, a quasi-linear method is applied to a 1/2 car model, using measured data of a typical hydraulic engine mount, to see the effect of excitation amplitude-dependent dynamic stiffnesses. Finally, a refined non-linear, frequency domain synthesis method is proposed that includes local non-linearities in the form of measured dynamic stiffness data. The forced harmonic response of the overall system is obtained, and comparing to the corresponding time domain method for a specific 1/4 car vehicle model validates it.

  12. Comparative Study Between GGA and LDA Approximation Using First- Principles Calculations of Structural, Electronic, Optical and Vibrational Properties of CaTiO3 Crystal

    NASA Astrophysics Data System (ADS)

    Medeiros, Subenia; Araujo, Maeva

    2015-03-01

    The structural, electronic, vibrational, and optical properties of perovskite CaTiO3 in the cubic, orthorhombic, and tetragonal phase are calculated in the framework of density functional theory (DFT) with different exchange-correlation potentials by CASTEP package. The calculated band structure shows an indirect band gap of 1.88 eV at the Γ-R points in the Brillouin zone to the cubic structure, a direct band gap of 2.41 eV at the Γ- Γ points to the orthorhombic structure, and an indirect band gap of 2.31 eV at theM - Γ points to the tetragonal phase. It is still known that the CaTiO3 has a static dielectric constant that extrapolates to a value greater than 300 at zero temperature, and the dielectric response is dominated by low frequency (ν ~ 90cm-1) polar optical modes in which cation motion opposes oxygen motion. Our calculated lattice parameters, elastic constants, optical properties, and vibrational frequencies are found to be in good agreement with the available theoretical and experimental values. The results for the effective mass in the electron and hole carriers are also presented in this work.

  13. Molecular structure, vibrational spectroscopic, hyperpolarizability, natural bond orbital analysis, frontier molecular orbital analysis and thermodynamic properties of 2,3,4,5,6-pentafluorophenylacetic acid.

    PubMed

    Balachandran, V; Karunakaran, V

    2014-06-01

    The FT-IR (4000-400cm(-)(1)) and FT-Raman spectra (3500-100cm(-)(1)) of 2,3,4,5,6-pentafluorophenylacetic acid (PAA) have been recorded. Density functional theory calculation with LSDA/6-31+G(d,p) and B3LYP/6-31+G(d,p) basis sets have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman intensities and bonding features of the title compound. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of PAA are calculated using B3LYP/6-31+G(d,p) method on the finite-field approach. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The stability of molecule has been analyzed by using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within this molecule. Mulliken population analysis on atomic charges is also calculated. Thermodynamic properties (heat capacity, enthalpy, Gibb's free energy and entropy) of the title compound at different temperatures were calculated. PMID:24662720

  14. Determination of Structural and Vibrational Properties of 5-QUINOLINECARBOXALDEHYDE Using Experimental Ft-Ir Ft-Raman Techniques and Theoretical HF and DFT Methods

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Kocademir, Mustafa; Bardakci, Tayyibe

    2013-06-01

    Quinoline derivatives have been used in several pharmaceuticals. They have vital roles in regulating the functions of DNA and cancerous cells. It's necessary to determine the structures and spectroscopic properties of quinoline derivates. In this study, the FT-IR (including mid and far regions) and FT-Raman spectra of 5-quinolinecarboxaldehyde have been investigated. Hartree-Fock (HF) and density functional B3LYP calculations have also been employed with the 6-311++G(d,p) basis set for investigating the structural and spectroscopic properties of the cis and trans conformers of 5-quinolinecarboxaldehyde. Experimental and theoretical results have been compared and the results are in good agreement with each other. Keywords: 5-quinolinecarboxaldehyde; Vibrational Spectroscopy; FT-IR spectra; FT-Raman spectra; Vibrational Modes; HF; DFT [1] V. Kucuk, A. Altun, M. Kumru, Spectrochim. Acta Part A 85(2012)92-98 [2] M. Kumru, V. Kucuk, T. Bardakci, Spectrochim. Acta Part A 90(2012)28-34 [3] M. Kumru, V. Kucuk, M. Kocademir, Spectrochim. Acta Part A, 96 (2012) 242-251 We thank the Turkish Scientific and Technical Research Council (TUBITAK) for their financial support through National Postdoctoral Research Scholarship Programme and Scientific Research Fund of Fatih University under the project number P50011001 G (1457).

  15. Electrochemical setup--a unique chance to simultaneously control orbital energies and vibrational properties of single-molecule junctions with unprecedented efficiency.

