Sample records for depolarization loss analysis

  1. Losses and depolarization of ultracold neutrons on neutron guide and storage materials

    NASA Astrophysics Data System (ADS)

    Bondar, V.; Chesnevskaya, S.; Daum, M.; Franke, B.; Geltenbort, P.; Göltl, L.; Gutsmiedl, E.; Karch, J.; Kasprzak, M.; Kessler, G.; Kirch, K.; Koch, H.-C.; Kraft, A.; Lauer, T.; Lauss, B.; Pierre, E.; Pignol, G.; Reggiani, D.; Schmidt-Wellenburg, P.; Sobolev, Yu.; Zechlau, T.; Zsigmond, G.

    2017-09-01

    At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to ˜460 s were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, η , varied between 1.0 ×10-4 and 2.2 ×10-4 . All η values are in agreement with theory except for dPS, where anomalous losses at room temperature were established with four standard deviations. The depolarization probabilities per wall collision β measured with unprecedented sensitivity varied between 0.7 ×10-6 and 9.0 ×10-6 . Our depolarization result for copper differs from other experiments by 4.4 and 15.8 standard deviations. The β values of the paramagnetic NiMo alloys over molybdenum content show an increase of β with increasing Mo content. This is in disagreement with expectations from literature. Finally, ferromagnetic behavior of NiMo alloys at room temperature was found for molybdenum contents of 6.5 at.% or less and paramagnetic behavior for more than 8.7 at.%. This may contribute to solving an ambiguity in literature.

  2. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  3. Ischemia-induced spreading depolarization in the retina

    PubMed Central

    Srienc, Anja I; Biesecker, Kyle R; Shimoda, Angela M; Kur, Joanna

    2016-01-01

    Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients. PMID:27389181

  4. Correction of Depolarizing Resonances in ELSA

    NASA Astrophysics Data System (ADS)

    Steier, C.; Husmann, D.

    1997-05-01

    The 3.5 GeV electron stretcherring ELSA (ELectron Stretcher Accelerator) at Bonn University is operational since 1987, both as a continuous beam facility for external fixed target experiments and as a partially dedicated synchrotron light source. For the external experiments an upgrade to polarized electrons is under way. One source of polarized electrons (GaAs crystal, photoeffect using circular polarized laser light) is operational. The studies of minimizing the losses in polarization degree due to crossing of depolarizing resonances that necessarily exist in circular accelerators (storagerings) just started recently. Calculations concerning different correction schemes for the depolarizing resonances in ELSA are presented, and first results of measurements are shown (done by means of a Møller polarimeter in one of the external beamlines).

  5. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessedmore » by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS.

  6. CaMKII-dependent endoplasmic reticulum fission by whisker stimulation and during cortical spreading depolarization.

    PubMed

    Kucharz, Krzysztof; Lauritzen, Martin

    2018-04-01

    Cortical spreading depolarization waves, the cause underlying migraine aura, are also the markers and mechanism of pathology in the acutely injured human brain. Propagation of spreading depolarization wave uniquely depends on the interaction between presynaptic and postsynaptic glutamate N-methyl-d-aspartate receptors (NMDARs). In the normally perfused brain, even a single wave causes a massive depolarization of neurons and glia, which results in transient loss of neuronal function and depression of the ongoing electrocorticographic activity. Endoplasmic reticulum is the cellular organelle of particular importance for modulation of neurotransmission. Neuronal endoplasmic reticulum structure is assumed to be persistently continuous in neurons, but is rapidly lost within 1 to 2 min of global cerebral ischaemia, i.e. the organelle disintegrates by fission. This phenomenon appears to be timed with the cardiac arrest-induced cortical spreading depolarizations, rather than ensuing cell death. To what extent NMDAR-dependent processes may trigger neuronal endoplasmic reticulum fission and whether fission is reversible in the normally perfused brain is unknown. We used two-photon microscopy to examine neuronal endoplasmic reticulum structural dynamics during whisker stimulation and cortical spreading depolarizations in vivo. Somatosensory stimulation triggered loss of endoplasmic reticulum continuity, a likely outcome of constriction and fission, in dendritic spines within less than 10 s of stimulation, which was spontaneously reversible and recovery to normal took 5 min. The endoplasmic reticulum fission was inhibited by blockade of NMDAR and Ca2+/calmodulin-dependent protein kinase II (CaMKII) activated downstream of the NMDARs, whereas inhibition of guanosine triphosphate hydrolases hindered regain of endoplasmic reticulum continuity, i.e. fusion. In contrast to somatosensory stimulation, endoplasmic reticulum fission during spreading depolarization was widespread and

  7. Stitching Type Large Aperture Depolarizer for Gas Monitoring Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, X.; Li, M.; An, N.; Zhang, T.; Cao, G.; Cheng, S.

    2018-04-01

    To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm). In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters the tolerance of wedge angle refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  8. Propofol and Sevoflurane Differentially Modulate Cortical Depolarization following Electric Stimulation of the Ventrobasal Thalamus.

    PubMed

    Kratzer, Stephan; Mattusch, Corinna; Garcia, Paul S; Schmid, Sebastian; Kochs, Eberhard; Rammes, Gerhard; Schneider, Gerhard; Kreuzer, Matthias; Haseneder, Rainer

    2017-01-01

    The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated. Here we investigated the effect of the anesthetic agents sevoflurane and propofol on thalamocortical network activity in vitro . We used voltage-sensitive dye imaging techniques to analyze the cortical depolarization in response to stimulation of the thalamic ventrobasal nucleus in brain slices from mice. Exposure to sevoflurane globally decreased cortical depolarization in a dose-dependent manner. Sevoflurane reduced the intensity and extent of cortical depolarization and delayed thalamocortical signal propagation. In contrast, propofol neither affected area nor amplitude of cortical depolarization. However, propofol exposure resulted in regional changes in spatial distribution of maximum fluorescence intensity in deep regions of the cortex. In summary, our experiments revealed substance-specific effects on the thalamocortical network. Functional changes of the neuronal network are known to be pivotally involved in the anesthetic-induced loss of consciousness. Our findings provide further evidence that the mechanisms of anesthetic-mediated loss of consciousness are drug- and pathway-specific.

  9. Depolarization on Earth-space paths

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Sources of depolarization effects on the propagation paths of orthogonally-polarized information channels are considered. The main sources of depolarization at millimeter wave frequencies are hydrometeor absorption and scattering in the troposphere. Terms are defined. Mathematical formulations for the effects of the propagation medium characteristics and antenna performance on signals in dual polarization Earth-space links are presented. Techniques for modeling rain and ice depolarization are discussed.

  10. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    PubMed Central

    Sundelacruz, Sarah; Levin, Michael

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved

  11. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells

    NASA Technical Reports Server (NTRS)

    Zenner, H. P.; Reuter, G.; Zimmermann, U.; Gitter, A. H.; Fermin, C.; LePage, E. L.

    1994-01-01

    There are types of deafness and tinnitus in which ruptures or massive changes in the ionic permeability of the membranes lining the endolymphatic space [e.g., of the reticular lamina (RL)] are believed to allow potassium-rich endolymph to deluge the low [K+] perilymphatic fluid (e.g., in the small spaces of Nuel). This would result in a K+ intoxication of sensory and neural structures. Acute attacks of Meniere's disease have been suggested to be an important example for this event. The present study investigated the effects of transiently elevated [K+] due to the addition of artificial endolymph to the basolateral cell surface of outer hair cells (OHC) in replicating endolymph-induced K+ intoxication of the perilymph in the small spaces of Nuel. The influence of K+ intoxication of the basolateral OHC cell surface on the transduction was then examined. Intoxication resulted in an inhibition of the physiological repolarizing K+ efflux from hair cells. This induced unwanted depolarizations of the hair cells, interfering with mechanoelectrical transduction. A pathological longitudinal OHC shortening was also found, with subsequent compression of the organ of Corti possibly influencing the micromechanics of the mechanically active OHC. Both micromechanical and electrophysiological alterations are proposed to contribute to endolymph leakage induced attacks of deafness and possibly also to tinnitus. Moreover, repeated or long-lasting K+ intoxications of OHC resulted in a chronic and complete loss of OHC motility. This is suggested to be a pathophysiological basis in some patients with chronic hearing loss resulting from Meniere's syndrome.

  12. Correlates of spreading depolarization in human scalp electroencephalography

    PubMed Central

    Drenckhahn, Christoph; Winkler, Maren K. L.; Major, Sebastian; Scheel, Michael; Kang, Eun-Jeung; Pinczolits, Alexandra; Grozea, Cristian; Hartings, Jed A.; Woitzik, Johannes

    2012-01-01

    It has been known for decades that suppression of spontaneous scalp electroencephalographic activity occurs during ischaemia. Trend analysis for such suppression was found useful for intraoperative monitoring during carotid endarterectomy, or as a screening tool to detect delayed cerebral ischaemia after aneurismal subarachnoid haemorrhage. Nevertheless, pathogenesis of such suppression of activity has remained unclear. In five patients with aneurismal subarachnoid haemorrhage and four patients with decompressive hemicraniectomy after malignant hemispheric stroke due to middle cerebral artery occlusion, we here performed simultaneously full-band direct and alternating current electroencephalography at the scalp and direct and alternating current electrocorticography at the cortical surface. After subarachnoid haemorrhage, 275 slow potential changes, identifying spreading depolarizations, were recorded electrocorticographically over 694 h. Visual inspection of time-compressed scalp electroencephalography identified 193 (70.2%) slow potential changes [amplitude: −272 (−174, −375) µV (median quartiles), duration: 5.4 (4.0, 7.1) min, electrocorticography–electroencephalography delay: 1.8 (0.8, 3.5) min]. Intervals between successive spreading depolarizations were significantly shorter for depolarizations with electroencephalographically identified slow potential change [33.0 (27.0, 76.5) versus 53.0 (28.0, 130.5) min, P = 0.009]. Electroencephalography was thus more likely to display slow potential changes of clustered than isolated spreading depolarizations. In contrast to electrocorticography, no spread of electroencephalographic slow potential changes was seen, presumably due to superposition of volume-conducted electroencephalographic signals from widespread cortical generators. In two of five patients with subarachnoid haemorrhage, serial magnetic resonance imaging revealed large delayed infarcts at the recording site, while electrocorticography

  13. Estimating Depolarization with the Jones Matrix Quality Factor

    NASA Astrophysics Data System (ADS)

    Hilfiker, James N.; Hale, Jeffrey S.; Herzinger, Craig M.; Tiwald, Tom; Hong, Nina; Schöche, Stefan; Arwin, Hans

    2017-11-01

    Mueller matrix (MM) measurements offer the ability to quantify the depolarization capability of a sample. Depolarization can be estimated using terms such as the depolarization index or the average degree of polarization. However, these calculations require measurement of the complete MM. We propose an alternate depolarization metric, termed the Jones matrix quality factor, QJM, which does not require the complete MM. This metric provides a measure of how close, in a least-squares sense, a Jones matrix can be found to the measured Mueller matrix. We demonstrate and compare the use of QJM to other traditional calculations of depolarization for both isotropic and anisotropic depolarizing samples; including non-uniform coatings, anisotropic crystal substrates, and beetle cuticles that exhibit both depolarization and circular diattenuation.

  14. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group.

    PubMed

    Dreier, Jens P; Fabricius, Martin; Ayata, Cenk; Sakowitz, Oliver W; William Shuttleworth, C; Dohmen, Christian; Graf, Rudolf; Vajkoczy, Peter; Helbok, Raimund; Suzuki, Michiyasu; Schiefecker, Alois J; Major, Sebastian; Winkler, Maren Kl; Kang, Eun-Jeung; Milakara, Denny; Oliveira-Ferreira, Ana I; Reiffurth, Clemens; Revankar, Gajanan S; Sugimoto, Kazutaka; Dengler, Nora F; Hecht, Nils; Foreman, Brandon; Feyen, Bart; Kondziella, Daniel; Friberg, Christian K; Piilgaard, Henning; Rosenthal, Eric S; Westover, M Brandon; Maslarova, Anna; Santos, Edgar; Hertle, Daniel; Sánchez-Porras, Renán; Jewell, Sharon L; Balança, Baptiste; Platz, Johannes; Hinzman, Jason M; Lückl, Janos; Schoknecht, Karl; Schöll, Michael; Drenckhahn, Christoph; Feuerstein, Delphine; Eriksen, Nina; Horst, Viktor; Bretz, Julia S; Jahnke, Paul; Scheel, Michael; Bohner, Georg; Rostrup, Egill; Pakkenberg, Bente; Heinemann, Uwe; Claassen, Jan; Carlson, Andrew P; Kowoll, Christina M; Lublinsky, Svetlana; Chassidim, Yoash; Shelef, Ilan; Friedman, Alon; Brinker, Gerrit; Reiner, Michael; Kirov, Sergei A; Andrew, R David; Farkas, Eszter; Güresir, Erdem; Vatter, Hartmut; Chung, Lee S; Brennan, K C; Lieutaud, Thomas; Marinesco, Stephane; Maas, Andrew Ir; Sahuquillo, Juan; Dahlem, Markus A; Richter, Frank; Herreras, Oscar; Boutelle, Martyn G; Okonkwo, David O; Bullock, M Ross; Witte, Otto W; Martus, Peter; van den Maagdenberg, Arn Mjm; Ferrari, Michel D; Dijkhuizen, Rick M; Shutter, Lori A; Andaluz, Norberto; Schulte, André P; MacVicar, Brian; Watanabe, Tomas; Woitzik, Johannes; Lauritzen, Martin; Strong, Anthony J; Hartings, Jed A

    2017-05-01

    Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.

  15. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group

    PubMed Central

    Fabricius, Martin; Ayata, Cenk; Sakowitz, Oliver W; William Shuttleworth, C; Dohmen, Christian; Graf, Rudolf; Vajkoczy, Peter; Helbok, Raimund; Suzuki, Michiyasu; Schiefecker, Alois J; Major, Sebastian; Winkler, Maren KL; Kang, Eun-Jeung; Milakara, Denny; Oliveira-Ferreira, Ana I; Reiffurth, Clemens; Revankar, Gajanan S; Sugimoto, Kazutaka; Dengler, Nora F; Hecht, Nils; Foreman, Brandon; Feyen, Bart; Kondziella, Daniel; Friberg, Christian K; Piilgaard, Henning; Rosenthal, Eric S; Westover, M Brandon; Maslarova, Anna; Santos, Edgar; Hertle, Daniel; Sánchez-Porras, Renán; Jewell, Sharon L; Balança, Baptiste; Platz, Johannes; Hinzman, Jason M; Lückl, Janos; Schoknecht, Karl; Schöll, Michael; Drenckhahn, Christoph; Feuerstein, Delphine; Eriksen, Nina; Horst, Viktor; Bretz, Julia S; Jahnke, Paul; Scheel, Michael; Bohner, Georg; Rostrup, Egill; Pakkenberg, Bente; Heinemann, Uwe; Claassen, Jan; Carlson, Andrew P; Kowoll, Christina M; Lublinsky, Svetlana; Chassidim, Yoash; Shelef, Ilan; Friedman, Alon; Brinker, Gerrit; Reiner, Michael; Kirov, Sergei A; Andrew, R David; Farkas, Eszter; Güresir, Erdem; Vatter, Hartmut; Chung, Lee S; Brennan, KC; Lieutaud, Thomas; Marinesco, Stephane; Maas, Andrew IR; Sahuquillo, Juan; Dahlem, Markus A; Richter, Frank; Herreras, Oscar; Boutelle, Martyn G; Okonkwo, David O; Bullock, M Ross; Witte, Otto W; Martus, Peter; van den Maagdenberg, Arn MJM; Ferrari, Michel D; Dijkhuizen, Rick M; Shutter, Lori A; Andaluz, Norberto; Schulte, André P; MacVicar, Brian; Watanabe, Tomas; Woitzik, Johannes; Lauritzen, Martin; Strong, Anthony J; Hartings, Jed A

    2016-01-01

    Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches. PMID:27317657

  16. Heterogeneous incidence and propagation of spreading depolarizations

    PubMed Central

    Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek

    2016-01-01

    Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866

  17. Depolarized FRET (depolFRET) on the cell surface: FRET control by photoselection.

    PubMed

    Bene, László; Gogolák, Péter; Ungvári, Tamás; Bagdány, Miklós; Nagy, István; Damjanovich, László

    2016-02-01

    Sensitivity of FRET in hetero- and homo-FRET systems on the photoselected orientation distribution of donors has been proven by using polarized and depolarized light for excitation. FRET as well as donor and acceptor anisotropies have been simultaneously measured in a dual emission-polarization scheme realized in a conventional flow cytometer by using single laser excitation and applying fluorophore-conjugated mAbs against the MHCI and MHCII cell surface receptors. Depolarization of the originally polarized light have been achieved by using crystal depolarizers based on Cornu's principle, a quarter-wave plate for circular polarization, and a parallel beam splitter acting as a diagonal-polarizer for dual-polarization excitation. Simultaneous analysis of intensity-based FRET efficiency and acceptor depolarization equivocally report that depolarization of light may increase FRET in an amount depending on the acceptor-to-donor concentration ratio. Acceptor depolarization turned to be more sensitive to FRET than donor hyper-polarization and even than intensity-based FRET efficiency. It can be used as a sensitive tool for monitoring changes in the dynamics of the donor-acceptor pairs. The basic observations of FRET enhancement and increased acceptor depolarization obtained for hetero-FRET are paralleled by analog observations of homo-FRET enhancements under depolarized excitation. In terms of the orientation factor for FRET, the FRET enhancements on depolarization in the condition of the macroscopically isotropic orientation distributions such as those of the cell surface bound fluorophores report on the presence of local orientation mismatches of the donor and acceptor preventing the optimal FRET in the polarized case, which may be eliminated by the excitation depolarization. A theory of fluorescence anisotropy for depolarized excitation is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Neutron Depolarization in Superconductors

    NASA Astrophysics Data System (ADS)

    Zhuchenko, N. K.

    1995-04-01

    The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.

  19. Depolarization Diffusion During Weak Suprathreshold Stimulation of Cardiac Tissue

    DTIC Science & Technology

    2001-10-25

    DEPOLARIZATION DIFFUSION DURING WEAK SUPRATHRESHOLD STIMULATION OF CARDIAC TISSUE Vladimir Nikolski, Aleksandre Sambelashvili, and Igor R. Efimov...the depolarized regions. Such an activation pattern appears similar to break activation. The effect of the depolarization diffusion from depolarized...Subtitle Depolarization Diffusion During Weak Suprathreshold Stimulation of Cardiac Tissue Contract Number Grant Number Program Element Number Author(s

  20. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000more » K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.« less

  1. Depolarized inactivation overcomes impaired activation to produce DRG neuron hyperexcitability in a Nav1.7 mutation in a patient with distal limb pain.

    PubMed

    Huang, Jianying; Yang, Yang; Dib-Hajj, Sulayman D; van Es, Michael; Zhao, Peng; Salomon, Jody; Drenth, Joost P H; Waxman, Stephen G

    2014-09-10

    Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain. Copyright © 2014 the authors 0270-6474/14/3412328-13$15.00/0.

  2. Experimental techniques for the calibration of lidar depolarization channels in EARLINET

    NASA Astrophysics Data System (ADS)

    Belegante, Livio; Bravo-Aranda, Juan Antonio; Freudenthaler, Volker; Nicolae, Doina; Nemuc, Anca; Ene, Dragos; Alados-Arboledas, Lucas; Amodeo, Aldo; Pappalardo, Gelsomina; D'Amico, Giuseppe; Amato, Francesco; Engelmann, Ronny; Baars, Holger; Wandinger, Ulla; Papayannis, Alexandros; Kokkalis, Panos; Pereira, Sérgio N.

    2018-02-01

    Particle depolarization ratio retrieved from lidar measurements are commonly used for aerosol-typing studies, microphysical inversion, or mass concentration retrievals. The particle depolarization ratio is one of the primary parameters that can differentiate several major aerosol components but only if the measurements are accurate enough. The accuracy related to the retrieval of particle depolarization ratios is the driving factor for assessing and improving the uncertainties of the depolarization products. This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected lidar stations that have implemented depolarization calibration procedures. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range that is generally accepted in the literature.

  3. [Cortical spreading depolarization: a new pathophysiological mechanism in neurological diseases].

    PubMed

    Sánchez-Porras, Renán; Robles-Cabrera, Adriana; Santos, Edgar

    2014-05-20

    Cortical spreading depolarization is a wave of almost complete depolarization of the neuronal and glial cells that occurs in different neurological diseases such as migraine with aura, subarachnoid hemorrhage, intracerebral hemorrhage, head trauma and stroke. These depolarization waves are characterized by a change in the negative potential with an amplitude between -10 and -30mV, duration of ∼1min and changes in the ion homeostasis between the intra- and extracellular space. This results in neuronal edema and dendritic distortion. Under pathologic states of hypoperfusion, cortical spreading depolarization can produce oxidative stress, worsen hypoxia and induce neuronal death. This is due to intense arterial vasoconstriction produced by an inverse response called spreading ischemia. Only in the last years there has been an electrophysiological confirmation of cortical spreading depolarization in human brains. Occurrence of cortical spreading depolarization has been associated with worse outcome in patients. Currently, increased knowledge regarding the pathophysiologic mechanisms supports the hypothetical correlation of cortical spreading depolarization with brain damage in humans. There are diverse therapeutic alternatives that promise inhibition of cortical spreading depolarization and subsequent better outcomes. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  4. For the depolarization of linearly polarized light by smoke particles

    NASA Astrophysics Data System (ADS)

    Sun, Wenbo; Liu, Zhaoyan; Videen, Gorden; Fu, Qiang; Muinonen, Karri; Winker, David M.; Lukashin, Constantine; Jin, Zhonghai; Lin, Bing; Huang, Jianping

    2013-06-01

    The CALIPSO satellite mission consistently measures volume (including molecule and particulate) light depolarization ratio of ∼2% for smoke, compared to ∼1% for marine aerosols and ∼15% for dust. The observed ∼2% smoke depolarization ratio comes primarily from the nonspherical habits of particles in the smoke at certain particle sizes. In this study, the depolarization of linearly polarized light by small sphere aggregates and irregular Gaussian-shaped particles is studied, to reveal the physics between the depolarization of linearly polarized light and smoke aerosol shape and size. It is found that the depolarization ratio curves of Gaussian-deformed spheres are very similar to sphere aggregates in terms of scattering-angle dependence and particle size parameters when particle size parameter is smaller than 1.0π. This demonstrates that small randomly oriented nonspherical particles have some common depolarization properties as functions of scattering angle and size parameter. This may be very useful information for characterization and active remote sensing of smoke particles using polarized light. We also show that the depolarization ratio from the CALIPSO measurements could be used to derive smoke aerosol particle size. From the calculation results for light depolarization ratio by Gaussian-shaped smoke particles and the CALIPSO-measured light depolarization ratio of ∼2% for smoke, the mean particle size of South-African smoke is estimated to be about half of the 532nm wavelength of the CALIPSO lidar.

  5. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  6. A 20 Ghz Depolarization Experiment Using the ATS-6 Satellite

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Manus, E. A.; Marshall, R. E.; Pendrak, H. N.; Stutzman, W. L.; Wiley, P. H.; Kauffman, S. R.

    1975-01-01

    A depolarization experiment using the 20 GHz downlink from the ATS-6 satellite was described. The following subjects were covered: (1) an operational summary of the experiment, (2) a description of the equipment used with emphasis on improvements made to the signal processing receiver used with the ATS-5 satellite, (3) data on depolarization and attenuation in one snow storm and two rain storms at 45 deg elevation, (4) data on low angle propagation, (5) conclusions about depolarization on satellite paths, and (6) recommendations for the depolarization portion of the CTS experiment.

  7. Compton effect thermally activated depolarization dosimeter

    DOEpatents

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  8. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    PubMed Central

    Major, Sebastian; Pannek, Heinz-Wolfgang; Woitzik, Johannes; Scheel, Michael; Wiesenthal, Dirk; Martus, Peter; Winkler, Maren K.L.; Hartings, Jed A.; Fabricius, Martin; Speckmann, Erwin-Josef; Gorji, Ali

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression

  9. Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

    PubMed Central

    Zhong, Zhi; Ramshesh, Venkat K.; Rehman, Hasibur; Liu, Qinlong; Theruvath, Tom P.; Krishnasamy, Yasodha; Lemasters, John J.

    2014-01-01

    Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to

  10. The anomalous depolarization anisotropy in the central backscattering area for turbid medium with Mie scatterers

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua

    2018-05-01

    It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.

  11. Polarization changes at Lyot depolarizer output for different types of input beams.

    PubMed

    de Sande, J Carlos G; Piquero, Gemma; Teijeiro, Cristina

    2012-03-01

    Lyot depolarizers are optical devices made of birefringent materials used for producing unpolarized beams from totally polarized incident light. The depolarization is produced for polychromatic input beams due to the different phase introduced by the Lyot depolarizer for each wavelength. The effect of this device on other types of incident fields is investigated. In particular two cases are analyzed: (i) monochromatic and nonuniformly polarized incident beams and (ii) incident light synthesized by superposition of two monochromatic orthogonally polarized beams with different wavelengths. In the last case, it is theoretically and experimentally shown that the Lyot depolarizer increases the degree of polarization instead of depolarizes.

  12. Formalin produces depolarizations in human airway smooth muscle in vitro.

    PubMed

    Richards, Ira S; DeHate, Robin B

    2006-03-01

    Respiratory irritants may result in airway smooth muscle (ASM) depolarization and bronchoconstriction. We examined the effect of formalin on membrane potentials in human ASM in two types of in vitro preparations: strip preparations, which contain functional sensory and motor nerve endings and cultured cells, which lack these nerve endings due to the tissue dissociation process. Depolarizations occurred in atropine-treated strip preparations in response to formalin exposures, but not in similarly-treated cultured cells, suggesting a role for non-cholinergic mediators in formalin-induced depolarization. It is suggested that formalin may act as an irritant to produce bronchoconstriction that is mediated by the release of endogenous substance P (SP) from peripheral sensory nerve endings. This is supported by our observation that exogenous SP produced depolarizations of a magnitude similar to those produced by formalin in both strip preparations and cultured cells. In addition, capsaicin, which releases endogenous SP from nerve endings, produced depolarizations of a magnitude similar to formalin in strip preparations, but was without effect in cultured cells.

  13. Effects of interleukin-1ß on cortical spreading depolarization and cerebral vasculature

    PubMed Central

    Eitner, Annett; Leuchtweis, Johannes; Bauer, Reinhard; Lehmenkühler, Alfred; Schaible, Hans-Georg

    2016-01-01

    During brain damage and ischemia, the cytokine interleukin-1ß is rapidly upregulated due to activation of inflammasomes. We studied whether interleukin-1ß influences cortical spreading depolarization, and whether lipopolysaccharide, often used for microglial stimulation, influences cortical spreading depolarizations. In anaesthetized rats, cortical spreading depolarizations were elicited by microinjection of KCl. Interleukin-1ß, the IL-1 receptor 1 antagonist, the GABAA receptor blocker bicuculline, and lipopolysaccharide were administered either alone or combined (interleukin-1ß + IL-1 receptor 1 antagonist; interleukin-1ß + bicuculline; lipopolysaccharide + IL-1 receptor 1 antagonist) into a local cortical treatment area. Using microelectrodes, cortical spreading depolarizations were recorded in a non-treatment and in the treatment area. Plasma extravasation in cortical grey matter was assessed with Evans blue. Local application of interleukin-1ß reduced cortical spreading depolarization amplitudes in the treatment area, but not at a high dose. This reduction was prevented by IL-1 receptor 1 antagonist and by bicuculline. However, interleukin-1ß induced pronounced plasma extravasation independently on cortical spreading depolarizations. Application of lipopolysaccharide reduced cortical spreading depolarization amplitudes but prolonged their duration; EEG activity was still present. These effects were also blocked by IL-1 receptor 1 antagonist. Interleukin-1ß evokes changes of neuronal activity and of vascular functions. Thus, although the reduction of cortical spreading depolarization amplitudes at lower doses of interleukin-1ß may reduce deleterious effects of cortical spreading depolarizations, the sum of interleukin-1ß effects on excitability and on the vasculature rather promote brain damaging mechanisms. PMID:27037093

  14. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations.

    PubMed

    Bogdanov, Volodymyr B; Middleton, Natalie A; Theriot, Jeremy J; Parker, Patrick D; Abdullah, Osama M; Ju, Y Sungtaek; Hartings, Jed A; Brennan, K C

    2016-04-27

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations. Finally, we show a

  15. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations

    PubMed Central

    Bogdanov, Volodymyr B.; Middleton, Natalie A.; Theriot, Jeremy J.; Parker, Patrick D.; Abdullah, Osama M.; Ju, Y. Sungtaek; Hartings, Jed A.

    2016-01-01

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. SIGNIFICANCE STATEMENT Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations

  16. Methods and apparatus for using gas and liquid phase cathodic depolarizers

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    1998-01-01

    The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.

  17. Short- and long-term functional plasticity of white matter induced by oligodendrocyte depolarization in the hippocampus.

    PubMed

    Yamazaki, Yoshihiko; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Xu, Ming; Ikenaka, Kazuhiro; Fujii, Satoshi; Tanaka, Kenji F

    2014-08-01

    Plastic changes in white matter have received considerable attention in relation to normal cognitive function and learning. Oligodendrocytes and myelin, which constitute the white matter in the central nervous system, can respond to neuronal activity with prolonged depolarization of membrane potential and/or an increase in the intracellular Ca(2+) concentration. Depolarization of oligodendrocytes increases the conduction velocity of an action potential along axons myelinated by the depolarized oligodendrocytes, indicating that white matter shows functional plasticity, as well as structural plasticity. However, the properties and mechanism of oligodendrocyte depolarization-induced functional plastic changes in white matter are largely unknown. Here, we investigated the functional plasticity of white matter in the hippocampus using mice with oligodendrocytes expressing channelrhodopsin-2. Using extracellular recordings of compound action potentials at the alveus of the hippocampus, we demonstrated that light-evoked depolarization of oligodendrocytes induced early- and late-onset facilitation of axonal conduction that was dependent on the magnitude of oligodendrocyte depolarization; the former lasted for approximately 10 min, whereas the latter continued for up to 3 h. Using whole-cell recordings from CA1 pyramidal cells and recordings of antidromic action potentials, we found that the early-onset short-lasting component included the synchronization of action potentials. Moreover, pharmacological analysis demonstrated that the activation of Ba(2+) -sensitive K(+) channels was involved in early- and late-onset facilitation, whereas 4-aminopyridine-sensitive K(+) channels were only involved in the early-onset component. These results demonstrate that oligodendrocyte depolarization induces short- and long-term functional plastic changes in the white matter of the hippocampus and plays active roles in brain functions. © 2014 Wiley Periodicals, Inc.

  18. The physostigmine depolarization potentiating effect of salicylate in frog skeletal muscle.

    PubMed

    Varga, E; Kovács, L; Szücs, G; Illés, B

    1975-01-01

    1) The frog's sartorius muscle was depolarized depending on the degree of concentration 2--4 times more intensely by physostigmine salicylate than by physostigmine sulphate. 2) In normal Ringer's solution, 1 mM physostigmine salicylate decreased the sensitivity of the membrane to potassium depolarization by about 90%. Under similar experimental conditions, physostigmine sulphate and Na salicylate, respectively, decrease the sensitivity of the membrane to potassium depolarization by about 30%. 3) The difference manifested in the depolarizing effect of salicylate and other physostigmine salts (chloride, sulphate, phosphate, formiate, acetate, monochloracetate, benzoate and para-oxy-benzoate) is expressed already at 1 mM concentration (about 10-fold), if the muscle had been equilibrated in chloride-free glucuronate or sulphate milieu. 4) The depolarization develops slowly. It takes 30--60 minutes for the new steady state to develop even in the superficial sartorius fibres. If depolarization has reached its maximum on an average 100 mV, the membrane potential remains unchanged for hours. 5) Depolarization ensues at an unchanged degree in the presence of Na-free (choline) Ringer as well as in the presence of 2X10(-8) g/ml tetrodotoxin; therefore, it is not a Na-dependent process. 6) Under the influence of 1 mM physostigmine salicylate the membrane's resistance to the inward potassium current increased about twofold, while the increase was only 15% to the outward potassium current. It is assumed that the salicylate anion is characteristically capable of potentiating the decreasing effect of physostigmine on potassium permeability, though the role of the metabolic effect of salicylate cannot be excluded.

  19. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT

    PubMed Central

    Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-01-01

    SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729

  20. Quantitative Nucleotide Level Analysis of Regulation of Translation in Response to Depolarization of Cultured Neural Cells

    PubMed Central

    Dalal, Jasbir S.; Yang, Chengran; Sapkota, Darshan; Lake, Allison M.; O'Brien, David R.; Dougherty, Joseph D.

    2017-01-01

    Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequence—notably upstream open reading frames and secondary structure in the 5′ untranslated region—both of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome. PMID:28190998

  1. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine

    PubMed Central

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Background: Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. Objective: The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Materials and Methods: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. Results: In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did. Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca2+-free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Conclusion: These results suggest that DKT depolarizes ICC PPs in an internal or external Ca2+-dependent manner by stimulating 5-HT4 and M3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. SUMMARY Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of

  2. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine.

    PubMed

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) did. Methoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca 2+ -free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. These results suggest that DKT depolarizes ICC PPs in an internal or external Ca 2+ -dependent manner by stimulating 5-HT 4 and M 3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT 3 receptor antagonist) or

  3. A scattering model for rain depolarization

    NASA Technical Reports Server (NTRS)

    Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.

    1973-01-01

    A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.

  4. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    PubMed

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Pharmacological modulation of spreading depolarizations.

    PubMed

    Sánchez-Porras, Renán; Zheng, Zelong; Sakowitz, Oliver W

    2015-01-01

    Spreading depolarization (SD) is a wave of almost complete depolarization of the neuronal and glial cells. Nowadays there is sufficient evidence demonstrating its pathophysiological effect in migraine with aura, transient global amnesia, stroke, subarachnoid hemorrhage, intracerebral hemorrhage, and traumatic brain injury. In these cases, occurrence of SD has been associated with functional neuronal damage, neuronal necrosis, neurological degeneration, and poor clinical outcome. Animal models show that SD can be modulated by drugs that interfere with its initiation and propagation. There are many pharmacological targets that may help to suppress SD occurrence, such as Na⁺, K⁺, Cl⁻, and Ca²⁺ channels; Na⁺/K⁺ -ATPase; gap junctions; and ligand-based receptors, for example, adrenergic, serotonin, sigma-1, calcitonin gene-related peptide, GABAA, and glutamate receptors. In this regard, N-methyl-d-aspartate (NMDA) receptor blockers, in particular, ketamine, have shown promising results. Therefore, theoretically pharmacologic modulation of SD could help diminish its pathological effects.

  6. Depolarization of Pulsar Radio Emission.

    PubMed

    Lyutikov

    1999-11-01

    We show that intensity-dependent depolarization of single pulses may be due to the nonlinear decay of the "upper" ordinary (O) mode into an unpolarized extraordinary mode and a backward-propagating wave. The decay occurs in the innermost parts of the pulsar magnetosphere for obliquely propagating O waves.

  7. Fluorescence/depolarization lidar for mid-range stand-off detection of biological agents

    NASA Astrophysics Data System (ADS)

    Mierczyk, Z.; Kopczyński, K.; Zygmunt, M.; Wojtanowski, J.; Młynczak, J.; Gawlikowski, A.; Młodzianko, A.; Piotrowski, W.; Gietka, A.; Knysak, P.; Drozd, T.; Muzal, M.; Kaszczuk, M.; Ostrowski, R.; Jakubaszek, M.

    2011-06-01

    LIDAR system for real-time standoff detection of bio-agents is presented and preliminary experimental results are discussed. The detection approach is based on two independent physical phenomena: (1) laser induced fluorescence (LIF), (2) depolarization resulting from elastic scattering on non-spherical particles. The device includes three laser sources, two receiving telescopes, depolarization component and spectral signature analyzing spectrograph. It was designed to provide the stand-off detection capability at ranges from 200 m up to several kilometers. The system as a whole forms a mobile platform for vehicle or building installation. Additionally, it's combined with a scanning mechanics and advanced software, which enable to conduct the semi-automatic monitoring of a specified space sector. For fluorescence excitation, 3-rd (355 nm) and 4-th (266 nm) harmonics of Nd:YAG pulsed lasers are used. They emit short (~6 ns) pulses with the repetition rate of 20 Hz. Collecting optics for fluorescence echo detection and spectral content analysis includes 25 mm diameter f/4 Newton telescope, Czerny Turner spectrograph and 32-channel PMT. Depending on the grating applied, the spectral resolution from 20 nm up to 3 nm per channel can be achieved. The system is also equipped with an eye-safe (1.5 μm) Nd:YAG OPO laser for elastic backscattering/depolarization detection. The optical echo signal is collected by Cassegrain telescope with aperture diameter of 12.5 mm. Depolarization detection component based on polarizing beam-splitter serves as the stand-off particle-shape analyzer, which is very valuable in case of non-spherical bio-aerosols sensing.

  8. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

    PubMed

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L

    2008-12-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.

  9. Chlorovirus-Mediated Membrane Depolarization of Chlorella Alters Secondary Active Transport of Solutes▿

    PubMed Central

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L.

    2008-01-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake. PMID:18842725

  10. Oxygen availability and spreading depolarizations provide complementary prognostic information in neuromonitoring of aneurysmal subarachnoid hemorrhage patients.

    PubMed

    Winkler, Maren Kl; Dengler, Nora; Hecht, Nils; Hartings, Jed A; Kang, Eun J; Major, Sebastian; Martus, Peter; Vajkoczy, Peter; Woitzik, Johannes; Dreier, Jens P

    2017-05-01

    Multimodal neuromonitoring in neurocritical care increasingly includes electrocorticography to measure epileptic events and spreading depolarizations. Spreading depolarization causes spreading depression of activity (=isoelectricity) in electrically active tissue. If the depression is long-lasting, further spreading depolarizations occur in still isoelectric tissue where no activity can be suppressed. Such spreading depolarizations are termed isoelectric and are assumed to indicate energy compromise. However, experimental and clinical recordings suggest that long-lasting spreading depolarization-induced depression and isoelectric spreading depolarizations are often recorded outside of the actual ischemic zones, allowing the remote diagnosis of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Here, we analyzed simultaneous electrocorticography and tissue partial pressure of oxygen recording in 33 aneurysmal subarachnoid hemorrhage patients. Multiple regression showed that both peak total depression duration per recording day and mean baseline tissue partial pressure of oxygen were independent predictors of outcome. Moreover, tissue partial pressure of oxygen preceding spreading depolarization was similar and differences in tissue partial pressure of oxygen responses to spreading depolarization were only subtle between isoelectric spreading depolarizations and spreading depressions. This further supports that, similar to clustering of spreading depolarizations, long spreading depolarization-induced periods of isoelectricity are useful to detect energy compromise remotely, which is valuable because the exact location of future developing pathology is unknown at the time when the neurosurgeon implants recording devices.

  11. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.

    PubMed

    Sarraf, Shireen A; Raman, Malavika; Guarani-Pereira, Virginia; Sowa, Mathew E; Huttlin, Edward L; Gygi, Steven P; Harper, J Wade

    2013-04-18

    The PARKIN ubiquitin ligase (also known as PARK2) and its regulatory kinase PINK1 (also known as PARK6), often mutated in familial early-onset Parkinson's disease, have central roles in mitochondrial homeostasis and mitophagy. Whereas PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate porin, mitofusin and Miro proteins on the MOM, the full repertoire of PARKIN substrates--the PARKIN-dependent ubiquitylome--remains poorly defined. Here we use quantitative diGly capture proteomics (diGly) to elucidate the ubiquitylation site specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of the PARKIN active site residue C431, which has been found mutated in Parkinson's disease patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and Drosophila melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.

  12. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization

    PubMed Central

    Sarraf, Shireen A.; Raman, Malavika; Guarani-Pereira, Virginia; Sowa, Mathew E.; Huttlin, Edward L.; Gygi, Steven P.; Harper, J. Wade

    2013-01-01

    The PARKIN (PARK2) ubiquitin ligase and its regulatory kinase PINK1 (PARK6), often mutated in familial early onset Parkinson’s Disease (PD), play central roles in mitochondrial homeostasis and mitophagy.1–3 While PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate Porin, Mitofusin, and Miro proteins on the MOM,1,4–11 the full repertoire of PARKIN substrates – the PARKIN-dependent ubiquitylome - remains poorly defined. Here we employ quantitative diGLY capture proteomics12,13 to elucidate the ubiquitylation site-specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of PARKIN’s active site residue C431, which has been found mutated in PD patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and D. melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis. PMID:23503661

  13. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  14. Depolarization in liquid-crystal televisions

    NASA Astrophysics Data System (ADS)

    Pezzaniti, Larry J.; McClain, Stephen C.; Chipman, Russell A.; Lu, Shih-Yau

    1993-12-01

    TVT-6000 liquid crystal television (LCTV) polarization properties have been mapped as a function of biased voltage to the pixel and angle of incidence by a Mueller-matrix imaging polarimeter at 632.8 nm. Operating without polarizers the LCTV shows between 2% to 9% depolarization depending on angle of incidence, the incident polarization state, and the pixel bias voltage.

  15. NADH fluorescence imaging and the histological impact of cortical spreading depolarization during the acute phase of subarachnoid hemorrhage in rats.

    PubMed

    Shimizu, Tomohisa; Hishikawa, Tomohito; Nishihiro, Shingo; Shinji, Yukei; Takasugi, Yuji; Haruma, Jun; Hiramatsu, Masafumi; Kawase, Hirokazu; Sato, Sachiko; Mizoue, Ryoichi; Takeda, Yoshimasa; Sugiu, Kenji; Morimatsu, Hiroshi; Date, Isao

    2018-01-01

    OBJECTIVE Although cortical spreading depolarization (CSD) has been observed during the early phase of subarachnoid hemorrhage (SAH) in clinical settings, the pathogenicity of CSD is unclear. The aim of this study is to elucidate the effects of loss of membrane potential on neuronal damage during the acute phase of SAH. METHODS Twenty-four rats were subjected to SAH by the perforation method. The propagation of depolarization in the brain cortex was examined by using electrodes to monitor 2 direct-current (DC) potentials and obtaining NADH (reduced nicotinamide adenine dinucleotide) fluorescence images while exposing the parietal-temporal cortex to ultraviolet light. Cerebral blood flow (CBF) was monitored in the vicinity of the lateral electrode. Twenty-four hours after onset of SAH, histological damage was evaluated at the DC potential recording sites. RESULTS Changes in DC potentials (n = 48 in total) were sorted into 3 types according to the appearance of ischemic depolarization in the entire hemisphere following induction of SAH. In Type 1 changes (n = 21), ischemic depolarization was not observed during a 1-hour observation period. In Type 2 changes (n = 13), the DC potential demonstrated ischemic depolarization on initiation of SAH and recovered 80% from the maximal DC deflection during a 1-hour observation period (33.3 ± 15.8 minutes). In Type 3 changes (n = 14), the DC potential displayed ischemic depolarization and did not recover during a 1-hour observation period. Histological evaluations at DC potential recording sites showed intact tissue at all sites in the Type 1 group, whereas in the Type 2 and Type 3 groups neuronal damage of varying severity was observed depending on the duration of ischemic depolarization. The duration of depolarization that causes injury to 50% of neurons (P 50 ) was estimated to be 22.4 minutes (95% confidence intervals 17.0-30.3 minutes). CSD was observed in 3 rats at 6 sites in the Type 1 group 5.1 ± 2.2 minutes after

  16. Using depolarization to quantify ice nucleating particle concentrations: a new method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less

  17. Using depolarization to quantify ice nucleating particle concentrations: a new method

    DOE PAGES

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; ...

    2017-12-01

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less

  18. Using depolarization to quantify ice nucleating particle concentrations: a new method

    NASA Astrophysics Data System (ADS)

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; Yang, Ping; Levin, Ezra J. T.; Suski, Kaitlyn J.; DeMott, Paul J.; Brooks, Sarah D.

    2017-12-01

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal size cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.

  19. Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer.

    PubMed

    de Sande, Juan Carlos G; Santarsiero, Massimo; Piquero, Gemma; Gori, Franco

    2012-12-03

    The polarization characteristics of unpolarized light passing through a double wedge depolarizer are studied. It is found that the degree of polarization of the radiation propagating after the depolarizer is uniform across transverse planes after the depolarizer, but it changes from one plane to another in a periodic way giving, at different distances, unpolarized, partially polarized, or even perfectly polarized light. An experiment is performed to confirm this result. Measured values of the Stokes parameters and of the degree of polarization are in complete agreement with the theoretical predictions.

  20. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  1. Proton transport polarization and depolarization of hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi; Takeda, Hiroaki; Yamashita, Kimihiro

    2001-05-01

    Polarization of sintered hydroxyapatite (HAp) ceramics by application of an external dc field at higher temperature was analyzed by thermally stimulated depolarization current (TSDC) measurements. The mechanisms for the polarization and depolarization of HAp were discussed in relation to the instability of the protons in the hydroxide groups. The TSDC spectra consisted of broad peaks, while the ferroelectric substances such as the BaTiO3 ceramics exhibited a sharp peak. Although the maximum current density of 7.87 nA cm-2 for the HAp polarized at 400 °C under 1.0 kV cm-1 was approximately 1/12 lower than that of BaTiO3, the polarization charge of 14.9 μC cm-2 was almost twice as large as that of BaTiO3. Considering the activation energy of 0.72-0.89 eV for the depolarization, it was revealed that the polarization of HAp was ascribed to the migration of protons in the columnar OH- channels with a micrometer-order distance. It was also found that the polarization charge was large and long enough to enhance the biological reactivity of HAp ceramics for biomedical implants.

  2. A depolarization and attenuation experiment using the CTS satellite. Volume 1: Experiment description

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Holt, S. B., Jr.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Stutzman, W. L.; Wiley, P. H.

    1976-01-01

    An experiment for measuring precipitation attenuation and depolarization on the Communications Technology Satellite (CTS) 11.7 GHz downlink is described. Attenuation and depolarization of the signal received from the spacecraft is monitored on a 24 hour basis. Data is correlated with ground weather conditions. Theoretical models for millimeter wave propagation through rain are refined for maximum agreement with observed data. Techniques are developed for predicting and mimimizing the effects of rain scatter and depolarization on future satellite communication systems.

  3. Results of the VPI&SU Comstar experiment. [depolarization and attenuation due to rain

    NASA Technical Reports Server (NTRS)

    Andrews, J. H.; Ozbay, C.; Pratt, T.; Bostian, C. W.; Manus, E. A.; Gaines, J. M.; Marshall, R. E.; Stutzman, W. L.; Wiley, P. H.

    1982-01-01

    This paper summarizes annual and cumulative attenuation data, depolarization data, and associated local rain rate distributions obtained with the Comstar family of 19.04- and 28.56-GHz satellite beacons during the years 1977-1981. It discusses the relationships between attenuation and rain rate and between attenuation and depolarization, compares measured data on the joint distribution of attenuation and depolarization, and examines the limitations that propagation effects will impose on future 20/30-GHz satellite communications systems.

  4. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1992-01-01

    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  5. Substance P Depolarizes Lamprey Spinal Cord Neurons by Inhibiting Background Potassium Channels.

    PubMed

    Thörn Pérez, Carolina; Hill, Russell H; Grillner, Sten

    2015-01-01

    Substance P is endogenously released in the adult lamprey spinal cord and accelerates the burst frequency of fictive locomotion. This is achieved by multiple effects on interneurons and motoneurons, including an attenuation of calcium currents, potentiation of NMDA currents and reduction of the reciprocal inhibition. While substance P also depolarizes spinal cord neurons, the underlying mechanism has not been resolved. Here we show that effects of substance P on background K+ channels are the main source for this depolarization. Hyperpolarizing steps induced inward currents during whole-cell voltage clamp that were reduced by substance P. These background K+ channels are pH sensitive and are selectively blocked by anandamide and AVE1231. These blockers counteracted the effect of substance P on these channels and the resting membrane potential depolarization in spinal cord neurons. Thus, we have shown now that substance P inhibits background K+ channels that in turn induce depolarization, which is likely to contribute to the frequency increase observed with substance P during fictive locomotion.

  6. Elastodynamic metasurface: Depolarization of mechanical waves and time effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutin, Claude, E-mail: claude.boutin@entpe.fr; Schwan, Logan; Dietz, Matthew S.