    PubMed

    Bâldea, Ioan

    2014-12-21

    Impressive advances in nanoscience permit nowadays the manipulation of single molecules and broad control of many of their properties. Still, tuning the molecular charge and vibrational properties of single molecules embedded in nanojunctions in broad ranges escaped so far to an efficient control. By combining theoretical results with recent experimental data, we show that, under electrochemical control, it is possible to continuously drive a redox molecule (viologen) between almost perfect oxidized and reduced states. This yields an unprecedentedly efficient control of both vibrational frequencies and the surface-enhanced Raman scattering (SERS) intensities. The broad tuning achieved under electrochemical control by varying the overpotential ("gate potential") within experimentally accessible ranges contrasts to the case of two-terminal setups that require high biases, which real nanojunctions cannot withstand. The present study aims to stimulate concurrent transport and SERS measurements in an electrochemical setup. This may open a new avenue of research that is not accessible via two-terminal approaches for better understanding the transport at the nanoscale. PMID:25357175

  16. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Wen Xiaoqing; Xu Jianying; Ding Yingping; Huang Tong

    2010-06-10

    At a stellar mass of 3 x 10{sup 10} M {sub {Theta}} we divide the volume-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) into two distinct families and explore the environmental dependence of galaxy properties for High Stellar Mass (HSM) and Low Stellar Mass (LSM) galaxies. It is found that for HSM and LSM galaxies, the environmental dependence of some typical galaxy properties, such as color, morphologies, and star formation activities, is still very strong, which at least shows that the stellar mass is not fundamental in correlations between galaxy properties and the environment. We also note that the environmental dependence of the size for HSM and LSM galaxies is fairly weak, which is mainly due to the galaxy size being insensitive to environment.

  17. Vibration absorber modeling for handheld machine tool

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Azman; Mustafa, Mohd Muhyiddin; Jamil, Jazli Firdaus; Salim, Mohd Azli; Ramli, Faiz Redza

    2015-05-01

    Handheld machine tools produce continuous vibration to the users during operation. This vibration causes harmful effects to the health of users for repeated operations in a long period of time. In this paper, a dynamic vibration absorber (DVA) is designed and modeled to reduce the vibration generated by the handheld machine tool. Several designs and models of vibration absorbers with various stiffness properties are simulated, tested and optimized in order to diminish the vibration. Ordinary differential equation is used to derive and formulate the vibration phenomena in the machine tool with and without the DVA. The final transfer function of the DVA is later analyzed using commercial available mathematical software. The DVA with optimum properties of mass and stiffness is developed and applied on the actual handheld machine tool. The performance of the DVA is experimentally tested and validated by the final result of vibration reduction.

  18. Vibration generators

    SciTech Connect

    Lerwill, W.E.

    1980-09-16

    Apparatus for generating vibrations in a medium, such as the ground, comprises a first member which contacts the medium, means , preferably electromagnetic, which includes two relatively movable members for generating vibrations in the apparatus and means operatively connecting the said two members to said first member such that the relatively amplitudes of the movements of said three members can be adjusted to match the impedances of the apparatus and the medium.

  19. Shape-dependent electronic properties of blue phosphorene nano-flakes

    NASA Astrophysics Data System (ADS)

    Bhatia, Pradeep; Swaroop, Ram; Kumar, Ashok

    2016-05-01

    In recent year's considerable attention has been given to the first principles method for modifying and controlling electronic properties of nano-materials. We performed DFT-based calculations on the electronic properties of zigzag-edged nano-flakes of blue phosphorene with three possible shapes namely rectangular, triangular and hexagonal. We observed that HOMO-LUMO gap of zigzag phosphorene nano-flakes with different shapes is ˜2.9 eV with H-passivations and ˜0.7 - 1.2 eV in pristine cases. Electronic properties of blue phosphorene nano-flakes show the strong dependence on their shape. We observed that distributions of molecular orbitals were strongly affected by the different shapes. Zigzag edged considered nanostructures are non-magnetic and semiconducting in nature. The shape dependent electronic properties may find applications in tunable nano-electronics.

  20. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    SciTech Connect

    Bauchy, M.; Kachmar, A.; Micoulaut, M.

    2014-11-21

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10 properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27

  1. Structural, vibrational and magnetic properties of Ni{sub 1−x}Co{sub x}Fe{sub 2}O{sub 4} ferrites

    SciTech Connect

    Nandan, Brajesh Bhatnagar, M. C.

    2015-08-28

    The ferrite with chemical formula Ni{sub 1−x}Co{sub x}Fe{sub 2}O{sub 4} (x= 0.00, 0.50, 1.00) were prepared using sol-gel method. X-ray diffraction (XRD), Raman spectroscopy and physical property measurement system (PPMS) were used to characterize the structural, vibrational and magnetic properties. XRD pattern confirmed single crystalline spinel structure of Nickel ferrite with Co substitution. Lattice parameter variation confirms the substitution of Co{sup 2+} ions at the place of Ni{sup 2+} into the nickel ferrite. Raman scattering at room temperature is used to study the redistribution of Ni and Co cations between tetrahedral (A) and octahedral (B) sites. A shift is observed in Co substitute nickel ferrite in both XRD and Raman studies. M-H hysteresis is carried out at room temperature. Saturation magnetization of the samples is increased with the Co{sup 2+} ions substitution.

  2. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauchy, M.; Kachmar, A.; Micoulaut, M.

    2014-11-01

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid AsxSe1-x (0.10 properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27

  3. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  4. Vibration sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  5. FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties

    SciTech Connect

    Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

    2010-10-01

    Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

  6. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  7. Determination of the Physical Properties of Sediments Depending on Hydrate Saturation Using a "Quick Look" Method

    NASA Astrophysics Data System (ADS)

    Strauch, B.; Schicks, J. M.; Spangenberg, E.; Seyberth, K.; Heeschen, K. U.; Priegnitz, M.

    2015-12-01

    Seismic and electromagnetic measurements are promising tools for the detection and quantification of gas hydrate occurrences in nature. The seismic wave velocity depends among others on the hydrate quantity and the quality (e.g. pore filling or cementing hydrate). For a proper interpretation of seismic data the knowledge of the dependency of physical properties as a function of hydrate saturation in a certain scenario is crucial. Within the SUGAR III project we determine such dependencies for various scenarios to support models for joint inversion of seismic and EM data e.g. for the shallow gas hydrate reservoirs in the Danube Delta. Since the formation of artificial lab samples containing pore filling hydrate from methane dissolved in water is a complex and time consuming procedure, we developed an easier alternative. Ice is very similar to hydrate in some of its physical properties. Therefore it might be used as analogous pore fill in a "quick look" experiment to determine the dependency of rock physical properties on hydrate content. We used the freezing point depression of a KCl solution to generate a dependency of ice saturation on temperature. The measured seismic wave velocity in dependence on ice saturation compares very well with data measured on a glass bead sediment sample with methane hydrate formed from methane dissolved in water. We could also observe that ice, formed from a salt solution in the pore space of sediment, behaves similar to methane hydrate as a non-cementing solid pore fill.

  8. Comment on "Density functional theory studies on molecular structure, vibrational spectra and electronic properties of cyanuric acid".

    PubMed

    Reva, Igor

    2015-12-01

    In a recently published paper [Spectrochim. Acta A: Mol. Biomol. Spect. 138 (2015) 711-722], Prabhaharan, Prabakaran, Srinivasan, and Gunasekaran presented a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of cyanuric acid, and explain their findings using the tri-hydroxy tautomeric form of the compound. In reality, the compound adopts the tri-oxo tautomeric form, which is by over 100kJmol(-1) more stable comparatively to the tri-hydroxy tautomer discussed and characterized by Prabhaharan et al. PMID:26142656

  9. Vibrational relaxation in pyridine upon supersonic expansion

    NASA Astrophysics Data System (ADS)

    Maris, Assimo; Favero, Laura B.; Danieli, Roberto; Favero, Paolo G.; Caminati, Walther

    2000-11-01

    The rotational spectra of five vibrational states of pyridine have been assigned and measured by millimeter wave absorption spectroscopy in a supersonic expansion. The intensities of the lines of the vibrational satellites with respect to the ground state after the supersonic expansion depend on the kind of carrier gas, backing pressure, pyridine concentration, and symmetry of the rotational and vibrational states. Several rotational transitions of the vibrational satellites have also been measured in a conventional cell to complete the spectral assignment.

  10. Local dependence in random graph models: characterization, properties and statistical inference

    PubMed Central

    Schweinberger, Michael; Handcock, Mark S.

    2015-01-01

    Summary Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’. PMID:26560142

  11. INS, DFT and temperature dependent IR investigations of dynamical properties of low temperature phase of choline chloride

    NASA Astrophysics Data System (ADS)

    Pawlukojć, A.; Hetmańczyk, Ł.

    2014-12-01

    Within the framework of the research the inelastic neutron scattering and temperature dependent infra-red spectroscopy investigations of the low temperature phase of choline chloride were performed. The infra-red spectra in wavenumber region 4000-80 cm-1 and in a temperature range 9-300 K were collected. The density functional theory calculations with the periodic boundary conditions for determination and description of the normal modes in the vibration spectra of choline chloride were applied. Bands assigned to the CH3 torsional vibration were observed at 288 and 249 cm-1. From the analysis of the temperature dependence of the full-width-at-half-maximum the activation energy for CH3 group reorientation is found to be equal to 1.6 ± 0.2 kcal/mol.

  12. Differences in time-dependent mechanical properties between extruded and molded hydrogels.

    PubMed

    Ersumo, N; Witherel, C E; Spiller, K L

    2016-01-01

    The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945

  13. The solvent dependence of ionic properties in solution in the limit of infinite dilution

    NASA Astrophysics Data System (ADS)

    Fawcett, W. Ronald

    1998-10-01

    The dependence of the Gibbs solvation energy and limiting ionic conductance for simple ions on the solvent nature is discussed for a collection of data in 18 polar solvents both protic and aprotic. It is shown that the Gibbs solvation energy depends on the acidity and basicity of the solvent, concepts based on a detailed quantum mechanical description of the solvent molecule and its interaction with ions in its vicinity. On the other hand, ionic mobility, after correction for solvent viscosity, depends on the size of the surrounding molecules, and to a lesser extent on their acid-base properties.