    2015-02-14

    We report the concept of microstructured surfaces with inner resonance in the field of elastodynamics, so-called elastodynamic metasurfaces. Such metasurfaces allow for wavefield manipulation of mechanical waves by tuning the boundary conditions at specific frequencies. In particular, they can be used to depolarize elastic waves without introducing heterogeneities in the medium itself; the physical means to do so in homogeneous elastic media used to remain, surprisingly, an open question while depolarization is commonplace in electromagnetism. The principle relies on the anisotropic behaviour of a subwavelength array of resonators: Their subwavelength configuration confines the Bragg interferences scattered by resonators into amore » boundary layer. The effective behaviour of the resonating array is expressed with homogenization as an unconventional impedance, the frequency-dependence, and anisotropy of which lead to depolarization and time effects. The concept of the elastodynamic metasurface is tested experimentally and results bear testament to its efficacy and robustness. Elastodynamic metasurfaces are easily realized and analytically predictable, opening new possibilities in tomography techniques, ultrasonics, geophysics, vibration control, materials and structure design.« less

  7. Dopamine modulates an intrinsic mGluR5-mediated depolarization underlying prefrontal persistent activity

    PubMed Central

    Sidiropoulou, Kyriaki; Lu, Fang-Min; Fowler, Melissa A.; Xiao, Rui; Phillips, Christopher; Ozkan, Emin D.; Zhu, Michael X.; White, Francis J.; Cooper, Donald C.

    2009-01-01

    Intrinsic properties of neurons that enable them to maintain depolarized, persistently activated states in the absence of sustained input are poorly understood. In short-term memory tasks, individual prefrontal cortical (PFC) neurons are capable of maintaining persistent action potential output during delay periods between informative cues and behavioral responses. Dopamine and drugs of abuse alter PFC function and working memory possibly by modulating intrinsic neuronal properties. Here we use patch-clamp recording of layer 5 PFC pyramidal neurons to identify an action potential burst-evoked intrinsic mGluR5-mediated postsynaptic depolarization that initiates an activated state. Depolarization occurs in the absence of recurrent synaptic activity and is reduced by a postsynaptic dopamine D1/5 receptor pathway. The depolarization is substantially diminished following behavioral sensitization to cocaine; moreover the D1/5 receptor modulation is lost. We propose the burst-evoked intrinsic depolarization to be a novel form of short-term cellular memory that is modulated by dopamine and cocaine experience. PMID:19169252

  8. Triple-wavelength lidar observations of the linear depolarization ratio of dried marine particles

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Ansmann, Albert; Baars, Holger; Engelmann, Ronny; Althausen, Dietrich; Bohlmann, Stephanie; Gasteiger, Josef; Farrell, David

    2018-04-01

    For aerosol typing with lidar, sea salt particles are usually assumed to be spherical with a consequently low depolarization ratio. Evidence of dried marine particles at the top of the humid marine aerosol layer with a depolarization ratio up to 0.1 has been found at predominately maritime locations on Barbados and in the Southern Atlantic. The depolarization ratio for these probably cubic sea salt particles has been measured at three wavelengths (355, 532 and 1064 nm) simultaneously for the first time and compared to model simulations.

  9. Migraine prophylaxis, ischemic depolarizations and stroke outcomes in mice

    PubMed Central

    Eikermann-Haerter, Katharina; Lee, Jeong Hyun; Yalcin, Nilufer; Yu, Esther Sori; Daneshmand, Ali; Wei, Ying; Zheng, Yi; Can, Anil; Sengul, Buse; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Ayata, Cenk

    2014-01-01

    Background and Purpose Migraine with aura is an established stroke risk factor, and excitatory mechanisms such as spreading depression are implicated in the pathogenesis of both migraine and stroke. Spontaneous spreading depression waves originate within the peri-infarct tissue and exacerbate the metabolic mismatch during focal cerebral ischemia. Genetically enhanced spreading depression susceptibility facilitates anoxic depolarizations and peri-infarct spreading depressions and accelerates infarct growth, suggesting that susceptibility to spreading depression is a critical determinant of vulnerability to ischemic injury. Because chronic treatment with migraine prophylactic drugs suppresses spreading depression susceptibility, we tested whether migraine prophylaxis can also suppress ischemic depolarizations and improve stroke outcome. Methods We measured the cortical susceptibility to spreading depression and ischemic depolarizations, and determined tissue and neurological outcome after middle cerebral artery occlusion in wild type and familial hemiplegic migraine type 1 knock-in mice treated with vehicle, topiramate or lamotrigine daily for 7 weeks or as a single dose shortly before testing. Results Chronic treatment with topiramate or lamotrigine reduces the susceptibility to KCl- or electrical stimulation-induced spreading depressions as well as ischemic depolarizations in both wild-type and familial hemiplegic migraine type 1 mutant mice. Consequently, both tissue and neurological outcomes are improved. Notably, treatment with a single dose of either drug is ineffective. Conclusions These data underscore the importance of hyperexcitability as a mechanism for increased stroke risk in migraineurs, and suggest that migraine prophylaxis may not only prevent migraine attacks but also protect migraineurs against ischemic injury. PMID:25424478

  10. Theoretical analysis of shock induced depolarization and current generation in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    Ferroelectric generators are used to generate large magnitude current pulse by impacting a polarized ferroelectric material. The impact causes depolarization of the material and at high impact speeds, dielectric breakdown. Depending on the loading conditions and the electromechanical boundary conditions, the current or voltage profiles obtained vary. In this study, we explore the large deformation dynamic response of a ferroelectric material. Using the Maxwell's equations, conservation laws and the second law of thermodynamics, we derive the governing equations for the phase boundary propagation as well as the driving force acting on it. We allow for the phase boundary to contain surface charges which introduces the contribution of curvature of phase boundary in the governing equations and the driving force. This type of analysis accounts for the dielectric breakdown and resulting conduction in the material. Next, we implement the equations derived to solve a one dimensional impact problem on a ferroelectric material under different electrical boundary conditions. The constitutive law is chosen to be piecewise quadratic in polarization and quadratic in the strain. We solve for the current profile generated in short circuit case and for voltage profile in open circuited case. This work was made possible by the financial support of the US Air Force Office of Scientific Research through the Center of Excellence in High Rate Deformation Physics of Heterogeneous Materials (Grant: FA 9550-12-1-0091).

  11. Substance P Depolarizes Lamprey Spinal Cord Neurons by Inhibiting Background Potassium Channels

    PubMed Central

    Thörn Pérez, Carolina; Hill, Russell H.; Grillner, Sten

    2015-01-01

    Substance P is endogenously released in the adult lamprey spinal cord and accelerates the burst frequency of fictive locomotion. This is achieved by multiple effects on interneurons and motoneurons, including an attenuation of calcium currents, potentiation of NMDA currents and reduction of the reciprocal inhibition. While substance P also depolarizes spinal cord neurons, the underlying mechanism has not been resolved. Here we show that effects of substance P on background K+ channels are the main source for this depolarization. Hyperpolarizing steps induced inward currents during whole-cell voltage clamp that were reduced by substance P. These background K+ channels are pH sensitive and are selectively blocked by anandamide and AVE1231. These blockers counteracted the effect of substance P on these channels and the resting membrane potential depolarization in spinal cord neurons. Thus, we have shown now that substance P inhibits background K+ channels that in turn induce depolarization, which is likely to contribute to the frequency increase observed with substance P during fictive locomotion. PMID:26197458

  12. Piracetam induces plasma membrane depolarization in rat brain synaptosomes.

    PubMed

    Fedorovich, Sergei V

    2013-10-11

    Piracetam is a cyclic derivative of γ-aminobutyric acid (GABA). It was the first nootropic drug approved for clinical use. However, mechanism of its action is still not clear. In present paper, I investigated effects of piracetam on neurotransmitter release, plasma membrane potential monitored by fluorescent dye DiSC3(5) and chloride transport monitored by fluorescent dye SPQ in rat brain synaptosomes. It was shown that piracetam (1 mM) induces slow weak plasma membrane depolarization. This effect was decreased on 43% and 58% by both AMPA/kainate receptor blockers NBQX (10 μM) and CNQX (100 μM), respectively, on 84% by GABA ionotropic receptor blocker picrotoxin (50 μM) and on 91% upon withdrawal of HCO(3-) ions from incubation medium. GABA (1 mM) and kainate (100 μM) were found not to produce changes of plasma membrane potential. Also, it was found that piracetam induces chloride efflux which seems to be the reason of depolarization. Thereby, piracetam induces depolarization of plasma membrane of isolated neuronal presynaptic endings by picrotoxin-sensitive way. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  14. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  15. The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão’s legacy

    PubMed Central

    Shuttleworth, C William; Kirov, Sergei A; Ayata, Cenk; Hinzman, Jason M; Foreman, Brandon; Andrew, R David; Boutelle, Martyn G; Brennan, KC; Carlson, Andrew P; Dahlem, Markus A; Drenckhahn, Christoph; Dohmen, Christian; Fabricius, Martin; Farkas, Eszter; Feuerstein, Delphine; Graf, Rudolf; Helbok, Raimund; Lauritzen, Martin; Major, Sebastian; Oliveira-Ferreira, Ana I; Richter, Frank; Rosenthal, Eric S; Sakowitz, Oliver W; Sánchez-Porras, Renán; Santos, Edgar; Schöll, Michael; Strong, Anthony J; Urbach, Anja; Westover, M Brandon; Winkler, Maren KL; Witte, Otto W; Woitzik, Johannes; Dreier, Jens P

    2016-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão’s historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage. PMID:27328690

  16. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  17. Depolarization signatures map gold nanorods within biological tissue

    PubMed Central

    Lippok, Norman; Villiger, Martin; Albanese, Alexandre; Meijer, Eelco F. J.; Chung, Kwanghun; Padera, Timothy P.; Bhatia, Sangeeta N.; Bouma, Brett E.

    2017-01-01

    Owing to their electromagnetic properties, tunability and biocompatibility, gold nanorods (GNRs) are being investigated as multifunctional probes for a range of biomedical applications. However, detection beyond the reach of traditional fluorescence and two-photon approaches and quantitation of their concentration in biological tissue remain challenging tasks in microscopy. Here we show how the size and aspect ratio that impart GNRs with their plasmonic properties also make them a source of entropy. We report on how depolarization can be exploited as a strategy to visualize GNR diffusion and distribution in biologically relevant scenarios ex vivo, in vitro and in vivo. We identify a deterministic relation between depolarization and nanoparticle concentration. As a result, some of the most stringent experimental conditions can be relaxed, and susceptibility to artefacts is reduced, enabling microscopic and macroscopic applications. PMID:29201136

  18. Tachykininergic slow depolarization of motoneurones evoked by descending fibres in the neonatal rat spinal cord.

    PubMed Central

    Kurihara, T; Yoshioka, K; Otsuka, M

    1995-01-01

    1. In the isolated spinal cord of the neonatal rat, repetitive electrical stimulation of the upper cervical region elicited a prolonged depolarization of lumbar motoneurones (L3-5) lasting 1-2 min, which was recorded extracellularly from ventral roots, or intracellularly. 2. This depolarizing response was markedly depressed by the excitatory amino acid receptor antagonists D-(-)-2-amino-5-phosphonovaleric acid (D-APV, 30 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM). The remaining response was further depressed by a 5-hydroxytryptamine (5-HT) receptor antagonist, ketanserin (3 microM). 3. In the presence of these antagonists, a small part of the depolarizing response of slow time course remained, and this response was partially blocked by the tachykinin NK1 receptor antagonists GR71251 (0.3-5 microM) and RP67580 (0.3-1 microM). In contrast, RP68651 (0.3-1 microM), the inactive enantiomer of RP67580, had no effect on the depolarizing response. 4. The slow depolarizing response in the presence of D-APV, CNQX and ketanserin was markedly potentiated by a peptidase inhibitor, thiorphan (1 microM). 5. This descending fibre-evoked slow depolarization became smaller after prolonged treatment (5-7 h) with 5,7-dihydroxytryptamine (10 microM), a neurotoxin for 5-HT neurones. Under such conditions, the effects of thiorphan and GR71251 on the slow depolarization were virtually absent. 6. Under the action of D-APV, CNQX and ketanserin, applications of tachykinins, substance P and neurokinin A produced depolarizing responses of lumbar motoneurones, and the responses were depressed by GR71251 and potentiated by thiorphan. 7. These results suggest that tachykinins contained in serotonergic fibres serve as neurotransmitters mediating the descending fibre-evoked slow excitatory postsynaptic potentials in motoneurones. PMID:7562617

  19. Tachykininergic slow depolarization of motoneurones evoked by descending fibres in the neonatal rat spinal cord.

    PubMed

    Kurihara, T; Yoshioka, K; Otsuka, M

    1995-06-15

    1. In the isolated spinal cord of the neonatal rat, repetitive electrical stimulation of the upper cervical region elicited a prolonged depolarization of lumbar motoneurones (L3-5) lasting 1-2 min, which was recorded extracellularly from ventral roots, or intracellularly. 2. This depolarizing response was markedly depressed by the excitatory amino acid receptor antagonists D-(-)-2-amino-5-phosphonovaleric acid (D-APV, 30 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM). The remaining response was further depressed by a 5-hydroxytryptamine (5-HT) receptor antagonist, ketanserin (3 microM). 3. In the presence of these antagonists, a small part of the depolarizing response of slow time course remained, and this response was partially blocked by the tachykinin NK1 receptor antagonists GR71251 (0.3-5 microM) and RP67580 (0.3-1 microM). In contrast, RP68651 (0.3-1 microM), the inactive enantiomer of RP67580, had no effect on the depolarizing response. 4. The slow depolarizing response in the presence of D-APV, CNQX and ketanserin was markedly potentiated by a peptidase inhibitor, thiorphan (1 microM). 5. This descending fibre-evoked slow depolarization became smaller after prolonged treatment (5-7 h) with 5,7-dihydroxytryptamine (10 microM), a neurotoxin for 5-HT neurones. Under such conditions, the effects of thiorphan and GR71251 on the slow depolarization were virtually absent. 6. Under the action of D-APV, CNQX and ketanserin, applications of tachykinins, substance P and neurokinin A produced depolarizing responses of lumbar motoneurones, and the responses were depressed by GR71251 and potentiated by thiorphan. 7. These results suggest that tachykinins contained in serotonergic fibres serve as neurotransmitters mediating the descending fibre-evoked slow excitatory postsynaptic potentials in motoneurones.

  20. Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain

    PubMed Central

    Roehm, Pamela C.; Xu, Ningyong; Woodson, Erika A.; Green, Steven H.; Hansen, Marlan R.

    2008-01-01

    The effect of membrane electrical activity on spiral ganglion neuron (SGN) neurite growth remains unknown despite its relevance to cochlear implant technology. We demonstrate that membrane depolarization delays the initial formation and inhibits the subsequent extension of cultured SGN neurites. This inhibition depends directly on the level of depolarization with higher levels of depolarization causing retraction of existing neurites. Cultured SGNs express subunits for L-type, N-type, and P/Q type voltage-gated calcium channels (VGCCs) and removal of extracellular Ca2+ or treatment with a combination of L-type, N-type, P/Q-type VGCC antagonists rescues SGN neurite growth under depolarizing conditions. By measuring the fluorescence intensity of SGNs loaded with the fluorogenic calpain substrate t-butoxy carbonyl-Leu-Met-chloromethylaminocoumarin (20 μM), we demonstrate that depolarization activates calpains. Calpeptin (15 μM), a calpain inhibitor, prevents calpain activation by depolarization and rescues neurite growth in depolarized SGNs suggesting that calpain activation contributes to the inhibition of neurite growth by depolarization. PMID:18055215

  1. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.

    PubMed

    Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H

    2017-03-01

    Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.

  2. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    NASA Astrophysics Data System (ADS)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  3. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival.

    PubMed

    Song, Bin; Lai, Bingquan; Zheng, Zhihao; Zhang, Yuying; Luo, Jingyan; Wang, Chong; Chen, Yuan; Woodgett, James R; Li, Mingtao

    2010-12-24

    Glycogen synthase kinase-3 (GSK-3) plays a critical role in neuronal apoptosis. The two mammalian isoforms of the kinase, GSK-3α and GSK-3β, are inhibited by phosphorylation at Ser-21 and Ser-9, respectively. Depolarization, which is vital for neuronal survival, causes both an increase in Ser-21/9 phosphorylation and an inhibition of GSK-3α/β. However, the role of GSK-3 phosphorylation in depolarization-dependent neuron survival and the signaling pathway contributing to GSK-3 phosphorylation during depolarization remain largely unknown. Using several approaches, we showed that both isoforms of GSK-3 are important for mediating neuronal apoptosis. Nonphosphorylatable GSK-3α/β mutants (S21A/S9A) promoted apoptosis, whereas a peptide encompassing Ser-9 of GSK-3β protected neurons in a phosphorylation-dependent manner; these results indicate a critical role for Ser-21/9 phosphorylation on depolarization-dependent neuron survival. We found that Ser-21/9 phosphorylation of GSK-3 was mediated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but not by Akt/PKB, PKA, or p90(RSK). CaMKII associated with and phosphorylated GSK-3α/β. Furthermore, the pro-survival effect of CaMKII was mediated by GSK-3 phosphorylation and inactivation. These findings identify a novel Ca(2+)/calmodulin/CaMKII/GSK-3 pathway that couples depolarization to neuronal survival.

  4. Origin and voltage dependence of asparagine-induced depolarization in intestinal cells of Xenopus embryo.

    PubMed Central

    Bergman, C; Bergman, J

    1985-01-01

    The kinetics and voltage dependence of asparagine (Asn)-induced depolarization in endoderm cells from Xenopus laevis embryos were analysed using current-clamp techniques. The depolarization is assumed to reflect the activation of an amino acid membrane carrier; it is accompanied by a slight increase in membrane resistance and cannot be explained by only the electrogenic character of the Asn carrier. It is proposed that the Asn depolarization arises, at least in part, from the decrease of the permeability ratio PK/PNa indirectly associated with the Na-coupled amino acid uptake. At room temperature (20-23 degrees C) the Asn response develops according to a single exponential function whose time constant is correlated with the final level of depolarization. Both amplitude and rise time of the depolarization are sensitive to variations of membrane potential and changes in Asn or Na external concentrations. Lowering the temperature decreases the amplitude of the Asn depolarization and increases its rise time with a Q10 factor of two; the kinetics remain of the Michaelis-Menten type, with a marked decrease in delta Emax and no change in Km. When the holding potential is altered by depolarizing and hyperpolarizing currents, the Asn response varies according to a bell-shaped characteristic presenting an optimum near the normal resting level. Membrane depolarizations induced by Na/K-pump inhibitors or high external K concentrations reduce the size of the Asn response; repolarizing the cell by current injection does not reverse the inhibitory effect of external K ions. Hyperpolarizing the membrane with a K-free Ringer solution increases the amplitude of the Asn response. In all these cases a decrease in delta Emax accounts for the apparent voltage sensitivity of the carrier mechanism. When induced by alterations of [K]o, an additional change in Km is observed, suggesting a K/Na-competitive inhibition of the Asn carrier. The results are discussed in terms of the amino acid

  5. Mechanical deformation induces depolarization of neutrophils.

    PubMed

    Ekpenyong, Andrew E; Toepfner, Nicole; Fiddler, Christine; Herbig, Maik; Li, Wenhong; Cojoc, Gheorghe; Summers, Charlotte; Guck, Jochen; Chilvers, Edwin R

    2017-06-01

    The transition of neutrophils from a resting state to a primed state is an essential requirement for their function as competent immune cells. This transition can be caused not only by chemical signals but also by mechanical perturbation. After cessation of either, these cells gradually revert to a quiescent state over 40 to 120 min. We use two biophysical tools, an optical stretcher and a novel microcirculation mimetic, to effect physiologically relevant mechanical deformations of single nonadherent human neutrophils. We establish quantitative morphological analysis and mechanical phenotyping as label-free markers of neutrophil priming. We show that continued mechanical deformation of primed cells can cause active depolarization, which occurs two orders of magnitude faster than by spontaneous depriming. This work provides a cellular-level mechanism that potentially explains recent clinical studies demonstrating the potential importance, and physiological role, of neutrophil depriming in vivo and the pathophysiological implications when this deactivation is impaired, especially in disorders such as acute lung injury.

  6. Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2004-08-01

    The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.

  7. The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis.

    PubMed

    Khodorov, B I; Storozhevykh, T P; Surin, A M; Yuryavichyus, A I; Sorokina, E G; Borodin, A V; Vinskaya, N P; Khaspekov, L G; Pinelis, V G

    2002-01-01

    Data obtained in studies of the nature of the correlation which we have previously observed [10,17] between mitochondrial depolarization and the level of disruption of Ca2+ homeostasis in cultivated brain neuronsare summarized. Experiments were performed on cultured cerebellar granule cells loaded with Fura-2-AM or rhodamine 123 to measure changes in cytoplasmic Ca2+ and mitochondrial potential during pathogenic treatments of the cells. Prolonged exposure to 100 microM glutamate induced a reversible increase in [Ca2+]i, which was accompanied by only a small degree of mitochondrial depolarization. A sharp increase in this mitochondrial depolarization, induced by addition of 3 mM NaCN or 300 microM dinitrophenol (DNP) to the glutamate-containing solution, resulted in further increase in [Ca2+]i, due to blockade of electrophoretic mitochondrial Ca2+ uptake. Prolonged exposure to CN- or DNP in the post-glutamate period maintained [Ca2+]i at a high level until the metabolic inhibitors were removed. In most cells, this plateau was characterized by low sensitivity to removal of external Ca2+, demonstrating that the mechanisms of Ca2+ release from neurons were disrupted. Addition of oligomycin, a blocker of mitochondrial ATP synthase/ATPase, to the solution containing glutamate and CN- or DNP eliminated the post-glutamate plateau. Parallel experiments with direct measurements of intracellular ATP levels ([ATP]) showed that profound mitochondrial depolarization induced by CN- or DNP sharply enhanced the drop in ATP due to glutamate, while oligomycin significantly weakened this effect of the metabolic inhibitors. Analysis of these data led to the conclusion that blockade of mitochondrial Ca2+ uptake and inhibition of ATP synthesis resulted from mitochondrial depolarization and plays a key role in the mechanism disrupting [Ca2+]i homeostasis after toxic exposure to glutamate.

  8. Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: Effect on Spreading Depolarizations

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-C-0161 TITLE: Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: Effect on Spreading Depolarizations...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-16-C-0161 Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: Effect on Spreading...in a sub-study of the HOPES trial to assess the effects of hypothermia on the pathologic mechanism of spreading depolarizations (SD). HOPES is a

  9. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    PubMed

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  10. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals.

    PubMed

    Ohno-Shosaku, T; Maejima, T; Kano, M

    2001-03-01

    Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.

  11. Possible effects of depolarizing GABAA conductance on the neuronal input-output relationship: a modeling study.

    PubMed

    Morita, Kenji; Tsumoto, Kunichika; Aihara, Kazuyuki

    2005-06-01

    Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input-output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo-like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input-output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.

  12. Neutron depolarization effects in a high-Tc superconductor (abstract)

    NASA Astrophysics Data System (ADS)

    Nunes, A. C.; Pickart, S. J.; Crow, L.; Goyette, R.; McGuire, T. R.; Shinde, S.; Shaw, T. M.

    1988-11-01

    Using the polarized beam small-angle neutron scattering spectrometer at the Rhode Island Nuclear Science Center Reactor, we have observed significant depolarization of a neutron beam by passage through polycrystalline high-Tc superconductors, specifically 123 Y-Ba-Cu-O prepared and characterized at the IBM Watson Research Center. We believe that this technique will prove useful in studying aspects of these materials, such as the penetration depth of shielding currents, the presence and structure of trapped flux vortices, and grain size effects on the supercurrent distribution in polycrystalline samples. The two samples showed sharp transitions at 87 and 89 K, and have been studied at temperatures of 77 K; the second sample has also been studied at 4 K. The transition to the superconducting state was monitored by the shift in resonant frequency of a coil surrounding the sample. No measurable depolarization was observed in either sample at 77 K in both the field-cooled and zero-field-cooled states, using applied fields of 0 (nominal), 54, and 1400 Oe. This negative result may be connected with the fact that the material is still in the reversible region as indicated by susceptibility measurements, but it allows an estimate of the upper bound of possible inhomogeneous internal fields, assuming a distance scale for the superconducting regions. For the 10-μm grain size suggested by photomicrographs, this upper bound for the field turns out to be 1.2 kOe, which seems reasonable. At 4 K a significant depolarization was observed when the sample was cooled in low fields and a field of 1400 Oe was subsequently applied. This result suggests that flux lines are penetrating the sample. Further investigations are being carried out to determine the field and temperature dependence of the depolarization, and attempts will be made to model it quantitatively in terms of possible internal field distributions. We are also searching for possible diffraction effects from ordered vortex

  13. Hyperpolarizing and age-dependent depolarizing responses of cultured locus coeruleus neurons to noradrenaline.

    PubMed

    Finlayson, P G; Marshall, K C

    1984-08-01

    The electrical activity and responses to noradrenaline (NA) of locus coeruleus (LC) neurons have been studied in organotypic cultures using intracellular recording. Most LC neurons were predominantly quiescent, though occasional bursts of activity were observed; a few cells were tonically active at rates of 0.5-5/s. In most cells tested, iontophoretic application of NA evoked responses which were initially hyperpolarizing, sometimes followed by a depolarizing phase and frequently followed by a period of increased excitatory synaptic activity. The enhanced synaptic activity appeared to be an indirect effect since it was blocked by bath application of tetrodotoxin (TTX). In the presence of TTX, responses to NA of all but one cell were simple hyperpolarizations or biphasic (hyperpolarization/depolarization) responses. The presence of the depolarizing component appeared to be age-dependent, since it was frequently observed in cultures grown in vitro for less than 26 days, while neurons in older cultures exhibited only hyperpolarizing responses. If such age-dependent depolarizing responses are present in vivo, they would represent a unique example of a transmitter response which is present only during a transient developmental phase.

  14. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  15. The retrieval of the Asian dust depolarization ratio in Korea with the correction of the polarization-dependent transmission

    NASA Astrophysics Data System (ADS)

    Shin, Sungkyun; Müller, Detlef; Kim, Y. J.; Tatarov, Boyan; Shin, Dongho; Seifert, Patric; Noh, Young Min

    2013-01-01

    The linear particle depolarization ratios were retrieved from the observation with a multiwavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea (35.11°N, 126.54°E). The measurements were carried out in spring (March to May) 2011. The transmission ratio measurements were performed to solve problems of the depolarization-dependent transmission at a receiver of the lidar and applied to correct the retrieved depolarization ratio of Asian dust at first time in Korea. The analyzed data from the GIST multiwavelength Raman lidar were classified into three categories according to the linear particle depolarization ratios, which are pure Asian dust on 21 March, the intermediate case which means Asian dust mixed with urban pollution on 13 May, and haze case on 10 April. The measured transmission ratios were applied to these cases respectively. We found that the transmission ratio is needed to be used to retrieve the accurate depolarization ratio of Asian dust and also would be useful to distinguish the mixed dust particles between intermediate case and haze. The particle depolarization ratios of pure Asian dust were approximately 0.25 at 532 nm and 0.14 at 532 nm for the intermediate case. The linear particle depolarization ratios of pure Asian dust observed with the GIST multiwavelength Raman lidar were compared to the linear particle depolarization ratios of Saharan dust observed in Morocco and Asian dust observed both in Japan and China.

  16. Atrioventricular depolarization differences identify coronary artery anomalies in Kawasaki disease.

    PubMed

    Cortez, Daniel; Sharma, Nandita; Jone, Pei-Ni

    2017-03-01

    Kawasaki disease (KD) is the leading cause of acquired heart disease in children. Signal average electrocardiogram changes in patients during the acute phase of KD with coronary artery anomalies (CAA) include depolarization changes. We set out to determine if 12-lead-derived atrioventricular depolarization differences can identify CAA in patients with KD. A blinded, retrospective case-control study of patients with KD was performed. Deep Q waves, corrected QT-intervals (QTc), spatial QRS-T angles, T-wave vector magnitudes (RMS-T), and a novel parameter for assessment of atrioventricular depolarization difference (the spatial PR angle) and a two dimensional PR angle were assessed. Comparisons between groups were performed to test for significant differences. One hundred one patients with KD were evaluated, with 68 having CAA (67.3%, mean age 3.6 ± 3.0 years, 82.6% male), and 32 without CAA (31.7%, mean age 2.7 ± 3.2 years, 70.4% male). The spatial PR angle significantly discriminated KD patients with CAA from those without, 59.7° ± 31.1° versus 41.6° ± 11.5° (p < .001). A spatial PR angle cutoff value of 56.9° gave positive/negative predictive values and odds ratios of 93.8%, 43.5%, and 11.5% (95% confidence interval (CI) 2.6-52.2). The two dimensional PR angle either below 7° or above 92° gave positive/negative predictive values and odds ratios of 100.0%, 38.8%, and 21.1% (95% CI 1.2-362.8). No other parameters significantly differentiated the groups. Atrioventricular depolarization differences, measured by the spatial or two dimensional PR angle differentiate KD patients with CAA versus those without. © 2016 Wiley Periodicals, Inc.

  17. Thermally stimulated depolarization currents and dielectric properties of Mg0.95Ca0.05TiO3 filled HDPE composites

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhou; Zhang, Li; Zhang, Jie; Yue, Zhenxing

    2017-12-01

    Mg0.95Ca0.05TiO3 (MCT) filled high density polyethylene (HDPE) composites were prepared by twin-screw extrusion followed by hot pressing technique. The thermally stimulated depolarization current (TSDC) measurement was performed to analyze the contribution of charge distribution and interfacial characteristics to the dielectric loss. TSDC spectra under different polarization conditions show that the introduction of ceramic fillers engenders shallow traps in the vicinity of ceramic-polymer interface, which hinders the injection of space charge from the electrode into the polymer matrix. In the composite materials applied to an external field, charges tend to be captured by these traps. The temperature dependence of relative permittivity and dielectric loss of the composites was measured, and a strong reliance of dielectric loss on temperature was observed. In the heating process, the release of charges accumulating at interfacial region is considered to contribute to the rise in dielectric loss with the increase of temperature.

  18. UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick

    2016-01-01

    In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.

  19. Characterization of ventricular depolarization and repolarization changes in a porcine model of myocardial infarction.

    PubMed

    Romero, Daniel; Ringborn, Michael; Demidova, Marina; Koul, Sasha; Laguna, Pablo; Platonov, Pyotr G; Pueyo, Esther

    2012-12-01

    In this study, several electrocardiogram (ECG)-derived indices corresponding to both ventricular depolarization and repolarization were evaluated during acute myocardial ischemia in an experimental model of myocardial infarction produced by 40 min coronary balloon inflation in 13 pigs. Significant changes were rapidly observed from minute 4 after the start of coronary occlusion, achieving their maximum values between 11 and 22 min for depolarization and between 9 and 12 min for repolarization indices, respectively. Subsequently, these maximum changes started to decrease during the latter part of the occlusion. Depolarization changes associated with the second half of the QRS complex showed a significant but inverse correlation with the myocardium at risk (MaR) estimated by scintigraphic images. The correlation between MaR and changes of the downward slope of the QRS complex, [Formula: see text], evaluated at the two more relevant peaks observed during the occlusion, was r = -0.75, p < 0.01 and r = -0.79, p < 0.01 for the positive and negative deflections observed in [Formula: see text], temporal evolution, respectively. Repolarization changes, analyzed by evaluation of ST segment elevation at the main observed positive peak, also showed negative, however non-significant correlation with MaR: r = -0.34, p = 0.28. Our results suggest that changes evaluated in the latter part of the depolarization, such as those described by [Formula: see text], which are influenced by R-wave amplitude, QRS width and ST level variations simultaneously, correlate better with the amount of ischemia than other indices evaluated in the earlier part of depolarization or during the ST segment.

  20. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons

    PubMed Central

    Paris, Lambert; Marc, Isabelle; Charlot, Benoit; Dumas, Michel; Valmier, Jean; Bardin, Fabrice

    2017-01-01

    This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved. PMID:29082085

  1. Lenticular mitoprotection. Part A: Monitoring mitochondrial depolarization with JC-1 and artifactual fluorescence by the glycogen synthase kinase-3β inhibitor, SB216763.

    PubMed

    Brooks, Morgan M; Neelam, Sudha; Fudala, Rafal; Gryczynski, Ignacy; Cammarata, Patrick R

    2013-01-01

    Dissipation of the electrochemical gradient across the inner mitochondrial membrane results in mitochondrial membrane permeability transition (mMPT), a potential early marker for the onset of apoptosis. In this study, we demonstrate a role for glycogen synthase kinase-3β (GSK-3β) in regulating mMPT. Using direct inhibition of GSK-3β with the GSK-3β inhibitor SB216763, mitochondria may be prevented from depolarizing (hereafter referred to as mitoprotection). Cells treated with SB216763 showed an artifact of fluorescence similar to the green emission spectrum of the JC-1 dye. We demonstrate the novel use of spectral deconvolution to negate the interfering contributing fluorescence by SB216763, thus allowing an unfettered analysis of the JC-1 dye to determine the mitochondrial membrane potential. Secondary cultures of virally transfected human lens epithelial cells (HLE-B3) were exposed to acute hypoxic conditions (approximately 1% O₂) followed by exposure to atmospheric oxygen (approximately 21% O₂). The fluorescent dye JC-1 was used to monitor the extent of mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Annexin V-fluorescein isothiocyanate/propidium iodide staining was implemented to determine cell viability. Treatment of HLE-B3 cells with SB216763 (12 µM), when challenged by oxidative stress, suppressed mitochondrial depolarization relative to control cells as demonstrated with JC-1 fluorescent dye analysis. Neither the control nor the SB216763-treated HLE-B3 cells tested positive with annexin V-fluorescein isothiocyanate/propidium iodide staining under the conditions of the experiment. Inhibition of GSK-3β activity by SB216763 blocked mMPT relative to the slow but consistent depolarization observed with the control cells. We conclude that inhibition of GSK-3β activity by the GSK-3β inhibitor SB216763 provides positive protection against mitochondrial

  2. Geometry of generalized depolarizing channels

    NASA Astrophysics Data System (ADS)

    Burrell, Christian K.

    2009-10-01

    A generalized depolarizing channel acts on an N -dimensional quantum system to compress the “Bloch ball” in N2-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2d (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.

  3. Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization

    PubMed Central

    Vivekananda, Umesh; Novak, Pavel; Bello, Oscar D.; Korchev, Yuri E.; Krishnakumar, Shyam S.; Volynski, Kirill E.; Kullmann, Dimitri M.

    2017-01-01

    Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog–digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels. PMID:28193892

  4. Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger

    2017-09-01

    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1° N, 59.6° W), 5000-8000 km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064 nm with respective dual-wavelength (355, 532 nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12 000 km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252 ± 0.030 at 355 nm, 0.280 ± 0.020 at 532 nm, and 0.225 ± 0.022 at 1064 nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1 µm) have sizes around 1.5-2 µm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust

  5. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    PubMed

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Quantitative immuno-electron microscopic analysis of depolarization-induced expression of PGC-1alpha in cultured rat visual cortical neurons.

    PubMed

    Meng, Hui; Liang, Huan Ling; Wong-Riley, Margaret

    2007-10-17

    Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC- 1alpha) is a coactivator of nuclear receptors and other transcription factors that regulate several metabolic processes, including mitochondrial biogenesis, energy homeostasis, respiration, and gluconeogenesis. PGC-1alpha plays a vital role in stimulating genes that are important to oxidative metabolism and other mitochondrial functions in brown adipose tissue and skeleton muscles, but the significance of PGC-1alpha in the brain remains elusive. The goal of our present study was to determine by means of quantitative immuno-electron microscopy the expression of PGC-1alpha in cultured rat visual cortical neurons under normal conditions as well as after depolarizing stimulation for varying periods of time. Our results showed that: (a) PGC-1alpha was normally located in both the nucleus and the cytoplasm. In the nucleus, PGC-1alpha was associated mainly with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, it was associated mainly with free ribosomes. (b) Neuronal depolarization by KCl for 0.5 h induced a significant increase in PGC-1alpha labeling density in both the nucleus and the cytoplasm (P<0.01). The heightened expression continued after 1 and 3 h of depolarizing treatment (P<0.01), but decreased from 5 h onward and returned to baseline level by 10 h. These results indicate that PGC-1alpha responds very early to increased neuronal activity by synthesizing more proteins in the cytoplasm and translocating them to the nucleus for gene activation. PGC-1alpha level in neurons is, therefore, tightly regulated by neuronal activity.

  7. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents.

    PubMed

    Arrese-Igor, S; Alegría, A; Colmenero, J

    2015-06-07

    We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.

  8. Geometry of generalized depolarizing channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Christian K.

    2009-10-15

    A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors formsmore » a simplex.« less

  9. Sequential pictorial presentation of neural interaction in the retina. 2. The depolarizing and hyperpolarizing bipolar cells at rod terminals.

    PubMed

    Sjöstrand, F S

    2002-01-01

    Each rod is connected to one depolarizing and one hyperpolarizing bipolar cell. The synaptic connections of cone processes to each bipolar cell and presynaptically to the two rod-bipolar cell synapses establishes conditions for lateral interaction at this level. Thus, the cones raise the threshold for bipolar cell depolarization which is the basis for spatial brightness contrast enhancement and consequently for high visual acuity (Sjöstrand, 2001a). The cones facilitate ganglion cell depolarization by the bipolar cells and cone input prevents horizontal cell blocking of depolarization of the depolarizing bipolar cell, extending rod vision to low illumination. The combination of reduced cone input and transient hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus facilitates ganglion cell depolarization extensively at onset of the stimulus while no corresponding enhancement applies to the ganglion cell response at cessation of the stimulus, possibly establishing conditions for discrimination between on- vs. off-signals in the visual centre. Reduced cone input and hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus accounts for Granit's (1941) 'preexcitatory inhibition'. Presynaptic inhibition maintains transmitter concentration low in the synaptic gap at rod-bipolar cell and bipolar cell-ganglion cell synapses, securing proportional and amplified postsynaptic responses at these synapses. Perfect timing of variations in facilitatory and inhibitory input to the ganglion cell confines the duration of ganglion cell depolarization at onset and at cessation of a light stimulus to that of a single synaptic transmission.

  10. A review of depolarization modeling for earth-space radio paths at frequencies above 10 GHz

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Gaines, J. M.

    1982-01-01

    A review is presented of models for the depolarization, caused by scattering from raindrops and ice crystals, that limits the performance of dual-polarized satellite communication systems at frequencies above 10 GHz. The physical mechanisms of depolarization as well as theoretical formulations and empirical data are examined. Three theoretical models, the transmission, attenuation-derived, and scaling models, are described and their relative merits are considered.

  11. Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons

    PubMed Central

    1985-01-01

    Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the

  12. Conductivity Variation Observed by Polarization and Depolarization Current Measurements of High-Voltage Equipment Insulation System

    NASA Astrophysics Data System (ADS)

    Jamail, Nor Akmal Mohd; Piah, Mohamed Afendi Mohamed; Muhamad, Nor Asiah

    2012-09-01

    Nondestructive and time domain dielectric measurement techniques such as polarization and depolarization current (PDC) measurements have recently been widely used as a potential tool for determining high-voltage insulation conditions by analyzing the insulation conductivity. The variation in the conductivity of an insulator was found to depend on several parameters: the difference between the polarization and depolarization currents, geometric capacitance, and the relative permittivity of the insulation material. In this paper the conductivities of different types of oil-paper insulation material are presented. The insulation conductivities of several types of electrical apparatus were simulated using MATLAB. Conductivity insulation was found to be high at high polarizations and at the lowest depolarization current. It was also found to increase with increasing relative permittivity as well as with decreasing geometric capacitance of the insulating material.

  13. Calcium-induced calcium release in rod photoreceptor terminals boosts synaptic transmission during maintained depolarization

    PubMed Central

    Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.

    2008-01-01

    We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987

  14. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  15. Lenticular cytoprotection, part 2: link between glycogen synthase kinase-3β, epithelial to mesenchymal transition, and mitochondrial depolarization.

    PubMed

    Neelam, Sudha; Brooks, Morgan M; Cammarata, Patrick R

    2014-01-01

    The inhibition of GSK-3β blocks mitochondrial membrane permeability transition (mMPT) for HLE-B3 cells in atmospheric oxygen. GSK-3β, as part of a multifactorial complex, also regulates nuclear levels of β-catenin, a known coordinator of cell survival and adhesion. The purpose of these studies was to demonstrate a novel, but likely disadvantageous, link between β-catenin's influence on the expression of the pro-survival protein, vascular endothelial growth factor (VEGF), resulting in enhanced lens epithelial cell mitochondrial protection against depolarization and nuclear β-catenin as an inducer of epithelial to mesenchymal transition (EMT). Virally transformed human lens epithelial cells (HLE-B3) were treated with SB216763, a specific inhibitor of GSK-3β catalytic activity and XAV939, a specific β-catenin inhibitor that bars the translocation of β-catenin from cytoplasm to the nucleus. Western blot analysis was employed to detect the levels of cytoplasmic and nuclear β-catenin and phospho-β-catenin, pBcl-2 and the EMT proteins, α-smooth muscle actin (α-SMA), and fibronectin. ELISA was used to measure the levels of VEGF in cell culture supernatants. JC-1 analysis was performed to analyze the influence of either SB216763 or XAV939 on mitochondrial depolarization. Cultured lens epithelial cells maintained in hypoxia (1% oxygen) and subsequently reintroduced into atmospheric oxygen and treated with the GSK-3β inhibitor SB216763 illustrated a marked inhibition of phosphorylation of glycogen synthase (downstream substrate of GSK-3β) and significant increase in nuclear translocation of β-catenin. The augmented nuclear β-catenin levels positively correlated with increased expression of α-SMA and fibronectin, both marker proteins indicative of EMT. The enhanced nuclear β-catenin activity also elicited increased VEGF and pBcl-2 expression, resulting in increased resistance to mitochondrial depolarization. Treatment of the cells with the

  16. Presynaptic transmitters and depolarizing influences regulate development of the substantia nigra in culture.

    PubMed

    Friedman, W J; Dreyfus, C F; McEwen, B; Black, I B

    1988-10-01

    Recent evidence suggests that extracellular signals regulate neurotransmitter traits in brain catecholaminergic (CA) neurons as in the periphery. Development of the dopaminergic phenotype in the mouse substantia nigra (SN) was studied by monitoring tyrosine hydroxylase (TH), the rate-limiting enzyme in CA biosynthesis in vivo and in culture. Explants of SN were dissected from embryonic day 15 embryos and grown in culture for a week. To define the influence of depolarizing signals on central dopaminergic neurons, cultures were grown with the pharmacologic depolarizing agent veratridine. This treatment elicited a significant increase in TH enzyme activity, accompanied by elevated levels of enzyme protein. The increase in activity was prevented by TTX, suggesting that transmembrane Na+ influx was necessary for the rise in TH. A physiologic presynaptic agonist, substance P, also evoked a significant increase in TH activity; however, the coproduced tachykinin peptide, substance K (SK, neurokinin A) elicited a more dramatic rise. The SK effect was blocked by TTX, suggesting that the physiologic agonist was acting through the same mechanism as the pharmacologic agent veratridine. Immunoblot analysis revealed that SK elicited a parallel increase in TH enzyme protein. Our observations suggest that the novel peptide, SK, serves a physiological role in the regulation of TH in the striatonigral pathway.

  17. Depolarized haze of nano-porous AAO film via porosity and aspect control

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Wei; Lin, Yung-Hsiang; Cheng, Chih-Hsien; Lin, Gong-Ru

    2018-01-01

    Multiple scattering induced haze and depolarization effects of nano-porous AAO films controlled by detuning the porosity and aspect ratio of the nano holes are investigated. The nano-porous AAO film with its porosity increasing from 12.6% to 19.3% enhances the scattering of the incident laser beam with its maximal scattering angle enlarged from 5° to 8° under TM-mode incidence and from 6° to 10° under TE-mode incidence. Because of multiple scattering within the porous holes of the AAO, the depolarization on the reflected beam by transferring its electric field from horizontal to the vertical such that the polarization ratio is degraded with a randomized haze. The porosity of AAO surface broadens from 12.6% to 19.3% when increasing the bias voltage from 40 to 60 V during the second-step of the electro-chemical anodization process, which essentially adjusts the polarization ratio under TM-mode and TE-mode incidences raise from 0.31 to 0.35 and from 0.32 to 0.48, respectively. The depolarized haze of the nano-porous AAO film is correlated with its porosity and aspect ratio controlled by the pore size and etched depth of the AAO. Under TM-mode incidence, the simulated polarization ratio increases from 0.35 to 0.38, which correlates well with experimental results. In contrast, the experiment result slightly deviates from the theoretical prediction as the TE-mode field interacts more surface area than the TM-mode field does. Such a nano-porous AAO exhibits tunable depolarized haze via the control porosity and aspect ratio, which is particularly suitable to serve as the catalytic buffer for synthesizing the hydrophobic and hazed solar energy converters.

  18. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    PubMed

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Complete stress-induced depolarization of relaxor ferroelectric crystals without transition through a non-polar phase

    NASA Astrophysics Data System (ADS)

    Shkuratov, Sergey I.; Baird, Jason; Antipov, Vladimir G.; Hackenberger, Wesley; Luo, Jun; Zhang, Shujun; Lynch, Christopher S.; Chase, Jay B.; Jo, Hwan R.; Roberts, Christopher C.

    2018-03-01

    The development of relaxor ferroelectric single crystal technology is driven by the ability to tailor ferroelectric properties through domain engineering not achievable in polycrystalline materials. In this study, three types of domain-engineered rhombohedral Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals were subjected to transverse high strain rate loading. The experimental results indicate that the domain configuration has a significant effect on the stress-induced depolarization and the associated charge released. A complete depolarization of the single-domain crystals with 3m symmetry is observed, while multidomain crystals with 4mm and mm2 symmetries retain a fraction of their initial remanent polarization. The complete depolarization of single-domain crystals is unique without transition to a non-polar phase, with a stress-induced charge density of 0.48 C/m2. This is up to three times higher than that of the multidomain crystals and PbZrxTi1-xO3 ferroelectric ceramics that are critical for ultrahigh-power transducer applications. The main offering of this work is to propose a detailed mechanism for complete stress-induced depolarization in ferroelectric crystals which does not involve an intermediate transformation to a non-polar phase.

  20. Depolarization Lidar Determination Of Cloud-Base Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.

    2016-06-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  1. A depolarization and attenuation experiment using the CTS satellite. [meteorological radar

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Holt, S. B., Jr.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Stutzman, W. L.; Wiley, P. H.

    1977-01-01

    Rain attenuation and depolarization data collected on the communications technology satellite 11.7 GHz downlink, and changes made in equipment following rain leak damage to the parametric amplifier are discussed. A 15 GHz radar system is described.

  2. An Architecture Providing Depolarization Ratio Capability for a Multi-Wavelength Raman Lidar: Implementation and First Measurements

    PubMed Central

    Sicard, Michaël; Granados-Muñoz, María-José; Ben Chahed, Enis; Muñoz-Porcar, Constantino; Barragán, Rubén; Rocadenbosch, Francesc; Vidal, Eric

    2017-01-01

    A new architecture for the measurement of depolarization produced by atmospheric aerosols with a Raman lidar is presented. The system uses two different telescopes: one for depolarization measurements and another for total-power measurements. The system architecture and principle of operation are described. The first experimental results are also presented, corresponding to a collection of atmospheric conditions over the city of Barcelona. PMID:29261170

  3. Incidence, hemodynamic, and electrical characteristics of spreading depolarization in a swine model are affected by local but not by intravenous application of magnesium.

    PubMed

    Santos, Edgar; León, Fiorella; Silos, Humberto; Sanchez-Porras, Renan; Shuttleworth, C William; Unterberg, Andreas; Sakowitz, Oliver W

    2016-12-01

    The aim was to characterize the effects of magnesium sulfate, using i.v. bolus and local administration, using intrinsic signal imaging, and on electrocorticographic activity during the induction and propagation of spreading depolarizations in the gyrencephalic porcine brain. Local application of magnesium sulfate led to a complete inhibition of spreading depolarizations. One hour after washing out the topical magnesium sulfate, re-incidence of the spreading depolarizations was observed in 50% of the hemispheres. Those spreading depolarizations showed attenuation in hemodynamic characteristics and speed in intrinsic optical signal imaging. The electrical amplitude decreased through electrocorticographic activity. Intravenous magnesium therapy showed no significant effects on spreading depolarization incidence and characteristics. © The Author(s) 2016.

  4. Coherent light depolarization by multiple scattering media and tissues: some fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Zimnyakov, Dmitry A.; Tuchin, Valery V.; Yodh, Arjun G.; Mishin, Alexey A.; Peretochkin, Igor S.