  14. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  15. Parametric excitation of electro-mechanical vibrations of carbon nano tube with distributed surface charge

    NASA Astrophysics Data System (ADS)

    Vijay, A.; Tripathi, V. K.

    2013-11-01

    Electromechanical vibrations of carbon nano tube (CNT), mounted on a metallic base and subjected to a sum of static and radio frequency (RF) electric fields parallel to its length, are investigated. The induced surface charge on the CNT is taken suitably distributed, following Landau and Lifshitz, so that the curved surface remains an equi-potential surface. The natural frequency of transverse vibrations of CNT, ωN depends on the dc electric field, besides the mechanical properties. When the RF frequency ω0 is close to 2ωN, the RF excites the vibrations as three mode parametric instability that saturates via nonlinearity in the restoration force.

  16. Superconducting layer thickness dependence of magnetic relaxation property in CVD processed YGdBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2011-11-01

    One of the most important properties of coated conductors for Superconducting Magnetic Energy Storage (SMES) is the relaxation property of persistent superconducting current. This property can be quantitatively characterized by the apparent pinning potential U0∗. In this paper, the dependence of U0∗ on the thickness of superconducting layer d is investigated in the range of 0.33-1.43 μm at the temperature range of 20-30 K and in magnetic fields up to 6.5 T for Y 0.7Gd 0.3Ba 2Cu 3O 7- δ coated conductors. It was found that the value of critical current density did not appreciably depend on d at 20 K. This indicates that no structural deterioration of superconducting layer occurs during the process of increasing thickness. U0∗ increases and then tends to decrease with an increasing magnetic field. The magnetic field at which U0∗ starts to decrease increases with increasing thickness. This property was analyzed using the flux creep-flow model. Application of scaling law is examined for the dependence of U0∗ on magnetic field and temperature. It was found that the dependence could be expressed using scaling parameters B,U0 peak∗ in the temperature range 20-30 K.

  17. Loading mode dependent effective properties of octet-truss lattice structures using 3D-printing

    NASA Astrophysics Data System (ADS)

    Challapalli, Adithya

    Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octettruss lattice materials are conducted. New effective properties for the octet-truss lattice structure are developed considering the observed behavior of the octet-truss structure under macroscopic compression and tension trough simulations.

  18. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  19. Vibration-rotation line shifts for 1 sigma g + H2/V,J/-1S/0/ He computed via close coupling - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.; Chackerian, C., Jr.

    1980-01-01

    The density shifting of vibration-rotation transitions of H2 perturbed by He was computed (as a function of temperature) with no adjustable parameters. The calculation was carried out using the framework of the impact theory of Baranger with S-matrix elements obtained via close coupling calculations which incorporated the ab initio H2-H2 system potential of Tsapline et al.(1977). Vibrational and rotational inelasticity were neglected in the calculations; nevertheless good agreement with experimental data was obtained, up to moderate temperatures, for the density shift. A much poorer comparison was obtained for the density broadening.

  20. Growth, characterization, optical and vibrational properties of Sm3+ doped Cd0.8Zn0.2S semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Yellaiah, G.; Hadasa, K.; Nagabhushanam, M.

    2014-01-01

    Undoped and doped polycrystalline Cd0.8Zn0.2S powders with different amounts of samarium (0.01, 0.02, 0.03, 0.04 and 0.05 M) were synthesized by the controlled co-precipitation technique. Effect of the Sm3+ on structural, elemental, optical and vibrational properties of Cd0.8Zn0.2S: Smx samples were investigated. X-ray diffraction (XRD) results showed that the samples prepared were polycrystalline with hexagonal structure. From the XRD patterns, the average crystallite size was calculated it was about 45-90 nm. The band gap of these samples is estimated from the optical absorption studies. The samples showed direct band gap, which varies from 2.52 to 3.18 eV. Fourier transform infrared spectroscopy (FTIR) showed the characteristic vibrational modes of Cd-S and Zn-S in the wave number range 621-821 cm-1. Experimental and XRD densities were calculated and analyzed.

  1. The effect of the built-in stress level of AlN layers on the properties of piezoelectric vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Karakaya, K.; Renaud, M.; Goedbloed, M.; van Schaijk, R.

    2008-10-01

    In this paper we investigated the effects of built-in stress on the dielectric and piezoelectric properties of sputtered AlN layers, meant to be implemented in micromachined piezoelectric vibration energy harvesters. Test structures including cantilevers, 4-point bending beams and metal-insulator-metal capacitors were manufactured with reactive sputtered AlN layers in a thickness range of 400-1200 nm. Various bias conditions during the deposition process allowed controlling the built-in stress level in the layers, from tensile to compressive. The clamped dielectric permittivity ɛ33S, the voltage response and the piezoelectric coefficient e31 of the deposited AlN layers were measured by performing capacitance, voltage-deflection and 4-point bending measurements, respectively. In addition, we obtained from electrical impedance analyses the generalized electromechanical coupling (GEMC) and the quality factors of the fabricated test cantilevers, which are the critical parameters directly connected to the performance of the device in terms of energy harvesting. It is found that the permittivity ɛ33S and the piezoelectric constant e31 were not significantly affected by the different stress levels for a given layer thickness. However, the GEMC and the quality factor were found to be decreasing for structures that have a larger residual stress. We concluded that large residual stress has to be avoided in order to optimize the output power of AlN-based vibration harvesters.