    1998-04-01

    Relationships between decorrelation and depolarization of coherent light scattered by disordered media are examined by using the conception of the photon paths distribution functions. Analysis of behavior of the autocorrelation functions of the scattered field fluctuations and their polarization properties allows us to introduce generalized parameter of scattering media such as specific correlation time. Determination of specific correlation time has been carried out for phantom scattering media (water suspensions of polystyrene spheres). Results of statistical, correlation and polarization analysis of static and dynamic speckle patterns carried out in the experiments with human sclera with artificially controlled optical transmittance are presented. Some possibilities of applications of such polarization- correlation technique for monitoring and visualization of non- single scattering tissue structures are discussed.

  5. Effect of the depolarization field on coherent optical properties in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2018-06-01

    We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.

  6. Bi0.5Na0.5TiO3:ZnO lead-free piezoelectric composites with deferred thermal depolarization

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Pan, Zhao; Nie, Peng-Xiao; Cui, Yu-Shuang; Yang, Bin; Chen, Jun; Zhang, Shan-Tao

    2015-06-01

    Bi0.5Na0.5TiO3 (BNT) is among the most promising lead-free piezoelectric candidates. However, depolarization of BNT is a longstanding obstacle for practical applications. Here, we report that piezoelectric composites of Bi0.5Na0.5TiO3:xZnO (BNT:xZnO, where x is the mole ratio of ZnO to BNT) have deferred thermal depolarization. With increasing x from 0 to 0.4, the observed depolarization temperature (Td) tends to be deferred near x = 0.3, as confirmed by temperature dependent dielectric, ferroelectric, and piezoelectric measurements. As the result, the piezoelectric properties of the composites can be well maintained even after the poled composites are annealed at 125 °C. It is proposed that the charges stemming from ZnO can be orderly distributed to form a local field, which can keep the poling state of BNT, thus suppress the depolarization, even after the external poling filed is removed. These results may pave the way for applications of BNT-based piezoceramics and significantly improve our understanding of the depolarization mechanism by optimizing the performance of lead-free piezoelectrics.

  7. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  8. Factors that reverse the persistent depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro.

    PubMed

    Yamamoto, S; Tanaka, E; Shoji, Y; Kudo, Y; Inokuchi, H; Higashi, H

    1997-08-01

    In CA1 pyramidal neurons in rat hippocampal tissue slices, superfusion with ischemia-simulating medium produced a rapid depolarization after 6 min of exposure. The membrane potential eventually reached 0 after 5 min (a persistent depolarization), even when oxygen and glucose were reintroduced. The role of various ions in the reversal of this persistent depolarization after reintroduction of oxygen and glucose was investigated. The peak of the persistent depolarization was decreased in solutions containing reduced Na+ or Ca2+ and in solutions containing Co2+ or Ni2+. In contrast, the depolarization was not affected by reduction of external K+ or Cl- or by addition of tetrodotoxin (TTX), flunarizine, or nifedipine. These results suggest that sustained Na+ and Ca2+ influxes produce the persistent depolarization. The membrane potential recovered after reintroduction of oxygen and glucose in low Ca2+, low Cl-, or K+-rich medium and in TTX- or tetraethylammonium-containing medium, but not in low Na+ or low K+ medium and in flunarizine- or nifedipine-containing medium. Either reduction in extracellular Ca2+ or addition of Co2+ was the most effective in promoting recovery from the persistent depolarization, suggesting that Ca2+ influx has a key role in causing the membrane dysfunction. The peak of the persistent depolarization was reduced by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), DL-2-amino-5-phosphonopentanoic acid (AP5), DL-amino-3-phosphonopropionic acid (AP3), or DL-amino-4-phosphonobutyric acid, suggesting that activation of non-N-methyl-D-aspartate (non-NMDA), NMDA, and metabotropic glutamate (Glu) receptors is involved in the generation and maintenance of the persistent depolarization. Among these Glu receptor antagonists, only CNQX or AP5 was able to reduce dose dependently the level of depolarization, suggesting that Ca2+ influx via both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate type II receptors and NMDA receptors contributes to the

  9. Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization.

    PubMed

    Márquez, A; Moreno, I; Iemmi, C; Lizana, A; Campos, J; Yzuel, M J

    2008-02-04

    In this paper we characterize the polarimetric properties of a liquid crystal on silicon display (LCoS), including depolarization and diattenuation which are usually not considered when applying the LCoS in diffractive or adaptive optics. On one hand, we have found that the LCoS generates a certain degree (that can be larger than a 10%) of depolarized light, which depends on the addressed gray level and on the incident state of polarization (SOP), and can not be ignored in the above mentioned applications. The main origin of the depolarized light is related with temporal fluctuations of the SOP of the light reflected by the LCoS. The Mueller matrix of the LCoS is measured as a function of the gray level, which enables for a numerical optimization of the intensity modulation configurations. In particular we look for maximum intensity contrast modulation or for constant intensity modulation. By means of a heuristic approach we show that, using elliptically polarized light, amplitude-mostly or phase-mostly modulation can be obtained at a wavelength of 633 nm.

  10. Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad.

    PubMed

    Owen, V J; Lamb, G D; Stephenson, D G; Fryer, M W

    1997-02-01

    1. The relationship between the total Ca2+ content of a muscle fibre and the magnitude of the force response to depolarization was examined in mechanically skinned fibres from the iliofibularis muscle of the toad and the extensor digitorum longus muscle of the rat. The response to depolarization in each skinned fibre was assessed either at the endogenous level of Ca2+ content or after depleting the fibre of Ca2+ to some degree. Ca2+ content was determined by a fibre lysing technique. 2. In both muscle types, the total Ca2+ content could be reduced from the endogenous level of approximately 1.3 mmol l-1 (expressed relative to intact fibre volume) to approximately 0.25 mmol l-1 by either depolarization or caffeine application in the presence of Ca2+ chelators, showing that the great majority of the Ca2+ was stored in the sarcoplasmic reticulum (SR). Chelation of Ca2+ in the transverse tubular (T-) system, either by exposure of fibres to EGTA before skinning or by permeabilizing the T-system with saponin after skinning, reduced the lower limit of Ca2+ content to < or = 0.12 mmol l-1, indicating that 10-20% of the total fibre Ca2+ resided in the T-system. 3. In toad fibres, both the peak and the area (i.e. time integral) of the force response to depolarization were reduced by any reduction in SR Ca2+ content, with both decreasing to zero in an approximately linear manner as the SR Ca2+ content was reduced to < 15% of the endogenous level. In rat fibres, the peak size of the force response was less affected by small decreases in SR content, but both the peak and area of the response decreased to zero with greater depletion. In partially depleted toad fibres, inhibition of SR Ca2+ uptake potentiated the force response to depolarization almost 2-fold. 4. The results show that in this skinned fibre preparation: (a) T-system depolarization and caffeine application can each virtually fully deplete the SR of Ca2+, irrespective of any putative inhibitory effect of SR depletion

  11. Detection of saharan mineral dust aerosol transport over brazilian northeast through a depolarization lidar

    NASA Astrophysics Data System (ADS)

    Guedes, Anderson G.; Landulfo, Eduardo; Montilla-Rosero, Elena; Lopes, Fábio J. S.; Hoelzemann, Judith J.; Fernandez, José Henrique; Silva, Marcos P. A.; Santos, Renata S. S.; Guerrero-Rascado, Juan L.; Alados-Arboledas, Lucas

    2018-04-01

    In this study we present results of linear volume depolarization ratio profiles obtained by a depolarization lidar in operation in Natal, Brazil. The DUSTER system has 4 channels, namely: 1064, 532 s/p and 355 nm. This system is calibrated with a half-wave plate using the Δ90° methodology. The data obtained from this system is correlated with AERONET sunphotometer data, and, when available, CALIPSO satellite data. In addition a trajectory model (HYSPLIT) is used to calculate backward trajectories to assess the origin of the dust polluted air parcels. The objective is to create a transport database of Saharan dust.

  12. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    PubMed Central

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases. PMID:26133935

  13. The depolarization performances of 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 ceramics under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Su, Rigu; Nie, Hengchang; Liu, Zhen; Peng, Ping; Cao, Fei; Dong, Xianlin; Wang, Genshui

    2018-02-01

    Several 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 (0.97PZ-0.03BMN) ceramics were prepared via the columbite precursor method. Their microstructures and pressure-dependent ferroelectric and depolarization performances were then studied. The X-ray diffraction patterns of ground and fresh samples indicate that a main rhombohedral symmetry crystal structure is present in the bulk and that it sits alongside a trace quantity of an orthorhombic antiferroelectric phase that results from the effect of grinding on the surface. The remanent polarization (Pr) of the 0.97PZ-0.03BMN reached 32.4 μC/cm2 at 4.5 kV/mm and ambient pressure. In an in situ pressure-induced current measurement, more than 91% of the retained Pr of the pre-poled sample was released when the pressure was increased from 194 MPa to 238 MPa. That this pressure-driven depolarization should be attributed to the pressure-induced ferroelectric-antiferroelectric phase transition is supported by the emergence of double P-E loops at high hydrostatic pressures. Moreover, the 0.97PZ-0.03BMN ceramics exhibit no temperature-induced phase transitions and little related polarization loss up to 125 °C, which suggests that Pr has excellent thermal stability. The sharp depolarization behavior at low pressures and excellent temperature stability reveal that our 0.97PZ-0.03BMN ceramics exhibit superior performances in mechanical-electrical energy conversion applications.

  14. Depolarizing Actions of Hydrogen Sulfide on Hypothalamic Paraventricular Nucleus Neurons

    PubMed Central

    Khademullah, C. Sahara; Ferguson, Alastair V.

    2013-01-01

    Hydrogen sulfide (H2S) is a novel neurotransmitter that has been shown to influence cardiovascular functions as well and corticotrophin hormone (CRH) secretion. Since the paraventricular nucleus of the hypothalamus (PVN) is a central relay center for autonomic and endocrine functions, we sought to investigate the effects of H2S on the neuronal population of the PVN. Whole cell current clamp recordings were acquired from the PVN neurons and sodium hydrosulfide hydrate (NaHS) was bath applied at various concentrations (0.1, 1, 10, and 50 mM). NaHS (1, 10, and 50 mM) elicited a concentration-response relationship from the majority of recorded neurons, with almost exclusively depolarizing effects following administration. Cells responded and recovered from NaHS administration quickly and the effects were repeatable. Input differences from baseline and during the NaHS-induced depolarization uncovered a biphasic response, implicating both a potassium and non-selective cation conductance. The results from the neuronal population of the PVN shed light on the possible physiological role that H2S has in autonomic and endocrine function. PMID:23691233

  15. Impossible Dreams, Impossible Choices, and Thoughts about Depolarizing the Debate

    ERIC Educational Resources Information Center

    Morrow, Susan L.; Beckstead, A. Lee; Hayes, Jeffrey A.; Haldeman, Douglas C.

    2004-01-01

    The titles of the reactions to this major contribution alone set the stage for further exploration of the issues regarding the hopes and dreams of same-sex attracted (SSA) clients in religious conflict and their therapists, issues of choice, and whether or not it is possible - or even appropriate - to depolarize the current debate (Gonsiorek,…

  16. Selective depolarization of the muscle membrane in frog nerve-muscle preparations by a chromatographically purified extract of the dinoflagellate Ostreopsis lenticularis

    PubMed Central

    Meunier, Frédéric A; Mercado, José A; Molgó, Jordi; Tosteson, Thomas R; Escalona de Motta, Gladys

    1997-01-01

    The actions of a chromatographically identified extract of the marine dinoflagellate Ostreopsis lenticularis, named ostreotoxin-3 (OTX-3), were studied on frog isolated neuromuscular preparations. OTX-3 (1–10 μg ml−1) applied to cutaneous pectoris nerve-muscle preparations depolarized skeletal muscle fibres and caused spontaneous contractions. The depolarization was neither reversed by prolonged washing nor by (+)-tubocurarine. OTX-3 decreased the amplitude of miniature end plate potentials (m.e.p.ps) but did not affect their frequency. Extracellular recording of compound action potentials revealed that OTX-3 affected neither excitability nor conduction along intramuscular nerve branches. End-plate potentials (e.p.ps) elicited by nerve stimulation were reduced in amplitude by OTX-3 and even showed reversed polarity in junctions deeply depolarized by the toxin. Membrane depolarization induced by OTX-3 was decreased about 70% in muscles pretreated for 30 min with 10 μM tetrodotoxin. In contrast, muscles pretreated with 5 μM μ-conotoxin GIIIA were completely insensitive to OTX-3-induced depolarization. OTX-3 did not affect e.p.p. amplitude and the quantal content of e.p.ps in junctions in which muscle depolarization was abolished by μ-conotoxin GIIIA. OTX-3 is a novel type of sodium-channel activating toxin that discriminates between nerve and skeletal muscle membranes. PMID:9249261

  17. Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad.

    PubMed Central

    Owen, V J; Lamb, G D; Stephenson, D G; Fryer, M W

    1997-01-01

    1. The relationship between the total Ca2+ content of a muscle fibre and the magnitude of the force response to depolarization was examined in mechanically skinned fibres from the iliofibularis muscle of the toad and the extensor digitorum longus muscle of the rat. The response to depolarization in each skinned fibre was assessed either at the endogenous level of Ca2+ content or after depleting the fibre of Ca2+ to some degree. Ca2+ content was determined by a fibre lysing technique. 2. In both muscle types, the total Ca2+ content could be reduced from the endogenous level of approximately 1.3 mmol l-1 (expressed relative to intact fibre volume) to approximately 0.25 mmol l-1 by either depolarization or caffeine application in the presence of Ca2+ chelators, showing that the great majority of the Ca2+ was stored in the sarcoplasmic reticulum (SR). Chelation of Ca2+ in the transverse tubular (T-) system, either by exposure of fibres to EGTA before skinning or by permeabilizing the T-system with saponin after skinning, reduced the lower limit of Ca2+ content to < or = 0.12 mmol l-1, indicating that 10-20% of the total fibre Ca2+ resided in the T-system. 3. In toad fibres, both the peak and the area (i.e. time integral) of the force response to depolarization were reduced by any reduction in SR Ca2+ content, with both decreasing to zero in an approximately linear manner as the SR Ca2+ content was reduced to < 15% of the endogenous level. In rat fibres, the peak size of the force response was less affected by small decreases in SR content, but both the peak and area of the response decreased to zero with greater depletion. In partially depleted toad fibres, inhibition of SR Ca2+ uptake potentiated the force response to depolarization almost 2-fold. 4. The results show that in this skinned fibre preparation: (a) T-system depolarization and caffeine application can each virtually fully deplete the SR of Ca2+, irrespective of any putative inhibitory effect of SR depletion

  18. Lidar measurements of boundary layer depolarization and CCSEM-EDX compositional analysis of airborne particles on collocated passive samplers throughout the forest canopy during the 2016 airborne pollen season at UMBS, Pellston, MI

    NASA Astrophysics Data System (ADS)

    Wozniak, M. C.; Steiner, A.; Ault, A. P.; Kort, E. A.; Lersch, T.; Casuccio, G.

    2017-12-01

    Observations of airborne pollen are typically made with volumetric samplers that obtain a time-averaged pollen concentration at a single point. While spatial variations in surface pollen concentrations may be known with these samplers given multiple sampling sites, real-time boundary layer transport of pollen grains cannot be determined except by particle dispersion or tracer transport models. Recently, light detection and ranging (lidar) techniques, such as depolarization, have been used to measure pollen transport and optical properties throughout the boundary layer over time. Here, we use a ground-based micro-pulse lidar (MPL) to observe boundary layer vertical profiles before, during and after the peak anemophilous (wind-driven) pollen season. The lidar depolarization ratio is measured in tandem with the normalized R-squared backscatter (NRB) intensity to determine the contribution of aspherical particles to the scatterers present throughout the boundary layer. Measurements are taken from April 15 - July 12, 2016 at the University of Michigan Biological Station (UMBS) PROPHET outdoor research lab and tower within a largely forested region. UMBS is dominated by Acer rubrum, Betula papyrifera, Pinus resinosa, Quercus rubra and Pinus strobus, all of which began flowering on 4/19, 5/3, 5/25, 5/25 and 6/14, respectively. Temperature, relative humidity and wind speed measured on site determine daytime conditions conducive to pollen dispersion from flowers. Lidar depolarization ratios between 0.08-0.14 and higher are observed in the daytime boundary layer on days shortly after the flowering dates of the aforementioned species, elevated above the background level of 0.06 or less. Lidar observations are supplemented with aerosol compositional analysis determined by computer-controlled scanning electron microscopy and energy-dispersive X-ray spectroscopy (CCSEM-EDX) on passive sampler data from below, within and above the forest canopy at PROPHET tower. Particles are

  19. Depolarization measurements on the ATS-6 20 GHz downlink A description of the VPI&SU experiment and some initial results. [meteorological precipitation effects

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Manus, E. A.; Wiley, P. H.; Marshall, R. E.

    1975-01-01

    The experiment considered is mainly concerned with the depolarizing effects of precipitation at millimeter wavelengths. Excessive depolarization introduces cross talk into communication systems which employ orthogonal polarization for frequency reuse. An understanding of atmospheric depolarization phenomena is, therefore, required for the design of future earth-satellite communications systems. Attenuation and cross polarization ratio data obtained under various meteorological conditions, including rain and a snowstorm, are presented.

  20. Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Grytsyuk, M.; Ushenko, V. O.; Bodnar, G. B.; Vanchulyak, O.; Meglinskiy, I.

    2018-01-01

    The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 2nd order of polycrystalline structure of the histological section of rectum wall tissue. It was defined the values of statistical moments of the1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of connecting component of vagina wall tissue (normal and with prolapse). It were defined the objective criteria of differential diagnostics of pathologies of vagina wall.

  1. The release of acetylcholine from post-ganglionic cell bodies in response to depolarization.

    PubMed Central

    Johnson, D A; Pilar, G

    1980-01-01

    1. Acetylcholine (Ach) release from parasympathetic ganglia cell somata was investigated in denervated avian ciliary ganglia. Three days after the input to the ganglion (the oculomotor nerve) was sectioned, all presynaptic nerve terminals had degenerated. 2. Denervated ganglia were shown to contain endogenous ACh and to be capable of synthesizing [3H]ACh from [3H]choline added to the incubation medium. 3. In response to depolarization induced by incubation in 50 mM-[K+]o, denervated ganglia released [3H]ACh into bath effluents in amounts approximately 15% of the non-denervated contralateral control. This release was shown to be Ca2+ dependent in both intact and denervated ganglia. 4. Antidromic electrical stimulation of ciliary nerves also elicited [3H]ACh release. Nicotine (1 microgram/microliter.) depolarized denervated ciliary ganglion cells and evoked release of the transmitter and this release was antagonized by curare. 5. It is concluded that the ganglionic cell bodies sysnthesized ACh and released the transmitter in response to K+ depolarization, antidromic stimulation and cholinergic agonists, despite the lack of morphological specializations usually associated with stimulus-induced release of neurotransmitter. The evidence suggests the existence of a mechanism of transmitter release which is Ca2+ dependent, probably from a cytoplasmic pool and therefore distinct from the usual vesicular release at the nerve terminal. Images Plate 1 Plate 2 PMID:6247485

  2. Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses.

    PubMed

    Zucker, R S

    1974-08-01

    1. Experiments were conducted to test the hypothesis that facilitation of transmitter release in response to repetitive stimulation of the exciter motor axon to the crayfish claw opener muscle is due to an increase in the amplitude or duration of the action potential in presynaptic terminals. No consistent changes were found in the nerve terminal potential (n.t.p.) recorded extracellularly at synaptic sites on the surface of muscle fibres.2. Apparent changes in n.t.p. are attributed to three causes.(i) Some recordings are shown to be contaminated by non-specific muscle responses which grow during facilitation.(ii) Some averaged n.t.p.s exhibit opposite changes in amplitude and duration which suggest a change in the synchrony of presynaptic nerve impulses at different frequencies.(iii) Some changes in n.t.p. are blocked by gamma-methyl glutamate, an antagonist of the post-synaptic receptor, which suggests that these changes are caused by small muscle movements.3. The only change in n.t.p. believed to represent an actual change in the intracellular signal is a reduction in n.t.p. amplitude to the second of two stimuli separated by a brief interval.4. Tetra-ethyl ammonium ions increase synaptic transmission about 20% and prolong the n.t.p. about 15%. This result suggests that an increase in n.t.p. large enough to increase transmission by the several hundred per cent occurring during facilitation would be detected.5. The nerve terminals are electrically excitable, and most synaptic sites have a diphasic or triphasic n.t.p., which suggests that the motor neurone terminals are actively invaded by nerve impulses.6. When nerve impulses are blocked in tetrodotoxin, depolarization of nerve terminals increases the frequency of miniature excitatory junctional potentials (e.j.p.s), and a phasic e.j.p. can be evoked by large, brief depolarizing pulses. Responses to repetitive or paired depolarizations of constant amplitude and duration exhibit a facilitation similar to that of e

  3. B cell activation. III. B cell plasma membrane depolarization and hyper- Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled

    PubMed Central

    1983-01-01

    We report investigation of the relationship between ligand-induced B cell plasma membrane depolarization and increased expression of membrane-associated, I-A subregion encoded (mI-A) antigens. Results demonstrate that equal frequencies of B cells are stimulated to undergo membrane depolarization and to increase mI-A expression in response to mitogen, anti-Ig, and thymus-independent (TI) or thymus-dependent (TD) antigens. Further, a cause-and-effect relationship between these two events is suggested by results that demonstrate that inhibition of anti- Fab--induced depolarization by valinomycin also inhibits the subsequent increase in mI-A antigen expression and "passive" (non-ligand-mediated) depolarization of murine B cells by K+ results in hyper-mI-A antigen expression. Based upon these results we hypothesize that antigen- mediated receptor cross-linking results in signal transduction via membrane depolarization, which is resultant in increased mI-A antigen synthesis and cell surface expression. This increase in mI-A antigen density may render the B cell more receptive to subsequent interaction with I-region-restricted helper T cells. PMID:6415207

  4. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  5. A depolarization and attenuation experiment using the COMSTAR and CTS satellites

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Overstreet, W. P.; Persinger, R. R.; Stutzman, W. L.; Wiley, P. H.

    1978-01-01

    An experiment for measuring precipitation attenuation and depolarization on the CTS 11.7 and the COMSTAR 19.04 and 28.56 GHz downlinks is described. Attenuation scaling, effective path length, and the relationship between isolation and attenuation are discussed. Attenuation and effective path data are presented for the months of July, August, and September, 1977.

  6. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.

  7. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    PubMed

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  8. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons.

    PubMed

    Goldie, Belinda J; Dun, Matthew D; Lin, Minjie; Smith, Nathan D; Verrills, Nicole M; Dayas, Christopher V; Cairns, Murray J

    2014-08-01

    Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. CaMKII and CaMKIV mediate distinct prosurvival signaling pathways in response to depolarization in neurons

    PubMed Central

    Bok, Jinwoong; Wang, Qiong; Huang, Jie; Green, Steven H.

    2007-01-01

    By fusing the CaMKII inhibitory peptide AIP to GFP, we constructed a specific and effective CaMKII inhibitor, GFP-AIP. Expression of GFP-AIP and/or dominant-inhibitory CaMKIV in cultured neonatal rat spiral ganglion neurons (SGNs) shows that CaMKII and CaMKIV act additively and in parallel, to mediate the prosurvival effect of depolarization. Depolarization or expression of constitutively-active CaMKII functionally inactivates Bad, indicating that this is one means by which CaMKII promotes neuronal survival. CaMKIV, but not CaMKII, requires CREB to promote SGN survival, consistent with the exclusively nuclear localization of CaMKIV and indicating that the principal prosurvival function of CaMKIV is activation of CREB. Consistent with this, a constitutively-active CREB construct that provides a high level of CREB activity promotes SGN survival, although low levels of CREB activity did not do so. Also, in apoptotic SGNs, activation of CREB by depolarization is disabled, presumably as part of a cellular commitment to apoptosis. PMID:17651987

  10. Retrieval of the non-depolarizing components of depolarizing Mueller matrices by using symmetry conditions and least squares minimization

    NASA Astrophysics Data System (ADS)

    Kuntman, Ertan; Canillas, Adolf; Arteaga, Oriol

    2017-11-01

    Experimental Mueller matrices contain certain amount of uncertainty in their elements and these uncertainties can create difficulties for decomposition methods based on analytic solutions. In an earlier paper [1], we proposed a decomposition method for depolarizing Mueller matrices by using certain symmetry conditions. However, because of the experimental error, that method creates over-determined systems with non-unique solutions. Here we propose to use least squares minimization approach in order to improve the accuracy of our results. In this method, we are taking into account the number of independent parameters of the corresponding symmetry and the rank constraints on the component matrices to decide on our fitting model. This approach is illustrated with experimental Mueller matrices that include material media with different Mueller symmetries.

  11. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    NASA Astrophysics Data System (ADS)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  12. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  13. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  14. A Possible Origin of Linear Depolarization Observed at Vertical Incidence in Rain

    NASA Technical Reports Server (NTRS)

    Jameson, A. R.; Durden, S. L.

    1996-01-01

    Recent observations by two different nadir-pointing airborne radars with some polarization capabilities have detected surprisingly large linear depolarization ratios at times in convective tropical rain. This depolarization can be explained if the rain is considered to be a mixture of a group of apparent spheres and another group of drops that are distorted in the horizontal plane perpendicular to the direction of propagation of the incident wave. If confirmed in future observations, this suggests that at times the larger raindrops are oscillating, in part, because of collisions with smaller drops. Since many of the interpretations of radar polarization measurements in rain by ground-based radars presume that the raindrop shapes correspond to those of the well-known "equilibrium" drops, the present observations may require adjustments to some radar polarization algorithms for estimating rainfall rate, for example, if the shape perturbations observed at nadir also apply to measurements along other axes as well.

  15. Glucocorticoid interactions with ethanol effects on depolarization-induced calcium influx in brain synaptosomes.

    PubMed

    Sze, P Y

    1996-04-01

    Depolarization-induced Ca2+ influx in brain synaptosomes is known to be inhibited by ethanol and stimulated by glucocorticoids. The present study was undertaken to characterize the interactions of corticosterone (CORT) with ethanol effects on 45Ca2+ uptake in synaptosomes depolarized by high K+ (70 mM). CORT was shown to antagonize the inhibitory effects of ethanol on the fast-phase component of the K(+)-induced 45Ca2+ uptake (the initial 3 s following depolarization). Glucocorticoid antagonism of ethanol inhibition of the 45Ca2+ uptake exhibited a high degree of steroid specificity; steroids with glucocorticoid activity including cortisol, dexamethasone and triamcinolone were effective, whereas gonadal steroids and excitatory neuroactive steroid metabolites were ineffective. From the shift of concentration-response relationships when CORT and ethanol were present in combination, the interaction between steroid stimulation and ethanol inhibition of 45Ca2+ uptake occurred in an additive manner over the range of their effective concentrations. Parallel to 45Ca2+ uptake, the binding sites for [3H]PN 200-110 were reduced by ethanol and increased by CORT. These opposite effects on [3H]dihydropyridine labeled sites were found also to antagonize each other, and the antagonism again occurred in an additive relationship. These results demonstrate that glucocorticoids antagonized ethanol inhibition of voltage-dependent Ca2+ channel activity in brain synaptosomes, and support the notion that these steroids may be among the endogenous factors that modulate neuronal sensitivity to ethanol.

  16. Twomey Effect in Subtropical Stratocumulus Clouds from UV Depolarization LIDAR

    NASA Astrophysics Data System (ADS)

    de Graaf, Martin; Brown, Jessica; Donovan, David

    2018-04-01

    Marine stratocumulus clouds are important climate regulators, reflecting sunlight over a dark ocean background. A UV-depolarization lidar on Ascension, a small remote island in the south Atlantic, measured cloud droplet sizes and number concentration using an inversion method based on Monte Carlo (MC) modelling of multiple scattering in idealised semiadiabatic clouds. The droplet size and number concentration weremodulated due to smoke from the African continent, measured by the same instrument.

  17. Observation of Exciton-Exciton Interaction Mediated Valley Depolarization in Monolayer MoSe2.

    PubMed

    Mahmood, Fahad; Alpichshev, Zhanybek; Lee, Yi-Hsien; Kong, Jing; Gedik, Nuh

    2018-01-10

    The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long time scales (hundreds of nanoseconds). However, time-resolved measurements report valley lifetimes of only a few picoseconds. This has been attributed to mechanisms such as phonon-mediated intervalley scattering and a precession of the valley pseudospin through electron-hole exchange. Here we use transient spin grating to directly measure the valley depolarization lifetime in monolayer MoSe 2 . We find a fast valley decay rate that scales linearly with the excitation density at different temperatures. This establishes the presence of strong exciton-exciton Coulomb exchange interactions enhancing the valley depolarization. Our work highlights the microscopic processes inhibiting the efficient use of the exciton valley pseudospin in monolayer TMDs.

  18. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots.

    PubMed

    Pottosin, Igor; Velarde-Buendía, Ana María; Bose, Jayakumar; Fuglsang, Anja T; Shabala, Sergey

    2014-06-01

    Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Aircraft Loss-of-Control Accident Analysis

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Foster, John V.

    2010-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.

  20. Depolarization of the Electrogenic Transmembrane Electropotential of Zea mays L. by Bipolaris (Helminthosporium) maydis Race T Toxin, Azide, Cyanide, Dodecyl Succinic Acid, or Cold Temperature 1

    PubMed Central

    Mertz, Stuart M.; Arntzen, Charles J.

    1978-01-01

    The transmembrane electrical potential of root cells of Zea mays L. cv. W64A in a modified 1× Higinbotham solution was partially depolarized by semipurified toxin obtained from Bipolaris (Helminthosporium) maydis race T. At a given toxin concentration depolarization of Texas cytoplasm cells was much greater than for normal cytoplasm cells. This observation correlated directly to the differential host susceptibility to the fungus. The time course and magnitude of depolarization were dependent on toxin concentration; at high concentration the electropotential difference change was rapid. Cortex cells depolarized more slowly than epidermal cells indicating that the toxin slowly permeated intercellular regions. Toxin concentrations which affected electropotential difference were of the same magnitude as those required to inhibit root growth, ion uptake, and mitochondrial processes. Azide, cyanide, and cold temperature (5 C) gave the same partial depolarization as did the toxin. Dodecyl succinic acid caused complete depolarization. These and other data indicate that one of the primary actions of the toxin is to inhibit electrogenic ion pumps in the plasmalemma. PMID:16660605

  1. Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading.

    PubMed

    Steffensen, Annette B; Sword, Jeremy; Croom, Deborah; Kirov, Sergei A; MacAulay, Nanna

    2015-09-02

    Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl(-), and, accordingly, combined blockade of Cl(-)-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular space in association with

  2. Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naranjo, J.R.; Mocchetti, I.; Schwartz, J.P.

    1986-03-01

    In cultured bovine chromaffin cells, changes in the dynamic state of enkephalin stores elicited experimentally were studied by measuring cellular proenkephalin mRNA, as well as enkephalin precursors and authentic enkephalin content of cells and culture media. In parallel, tyrosine hydroxylase mRNA and catecholamine cell content were also determined. Low concentrations (0.5-100 pM) of dexamethasone increased the cell contents of proenkephalin mRNA and enkephalin-containing peptides. High concentrations of the hormone(1 ..mu..M) were required to increase the cell contents of tyrosine hydroxylase mRNA and catecholamines. Depolarization of the cells with 10 ..mu..M veratridine resulted in a depletion of enkephalin and catecholamine storesmore » after 24 hr. The enkephalin, but not the catecholamine, content was restored by 48 hr. An increase in proenkephalin mRNA content might account for the recovery; this increase was curtailed by tetrodotoxin and enhanced by 10 pM dexamethasone. Tyrosine hydroxylase mRNA content was not significantly modified by depolarization, even in the presence of 1 ..mu..M dexamethasone. Aldosterone, progesterone, testosterone, or estradiol (1 ..mu..M) failed to change proenkephalin mRNA. Hence, dexamethasone appears to exert a specific permissive action on the stimulation of the proenkephalin gene elicited by depolarization. Though the catecholamines and enkephalins are localized in the same chromaffin granules and are coreleased by depolarization, the genes coding for the processes that are rate limiting in the production of these neuromodulators can be differentially regulated.« less

  3. Temperature dependent impedance spectroscopy and Thermally Stimulated Depolarization Current (TSDC) analysis of disperse red 1-co-poly(methyl methacrylate) copolymers

    NASA Astrophysics Data System (ADS)

    Ko, Yee Song; Cuervo-Reyes, Eduardo; Nüesch, Frank A.; Opris, Dorina M.

    2016-04-01

    The dielectric relaxation processes of polymethyl methacrylates that have been functionalized with Disperse Red 1 (DR1) in the side chain (DR1-co-MMA) were studied with temperature dependent impedance spectroscopy and thermally stimulated depolarization current (TSDC) techniques. Copolymers with dipole contents which varied between 10 mol% and 70 mol% were prepared. All samples showed dipole relaxations above the structural-glass transition temperature (Tg). The β-relaxation of the methyl methacrylate (MMA) repeating unit was most visible in DR1(10%)-co-MMA and rapidly vanishes with higher dipole contents. DSC data reveal an increase of the Tg by 20 °C to 125°C with the inclusion of the dipole into the polymethyl methacrylate (PMMA) as side chain. The impedance data of samples with several DR1 concentrations, taken at several temperatures above Tg, have been fitted with the Havriliak-Negami (HN) function. In all cases, the fits reveal a dielectric response that corresponds to power-law dipolar relaxations. TSDC measurements show that the copolymer can be poled, and that the induced polarization can be frozen by lowering the temperature well below the glass transition. Relaxation strengths ΔƐ estimated by integrating the depolarization current are similar to those obtained from the impedance data, confirming the efficient freezing of the dipoles in the structural glass state.

  4. Lead-free BNT-based composite materials: enhanced depolarization temperature and electromechanical behavior.

    PubMed

    Bai, Wangfeng; Zheng, Peng; Wen, Fei; Zhang, Jingji; Chen, Daqin; Zhai, Jiwei; Ji, Zhenguo

    2017-11-14

    The development of (Bi 0.5 Na 0.5 )TiO 3 -based solid solutions with both high depolarization temperature T d and excellent piezoelectric and electromechanical properties for practical application is intractable because improved thermal stability is usually accompanied by a deterioration in piezoelectric and electromechanical performance. Herein, we report a 0-3 type 0.93(Bi 0.5 Na 0.5 )TiO 3 -0.07BaTiO 3  : 30 mol%ZnO composite (BNT-7BT : 0.3ZnO), in which the ZnO nanoparticles exist in two forms, to resolve the abovementioned long-standing obstacle. In this composite, Zn ions fill the boundaries of BNT-7BT grains, and residual Zn ions diffuse into the BNT-7BT lattice, as confirmed by XRD, Raman spectroscopy, and microstructure analysis. The BNT-7BT composite ceramics with a 0-3 type connectivity exhibited enhanced frequency-dependent electromechanical properties, fatigue characteristics, and thermal stabilities. More importantly, low poling field-driven large piezoelectric properties were observed for the composite ceramics as compared to the case of the pure BNT-7BT solid solution. A mechanism related to the ZnO-driven phase transition from the rhombohedral to tetragonal phase and built-in electric field to partially compensate the depolarization field was proposed to explain the achieved outstanding piezoelectric performance. This is the first time that the thermal stability, electromechanical behavior, and low poling field-driven high piezoelectric performance of BNT-based ceramics have been simultaneously optimized. Thus, our study provides a referential methodology to achieve novel piezoceramics with excellent piezoelectricity by composite engineering and opens up a new development window for the utilization of conventional BNT-based and other lead-free ceramics in practical applications.

  5. Stability and morphology of Ag nanoplatelets probed by depolarized dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Zimbone, M.; Contino, A.; Maccarrone, G.; Musumeci, P.; Lo Faro, M. J.; Calcagno, L.

    2018-06-01

    The stability of silver nanoplatelet (NP) suspensions prepared with different concentrations of trisodium citrate (TSC) was studied by depolarized dynamic light scattering (DDLS) and UV–vis spectrometry. The morphology of the nanoparticles, as well as the color and stability of the sols, are tuned by the concentration of the capping agent. The nanoparticles prepared with high TSC concentration (>10‑4 M) are blue triangular NPs showing a slight truncation of the tips with aging. When low TSC concentrations are used, the color of the sols changes from blue to yellow with aging time and a strong modification of the morphology occurs: the nanoparticle shape changes from triangular to spherical. Remarkably, they show a high degree of anisotropy. The aging process was followed by the UV–vis spectra and by measuring the rotational diffusion coefficient by DDLS, providing information on the nanoparticle size and shape evolution. The high intensity of depolarized signal and the high value of rotational diffusion coefficient suggest that the aging process increases the thickness and the roughness of the nanoparticles

  6. Blade loss transient dynamic analysis of turbomachinery

    NASA Technical Reports Server (NTRS)

    Stallone, M. J.; Gallardo, V.; Storace, A. F.; Bach, L. J.; Black, G.; Gaffney, E. F.

    1982-01-01

    This paper reports on work completed to develop an analytical method for predicting the transient non-linear response of a complete aircraft engine system due to the loss of a fan blade, and to validate the analysis by comparing the results against actual blade loss test data. The solution, which is based on the component element method, accounts for rotor-to-casing rubs, high damping and rapid deceleration rates associated with the blade loss event. A comparison of test results and predicted response show good agreement except for an initial overshoot spike not observed in test. The method is effective for analysis of large systems.

  7. [Ionic mechanisms of depolarization responses induced by glutamate application to nerve cells of Helix pomatia].

    PubMed

    Gerasimov, V D

    1982-01-01

    The reversal potentials for transmembrane ionic currents induced by glutamate were measured in different D-neurons of the snail Helix pomatia. The first group of neurons had a mean reversal potential--10.6 +/- 1.2 mV and the second one--40.0 +/- 0.6 mV. Under normal conditions glutamate evoked spike discharges in the first group of neurons but not in the second one. At higher concentrations of glutamate the amplitude of D-responses in the latter group increased only to a certain level, not reaching the critical level for cell firing. Decrease in external Cl concentration led to a shift of their reversal potential in depolarizing direction. Ionic mechanisms of depolarizing responses induced by glutamate in these groups of neurons are discussed.

  8. Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na(+) and K(+) transport into xylem vessels.

    PubMed

    Wegner, Lars H; Stefano, Giovanni; Shabala, Lana; Rossi, Marika; Mancuso, Stefano; Shabala, Sergey

    2011-05-01

    Early events in NaCl-induced root ion and water transport were investigated in maize (Zea mays L) roots using a range of microelectrode and imaging techniques. Addition of 100 mm NaCl to the bath resulted in an exponential drop in root xylem pressure, rapid depolarization of trans-root potential and a transient drop in xylem K(+) activity (A(K+) ) within ∼1 min after stress onset. At this time, no detectable amounts of Na(+) were released into the xylem vessels. The observed drop in A(K+) was unexpected, given the fact that application of the physiologically relevant concentrations of Na(+) to isolated stele has caused rapid plasma membrane depolarization and a subsequent K(+) efflux from the stelar tissues. This controversy was explained by the difference in kinetics of NaCl-induced depolarization between cortical and stelar cells. As root cortical cells are first to be depolarized and lose K(+) to the environment, this is associated with some K(+) shift from the stelar symplast to the cortex, resulting in K(+) being transiently removed from the xylem. Once Na(+) is loaded into the xylem (between 1 and 5 min of root exposure to NaCl), stelar cells become more depolarized, and a gradual recovery in A(K+) occurs. © 2011 Blackwell Publishing Ltd.

  9. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    PubMed

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK. Copyright © 2015 the authors 0270-6474/15/3513160-11$15.00/0.

  10. Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes

    PubMed Central

    1991-01-01

    Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and

  11. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    PubMed

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  12. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.

    PubMed

    Roy, G; Bissonnette, L R

    2001-09-20

    Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.

  13. Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2

    NASA Astrophysics Data System (ADS)

    Molina-Sánchez, Alejandro; Sangalli, Davide; Wirtz, Ludger; Marini, Andrea

    2017-08-01

    In single-layer WSe$_2$, a paradigmatic semiconducting transition metal dichalcogenide, a circularly polarized laser field can selectively excite electronic transitions in one of the inequivalent $K^{\\pm}$ valleys. Such selective valley population corresponds to a pseudospin polarization. This can be used as a degree of freedom in a valleytronic device provided that the time scale for its depolarization is sufficiently large. Yet, the mechanism behind the valley depolarization still remains heavily debated. Recent time-dependent Kerr experiments have provided an accurate way to visualize the valley dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized pump pulse. We present here a clear, accurate and parameter-free description of the valley dynamics. By using an atomistic, ab initio, approach we fully disclose the elemental mechanisms that dictate the depolarization effects. Our results are in excellent agreement with recent time-dependent Kerr experiments. We explain the Kerr dynamics and its temperature dependence in terms of electron-phonon mediated processes that induce spin-flip inter-valley transitions.

  14. Expert Coaching in Weight Loss: Retrospective Analysis

    PubMed Central

    Kushner, Robert F; Hill, James O; Lindquist, Richard; Brunning, Scott; Margulies, Amy

    2018-01-01

    Background Providing coaches as part of a weight management program is a common practice to increase participant engagement and weight loss success. Understanding coach and participant interactions and how these interactions impact weight loss success needs to be further explored for coaching best practices. Objective The purpose of this study was to analyze the coach and participant interaction in a 6-month weight loss intervention administered by Retrofit, a personalized weight management and Web-based disease prevention solution. The study specifically examined the association between different methods of coach-participant interaction and weight loss and tried to understand the level of coaching impact on weight loss outcome. Methods A retrospective analysis was performed using 1432 participants enrolled from 2011 to 2016 in the Retrofit weight loss program. Participants were males and females aged 18 years or older with a baseline body mass index of ≥25 kg/m², who also provided at least one weight measurement beyond baseline. First, a detailed analysis of different coach-participant interaction was performed using both intent-to-treat and completer populations. Next, a multiple regression analysis was performed using all measures associated with coach-participant interactions involving expert coaching sessions, live weekly expert-led Web-based classes, and electronic messaging and feedback. Finally, 3 significant predictors (P<.001) were analyzed in depth to reveal the impact on weight loss outcome. Results Participants in the Retrofit weight loss program lost a mean 5.14% (SE 0.14) of their baseline weight, with 44% (SE 0.01) of participants losing at least 5% of their baseline weight. Multiple regression model (R2=.158, P<.001) identified the following top 3 measures as significant predictors of weight loss at 6 months: expert coaching session attendance (P<.001), live weekly Web-based class attendance (P<.001), and food log feedback days per week (P<.001

  15. Experimental observation of spontaneous depolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber

    NASA Astrophysics Data System (ADS)

    Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro; Set, Sze Yun; Yamashita, Shinji

    2018-06-01

    Spontaneous depolarized guided acoustic-wave Brillouin scattering (GAWBS) was experimentally observed in one of the side cores of an uncoated multicore fiber (MCF). The frequency bandwidth in the side core was up to ∼400 MHz, which is 0.5 times that in the central core. The GAWBS spectrum of the side core of the MCF included intrinsic peaks, which had different acoustic resonance frequencies from those of the central core. In addition, the spontaneous depolarized GAWBS in the central/side core was unaffected by that in the other core. These results will lead to the development of polarization/phase modulators using an MCF.

  16. Low K+-induced hyperpolarizations trigger transient depolarizations and action potentials in rabbit ventricular myocytes

    PubMed Central

    Akuzawa-Tateyama, M; Tateyama, M; Ochi, R

    1998-01-01

    The effects of large reductions of [K+]o on membrane potential were studied in isolated rabbit ventricular myocytes using the whole-cell patch clamp technique.Decreasing [K+]o from the normal level of 5.4 mm to 0.1 mm increased resting membrane potential (Vrest) from −75.6 ± 0.3 to −140.3 ± 1.9 mV (means ± s.e.m; n = 127), induced irregular, transient depolarizations with mean maximal amplitudes of 19.5 ± 1.5 mV and elicited action potentials in 56.7 % of trials. The action potentials exhibited overshoots of 37.9 ± 1.5 mV (n = 72) and sustained plateaux.Addition of 0.1 mm La3+ in the presence of 0.1 mm[K+]o significantly increased Vrest but decreased the amplitude of transient depolarizations and suppressed the firing of action potentials.Replacement of external Na+ or Cl− with N-methyl-D-glucamine or aspartate, respectively, or internal dialysis with 10 mm EGTA or BAPTA had little effect on low [K+]o-induced membrane potential changes.Hyperpolarizing voltage clamp pulses to potentials between −110 and −200 mV activated irregular inward currents that increased in amplitude and frequency with increasing hyperpolarization and were depressed by 0.1 mm La3+.The generation of transient depolarizations by low [K+]o can be explained as being a consequence of decreasing the inward rectifier K+ current (IK1) and the appearance of inward currents reflecting electroporation resulting from strong electric fields across the membrane. PMID:9824717

  17. The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization

    PubMed Central

    Ullah, Ghanim; Wei, Yina; Dahlem, Markus A; Wechselberger, Martin; Schiff, Steven J

    2015-01-01

    Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states. PMID:26273829

  18. Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate.

    PubMed

    Tyzio, Roman; Allene, Camille; Nardou, Romain; Picardo, Michel A; Yamamoto, Sumii; Sivakumaran, Sudhir; Caiati, Maddalena D; Rheims, Sylvain; Minlebaev, Marat; Milh, Mathieu; Ferré, Pascal; Khazipov, Rustem; Romette, Jean-Louis; Lorquin, Jean; Cossart, Rosa; Khalilov, Ilgam; Nehlig, Astrid; Cherubini, Enrico; Ben-Ari, Yehezkel

    2011-01-05

    GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 μM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.

  19. Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Schneider, Felix M.; Schöll, Eckehard

    2008-06-01

    The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The propagation velocity of ˜3mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or noninstantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimization of this feedback is elaborated for different control schemes and ranges of control parameters.

  20. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal

    PubMed Central

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an Ih current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt

  1. Expert Coaching in Weight Loss: Retrospective Analysis.

    PubMed

    Painter, Stefanie Lynn; Ahmed, Rezwan; Kushner, Robert F; Hill, James O; Lindquist, Richard; Brunning, Scott; Margulies, Amy

    2018-03-13

    Providing coaches as part of a weight management program is a common practice to increase participant engagement and weight loss success. Understanding coach and participant interactions and how these interactions impact weight loss success needs to be further explored for coaching best practices. The purpose of this study was to analyze the coach and participant interaction in a 6-month weight loss intervention administered by Retrofit, a personalized weight management and Web-based disease prevention solution. The study specifically examined the association between different methods of coach-participant interaction and weight loss and tried to understand the level of coaching impact on weight loss outcome. A retrospective analysis was performed using 1432 participants enrolled from 2011 to 2016 in the Retrofit weight loss program. Participants were males and females aged 18 years or older with a baseline body mass index of ≥25 kg/m², who also provided at least one weight measurement beyond baseline. First, a detailed analysis of different coach-participant interaction was performed using both intent-to-treat and completer populations. Next, a multiple regression analysis was performed using all measures associated with coach-participant interactions involving expert coaching sessions, live weekly expert-led Web-based classes, and electronic messaging and feedback. Finally, 3 significant predictors (P<.001) were analyzed in depth to reveal the impact on weight loss outcome. Participants in the Retrofit weight loss program lost a mean 5.14% (SE 0.14) of their baseline weight, with 44% (SE 0.01) of participants losing at least 5% of their baseline weight. Multiple regression model (R 2 =.158, P<.001) identified the following top 3 measures as significant predictors of weight loss at 6 months: expert coaching session attendance (P<.001), live weekly Web-based class attendance (P<.001), and food log feedback days per week (P<.001). Attending 80% of expert coaching

  2. Caffeine does not affect susceptibility to cortical spreading depolarization in mice.

    PubMed

    Yalcin, Nilufer; Chen, Shih-Pin; Yu, Esther S; Liu, Tzu-Ting; Yen, Jiin-Cherng; Atalay, Yahya B; Qin, Tao; Celik, Furkan; van den Maagdenberg, Arn Mjm; Moskowitz, Michael A; Ayata, Cenk; Eikermann-Haerter, Katharina

    2018-01-01

    Several factors that modulate migraine, a common primary headache disorder, also affect susceptibility to cortical spreading depolarization (CSD). CSD is a wave of neuronal and glial depolarization and thought to underlie the migraine aura and possibly headache. Here, we tested whether caffeine, known to alleviate or trigger headache after acute exposure or chronic use/withdrawal, respectively, modulates CSD. We injected C57BL/6J mice with caffeine (30, 60, or 120 mg/kg; i.p.) once (acute) or twice per day for one or two weeks (chronic). Susceptibility to CSD was evaluated by measuring the electrical CSD threshold and by assessing KCl-induced CSD. Simultaneous laser Doppler flowmetry was used to assess CSD-induced cortical blood flow changes. Recordings were performed 15 min after caffeine/vehicle administration, or 24 h after the last dose of chronic caffeine in the withdrawal group. The latter paradigm was also tested in mice carrying the familial hemiplegic migraine type 1 R192Q missense mutation, considered a valid migraine model. Neither acute/chronic administration nor withdrawal of caffeine affected CSD susceptibility or related cortical blood flow changes, either in WT or R192Q mice. Hence, adverse or beneficial effects of caffeine on headache seem unrelated to CSD pathophysiology, consistent with the non-migrainous clinical presentation of caffeine-related headache.

  3. Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt) preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding. PMID:26083350

  4. Aircraft Accident Prevention: Loss-of-Control Analysis

    NASA Technical Reports Server (NTRS)

    Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.

    2009-01-01

    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.

  5. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    PubMed

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  6. Linear Depolarization of Lidar Returns by Aged Smoke Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-01-01

    We use the numerically exact (superposition) T-matrix method to analyze recent measurements of the backscattering linear depolarization ratio (LDR) for a plume of aged smoke at lidar wavelengths ranging from 355 to 1064 nm. We show that the unique spectral dependence of the measured LDRs can be modeled, but only by assuming expressly nonspherical morphologies of smoke particles containing substantial amounts of nonabsorbing (or weakly absorbing) refractory materials such as sulfates. Our results demonstrate that spectral backscattering LDR measurements can be indicative of the presence of morphologically complex smoke particles, but additional (e.g., passive polarimetric or bistatic lidar) measurements may be required for a definitive characterization of the particle morphology and composition.

  7. FM Dye Cycling at the Synapse: Comparing High Potassium Depolarization, Electrical and Channelrhodopsin Stimulation.

    PubMed

    Kopke, Danielle L; Broadie, Kendal

    2018-05-24

    FM dyes are used to study the synaptic vesicle (SV) cycle. These amphipathic probes have a hydrophilic head and hydrophobic tail, making them water-soluble with the ability to reversibly enter and exit membrane lipid bilayers. These styryl dyes are relatively non-fluorescent in aqueous medium, but insertion into the outer leaflet of the plasma membrane causes a >40X increase in fluorescence. In neuronal synapses, FM dyes are internalized during SV endocytosis, trafficked both within and between SV pools, and released with SV exocytosis, providing a powerful tool to visualize presynaptic stages of neurotransmission. A primary genetic model of glutamatergic synapse development and function is the Drosophila neuromuscular junction (NMJ), where FM dye imaging has been used extensively to quantify SV dynamics in a wide range of mutant conditions. The NMJ synaptic terminal is easily accessible, with a beautiful array of large synaptic boutons ideal for imaging applications. Here, we compare and contrast the three ways to stimulate the Drosophila NMJ to drive activity-dependent FM1-43 dye uptake/release: 1) bath application of high [K + ] to depolarize neuromuscular tissues, 2) suction electrode motor nerve stimulation to depolarize the presynaptic nerve terminal, and 3) targeted transgenic expression of channelrhodopsin variants for light-stimulated, spatial control of depolarization. Each of these methods has benefits and disadvantages for the study of genetic mutation effects on the SV cycle at the Drosophila NMJ. We will discuss these advantages and disadvantages to assist the selection of the stimulation approach, together with the methodologies specific to each strategy. In addition to fluorescent imaging, FM dyes can be photoconverted to electron-dense signals visualized using transmission electron microscopy (TEM) to study SV cycle mechanisms at an ultrastructural level. We provide the comparisons of confocal and electron microscopy imaging from the different

  8. The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue.

    PubMed

    Gottwald, Esther M; Duss, Michael; Bugarski, Milica; Haenni, Dominik; Schuh, Claus D; Landau, Ehud M; Hall, Andrew M

    2018-04-01

    Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted anti-oxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS-31, another targeted anti-oxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an anti-oxidant component (quinone) by a 10-carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQ-induced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to anti-oxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. BH3-mimetic ABT-737 induces strong mitochondrial membrane depolarization in platelets but only weakly stimulates apoptotic morphological changes, platelet shrinkage and microparticle formation.

    PubMed

    Gyulkhandanyan, Armen V; Mutlu, Asuman; Allen, David J; Freedman, John; Leytin, Valery

    2014-01-01

    Depolarization of mitochondrial inner transmembrane potential (ΔΨm) is a key biochemical manifestation of the intrinsic apoptosis pathway in anucleate platelets. Little is known, however, about the relationship between ΔΨm depolarization and downstream morphological manifestations of platelet apoptosis, cell shrinkage and microparticle (MP) formation. To elucidate this relationship in human platelets. Using flow cytometry, we analyzed ΔΨm depolarization, platelet shrinkage and MP formation in platelets treated with BH3-mimetic ABT-737 and calcium ionophore A23187, well-known inducers of intrinsic platelet apoptosis. We found that at optimal treatment conditions (90min, 37°C) both ABT-737 and A23187 induce ΔΨm depolarization in the majority (88-94%) of platelets and strongly increase intracellular free calcium. In contrast, effects of A23187 and ABT-737 on platelet shrinkage and MP formation are quite different. A23187 strongly stimulates cell shrinkage and MP formation, whereas ABT-737 only weakly induces these events (10-20% of the effect seen with A23187, P<0.0001). These data indicate that a high level of ΔΨm depolarization and intracellular free calcium does not obligatorily ensure strong platelet shrinkage and MP formation. Since ABT-737 efficiently induces clearance of platelets from the circulation, our results suggest that platelet clearance may occur in the absence of the morphological manifestations of apoptosis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons.

    PubMed

    Hardie, Jason; Spruston, Nelson

    2009-03-11

    Long-term potentiation (LTP) requires postsynaptic depolarization that can result from EPSPs paired with action potentials or larger EPSPs that trigger dendritic spikes. We explored the relative contribution of these sources of depolarization to LTP induction during synaptically driven action potential firing in hippocampal CA1 pyramidal neurons. Pairing of a weak test input with a strong input resulted in large LTP (approximately 75% increase) when the weak and strong inputs were both located in the apical dendrites. This form of LTP did not require somatic action potentials. When the strong input was located in the basal dendrites, the resulting LTP was smaller (< or =25% increase). Pairing the test input with somatically evoked action potentials mimicked this form of LTP. Thus, back-propagating action potentials may contribute to modest LTP, but local synaptic depolarization and/or dendritic spikes mediate a stronger form of LTP that requires spatial proximity of the associated synaptic inputs.

  11. Far wing depolarization of light - Generalized absorption profiles. [in laser fluorescence spectroscopy of Sr vapor

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1981-01-01

    An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.

  12. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential

    PubMed Central

    Antoine, Thomas; Fisher, Nicholas; Amewu, Richard; O'Neill, Paul M.; Ward, Stephen A.; Biagini, Giancarlo A.

    2014-01-01

    Objectives Artemisinin and artemisinin semi-synthetic derivatives (collectively known as endoperoxides) are first-line antimalarials for the treatment of uncomplicated and severe malaria. Endoperoxides display very fast killing rates and are generally recalcitrant to parasite resistance development. These key pharmacodynamic features are a result of a complex mechanism of action, the details of which lack consensus. Here, we report on the primary physiological events leading to parasite death. Methods Parasite mitochondrial (ΔΨm) and plasma membrane (ΔΨp) electrochemical potentials were measured using real-time single-cell imaging following exposure to pharmacologically relevant concentrations of endoperoxides (artemisinin, dihydroartemisinin, artesunate and the synthetic tetraoxane RKA182). In addition, mitochondrial electron transport chain components NADH:quinone oxidoreductase (alternative complex I), bc1 (complex III) and cytochrome oxidase (complex IV) were investigated to determine their functional sensitivity to the various endoperoxides. Results Parasite exposure to endoperoxides resulted in rapid depolarization of parasite ΔΨm and ΔΨp. The rate of depolarization was decreased in the presence of a reactive oxygen species (ROS) scavenger and Fe3+ chelators. Depolarization of ΔΨm by endoperoxides is not believed to be through the inhibition of mitochondrial electron transport chain components, owing to the lack of significant inhibition when assayed directly. Conclusions The depolarization of ΔΨm and ΔΨp is shown to be mediated via the generation of ROS that are initiated by iron bioactivation of endoperoxides and/or catalysed by iron-dependent oxidative stress. These data are discussed in the context of current hypotheses concerning the mode of action of endoperoxides. PMID:24335485

  13. Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses

    PubMed Central

    Zucker, Robert S.

    1974-01-01

    1. Experiments were conducted to test the hypothesis that facilitation of transmitter release in response to repetitive stimulation of the exciter motor axon to the crayfish claw opener muscle is due to an increase in the amplitude or duration of the action potential in presynaptic terminals. No consistent changes were found in the nerve terminal potential (n.t.p.) recorded extracellularly at synaptic sites on the surface of muscle fibres. 2. Apparent changes in n.t.p. are attributed to three causes. (i) Some recordings are shown to be contaminated by non-specific muscle responses which grow during facilitation. (ii) Some averaged n.t.p.s exhibit opposite changes in amplitude and duration which suggest a change in the synchrony of presynaptic nerve impulses at different frequencies. (iii) Some changes in n.t.p. are blocked by γ-methyl glutamate, an antagonist of the post-synaptic receptor, which suggests that these changes are caused by small muscle movements. 3. The only change in n.t.p. believed to represent an actual change in the intracellular signal is a reduction in n.t.p. amplitude to the second of two stimuli separated by a brief interval. 4. Tetra-ethyl ammonium ions increase synaptic transmission about 20% and prolong the n.t.p. about 15%. This result suggests that an increase in n.t.p. large enough to increase transmission by the several hundred per cent occurring during facilitation would be detected. 5. The nerve terminals are electrically excitable, and most synaptic sites have a diphasic or triphasic n.t.p., which suggests that the motor neurone terminals are actively invaded by nerve impulses. 6. When nerve impulses are blocked in tetrodotoxin, depolarization of nerve terminals increases the frequency of miniature excitatory junctional potentials (e.j.p.s), and a phasic e.j.p. can be evoked by large, brief depolarizing pulses. Responses to repetitive or paired depolarizations of constant amplitude and duration exhibit a facilitation similar to that

  14. Regional Soiling Stations for PV: Soling Loss Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TamizhMani, G.; King, B.; Venkatesan, A.

    The soiling loss factor (SLF) of photovoltaic (PV) modules/system is an interplay between the dust frequency and intensity of the site, rain frequency and intensity of the site, tilt angle and height of the module installation, and wind speed and humidity of the site. The integrated area of the downward peaks of the SLF time series plots for a year provides the annual soiling loss for the system at each tilt angle. Sandia National Laboratories, in collaboration with Arizona State University, installed five regional soiling stations around the country and collected soiling loss data over a year. Four of thesemore » soiling stations are located at the U.S. Department of Energy Regional Test Centers (Florida, Albuquerque, Colorado and Vermont), while the fifth station is located at the Arizona State University Photovoltaic Reliability Lab (Arizona). This paper presents an analysis on the SLF for each test site at ten different tilt angles. Based on the analysis of a yearlong data obtained in 2015, it appears to indicate that the Arizona site experienced the highest annual soiling loss with a significant dependence on the tilt angle while the other four sites experienced a negligibly small annual soiling loss with practically no dependence on the tilt angle.« less

  15. Intracellular pH in rat isolated superior cervical ganglia in relation to nicotine-depolarization and nicotine-uptake

    PubMed Central

    Brown, D. A.; Halliwell, J. V.

    1972-01-01

    1. The intracellular pH (pHi) of rat isolated superior cervical ganglia incubated in normal Krebs solution (pHo=7·37) was estimated to be 7·33 from the uptake of a weak acid, 14C-5,5-dimethyloxazolidine-2,4-dione (DMO). Addition of 30 μM nicotine for 30 min reduced the DMO-estimated pHi by 0·15 units to 7·18. This effect was prevented by hexamethonium (2·5 mM) or by depolarizing the ganglion with K+ (124 mM). 2. 3H-Nicotine (30 μM) was concentrated within the ganglia to an intracellular/extracellular concentration ratio (Ci/Co) of 5·54 in normal Krebs solution and 4·61 in 2·5 mM hexamethonium. This would suggest an intracellular pH of 6·54 and 6·63 respectively. In ganglia previously depolarized by K+ the corresponding values for Ci/Co were 4·02 (minus hexamethonium, estimated pHi 6·95) and 4·17 (plus hexamethonium, estimated pHi 6·94). 3. A multicompartment cell interior comprising an acid cytoplasm (pH∼6·6) and more alkaline nucleus and mitochondria is proposed to explain the difference between the values of pHi estimated from the uptake of DMO and nicotine. It is suggested that the fall in pHi during nicotine-depolarization results from metabolic stimulation following Na+ entry. PMID:5048652

  16. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.

    PubMed

    Zebelo, Simon A; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E

    2012-11-01

    Tomato plants respond to herbivory by emitting volatile organic compounds (VOCs), which are released into the surrounding atmosphere. We analyzed the tomato herbivore-induced VOCs and tested the ability of tomato receiver plants to detect tomato donor volatiles by analyzing early responses, including plasma membrane potential (V(m)) variations and cytosolic calcium ([Ca²⁺](cyt)) fluxes. Receiver tomato plants responded within seconds to herbivore-induced VOCs with a strong V(m) depolarization, which was only partly recovered by fluxing receiver plants with clean air. Among emitted volatiles, we identified by GC-MS some green leaf volatiles (GLVs) such as (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, the monoterpene α-pinene, and the sesquiterpene β-caryophyllene. GLVs were found to exert the stronger V(m) depolarization, when compared to α-pinene and β-caryophyllene. Furthermore, V(m) depolarization was found to increase with increasing GLVs concentration. GLVs were also found to induce a strong [Ca²⁺](cyt) increase, particularly when (Z)-3-hexenyl acetate was tested both in solution and with a gas. On the other hand, α-pinene and β-caryophyllene, which also induced a significant V(m) depolarization with respect to controls, did not exert any significant effect on [Ca²⁺](cyt) homeostasis. Our results show for the first time that plant perception of volatile cues (especially GLVs) from the surrounding environment is mediated by early events, occurring within seconds and involving the alteration of the plasma membrane potential and the [Ca²⁺](cyt) flux. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Loss of local capture of the pulmonary vein myocardium after antral isolation: prevalence and clinical significance.

    PubMed

    Squara, Fabien; Liuba, Ioan; Chik, William; Santangeli, Pasquale; Zado, Erica S; Callans, David J; Marchlinski, Francis E

    2015-03-01

    Capture of the myocardial sleeves of the pulmonary veins (PV) during PV pacing is mandatory for assessing exit block after PV isolation (PVI). However, previous studies reported that a significant proportion of PVs failed to demonstrate local capture after PVI. We designed this study to evaluate the prevalence and the clinical significance of loss of PV capture after PVI. Thirty patients (14 redo) undergoing antral PVI were included. Before and after PVI, local PV capture was assessed during circumferential pacing (10 mA/2 milliseconds) with a circular multipolar catheter (CMC), using EGM analysis from each dipole of the CMC and from the ablation catheter placed in ipsilateral PV. Pacing output was varied to optimize identification of sleeve capture. All PVs demonstrated sleeve capture before PVI, but only 81% and 40% after first time and redo PVI, respectively (P < 0.001 vs. before PVI). In multivariate analysis, absence of spontaneous PV depolarizations after PVI and previous PVI procedures were associated with less PV sleeve capture after PVI (40% sleeve capture, P < 0.001 for both). Loss of PV local capture by design was coincident with the development of PV entrance block and importantly predicted absence of acute reconnection during adenosine challenge with 96% positive predictive value (23% negative predictive value). Loss of PV local capture is common after antral PVI resulting in entrance block, and may be used as a specific alternate endpoint for PV electrical isolation. Additionally, loss of PV local capture may identify PVs at very low risk of acute reconnection during adenosine challenge. © 2014 Wiley Periodicals, Inc.

  18. Analysis of beam loss induced abort kicker instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang W.; Sandberg, J.; Ahrens, L.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems andmore » improved stability of the RHIC operation.« less

  19. Special Effects: Antenna Wetting, Short Distance Diversity and Depolarization

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    2000-01-01

    The Advanced Communication Technology Satellite (ACTS) communications system operates in the Ka frequency band. ACTS uses multiple, hopping, narrow beams and very small aperture terminal (VSAT) technology to establish a system availability of 99.5% for bit-error-rates of 5 x 10(exp -7) Or better over the continental United States. In order maintain this minimum system availability in all US rain zones, ACTS uses an adaptive rain fade compensation protocol to reduce the impact of signal attenuation resulting from propagation effects. The purpose of this paper is to present the results of system and sub-system characterizations considering the statistical effects of system variances due to antenna wetting and depolarization effects. In addition the availability enhancements using short distance diversity in a sub-tropical rain zone are investigated.

  20. Thrombophilic disorders and fetal loss: a meta-analysis.

    PubMed

    Rey, Evelyne; Kahn, Susan R; David, Michèle; Shrier, Ian

    2003-03-15

    Our aim was to assess the strength of the controversial association between thrombophilia and fetal loss, and to examine whether it varies according to the timing or definition of fetal loss. We searched Medline and Current Contents for articles published between 1975 and 2002 and their references with terms denoting recurrent fetal and non-recurrent fetal loss combined with various thrombophilic disorders. We included in our meta-analysis case-control, cohort, and cross-sectional studies published in English, the methodological quality of which was rated as moderate or strong. Pooled odds ratios (OR) with 95% CI were generated by random effects models with Cochrane Review Manager software. We included 31 studies. Factor V Leiden was associated with early (OR 2.01, 95% CI 1.13-3.58) and late (7.83, 2.83-21.67) recurrent fetal loss, and late non-recurrent fetal loss (3.26, 1.82-5.83). Exclusion of women with other pathologies that could explain fetal loss strengthened the association between Factor V Leiden and recurrent fetal loss. Activated protein C resistance was associated with early recurrent fetal loss (3.48, 1.58-7.69), and prothrombin G20210A mutation with early recurrent (2.56, 1.04-.29) and late non-recurrent (2.30, 1.09-4.87) fetal loss. Protein S deficiency was associated with recurrent fetal loss (14.72, 0.99-218.01) and late non-recurrent fetal loss (7.39, 1.28-42.63). Methylenetetrahydrofolate mutation, protein C, and antithrombin deficiencies were not significantly associated with fetal loss. The magnitude of the association between thrombophilia and fetal loss varies, according to type of fetal loss and type of thrombophilia.

  1. Analysis of No-load Iron Losses of Turbine Generators by 3D Magnetic Field Analysis

    NASA Astrophysics Data System (ADS)

    Nakahara, Akihito; Mogi, Hisashi; Takahashi, Kazuhiko; Ide, Kazumasa; Kaneda, Junya; Hattori, Ken'Ichi; Watanabe, Takashi; Kaido, Chikara; Minematsu, Eisuke; Hanzawa, Kazufumi

    This paper focuses on no-load iron losses of turbine generators. To calculate iron losses of turbine generators a program was developed. In the program, core loss curves of materials used for stator core were reproduced precisely by using tables of loss coefficients. Accuracy of calculation by this method was confirmed by comparing calculated values with measured in a model stator core. The iron loss of a turbine generator estimated with considering three-dimensional distribution of magnetic fluxes. And additional losses included in measured iron loss was evaluated with three-dimensional magnetic field analysis.

  2. Greater weight loss among men participating in a commercial weight loss program: a pooled analysis of 2 randomized controlled trials.

    PubMed

    Barraj, Leila M; Murphy, Mary M; Heshka, Stanley; Katz, David L

    2014-02-01

    Being overweight and obese are significant health concerns for men and women, yet despite comparable needs for effective weight loss and maintenance strategies, little is known about the success of commercial weight loss programs in men. This study tests the hypothesis that men participating in a commercial weight loss program (Weight Watchers) had significantly greater weight loss than men receiving limited support from health professionals for weight loss (controls). A pooled analysis of weight loss and related physiologic parameter data from 2 randomized clinical trials was conducted. After 12 months, analysis of covariance tests showed that men in the commercial program group (n = 85) lost significantly more weight (P < .01) than men in the control group (n = 84); similar significant differences were observed for body mass index and waist circumference. These results suggest that participation in a commercial weight loss program may be a more effective means to lose weight and maintain weight loss. Published by Elsevier Inc.

  3. An experimental study of OH(A2Σ+) + H2: Electronic quenching, rotational energy transfer, and collisional depolarization

    NASA Astrophysics Data System (ADS)

    Brouard, M.; Lawlor, J.; McCrudden, G.; Perkins, T.; Seamons, S. A.; Stevenson, P.; Chadwick, H.; Aoiz, F. J.

    2017-06-01

    Zeeman quantum beat spectroscopy has been used to determine the thermal (300 K) rate constants for electronic quenching, rotational energy transfer, and collisional depolarization of OH(A2Σ+) by H2. Cross sections for both the collisional disorientation and collisional disalignment of the angular momentum in the OH(A2Σ+) radical are reported. The experimental results for OH(A2Σ+) + H2 are compared to previous work on the OH(A2Σ+) + He and Ar systems. Further comparisons are also made to the OH(A2Σ+) + Kr system, which has been shown to display significant non-adiabatic dynamics. The OH(A2Σ+) + H2 experimental data reveal that collisions that survive the electronic quenching process are highly depolarizing, reflecting the deep potential energy wells that exist on the excited electronic state surface.

  4. Reliability analysis based on the losses from failures.

    PubMed

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  5. Ellipsometric study of peptide layers - island-like character, depolarization and quasi-absorption

    NASA Astrophysics Data System (ADS)

    Pápa, Z.; Ramakrishnan, S.; Martin, M.; Cloitre, T.; Zimányi, L.; Tóth, Z.; Gergely, C.; Budai, J.

    2017-11-01

    In this work, the ellipsometric measurements of small molecular size polypeptides deposited onto silicon are analyzed. Results of ellipsometric evaluation procedures based on transparent layer, absorbing layer and discontinuous layer approaches are compared. Although these models result in similar fitting quality and can predict the amount of the deposited material, the gained optical properties can be rather different due to the different assumptions of the models. To choose the physically correct results, independent measurements as atomic force microscopy or transmission measurement of peptide solutions are necessary. It is shown that the measured ellipsometric depolarization can provide also useful information about the sample properties.

  6. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  7. A study of alternative designs for a system to concentrate carbon dioxide in a hydrogen-depolarized cell

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experimental results are presented on alternative designs for a hydrogen depolarized cell to concentrate CO2 in spacecraft atmospheric control systems. Data cover technical problems, methods for solving these problems, and the suitability of such a cell for CO2 removal and control of atmospheric humidity during the flight mode.

  8. Ineffectiveness of commercial weight-loss programs for achieving modest but meaningful weight loss: Systematic review and meta-analysis.

    PubMed

    McEvedy, Samantha M; Sullivan-Mort, Gillian; McLean, Siân A; Pascoe, Michaela C; Paxton, Susan J

    2017-10-01

    This study collates existing evidence regarding weight loss among overweight but otherwise healthy adults who use commercial weight-loss programs. Systematic search of 3 databases identified 11 randomized controlled trials and 14 observational studies of commercial meal-replacement, calorie-counting, or pre-packaged meal programs which met inclusion criteria. In meta-analysis using intention-to-treat data, 57 percent of individuals who commenced a commercial weight program lost less than 5 percent of their initial body weight. One in two (49%) studies reported attrition ≥30 percent. A second meta-analysis found that 37 percent of program completers lost less than 5 percent of initial body weight. We conclude that commercial weight-loss programs frequently fail to produce modest but clinically meaningful weight loss with high rates of attrition suggesting that many consumers find dietary changes required by these programs unsustainable.

  9. Field analysis & eddy current losses calculation in five-phase tubular actuator

    NASA Astrophysics Data System (ADS)

    Waindok, Andrzej; Tomczuk, Bronislaw

    2017-12-01

    Field analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally

  10. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S

    PubMed Central

    Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Rivera, Alicia; Heneghan, John F.; Li, Xiaojin; Hsu, Ann; Karpatkin, Margaret; O'Neill, Allison F.; Bauer, Daniel E.; Heeney, Matthew M.; John, Kathryn; Kuypers, Frans A.; Gallagher, Patrick G.; Lux, Samuel E.; Brugnara, Carlo; Westhoff, Connie M.

    2011-01-01

    Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+ and 86Rb+, with secondarily increased 86Rb+ influx sensitive to ouabain and to bumetanide. Increased RhAG-associated 14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li+, 86Rb+, and 14C-MA were pharmacologically distinct, and Li+ uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH4+ and Gd3+. RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH3/NH4+, but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA+). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH4Cl, but MA/MA+ elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li+ substitution or bath addition of 5 mM NH4Cl or MA/MA+. These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH3/NH4+ and MA/MA+; 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA+ transport, and decreased NH3/NH4+-associated depolarization; and 3) RhAG transports NH3/NH4+ and MA/MA+ by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms. PMID:21849667

  11. Analysis strategies for longitudinal attachment loss data.

    PubMed

    Beck, J D; Elter, J R

    2000-02-01

    The purpose of this invited review is to describe and discuss methods currently in use to quantify the progression of attachment loss in epidemiological studies of periodontal disease, and to make recommendations for specific analytic methods based upon the particular design of the study and structure of the data. The review concentrates on the definition of incident attachment loss (ALOSS) and its component parts; measurement issues including thresholds and regression to the mean; methods of accounting for longitudinal change, including changes in means, changes in proportions of affected sites, incidence density, the effect of tooth loss and reversals, and repeated events; statistical models of longitudinal change, including the incorporation of the time element, use of linear, logistic or Poisson regression or survival analysis, and statistical tests; site vs person level of analysis, including statistical adjustment for correlated data; the strengths and limitations of ALOSS data. Examples from the Piedmont 65+ Dental Study are used to illustrate specific concepts. We conclude that incidence density is the preferred methodology to use for periodontal studies with more than one period of follow-up and that the use of studies not employing methods for dealing with complex samples, correlated data, and repeated measures does not take advantage of our current understanding of the site- and person-level variables important in periodontal disease and may generate biased results.

  12. External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba

    PubMed Central

    1994-01-01

    Previous studies reveal that the pH of the apoplastic solution in the guard cell walls may vary between 7.2 and 5.1 in closed and open stomata, respectively. During these aperture and pH changes, massive K+ fluxes cross the cellular plasma membrane driving the osmotic turgor and volume changes of guard cells. Therefore, we examined the effect of extracellular pH on the depolarization-activated K channels (KD channels), which constitute the K+ efflux pathway, in the plasma membrane of Vicia faba guard cell protoplasts. We used patch clamp, both in whole cells as well as in excised outside-out membrane patches. Approximately 500 KD channels, at least, could be activated by depolarization in one protoplast (density: approximately 0.6 micron-2). Acidification from ph 8.1 to 4.4 decreased markedly the whole-cell conductance, GK, of the KD channels, shifted its voltage dependence, GK- EM, to the right on the voltage axis, slowed the rate of activation and increased the rate of deactivation, whereas the single channel conductance was not affected significantly. Based on the GK-EM shifts, the estimated average negative surface charge spacing near the KD channel is 39 A. To quantify the effects of protons on the rates of transitions between the hypothesized conformational states of the channels, we fitted the experimental macroscopic steady state conductance-voltage relationship and the voltage dependence of time constants of activation and deactivation, simultaneously, with a sequential three-state model CCO. In terms of this model, protonation affects the voltage-dependent properties via a decrease in localized, rather than homogeneous, surface charge sensed by the gating moieties. In terms of either the CO or CCO model, the protonation of a site with a pKa of 4.8 decreases the voltage-independent number of channels, N, that are available for activation by depolarization. PMID:8035163

  13. [The role of neuroglobin in oxygen-glucose deprivation and reoxygenation-induced mitochondrial depolarization and reactive oxygen species production in SH-SY5Y cells].

    PubMed

    Deng, S Y; Ai, Y H; Zhang, L N; Wu, L; Chen, C X; Wang, Y M; Liu, Z Y; Huang, L; Peng, Q Y

    2017-01-01

    Objective: To investigate the role of neuroglobin (NGB) in oxygen-glucose deprivation and reoxygenation (OGD/R) induced mitochondrial depolarization and reactive oxygen species (ROS)production in a human neuroblastoma cell line (SH-SY5Y). Methods: SH-SY5Y cells were transfected with lentivirus to establish a stable cell line of NGB knockdown (KD). After treated with OGD/R, cells were collected at different time points to analyze NGB mRNA and protein levels. Furthermore, cells were stained with JC-1 and DCFH-DA to evaluate mitochondrial depolarization and ROS production by inverted fluorescence microscope. Also, to determine the neurotoxicity, we measured the lactate dehydrogenase(LDH)level in the cell culture medium. Results: After the treatment of OGD/R, the NGB mRNA and protein started to elevate and peak at 4 h and 8 h (2.04±0.35 fold, 1.69±0.18 fold). Compared with the vector group, NGB KD group had much more mitochondrial depolarization [JC-1 red/green (1.10±0.10) vs (1.46±0.11), P <0.05] and ROS production [DCFH-DA fluorescence (36.30±5.32) vs (16.26±2.97), P <0.05]. Furthermore, NGB KD groups had a higher level of LDH release [(63.42±6.14)%vs (49.65±5.09)%, P <0.05]. Conclusions: NGB plays an important role in the homeostasis of mitochondria. Knockdown of NGB results in increased mitochondrial depolarization, ROS production and neurotoxicity under hypoxia circumstances.

  14. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenburg, Axel; Ashurova, Mohira B.; Jabbari, Sarah, E-mail: brandenb@nordita.org

    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that thismore » method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.« less

  15. FIBER OPTICS: Theoretical basis of the method for reducing drift of the zero level of the output signal of a fiber-optic gyroscope with the aid of a Lyot depolarizer

    NASA Astrophysics Data System (ADS)

    Alekseev, É. I.; Bazarov, E. N.

    1992-09-01

    A theoretical justification is given of the widely used method of stabilization of the output signal from a fiber-optic gyroscope with a broad-band radiation source by a Lyot depolarizer. Different variants of including a depolarizer in such a gyroscope are considered and the role of the dichroism and birefringence induced in the gyroscope system is discussed.

  16. Depolarization changes during acute myocardial ischemia by evaluation of QRS slopes: standard lead and vectorial approach.

    PubMed

    Romero, Daniel; Ringborn, Michael; Laguna, Pablo; Pahlm, Olle; Pueyo, Esther

    2011-01-01

    Diagnosis and risk stratification of patients with acute coronary syndromes can be improved by adding information from the depolarization phase (QRS complex) to the conventionally used ST-T segment changes. In this study, ischemia-induced changes in the main three slopes of the QRS complex, upward ( ℑ(US)) and downward ( ℑ(DS) ) slopes of the R wave as well as the upward ( ℑ(TS)) slope of the terminal S wave, were evaluated as to represent a robust measure of pathological changes within the depolarization phase. From ECG recordings both in a resting state (control recordings) and during percutaneous coronary intervention (PCI)-induced transmural ischemia, we developed a method for quantification of ℑ(US), ℑ(DS), and ℑ(TS) that incorporates dynamic ECG normalization so as to improve the sensitivity in the detection of ischemia-induced changes. The same method was also applied on leads obtained by projection of QRS loops onto their dominant directions. We show that ℑ(US), ℑ(DS), and ℑ(TS) present high stability in the resting state, thus providing a stable reference for ischemia characterization. Maximum relative factors of change ( ℜ(ℑ)) during PCI were found in leads derived from the QRS loop, reaching 10.5 and 13.7 times their normal variations in the control for ℑ(US) and ℑ(DS), respectively. For standard leads, the relative factors of change were 6.01 and 9.31. The ℑ(TS) index presented a similar behavior to that of ℑ(DS). The timing for the occurrence of significant changes in ℑ(US) and ℑ(DS) varied with lead, ranging from 30 s to 2 min after initiation of coronary occlusion. In the present ischemia model, relative ℑ(DS) changes were smaller than ST changes in most leads, however with only modest correlation between the two indices, suggesting they present different information about the ischemic process. We conclude that QRS slopes offer a robust tool for evaluating depolarization changes during myocardial ischemia.

  17. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.

    PubMed

    Cifelli, Carlo; Boudreault, Louise; Gong, Bing; Bercier, Jean-Philippe; Renaud, Jean-Marc

    2008-10-01

    Muscles deficient in ATP-dependent potassium (KATP) channels develop contractile dysfunctions during fatigue that may explain their apparently faster rate of fatigue compared with wild-type muscles. The objectives of this study were to determine: (1) whether the contractile dysfunctions, namely unstimulated force and depressed force recovery, result from excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) whether reducing the magnitude of these two contractile dysfunctions reduces the rate of fatigue in KATP channel-deficient muscles. To reduce Ca2+ influx, we lowered the extracellular Ca2+ concentration ([Ca2+]o) from 2.4 to 0.6 mM or added 1 microM verapamil, an L-type Ca2+ channel blocker. Flexor digitorum brevis (FDB) muscles deficient in KATP channels were obtained by exposing wild-type muscles to 10 microM glibenclamide or by using FDB from Kir6.2-/- mice. Fatigue was elicited with one contraction per second for 3 min at 37 degrees C. In wild-type FDB, lowered [Ca2+]o or verapamil did not affect the decrease in peak tetanic force and unstimulated force during fatigue and force recovery following fatigue. In KATP channel-deficient FDB, lowered [Ca2+]o or verapamil slowed down the decrease in peak tetanic force recovery, reduced unstimulated force and improved force recovery. In Kir6.2-/- FDB, the rate of fatigue became slower than in wild-type FDB in the presence of verapamil. The cell membrane depolarized from -83 to -57 mV in normal wild-type FDB. The depolarizations in some glibenclamide-exposed fibres were similar to those of normal FDB, while in other fibres the cell membrane depolarized to -31 mV in 80 s, which was also the time when these fibres supercontracted. It is concluded that: (1) KATP channels are crucial in preventing excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) they contribute to the decrease in force during fatigue.

  18. Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.; Strange, Wayne; Badoz, J.; Vitkin, I. A.

    1996-02-01

    Optical rotation and degree of polarization of linearly polarized light were observed by forward, lateral, and back scattering from solutions of D-glucose containing a dispersion of micron-size polystyrene spheres. Rotations increased linearly with glucose concentration at a rate determined by the microsphere concentration and were large even at optical thicknesses sufficiently great to extinguish transmission of the incident beam. Depolarization of light with increasing microsphere concentration occurred at a much slower rate in chiral glucose solution than in pure water. These experiments suggest new possibilities for studying turbid chiral media for which light transmission and specular reflection techniques are inappropriate.

  19. Selective inhibitory action of Biginelli-type dihydropyrimidines on depolarization-induced arterial smooth muscle contraction.

    PubMed

    Cernecka, Hana; Veizerova, Lucia; Mensikova, Lucia; Svetlik, Jan; Krenek, Peter

    2012-05-01

    Dihydropyridine calcium channel blockers have some disadvantages such as light sensitivity and relatively short plasma half-lives. Stability of dihydropyrimidines analogues could be of advantage, yet they remain less well characterized. We aimed to test four newly synthesized Biginelli-type dihydropyrimidines for their calcium channel blocking activity on rat isolated aorta. Dihydropyrimidines (compounds A-D) were prepared by the Biginelli-like three-component condensation of benzaldehydes with urea/thiourea and dimethyl or diethyl acetone-1,3-dicarboxylate, and their physicochemical properties and effects on depolarization-induced and noradrenaline-induced contractions of rat isolated aorta were evaluated. Dihydropyrimidines A and C blocked KCl-induced contraction only weakly (-log(IC50)=5.03 and 3.73, respectively), while dihydropyrimidine D (-log(IC50)=7.03) was almost as potent as nifedipine (-log(IC50)=8.14). Washout experiments revealed that dihydropyrimidine D may bind strongly to the L-type calcium channel or remains bound to membrane. All tested dihydropyrimidines only marginally inhibited noradrenaline-induced contractions of rat isolated aorta (20% reduction of noradrenaline E(max) ), indicating a more selective action on L-type calcium channel than nifedipine with 75% inhibition of noradrenaline E(max) at 10(-4) m nifedipine). Compounds A and, particularly, D are potent calcium channel blockers in vitro, with a better selectivity in inhibiting depolarization-induced arterial smooth muscle contraction than nifedipine. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  20. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    NASA Astrophysics Data System (ADS)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  1. Analysis of temperature profiles for investigating stream losses beneath ephemeral channels

    USGS Publications Warehouse

    Constantz, Jim; Stewart, Amy E.; Niswonger, Richard G.; Sarma, Lisa

    2002-01-01

    Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature‐based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature‐based streambed percolation rates with surface water‐based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment‐temperature profiles is their robust and continuous nature, leading to a long‐term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.

  2. Food loss rate in food supply chain using material flow analysis.

    PubMed

    Ju, Munsol; Osako, Masahiro; Harashina, Sachihiko

    2017-03-01

    The food loss rate is a factor that represents food consumption efficiency. To improve food consumption efficiency, we need to fundamentally quantify food loss at national and global levels. This study examines food and food waste flow and calculates the food loss rate in the food supply chain by targeting Japan. We analyzed inedible food waste and avoidable food losses in wholesale, manufacturing, retail, food services, and households and considered different supply chain pathways, different food categories representing whole Japanese meals, and weight changes after cooking. The results are as follows: (1) Japan has an overall rate of avoidable food losses of approximately 15% for meals (excluding agricultural losses), (2) the supply sector with the highest food loss rate is food services, and (3) the food category with the highest food loss rate is vegetables. Finally, we proposed a model for calculating food loss rates that could be used for future analysis in Japan or other countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Low temperature dielectric relaxation of poly (L-lactic acid) (PLLA) by Thermally Stimulated Depolarization Current

    NASA Astrophysics Data System (ADS)

    Mishra Patidar, Manju; Jain, Deepti; Nath, R.; Ganesan, V.

    2016-10-01

    Poly (L-lactic acid) (PLLA) is a biodegradable and biocompatible polyester that can be produced by renewable resources, like corn. Being non-toxic to human body, PLLA is used in biomedical applications, like surgical sutures, bone fixation devices, or controlled drug delivery. Besides its application studies, very few experiments have been done to study its dielectric relaxation in the low temperature region. Keeping this in mind we have performed a low temperature thermally stimulated depolarization current (TSDC) studies over the temperature range of 80K-400K to understand the relaxation phenomena of PLLA. We could observe a multi modal broad relaxation of small but significant intensity at low temperatures while a sharp and high intense peak around glass transition temperature, Tg∼ 333K, of PLLA has appeared. The fine structure of the low temperature TSDC peak may be attributed to the spherulites formation of crystallite regions inter twinned with the polymer as seen in AFM and appear to be produced due to an isothermal crystallization process. XRD analysis also confirms the semicrystalline nature of the PLLA film.

  4. TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Fen; Sun Wenwu; Zhao Xiao Ting

    Synoviocyte hyperplasia is critical for rheumatoid arthritis, therefore, potentially an important target for therapeutics. It was found in this work that a TRPV1 agonist capsaicin, and acidic solution (pH 5.5) induced increases in cytosolic calcium concentration ([Ca{sup 2+}]{sub c}) and reactive oxygen species (ROS) production in synoviocytes isolated from a rat model of collagen-induced arthritis. The increases in both [Ca{sup 2+}]{sub c} and ROS production were completely abolished in calcium-free buffer or by a TRPV1 antagonist capsazepine. Further experiments revealed that capsaicin and pH 5.5 solution caused mitochondrial membrane depolarization and reduction in cell viability; such effects were inhibited bymore » capsazepine, or the NAD(P)H oxidase inhibitor diphenylene iodonium. Both capsaicin and pH 5.5 buffer induced apoptosis as shown by nuclear condensation and fragmentation. Furthermore, RT-PCR readily detected TRPV1 mRNA expression in the isolated synoviocytes. Taken together, these data indicated that TRPV1 activation triggered synoviocyte death by [Ca{sup 2+}]{sub c} elevation, ROS production, and mitochondrial membrane depolarization.« less

  5. Differential blockade of agonist- and depolarization-induced sup 45 Ca2+ influx in smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallnoefer, A.C.; Cauvin, C.; Lategan, T.W.

    1989-10-01

    ATP stimulated {sup 45}Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating {sup 45}Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce {sup 45}Ca2+ influx. Stimulation of {sup 45}Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced {sup 45}Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, andmore » Mg2+) were able to inhibit both agonist- and depolarization-induced {sup 45}Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated {sup 45}Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.« less

  6. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  7. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation.

    PubMed

    Peters, Colin H; Yu, Alec; Zhu, Wandi; Silva, Jonathan R; Ruben, Peter C

    2017-01-01

    E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.

  8. Analysis of hydrodynamic losses for various types of aortic valves

    NASA Astrophysics Data System (ADS)

    Starobin, I. M.; Lupachev, S. P.; Dolgopolov, R. V.; Zaiko, V. M.; Kas'yanov, V. A.; Mungalov, D. D.; Morov, G. V.

    1985-05-01

    The creation of an automated computer-controlled hydraulic stand made it possible to measure the main hydrodynamic parameters of the flow through the investigated HVP and to determine the coefficients of Eq. (2) of fluid flow in the test chamber of the stand. The coefficients found can serve as a criterion of a comparative assessment of the hydrodynamics of HVPs. An analysis of the coefficients showed that the main contribution to pressure losses across ball and disc valves is made by viscous and convective effects. An analysis of inertial losses confirmed the presence of oscillations of the ball closing elements of the AKCh-3-06 valve around the props of the stroke limiters and made it possible to assess them quantitatively. For leaflet valves the contribution of inertial losses to the total pressure losses is more considerable than in the case of disc and ball valves both in the regime of an increase of power of the output and in the regime of a constant power. The mechanical properties of the material of leaflet valves have an effect on the hydrodynamic characteristics. The advantage of the investigated leaflet valves consists not only in that they have smaller total hydraulic losses compared with the other valves, but also in that they provide a high amplitude of pulsations of the blood stream in the case of insufficient contractility of the heart.

  9. Effects of melting layer on Ku-band signal depolarization

    NASA Astrophysics Data System (ADS)

    Sarkar, Thumree; Das, Saurabh; Maitra, Animesh

    2014-09-01

    Propagation effects on Ku-band over an earth-space path is carried out at Kolkata, India, a tropical location, by receiving a Ku-band signal with horizontal plane polarization transmitted from the geostationary satellite NSS-6 (at 95°E). The amplitude of co-polar attenuation has been monitored along with the measurements of rain rate, rain drop size distribution and height profile of rain rate. The cross-polar enhancement of the signal is also monitored by receiving the same signal in orthogonal direction with another identical receiver. The experimental observations are used to study the effect of melting layer on both co-polar attenuation and cross-polar enhancement for the rain events observed during 2012-2013. Melting layer is indicated by the bright band signature in vertical profile of rain rate. The ground based drop size measurements indicate that the stratiform rain has more number of small drops whereas convective rain composed of large rain drops. The results indicate that the depolarization due to melting layer is more dominant compared to that due to the drop deformation mechanism at low rain rates.

  10. Dynamic Blowout Risk Analysis Using Loss Functions.

    PubMed

    Abimbola, Majeed; Khan, Faisal

    2018-02-01

    Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real-time risk analysis. The real-time evolving situation is considered dependent on the changing bottom-hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout. © 2017 Society for Risk Analysis.

  11. [Cortical spreading depolarization phenomena in patients with traumatic and ischemic brain injuries. Results of a pilot study].

    PubMed

    Sueiras, M; Sahuquillo, J; García-López, B; Sánchez-Guerrero, Á; Poca, M A; Santamarina, E; Riveiro, M; Fabricius, M; Strong, A J

    2014-10-01

    To determine the frequency and duration of cortical spreading depolarization (CSD) and CSD-like episodes in patients with traumatic brain injury (TBI) and malignant middle cerebral artery infarction (MMCAI) requiring craniotomy. A descriptive observational study was carried out during 19 months. Neurocritical patients. Sixteen patients were included: 9 with MMCAI and 7 with moderate or severe TBI, requiring surgical treatment. A 6-electrode subdural electrocorticographic (ECoG) strip was placed onto the perilesional cortex. An analysis was made of the time profile and the number and duration of CSD and CSD-like episodes recorded from the ECoGs. Of the 16 patients enrolled, 9 presented episodes of CSD or CSD-like phenomena, of highly variable frequency and duration. Episodes of CSD and CSD-like phenomena are frequently detected in the ischemic penumbra and/or traumatic cortical regions of patients with MMCAI who require decompressive craniectomy or of patients with contusional TBI. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  12. RGK protein-mediated impairment of slow depolarization- dependent Ca2+ entry into developing myotubes

    PubMed Central

    Romberg, Christin F; Beqollari, Donald; Meza, Ulises; Bannister, Roger A

    2014-01-01

    Three physiological functions have been described for the skeletal muscle 1,4-dihydropyridine receptor (CaV1.1): (1) voltage-sensor for excitation-contraction (EC) coupling, (2) L-type Ca2+ channel, and (3) voltage-sensor for slow depolarization-dependent Ca2+ entry. Members of the RGK (Rad, Rem, Rem2, Gem/Kir) family of monomeric GTP-binding proteins are potent inhibitors of the former two functions of CaV1.1. However, it is not known whether the latter function that has been attributed to CaV1.1 is subject to modulation by RGK proteins. Thus, the purpose of this study was to determine whether Rad, Gem and/or Rem inhibit the slowly developing, persistent Ca2+ entry that is dependent on the voltage-sensing capability of CaV1.1. As a means to investigate this question, Venus fluorescent protein-fused RGK proteins (V-Rad, V-Rem and V-Gem) were overexpressed in “normal” mouse myotubes. We observed that such overexpression of V-Rad, V-Rem or V-Gem in myotubes caused marked changes in morphology of the cells. As shown previously for YFP-Rem, both L-type current and EC coupling were also impaired greatly in myotubes expressing either V-Rad or V-Gem. The reductions in L-type current and EC coupling were paralleled by reductions in depolarization-induced Ca2+ entry. Our observations provide the first evidence of modulation of this enigmatic Ca2+ entry pathway peculiar to skeletal muscle. PMID:24476902

  13. Rain depolarization and attenuation measurements at 11.7, 19.04, and 28.56 GHz - A description of the experiment and some preliminary results

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Holt, S. B., Jr.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Stuzman, W. L.; Wiley, P. H.

    1977-01-01

    The considered investigation made use of the Communications Technology Satellite (CTS) downlink and the beacons carried by the Comstar satellites. The general behavior of rain attenuation and depolarization is illustrated with the aid of data from a storm which took place on July 15, 1976. The effect of the rain on the copolarized signal is indicated in a graph. Another graph shows the behavior of the cross-polarized signal component. Phase effects are also considered together with statistical curves for attenuation. The considered data from CTS indicate that, at least during summer convective storms, attenuation at 11.7 GHz is much more severe than anticipated. Attenuation may be a more serious impediment to dual polarized satellite links at this frequency than is depolarization.

  14. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    PubMed

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P < 0.01) and fast twitch fibres (P < 0.05) compared to control. Under conditions when all Ca(2+) uptake was prevented, 1 mM H(2)O(2) increased SR Ca(2+) "leak" in fast twitch fibres by 24 +/- 5 % (P < 0.05), but leak was not altered in slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P < 0.01), which could be partly reversed following treatment with 10 mM dithiothreitol (DTT). The changes in SR function caused by 1 mM H(2)O(2) were associated with an approximately 65% increase in the peak height of depolarization-induced contractile response (DICR) in slow twitch fibres, compared to control (no H(2)O(2); P < 0.05). In contrast, peak contractile force of fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P < 0.05). Our results indicate that exogenous H(2)O(2) increases depolarization-induced contraction of mechanically skinned slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  15. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles

    PubMed Central

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-01-01

    The effect of exogenous hydrogen peroxide (H2O2) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mm H2O2 diminished the ability of the Ca2+-depleted SR to reload Ca2+ in both slow (P < 0.01) and fast twitch fibres (P < 0.05) compared to control. Under conditions when all Ca2+ uptake was prevented, 1 mm H2O2 increased SR Ca2+ ‘leak’ in fast twitch fibres by 24 ± 5 % (P < 0.05), but leak was not altered in slow twitch fibres. Treatment with 1 mm H2O2 also increased the peak force of low [caffeine] contracture by ∼45 % in both fibre types compared to control (P < 0.01), which could be partly reversed following treatment with 10 mm dithiothreitol (DTT). The changes in SR function caused by 1 mm H2O2 were associated with an ∼65 % increase in the peak height of depolarization-induced contractile response (DICR) in slow twitch fibres, compared to control (no H2O2; P < 0.05). In contrast, peak contractile force of fast twitch fibres was not altered by 1 mm H2O2 treatment. Equilibration with 5 mm H2O2 induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mm DTT. Peak DICR was also increased ∼40 % by 5 mm H2O2 in slow twitch fibres compared to control (no H2O2; P < 0.05). Our results indicate that exogenous H2O2 increases depolarization-induced contraction of mechanically skinned slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca2+ release during contraction and/or an increase in Ca2+ sensitivity. PMID:11897857

  16. Analysis of loss of time value during road maintenance project

    NASA Astrophysics Data System (ADS)

    Sudarsana, Dewa Ketut; Sanjaya, Putu Ari

    2017-06-01

    Lane closure is frequently performed in the execution of the road maintenance project. It has a negative impact on road users such as the loss of vehicle operating costs and the loss of time value. Nevertheless, analysis on loss of time value in Indonesia has not been carried out. The parameter of time value for the road users was the minimum wage city/region approach. Vehicle speed of pre-construction was obtained by observation, while the speed during the road maintenance project was predicted by the speed of the pre-construction by multiplying it with the speed adjustment factor. In the case of execution of the National road maintenance project in the two-lane two-way urban and interurban road types in the fiscal year of 2015 in Bali province, the loss of time value was at the average of IDR 12,789,000/day/link road. The relationship of traffic volume and loss of time value of the road users was obtained by a logarithm model.