  2. Investigations on structural, vibrational, morphological and optical properties of CdS and CdS/Co films by ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Aksay, S.; Polat, M.; Özer, T.; Köse, S.; Gürbüz, G.

    2011-09-01

    CdS and CdS/Co films have been deposited on glass substrates by an ultrasonic spray pyrolysis method. The effects of Co incorporation on the structural, optical, morphological, elemental and vibrational properties of these films were investigated. XRD analysis confirmed the hexagonal wurtzite structure of all films and had no impurity phase. While CdS film has (0 0 2) as the preferred orientation, CdS/Co films have (1 1 0) as the preferred orientation. The direct optical band gap was found to decrease from 2.42 to 2.39 eV by Co incorporation. The decrease of the direct energy gaps by increasing Co contents is mainly due to the sp-d exchange interaction between the localized d-electrons of Co2+ ions and band electrons of CdS. After the optical investigations, it was seen that the transmittance of CdS films decreased by Co content. The Raman measurements revealed two peaks corresponding to the 1LO and 2LO modes of hexagonal CdS. The vibrational modes of Cd-S were obtained in the wavenumber range (590-715 cm-1) using Fourier transform infrared spectroscopy (FTIR). The elemental analysis of the film was done by energy dispersive X-ray spectrometry.

  3. The vibrational studies and theoretical investigation of structure, electronic and non-linear optical properties of Sudan III [1-{[4-(phenylazo) phenyl]azo}-2-naphthalenol

    NASA Astrophysics Data System (ADS)

    Esme, Aslı; Sagdinc, Seda Gunesdogdu

    2013-09-01

    Sudan III [1-{[4-(phenylazo) phenyl]azo}-2-naphthalenol] is non-ionic fat-soluable dye used as an additive in gasoline, oils and plastics. The molecular structure, molecular electrostatic potential, NBO analysis, linear and non-linear optical properties of Sudan III have been investigated using density functional theory (DFT) calculation with 6-311G(d,p) basis set. To investigate the tautomeric stability, optimization calculations at B3LYP/6-311G(d,p) level were performed for the azo (OH) and hydrazo (NH) forms of the title compound. The calculated first-order hyperpolarizability value is comparable with the reported values and attractive object for future studies of non-linear optics. FT-IR (4000-400 cm-1) and FT-Raman (3500-50 cm-1) spectra of Sudan III have been recorded. The vibrational frequencies determined experimentally are compared with those obtained theoretically and a vibrational assignment and analysis of the fundamental modes of the compound is performed. The scaled frequencies resulted in good agreement with the observed spectral patterns.

  4. Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamics insights.

    PubMed

    Chakraborty, Somendra Nath; English, Niall J

    2015-10-21

    Equilibrium molecular dynamics (MD) simulations have been performed on cubic (sI and sII) polymorphs of methane hydrate, and hexagonal ice (ice Ih), to study the dynamical properties of hydrogen-bond vibrations and hydrogen-bond self-energy. It was found that hydrogen-bond energies are greatest in magnitude in sI hydrates, followed by sII, and their energies are least in magnitude in ice Ih. This is consistent with recent MD-based findings on thermal conductivities for these various materials [N. J. English and J. S. Tse, Phys. Rev. Lett. 103, 015901 (2009)], in which the lower thermal conductivity of sI methane hydrate was rationalised in terms of more strained hydrogen-bond arrangements. Further, modes for vibration and energy-transfer via hydrogen bonds in sI hydrate were found to occur at higher frequencies vis-à-vis ice Ih and sII hydrate in both the water-librational and OH⋯H regions because of the more strained nature of hydrogen bonds therein. PMID:26493912

  5. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2.

    PubMed

    Jana, Manoj K; Singh, Anjali; Late, Dattatray J; Rajamathi, Catherine R; Biswas, Kanishka; Felser, Claudia; Waghmare, Umesh V; Rao, C N R

    2015-07-22

    The recent discovery of non-saturating giant positive magnetoresistance has aroused much interest in Td-WTe(2). We have investigated structural, electronic and vibrational properties of bulk and few-layer Td-WTe(2) experimentally and theoretically. Spin-orbit coupling is found to govern the semi-metallic character of Td-WTe(2) and its structural link with the metallic 1 T form provides an understanding of its structural stability. There is a metal-to-insulator switch-over in the electrical conductivity and a change in the sign of the Seebeck coefficient around 373 K. Lattice vibrations of Td-WTe(2) have been analyzed using first-principles calculations. Out of the 33 possible zone-center Raman active modes, five distinct Raman bands are observed around 112, 118, 134, 165 and 212 cm(-1) in bulk Td-WTe(2). Based on symmetry analysis and calculated Raman tensors, we assign the intense bands at 165 cm(-1) and 212 cm(-1) to the A'(1)and A''(1) modes, respectively. Most of the Raman bands stiffen with decreasing thickness, and the ratio of the integrated intensities of the A''(1) to A'(1) bands decreases in the few-layer sample, while all the bands soften in both the bulk and few-layer samples with increasing temperature. PMID:26102263

  6. A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2

    NASA Astrophysics Data System (ADS)

    Jana, Manoj K.; Singh, Anjali; Late, Dattatray J.; Rajamathi, Catherine R.; Biswas, Kanishka; Felser, Claudia; Waghmare, Umesh V.; Rao, C. N. R.

    2015-07-01

    The recent discovery of non-saturating giant positive magnetoresistance has aroused much interest in Td-WTe2. We have investigated structural, electronic and vibrational properties of bulk and few-layer Td-WTe2 experimentally and theoretically. Spin-orbit coupling is found to govern the semi-metallic character of Td-WTe2 and its structural link with the metallic 1 T form provides an understanding of its structural stability. There is a metal-to-insulator switch-over in the electrical conductivity and a change in the sign of the Seebeck coefficient around 373 K. Lattice vibrations of Td-WTe2 have been analyzed using first-principles calculations. Out of the 33 possible zone-center Raman active modes, five distinct Raman bands are observed around 112, 118, 134, 165 and 212 cm-1 in bulk Td-WTe2. Based on symmetry analysis and calculated Raman tensors, we assign the intense bands at 165 cm-1 and 212 cm-1 to the A1\\prime and A1\\prime\\prime modes, respectively. Most of the Raman bands stiffen with decreasing thickness, and the ratio of the integrated intensities of the A1\\prime\\prime to A1\\prime bands decreases in the few-layer sample, while all the bands soften in both the bulk and few-layer samples with increasing temperature.

  7. Molecular response properties in equation of motion coupled cluster theory: A time-dependent perspective

    NASA Astrophysics Data System (ADS)

    Coriani, Sonia; Pawłowski, Filip; Olsen, Jeppe; Jørgensen, Poul

    2016-01-01

    Molecular response properties for ground and excited states and for transitions between these states are defined by solving the time-dependent Schrödinger equation for a molecular system in a field of a time-periodic perturbation. In equation of motion coupled cluster (EOM-CC) theory, molecular response properties are commonly obtained by replacing, in configuration interaction (CI) molecular response property expressions, the energies and eigenstates of the CI eigenvalue equation with the energies and eigenstates of the EOM-CC eigenvalue equation. We show here that EOM-CC molecular response properties are identical to the molecular response properties that are obtained in the coupled cluster-configuration interaction (CC-CI) model, where the time-dependent Schrödinger equation is solved using an exponential (coupled cluster) parametrization to describe the unperturbed system and a linear (configuration interaction) parametrization to describe the time evolution of the unperturbed system. The equivalence between EOM-CC and CC-CI molecular response properties only holds when the CI molecular response property expressions—from which the EOM-CC expressions are derived—are determined using projection and not using the variational principle. In a previous article [F. Pawłowski, J. Olsen, and P. Jørgensen, J. Chem. Phys. 142, 114109 (2015)], it was stated that the equivalence between EOM-CC and CC-CI molecular response properties only held for a linear response function, whereas quadratic and higher order response functions were mistakenly said to differ in the two approaches. Proving the general equivalence between EOM-CC and CC-CI molecular response properties is a challenging task, that is undertaken in this article. Proving this equivalence not only corrects the previous incorrect statement but also first and foremost leads to a new, time-dependent, perspective for understanding the basic assumptions on which the EOM-CC molecular response property expressions