  17. Comparative effectiveness of Calabadion and sugammadex to reverse non-depolarizing neuromuscular blocking agents

    PubMed Central

    Haerter, Friederike; Simons, Jeroen Cedric Peter; Foerster, Urs; Duarte, Ingrid Moreno; Diaz-Gil, Daniel; Ganapati, Shweta; Eikermann-Haerter, Katharina; Ayata, Cenk; Zhang, Ben; Blobner, Manfred; Isaacs, Lyle; Eikermann, Matthias

    2015-01-01

    Background We evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular blocking agents (NMBAs) by binding and inactivation. Methods The dose-response relationship of drugs to reverse vecuronium, rocuronium, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n=34; phrenic nerve hemidiaphragm preparation) and in vivo (n=108; quadriceps femoris muscle of the rat). Cumulative dose-response curves of calabadions, neostigmine, or sugammadex were created ex vivo at steady-state deep NMB. In living rats, we studied the dose-response relationship of the test drugs to reverse deep block under physiological conditions and we measured the amount of calabadion 2 excreted in the urine. Results In vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 109 M−1 and Ka = 3.8 × 107 M−1). Urine analysis (proton nuclear magnetic resonance), competition binding assays and ex vivo study results obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared to sugammadex. Calabadion 2 was eliminated renally, and did not affect blood pressure or heart rate. Conclusion Calabadion 2 reverses NMB-induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e. faster, than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats. PMID:26418697

  18. Analysis of slow depolarizing potential in frog taste cell induced by parasympathetic efferent stimulation under hypoxia.

    PubMed

    Sato, Toshihide; Nishishita, Kazushisa; Okada, Yukio; Toda, Kazuo

    2007-05-01

    Strong electrical stimulation (ES) of the frog glossopharyngeal (GP) efferent nerve induced slow depolarizing potentials (DPs) in taste cells under hypoxia. This study aimed to elucidate whether the slow DPs were postsynaptically induced in taste cells. After a block of parasympathetic nerve (PSN) ganglia by tubocurarine, ES of GP nerve never induced slow DPs in the taste cells, so slow DPs were induced by PSN. When Ca(2+) in the blood plasma under hypoxia was decreased to approximately 0.5 mM, the slow DPs reduced in amplitude and lengthened in latency. Increasing the normal Ca(2+) to approximately 20 mM increased the amplitude of slow DPs and shortened the latency. Addition of Cd(2+) to the plasma greatly reduced the amplitude of slow DPs and lengthened the latency. These data suggest that the slow DPs depend on Ca(2+) and Cd(2+) concentration at the presynaptic PSN terminals of taste disk. Antagonists, [D-Arg(1), D-Trp(7,9), Leu(11)]-substance P and L-703 606, of neurotransmitter substance P neurokinin(1) receptor completely blocked the slow DPs. Intravenous application of substance P induced a DP of approximately 7 mV and a reduction of membrane resistance of approximately 48% in taste cells. A nonselective cation channel antagonist, flufenamic acid, completely blocked the slow DPs. These findings suggest that the slow DPs are postsynaptically initiated in frog taste cells under hypoxia by opening nonselective cation channels on the postsynaptic membrane after substance P is probably released from the presynaptic PSN axon terminals.

  19. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation

    PubMed Central

    Yu, Alec; Zhu, Wandi; Silva, Jonathan R.; Ruben, Peter C.

    2017-01-01

    E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation. PMID:28898267

  20. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex.

    PubMed

    Sánchez-Porras, Renán; Santos, Edgar; Schöll, Michael; Stock, Christian; Zheng, Zelong; Schiebel, Patrick; Orakcioglu, Berk; Unterberg, Andreas W; Sakowitz, Oliver W

    2014-09-01

    Spreading depolarization (SD) is a wave of mass neuronal and glial depolarization that propagates across the cerebral cortex and has been implicated in the pathophysiology of brain injury states and migraine with aura. Analgesics and sedatives seem to have a significant effect on SD modulation. Studies have shown that ketamine, an NMDA receptor blocker, has the capacity to influence SD occurrence. The aim of this study was to analyze the dose-dependent effect of ketamine on SD susceptibility through electrocorticography (ECoG) and intrinsic optical signal (IOS) imaging in a gyrencephalic brain. Ketamine in a low-dose infusion (2 mg/kg/h) decreases SD spread and had an effect on the amplitude of SD deflections, as well as on duration, and speed. Moreover, during ketamine infusion at this dose, there was a sustained decrease in the hyperemic response following SD. However, a high-dose infusion (4 mg/kg/h) of ketamine inhibited SD induction and expansion. Furthermore, a high-dose bolus (4 mg/kg), 1 min after stimulation, blocked SD propagation abruptly within 1-2 min, and hindered SD induction and expansion for the following 15-30 min. The results suggest that ketamine may be therapeutically beneficial in preventing SDs. Nonetheless, an adequate dosage and way of administration should be considered and established for human use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity.

    PubMed

    Gilmore, Marcella A; Williams, Dudley; Okawa, Yumiko; Holguin, Bret; James, Nicholas G; Ross, Justin A; Roger Aoki, K; Jameson, David M; Steward, Lance E

    2011-06-01

    The DARET (depolarization after resonance energy transfer) assay is a coupled Förster resonance energy transfer (FRET)-fluorescence polarization assay for botulinum neurotoxin type A or E (BoNT/A or BoNT/E) proteolytic activity that relies on a fully recombinant substrate. The substrate consists of blue fluorescent protein (BFP) and green fluorescent protein (GFP) flanking SNAP-25 (synaptosome-associated protein of 25 kDa) residues 134-206. In this assay, the substrate is excited with polarized light at 387 nm, which primarily excites the BFP, whereas emission from the GFP is monitored at 509 nm. Energy transfer from the BFP to the GFP in the intact substrate results in a substantial depolarization of the GFP emission. The energy transfer is eliminated when the fluorescent domains separate on cleavage by the endopeptidase, and emission from the directly excited GFP product fragment is then highly polarized, resulting in an overall increase in polarization. This increase in polarization can be monitored to assay the proteolytic activity of BoNT/A and BoNT/E in real time. It allows determination of the turnover rate of the substrate and the kinetic constants (V(max) and k(cat)) based on the concentration of cleaved substrate determined directly from the measurements using the additivity properties of polarization. The assay is amenable to high-throughput applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. β-Hydroxybutyrate is the preferred substrate for GABA and glutamate synthesis while glucose is indispensable during depolarization in cultured GABAergic neurons.

    PubMed

    Lund, Trine M; Obel, Linea F; Risa, Øystein; Sonnewald, Ursula

    2011-08-01

    The ketogenic diet has multiple beneficial effects not only in treatment of epilepsy, but also in that of glucose transporter 1 deficiency, cancer, Parkinson's disease, obesity and pain. Thus, there is an increasing interest in understanding the mechanism behind this metabolic therapy. Patients on a ketogenic diet reach high plasma levels of ketone bodies, which are used by the brain as energy substrates. The interaction between glucose and ketone bodies is complex and there is still controversy as to what extent it affects the homeostasis of the neurotransmitters glutamate, aspartate and GABA. The present study was conducted to study this metabolic interaction in cultured GABAergic neurons exposed to different combinations of (13)C-labeled and unlabeled glucose and β-hydroxybutyrate. Depolarization was induced and the incorporation of (13)C into glutamate, GABA and aspartate was analyzed. The presence of β-hydroxybutyrate together with glucose did not affect the total GABA content but did, however, decrease the aspartate content to a lower value than when either glucose or β-hydroxybutyrate was employed alone. When combinations of the two substrates were used (13)C-atoms from β-hydroxybutyrate were found in all three amino acids to a greater extent than (13)C-atoms from glucose, but only the (13)C contribution from [1,6-(13)C]glucose increased upon depolarization. In conclusion, β-hydroxybutyrate was preferred over glucose as substrate for amino acid synthesis but the total content of aspartate decreased when both substrates were present. Furthermore only the use of glucose increased upon depolarization. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    PubMed

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  4. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    PubMed

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  5. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    PubMed Central

    Slepchenko, Kira G.; Li, Yang V.

    2012-01-01

    Zinc (Zn2+) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells. PMID:22536213

  6. Intracellular ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana

    PubMed Central

    Meimoun, Patrice; Vidal, Guillaume; Bohrer, Anne-Sophie; Lehner, Arnaud; Tran, Daniel; Briand, Joël; Bouteau, François

    2009-01-01

    In Arabidopsis thaliana cell suspension,abscisic acid (aBa) induces changes in cytosolic calcium concentration ([Ca2+]cyt) which are the trigger for aBa-induced plasma membrane anion current activation, H+-aTPase inhibition, and subsequent plasma membrane depolarization. In the present study, we took advantage of this model to analyze the implication of intracellular Ca2+ stores in aBa signal transduction through electrophysiological current measurements, cytosolic Ca2+ activity measurements with the apoaequorin Ca2+ reporter protein and external pH measurement. Intracellular Ca2+ stores involvement was determined by using specific inhibitors of CICR channels: the cADP-ribose/ryanodine receptor (Br-cADPR and dantrolene) and of the inositol trisphosphate receptor (U73122). In addition experiments were performed on epidermal strips of A. thaliana leaves to monitor stomatal closure in response to ABA in presence of the same pharmacology. Our data provide evidence that ryanodine receptor and inositol trisphosphate receptor could be involved in ABA-induced (1) Ca2+ release in the cytosol, (2) anion channel activation and H+-ATPase inhibition leading to plasma membrane depolarization and (3) stomatal closure. Intracellular Ca2+ release could thus contribute to the control of early events in the ABA signal transduction pathway in A. thaliana. PMID:19847112

  7. 3D analysis of eddy current loss in the permanent magnet coupling.

    PubMed

    Zhu, Zina; Meng, Zhuo

    2016-07-01

    This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.

  8. Effect of extreme data loss on heart rate signals quantified by entropy analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wang, Jun; Li, Jin; Liu, Dazhao

    2015-02-01

    The phenomenon of data loss always occurs in the analysis of large databases. Maintaining the stability of analysis results in the event of data loss is very important. In this paper, we used a segmentation approach to generate a synthetic signal that is randomly wiped from data according to the Gaussian distribution and the exponential distribution of the original signal. Then, the logistic map is used as verification. Finally, two methods of measuring entropy-base-scale entropy and approximate entropy-are comparatively analyzed. Our results show the following: (1) Two key parameters-the percentage and the average length of removed data segments-can change the sequence complexity according to logistic map testing. (2) The calculation results have preferable stability for base-scale entropy analysis, which is not sensitive to data loss. (3) The loss percentage of HRV signals should be controlled below the range (p = 30 %), which can provide useful information in clinical applications.

  9. Optical Measurement of Asian Dust over Daejeon City in 2016 by Depolarization Lidar in AD-Network

    NASA Astrophysics Data System (ADS)

    Bong, Park Chan; Shimizu, Atsushi; Sugimoto, Nobuo

    2018-04-01

    Long-term sustained heavy Asian Dust below 3 km was measured in the period of April 22-26 by 2-wavelengths depolarization lidar system. As the comparison results of Daejeon station with other stations in the AD-Net, similarly formed Asian dust had been measured at Nigata, Toyama, Matsue, and Sendai. The route of the dust was examined by HYSPLIT. More than 80 μg / m3 mass concentrations derived from the lidar measurements were compared with Air-Korea PM10 data.

  10. Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body

    PubMed Central

    Kang, Dawon; Wang, Jiaju; Hogan, James O; Vennekens, Rudi; Freichel, Marc; White, Carl; Kim, Donghee

    2014-01-01

    The current model of O2 sensing by carotid body chemoreceptor (glomus) cells is that hypoxia inhibits the outward K+ current and causes cell depolarization, Ca2+ influx via voltage-dependent Ca2+ channels and a rise in intracellular [Ca2+] ([Ca2+]i). Here we show that hypoxia (<5% O2), in addition to inhibiting the two-pore domain K+ channels TASK-1/3 (TASK), indirectly activates an ∼20 pS channel in isolated glomus cells. The 20 pS channel was permeable to K+, Na+ and Cs+ but not to Cl− or Ca2+. The 20 pS channel was not sensitive to voltage. Inhibition of TASK by external acid, depolarization of glomus cells with high external KCl (20 mm) or opening of the Ca2+ channel with FPL64176 activated the 20 pS channel when 1 mm Ca2+ was present in the external solution. Ca2+ (10 μm) applied to the cytosolic side of inside-out patches activated the 20 pS channel. The threshold [Ca2+]i for activation of the 20 pS channel in cell-attached patches was ∼200 nm. The reversal potential of the 20 pS channel was estimated to be −28 mV. Our results reveal a sequential mechanism in which hypoxia (<5% O2) first inhibits the K+ conductance and then activates a Na+-permeable, non-selective cation channel via depolarization-induced rise in [Ca2+]i. Our results suggest that inhibition of K+ efflux and stimulation of Na+ influx both contribute to the depolarization of glomus cells during moderate to severe hypoxia. PMID:24591572

  11. Unemployment and Underemployment: A Narrative Analysis about Loss

    ERIC Educational Resources Information Center

    Blustein, David L.; Kozan, Saliha; Connors-Kellgren, Alice

    2013-01-01

    In this study, we conducted a narrative analysis of interviews with unemployed and underemployed adults to better understand their experiences and to learn how they are coping with job loss. Seven men and six women from diverse backgrounds who were receiving career exploration and job search services were interviewed at a one-stop career center in…

  12. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M.-C.; Chan, C.-P.; Wang, Y.-J.

    2007-01-15

    Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 {mu}M) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (> 52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 {mu}M. Short-term exposure to sanguinarine (> 0.5 {mu}M) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 {mu}M) induced evident apoptosis as indicated by an increase in sub-G0/G1more » populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 {mu}M) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death.« less

  13. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  14. A systematic review and meta-analysis of mobile devices and weight loss with an intervention content analysis.

    PubMed

    Lyzwinski, Lynnette Nathalie

    2014-06-30

    Overweight and obesity constitute leading global public health challenges. Tackling overweight and obesity by influencing human behaviour is a complex task, requiring novel emerging health psychology interventions. The aims of this review will be to determine whether mobile devices induce weight loss and improvements in diet and physical activity levels when compared with standard controls without a weight loss intervention or controls allocated to non-mobile device weight loss interventions. A systematic review on mobile devices and weight loss was conducted. The inclusion criteria were all randomized controlled trials with baseline and post-intervention weight measures in adult subjects >18 years of age without pre-specified co-morbidities. Mobile device specifications included modern, portable devices in the form of smartphones, PDAs, iPods, and Mp3 players. Cohen's d for standardized differences in mean weight loss was calculated. A random effects meta-analysis was generated using Comprehensive meta-analysis software. Theories and intervention content were coded and analysed. A total of 17 studies were identified, of which 12 were primary trials and 5 were secondary analyses. The meta-analysis generated a medium significant effect size of 0.430 (95% CI 0.252-0.609) (p-value ≤ 0.01), favouring mobile interventions. Throughout the systematic review, mobile devices were found to induce weight loss relative to baseline weight. When comparing them with standard no intervention controls as well as controls receiving non-mobile weight loss interventions, results favoured mobile devices for weight loss. Reductions in Body mass index, waist circumference, and percentage body fat were also found in the review. Improvements in the determinants of weight loss in the form of improved dietary intake and physical activity levels were also found. Theory appears to largely inform intervention design, with the most common theories being Social Cognitive Theory, Elaboration

  15. Mitochondrial activity and brain functions during cortical depolarization

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Sonn, Judith

    2008-12-01

    Cortical depolarization (CD) of the cerebral cortex could be developed under various pathophysiological conditions. In animal models, CD was recorded under partial or complete ischemia as well as when cortical spreading depression (SD) was induced externally or by internal stimulus. The development of CD in patients and the changes in various metabolic parameters, during CD, was rarely reported. Brain metabolic, hemodynamic, ionic and electrical responses to the CD event are dependent upon the O2 balance in the tissue. When the O2 balance is negative (i.e. ischemia), the CD process will be developed due to mitochondrial dysfunction, lack of energy and the inhibition of Na+-K+-ATPase. In contradiction, when oxygen is available (i.e. normoxia) the development of CD after induction of SD will accelerate mitochondrial respiration for retaining ionic homeostasis and normal brain functions. We used the multiparametric monitoring approach that enable real time monitoring of mitochondrial NADH redox state, microcirculatory blood flow and oxygenation, extracellular K+, Ca2+, H+ levels, DC steady potential and electrocorticogram (ECoG). This monitoring approach, provide a unique tool that has a significant value in analyzing the pathophysiology of the brain when SD developed under normoxia, ischemia, or hypoxia. We applied the same monitoring approach to patients suffered from severe head injury or exposed to neurosurgical procedures.

  16. Rate-loss analysis of an efficient quantum repeater architecture

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Krovi, Hari; Fuchs, Christopher A.; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2015-08-01

    We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements, multimode quantum memories, and classical-only error correction. Assuming perfect sources, we find an exact expression for the secret-key rate, and an analytical description of how errors propagate through the repeater chain, as a function of various loss-and-noise parameters of the devices. We show via an explicit analytical calculation, which separately addresses the effects of the principle nonidealities, that this scheme achieves a secret-key rate that surpasses the Takeoka-Guha-Wilde bound—a recently found fundamental limit to the rate-vs-loss scaling achievable by any QKD protocol over a direct optical link—thereby providing one of the first rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD quantum protocols that require establishing long-distance entanglement. We evaluate that shared state's fidelity and the achievable entanglement-distillation rate, as a function of the number of repeater nodes, total range, and various loss-and-noise parameters of the system. We extend our theoretical analysis to encompass sources with nonzero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.

  17. Pinostrobin from Cajanus cajan (L.) Millsp. inhibits sodium channel-activated depolarization of mouse brain synaptoneurosomes.

    PubMed

    Nicholson, Russell A; David, Laurence S; Pan, Rui Le; Liu, Xin Min

    2010-10-01

    This investigation focuses on the in vitro neuroactive properties of pinostrobin, a substituted flavanone from Cajanus cajan (L.) Millsp. of the Fabaceae family. We demonstrate that pinostrobin inhibits voltage-gated sodium channels of mammalian brain (IC(50)=23 µM) based on the ability of this substance to suppress the depolarizing effects of the sodium channel-selective activator veratridine in a synaptoneurosomal preparation from mouse brain. The resting membrane potential of synaptoneurosomes was unaffected by pinostrobin. The pharmacological profile of pinostrobin resembles that of depressant drugs that block sodium channels. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Spontaneous and noradrenaline-induced transient depolarizations in the smooth muscle of guinea-pig mesenteric vein.

    PubMed

    Van Helden, D F

    1991-06-01

    1. Recordings of membrane current were made in the smooth muscle of short segments of mesenteric vein before or during stimulation with noradrenaline (NA). 2. Small veins (diameter less than 150 microns) when cut into short segments (of length less than 250 microns) had the passive electrical characteristics of short cables both before and during activation with NA. 3. Spontaneous transient depolarizations (STDs) or the underlying inward currents (STICs) were recorded in these preparations. STDs were of myogenic origin as they were not blocked by tetrodotoxin or antagonists to the alpha-adrenoreceptor and persisted after either denervation or disruption of the endothelium. 4. STDs had time courses similar to the underlying currents and were generally slow compared to the membrane time constant of the short segments. 5. STDs and the underlying currents showed large variability in frequency and amplitude both within and between short segments. Currents were typically less than 0.3 nA, were characteristic in shape, had half-durations normally in the range 0.1-0.7 s and reversed at about -25 mV. 6. STDs persisted, but at markedly reduced frequencies, after exposure (3-10 min) to a solution in which cobalt ions had been used to substitute for Ca2+. STDs were also substantially suppressed by exposure to low-chloride solution. 7. Caffeine induced excitatory and inhibitory conductances. An initial component of the caffeine-induced responses showed similar voltage dependence to STDs and was also suppressed by exposure to low-chloride solution. 8. NA, through activation of alpha-adrenoreceptors, caused a sustained depolarization or inward current (under voltage clamp) with considerable membrane potential or current noise often in the form of agonist-induced spontaneous transient depolarizations (ASTDs) or currents (ASTICs). There were marked increases in amplitude and frequency of ASTDs with increase in NA concentrations. 9. ASTDs appeared to be generated within the smooth

  19. Entropy Generation/Availability Energy Loss Analysis Inside MIT Gas Spring and "Two Space" Test Rigs

    NASA Technical Reports Server (NTRS)

    Ebiana, Asuquo B.; Savadekar, Rupesh T.; Patel, Kaushal V.

    2006-01-01

    The results of the entropy generation and availability energy loss analysis under conditions of oscillating pressure and oscillating helium gas flow in two Massachusetts Institute of Technology (MIT) test rigs piston-cylinder and piston-cylinder-heat exchanger are presented. Two solution domains, the gas spring (single-space) in the piston-cylinder test rig and the gas spring + heat exchanger (two-space) in the piston-cylinder-heat exchanger test rig are of interest. Sage and CFD-ACE+ commercial numerical codes are used to obtain 1-D and 2-D computer models, respectively, of each of the two solution domains and to simulate the oscillating gas flow and heat transfer effects in these domains. Second law analysis is used to characterize the entropy generation and availability energy losses inside the two solution domains. Internal and external entropy generation and availability energy loss results predicted by Sage and CFD-ACE+ are compared. Thermodynamic loss analysis of simple systems such as the MIT test rigs are often useful to understand some important features of complex pattern forming processes in more complex systems like the Stirling engine. This study is aimed at improving numerical codes for the prediction of thermodynamic losses via the development of a loss post-processor. The incorporation of loss post-processors in Stirling engine numerical codes will facilitate Stirling engine performance optimization. Loss analysis using entropy-generation rates due to heat and fluid flow is a relatively new technique for assessing component performance. It offers a deep insight into the flow phenomena, allows a more exact calculation of losses than is possible with traditional means involving the application of loss correlations and provides an effective tool for improving component and overall system performance.

  20. A Systematic Review and Meta-Analysis of Mobile Devices and Weight Loss with an Intervention Content Analysis

    PubMed Central

    Lyzwinski, Lynnette Nathalie

    2014-01-01

    Introduction: Overweight and obesity constitute leading global public health challenges. Tackling overweight and obesity by influencing human behaviour is a complex task, requiring novel emerging health psychology interventions. The aims of this review will be to determine whether mobile devices induce weight loss and improvements in diet and physical activity levels when compared with standard controls without a weight loss intervention or controls allocated to non-mobile device weight loss interventions. Methods: A systematic review on mobile devices and weight loss was conducted. The inclusion criteria were all randomized controlled trials with baseline and post-intervention weight measures in adult subjects >18 years of age without pre-specified co-morbidities. Mobile device specifications included modern, portable devices in the form of smartphones, PDAs, iPods, and Mp3 players. Cohen’s d for standardized differences in mean weight loss was calculated. A random effects meta-analysis was generated using Comprehensive meta-analysis software. Theories and intervention content were coded and analysed. Results: A total of 17 studies were identified, of which 12 were primary trials and 5 were secondary analyses. The meta-analysis generated a medium significant effect size of 0.430 (95% CI 0.252–0.609) (p-value ≤ 0.01), favouring mobile interventions. Throughout the systematic review, mobile devices were found to induce weight loss relative to baseline weight. When comparing them with standard no intervention controls as well as controls receiving non-mobile weight loss interventions, results favoured mobile devices for weight loss. Reductions in Body mass index, waist circumference, and percentage body fat were also found in the review. Improvements in the determinants of weight loss in the form of improved dietary intake and physical activity levels were also found. Theory appears to largely inform intervention design, with the most common theories being

  1. Model parameter uncertainty analysis for an annual field-scale P loss model

    NASA Astrophysics Data System (ADS)

    Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie

    2016-08-01

    Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model

  2. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle

    PubMed Central

    Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E

    2004-01-01

    Cytosolic [Ca2+] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca2+ sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near −50 mV) or at −20mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to ‘lone embers’ observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 μm. Other parameters depended on voltage. At −50 mV average duration was 111 ms and latency 185 ms. At −20 mV duration was 203 ms and latency 24 ms. Ca2+ release current, calculated on an average of events, was nearly steady at 0.5–0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at −20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca2+ release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells. PMID:14990680

  3. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle.

    PubMed

    Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E

    2004-05-15

    Cytosolic [Ca(2+)] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca(2+) sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near -50 mV) or at -20 mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to 'lone embers' observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 microm. Other parameters depended on voltage. At -50 mV average duration was 111 ms and latency 185 ms. At -20 mV duration was 203 ms and latency 24 ms. Ca(2+) release current, calculated on an average of events, was nearly steady at 0.5-0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at -20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca(2+) release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells.

  4. Optical absorption and thermally stimulated depolarization current studies of nickel chloride-doped poly(vinyl alcohol) irradiated with low-level fast neutron doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Kader, F.H.; Ibrahim, S.S.; Attia, G.

    1993-11-15

    The influence of neutron irradiation on ultraviolet/visible absorption and thermally stimulated depolarization current in nickel chloride-poly(vinyl alcohol) (PVA) cast films has been investigated. The spectral measurements indicate the responsibility of the Ni[sup 2][sup +] ion in its octahedral symmetry. Dopant concentrations higher than 10 wt % NiCl[sub 2] are found to make the samples more resistant to a degradation effect caused by neutron irradiation. The thermally stimulated depolarization currents (TSDC) of pure PVA revealed the existence of the glass transition T[sub g] and space charge relaxation peaks, whereas doped-PVA samples show a new sub-T[sub g] relaxation peak. A proposed mechanismmore » is introduced to account for the neutron effects on both glass transition and space charge relaxation peaks. The peak positions, peak currents, and stored charges of the sub-T[sub g] relaxation peak are strongly affected by both the concentration of the dopant and neutron exposure doses.« less

  5. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  6. Polarimetric imaging of retinal disease by polarization sensitive SLO

    NASA Astrophysics Data System (ADS)

    Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi

    2015-03-01

    Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.

  7. Analysis of factors controlling soil phosphorus loss with surface runoff in Huihe National Nature Reserve by principal component and path analysis methods.

    PubMed

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang

    2018-01-01

    Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p < 0.01, n = 180). Soil TN, soil pH, soil Olsen P, and soil water content and the interactions between them were the main factors affecting P loss with surface runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.

  8. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  9. Prediction of transmission loss through an aircraft sidewall using statistical energy analysis

    NASA Astrophysics Data System (ADS)

    Ming, Ruisen; Sun, Jincai

    1989-06-01

    The transmission loss of randomly incident sound through an aircraft sidewall is investigated using statistical energy analysis. Formulas are also obtained for the simple calculation of sound transmission loss through single- and double-leaf panels. Both resonant and nonresonant sound transmissions can be easily calculated using the formulas. The formulas are used to predict sound transmission losses through a Y-7 propeller airplane panel. The panel measures 2.56 m x 1.38 m and has two windows. The agreement between predicted and measured values through most of the frequency ranges tested is quite good.

  10. Rotational dynamics of trehalose in aqueous solutions studied by depolarized light scattering

    NASA Astrophysics Data System (ADS)

    Gallina, M. E.; Comez, L.; Morresi, A.; Paolantoni, M.; Perticaroli, S.; Sassi, P.; Fioretto, D.

    2010-06-01

    High resolution depolarized light scattering spectra, extended from 0.5 to 2×104 GHz by the combined used of a dispersive and an interferometric setup, give evidence of separated solute and solvent dynamics in diluted trehalose aqueous solutions. The slow relaxation process, located in the gigahertz frequency region, is analyzed as a function of temperature and concentration and assigned to the rotational diffusion of the sugar molecule. The results are discussed in comparison with the data obtained on glucose solutions and they are used to clarify the molecular origin of some among the several relaxation processes reported in literature for oligosaccharides solutions. The concentration dependence of relaxation time and of shear viscosity are also discussed, suggesting that the main effect of carbohydrate molecules on the structural relaxation of diluted aqueous solutions is the perturbation induced on the dynamics of the first hydration shell of each solute molecule.

  11. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis.

    PubMed

    Merlotti, C; Ceriani, V; Morabito, A; Pontiroli, A E

    2017-05-01

    Aim of this review is to compare visceral and subcutaneous fat loss with all available strategies (diet and exercise, weight-loss promoting agents and bariatric surgery). Eighty-nine studies, all full papers, were analyzed to evaluate visceral and subcutaneous fat changes, measured through ultrasound, computerized tomography, magnetic resonance imaging and expressed as thickness, weight, area and volume. Studies were included in a meta-analysis (random-effects model). Intervention effect (absolute and percent changes of visceral and subcutaneous fat) was expressed as standardized mean differences, with 95% confidence intervals. Publication bias was formally assessed. The result was that subcutaneous fat was greater than visceral fat when measured as area, volume and weight, not as thickness; decrease of subcutaneous fat was greater than visceral fat when measured as area, volume and weight, not as thickness; percent decrease of visceral fat was always greater than percent decrease of subcutaneous fat, with no differences between different strategies. No intervention preferentially targets visceral fat. Basal visceral fat depots are smaller than basal subcutaneous fat depots. Visceral fat loss is linked to subcutaneous fat loss. With all strategies, percent decrease of visceral fat prevails on subcutaneous fat loss.

  12. Aerosol optical properties variability during biomass burning events observed by the eole-aias depolarization lidars over Athens, Greece (2007-2016)

    NASA Astrophysics Data System (ADS)

    Mylonaki, Maria; Papayannis, Alexandros; Mamouri, Rodanthi; Argyrouli, Athina; Kokkalis, Panagiotis; Tsaknakis, Georgios; Soupiona, Ourania

    2018-04-01

    The EOLE multi-wavelength aerosol Ramandepolarization lidar, and the AIAS depolarization lidar, in synergy with a sun photometer (CIMEL), were used, in the period 2007-2016, to provide the vertical profiles of the aerosol optical properties over Athens, Greece. More than 30 biomass burning events (fresh and aged smoke particles) were observed, with smoke layers between 1.5 up to 4-5 km height, while their duration ranged from 1-3 days. Lidar ratio (LR) values ranged from 40-105 sr (at 355 nm) and from 40-100 sr (at 532 nm), while the linear particle depolarization ratio (LPDR) at both 355 and 532 nm, remained <7%. The extinction-related Ångström exponent (AEa) at 355 nm/532 nm) ranged from 0.3 to 2.1. Additionally, a case of a near-range transport of biomass burning aerosols arriving over Athens up to 4 km height, between 27 and 28 June 2016, was studied. For this case, we found LRs of the order of 70±5 sr (355 nm) and 65±15 sr (532 nm) and AEa(355 nm/532 nm) around 1.

  13. Strengthening the weak link: Built Environment modelling for loss analysis

    NASA Astrophysics Data System (ADS)

    Millinship, I.

    2012-04-01

    Methods to analyse insured losses from a range of natural perils, including pricing by primary insurers and catastrophe modelling by reinsurers, typically lack sufficient exposure information. Understanding the hazard intensity in terms of spatial severity and frequency is only the first step towards quantifying the risk of a catastrophic event. For any given event we need to know: Are any structures affected? What type of buildings are they? How much damaged occurred? How much will the repairs cost? To achieve this, detailed exposure information is required to assess the likely damage and to effectively calculate the resultant loss. Modelling exposures in the Built Environment therefore plays as important a role in understanding re/insurance risk as characterising the physical hazard. Across both primary insurance books and aggregated reinsurance portfolios, the location of a property (a risk) and its monetary value is typically known. Exactly what that risk is in terms of detailed property descriptors including structure type and rebuild cost - and therefore its vulnerability to loss - is often omitted. This data deficiency is a primary source of variations between modelled losses and the actual claims value. Built Environment models are therefore required at a high resolution to describe building attributes that relate vulnerability to property damage. However, national-scale household-level datasets are often not computationally practical in catastrophe models and data must be aggregated. In order to provide more accurate risk analysis, we have developed and applied a methodology for Built Environment modelling for incorporation into a range of re/insurance applications, including operational models for different international regions and different perils and covering residential, commercial and industry exposures. Illustrated examples are presented, including exposure modelling suitable for aggregated reinsurance analysis for the UK and bespoke high resolution

  14. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration.

    PubMed

    Kobayashi, Motomu; Takeda, Yoshimasa; Taninishi, Hideki; Takata, Ken; Aoe, Hisami; Morita, Kiyoshi

    2007-07-01

    Although propofol and thiopental are commonly used as neuroprotective agents, it has not been determined which is more neuroprotective. This study was designed to quantitatively evaluate the neuroprotective effects of thiopental, propofol, and halothane on brain ischemia by determining P50, ischemic time necessary for causing 50% neuronal damage. Gerbils were anesthetized with thiopental, propofol, or halothane and underwent 2-vessel occlusion (0, 3, 5 or 10 min). Direct current potentials were measured in bilateral CA1 regions, in which histologic evaluation was performed 5 days later. In some animals, extracellular glutamate concentrations (microdialysis) were measured during 7.5 minutes of ischemia. P50 in the thiopental, propofol, and halothane groups were estimated to be 8.4, 6.5 (P<0.05, vs. thiopental), and 5.1 (P<0.05) minutes, respectively. Durations of ischemic depolarization were equally reduced in the thiopental and propofol groups compared with that in the halothane group. Severity of neuronal damage with identical duration of ischemic depolarization was attenuated by thiopental compared with the effect of propofol. Maximum glutamate concentrations in the thiopental and propofol group were significantly reduced compared with that in the halothane groups but were comparable. By using P50, we found that the neuroprotective effect of thiopental was greater than that of propofol. Although duration of ischemic depolarization was equally reduced in thiopental and propofol groups, thiopental has a greater suppressive effect on neuronal injury during identical duration of ischemic depolarization than propofol does. Glutamate concentration during brain ischemia tended to be attenuated more by thiopental than by propofol, but it was not statistically significant.

  15. Combined Changes in Chloride Regulation and Neuronal Excitability Enable Primary Afferent Depolarization to Elicit Spiking without Compromising its Inhibitory Effects

    PubMed Central

    2016-01-01

    The central terminals of primary afferent fibers experience depolarization upon activation of GABAA receptors (GABAAR) because their intracellular chloride concentration is maintained above electrochemical equilibrium. Primary afferent depolarization (PAD) normally mediates inhibition via sodium channel inactivation and shunting but can evoke spikes under certain conditions. Antidromic (centrifugal) conduction of these spikes may contribute to neurogenic inflammation while orthodromic (centripetal) conduction could contribute to pain in the case of nociceptive fibers. PAD-induced spiking is assumed to override presynaptic inhibition. Using computer simulations and dynamic clamp experiments, we sought to identify which biophysical changes are required to enable PAD-induced spiking and whether those changes necessarily compromise PAD-mediated inhibition. According to computational modeling, a depolarizing shift in GABA reversal potential (EGABA) and increased intrinsic excitability (manifest as altered spike initiation properties) were necessary for PAD-induced spiking, whereas increased GABAAR conductance density (ḡGABA) had mixed effects. We tested our predictions experimentally by using dynamic clamp to insert virtual GABAAR conductances with different EGABA and kinetics into acutely dissociated dorsal root ganglion (DRG) neuron somata. Comparable experiments in central axon terminals are prohibitively difficult but the biophysical requirements for PAD-induced spiking are arguably similar in soma and axon. Neurons from naïve (i.e. uninjured) rats were compared before and after pharmacological manipulation of intrinsic excitability, and against neurons from nerve-injured rats. Experimental data confirmed that, in most neurons, both predicted changes were necessary to yield PAD-induced spiking. Importantly, such changes did not prevent PAD from inhibiting other spiking or from blocking spike propagation. In fact, since the high value of ḡGABA required for PAD

  16. Guanine-Nucleotide Exchange Factors (RAPGEF3/RAPGEF4) Induce Sperm Membrane Depolarization and Acrosomal Exocytosis in Capacitated Stallion Sperm1

    PubMed Central

    McPartlin, L.A.; Visconti, P.E.; Bedford-Guaus, S.J.

    2011-01-01

    Capacitation encompasses the molecular changes sperm undergo to fertilize an oocyte, some of which are postulated to occur via a cAMP-PRKACA (protein kinase A)-mediated pathway. Due to the recent discovery of cAMP-activated guanine nucleotide exchange factors RAPGEF3 and RAPGEF4, we sought to investigate the separate roles of PRKACA and RAPGEF3/RAPGEF4 in modulating capacitation and acrosomal exocytosis. Indirect immunofluorescence localized RAPGEF3 to the acrosome and subacrosomal ring and RAPGEF4 to the midpiece in equine sperm. Addition of the RAPGEF3/RAPGEF4-specific cAMP analogue 8-(p-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8pCPT) to sperm incubated under both noncapacitating and capacitating conditions had no effect on protein tyrosine phosphorylation, thus supporting a PRKACA-mediated event. Conversely, activation of RAPGEF3/RAPGEF4 with 8pCPT induced acrosomal exocytosis in capacitated equine sperm at rates (34%) similar (P > 0.05) to those obtained in progesterone- and calcium ionophore-treated sperm. In the mouse, capacitation-dependent hyperpolarization of the sperm plasma membrane has been shown to recruit low voltage-activated T-type Ca2+ channels, which later open in response to zona pellucida-induced membrane depolarization. We hypothesized that RAPGEF3 may be inducing acrosomal exocytosis via depolarization-dependent Ca2+ influx, as RAPGEF3/RAPGEF4 have been demonstrated to play a role in the regulation of ion channels in somatic cells. We first compared the membrane potential (Em) of noncapacitated (−37.11 mV) and capacitated (−53.74 mV; P = 0.002) equine sperm. Interestingly, when sperm were incubated (6 h) under capacitating conditions in the presence of 8pCPT, Em remained depolarized (−32.06 mV). Altogether, these experiments support the hypothesis that RAPGEF3/RAPGEF4 activation regulates acrosomal exocytosis via its modulation of Em, a novel role for RAPGEF3/RAPGEF4 in the series of events required to

  17. On the origin of the low-temperature band in depolarization current spectra of poled multicomponent silicate glasses

    NASA Astrophysics Data System (ADS)

    Brunkov, P. N.; Kaasik, V. P.; Lipovskii, A. A.; Tagantsev, D. K.

    2018-04-01

    Thermally stimulated depolarization current spectra of poled silicate multicomponent glasses in the vicinity of room temperature (220-320 K) have been recorded and two bands, typical for such glasses, have been observed. It was shown that the high-temperature band (at about 290 K) is related to the relaxation of poled glass structure in the bulk, while the low-temperature band (at about 230-270 K) should be attributed to the surface phenomenon—absorption/desorption of positive species of ambient atmosphere, supposedly, water cluster ions H+(H2O)n.

  18. Environmental Analysis and Prediction of Transmission Loss in the Region of the New England Shelfbreak

    DTIC Science & Technology

    2009-09-01

    Environmental Analysis and Prediction of Transmission Loss in the Region of the New England Shelfbreak By Heather Rend Hornick B.S., University of... Analysis and Prediction of Transmission Loss in the Region of the New England Shelfbreak 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER... analysis of the ocean sound speed field defined a set of perturbations to the background sound speed field for each of the NEST Scanfish surveys

  19. Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis.

    PubMed

    Wilting, Harry C; Schipper, Aafke M; Bakkenes, Michel; Meijer, Johan R; Huijbregts, Mark A J

    2017-03-21

    It is increasingly recognized that human consumption leads to considerable losses of biodiversity. This study is the first to systematically quantify these losses in relation to land use and greenhouse gas (GHG) emissions associated with the production and consumption of (inter)nationally traded goods and services by presenting consumption-based biodiversity losses, in short biodiversity footprint, for 45 countries and world regions globally. Our results showed that (i) the biodiversity loss per citizen shows large variations among countries, with higher values when per-capita income increases; (ii) the share of biodiversity losses due to GHG emissions in the biodiversity footprint increases with income; (iii) food consumption is the most important driver of biodiversity loss in most of the countries and regions, with a global average of 40%; (iv) more than 50% of the biodiversity loss associated with consumption in developed economies occurs outside their territorial boundaries; and (v) the biodiversity footprint per dollar consumed is lower for wealthier countries. The insights provided by our analysis might support policymakers in developing adequate responses to avert further losses of biodiversity when population and incomes increase. Both the mitigation of GHG emissions and land use related reduction options in production and consumption should be considered in strategies to protect global biodiversity.

  20. Linopirdine. A depolarization-activated releaser of transmitters for treatment of dementia.

    PubMed

    Tam, S W; Zaczek, R

    1995-01-01

    Linopirdine (DuP 996, AVIVA), currently in Phase III clinical trial for the treatment of Alzheimer's disease, is a representative of a class of novel molecules which enhances the stimulus-evoked but not basal release of several neurotransmitters including ACh, DA, 5-HT and Glu. Linopiridine has been shown to enhance ACh release in the hippocampus in vivo. In addition, linopiridine produces a number of effects including EEG patterns of enhanced vigilance, induction of c-fos expression in cerebral cortex, reduction of the increase of cerebral glucose utilization induced by hypoxia, and improved performance in animal models of learning and memory. The specific action of linopiridine on depolarized neurons but not on basal release suggests that compounds of this class will enhance normal brain activity and not lead to a non-specific activation. Furthermore, the effect of linopiridine on multiple neurotransmitter systems that are deficient in Alzheimer's disease suggests that this class of agents may be more efficacious in the treatment of dementia than therapies aimed at individual neurotransmitters systems.

  1. Analysis of spatial pseudodepolarizers in imaging systems

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The objective of a number of optical instruments is to measure the intensity accurately without bias as to the incident polarization state. One method to overcome polarization bias in optical systems is the insertion of a spatial pseudodepolarizer. Both the degree of depolarization and image degradation (from the polarization aberrations of the pseudodepolarizer) are analyzed for two depolarizer designs: (1) the Cornu pseudodepolarizer, effective for linearly polarized light, and (2) the dual Babinet compensator pseudodepolarizer, effective for all incident polarization states. The image analysis uses a matrix formalism to describe the polarization dependence of the diffraction patterns and optical transfer function.

  2. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential.

    PubMed

    Sakthivel, Ravi; Malar, Dicson Sheeja; Devi, Kasi Pandima

    2018-06-13

    In the present study, the antiproliferative activity of phytol and its mechanism of action against human lung adenocarcinoma cell line A549 were studied in detail. Results showed that phytol exhibited potent antiproliferative activity against A549 cells in a dose and time-dependent manner with an IC 50 value of 70.81 ± 0.32 μM and 60.7 ± 0.47 μM at 24 and 48 h, respectively. Phytol showed no adverse toxic effect in normal human lung cells (L-132), but mild toxic effect was observed when treated with maximum dose (67 and 84 μM). No membrane-damaging effect was evidenced by PI staining and SEM analysis. The results of mitochondrial membrane potential analysis, cell cycle analysis, FT-IR and Western blotting analysis clearly demonstrated the molecular mechanism of phytol as induction of apoptosis in A549 cells, as evidenced by formation of shrinked cell morphology with membrane blebbing, depolarization of mitochondrial membrane potential, increased cell population in the sub-G0 phase, band variation in the DNA and lipid region, downregulation of Bcl-2, upregulation of Bax and the activation of caspase-9 and -3. In addition, phytol inhibited the CAM vascular growth as evidenced by CAM assay, which positively suggests that phytol has anti-angiogenic potential. Taken together, these findings clearly demonstrate the mode of action by which phytol induces cell death in A549 lung adenocarcinoma cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Faraday signature of magnetic helicity from reduced depolarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenburg, Axel; Stepanov, Rodion

    2014-05-10

    Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter.more » The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.« less

  4. Store-operated Ca²⁺ entry and depolarization explain the anomalous behaviour of myometrial SR: effects of SERCA inhibition on electrical activity, Ca²⁺ and force.

    PubMed

    Noble, Debbie; Borysova, Lyudmyla; Wray, Susan; Burdyga, Theodor

    2014-09-01

    In the myometrium SR Ca(2+) depletion promotes an increase in force but unlike several other smooth muscles, there is no Ca(2+) sparks-STOCs coupling mechanism to explain this. Given the importance of the control of contractility for successful parturition, we have examined, in pregnant rat myometrium, the effects of SR Ca(2+)-ATPase (SERCA) inhibition on the temporal relationship between action potentials, Ca(2+) transients and force. Simultaneous recording of electrical activity, calcium and force showed that SERCA inhibition, by cyclopiazonic acid (CPA 20 μM), caused time-dependent changes in excitability, most noticeably depolarization and elevations of baseline [Ca(2+)]i and force. At the onset of these changes there was a prolongation of the bursts of action potentials and a corresponding series of Ca(2+) spikes, which increased the amplitude and duration of contractions. As the rise of baseline Ca(2+) and depolarization continued a point was reached when electrical and Ca(2+) spikes and phasic contractions ceased, and a maintained, tonic force and Ca(2+) was produced. Lanthanum, a non-selective blocker of store-operated Ca(2+) entry, but not the L-type Ca(2+) channel blocker nifedipine (1-10 μM), could abolish the maintained force and calcium. Application of the agonist, carbachol, produced similar effects to CPA, i.e. depolarization, elevation of force and calcium. A brief, high concentration of carbachol, to cause SR Ca(2+) depletion without eliciting receptor-operated channel opening, also produced these results. The data obtained suggest that in pregnant rats SR Ca(2+) release is coupled to marked Ca(2+) entry, via store operated Ca(2+) channels, leading to depolarization and enhanced electrical and mechanical activity. Copyright © 2014. Published by Elsevier Ltd.

  5. Primary afferent depolarization and changes in extracellular potassium concentration induced by L-glutamate and L-proline in the isolated spinal cord of the frog.

    PubMed

    Vyklický, L; Vyskocil, F; Kolaj, M; Jastreboff, P

    1982-10-08

    To test the hypothesis that L-proline acts as an antagonist on glutamate receptors [17, 18], the interaction between L-glutamate and L-proline was studied in the isolated spinal cord of the frog. Glutamate at concentrations of 10(-6) -5 x 10(-3) mol/l depolarized the primary afferent fibres and increased extracellular potassium concentration, [K+]e, by 0.3-4 mmol/l. Repeated applications lead to inactivation of the response. L-Proline at 5 x 10(-3) -10(-2) mol/l, also depolarized the primary afferents and increased [K+]e by 0.5-2 mmol/l, but there was only a slight decrease of the effects after repeated application. The effects were additive when the amino acids were applied simultaneously. The effect of L-proline was still present when it was applied during inactivation of the glutamate receptors. This suggests that L-glutamate and L-proline act on different receptors.