  8. Molecular response properties in equation of motion coupled cluster theory: A time-dependent perspective.

    PubMed

    Coriani, Sonia; Pawłowski, Filip; Olsen, Jeppe; Jørgensen, Poul

    2016-01-14

    Molecular response properties for ground and excited states and for transitions between these states are defined by solving the time-dependent Schrödinger equation for a molecular system in a field of a time-periodic perturbation. In equation of motion coupled cluster (EOM-CC) theory, molecular response properties are commonly obtained by replacing, in configuration interaction (CI) molecular response property expressions, the energies and eigenstates of the CI eigenvalue equation with the energies and eigenstates of the EOM-CC eigenvalue equation. We show here that EOM-CC molecular response properties are identical to the molecular response properties that are obtained in the coupled cluster-configuration interaction (CC-CI) model, where the time-dependent Schrödinger equation is solved using an exponential (coupled cluster) parametrization to describe the unperturbed system and a linear (configuration interaction) parametrization to describe the time evolution of the unperturbed system. The equivalence between EOM-CC and CC-CI molecular response properties only holds when the CI molecular response property expressions-from which the EOM-CC expressions are derived-are determined using projection and not using the variational principle. In a previous article [F. Pawłowski, J. Olsen, and P. Jørgensen, J. Chem. Phys. 142, 114109 (2015)], it was stated that the equivalence between EOM-CC and CC-CI molecular response properties only held for a linear response function, whereas quadratic and higher order response functions were mistakenly said to differ in the two approaches. Proving the general equivalence between EOM-CC and CC-CI molecular response properties is a challenging task, that is undertaken in this article. Proving this equivalence not only corrects the previous incorrect statement but also first and foremost leads to a new, time-dependent, perspective for understanding the basic assumptions on which the EOM-CC molecular response property expressions are

  9. Monte Carlo method for photon heating using temperature-dependent optical properties.

    PubMed

    Slade, Adam Broadbent; Aguilar, Guillermo

    2015-02-01

    The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. PMID

  10. Thickness Dependent Properties of Relaxor-PbTiO3 Ferroelectrics for Ultrasonic Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Luo, Jun; Li, Fei; Shrout, Thomas R.

    2011-01-01

    The electrical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) based polycrystalline ceramics and single crystals were investigated as a function of scale ranging from 500 microns to 30 microns. Fine-grained PMN-PT ceramics exhibited comparable dielectric and piezoelectric properties to their coarse-grained counterpart in the low frequency range (<10 MHz), but offered greater mechanical strength and improved property stability with decreasing thickness, corresponding to higher operating frequencies (>40 MHz). For PMN-PT single crystals, however, the dielectric and electromechanical properties degraded with decreasing thickness, while ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) exhibited minimal size dependent behavior. The origin of property degradation of PMN-PT crystals was further studied by investigating the dielectric permittivity at high temperatures, and domain observations using optical polarized light microscopy. The results demonstrated that the thickness dependent properties of relaxor-PT ferroelectrics are closely related to the domain size with respect to the associated macroscopic scale of the samples. PMID:21954374

  11. The statistical properties of stars and their dependence on metallicity: the effects of opacity

    NASA Astrophysics Data System (ADS)

    Bate, Matthew R.

    2014-07-01

    We report the statistical properties of stars and brown dwarfs obtained from four radiation hydrodynamical simulations of star cluster formation that resolve masses down to the opacity limit for fragmentation. The calculations are identical except for their dust and gas opacities. Assuming dust opacity is proportional to metallicity, the calculations span a range of metallicities from 1/100 to 3 times solar, although we emphasize that changing the metallicity has other thermodynamic effects that the calculations do not capture (e.g. on the thermal coupling between gas and dust). All four calculations produce stellar populations whose statistical properties are difficult to distinguish from observed stellar systems, and we find no significant dependence of stellar properties on opacity. The mass functions and properties of multiple stellar systems are consistent with each other. However, we find that protostellar mergers are more common with lower opacities. Combining the results from the three calculations with the highest opacities, we obtain a stellar population consisting of more than 500 stars and brown dwarfs. Many of the statistical properties of this population are in good agreement with those observed in our Galaxy, implying that gravity, hydrodynamics, and radiative feedback may be the primary ingredients for determining the statistical properties of low-mass stars. However, we do find indications that the calculations may be slightly too dissipative. Although further calculations will be required to understand all of the effects of metallicity on stellar properties, we conclude that stellar properties are surprisingly resilient to variations of the dust and gas opacities.

  12. Vibration Characteristics of Thermoplastic Composite

    NASA Astrophysics Data System (ADS)

    Haldar, Amit Kumar; Singh, Satnam; Prince

    2011-12-01

    Unreinforced, Long fiber and Short fiber polypropylene composites are being used in many antivibration applications, due to their time and temperature dependent specific mechanical properties. Their good damping behavior accounts for many engineering applications. For utilization of these materials in specific engineering applications, there is a need to understand the damping behavior of composites under dynamic load. For this work, unreinforced and 20% long and short reinforced glass fiber polypropylene composite materials were tested for forced transverse vibration damping characteristics under static as well as fatigue loading conditions. The damping characteristics are quantified by forced frequency response of the test material. Presence of reinforced fibers increases the damping capacity. Among reinforcements, short fiber reinforced polypropylene shows increased damping capacity then long glass fiber reinforced. The Publisher is retracting this article from the scientific record due to the verbatim use of content without proper crediting.

  13. The structure, vibrational spectra and nonlinear optical properties of the L-lysine × tartaric acid complex—Theoretical studies

    NASA Astrophysics Data System (ADS)

    Drozd, M.; Marchewka, M. K.

    2006-05-01

    The room temperature X-ray studies of L-lysine × tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine × tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of β.

  14. Novel active vibration absorber with magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Gerlach, T.; Ehrlich, J.; Böse, H.