  6. Vitamin D status and weight loss: a systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials.

    PubMed

    Mallard, Simonette R; Howe, Anna S; Houghton, Lisa A

    2016-10-01

    Obesity is associated with lower concentrations of serum 25-hydroxyvitamin D; however, uncertainty exists as to the direction of causation. To date, meta-analyses of randomized controlled vitamin D-supplementation trials have shown no effect of raising circulating vitamin D on body weight, although several weight-loss-intervention trials have reported an increase in circulating vitamin D after weight reduction. We undertook a systematic review and meta-analysis of randomized and nonrandomized controlled trials to determine whether weight loss compared with weight maintenance leads to an increase in serum 25-hydroxyvitamin D. A systematic search for controlled weight-loss-intervention studies published up to 31 March 2016 was performed. Studies that included participants of any age with changes in adiposity and serum 25-hydroxyvitamin D as primary or secondary outcomes were considered eligible. We identified 4 randomized controlled trials (n = 2554) and 11 nonrandomized controlled trials (n = 917) for inclusion in the meta-analysis. Random assignment to weight loss compared with weight maintenance resulted in a greater increase in serum 25-hydroxyvitamin D with a mean difference of 3.11 nmol/L (95% CI: 1.38, 4.84 nmol/L) between groups, whereas a mean difference of 4.85 nmol/L (95% CI: 2.59, 7.12 nmol/L) was observed in nonrandomized trials. No evidence for a dose-response effect of weight loss on the change in serum 25-hydroxyvitamin D was shown overall. Our results indicate that vitamin D status may be marginally improved with weight loss in comparison with weight maintenance under similar conditions of supplemental vitamin D intake. Although additional studies in unsupplemented individuals are needed to confirm these findings, our results support the view that the association between obesity and lower serum 25-hydroxyvitamin D may be due to reversed causation with increased adiposity leading to suboptimal concentrations of circulating vitamin D. This trial was

  7. Representations of workers with hearing loss in Canadian newspapers: a thematic analysis.

    PubMed

    Koerber, Raphaelle; Jennings, Mary Beth; Shaw, Lynn; Cheesman, Margaret

    2017-04-01

    Participation in the labour force with a hearing impairment presents a number of challenges. This study describes how Canadian newspapers represent workers with hearing loss. Taking a critical framing theory approach, thematic analysis was performed through coding relevant articles, abstracting and hierarchically categorising themes. Seven English-language Canadian newspapers were searched for publications between 1995 and 2016. Twenty-six articles met our criteria: discussing paid workers with hearing loss who used English rather than sign language on the job and making reference to workers' competence. We identified a global theme, Focussing on a good worklife or focussing on a limited worklife, composed of three organising themes (1) Prominent individuals struggle, take action, and continue despite hearing loss, (2) Workers with hearing loss in the community create their best day themselves, and (3) Workers with hearing loss, as a generalised whole, are portrayed as either competent or limited. The dominant framing portrays individual workers as ingenious, determined, and successful. Negative framings were predominantly generalisations to these workers as a group. To generate more positive framings, professionals can build relationships with consumer groups and, when contacted by the media, direct journalists to interview workers with hearing loss.

  8. An Analysis of Losses to the Southern Commercial Timberland Base

    Treesearch

    Ian A. Munn; David Cleaves

    1998-01-01

    Demographic and physical factors influencing the conversion of commercial timberland iu the south to non-forestry uses between the last two Forest Inventory Analysis (FIA) surveys were investigated. GIS techniques linked Census data and FIA plot level data. Multinomial logit regression identified factors associated with losses to the timberland base. Conversion to...

  9. Theoretical analysis of sound transmission loss through graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp; Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553; Ni, Qing-Qing

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation propertymore » for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.« less

  10. Generation of an unusual depolarizing response in rabbit primary afferent neurones in the absence of divalent cations.

    PubMed

    Stansfeld, C E; Wallis, D I

    1984-07-01

    The effects of divalent cations on responses to 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA) and 1,1-dimethyl-4-phenyl piperazinium (DMPP) were investigated using a sucrose-gap method to record population responses. In Ca-free medium responses to 5-HT were enhanced, those to DMPP depressed and those to GABA unchanged. In Mg-free medium responses to 5-HT were unchanged, while those to DMPP and GABA were depressed. Removal of both Ca and Mg from the superfusion medium caused a small reduction of GABA responses and a large reduction of DMPP responses. Responses to 5-HT were not only greatly potentiated but were changed in character; the depolarizing phase became sigmoid and the dose dependence between quantity of 5-HT and response magnitude was lost as if 5-HT were triggering an all-or-nothing phenomenon. Dose--response relationships for GABA were normal in the large majority of preparations. In about 10% of preparations, supramaximal amounts of GABA or DMPP evoked large responses of a similar character to those evoked by 5-HT. The large responses, generated by an unknown mechanism, were termed X responses. Further reduction in tissue divalent cations by EGTA (1 mM) caused X responses to be generated spontaneously. Ca, Mg, Mn or Co (1 mM) could suppress X responses. DMPP responses, reduced in Ca/Mg-free medium, were largely restored by 1 mM-Ca. Depression of GABA responses in Ca/Mg-free medium could be entirely attributed to the absence of Mg, Mn being able to substitute for Mg. X responses were generated only after equilibration for 1 h with Ca/Mg-free medium. Attempts to manipulate [Ca]i with dinitrophenol or caffeine did not produce the conditions under which X responses were generated. Intracellular records of responses to 5-HT, GABA or DMPP showed that cells with A fibres responded to GABA but not to 5-HT or DMPP. Fifty-four out of sixty-seven cells with C fibre axons (80%) were depolarized by 5-HT, thirty-seven out of forty-nine (76%) by DMPP and

  11. Depression and risk of fracture and bone loss: an updated meta-analysis of prospective studies.

    PubMed

    Wu, Q; Liu, B; Tonmoy, S

    2018-03-12

    This meta-analysis pooled results from 23 qualifying individual cohort studies and found that depression was significantly associated with an increased risk of fractures and bone loss. The association between depression and risk of fracture remains controversial. We conducted a comprehensive meta-analysis to examine the effect of depression on the risk of osteoporotic fractures and bone loss. We searched databases and reviewed citations in relevant articles for eligible cohort studies. Two investigators independently conducted study selection, appraisal, and data abstraction through the use of a standardized protocol. Random effect models were used for meta-analysis. Cochrane Q and I 2 statistics were used to assess heterogeneity. Funnel plots and rank correlation tests were used to evaluate publication bias. Twenty-three studies were included for meta-analysis. In studies that reported hazard ratio (HR) as the outcome (nine studies [n = 309,862]), depression was associated with 26% increase in fracture risk (HR = 1.26, 95% CI, 1.10-1.43, p < 0.001). Studies that reported risk ratio (RR) as the outcome (seven studies [n = 64,975]) suggested that depression was associated with 39% increase in fracture risk (RR = 1.39, 95% CI, 1.19-1.62, p < 0.001). Among studies that reported hip bone mineral density (BMD) as an outcome (eight studies [n = 15,442]), depression was associated with a reduced mean annual bone loss rate of 0.35% (0.18-0.53%, p < 0.001). The increased risk of fracture and bone loss associated with depression was consistent in all meta-analysis having modified inclusion criteria and in different subgroup analyses as well. Significant heterogeneity was observed in the meta-analysis; however, no significant publication bias was detected. Depression is associated with a significant increased risk in fracture and bone loss. Effective prevention may decrease such risk.

  12. What Matters in Weight Loss? An In-Depth Analysis of Self-Monitoring

    PubMed Central

    Hill, James O; Kushner, Robert F; Lindquist, Richard; Brunning, Scott; Margulies, Amy

    2017-01-01

    Background Using technology to self-monitor body weight, dietary intake, and physical activity is a common practice used by consumers and health companies to increase awareness of current and desired behaviors in weight loss. Understanding how to best use the information gathered by these relatively new methods needs to be further explored. Objective The purpose of this study was to analyze the contribution of self-monitoring to weight loss in participants in a 6-month commercial weight-loss intervention administered by Retrofit and to specifically identify the significant contributors to weight loss that are associated with behavior and outcomes. Methods A retrospective analysis was performed using 2113 participants enrolled from 2011 to 2015 in a Retrofit weight-loss program. Participants were males and females aged 18 years or older with a starting body mass index of ≥25 kg/m2, who also provided a weight measurement at the sixth month of the program. Multiple regression analysis was performed using all measures of self-monitoring behaviors involving weight measurements, dietary intake, and physical activity to predict weight loss at 6 months. Each significant predictor was analyzed in depth to reveal the impact on outcome. Results Participants in the Retrofit Program lost a mean –5.58% (SE 0.12) of their baseline weight with 51.87% (1096/2113) of participants losing at least 5% of their baseline weight. Multiple regression model (R2=.197, P<0.001) identified the following measures as significant predictors of weight loss at 6 months: number of weigh-ins per week (P<.001), number of steps per day (P=.02), highly active minutes per week (P<.001), number of food log days per week (P<.001), and the percentage of weeks with five or more food logs (P<.001). Weighing in at least three times per week, having a minimum of 60 highly active minutes per week, food logging at least three days per week, and having 64% (16.6/26) or more weeks with at least five food logs

  13. What Matters in Weight Loss? An In-Depth Analysis of Self-Monitoring.

    PubMed

    Painter, Stefanie Lynn; Ahmed, Rezwan; Hill, James O; Kushner, Robert F; Lindquist, Richard; Brunning, Scott; Margulies, Amy

    2017-05-12

    Using technology to self-monitor body weight, dietary intake, and physical activity is a common practice used by consumers and health companies to increase awareness of current and desired behaviors in weight loss. Understanding how to best use the information gathered by these relatively new methods needs to be further explored. The purpose of this study was to analyze the contribution of self-monitoring to weight loss in participants in a 6-month commercial weight-loss intervention administered by Retrofit and to specifically identify the significant contributors to weight loss that are associated with behavior and outcomes. A retrospective analysis was performed using 2113 participants enrolled from 2011 to 2015 in a Retrofit weight-loss program. Participants were males and females aged 18 years or older with a starting body mass index of ≥25 kg/m2, who also provided a weight measurement at the sixth month of the program. Multiple regression analysis was performed using all measures of self-monitoring behaviors involving weight measurements, dietary intake, and physical activity to predict weight loss at 6 months. Each significant predictor was analyzed in depth to reveal the impact on outcome. Participants in the Retrofit Program lost a mean -5.58% (SE 0.12) of their baseline weight with 51.87% (1096/2113) of participants losing at least 5% of their baseline weight. Multiple regression model (R 2 =.197, P<0.001) identified the following measures as significant predictors of weight loss at 6 months: number of weigh-ins per week (P<.001), number of steps per day (P=.02), highly active minutes per week (P<.001), number of food log days per week (P<.001), and the percentage of weeks with five or more food logs (P<.001). Weighing in at least three times per week, having a minimum of 60 highly active minutes per week, food logging at least three days per week, and having 64% (16.6/26) or more weeks with at least five food logs were associated with clinically

  14. Progressive polarity loss and luminal collapse disrupt tissue organization in carcinoma

    PubMed Central

    Halaoui, Ruba; Rejon, Carlis; Chatterjee, Sudipa June; Szymborski, Joseph; Meterissian, Sarkis; Muller, William J.; Omeroglu, Atilla; McCaffrey, Luke

    2017-01-01

    Epithelial cancers (carcinoma) account for 80%–90% of all cancers. The development of carcinoma is associated with disrupted epithelial organization and solid ductal structures. The mechanisms underlying the morphological development of carcinoma are poorly understood, but it is thought that loss of cell polarity is an early event. Here we report the characterization of the development of human breast lesions leading to carcinoma. We identified a unique mechanism that generates solid ducts in carcinoma through progressive loss of polarity and collapse of the luminal architecture. This program initiates with asymmetric divisions of polarized cells that generate a stratified epithelium containing both polarized and depolarized cells. Stratified regions form cords that penetrate into the lumen, subdividing it into polarized secondary lumina. The secondary lumina then collapse with a concomitant decrease in RhoA and myosin II activity at the apical membrane and ultimately lose apical–basal polarity. By restoring RhoA activity in mice, ducts maintained lumen and cell polarity. Notably, disrupted tissue architecture through luminal collapse was reversible, and ducts with a lumen were re-established after oncogene suppression in vivo. This reveals a novel and common mechanism that contributes to carcinoma development by progressively disrupting cell and tissue organization. PMID:28887414

  15. Ganglion Cell Loss and Age-Related Visual Loss: A Cortical Pooling Analysis

    PubMed Central

    SCHMIDT, LAURA A.; LY-SCHROEDER, EMILY; SWANSON, WILLIAM H.

    2006-01-01

    Purpose To evaluate the ability of the cortical pooling model to predict the effects of random, mild ganglion cell loss, we compared the predictions of the model with the age-related loss and variability in achromatic and chromatic contrast sensitivity. Methods The relative sensitivity to small (0.5°) and large (3.0°) stimuli was compared in older (mean = 67 years, n = 27) and younger (mean = 23 years, n = 32) adults. Contrast sensitivity for modulations along the luminance, equiluminant L-cone, and equiluminant S-cone axes was assessed at the fovea and at four peripheral locations (12°). Results When the stimuli were large, threshold measurements obtained from all participants were reliable and well within the range of modulations along the chromatic axes that could be produced by the phosphors of the CRT. For the large stimuli, neither long- nor short-term variability increased as a function of age. Increasing the size of the stimulus did not decrease the magnitude of the age-related losses when the stimulus was chromatic, and visual losses observed with large chromatic stimuli were not different from those obtained with small achromatic stimuli. Moreover, chromatic contrast sensitivity assessments identified significant visual losses in four individuals who were not identified by achromatic contrast sensitivity assessments and only missed identifying one individual with significant losses in achromatic contrast sensitivity. Conclusions The declines in achromatic and chromatic sensitivity as a function of age (0.4 – 0.7 dB per decade) were similar to those obtained in previous studies of achromatic and chromatic perimetry and are consistent with the loss of retinal ganglion cells reported in histologic studies. The results of this study are consistent with the predictions the cortical pooling model makes for both variability and contrast sensitivity. These findings emphasize that selective visual impairments do not necessarily reflect preferential damage to

  16. Aircraft Loss-of-Control: Analysis and Requirements for Future Safety-Critical Systems and Their Validation

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2011-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex, resulting from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper summarizes recent analysis results in identifying worst-case combinations of loss-of-control accident precursors and their time sequences, a holistic approach to preventing loss-of-control accidents in the future, and key requirements for validating the associated technologies.

  17. [Quantitative analysis of blood loss in liposuction].

    PubMed

    Schor, N; Zatz, R M; Mendonça, A R; Takatu, P M; Patto, G S

    1989-01-01

    This study was performed in 15 female patients submitted to suction lipectomy as an isolated procedure, to establish blood loss in the procedure. A wide variation of blood-to-fat ratios was observed (17 to 59%) with a mean blood loss in lipoaspirates of 34 +/- 3%. Internal blood losses occurring in the first 72 post-operative hours were as important as or more important than external losses, and responsible for a mean 7% fall in the level of hemoglobin. Internal blood losses occurred between 72 hours and the 7th to the 10th post-operative days and were responsible for a mean 3% fall in the level of hemoglobin. Blood losses occurring in this study were demonstrated to be greater than usually assumed. Some prophylactic measures are recommended to provide for a safer treatment of these patients: an iron supplementation during the pre-operative period; careful clinical and laboratorial screening for bleeding disorders and for the intake of drugs that can interfere with coagulation; use of smaller-diameter cannulas for aspiration, auto-transfusion when aspirating in excess of 1,000 ml, and limiting the aspiration to 1,500 ml.

  18. Hydrogen depolarized carbon dioxide concentrator performance improvements and cell pair structural tests. [for manned space station

    NASA Technical Reports Server (NTRS)

    Huddleston, J. D.; Aylward, J. R.

    1973-01-01

    The investigations and testing associated with the CO2 removal efficiency and voltage degradation of a hydrogen depolarized carbon oxide concentrator are reported. Also discussed is the vibration testing of a water vapor electrolysis cell pair. Performance testing of various HDC cell pairs with Cs2CO3 electrolyte provided sufficient parametric and endurance data to size a six man space station prototype CO2 removal system as having 36 HDC cell pairs, and to verify a life capability exceeding six moths. Testing also demonstrated that tetramethylammonium carbonate is an acceptable HDC electrolyte for operating over the relative humidity range of 30 to 90 percent and over a temperature range of 50 to 80 F.

  19. Noise thresholds for optical quantum computers.

    PubMed

    Dawson, Christopher M; Haselgrove, Henry L; Nielsen, Michael A

    2006-01-20

    In this Letter we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities <3 x 10(-3), and for depolarization probabilities <10(-4).

  20. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization.

    PubMed

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-04-01

    The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.

  1. Two-dimensional wave patterns of spreading depolarization: Retracting, re-entrant, and stationary waves

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Graf, Rudolf; Strong, Anthony J.; Dreier, Jens P.; Dahlem, Yuliya A.; Sieber, Michaela; Hanke, Wolfgang; Podoll, Klaus; Schöll, Eckehard

    2010-06-01

    We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling such as long-range, time-delayed, and global coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction.

  2. Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases

    NASA Astrophysics Data System (ADS)

    Branchereau, Pascal; Cattaert, Daniel; Delpy, Alain; Allain, Anne-Emilie; Martin, Elodie; Meyrand, Pierre

    2016-02-01

    By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits.

  3. Influence of Solid Target Reflectivity and Incident Angle on Depolarization Ratio and Reflected Energy from Polarized Lights: Experimental Results of the May 2008 Field Trial

    DTIC Science & Technology

    2009-11-01

    enviromental targets . . . . . . . . . . . . 45 Figure 25: Relative reectivity of environmental targets . . . . . . . . . . . . 46 Figure 26: Relationship...Environmental targets and position of the center . . . . . . . . . . 41 Table 11: Depolarization ratio of enviromental targets...42 Table 12: Relative reectivity results of enviromental targets . . . . . . . . . 42 Table 13: Sand papers and position of the center

  4. Insights From Google Play Store User Reviews for the Development of Weight Loss Apps: Mixed-Method Analysis

    PubMed Central

    Hartmann-Boyce, Jamie; Jebb, Susan; Albury, Charlotte; Nourse, Rebecca; Aveyard, Paul

    2017-01-01

    Background Significant weight loss takes several months to achieve, and behavioral support can enhance weight loss success. Weight loss apps could provide ongoing support and deliver innovative interventions, but to do so, developers must ensure user satisfaction. Objective The aim of this study was to conduct a review of Google Play Store apps to explore what users like and dislike about weight loss and weight-tracking apps and to examine qualitative feedback through analysis of user reviews. Methods The Google Play Store was searched and screened for weight loss apps using the search terms weight loss and weight track*, resulting in 179 mobile apps. A content analysis was conducted based on the Oxford Food and Activity Behaviors taxonomy. Correlational analyses were used to assess the association between complexity of mobile health (mHealth) apps and popularity indicators. The sample was then screened for popular apps that primarily focus on weight-tracking. For the resulting subset of 15 weight-tracking apps, 569 user reviews were sampled from the Google Play Store. Framework and thematic analysis of user reviews was conducted to assess which features users valued and how design influenced users’ responses. Results The complexity (number of components) of weight loss apps was significantly positively correlated with the rating (r=.25; P=.001), number of reviews (r=.28; P<.001), and number of downloads (r=.48; P<.001) of the app. In contrast, in the qualitative analysis of weight-tracking apps, users expressed preference for simplicity and ease of use. In addition, we found that positive reinforcement through detailed feedback fostered users’ motivation for further weight loss. Smooth functioning and reliable data storage emerged as critical prerequisites for long-term app usage. Conclusions Users of weight-tracking apps valued simplicity, whereas users of comprehensive weight loss apps appreciated availability of more features, indicating that complexity

  5. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-11-01

    The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  6. Polar winter cloud depolarization measurements with the CANDAC Rayleigh-Mie-Raman Lidar

    NASA Astrophysics Data System (ADS)

    McCullough, E. M.; Nott, G. J.; Duck, T. J.; Sica, R. J.; Doyle, J. G.; Pike-thackray, C.; Drummond, J. R.

    2011-12-01

    Clouds introduce a significant positive forcing to the Arctic radiation budget and this is strongest during the polar winter when shortwave radiation is absent (Intrieri et al., 2002). The amount of forcing depends on the occurrence probability and optical depth of the clouds as well as the cloud particle phase (Ebert and Curry 1992). Mixed-phase clouds are particularly complex as they involve interactions between three phases of water (vapour, liquid and ice) coexisting in the same cloud. Although significant progress has been made in characterizing wintertime Arctic clouds (de Boer et al., 2009 and 2011), there is considerable variability in the relative abundance of particles of each phase, in the morphology of solid particles, and in precipitation rates depending on the meteorology at the time. The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh-Mie-Raman Lidar (CRL) was installed in the Canadian High Arctic at Eureka, Nunavut (80°N, 86°W) in 2008-2009. The remotely-operated system began with measurement capabilities for multi-wavelength aerosol extinction, water vapour mixing ratio, and tropospheric temperature profiles, as well as backscatter cross section coefficient and colour ratio. In 2010, a new depolarization channel was added. The capability to measure the polarization state of the return signal allows the characterization of the cloud in terms of liquid and ice water content, enabling the lidar to probe all three phases of water in these clouds. Lidar depolarization results from 2010 and 2011 winter clouds at Eureka will be presented, with a focus on differences in downwelling radiation between mixed phase clouds and ice clouds. de Boer, G., E.W. Eloranta, and M.D. Shupe (2009), Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations, Journal of Atmospheric Sciences, 66 (9), 2874-2887. de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner (2011

  7. Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF.

    PubMed

    Brown, Sean G; Publicover, Stephen J; Mansell, Steven A; Lishko, Polina V; Williams, Hannah L; Ramalingam, Mythili; Wilson, Stuart M; Barratt, Christopher L R; Sutton, Keith A; Da Silva, Sarah Martins

    2016-06-01

    (+)) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca(2+)]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized. The majority of the data were obtained using funding from MRC project grants (#MR/K013343/1, MR/012492/1). Additional funding was provided by NHS Tayside, TENOVUS, Chief Scientist Office NRS Fellowship and University of Abertay. The authors declare that there is no conflict of interest. Not applicable.

  8. Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF

    PubMed Central

    Brown, Sean G.; Publicover, Stephen J.; Mansell, Steven A.; Lishko, Polina V.; Williams, Hannah L.; Ramalingam, Mythili; Wilson, Stuart M.; Barratt, Christopher L.R.; Sutton, Keith A.; Da Silva, Sarah Martins

    2016-01-01

    the electrophysiological abnormalities. MAIN RESULTS AND THE ROLE OF CHANCE Patch clamp electrophysiology was used to assess outward (K+) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P< 0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca2+]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function. LIMITATIONS, REASONS FOR CAUTION For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. WIDER IMPLICATIONS OF THE FINDINGS These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized. STUDY FUNDING/COMPETING INTEREST(S) The majority of the data were obtained using funding from

  9. Automated Vocal Analysis of Children with Hearing Loss and Their Typical and Atypical Peers

    PubMed Central

    VanDam, Mark; Oller, D. Kimbrough; Ambrose, Sophie E.; Gray, Sharmistha; Richards, Jeffrey A.; Xu, Dongxin; Gilkerson, Jill; Silbert, Noah H.; Moeller, Mary Pat

    2014-01-01

    Objectives This study investigated automatic assessment of vocal development in children with hearing loss as compared with children who are typically developing, have language delays, and autism spectrum disorder. Statistical models are examined for performance in a classification model and to predict age within the four groups of children. Design The vocal analysis system analyzed over 1900 whole-day, naturalistic acoustic recordings from 273 toddlers and preschoolers comprising children who were typically developing, hard of hearing, language delayed, or autistic. Results Samples from children who were hard-of-hearing patterned more similarly to those of typically-developing children than to the language-delayed or autistic samples. The statistical models were able to classify children from the four groups examined and estimate developmental age based on automated vocal analysis. Conclusions This work shows a broad similarity between children with hearing loss and typically developing children, although children with hearing loss show some delay in their production of speech. Automatic acoustic analysis can now be used to quantitatively compare vocal development in children with and without speech-related disorders. The work may serve to better distinguish among various developmental disorders and ultimately contribute to improved intervention. PMID:25587667

  10. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis.

    PubMed

    Corona, Giovanni; Rastrelli, Giulia; Monami, Matteo; Saad, Farid; Luconi, Michaela; Lucchese, Marcello; Facchiano, Enrico; Sforza, Alessandra; Forti, Gianni; Mannucci, Edoardo; Maggi, Mario

    2013-06-01

    Few randomized clinical studies have evaluated the impact of diet and physical activity on testosterone levels in obese men with conflicting results. Conversely, studies on bariatric surgery in men generally have shown an increase in testosterone levels. The aim of this study is to perform a systematic review and meta-analysis of available trials on the effect of body weight loss on sex hormones levels. Meta-analysis. An extensive Medline search was performed including the following words: 'testosterone', 'diet', 'weight loss', 'bariatric surgery', and 'males'. The search was restricted to data from January 1, 1969 up to August 31, 2012. Out of 266 retrieved articles, 24 were included in the study. Of the latter, 22 evaluated the effect of diet or bariatric surgery, whereas two compared diet and bariatric surgery. Overall, both a low-calorie diet and bariatric surgery are associated with a significant (P<0.0001) increase in plasma sex hormone-binding globulin-bound and -unbound testosterone levels (total testosterone (TT)), with bariatric surgery being more effective in comparison with the low-calorie diet (TT increase: 8.73 (6.51-10.95) vs 2.87 (1.68-4.07) for bariatric surgery and the low-calorie diet, respectively; both P<0.0001 vs baseline). Androgen rise is greater in those patients who lose more weight as well as in younger, non-diabetic subjects with a greater degree of obesity. Body weight loss is also associated with a decrease in estradiol and an increase in gonadotropins levels. Multiple regression analysis shows that the degree of body weight loss is the best determinant of TT rise (B=2.50±0.98, P=0.029). These data show that weight loss is associated with an increase in both bound and unbound testosterone levels. The normalization of sex hormones induced by body weight loss is a possible mechanism contributing to the beneficial effects of surgery in morbid obesity.

  11. Weight Loss and Coronary Heart Disease: Sensitivity Analysis for Unmeasured Confounding by Undiagnosed Disease.

    PubMed

    Danaei, Goodarz; Robins, James M; Young, Jessica G; Hu, Frank B; Manson, JoAnn E; Hernán, Miguel A

    2016-03-01

    Evidence for the effect of weight loss on coronary heart disease (CHD) or mortality has been mixed. The effect estimates can be confounded due to undiagnosed diseases that may affect weight loss. We used data from the Nurses' Health Study to estimate the 26-year risk of CHD under several hypothetical weight loss strategies. We applied the parametric g-formula and implemented a novel sensitivity analysis for unmeasured confounding due to undiagnosed disease by imposing a lag time for the effect of weight loss on chronic disease. Several sensitivity analyses were conducted. The estimated 26-year risk of CHD did not change under weight loss strategies using lag times from 0 to 18 years. For a 6-year lag time, the risk ratios of CHD for weight loss compared with no weight loss ranged from 1.00 (0.99, 1.02) to 1.02 (0.99, 1.05) for different degrees of weight loss with and without restricting the weight loss strategy to participants with no major chronic disease. Similarly, no protective effect of weight loss was estimated for mortality risk. In contrast, we estimated a protective effect of weight loss on risk of type 2 diabetes. We estimated that maintaining or losing weight after becoming overweight or obese does not reduce the risk of CHD or death in this cohort of middle-age US women. Unmeasured confounding, measurement error, and model misspecification are possible explanations but these did not prevent us from estimating a beneficial effect of weight loss on diabetes.

  12. Depolarization- and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in explant cultures.

    PubMed

    Connor, J A; Tseng, H Y; Hockberger, P E

    1987-05-01

    Digital imaging of the Ca indicator fura-2 has been used to study the responses of developing granule cells in culture to depolarization and transmitter action. Unstimulated cells bathed in Krebs saline exhibited cytoplasmic Ca ion concentrations, [Ca2+], that were generally in the 30-60 nM range. Exposure of cells to high-potassium (25 mM) saline depolarized the membrane potential and produced an immediate rise in [Ca2+] that recovered within 2-3 min in normal saline. The response grew progressively larger over the first 20 d in culture. Transient increases in [Ca2+] to levels greater than 1 microM were observed after 12-14 d in vitro, at which time the cells displayed intense electrical activity when exposed to high K. At this stage, the increases were attenuated by blocking action potential activity with TTX. In TTX-treated or immature cells, in which the transient phase of the Ca change was relatively small, a second exposure to high K typically produced a much larger Ca response that the initial exposure. The duration of this facilitation of the response persisted for periods longer than 5 min. Application of the neurotransmitter GABA induced a transient increase in membrane conductance, with a reversal potential near resting potential (approx. -60 mV), and caused an intracellular Ca2+ increase that outlasted the exposure to GABA by several minutes. Glutamate, or kainate, induced an increase in membrane conductance but with a reversal potential more positive than spike threshold. These agents also elevated intracellular Ca2+, but unlike the case with GABA, this Ca response reversed rapidly upon removal of the transmitter. The facilitatory effect of repeated exposures to high-K saline, as well as the persistent Ca elevation following a brief GABA application, suggests that granule cells possess the capability of displaying activity-dependent changes in Ca levels in culture.

  13. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current.

    PubMed

    Cummings, T A; Daniels, C; Kinnamon, S C

    1996-03-01

    1. The gigaseal voltage-clamp technique was used to record responses of hamster taste receptor cells to synthetic sweeteners and cyclic nucleotides. Voltage-dependent currents and steady-state currents were monitored during bath exchanges of saccharin, two high-potency sweeteners, 8-chlorophenylthio-adenosine 3',5'-cyclic monophosphate (8cpt-cAMP), and dibutyryl-guanosine 3',5'-cyclic monophosphate (db-cGMP). 2. Of the 237 fungiform taste cells studied, only one in eight was sweet responsive. Outward currents, both voltage-dependent and resting, were reduced by all of the sweeteners tested in sweet-responsive taste cells, whereas these currents were unaffected by sweeteners in sweet-unresponsive taste cells. 3. In every sweet-responsive cell tested, 8cpt-cAMP and db-cGMP mimicked the response to the sweeteners, but neither nucleotide elicited responses in sweet-unresponsive cells. Thus there was a one-to-one correlation between sweet responsivity and cyclic nucleotide responsivity. 4. Sweet responses showed cross adaptation with cyclic nucleotide responses. This indicates that the same ion channel is modulated by sweeteners and cyclic nucleotides. 5. The sweetener- and cyclic nucleotide-blocked current had an apparent reversal potential of -50 mV, which was close to the potassium reversal potential in these experiments. In addition, there was no effect of sweeteners and cyclic nucleotides in the presence of the K+ channel blocker tetraethylammonium bromide (TEA). These data suggest that block of a resting, TEA-sensitive K+ current is the final common step leading to taste cell depolarization during sweet transduction. 6. These data, together with data from a previous study (Cummings et al. 1993), suggest that both synthetic sweeteners and sucrose utilize second-messenger pathways that block a resting K+ conductance to depolarize the taste cell membrane.

  14. 8-pCPT-cGMP prevents mitochondrial depolarization and improves the outcome of steatotic partial liver transplantation

    PubMed Central

    Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Lemasters, John J; Zhong, Zhi

    2017-01-01

    Permeant cGMP analogs prevent the mitochondria permeability transition (MPT) in vitro. In this study, we explored whether 8-pCPT-cGMP prevents the MPT and decreases post-transplant damage to fatty partial liver grafts (FPG) in vivo. Rats were fed a control or high-fat, high-fructose diet for 2-week. Lean and fatty liver explants were reduced in size ex vivo to ~35% and stored in the University of Wisconsin solution with and without 8-pCPT-cGMP (300 µM) for 2 h. After transplantation, alanine aminotransferase release (indicator of hepatocellular injury), hyperbilirubinemia (indicator of poor liver function), and cell death were all higher in FPG than in lean partial grafts (LPG). Liver regeneration increased in LPG but was suppressed in FPG. 8-pCPT-cGMP blunted graft injury, improved liver regeneration and function, and increased survival of FPG. Hepatic mitochondrial depolarization detected by intravital multiphoton microscopy of rhodamine 123 in living rats was ~3.5-fold higher in FPG than in LPG. 8-pCPT-cGMP decreased mitochondrial depolarization in FPG almost to the level of LPG. Activation of mammalian target of rapamycin (mTOR), an energy sensitive kinase that stimulates cell proliferation and growth, and p70S6 kinase, a downstream signaling molecule of mTOR, was increased in LPG but suppressed in FPG. 8-pCPT-cGMP restored the activity of mTOR and p70S6 kinase in FPG. 8-pCPT-cGMP also increased activation of cAMP response element-binding protein (CREB) and expression of cyclins D1 and E in FPG. Non-alcoholic steatosis increases injury and suppresses regeneration after partial liver transplantation, at least in part, due to more severe mitochondrial dysfunction. Protection of mitochondria with a cGMP analog effectively improves outcomes of FPG transplantation. PMID:28694919

  15. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study

    PubMed Central

    Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B

    2012-01-01

    BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324

  16. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization

    PubMed Central

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-01-01

    Abstract The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges. PMID:21300746

  17. Sub-threshold depolarizing pre-pulses can enhance the efficiency of biphasic stimuli in transcutaneous neuromuscular electrical stimulation.

    PubMed

    Vargas Luna, Jose Luis; Mayr, Winfried; Cortés-Ramirez, Jorge-Armando

    2018-06-09

    There is multiple evidence in the literature that a sub-threshold pre-pulse, delivered immediately prior to an electrical stimulation pulse, can alter the activation threshold of nerve fibers and motor unit recruitment characteristics. So far, previously published works combined monophasic stimuli with sub-threshold depolarizing pre-pulses (DPPs) with inconsistent findings-in some studies, the DPPs decreased the activation threshold, while in others it was increased. This work aimed to evaluate the effect of DPPs during biphasic transcutaneous electrical stimulation and to study the possible mechanism underlying those differences. Sub-threshold DPPs between 0.5 and 15 ms immediately followed by biphasic or monophasic pulses were administered to the tibial nerve; the electrophysiological muscular responses (motor-wave, M-wave) were monitored via electromyogram (EMG) recording from the soleus muscle. The data show that, under the specific studied conditions, DPPs tend to lower the threshold for nerve fiber activation rather than elevating it. DPPs with the same polarity as the leading phase of biphasic stimuli are more effective to increase the sensitivity. This work assesses for the first time the effect of DPPs on biphasic pulses, which are required to achieve charge-balanced stimulation, and it provides guidance on the effect of polarity and intensity to take full advantage of this feature. Graphical abstract In this work, the effect of sub-threshold depolarizing pre-pulses (DPP) is investigated in a setup with transcutaneous electrical stimulation. We found that, within the tested 0-15 ms DPP duration range, the DPPs administered immediately before biphasic pulses proportionally increase the nerve excitability as visible in the M-waves recorded from the soleus muscle. Interestingly, these findings oppose published results, where DPPs, administered immediately before monophasic stimuli via implanted electrodes, led to decrease of nerve excitability.

  18. Real-Time Optical Diagnosis of the Rat Brain Exposed to a Laser-Induced Shock Wave: Observation of Spreading Depolarization, Vasoconstriction and Hypoxemia-Oligemia

    PubMed Central

    Sato, Shunichi; Kawauchi, Satoko; Okuda, Wataru; Nishidate, Izumi; Nawashiro, Hiroshi; Tsumatori, Gentaro

    2014-01-01

    Despite many efforts, the pathophysiology and mechanism of blast-induced traumatic brain injury (bTBI) have not yet been elucidated, partially due to the difficulty of real-time diagnosis and extremely complex factors determining the outcome. In this study, we topically applied a laser-induced shock wave (LISW) to the rat brain through the skull, for which real-time measurements of optical diffuse reflectance and electroencephalogram (EEG) were performed. Even under conditions showing no clear changes in systemic physiological parameters, the brain showed a drastic light scattering change accompanied by EEG suppression, which indicated the occurrence of spreading depression, long-lasting hypoxemia and signal change indicating mitochondrial energy impairment. Under the standard LISW conditions examined, hemorrhage and contusion were not apparent in the cortex. To investigate events associated with spreading depression, measurement of direct current (DC) potential, light scattering imaging and stereomicroscopic observation of blood vessels were also conducted for the brain. After LISW application, we observed a distinct negative shift in the DC potential, which temporally coincided with the transit of a light scattering wave, showing the occurrence of spreading depolarization and concomitant change in light scattering. Blood vessels in the brain surface initially showed vasodilatation for 3–4 min, which was followed by long-lasting vasoconstriction, corresponding to hypoxemia. Computer simulation based on the inverse Monte Carlo method showed that hemoglobin oxygen saturation declined to as low as ∼35% in the long-term hypoxemic phase. Overall, we found that topical application of a shock wave to the brain caused spreading depolarization/depression and prolonged severe hypoxemia-oligemia, which might lead to pathological conditions in the brain. Although further study is needed, our findings suggest that spreading depolarization/depression is one of the key

  19. Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.

    2016-04-01

    This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.

  20. Motivation for Participating in a Weight Loss Program and Financial Incentives: An Analysis from a Randomized Trial

    PubMed Central

    Crane, Melissa M.; Tate, Deborah F.; Finkelstein, Eric A.; Linnan, Laura A.

    2012-01-01

    This analysis investigated if changes in autonomous or controlled motivation for participation in a weight loss program differed between individuals offered a financial incentive for weight loss compared to individuals not offered an incentive. Additionally, the same relationships were tested among those who lost weight and either received or did not receive an incentive. This analysis used data from a year-long randomized worksite weight loss program that randomly assigned employees in each worksite to either a low-intensity weight loss program or the same program plus small financial incentives for weight loss ($5.00 per percentage of initial weight lost). There were no differences in changes between groups on motivation during the study, however, increases in autonomous motivation were consistently associated with greater weight losses. This suggests that the small incentives used in this program did not lead to increases in controlled motivation nor did they undermine autonomous motivation. Future studies are needed to evaluate the magnitude and timing of incentives to more fully understand the relationship between incentives and motivation. PMID:22577524

  1. Clinicopathological significance of SMAD4 loss in pancreatic ductal adenocarcinomas: a systematic review and meta-analysis.

    PubMed

    Wang, Jin-Dao; Jin, Ketao; Chen, Xiao-Ying; Lv, Jie-Qing; Ji, Ke-Wei

    2017-03-07

    Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer mortality. Although advances have been made in understanding the pathogenesis of PDAC, the outcome still remains poor. The aim of this study is to conduct a meta-analysis to evaluate the precise association between SMAD4 loss and clinicopathological significance in PDAC. A literature search was made in PubMed, Web of Science, Google scholar, and EMBASE for related publications. The data were extracted and assessed by two reviewers independently. Analysis of pooled data was performed, Odds Ratio or Hazard Ratio with corresponding confidence intervals was calculated and summarized. 12 relevant articles were included for full review in detail and meta-analysis. The frequency of SMAD4 protein loss was significantly increased in PDAC than in nonmalignant pancreatic tissue, Odd Ratio was 0.05 with 95% confidence interval 0.01-0.23, p<0.0001. SMAD4 loss was significantly associated with poor overall survival in patients with PDAC, Hazard Ratio was 0.61 with 95% confidence interval 0.38-0.99, p=0.05. SMAD4 loss was not correlated with the size, grades, and lymph node metastasis of PDAC. In conclusion, SMAD4 is a biomarker for the diagnosis of PDAC. SMAD4 loss is significantly related to poor prognosis in patients with PDAC.

  2. Cluster analysis of the national weight control registry to identify distinct subgroups maintaining successful weight loss.

    PubMed

    Ogden, Lorraine G; Stroebele, Nanette; Wyatt, Holly R; Catenacci, Victoria A; Peters, John C; Stuht, Jennifer; Wing, Rena R; Hill, James O

    2012-10-01

    The National Weight Control Registry (NWCR) is the largest ongoing study of individuals successful at maintaining weight loss; the registry enrolls individuals maintaining a weight loss of at least 13.6 kg (30 lb) for a minimum of 1 year. The current report uses multivariate latent class cluster analysis to identify unique clusters of individuals within the NWCR that have distinct experiences, strategies, and attitudes with respect to weight loss and weight loss maintenance. The cluster analysis considers weight and health history, weight control behaviors and strategies, effort and satisfaction with maintaining weight, and psychological and demographic characteristics. The analysis includes 2,228 participants enrolled between 1998 and 2002. Cluster 1 (50.5%) represents a weight-stable, healthy, exercise conscious group who are very satisfied with their current weight. Cluster 2 (26.9%) has continuously struggled with weight since childhood; they rely on the greatest number of resources and strategies to lose and maintain weight, and report higher levels of stress and depression. Cluster 3 (12.7%) represents a group successful at weight reduction on the first attempt; they were least likely to be overweight as children, are maintaining the longest duration of weight loss, and report the least difficulty maintaining weight. Cluster 4 (9.9%) represents a group less likely to use exercise to control weight; they tend to be older, eat fewer meals, and report more health problems. Further exploration of the unique characteristics of these clusters could be useful for tailoring future weight loss and weight maintenance programs to the specific characteristics of an individual.

  3. A spatio-spectral polarization analysis of 1 µm-pumped bulk supercontinuum in a cubic crystal (YAG)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Aradhana; Chatterjee, Gourab; Zheng, Jiaan; Hartl, Ingmar; Ruehl, Axel; Dwayne Miller, R. J.

    2018-06-01

    We present the first systematic study of the spatio-spectral polarization properties of a supercontinuum generated in a cubic crystal, yttrium-aluminum garnet (YAG), including a full spectral analysis of the white light core and surrounding ring structure. We observe no depolarization of the supercontinuum, and no spatial dependence of polarization ratios for any wavelength. We discuss the discrepancy of YAG's polarization behavior in the context of well-established results in literature reporting self-induced depolarization in other cubic crystals.

  4. Multiple scattering in chiral media: border effects, reduced depolarization, and sensitivity limit

    NASA Astrophysics Data System (ADS)

    Delplancke, Francoise; Badoz, Jacques P.; Boccara, A. Claude

    1997-10-01

    Suspensions of polystyrene latex beads in chiral solutions were investigated. The rotatory power, induced by solubilized sucrose, in near-forward scattering was measured via a method using polarization modulation by photo-elastic modulator. The sensitivity of the measurement was enhanced and optimized in order to measure sucrose concentrations as low as 5 mg/ml in a cell 5 mm thick only. Different concentrations and diameters of latex particles were used in combination with different sucrose concentrations going from 1 mg/ml up to saturation. The experiments showed that the apparent rotatory power is enhanced by multiple scattering, that depolarization effects are less important with highly concentrated sucrose solutions and that attention has to be paid to cell border effects in order to avoid important artifacts, in case of highly scattering suspensions. Qualitative and theoretical explanations of those observations are presented. One possible application of this method is to measure the sugar content in human blood, in vivo, non-invasively, through the skin. The concentration to be evaluated is at the sensitivity limit. So any artifact has to be removed carefully, e.g. skin cell birefringence or chirality.

  5. 1 D analysis of Radiative Shock damping by lateral radiative losses

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Audit, Edouard

    2008-11-01

    We have demonstrated the effect of the lateral radiative losses in radiative shocks propagative in layered quasi-planar atmospheres.[1,2] The damping of the precursor is sensitive to the fraction of self-emitted radiation reflected by the walls (called albedo) We have given recently an experimental determination of the wall albedo.[2] For parametric analysis of this effect, we implement lateral losses in the 1D hydro-rad code MULTI [3] and compared results with 2D simulations. [1] S.Leygnac, et al., Phys. Plasmas 13, 113301 (2006) [2] M.Busquet, et al, High Energy Density Plasmas 3, 8-11 (2007); M.Gonzalez, et al, Laser Part. Beams 24, 1-6 (2006) [3] Ramis et al, Comp. Phys. Comm., 49, 475 (1988)

  6. Spatial Durbin model analysis macroeconomic loss due to natural disasters

    NASA Astrophysics Data System (ADS)

    Kusrini, D. E.; Mukhtasor

    2015-03-01

    Magnitude of the damage and losses caused by natural disasters is huge for Indonesia, therefore this study aimed to analyze the effects of natural disasters for macroeconomic losses that occurred in 115 cities/districts across Java during 2012. Based on the results of previous studies it is suspected that it contains effects of spatial dependencies in this case, so that the completion of this case is performed using a regression approach to the area, namely Analysis of Spatial Durbin Model (SDM). The obtained significant predictor variable is population, and predictor variable with a significant weighting is the number of occurrences of disasters, i.e., disasters in the region which have an impact on other neighboring regions. Moran's I index value using the weighted Queen Contiguity also showed significant results, meaning that the incidence of disasters in the region will decrease the value of GDP in other.

  7. Time-loss injuries versus non-time-loss injuries in the first team rugby league football: a pooled data analysis.

    PubMed

    Gissane, Conor; Hodgson, Lisa; Jennings, De

    2012-09-01

    To describe the injury rates in first team rugby league in terms of those injuries that require missed playing time and those that do not. A pooled data analysis from 2 independent databases. Rugby league match and training environment over several seasons from 1990 to 2003. Injuries were reported as rates per 1000 hours of participation and as percentages with their associated 95% confidence intervals (CIs). A total of 1707 match injuries were recorded. Of these injuries, 257 required players to miss the subsequent match. The remaining 1450 injuries did not require players to miss the next game. They represented 85% (95% CI, 83-87) of all injuries received and recorded. The ratio of non-time-loss (NTL) to time-loss (TL) injuries was 5.64 (95% CI, 4.96-6.42). There were 450 training injuries, of which 81 were TL injuries and 369 NTL injuries. The NTL training injury rate was 4.56 (95% CI, 3.58-5.79) times higher than TL injury rate. Non-time-loss injuries represent the largest proportion of injuries in rugby league. If NTL injuries are not recorded, the workload of practitioners is likely to be severely underestimated.

  8. Enhancing Continuous Online Microdialysis Using Dexamethasone: Measurement of Dynamic Neurometabolic Changes during Spreading Depolarization.

    PubMed

    Varner, Erika L; Leong, Chi Leng; Jaquins-Gerstl, Andrea; Nesbitt, Kathryn M; Boutelle, Martyn G; Michael, Adrian C

    2017-08-16

    Microdialysis is well established in chemical neuroscience as a mainstay technology for real time intracranial chemical monitoring in both animal models and human patients. Evidence shows that microdialysis can be enhanced by mitigating the penetration injury caused during the insertion of microdialysis probes into brain tissue. Herein, we show that retrodialysis of dexamethasone in the rat cortex enhances the microdialysis detection of K + and glucose transients induced by spreading depolarization. Without dexamethasone, quantification of glucose transients was unreliable by 5 days after probe insertion. With dexamethasone, robust K + and glucose transients were readily quantified at 2 h, 5 days, and 10 days after probe insertion. The amplitudes of the K + transients declined day-to-day following probe insertion, and the amplitudes of the glucose transients exhibited a decreasing trend that did not reach statistical significance. Immunohistochemistry and fluorescence microscopy confirm that dexamethasone is highly effective at preserving a healthy probe-brain interface for at least 10 days even though retrodialysis of dexamethasone ceased after 5 days.

  9. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-07-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  10. T-Matrix Modeling of Linear Depolarization by Morphologically Complex Soot and Soot-Containing Aerosols

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with groundbased, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  11. Childhood Mourning: Prospective Case Analysis of Multiple Losses

    ERIC Educational Resources Information Center

    Kaufman, Kenneth R.; Kaufman, Nathaniel D.

    2005-01-01

    Multiple losses within short time periods make one question life and can exponentially influence one's coping skills. But what are the effects on a child and what should be done when the next loss occurs? This case addresses the multiple losses suffered by a child while assessing coping skills of the child and coping strategies used by the parents…

  12. Popular Mobile Phone Apps for Diet and Weight Loss: A Content Analysis.

    PubMed

    Zaidan, Sarah; Roehrer, Erin

    2016-07-11

    A review of the literature has revealed that the rates of overweight and obesity have been increasing in Australia over the last two decades and that wellness mobile phone apps play a significant role in monitoring and managing individuals' weight. Although mobile phone app markets (iTunes and Google Play) list thousands of mobile phone health apps, it is not always clear whether those apps are supported by credible sources. Likewise, despite the prevailing use of mobile phone apps to aid with weight management, the usability features of these apps are not well characterized. The research explored how usability taxonomy could inform the popularity of downloaded, socially focused wellness mobile phone apps, in particular weight loss and diet apps. The aim of the study was to investigate the Australian mobile phone app stores (iTunes and Google Play) in order to examine the usability features of the most popular (ie, most downloaded) wellness apps. The design of this study comprises 3 main stages: stage 1, identifying apps; stage 2, development of weight loss and diet evaluation framework; and stage 3, application of the evaluation framework. Each stage includes specific data collection, analysis tools, and techniques. The study has resulted in the development of a justified evaluation framework for weight loss and diet mobile phone apps. Applying the evaluation framework to the identified apps has shown that the most downloaded iTunes and Google Play apps are not necessarily the most usable or effective. In addition, the research found that search algorithms for iTunes and Google Play are biased toward apps' titles and keywords that do not accurately define the real functionality of the app. Moreover, the study has also analyzed the apps' user reviews, which served as justification for the developed evaluation framework. The analysis has shown that ease of use, reminder, bar code scanning, motivation, usable for all, and synchronization are significant attributes

  13. Atrial Premature Depolarization-Induced Changes in QRS and T Wave Morphology on Resting Electrocardiograms in Horses.