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  15. Theoretical investigation on the non-linear optical properties, vibrational spectroscopy and frontier molecular orbital of (E)-2-cyano-3-(3-hydroxyphenyl)acrylamide molecule

    NASA Astrophysics Data System (ADS)

    Xiao-Hong, Li; Hong-Ling, Cui; Rui-Zhou, Zhang; Xian-Zhou, Zhang

    2015-02-01

    The vibrational frequencies of (E)-2-cyano-3-(3-hydroxyphenyl)acrylamide (HB-CA) in the ground state have been calculated using density functional method (B3LYP) with B3LYP/6-311++G(d,p) basis set. The analysis of natural bond orbital was also performed. The IR spectra were obtained and interpreted by means of potential energies distributions (PEDs) using MOLVIB program. In addition, the results show that there exists Csbnd H⋯O hydrogen bond in the title compound, which is confirmed by the natural bond orbital analysis. The predicted NLO properties show that the title compound is a good candidate as nonlinear optical material. The analysis of frontier molecular orbitals shows that HB-CA has high excitation energies, good stability and high chemical hardness. The analysis of MEP map shows the negative and the positive potential sites.

  16. Crystal structure, vibrational spectra and non-linear optical properties of diethylenetriammonium hexabromobismuthate: C4H16N3BiBr6.

    PubMed

    Dammak, Hajer; Feki, Habib; Boughzala, Habib; Abid, Younes

    2015-02-25

    A new organic-inorganic material, diethylenetriammonium hexabromobismuthate (C4H16N3)BiBr6, was synthesized and characterized by X-ray diffraction, infrared absorption, Raman spectroscopy scattering and optical absorption. The crystal lattice is composed of discrete [BiBr6] anions surrounded by diethylenetriammonium cations. The title compound crystallizes in the non-centro-symmetric space group P212121 of orthorhombic system. Theoretical calculations were performed using density functional theory (DFT) at B3LYP/LanL2DZ level of theory for studying the molecular structure, vibrational spectra and non-linear optical (NLO) properties of the investigated molecule in the ground state. Good consistency is found between the calculated results and the experimental structure, IR, and Raman spectra. The results also show that the title compound might have important NLO behavior and can be a potential new nonlinear optical (NLO) material of interest. PMID:25305616

  17. Lead-nano-dopings effects on the structural, microstructural, vibrational and thermal properties of Bi 2- xPb xSrV 2O 9 layered perovskite

    NASA Astrophysics Data System (ADS)

    Elsabawy, Khaled M.; Abou Sekkina, Morsy M.; Asker, Mohamed A.; El-Newehy, Mohamed H.

    2010-07-01

    The sample with in the general formula Bi 2-xPb xSrV 2O 9, where x = 0.0, 0.05, 0.1, 0.2, 0.3, and 0.6 mol were synthesized by the high temperature solid state reaction and firing method. The X-ray diffractograms confirmed the formation of single phased layered perovskite in all samples. TGA and DTA thermal analyses on the green samples included steps of thermal analysis of strontium carbonate, bismuth carbonate, ammonium vanadate, lead oxide and finally on the high temperature solid state formation. The effect of lead dopings on the sintering, structural and micro-structure, properties of 212BiSrV-ceramics were investigated. The infrared absorption spectra show a series of vibrational modes within the range of 400-1600 cm -1.

  18. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hakim, M. A.; Basith, M. A.; Hossain, Md. Sarowar; Ahmmad, Bashir; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul

    2016-03-01

    Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ˜ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ˜ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  19. Identification of temperature-dependent thermal-structural properties via finite element model updating and selection

    NASA Astrophysics Data System (ADS)

    Sun, Kaipeng; Zhao, Yonghui; Hu, Haiyan

    2015-02-01

    The objective of this study is to develop a strategy to identify the temperature-dependent properties of a thermo-elastic structure in an unsteady temperature environment, where time-varying material properties and thermal stresses are taken into account. The identification problem is formulated as an updating procedure of the finite element model. Due to the unsteady temperature environment, this procedure is based on a time-variant finite element model because the system matrices change over time. The temperature-dependent properties are expressed as low-order polynomials first. Then, an integrated objective function is established by using errors of the instantaneous frequencies and the sum of the highest order of the polynomials for all the parameters. Subsequently, the particle swarm optimisation is performed to minimise the above objective function to simultaneously determine the coefficient and the order of the polynomials. To demonstrate the effectiveness of the proposed procedure, the identification of a simply supported beam with an axially movable boundary subjected to an unsteady, uniformly distributed temperature field is presented. The numerical verification shows that the identified temperature-dependent properties well track the trends of the true values with high accuracy.

  20.  De novo isolation of antibodies with pH-dependent binding properties.

    PubMed

    Bonvin, Pauline; Venet, Sophie; Fontaine, Gaëlle; Ravn, Ulla; Gueneau, Franck; Kosco-Vilbois, Marie; Proudfoot, Amanda Ei; Fischer, Nicolas

    2015-01-01

    pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies. PMID:25608219