    PubMed

    Broux, B; De Clercq, D; Decloedt, A; Van Der Vekens, N; Verheyen, T; Ven, S; Pardon, B; van Loon, G

    2016-07-01

    The electrocardiographic differentiation between atrial (APDs) and ventricular (VPDs) premature depolarizations is important. P wave prematurity and normal QRS and T wave morphology generally are used as discriminating criteria for APDs. The aim of this study was to determine whether P, Q, R, S, and T wave amplitude, PQ interval, QRS and P wave duration and P and T wave morphology differ between APDs and sinus beats. To determine the relationship between the RR coupling interval and the change in S wave amplitude between sinus beats and APDs. Case-control study. From a modified base-apex configuration of 30 horses with APDs at rest, sinus beat and APD associated preceding RR interval, P, PQ and QRS duration and P, R, S, and T wave amplitudes were measured. Linear mixed models and logistic regression were used to determine the effect of APDs on the ECG variables studied. In comparison to sinus beats, APDs were associated with a significant (P < .001) change in P amplitude (-0.03 ± 0.01 mV) and increase in S (0.20 ± 0.02 mV) and T (0.08 ± 0.03 mV) amplitude. PQ (-20.3 ± 5.2 ms) and RR (-519 ± 14 ms) interval and P duration (-21.1 ± 3.0 ms) decreased (P < .001). APDs were significantly associated with a singular positive P wave (OR: 11.0, P < .001) and were more likely to have a monophasic positive T wave (OR: 9.2, P < .001). A smaller RR coupling interval was associated with an increased relative difference in S amplitude (P < .01). Atrial premature depolarizations may lead to changes in QRS and T wave morphology. Knowledge of these changes is important to avoid interpreting certain APDs as VPDs. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Childhood mourning: prospective case analysis of multiple losses.

    PubMed

    Kaufman, Kenneth R; Kaufman, Nathaniel D

    2005-04-01

    Multiple losses within short time periods make one question life and can exponentially influence one's coping skills. But what are the effects on a child and what should be done when the next loss occurs? This case addresses the multiple losses suffered by a child while assessing coping skills of the child and coping strategies used by the parents to assist the child.

  15. Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2017-01-01

    Intratumoral heterogeneity (ITH) is a prominent feature of kidney cancer. It is not known whether it has utility in finding associations between protein expression and clinical parameters. We used ITH that is detected by immunohistochemistry (IHC) to aid the association analysis between the loss of SWI/SNF components and clinical parameters.160 ccRCC tumors (40 per tumor stage) were used to generate tissue microarray (TMA). Four foci from different regions of each tumor were selected. IHC was performed against PBRM1, ARID1A, SETD2, SMARCA4, and SMARCA2. Statistical analyses were performed to correlate biomarker losses with patho-clinical parameters. Categorical variables were compared between groups using Fisher's exact tests. Univariate and multivariable analyses were used to correlate biomarker changes and patient survivals. Multivariable analyses were performed by constructing decision trees using the classification and regression trees (CART) methodology. IHC detected widespread ITH in ccRCC tumors. The statistical analysis of the “Truncal loss” (root loss) found additional correlations between biomarker losses and tumor stages than the traditional “Loss in tumor (total)”. Losses of SMARCA4 or SMARCA2 significantly improved prognosis for overall survival (OS). Losses of PBRM1, ARID1A or SETD2 had the opposite effect. Thus “Truncal Loss” analysis revealed hidden links between protein losses and patient survival in ccRCC. PMID:28445125

  16. The Multidimensional Loss Scale: validating a cross-cultural instrument for measuring loss.

    PubMed

    Vromans, Lyn; Schweitzer, Robert D; Brough, Mark

    2012-04-01

    The Multidimensional Loss Scale (MLS) represents the first instrument designed specifically to index Experience of Loss Events and Loss Distress across multiple domains (cultural, social, material, and intrapersonal) relevant to refugee settlement. Recently settled Burmese adult refugees (N = 70) completed a questionnaire battery, including MLS items. Analyses explored MLS internal consistency, convergent and divergent validity, and factor structure. Cronbach alphas indicated satisfactory internal consistency for Experience of Loss Events (0.85) and Loss Distress (0.92), reflecting a unitary construct of multidimensional loss. Loss Distress did not correlate with depression or anxiety symptoms and correlated moderately with interpersonal grief and trauma symptoms, supporting divergent and convergent validity. Factor analysis provided preliminary support for a five-factor model: Loss of Symbolic Self, Loss of Interdependence, Loss of Home, Interpersonal Loss, and Loss of Intrapersonal Integrity. Received well by participants, the new scale shows promise for application in future research and practice.

  17. Clustering analysis strategies for electron energy loss spectroscopy (EELS).

    PubMed

    Torruella, Pau; Estrader, Marta; López-Ortega, Alberto; Baró, Maria Dolors; Varela, Maria; Peiró, Francesca; Estradé, Sònia

    2018-02-01

    In this work, the use of cluster analysis algorithms, widely applied in the field of big data, is proposed to explore and analyze electron energy loss spectroscopy (EELS) data sets. Three different data clustering approaches have been tested both with simulated and experimental data from Fe 3 O 4 /Mn 3 O 4 core/shell nanoparticles. The first method consists on applying data clustering directly to the acquired spectra. A second approach is to analyze spectral variance with principal component analysis (PCA) within a given data cluster. Lastly, data clustering on PCA score maps is discussed. The advantages and requirements of each approach are studied. Results demonstrate how clustering is able to recover compositional and oxidation state information from EELS data with minimal user input, giving great prospects for its usage in EEL spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Local conductance: A means to extract polarization and depolarizing fields near domain walls in ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, A. M.; Kumar, A.; Gregg, J. M.

    Conducting atomic force microscopy images of bulk semiconducting BaTiO{sub 3} surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current-voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than thatmore » from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.« less

  19. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  20. Oxytocin Depolarizes Fast-Spiking Hilar Interneurons and Induces GABA Release onto Mossy Cells of the Rat Dentate Gyrus

    PubMed Central

    Harden, Scott W.; Frazier, Charles J.

    2016-01-01

    Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. PMID:27068005

  1. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus.

    PubMed

    Harden, Scott W; Frazier, Charles J

    2016-09-01

    Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found in close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. © 2016 Wiley

  2. Analysis of the Environmental Impact of Insulin Infusion Sets Based on Loss of Resources with Waste

    PubMed Central

    Pfützner, Andreas; Musholt, Petra B; Malmgren-Hansen, Bjoern; Nilsson, Nils H; Forst, Thomas

    2011-01-01

    Insulin pump therapy [continuous subcutaneous insulin infusion (CSII)] requires regular change of infusion sets every 2-3 days in order to minimize the risk of skin irritations or other adverse events. This has been discussed to be a potential burden to the environment. The purpose of this analysis was to perform an environmental assessment of insulin pump infusion sets based on loss of resources occurring during incineration of the discarded products and by means of a lifecycle concept used to weight a material in relation to its rareness on earth and its consumption. In addition to five infusion sets (Inset30, InsetII, Comfort, Quick-set, and Cleo), a patch pump (Omnipod) was also included in this analysis. The annual loss in waste of the so called “person reserve” of 3 days of catheter use was compared with daily consumption of a cup of coffee in a disposable paper cup and to a soft drink in an aluminum can. The weight-based loss in resources through waste for the infusion sets (except for Cleo) corresponded to 70-200% of the loss of resources for a coffee cup (Cleo, 320%; Omnipod, 1,821,600%) and to 1-3% of the loss from an aluminum soft drink can (Cleo, 5%; Omnipod, 31,200%). The loss or resources by use of infusion sets used in insulin pump therapy appears to be low and is similar to the burden induced by the uptake of one cup of coffee per day. The loss or resources with regular CSII is considerably lower than the loss or resources induced by patch pumps. PMID:21880223

  3. Traits and causes of environmental loss-related chemical accidents in China based on co-word analysis.

    PubMed

    Wu, Desheng; Song, Yu; Xie, Kefan; Zhang, Baofeng

    2018-04-25

    Chemical accidents are major causes of environmental losses and have been debated due to the potential threat to human beings and environment. Compared with the single statistical analysis, co-word analysis of chemical accidents illustrates significant traits at various levels and presents data into a visual network. This study utilizes a co-word analysis of the keywords extracted from the Web crawling texts of environmental loss-related chemical accidents and uses the Pearson's correlation coefficient to examine the internal attributes. To visualize the keywords of the accidents, this study carries out a multidimensional scaling analysis applying PROXSCAL and centrality identification. The research results show that an enormous environmental cost is exacted, especially given the expected environmental loss-related chemical accidents with geographical features. Meanwhile, each event often brings more than one environmental impact. Large number of chemical substances are released in the form of solid, liquid, and gas, leading to serious results. Eight clusters that represent the traits of these accidents are formed, including "leakage," "poisoning," "explosion," "pipeline crack," "river pollution," "dust pollution," "emission," and "industrial effluent." "Explosion" and "gas" possess a strong correlation with "poisoning," located at the center of visualization map.

  4. Fission product transport analysis in a loss of decay heat removal accident at Browns Ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Weber, C.F.; Hodge, S.A.

    1984-01-01

    This paper summarizes an analysis of the movement of noble gases, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal (DHR) capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris ontomore » the drywell floor.« less

  5. Quantum correlation of fiber-based telecom-band photon pairs through standard loss and random media.

    PubMed

    Sua, Yong Meng; Malowicki, John; Lee, Kim Fook

    2014-08-15

    We study quantum correlation and interference of fiber-based telecom-band photon pairs with one photon of the pair experiencing multiple scattering in a random medium. We measure joint probability of two-photon detection for signal photon in a normal channel and idler photon in a channel, which is subjected to two independent conditions: standard loss (neutral density filter) and random media. We observe that both conditions degrade the correlation of signal and idler photons, and depolarization of the idler photon in random medium can enhance two-photon interference at certain relative polarization angles. Our theoretical calculation on two-photon polarization correlation and interference as a function of mean free path is in agreement with our experiment data. We conclude that quantum correlation of a polarization-entangled photon pair is better preserved than a polarization-correlated photon pair as one photon of the pair scatters through a random medium.

  6. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes.

    PubMed

    Ulvatne, H; Haukland, H H; Olsvik, O; Vorland, L H

    2001-03-09

    Antimicrobial peptides have been extensively studied in order to elucidate their mode of action. Most of these peptides have been shown to exert a bactericidal effect on the cytoplasmic membrane of bacteria. Lactoferricin is an antimicrobial peptide with a net positive charge and an amphipatic structure. In this study we examine the effect of bovine lactoferricin (lactoferricin B; Lfcin B) on bacterial membranes. We show that Lfcin B neither lyses bacteria, nor causes a major leakage from liposomes. Lfcin B depolarizes the membrane of susceptible bacteria, and induces fusion of negatively charged liposomes. Hence, Lfcin B may have additional targets responsible for the antibacterial effect.

  7. Sound transmission loss of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the

  8. Children with unilateral hearing loss may have lower intelligence quotient scores: A meta-analysis.

    PubMed

    Purcell, Patricia L; Shinn, Justin R; Davis, Greg E; Sie, Kathleen C Y

    2016-03-01

    In this meta-analysis, we reviewed observational studies investigating differences in intelligence quotient (IQ) scores of children with unilateral hearing loss compared to children with normal hearing. PubMed Medline, Cumulative Index to Nursing and Allied Health Literature, Embase, PsycINFO. A query identified all English-language studies related to pediatric unilateral hearing loss published between January 1980 and December 2014. Titles, abstracts, and articles were reviewed to identify observational studies reporting IQ scores. There were 261 unique titles, with 29 articles undergoing full review. Four articles were identified, which included 173 children with unilateral hearing loss and 202 children with normal hearing. Ages ranged from 6 to 18 years. Three studies were conducted in the United States and one in Mexico. All were of high quality. All studies reported full-scale IQ results; three reported verbal IQ results; and two reported performance IQ results. Children with unilateral hearing loss scored 6.3 points lower on full-scale IQ, 95% confidence interval (CI) [-9.1, -3.5], P value < 0.001; and 3.8 points lower on performance IQ, 95% CI [-7.3, -0.2], P value 0.04. When investigating verbal IQ, we detected substantial heterogeneity among studies; exclusion of the outlying study resulted in significant difference in verbal IQ of 4 points, 95% CI [-7.5, -0.4], P value 0.028. This meta-analysis suggests children with unilateral hearing loss have lower full-scale and performance IQ scores than children with normal hearing. There also may be disparity in verbal IQ scores. Laryngoscope, 126:746-754, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Popular Mobile Phone Apps for Diet and Weight Loss: A Content Analysis

    PubMed Central

    Roehrer, Erin

    2016-01-01

    Background A review of the literature has revealed that the rates of overweight and obesity have been increasing in Australia over the last two decades and that wellness mobile phone apps play a significant role in monitoring and managing individuals’ weight. Although mobile phone app markets (iTunes and Google Play) list thousands of mobile phone health apps, it is not always clear whether those apps are supported by credible sources. Likewise, despite the prevailing use of mobile phone apps to aid with weight management, the usability features of these apps are not well characterized. Objective The research explored how usability taxonomy could inform the popularity of downloaded, socially focused wellness mobile phone apps, in particular weight loss and diet apps. The aim of the study was to investigate the Australian mobile phone app stores (iTunes and Google Play) in order to examine the usability features of the most popular (ie, most downloaded) wellness apps. Methods The design of this study comprises 3 main stages: stage 1, identifying apps; stage 2, development of weight loss and diet evaluation framework; and stage 3, application of the evaluation framework. Each stage includes specific data collection, analysis tools, and techniques. Results The study has resulted in the development of a justified evaluation framework for weight loss and diet mobile phone apps. Applying the evaluation framework to the identified apps has shown that the most downloaded iTunes and Google Play apps are not necessarily the most usable or effective. In addition, the research found that search algorithms for iTunes and Google Play are biased toward apps’ titles and keywords that do not accurately define the real functionality of the app. Moreover, the study has also analyzed the apps’ user reviews, which served as justification for the developed evaluation framework. Conclusions The analysis has shown that ease of use, reminder, bar code scanning, motivation, usable for

  10. Losses as Modulators of Attention: Review and Analysis of the Unique Effects of Losses over Gains

    ERIC Educational Resources Information Center

    Yechiam, Eldad; Hochman, Guy

    2013-01-01

    It has been shown that in certain situations losses exert a stronger effect on behavior than respective gains, and this has been commonly explained by the argument that losses are given more weight in people's decisions than respective gains. However, although much is understood about the effect of losses on cognitive processes and behavior, 2…

  11. An economic analysis of traditional and technology-based approaches to weight loss.

    PubMed

    Archer, Edward; Groessl, Erik J; Sui, Xuemei; McClain, Amanda C; Wilcox, Sara; Hand, Gregory A; Meriwether, Rebecca A; Blair, Steven N

    2012-08-01

    The financial burden and human losses associated with noncommunicable diseases necessitate cost-effective and efficacious interventions. An economic analysis of the Lifestyle Education for Activity and Nutrition (LEAN) Study; an RCT that examined the efficacy of traditional and technology-based approaches to weight loss. Economic analyses from an organizational perspective were conducted for four approaches: standard care control (SC); group weight-loss education (GWL); a multisensor armband (SWA); and the armband in combination with group weight-loss education (GWL+SWA). Data were collected in 2008-2009. Weight loss was the primary outcome. Total costs, costs per participant, costs per kilogram lost, and incremental cost-effectiveness ratios (ICERs) were calculated in 2010-2011. All costs are the actual expenses (i.e., staff time and materials) incurred by the LEAN study (except where noted) and reported in 2010 U.S. dollars. In the sample population of 197 sedentary, overweight, and obese adults (mean [±SD] age=46.9 ± 0.8 years, BMI=33.3 ± 5.2, weight=92.8 ± 18.4 kg), the GWL+SWA was the most expensive intervention in costs/participant ($365/partic) while yielding the greatest weight loss/partic (6.59 kg). The GWL was next in cost/partic ($240), but the SWA was less expensive in cost/partic ($183) and more efficacious (3.55 vs 1.86 kg/partic). The SC did not achieve significant weight loss. The SWA was the most cost effective ($51/partic/kg lost), followed by the GWL+SWA ($55) and GWL alone ($129). The ICER suggests that for each additional kilogram lost, the GWL+SWA cost $60 more than the SWA alone. The SWA was the most cost-effective intervention ($51/partic/kg lost). The addition of the GWL increased the efficacy of the SWA intervention but increased costs by $60/partic for each additional kilogram lost. The technology-based approaches were more cost effective and efficacious than traditional approaches in promoting weight loss via lifestyle changes in

  12. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  13. Analysis of loss of decay-heat-removal sequences at Browns Ferry Unit One

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, R.M.

    1983-01-01

    This paper summarizes the Oak Ridge National Laboratory (ORNL) report Loss of DHR Sequences at Browns Ferry Unit One - Accident Sequence Analysis (NUREG/CR-2973). The Loss of DHR investigation is the third in a series of accident studies concerning the BWR 4 - MK I containment plant design. These studies, sponsored by the Nuclear Regulatory Commission Severe Accident Sequence Analysis (SASA) program, have been conducted at ORNL with the full cooperation of the Tennessee Valley Authority (TVA). The purpose of the SASA studies is to predetermine the probable course of postulated severe accidents so as to establish the timing andmore » the sequence of events. The SASA studies also produce recommendations concerning the implementation of better system design and better emergency operating instructions and operator training. The ORNL studies also include a detailed, best-estimate calculation of the release and transport of radioactive fission products following postulated severe accidents.« less

  14. Loss model for off-design performance analysis of radial turbines with pivoting-vane, variable-area stators

    NASA Technical Reports Server (NTRS)

    Meitner, P. L.; Glassman, A. J.

    1980-01-01

    An off-design performance loss model for a radial turbine with pivoting, variable-area stators is developed through a combination of analytical modeling and experimental data analysis. A viscous loss model is used for the variation in stator loss with setting angle, and stator vane end-clearance leakage effects are predicted by a clearance flow model. The variation of rotor loss coefficient with stator setting angle is obtained by means of an analytical matching of experimental data for a rotor that was tested with six stators, having throat areas from 20 to 144% of the design area. An incidence loss model is selected to obtain best agreement with experimental data. The stator vane end-clearance leakage model predicts increasing mass flow and decreasing efficiency as a result of end-clearances, with changes becoming significantly larger with decreasing stator area.

  15. Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses

    NASA Astrophysics Data System (ADS)

    Jung, K.-Y.; Donderici, B.; Teixeira, F. L.

    2006-10-01

    We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals (MPCs) with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the (asymmetric) dispersion diagram and unidirectional frozen modes. The analysis is performed via a late-time stable finite-difference time-domain method (FDTD) implemented with perfectly matched layer (PML) absorbing boundary conditions, and extended to handle (simultaneously) dispersive and anisotropic media. The proposed PML-FDTD algorithm is based on a D - H and B - E combined field approach that naturally decouples the FDTD update into two steps, one involving the (anisotropic and dispersive) constitutive material tensors and the other involving Maxwell’s equations in a complex coordinate space (to incorporate the PML). For ferromagnetic layers, a fully dispersive modeling of the permeability tensor is implemented to include magnetic losses in a consistent fashion. The numerical results illustrate some striking properties of MPCs, such as wave slowdown (frozen modes), amplitude increase (pulse compression), and unidirectional characteristics. The numerical model is also used to investigate the sensitivity of the MPC response against excitation (frequency and bandwidth), material (ferromagnetic losses), and geometric (layer misalignment and thickness) parameter variations.

  16. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    PubMed

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  17. Structure-based capacitance modeling and power loss analysis for the latest high-performance slant field-plate trench MOSFET

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenya; Sudo, Masaki; Omura, Ichiro

    2018-04-01

    Field-plate trench MOSFETs (FP-MOSFETs), with the features of ultralow on-resistance and very low gate–drain charge, are currently the mainstream of high-performance applications and their advancement is continuing as low-voltage silicon power devices. However, owing to their structure, their output capacitance (C oss), which leads to main power loss, remains to be a problem, especially in megahertz switching. In this study, we propose a structure-based capacitance model of FP-MOSFETs for calculating power loss easily under various conditions. Appropriate equations were modeled for C oss curves as three divided components. Output charge (Q oss) and stored energy (E oss) that were calculated using the model corresponded well to technology computer-aided design (TCAD) simulation, and we validated the accuracy of the model quantitatively. In the power loss analysis of FP-MOSFETs, turn-off loss was sufficiently suppressed, however, mainly Q oss loss increased depending on switching frequency. This analysis reveals that Q oss may become a significant issue in next-generation high-efficiency FP-MOSFETs.

  18. Right precordial-directed electrocardiographical markers identify arrhythmogenic right ventricular cardiomyopathy in the absence of conventional depolarization or repolarization abnormalities.

    PubMed

    Cortez, Daniel; Svensson, Anneli; Carlson, Jonas; Graw, Sharon; Sharma, Nandita; Brun, Francesca; Spezzacatene, Anita; Mestroni, Luisa; Platonov, Pyotr G

    2017-10-13

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) carries a risk of sudden death. We aimed to assess whether vectorcardiographic (VCG) parameters directed toward the right heart and a measured angle of the S-wave would help differentiate ARVD/C with otherwise normal electrocardiograms from controls. Task Force 2010 definite ARVD/C criteria were met for all patients. Those who did not fulfill Task Force depolarization or repolarization criteria (-ECG) were compared with age and gender-matched control subjects. Electrocardiogram measures of a 3-dimentional spatial QRS-T angle, a right-precordial-directed orthogonal QRS-T (RPD) angle, a root mean square of the right sided depolarizing forces (RtRMS-QRS), QRS duration (QRSd) and the corrected QT interval (QTc), and a measured angle including the upslope and downslope of the S-wave (S-wave angle) were assessed. Definite ARVD/C was present in 155 patients by 2010 Task Force criteria (41.7 ± 17.6 years, 65.2% male). -ECG ARVD/C patients (66 patients) were compared to 66 control patients (41.7 ± 17.6 years, 65.2% male). All parameters tested except the QRSd and QTc significantly differentiated -ECG ARVD/C from control patients (p < 0.004 to p < 0.001). The RPD angle and RtRMS-QRS best differentiated the groups. Combined, the 2 novel criteria gave 81.8% sensitivity, 90.9% specificity and odds ratio of 45.0 (95% confidence interval 15.8 to 128.2). ARVD/C disease process may lead to development of subtle ECG abnormalities that can be distinguishable using right-sided VCG or measured angle markers better than the spatial QRS-T angle, the QRSd or QTc, in the absence of Taskforce ECG criteria.

  19. Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline.

    PubMed

    Haemers, Peter; Sutherland, George; Cikes, Maja; Jakus, Nina; Holemans, Patricia; Sipido, Karin R; Willems, Rik; Claus, Piet

    2015-11-01

    An acute increase in blood pressure is associated with the occurrence of premature ventricular complexes (PVCs). We aimed to study the timing of these PVCs with respect to afterload-induced changes in myocardial deformation in a controlled, preclinically relevant, novel closed-chest pig model. An acute left ventricular (LV) afterload challenge was induced by partial balloon inflation in the descending aorta, lasting 5-10 heartbeats (8 pigs; 396 inflations). Balloon inflation enhanced the reflected wave (augmentation index 30% ± 8% vs 59% ± 6%; P < .001), increasing systolic central blood pressure by 35% ± 4%. This challenge resulted in a more abrupt LV pressure decline, which was delayed beyond ventricular repolarization (rate of pressure decline 0.16 ± 0.01 mm Hg/s vs 0.27 ± 0.04 mm Hg/ms; P < .001 and interval T-wave to peak pressure 1 ± 12 ms vs 36 ± 9 ms; P = .008), during which the velocity of myocardial shortening at the basal septum increased abruptly (ie, postsystolic shortening) (peak strain rate -0.6 ± 0.5 s(-1) vs -2.5 ± 0.8 s(-1); P < .001). It is exactly at this time of LV pressure decline, with increased postsystolic shortening, and not at peak pressure, that PVCs occur (22% of inflations). These PVCs preferentially occurred at the basal and apical segments. In the same regions, monophasic action potentials demonstrated the appearance of delayed afterdepolarization-like transient depolarizations as origin of PVCs. An acute blood pressure increase results in a more abrupt LV pressure decline, which is delayed after ventricular repolarization. This has a profound effect on myocardial mechanics with enhanced postsystolic shortening. Coincidence with induced transient depolarizations and PVCs provides support for the mechanoelectrical origin of pressure-induced premature beats. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Weight loss versus muscle loss: re-evaluating inclusion criteria for future cancer cachexia interventional trials.

    PubMed

    Roeland, Eric J; Ma, Joseph D; Nelson, Sandahl H; Seibert, Tyler; Heavey, Sean; Revta, Carolyn; Gallivan, Andrea; Baracos, Vickie E

    2017-02-01

    Participation in cancer cachexia clinical trials requires a defined weight loss (WL) over time. A loss in skeletal muscle mass, measured by cross-sectional computed tomography (CT) image analysis, represents a possible alternative. Our aim was to compare WL versus muscle loss in patients who were screened to participate in a cancer cachexia clinical trial. This was a single-center, retrospective analysis in metastatic colorectal cancer patients screened for an interventional cancer cachexia trial requiring a ≥5 % WL over the preceding 6 months. Concurrent CT images obtained as part of standard oncology care were analyzed for changes in total muscle and fat (visceral, subcutaneous, and total). Of patients screened (n = 36), 3 (8 %) enrolled in the trial, 17 (47 %) were excluded due to insufficient WL (<5 %), 3 (8 %) were excluded due to excessive WL (>20 %), and 16 (44 %) met inclusion criteria for WL. Patients who met screening criteria for WL (5-20 %) had a mean ± SD of 7.7 ± 8.7 % muscle loss, 24.4 ± 37.5 % visceral adipose loss, 21.6 ± 22.3 % subcutaneous adipose loss, and 22.1 ± 24.7 % total adipose loss. Patients excluded due to insufficient WL had 2 ± 6.4 % muscle loss, but a gain of 8.5 ± 39.8 % visceral adipose, and 4.2 ± 28.2 % subcutaneous adipose loss and 0.8 ± 28.4 % total adipose loss. Of the patients excluded due to WL <5 % (n = 17), 7 (41 %) had a skeletal muscle loss >5 %. Defining cancer cachexia by WL over time may be limited as it does not capture skeletal muscle loss. Cross-sectional CT body composition analysis may improve early detection of muscle loss and patient participation in future cancer cachexia clinical trials.

  1. Loss anticipation and outcome during the Monetary Incentive Delay Task: a neuroimaging systematic review and meta-analysis

    PubMed Central

    Dugré, Jules R.; Dumais, Alexandre; Bitar, Nathalie

    2018-01-01

    Background Reward seeking and avoidance of punishment are key motivational processes. Brain-imaging studies often use the Monetary Incentive Delay Task (MIDT) to evaluate motivational processes involved in maladaptive behavior. Although the bulk of research has been done on the MIDT reward events, little is known about the neural basis of avoidance of punishment. Therefore, we conducted a meta-analysis of brain activations during anticipation and receipt of monetary losses in healthy controls. Methods All functional neuro-imaging studies using the MIDT in healthy controls were retrieved using PubMed, Google Scholar & EMBASE databases. Functional neuro-imaging data was analyzed using the Seed-based d Mapping Software. Results Thirty-five studies met the inclusion criteria, comprising 699 healthy adults. In both anticipation and loss outcome phases, participants showed large and robust activations in the bilateral striatum, (anterior) insula, and anterior cingulate gyrus relatively to Loss > Neutral contrast. Although relatively similar activation patterns were observed during the two event types, they differed in the pattern of prefrontal activations: ventro-lateral prefrontal activations were observed during loss anticipation, while medial prefrontal activations were observed during loss receipt. Discussion Considering that previous meta-analyses highlighted activations in the medial prefrontal cortex/anterior cingulate cortex, the anterior insula and the ventral striatum, the current meta-analysis highlighted the potential specificity of the ventro-lateral prefrontal regions, the median cingulate cortex and the amygdala in the loss events. Future studies can rely on these latter results to examine the neural correlates of loss processing in psychiatric populations characterized by harm avoidance or insensitivity to punishment. PMID:29761060

  2. Loss anticipation and outcome during the Monetary Incentive Delay Task: a neuroimaging systematic review and meta-analysis.

    PubMed

    Dugré, Jules R; Dumais, Alexandre; Bitar, Nathalie; Potvin, Stéphane

    2018-01-01

    Reward seeking and avoidance of punishment are key motivational processes. Brain-imaging studies often use the Monetary Incentive Delay Task (MIDT) to evaluate motivational processes involved in maladaptive behavior. Although the bulk of research has been done on the MIDT reward events, little is known about the neural basis of avoidance of punishment. Therefore, we conducted a meta-analysis of brain activations during anticipation and receipt of monetary losses in healthy controls. All functional neuro-imaging studies using the MIDT in healthy controls were retrieved using PubMed, Google Scholar & EMBASE databases. Functional neuro-imaging data was analyzed using the Seed-based d Mapping Software. Thirty-five studies met the inclusion criteria, comprising 699 healthy adults. In both anticipation and loss outcome phases, participants showed large and robust activations in the bilateral striatum, (anterior) insula, and anterior cingulate gyrus relatively to Loss > Neutral contrast. Although relatively similar activation patterns were observed during the two event types, they differed in the pattern of prefrontal activations: ventro-lateral prefrontal activations were observed during loss anticipation, while medial prefrontal activations were observed during loss receipt. Considering that previous meta-analyses highlighted activations in the medial prefrontal cortex/anterior cingulate cortex, the anterior insula and the ventral striatum, the current meta-analysis highlighted the potential specificity of the ventro-lateral prefrontal regions, the median cingulate cortex and the amygdala in the loss events. Future studies can rely on these latter results to examine the neural correlates of loss processing in psychiatric populations characterized by harm avoidance or insensitivity to punishment.

  3. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  4. A sequential learning analysis of decisions in organizations to escalate investments despite continuing costs or losses

    PubMed Central

    Goltz, Sonia M.

    1992-01-01

    Reinforcement process may underlie decisions frequently found in organizations to escalate investments of time, money and other resources in strategies (e.g., product development, capital investment, plant expansion) that do not result in immediate reinforces. Whereas cognitive biases have been proffered in previous explanations, the present analysis suggested that this persistence is a form of resistance to extinction arising from experiences with past investments that were variably reinforced. This explanation was examined in two experiments by varying the pattern of returns and losses subjects experienced for investment decisions prior to experiencing a series losses. Consistent with the proposed explanation, two conditions resulted in higher levels of recommitment during continuous losses: (a) training using a variable schedule of partial reinforcement, and (b) no training on the task. Results indicate that behavior analysis can be used to understand and control situations in organizations that are prone to escalation, such as investments in the research and development of new product lines and extensions of further loans to customers. PMID:16795785

  5. I. Depolarized Light Scattering Studies of Rotational - Coupling in Liquids Composed of Small Anisotropic Molecules. I. Investigation of the Coupling Between Reorientation and Longitudinal Modes in the Brillouin Spectra of Liquids Composed of Anisotropic Molecules.

    NASA Astrophysics Data System (ADS)

    O'Steen, Byron Lance

    Part I. In an attempt to better understand the molecular interactions governing the behaviour of the coupling parameter R measured in light scattering experiments, the depolarized (I(,vh)) spectra for a series of liquids composed of small aromatic molecules, very similar in size and shape, have been measured. The molecules studied here were generally monosubstituted benzene and pyridine derivatives. All were found to exhibit the doublet structure indicative of dynamic coupling between molecular reorientation and shear modes, or more simply, rotational-translational coupling. The degree of this coupling is measured by a parameter R(O(LESSTHEQ) R(LESSTHEQ) 1) which is often though of as the fraction of the shear viscosity attributable to reorientational motion. From the depolarized spectra the coupling parameter R, collective reorientation frequency, and low frequency shear viscosity were determined. The values of R were found to vary from 0.24 to 0.55 for the liquids studied here. This range is nearly as broad as that observed in all previous studies, which have included such diverse molecules as carbon disulfide, tri-phenyl phosphite, and the highly anisotropic liquid crystal MBBA. This suggests that size and shape considerations, or steric forces, are not the primary factor in determining the degree of rotational-translational coupling as measured by light scattering. If this is indeed the case then other non-steric interactions must be producing the observed variation in R. With this in mind, we have examined possible electrostatic interactions. A simple correlation with dipole moment was not found to exist. Instead it appears that the variation in R can only be understood by consideration of the detailed molecular charge distribution. This is determined to a large extent by resonance interactions with the aromatic ring which are generally reflected in the change of dipole moment from the aliphatic compound (CH(,3)-R) to its aromatic analog (C(,6)H(,5)-R). Based

  6. Comparative analysis of characteristic electron energy loss spectra and inelastic scattering cross-section spectra of Fe

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-05-01

    The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.

  7. Arrests, Recent Life Circumstances, and Recurrent Job Loss for At-Risk Young Men: An Event-History Analysis

    ERIC Educational Resources Information Center

    Wiesner, Margit; Capaldi, Deborah M.; Kim, Hyoun K.

    2010-01-01

    This study used longitudinal data from 202 at-risk young men to examine effects of arrests, prior risk factors, and recent life circumstances on job loss across a 7-year period in early adulthood. Repeated failure-time continuous event-history analysis indicated that occurrence of job loss was primarily related to prior mental health problems,…

  8. Preliminary posttest analysis of LOFT loss-of-coolant experiment L2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.R.; Grush, W.H.; Keeler, C.D.

    A preliminary posttest analysis of Loss-of-Coolant Experiment (LOCE) L2-2, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed to gain an understanding of the cause of the disparity between predicted and measured fuel rod cladding temperature responses in the LOFT core. LOCE L2-2 is the first experiment in the LOFT Power Ascension Series L2 (first series of LOFT nuclear experiments), which was designed to investigate the response of the LOFT nuclear core to the blowdown, refill, and reflood transients during LOCEs conducted at gradually increasing power levels. LOCE L2-2 was conducted at 50% power (25 MW, 26.38 kW/m).more » Results show that a core-wide rewet occurred early in the transient (during blowdown starting at about 7 s after rupture) which was not calculated in the pretest prediction analysis. This early core-wide rewet resulted in the peak fuel rod cladding temperatures being lower (by a mean value of 166/sup 0/K for 24 thermocouples) than had been calculated. This preliminary posttest analysis was concerned solely with determining why the early core-wide rewet was not predicted by the RELAP4/MOD6 pretest analysis and be no means is it a complete posttest analysis of LOCE L2-2 results. However, during this analysis, several errors made in the prettest analysis were found, and their impact on the predicted results is assessed. Three factors were postulated to have caused the disparity between predicted and measured fuel rod cladding temperatures for LOCE L2-2: (a) the initial fuel rod stored energy, (b) the heat transfer surface, and (c) the hydraulics calculation. These factors were examined and are discussed in this report. It was determined that core hydraulics, as influenced by the calculation of broken loop cold leg break flow, was the major factor causing the disparity.« less

  9. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Wang, Jiancheng

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  10. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radiomore » bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.« less

  11. Efficacy and safety of tranexamic acid in reducing blood loss in scoliosis surgery: a systematic review and meta-analysis.

    PubMed

    Yuan, Qiu-Ming; Zhao, Zhi-Hu; Xu, Bao-Shan

    2017-01-01

    The purpose of this systematic review and meta-analysis of randomized controlled trials (RCTs) and non-RCTs was to gather data to evaluate the efficacy and safety of tranexamic acid (TXA) versus placebo after a scoliosis surgery. The electronic databases including Embase, PubMed, CENTRAL (Cochrane Controlled Trials Register), Web of Science, and Google database were searched to identify relevant studies published from the time of the establishment of these databases up to May 2016. This systematic review and meta-analysis was performed according to the PRISMA statement criteria. The primary outcomes were total blood loss, intraoperative blood loss, and hemoglobin after surgery. The second outcome is need for transfusion. Stata 12.0 software was used for the meta-analysis. After testing for publication bias and heterogeneity across studies, data were aggregated for random-effects modeling when necessary. A total of 685 patients (347 patients in the TXA group and 338 in the control group) were finally included for this meta-analysis. The pooled results revealed that administration of TXA can decrease the total blood loss after scoliosis surgery [mean difference (MD) = 682.30, 95% confidence interval (CI) -930.60 to -434.00; P = 0.000] and intraoperative blood loss [(MD) = -535.28; 95% CI -683.74 to -368.82; P = 0.000]. For the hemoglobin (Hb) value after scoliosis surgery, TXA can decrease the Hb value for 0.51 dL [(MD) = 0.51; 95% CI 0.25-0.78; P = 0.000]. There is no statistically significant difference between the TXA versus placebo in terms of the need for transfusion (relative risk = 0.55, 95% CI 0.25-1.20, P = 0.132). Based on the current meta-analysis, TXA can decrease the total blood loss and intraoperative blood loss during scoliosis surgery. It is recommended that it be routinely used in scoliosis surgery. High-dose TXA (>20 mg/kg) is more effective than low-dose TXA (<20 mg/kg) in controlling blood loss. However, for the need for

  12. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer

    PubMed Central

    Tang, Sai Chun; McDannold, Nathan J.

    2015-01-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems. PMID:26640745

  13. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer.

    PubMed

    Tang, Sai Chun; McDannold, Nathan J

    2015-03-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.

  14. A method for recording resistance changes non-invasively during neuronal depolarization with a view to imaging brain activity with electrical impedance tomography.

    PubMed

    Gilad, Ori; Ghosh, Anthony; Oh, Dongin; Holder, David S

    2009-05-30

    Electrical impedance tomography (EIT) is a recently developed medical imaging method which has the potential to produce images of fast neuronal depolarization in the brain. The principle is that current remains in the extracellular space at rest but passes into the intracellular space during depolarization through open ion channels. As current passes into the intracellular space across the capacitance of cell membranes at higher frequencies, applied current needs to be below 100 Hz. A method is presented for its measurement with subtraction of the contemporaneous evoked potentials which occur in the same frequency band. Neuronal activity is evoked by stimulation and resistance is recorded from the potentials resulting from injection of a constant current square wave at 1 Hz with amplitude less than 25% of the threshold for stimulating neuronal activity. Potentials due to the evoked activity and the injected square wave are removed by subtraction. The method was validated with compound action potentials in crab walking leg nerve. Resistance changes of -0.85+/-0.4% (mean+/-SD) occurred which decreased from -0.97+/-0.43% to -0.46+/-0.16% with spacing of impedance current application electrodes from 2 to 8 mm but did not vary significantly with applied currents of 1-10 microA. These tallied with biophysical modelling, and so were consistent with a genuine physiological origin. This method appears to provide a reproducible and artefact free means for recording resistance changes during neuronal activity which could lead to the long-term goal of imaging of fast neural activity in the brain.

  15. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  16. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.

    PubMed

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  17. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; hide

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  18. A meta-analysis of risk of pregnancy loss and caffeine and coffee consumption during pregnancy.

    PubMed

    Li, Ji; Zhao, Hong; Song, Ju-Min; Zhang, Jing; Tang, Yin-Lan; Xin, Chang-Mao

    2015-08-01

    Previous reports of the relationship between pregnancy loss and caffeine/coffee consumption have been inconsistent. To evaluate the association between pregnancy loss and caffeine and coffee consumption. PubMed was searched for reports published before September 2014, with the keywords "caffeine," "coffee," "beverage," "miscarriage," "spontaneous abortion," and "fetal loss." Case-control and cohort studies were included when they had been reported in English, the exposure of interest was caffeine/coffee consumption during pregnancy, the outcome of interest was spontaneous abortion or fetal death, and multivariate-adjusted odds ratios (ORs) or risk ratios were provided or could be calculated. Data were extracted and combined ORs calculated. Overall, 26 studies were included (20 of caffeine and eight of coffee). After adjustment for heterogeneity, caffeine consumption was associated with an increased risk of pregnancy loss (OR 1.32, 95% confidence interval [CI] 1.24-1.40), as was coffee consumption (OR 1.11, 95% CI 1.02-1.21). A dose-response analysis suggested that risk of pregnancy loss rose by 19% for every increase in caffeine intake of 150 mg/day and by 8% for every increase in coffee intake of two cups per day. Consumption of caffeine and coffee during pregnancy seems to increase the risk of pregnancy loss. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Quantitative Analysis of Land Loss in Coastal Louisiana Using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Wales, P. M.; Kuszmaul, J.; Roberts, C.

    2005-12-01

    For the past thirty-five years the land loss along the Louisiana Coast has been recognized as a growing problem. One of the clearest indicators of this land loss is that in 2000 smooth cord grass (spartina alterniflora) was turning brown well before its normal hibernation period. Over 100,000 acres of marsh were affected by the 2000 browning. In 2001 data were collected using low altitude helicopter based transects of the coast, with 7,400 data points being collected by researchers at the USGS, National Wetlands Research Center, and Louisiana Department of Natural Resources. The surveys contained data describing the characteristics of the marsh, including latitude, longitude, marsh condition, marsh color, percent vegetated, and marsh die-back. Creating a model that combines remote sensing images, field data, and statistical analysis to develop a methodology for estimating the margin of error in measurements of coastal land loss (erosion) is the ultimate goal of the study. A model was successfully created using a series of band combinations (used as predictive variables). The most successful band combinations or predictive variables were the braud value [(Sum Visible TM Bands - Sum Infrared TM Bands)/(Sum Visible TM Bands + Sum Infrared TM Bands)], TM band 7/ TM band 2, brightness, NDVI, wetness, vegetation index, and a 7x7 autocovariate nearest neighbor floating window. The model values were used to generate the logistic regression model. A new image was created based on the logistic regression probability equation where each pixel represents the probability of finding water or non-water at that location in each image. Pixels within each image that have a high probability of representing water have a value close to 1 and pixels with a low probability of representing water have a value close to 0. A logistic regression model is proposed that uses seven independent variables. This model yields an accurate classification in 86.5% of the locations considered in the

  20. [Multiple time scales analysis of spatial differentiation characteristics of non-point source nitrogen loss within watershed].

    PubMed

    Liu, Mei-bing; Chen, Xing-wei; Chen, Ying

    2015-07-01

    Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.

  1. Spectral analysis of hearing protector impulsive insertion loss.

    PubMed

    Fackler, Cameron J; Berger, Elliott H; Murphy, William J; Stergar, Michael E

    2017-01-01

    To characterise the performance of hearing protection devices (HPDs) in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. HPDs were measured per the impulsive test methods of ANSI/ASA S12.42- 2010 . Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analysed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Tested HPDs included a foam earplug, a level-dependent earplug and an electronic sound-restoration earmuff. IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Measurements of IPIL depend strongly on the source used to measure them, especially for HPDs with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD's performance.

  2. Identification and classification of cathinone unknowns by statistical analysis processing of direct analysis in real time-high resolution mass spectrometry-derived "neutral loss" spectra.

    PubMed

    Fowble, Kristen L; Shepard, Jason R E; Musah, Rabi A

    2018-03-01

    An approach to the rapid determination of the structures of novel synthetic cathinone designer drugs, also known as bath salts, is reported. While cathinones fragment so extensively by electron impact mass spectrometry that their mass spectra often cannot be used to identify the structure, collision-induced dissociation (CID) direct analysis in real time-high resolution mass spectrometry (DART-HRMS) experiments furnished spectra that provided diagnostic fragmentation patterns for the analyzed cathinones. From this data, neutral loss spectra, which reflect the presence of specific chemical moieties, could be acquired. These spectra showed striking similarities between cathinones sharing structural features such as pyrrolidine rings and methylenedioxy moieties. Principle component analysis (PCA) of the neutral loss spectra of nine synthetic cathinones of various types including ethcathinones, those containing a methylenedioxy moiety appended to the benzene ring, and pyrrolidine-containing structures, illustrated that cathinones falling within the same class clustered together and could be distinguished from those of other classes. Furthermore, hierarchical clustering analysis of the neutral loss data of a model set derived from 44 synthetic cathinones, furnished a dendrogram in which structurally similar cathinones clustered together. The ability of this model system to facilitate structure determination was tested using 4-fluoroethcathinone, 3,4-methylenedioxy-α-pyrrolidinohexanophenone (MDPHP), and ethylone, which fall into the ethcathinone, pyrrolidine-containing, and methylenedioxy-containing subclasses respectively. The results showed that their neutral loss spectra correctly fell within the ethcathinone, pyrrolidine-containing and methylenedioxy-containing cathinone clades of the dendrogram, and that the neutral loss information could be used to infer the structures of these compounds. The analysis and data processing steps are rapid and samples can be

  3. [Hydroxychloroquine-induced hearing loss: First case of positive rechallenge and analysis of the French pharmacovigilance database].

    PubMed

    Chatelet, J-N; Auffret, M; Combret, S; Bondon-Guitton, E; Lambert, M; Gautier, S

    2017-05-01

    Several cases of hearing loss induced by hydroxychloroquine have been reported in the literature but the role of hydroxychloroquine still remains debated. We report the first case, to our knowledge, of hearing loss induced by hydroxychloroquine with a positive re challenge in a woman treated for systemic lupus. An analysis of the French pharmacovigilance database allowed to identify 23 additional cases of hearing loss in patients treated with hydroxychloroquine and, among them, 8 had systemic lupus. Despite an excellent tolerance and high efficacy-side effect ratio, this case report adds some evidence for an otoxicity of hydroxychloroquine. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  4. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    PubMed

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  5. Spectral analysis of hearing protector impulsive insertion loss

    PubMed Central

    Fackler, Cameron J.; Berger, Elliott H.; Murphy, William J.; Stergar, Michael E.

    2017-01-01

    Objective To characterize the performance of hearing protection devices in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. Design Hearing protectors were measured per the impulsive test methods of ANSI/ASA S12.42-2010. Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analyzed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Study Sample Tested devices included a foam earplug, a level-dependent earplug, and an electronic sound-restoration earmuff. Results IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Conclusions Measurements of IPIL depend strongly on the source used to measure them, especially for hearing protectors with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD’s performance. PMID:27885881

  6. Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes

    PubMed Central

    Alekseyenko, Alexander V.; Kim, Namshin; Lee, Christopher J.

    2007-01-01

    Association of alternative splicing (AS) with accelerated rates of exon evolution in some organisms has recently aroused widespread interest in its role in evolution of eukaryotic gene structure. Previous studies were limited to analysis of exon creation or lost events in mouse and/or human only. Our multigenome approach provides a way for (1) distinguishing creation and loss events on the large scale; (2) uncovering details of the evolutionary mechanisms involved; (3) estimating the corresponding rates over a wide range of evolutionary times and organisms; and (4) assessing the impact of AS on those evolutionary rates. We use previously unpublished independent analyses of alternative splicing in five species (human, mouse, dog, cow, and zebrafish) from the ASAP database combined with genomewide multiple alignment of 17 genomes to analyze exon creation and loss of both constitutively and alternatively spliced exons in mammals, fish, and birds. Our analysis provides a comprehensive database of exon creation and loss events over 360 million years of vertebrate evolution, including tens of thousands of alternative and constitutive exons. We find that exon inclusion level is inversely related to the rate of exon creation. In addition, we provide a detailed in-depth analysis of mechanisms of exon creation and loss, which suggests that a large fraction of nonrepetitive created exons are results of ab initio creation from purely intronic sequences. Our data indicate an important role for alternative splicing in creation of new exons and provide a useful novel database resource for future genome evolution research. PMID:17369312

  7. Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis.

    PubMed

    Veronese, Nicola; Facchini, Silvia; Stubbs, Brendon; Luchini, Claudio; Solmi, Marco; Manzato, Enzo; Sergi, Giuseppe; Maggi, Stefania; Cosco, Theodore; Fontana, Luigi

    2017-01-01

    Whilst obesity is associated with a higher risk of cognitive impairment, the influence of weight loss on cognitive function in obese/overweight people is equivocal. We conducted a meta-analysis of randomized controlled trials (RCTs) and longitudinal studies evaluating the influence of voluntary weight loss on cognitive function in obese/overweight individuals. Articles were acquired from a systematic search of major databases from inception till 01/2016. A random effect meta-analysis of weight loss interventions (diet, physical activity, bariatric surgery) on different cognitive domains (memory, attention, executive functions, language and motor speed) was conducted. Twenty studies (13 longitudinal studies=551 participants; 7 RCTs=328 treated vs. 140 controls) were included. Weight loss was associated with a significant improvement in attention and memory in both longitudinal studies and RCTs, whereas executive function and language improved in longitudinal and RCT studies, respectively. In conclusion, intentional weight loss in obese/overweight people is associated with improvements in performance across various cognitive domains. Future adequately powered RCTs are required to confirm/refute these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Depolarization of the Internal Membrane System in the Activation of Frog Skeletal Muscle

    PubMed Central

    Costantin, L. L.; Podolsky, R. J.

    1967-01-01

    "Skinned" muscle fibers, single fibers from the frog semitendinosus muscle in which the sarcolemma had been removed, could be reversibly activated by electrical stimulation. Electrical responsiveness was abolished when the skinned fiber was prepared from a muscle exposed to a cardiac glycoside, and the development of responsiveness was delayed when the muscle was bathed in high potassium solution. The findings were taken as evidence that active sodium-potassium exchange across the internal membranes restored electrical excitability, after the sarcolemma had been removed, by establishing a potential gradient across the internal membranes. In general, the contractions were graded with the strength of the applied current. On occasion, however, "all-or-none" type responses were seen, raising the possibility that the internal membranes were capable of an electrically regenerative response. Activation could also be produced by an elevation of the intracellular chloride ion concentration or a decrease in the intracellular potassium, ion concentration, suggesting that depolarization of some element of the internal membrane system, that is, a decrease in the potential of the lumen of the internal membrane system relative to the potential of the myofibrillar space, was responsible for activation in these experiments. The distribution of both the electrically induced contractions and those produced by changes in the intracellular ion concentrations indicated that the responsive element of the internal membrane system was electrically continuous over many sarcomeres. PMID:6033576

  9. Analysis of the relationship between cognitive skills and unilateral sensory hearing loss.

    PubMed

    Calderón-Leyva, I; Díaz-Leines, S; Arch-Tirado, E; Lino-González, A L

    2018-06-01

    To analyse cognitive skills in patients with severe unilateral hearing loss versus those in subjects with normal hearing. 40 adults participated: 20 patients (10 women and 10 men) with severe unilateral hearing loss and 20 healthy subjects matched to the study group. Cognitive abilities were measured with the Spanish version of the Woodcock Johnson Battery-Revised; central auditory processing was assessed with monaural psychoacoustic tests. Box plots were drawn and t tests were performed for samples with a significance of P≤.05. A comparison of performances on the filtered word testing and time-compressed disyllabic word tests between patients and controls revealed a statistically significant difference (P≤.05) with greater variability among responses by hearing impaired subjects. This same group also showed a better cognitive performance on the numbers reversed, visual auditory learning, analysis synthesis, concept formation, and incomplete words tests. Patients with hearing loss performed more poorly than controls on the filtered word and time-compressed disyllabic word tests, but more competently on memory, reasoning, and auditory processing tasks. Complementary tests, such as those assessing central auditory processes and cognitive ability tests, are important and helpful for designing habilitation/rehabilitation and therapeutic strategies intended to optimise and stimulate cognitive skills in subjects with unilateral hearing impairment. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origins of spreading injury depolarizations.

    PubMed

    von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica L; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A; Moskowitz, Michael A; Lo, Eng H; Dreier, Jens P; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk

    2015-03-04

    Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes stroke patients to PIDs as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origin of spreading injury depolarizations

    PubMed Central

    von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A.; Moskowitz, Michael A.; Lo, Eng H.; Dreier, Jens P.; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk

    2015-01-01

    SUMMARY Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes to PIDs in human stroke as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. PMID:25741731

  12. Recurrent Loss of Specific Introns during Angiosperm Evolution

    PubMed Central

    Wang, Hao; Devos, Katrien M.; Bennetzen, Jeffrey L.

    2014-01-01

    Numerous instances of presence/absence variations for introns have been documented in eukaryotes, and some cases of recurrent loss of the same intron have been suggested. However, there has been no comprehensive or phylogenetically deep analysis of recurrent intron loss. Of 883 cases of intron presence/absence variation that we detected in five sequenced grass genomes, 93 were confirmed as recurrent losses and the rest could be explained by single losses (652) or single gains (118). No case of recurrent intron gain was observed. Deep phylogenetic analysis often indicated that apparent intron gains were actually numerous independent losses of the same intron. Recurrent loss exhibited extreme non-randomness, in that some introns were removed independently in many lineages. The two larger genomes, maize and sorghum, were found to have a higher rate of both recurrent loss and overall loss and/or gain than foxtail millet, rice or Brachypodium. Adjacent introns and small introns were found to be preferentially lost. Intron loss genes exhibited a high frequency of germ line or early embryogenesis expression. In addition, flanking exon A+T-richness and intron TG/CG ratios were higher in retained introns. This last result suggests that epigenetic status, as evidenced by a loss of methylated CG dinucleotides, may play a role in the process of intron loss. This study provides the first comprehensive analysis of recurrent intron loss, makes a series of novel findings on the patterns of recurrent intron loss during the evolution of the grass family, and provides insight into the molecular mechanism(s) underlying intron loss. PMID:25474210

  13. The Relationship between Serum Lipids and Sudden Sensorineural Hearing Loss: A Systematic Review and Meta-Analysis

    PubMed Central

    Chang, I Jen; Kang, Chung Jan; Yueh, Chen Yu; Fang, Ku Hao; Yeh, Re Ming; Tsai, Yao Te

    2015-01-01

    Background Sudden sensorineural hearing loss (SSNHL) is a relatively common condition that is usually of unknown etiology. A number of individual studies have investigated the association between various serum lipids and SSNHL; however, the findings have been inconsistent. In an attempt to obtain more definitive information on the relationship between serum lipids and SSNHL, we carried out a systematic review and meta-analysis. Methods Medline, the Cochrane Library, and EMBASE were searched using the following key words: lipid, cholesterol, triglyceride, fat, serum, blood, sudden hearing loss, hearing loss, hearing disorders. Randomized controlled trials, prospective cohort studies, and retrospective case-control studies involving patients with SSNHL and healthy controls that examined the relationship (reported as odds ratios [OR]) between lipid profiles and SSNHL were included. Primary outcomes were total cholesterol and low-density lipoprotein cholesterol (LDL-C) concentrations. Secondary outcomes were triglyceride, high-density lipoprotein cholesterol, and lipoprotein(a) concentrations. Results A total of 6 case-control studies were included in this systematic review/meta-analysis. The total number of participants ranged from 30 to 250 in the case group and from 43 to 271 in the control group. Meta-analysis revealed no significant difference in total cholesterol levels between the case and control groups (pooled OR = 1.79, 95% confidence interval [CI] = 0.98 to 3.26, P = 0.057). Likewise, meta-analysis revealed no significant difference in LDL-C concentrations between the case and control groups (pooled OR = 1.15, 95% CI = 0.64 to 2.07, P = 0.639). Since there were an insufficient number of studies reporting data for the secondary outcomes, meta-analysis was not possible. Conclusions Our results do not provide evidence for serum lipids being associated with SSNHL, nor do they definitively rule out such an association. Additional studies are needed to ascertain

  14. Degradation and recovery of iron doped barium titanate single crystals via modulus spectroscopy and thermally stimulated depolarization current

    NASA Astrophysics Data System (ADS)

    Carter, J. J.; Bayer, T. J. M.; Randall, C. A.

    2017-04-01

    Understanding resistance degradation during the application of DC bias and recovery after removing the DC bias provides insight into failure mechanisms and defects in dielectric materials. In this experiment, modulus spectroscopy and thermally stimulated depolarization current (TSDC) techniques were used to characterize the degradation and recovery of iron-doped barium titanate single crystals. Modulus spectroscopy is a very powerful analytical tool applied during degradation and recovery to observe changes in the local conductivity distribution. During degradation, oxygen vacancies migrate to the cathode region, and a counter flow of oxygen anions migrates towards the anode. With increasing time during degradation, the distribution of conductivity broadens only slightly exhibiting crucial differences to iron doped strontium titanate. After removing the DC bias, the recovery shows that a second previously unobserved and distinct conductivity maximum arises in the modulus data. This characteristic with two maxima related to different conductivities in the anode and cathode region is what can be expected from the published defect chemistry. It will be concluded that only the absence of an external electric field during recovery measurements permits the observation of local conductivity measurements without the presence of non-equilibrium conditions such as charge injection. Equilibrium conductivity as a function of oxygen vacancy concentration is described schematically. Oxygen vacancy migration during degradation and recovery is verified by TSDC analysis. We establish a self-consistent rationale of the transient changes in the modulus and TSDC for the iron doped barium titanate single crystal system including electron, hole and oxygen vacancy conductivity. During degradation, the sample fractured.

  15. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  16. Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes

    PubMed Central

    2013-01-01

    Background Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. Results Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. Conclusions Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release. PMID:23895555

  17. Ketamine modulation of the haemodynamic response to spreading depolarization in the gyrencephalic swine brain

    PubMed Central

    Santos, Edgar; Schöll, Michael; Kunzmann, Kevin; Stock, Christian; Silos, Humberto; Unterberg, Andreas W; Sakowitz, Oliver W

    2016-01-01

    Spreading depolarization (SD) generates significant alterations in cerebral haemodynamics, which can have detrimental consequences on brain function and integrity. Ketamine has shown an important capacity to modulate SD; however, its impact on SD haemodynamic response is incompletely understood. We investigated the effect of two therapeutic ketamine dosages, a low-dose of 2 mg/kg/h and a high-dose of 4 mg/kg/h, on the haemodynamic response to SD in the gyrencephalic swine brain. Cerebral blood volume, pial arterial diameter and cerebral blood flow were assessed through intrinsic optical signal imaging and laser-Doppler flowmetry. Our findings indicate that frequent SDs caused a persistent increase in the baseline pial arterial diameter, which can lead to a diminished capacity to further dilate. Ketamine infused at a low-dose reduced the hyperemic/vasodilative response to SD; however, it did not alter the subsequent oligemic/vasoconstrictive response. This low-dose did not prevent the baseline diameter increase and the diminished dilative capacity. Only infusion of ketamine at a high-dose suppressed SD and the coupled haemodynamic response. Therefore, the haemodynamic response to SD can be modulated by continuous infusion of ketamine. However, its use in pathological models needs to be explored to corroborate its possible clinical benefit. PMID:27126324

  18. Ketamine modulation of the haemodynamic response to spreading depolarization in the gyrencephalic swine brain.

    PubMed

    Sánchez-Porras, Renán; Santos, Edgar; Schöll, Michael; Kunzmann, Kevin; Stock, Christian; Silos, Humberto; Unterberg, Andreas W; Sakowitz, Oliver W

    2017-05-01

    Spreading depolarization (SD) generates significant alterations in cerebral haemodynamics, which can have detrimental consequences on brain function and integrity. Ketamine has shown an important capacity to modulate SD; however, its impact on SD haemodynamic response is incompletely understood. We investigated the effect of two therapeutic ketamine dosages, a low-dose of 2 mg/kg/h and a high-dose of 4 mg/kg/h, on the haemodynamic response to SD in the gyrencephalic swine brain. Cerebral blood volume, pial arterial diameter and cerebral blood flow were assessed through intrinsic optical signal imaging and laser-Doppler flowmetry. Our findings indicate that frequent SDs caused a persistent increase in the baseline pial arterial diameter, which can lead to a diminished capacity to further dilate. Ketamine infused at a low-dose reduced the hyperemic/vasodilative response to SD; however, it did not alter the subsequent oligemic/vasoconstrictive response. This low-dose did not prevent the baseline diameter increase and the diminished dilative capacity. Only infusion of ketamine at a high-dose suppressed SD and the coupled haemodynamic response. Therefore, the haemodynamic response to SD can be modulated by continuous infusion of ketamine. However, its use in pathological models needs to be explored to corroborate its possible clinical benefit.

  19. Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco.

    PubMed

    Tran, Daniel; Dauphin, Aurélien; Meimoun, Patrice; Kadono, Takashi; Nguyen, Hieu T H; Arbelet-Bonnin, Delphine; Zhao, Tingting; Errakhi, Rafik; Lehner, Arnaud; Kawano, Tomonori; Bouteau, François

    2018-03-20

    Methanol is a volatile organic compound released from plants through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. However, molecular mechanisms that explain how methanol could affect plant defences remain poorly understood. Using cultured cells and seedlings from Arabidopsis thaliana and tobacco BY2 expressing the apoaequorin gene, allowing quantification of cytosolic Ca2+, a reactive oxygen species (ROS) probe (CLA, Cypridina luciferin analogue) and electrophysiological techniques, we followed early plant cell responses to exogenously supplied methanol applied as a liquid or as volatile. Methanol induces cytosolic Ca2+ variations that involve Ca2+ influx through the plasma membrane and Ca2+ release from internal stores. Our data further suggest that these Ca2+ variations could interact with different ROS and support a signalling pathway leading to well known plant responses to pathogens such as plasma membrane depolarization through anion channel regulation and ethylene synthesis. Methanol is not only a by-product of PME activities, and our data suggest that [Ca2+]cyt variations could participate in signalling processes induced by methanol upstream of plant defence responses.

  20. A feasibility study of altered spatial distribution of losses induced by eddy currents in body composition analysis

    PubMed Central

    2010-01-01

    Background Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA). Methods The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. Results The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. Conclusions At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis. PMID:21047441

  1. Stabilization of the Activated hERG Channel Voltage Sensor by Depolarization Involves the S4-S5 Linker.

    PubMed

    Thouta, Samrat; Hull, Christina M; Shi, Yu Patrick; Sergeev, Valentine; Young, James; Cheng, Yen M; Claydon, Thomas W

    2017-01-24

    Slow deactivation of hERG channels is critical for preventing cardiac arrhythmia yet the mechanistic basis for the slow gating transition is unclear. Here, we characterized the temporal sequence of events leading to voltage sensor stabilization upon membrane depolarization. Progressive increase in step depolarization duration slowed voltage-sensor return in a biphasic manner (τ fast = 34 ms, τ slow  = 2.5 s). The faster phase of voltage-sensor return slowing correlated with the kinetics of pore opening. The slower component occurred over durations that exceeded channel activation and was consistent with voltage sensor relaxation. The S4-S5 linker mutation, G546L, impeded the faster phase of voltage sensor stabilization without attenuating the slower phase, suggesting that the S4-S5 linker is important for communications between the pore gate and the voltage sensor during deactivation. These data also demonstrate that the mechanisms of pore gate-opening-induced and relaxation-induced voltage-sensor stabilization are separable. Deletion of the distal N-terminus (Δ2-135) accelerated off-gating current, but did not influence the relative contribution of either mechanism of stabilization of the voltage sensor. Lastly, we characterized mode-shift behavior in hERG channels, which results from stabilization of activated channel states. The apparent mode-shift depended greatly on recording conditions. By measuring slow activation and deactivation at steady state we found the "true" mode-shift to be ∼15 mV. Interestingly, the "true" mode-shift of gating currents was ∼40 mV, much greater than that of the pore gate. This demonstrates that voltage sensor return is less energetically favorable upon repolarization than pore gate closure. We interpret this to indicate that stabilization of the activated voltage sensor limits the return of hERG channels to rest. The data suggest that this stabilization occurs as a result of reconfiguration of the pore gate upon opening

  2. Fault tree analysis for data-loss in long-term monitoring networks.

    PubMed

    Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S

    2009-01-01

    Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention.

  3. Intentional Weight Loss and Changes in Symptoms of Depression: A Systematic Review and Meta-Analysis

    PubMed Central

    Fabricatore, Anthony N.; Wadden, Thomas A.; Higginbotham, Allison J.; Faulconbridge, Lucy F.; Nguyen, Allison M.; Heymsfield, Steven B.; Faith, Myles S.

    2011-01-01

    Objective Obesity is related to increased risk of several health complications, including depression. Many studies have reported improvements in mood with weight loss, but results have been equivocal. The present meta-analysis examined changes in symptoms of depression that were reported in trials of weight loss interventions. Between-groups comparisons of different weight loss methods (e.g., lifestyle modification, diet alone, pharmacotherapy) were examined, as were within-group changes for each treatment type. Method MEDLINE was searched for articles published between 1950 and January 2009. Several obesity-related terms were intersected with terms related to depression. Results were filtered to return only studies of human subjects, published in English. Of 5971 articles, 394 were randomized controlled trials. Articles were excluded if they did not report mean changes in weight or symptoms of depression, included children or persons with psychiatric disorders (other than depression), or provided insufficient data for analysis. Thirty-one studies (n = 7937) were included. Two authors independently extracted a description of each study treatment, sample characteristics, assessment methods, and changes in weight and symptoms of depression. Treatments were categorized as: lifestyle modification, non-dieting, dietary counseling, diet-alone, exercise-alone, pharmacotherapy, placebo, or control interventions. Results Random effects models found that lifestyle modification was superior to control and non-dieting interventions for reducing symptoms of depression, and marginally better than dietary counseling and exercise-alone programs. Exercise-alone programs were superior to controls. No differences were found for comparisons of pharmacologic agents and placebos. Within-group analyses found significant reductions in symptoms of depression for nearly all active interventions. A meta-regression found no relationship between changes in weight and changes in symptoms of

  4. Analysis of Thermal Losses for a Variety of Single-Junction Photovoltaic Cells: An Interesting Means of Thermoelectric Heat Recovery

    NASA Astrophysics Data System (ADS)

    Lorenzi, Bruno; Acciarri, Maurizio; Narducci, Dario

    2015-06-01

    Exploitation of solar energy conversion has become a fundamental aspect of satisfying a growing demand for energy. Thus, improvement of the efficiency of conversion in photovoltaic (PV) devices is highly desirable to further promote this source. Because it is well known that the most relevant efficiency constraint, especially for single-junction solar cells, is unused heat within the device, hybrid thermo-photovoltaic systems seem promising . Among several hybrid solutions proposed in the literature, coupling of thermoelectric and PV devices seems one of the most interesting. Taking full advantage of this technology requires proper definition and analysis of the thermal losses occurring in PV cells. In this communication we propose a novel analysis of such losses, decoupling source-dependent and absorber-dependent losses. This analysis enables an evaluation of the actual recoverable amount of energy, depending on the absorber used in the PV cell. It shows that for incoming solar irradiation of , and depending on the choice of material, the maximum available thermal power ranges from (for single-crystal silicon) to (for amorphous silicon).

  5. Anion Channel Inhibitor NPPB-Inhibited Fluoride Accumulation in Tea Plant (Camellia sinensis) Is Related to the Regulation of Ca2+, CaM and Depolarization of Plasma Membrane Potential

    PubMed Central

    Zhang, Xian-Chen; Gao, Hong-Jian; Yang, Tian-Yuan; Wu, Hong-Hong; Wang, Yu-Mei; Zhang, Zheng-Zhu; Wan, Xiao-Chun

    2016-01-01

    Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca2+ efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca2+ chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca2+ fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca2+ chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca2+ and H+ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca2+-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants. PMID:26742036

  6. Analysis of the Accuracy of Weight Loss Information Search Engine Results on the Internet

    PubMed Central

    Shokar, Navkiran K.; Peñaranda, Eribeth; Nguyen, Norma

    2014-01-01

    Objectives. We systematically identified and evaluated the quality and comprehensiveness of online information related to weight loss that users were likely to access. Methods. We evaluated the content quality, accessibility of the information, and author credentials for Web sites in 2012 that were identified from weight loss specific queries that we generated. We scored the content with respect to available evidence-based guidelines for weight loss. Results. One hundred three Web sites met our eligibility criteria (21 commercial, 52 news/media, 7 blogs, 14 medical, government, or university, and 9 unclassified sites). The mean content quality score was 3.75 (range = 0–16; SD = 2.48). Approximately 5% (4.85%) of the sites scored greater than 8 (of 12) on nutrition, physical activity, and behavior. Content quality score varied significantly by type of Web site; the medical, government, or university sites (mean = 4.82, SD = 2.27) and blogs (mean = 6.33, SD = 1.99) had the highest scores. Commercial (mean = 2.37, SD = 2.60) or news/media sites (mean = 3.52, SD = 2.31) had the lowest scores (analysis of variance P < .005). Conclusions. The weight loss information that people were likely to access online was often of substandard quality because most comprehensive and quality Web sites ranked too low in search results. PMID:25122030

  7. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, C. L.; Lian, Y. H.; Cheng, N. H.

    2012-11-15

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less

  8. Single-Nucleotide Polymorphism-Microarray Ploidy Analysis of Paraffin-Embedded Products of Conception in Recurrent Pregnancy Loss Evaluations.

    PubMed

    Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2015-07-01

    To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal

  9. Calcium release in skinned muscle fibres of the toad by transverse tubule depolarization or by direct stimulation.

    PubMed

    Lamb, G D; Stephenson, D G

    1990-04-01

    1. Skeletal muscle fibres from the toad were mechanically skinned under paraffin oil and then bathed in a potassium HDTA solution (HDTA: hexamethylenediamine-tetraacetate) which mimicked the ionic composition of the myoplasm. 2. Rapid transient contractions could be triggered by substitution of K+ with Na+ (with no change of anion), which should have virtually no direct effect on the electrical polarization of the sarcoplasmic reticulum (SR) membrane. Up to thirty or more contractions could be evoked by repeated substitutions if there was sufficient 'repriming' time (about 30 s) between them; these rapid contractions were analagous to potassium contractures in intact fibres. 3. When the SR was not heavily loaded, substitution of potassium HDTA with choline chloride also produced a rapid, brief contraction. 4. All treatments designed to 'inactivate' the voltage sensor in the T-system invariably abolished the rapid contractions. Thus, rapid contractions were absent if (i) the T-system was permanently depolarized by pre-soaking the muscle in a high potassium solution with ouabain before skinning, (ii) a fibre was split rather than skinned, (iii) the T-system was temporarily depolarized by Na+ substitution immediately before choline chloride substitution, or vice versa, (iv) a skinned fibre was briefly exposed to saponin (50 micrograms/ml) to selectively disrupt the T-system membrane or (v) the muscle was pre-soaked in a solution with 1 mM-EGTA and no Ca2+ or Mg2+ before skinning. In contrast to (v), if 10 mM-Mg2+ was present in the EGTA solution before skinning, rapid contractions could be elicited, presumably because the presence of Mg2+ prevented the inactivation of the T-system voltage sensor in low [Ca2+]. 5. These results unequivocally demonstrate that (a) the T-system reseals and repolarizes after mechanical skinning under oil and (b) the fast contractions are produced by activation of the voltage sensor in the T-system. 6. When the SR had been heavily loaded

  10. Calcium release in skinned muscle fibres of the toad by transverse tubule depolarization or by direct stimulation.

    PubMed Central

    Lamb, G D; Stephenson, D G

    1990-01-01

    1. Skeletal muscle fibres from the toad were mechanically skinned under paraffin oil and then bathed in a potassium HDTA solution (HDTA: hexamethylenediamine-tetraacetate) which mimicked the ionic composition of the myoplasm. 2. Rapid transient contractions could be triggered by substitution of K+ with Na+ (with no change of anion), which should have virtually no direct effect on the electrical polarization of the sarcoplasmic reticulum (SR) membrane. Up to thirty or more contractions could be evoked by repeated substitutions if there was sufficient 'repriming' time (about 30 s) between them; these rapid contractions were analagous to potassium contractures in intact fibres. 3. When the SR was not heavily loaded, substitution of potassium HDTA with choline chloride also produced a rapid, brief contraction. 4. All treatments designed to 'inactivate' the voltage sensor in the T-system invariably abolished the rapid contractions. Thus, rapid contractions were absent if (i) the T-system was permanently depolarized by pre-soaking the muscle in a high potassium solution with ouabain before skinning, (ii) a fibre was split rather than skinned, (iii) the T-system was temporarily depolarized by Na+ substitution immediately before choline chloride substitution, or vice versa, (iv) a skinned fibre was briefly exposed to saponin (50 micrograms/ml) to selectively disrupt the T-system membrane or (v) the muscle was pre-soaked in a solution with 1 mM-EGTA and no Ca2+ or Mg2+ before skinning. In contrast to (v), if 10 mM-Mg2+ was present in the EGTA solution before skinning, rapid contractions could be elicited, presumably because the presence of Mg2+ prevented the inactivation of the T-system voltage sensor in low [Ca2+]. 5. These results unequivocally demonstrate that (a) the T-system reseals and repolarizes after mechanical skinning under oil and (b) the fast contractions are produced by activation of the voltage sensor in the T-system. 6. When the SR had been heavily loaded

  11. Assessment of the Body Composition and the Loss of Fat-Free Mass through Bioelectric Impedance Analysis in Patients Who Underwent Open Gastric Bypass

    PubMed Central

    de Freitas Junior, Wilson Rodrigues; Ilias, Elias Jirjoss; Kassab, Paulo; Cordts, Roberto; Porto, Paulo Gustavo; Martins Rodrigues, Francisco Cesar; Ali Taha, Mohamed Ibrahim; Carrara, Paulo; de Carvalho Aguiar, Isabella; de Oliveira, Luis Vicente Franco; Malheiros, Carlos Alberto

    2014-01-01

    Background. Bariatric surgery is considered an effective option for the management of morbid obesity. The incidence of obesity has been gradually increasing all over the world reaching epidemic proportions in some regions of the world. Obesity can cause a reduction of up to 22% in the life expectancy of morbidly obese patients. Objective. The objective of this paper is to assess the weight loss associated with the first 6 months after bariatric surgery using bioelectric impedance analysis (BIA) for the evaluation of fat mass and fat-free mass. Method. A total of 36 morbidly obese patients were subjected to open gastric bypass surgery. The patients weight was monitored before and after the procedure using the bioelectric impedance analysis. Results. Bariatric surgery resulted in an average percentage of weight loss of 28.6% (40 kg) as determined 6 months after the procedure was performed. Analysis of the different components of body weight indicated an undesirable loss of fat-free mass along with the reduction of total body weight. Conclusion. Open gastric bypass induced a significant loss of total weight and loss of fat-free mass in patients six months after the surgery. The use of bioelectric impedance analysis resulted in an appropriate estimation of the total weight components in individuals subjected to bariatric surgery allowing a more real analysis of the variation of weight after the surgery. PMID:24523649

  12. Analysis of pressure losses in the diffuser of a control valve

    NASA Astrophysics Data System (ADS)

    Turecký, Petr; Mrózek, Lukáš; Tajč, Ladislav; Kolovratník, Michal

    The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.

  13. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sil; Kim, Jae-Seung; Lee, Seong-Hyun; Seo, Yun-Ho

    2014-12-01

    Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

  14. Based on the rainfall system platform raindrops research and analysis of pressure loss

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Sun, Jian

    2018-01-01

    With the rapid development of China’s military career, land, sea and air force all services and equipment of modern equipment need to be in the rain test, and verify its might suffer during transportation, storage or use a different environment temperature lower water or use underwater, the water is derived from the heavy rain, the wind and rain, sprinkler system, splash water, water wheel, a violent shock waves or use underwater, etcTest the product performance and quality, under the condition of rainfall system platform in the process of development, how to control the raindrops pressure loss becomes the key to whether the system can simulate the real rainfall [1], this paper is according to the rainfall intensity, nozzle flow resistance, meet water flow of rain pressure loss calculation and analysis, and system arrangement of the optimal solution of rainfall is obtained [2].

  15. Tensile stress induced depolarization in [001]-poled transverse mode Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3} -(6-7)%PbTiO{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Rahul; Department of Mechanical Engineering, National University of Singapore, Singapore 119260; Lim, Leong-Chew

    2011-04-01

    This paper investigates the effects of electrically induced and direct tensile stress on the deformation and dielectric properties of Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-(6-7)%PbTiO{sub 3} single crystals of [110]{sup L}x[001]{sup T} cut by using a unimorph sample and a four-point-bend (FPB) sample, respectively. The results show a dip in tip displacement for the unimorph sample at sufficiently high electric field parallel to the poling field direction and a sudden rise in capacitance for the FPB sample at sufficiently high tensile stress in the [110] crystal direction, respectively. These phenomena are attributed to the tensile stress induced rhombohedral-to-orthorhombic phase transition and associatedmore » depolarization events in the crystal. For the said crystal cut, the obtained tensile depoling stress is in the range of 15-20 MPa. The present work furthermore shows that the occurrence of tensile stress-induced depolarization is possible even when the direction of the applied electric field is parallel to the poling field direction, as in the unimorph sample examined.« less

  16. Efficacy of First-Time Intragastric Balloon in Weight Loss: a Systematic Review and Meta-analysis of Randomized Controlled Trials.

    PubMed

    Saber, Alan A; Shoar, Saeed; Almadani, Mahmoud W; Zundel, Natan; Alkuwari, Mohammed J; Bashah, Moataz M; Rosenthal, Raul J

    2017-02-01

    The intragastric balloon (IGB) is an adjunctive treatment for obesity. This meta-analysis aimed to evaluate the efficacy and safety of IGB treatment by reviewing randomized controlled trials (RCTs). A total of 20 RCTs involving 1195 patients were identified. Weight loss results before and after 3 months were analyzed separately. The weight loss results of patients with and without IGB treatment were compared. Our meta-analysis calculated the following significant effect sizes: 1.59 and 1.34 kg/m 2 for overall and 3-month BMI loss, respectively; 14.25 and 11.16 % for overall and >3-month percentage of excess weight loss, respectively; 4.6 and 4.77 kg for overall and 3-month weight loss, respectively; and 2.81, 1.62, and 4.09 % for overall, 3-month, and >3-month percent of weight loss, respectively. A significant effect size was calculated that favored fluid-filled IGBs over air-filled IGBs. Flatulence (8.75 vs. 3.89 %, p = 0.0006), abdominal fullness (6.32 vs. 0.55 %, p = 0.001), abdominal pain (13.86 vs. 7.2 %, p = 0.0001), abdominal discomfort (4.37 vs. 0.55 %, p = 0.006), and gastric ulcer (12.5 vs. 1.2 %, p < 0.0001) were significantly more prevalent among IGB patients than among non-IGB control patients. No mortality was reported from IGB treatment. IGB treatment, in addition to lifestyle modification, is an effective short-term modality for weight loss. However, there is not sufficient evidence confirming its safety or long-term efficacy.

  17. 7 CFR 1773.41 - Extraordinary retirement losses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Extraordinary retirement losses. 1773.41 Section 1773... Documentation § 1773.41 Extraordinary retirement losses. The CPA's workpapers must contain an analysis of retirement losses, including any required approval by a regulatory commission with jurisdiction in the matter...

  18. Head losses prediction and analysis in a bulb turbine draft tube under different operating conditions using unsteady simulations

    NASA Astrophysics Data System (ADS)

    Wilhelm, S.; Balarac, G.; Métais, O.; Ségoufin, C.

    2016-11-01

    Flow prediction in a bulb turbine draft tube is conducted for two operating points using Unsteady RANS (URANS) simulations and Large Eddy Simulations (LES). The inlet boundary condition of the draft tube calculation is a rotating two dimensional velocity profile exported from a RANS guide vane- runner calculation. Numerical results are compared with experimental data in order to validate the flow field and head losses prediction. Velocity profiles prediction is improved with LES in the center of the draft tube compared to URANS results. Moreover, more complex flow structures are obtained with LES. A local analysis of the predicted flow field using the energy balance in the draft tube is then introduced in order to detect the hydrodynamic instabilities responsible for head losses in the draft tube. In particular, the production of turbulent kinetic energy next to the draft tube wall and in the central vortex structure is found to be responsible for a large part of the mean kinetic energy dissipation in the draft tube and thus for head losses. This analysis is used in order to understand the differences in head losses for different operating points. The numerical methodology could then be improved thanks to an in-depth understanding of the local flow topology.

  19. Depolarization of surface-attached hypothalamic mouse neurons studied by acoustic wave (thickness shear mode) detector.

    PubMed

    Cheung, Shilin; Fick, Laura J; Belsham, Denise D; Thompson, Michael

    2010-02-01

    Isolation of neurons from animal tissue is an important aspect of understanding basic biochemical processes such as the action of hormones and neurotransmitters. In the present work, the focus is on an effort to evaluate the utility of acoustic wave physics for the study of such cells. Immortalised hypothalamic neuronal cells from mouse embryos were cultured on the surface of the gold electrode of a 9.0 MHz thickness-shear mode acoustic wave sensor. These cells, which are clonal, are imposed on the surface of the device at a confluence in the range of 80-100%. The coated sensor is incorporated into a flow-injection configuration such that electrolytes can be introduced in order to examine their effects through measurement by network analysis. Both series resonance frequency, fs, and motional resistance, R(m), were measured in a number of experiments involving the injection of KCl and NaCl into the sensor-neuron system. The various responses to these electrolytes were interpreted in terms of changes in cellular structure associated with the depolarization process. The sensor-neuron system was found to elicit different responses to the addition of KCl and NaCl. Preliminary findings indicate that the TSM sensor does not purely measure changes in the membrane potential upon KCl addition. Typical changes in fs for 15 mM, 30 mM and 60 mM KCl additions were 54 +/- 15, 80 +/- 26 and 142 +/- 58 Hz (mean +/- standard deviation) respectively. Typical changes in R(m) for these KCl additions were 7 +/- 3, 13 +/- 4 and 23 +/- 6 Omega, respectively. These results were concluded after 17 runs at each concentration. Despite the large relative standard deviations, the dependence of f(s) and R(m) with respect to concentration was apparent. Controls performed by coating the TSM sensor with laminin or a cell attachment matrix showed no significant changes in either f(s) or R(m) for the same solutions tested on the sensor-neuron system.

  20. Losses in radial inflow turbines

    NASA Technical Reports Server (NTRS)

    Khalil, I. M.; Tabakoff, W.; Hamed, A.

    1976-01-01

    A study was conducted to determine experimentally and theoretically the losses in radial inflow turbine nozzles. Extensive experimental data was obtained to investigate the flow behavior in a full-scale radial turbine stator annulus. A theoretical model to predict the losses in both the vaned and vaneless regions of the nozzle was developed. In this analysis, the interaction effects between the stator and the rotor are not considered. It was found that the losses incurred due to the end wall boundary layers can be significant, especially if they are characterized by a strong crossflow. The losses estimated using the analytical study are compared with the experimentally determined values.

  1. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  2. Lenticular mitoprotection. Part B: GSK-3β and regulation of mitochondrial permeability transition for lens epithelial cells in atmospheric oxygen

    PubMed Central

    Brooks, Morgan M.; Neelam, Sudha

    2013-01-01

    Purpose Loss of integrity of either the inner or outer mitochondrial membrane results in the dissipation of the mitochondrial electrochemical gradient that leads to mitochondrial membrane permeability transition (mMPT). This study emphasizes the role of glycogen synthase kinase 3beta (GSK-3β) in maintaining mitochondrial membrane potential, thus preventing mitochondrial depolarization (hereafter termed mitoprotection). Using 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), an inhibitor of GSK-3β, and drawing a distinction between it and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (UO126), an inhibitor of extracellular-signal-regulated kinase (ERK) phosphorylation, the means by which GSK-3β influences mitoprotection in cultured human lens epithelial (HLE-B3) cells and normal, secondary cultures of bovine lens epithelial cells, maintained in atmospheric oxygen, was investigated. Methods Virally transfected human lens epithelial cells (HLE-B3) and normal cultures of bovine lens epithelial cells were exposed to acute hypoxic conditions (about 1% O2) followed by exposure to atmospheric oxygen (about 21% O2). Specific antisera and western blot analysis was used to examine the state of phosphorylation of ERK and GSK-3β, as well as the phosphorylation of a downstream substrate of GSK-3β, glycogen synthase (GS, useful in monitoring GSK-3β activity). The potentiometric dye, 1H-benzimidazolium-5,6-dichloro-2-[3-(5,6-dichloro-1,3-diethyl-1,3-dihydro-2H-benzimidazol-2-ylidene)-1-propenyl]-1,3-diethyl-iodide (JC-1), was used to monitor mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Caspase-3 activation was scrutinized to determine whether mitochondrial depolarization inevitably leads to apoptosis. Results Treatment of HLE-B3 cells with SB216763 (12 µM) inactivated GSK-3β activity as verified by the enzyme’s inability to

  3. Lenticular mitoprotection. Part B: GSK-3β and regulation of mitochondrial permeability transition for lens epithelial cells in atmospheric oxygen.

    PubMed

    Brooks, Morgan M; Neelam, Sudha; Cammarata, Patrick R

    2013-01-01

    Loss of integrity of either the inner or outer mitochondrial membrane results in the dissipation of the mitochondrial electrochemical gradient that leads to mitochondrial membrane permeability transition (mMPT). This study emphasizes the role of glycogen synthase kinase 3beta (GSK-3β) in maintaining mitochondrial membrane potential, thus preventing mitochondrial depolarization (hereafter termed mitoprotection). Using 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), an inhibitor of GSK-3β, and drawing a distinction between it and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (UO126), an inhibitor of extracellular-signal-regulated kinase (ERK) phosphorylation, the means by which GSK-3β influences mitoprotection in cultured human lens epithelial (HLE-B3) cells and normal, secondary cultures of bovine lens epithelial cells, maintained in atmospheric oxygen, was investigated. Virally transfected human lens epithelial cells (HLE-B3) and normal cultures of bovine lens epithelial cells were exposed to acute hypoxic conditions (about 1% O2) followed by exposure to atmospheric oxygen (about 21% O2). Specific antisera and western blot analysis was used to examine the state of phosphorylation of ERK and GSK-3β, as well as the phosphorylation of a downstream substrate of GSK-3β, glycogen synthase (GS, useful in monitoring GSK-3β activity). The potentiometric dye, 1H-benzimidazolium-5,6-dichloro-2-[3-(5,6-dichloro-1,3-diethyl-1,3-dihydro-2H-benzimidazol-2-ylidene)-1-propenyl]-1,3-diethyl-iodide (JC-1), was used to monitor mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Caspase-3 activation was scrutinized to determine whether mitochondrial depolarization inevitably leads to apoptosis. Treatment of HLE-B3 cells with SB216763 (12 µM) inactivated GSK-3β activity as verified by the enzyme's inability to phosphorylate its substrate, GS. SB

  4. Analysis of Nonlinear Insertion Loss of Hearing Protection Devices using an Acoustic Test Fixture

    DTIC Science & Technology

    2015-09-01

    USAARL Report No. 2016-05 Analysis of Nonlinear Insertion Loss of Hearing Protection Devices using an Acoustic Test Fixture By Robert Williams1...through circuitry. Talk through circuits use electro- acoustic transducers to pass ambient sounds through the protector. When the circuitry detects...the SPL of the acoustic insult. If the protective capacity is variable, it should be accounted for in the selection of appropriate HPDs. REAT

  5. Development and testing of a PEM SO 2-depolarized electrolyzer and an operating method that prevents sulfur accumulation

    DOE PAGES

    Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.; ...

    2015-09-02

    The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO 2-depolarized electrolysis (SDE) cell, which reacts SO 2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO 2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flowmore » rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less

  6. Development and testing of a PEM SO 2-depolarized electrolyzer and an operating method that prevents sulfur accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.

    The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO 2-depolarized electrolysis (SDE) cell, which reacts SO 2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO 2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flowmore » rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less

  7. Three-dimensional quantitative analysis of adhesive remnants and enamel loss resulting from debonding orthodontic molar tubes.

    PubMed

    Janiszewska-Olszowska, Joanna; Tandecka, Katarzyna; Szatkiewicz, Tomasz; Sporniak-Tutak, Katarzyna; Grocholewicz, Katarzyna

    2014-09-10

    Presenting a new method for direct, quantitative analysis of enamel surface. Measurement of adhesive remnants and enamel loss resulting from debonding molar tubes. Buccal surfaces of fifteen extracted human molars were directly scanned with an optic blue-light 3D scanner to the nearest 2 μm. After 20 s etching molar tubes were bonded and after 24 h storing in 0.9% saline - debonded. Then 3D scanning was repeated. Superimposition and comparison were proceeded and shape alterations of the entire objects were analyzed using specialized computer software. Residual adhesive heights as well as enamel loss depths have been obtained for the entire buccal surfaces. Residual adhesive volume and enamel loss volume have been calculated for every tooth. The maximum height of adhesive remaining on enamel surface was 0.76 mm and the volume on particular teeth ranged from 0.047 mm3 to 4.16 mm3. The median adhesive remnant volume was 0.988 mm3. Mean depths of enamel loss for particular teeth ranged from 0.0076 mm to 0.0416 mm. Highest maximum depth of enamel loss was 0.207 mm. Median volume of enamel loss was 0.104 mm3 and maximum volume was 1.484 mm3. Blue-light 3D scanning is able to provide direct precise scans of the enamel surface, which can be superimposed in order to calculate shape alterations. Debonding molar tubes leaves a certain amount of adhesive remnants on the enamel, however the interface fracture pattern varies for particular teeth and areas of enamel loss are present as well.

  8. Associations between sensory loss and social networks, participation, support, and loneliness: Analysis of the Canadian Longitudinal Study on Aging.

    PubMed

    Mick, Paul; Parfyonov, Maksim; Wittich, Walter; Phillips, Natalie; Kathleen Pichora-Fuller, M

    2018-01-01

    To determine if hearing loss, vision loss, and dual sensory loss were associated with social network diversity, social participation, availability of social support, and loneliness, respectively, in a population-based sample of older Canadians and to determine whether age or sex modified the associations. Cross-sectional population-based study. Canada. The sample included 21 241 participants in the Canadian Longitudinal Study on Aging tracking cohort. The sample was nationally representative of English- and French-speaking, non-institutionalized 45- to 89-year-old Canadians who did not live on First Nations reserves and who had normal cognition. Participants with missing data for any of the variables in the multivariable regression models were excluded from analysis. Hearing and vision loss were determined by self-report. Dual sensory loss was defined as reporting both hearing and vision loss. Univariate analyses were performed to assess cross-sectional associations between hearing, vision, and dual sensory loss, and social, demographic, and medical variables. Multivariable regression models were used to analyze cross-sectional associations between each type of sensory loss and social network diversity, social participation, availability of social support, and loneliness. Vision loss (in men) and dual sensory loss (in 65- to 85-year-olds) were independently associated with reduced social network diversity. Vision loss and dual sensory loss (in 65- to 85-year-olds) were each independently associated with reduced social participation. All forms of sensory loss were associated with both low availability of social support and loneliness. Sensory impairment is associated with reduced social function in older Canadians. Interventions and research that address the social needs of older individuals with sensory loss are needed. Copyright© the College of Family Physicians of Canada.

  9. Mobile Phone Apps to Promote Weight Loss and Increase Physical Activity: A Systematic Review and Meta-Analysis

    PubMed Central

    Ferré-Grau, Carme; Montaña-Carreras, Xavier

    2015-01-01

    Background To our knowledge, no meta-analysis to date has assessed the efficacy of mobile phone apps to promote weight loss and increase physical activity. Objective To perform a systematic review and meta-analysis of studies to compare the efficacy of mobile phone apps compared with other approaches to promote weight loss and increase physical activity. Methods We conducted a systematic review and meta-analysis of relevant studies identified by a search of PubMed, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Scopus from their inception through to August 2015. Two members of the study team (EG-F, GF-M) independently screened studies for inclusion criteria and extracted data. We included all controlled studies that assessed a mobile phone app intervention with weight-related health measures (ie, body weight, body mass index, or waist circumference) or physical activity outcomes. Net change estimates comparing the intervention group with the control group were pooled across studies using random-effects models. Results We included 12 articles in this systematic review and meta-analysis. Compared with the control group, use of a mobile phone app was associated with significant changes in body weight (kg) and body mass index (kg/m2) of -1.04 kg (95% CI -1.75 to -0.34; I2 = 41%) and -0.43 kg/m2 (95% CI -0.74 to -0.13; I2 = 50%), respectively. Moreover, a nonsignificant difference in physical activity was observed between the two groups (standardized mean difference 0.40, 95% CI -0.07 to 0.87; I2 = 93%). These findings were remarkably robust in the sensitivity analysis. No publication bias was shown. Conclusions Evidence from this study shows that mobile phone app-based interventions may be useful tools for weight loss. PMID:26554314

  10. Mobile Phone Apps to Promote Weight Loss and Increase Physical Activity: A Systematic Review and Meta-Analysis.

    PubMed

    Flores Mateo, Gemma; Granado-Font, Esther; Ferré-Grau, Carme; Montaña-Carreras, Xavier

    2015-11-10

    To our knowledge, no meta-analysis to date has assessed the efficacy of mobile phone apps to promote weight loss and increase physical activity. To perform a systematic review and meta-analysis of studies to compare the efficacy of mobile phone apps compared with other approaches to promote weight loss and increase physical activity. We conducted a systematic review and meta-analysis of relevant studies identified by a search of PubMed, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Scopus from their inception through to August 2015. Two members of the study team (EG-F, GF-M) independently screened studies for inclusion criteria and extracted data. We included all controlled studies that assessed a mobile phone app intervention with weight-related health measures (ie, body weight, body mass index, or waist circumference) or physical activity outcomes. Net change estimates comparing the intervention group with the control group were pooled across studies using random-effects models. We included 12 articles in this systematic review and meta-analysis. Compared with the control group, use of a mobile phone app was associated with significant changes in body weight (kg) and body mass index (kg/m(2)) of -1.04 kg (95% CI -1.75 to -0.34; I2 = 41%) and -0.43 kg/m(2) (95% CI -0.74 to -0.13; I2 = 50%), respectively. Moreover, a nonsignificant difference in physical activity was observed between the two groups (standardized mean difference 0.40, 95% CI -0.07 to 0.87; I2 = 93%). These findings were remarkably robust in the sensitivity analysis. No publication bias was shown. Evidence from this study shows that mobile phone app-based interventions may be useful tools for weight loss.

  11. Power balance and loss mechanism analysis in RF transmit coil arrays.

    PubMed

    Kuehne, Andre; Goluch, Sigrun; Waxmann, Patrick; Seifert, Frank; Ittermann, Bernd; Moser, Ewald; Laistler, Elmar

    2015-10-01

    To establish a framework for transmit array power balance calculations based on power correlation matrices to accurately quantify the loss contributions from different mechanisms such as coupling, lumped components, and radiation. Starting from Poynting's theorem, power correlation matrices are derived for all terms in the power balance, which is formulated as a matrix equation. Finite-difference time-domain simulations of two 7 T eight-channel head array coils at 297.2 MHz are used to verify the theoretical considerations and demonstrate their application. Care is taken to accurately incorporate all loss mechanisms. The power balance for static B1 phase shims as well as two-dimensional spatially selective transmit SENSE pulses is shown. The simulated power balance shows an excellent agreement with theory, with a maximum power imbalance of less than 0.11%. Power loss contributions from the different loss mechanisms vary significantly between the investigated setups, and depending on the excitation mode imposed on the coil. The presented approach enables a straightforward loss evaluation for an arbitrary excitation of transmit coil arrays. Worst-case power imbalance and losses are calculated in a straightforward manner. This allows for deeper insight into transmit array loss mechanisms, incorporation of radiated power components in specific absorption rate calculations and verification of electromagnetic simulations. © 2014 Wiley Periodicals, Inc.

  12. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.

    PubMed

    Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi

    2015-02-01

    Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.

  13. Symptoms of prolonged grief and posttraumatic stress following loss: A latent class analysis.

    PubMed

    Maccallum, Fiona; Bryant, Richard A

    2018-04-01

    Individuals vary in how they respond to bereavement. Those who experience poor bereavement outcomes often report symptoms from more than one diagnostic category. This study sought to identify groups of individuals who share similar patterns of prolonged grief disorder and posttraumatic stress disorder symptoms to determine whether these profiles are differentially related to negative appraisals thought to contribute to prolonged grief disorder and posttraumatic stress disorder symptomatology. Participants were 185 bereaved adults. Latent class analysis was used to identify subgroups of individuals who showed similar patterns of co-occurrence of prolonged grief disorder and posttraumatic stress disorder symptoms. Multinomial regression was used to examine the extent to which appraisal domains and sociodemographic and loss factors predicted class membership. Latent class analysis revealed three classes of participants: a low symptom group, a high prolonged grief disorder symptom group, and a high prolonged grief disorder and posttraumatic stress disorder symptom group. Membership of the prolonged grief disorder group and prolonged grief disorder and posttraumatic stress disorder group was predicted by higher mean negative self-related appraisals. Demographic and loss-related factors did not predict group membership. These findings have implications for understanding co-occurrence of prolonged grief disorder and posttraumatic stress disorder symptoms following bereavement. Findings are consistent with theoretical models highlighting the importance of negative self-related beliefs in prolonged grief disorder.

  14. Associations among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss.

    PubMed

    Labouesse, Marie A; Gertz, Erik R; Piccolo, Brian D; Souza, Elaine C; Schuster, Gertrud U; Witbracht, Megan G; Woodhouse, Leslie R; Adams, Sean H; Keim, Nancy L; Van Loan, Marta D

    2014-07-01

    Weight loss reduces co-morbidities of obesity, but decreases bone mass. Our aims were to (1) determine if adequate dairy intake attenuates weight loss-induced bone loss; (2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; and (3) model the contribution of these variables to post weight-loss BMD and BMC. Overweight/obese women (BMI: 28-37 kg/m2) were enrolled in an energy reduced (-500 kcal/d; -2092 kJ/d) diet with adequate dairy (AD: 3-4 servings/d; n=25, 32.2±8.8 years) or low dairy (LD: ≤1 serving/d; n=26, 31.7±8.4 years). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. Following weight loss, AD intake resulted in significantly greater (p=0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post-body fat was negatively associated with hip and lumbar spine BMC (r=-0.28, p=0.04 to -0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = -0.29 (p=0.04) to r = -0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss factors. Pre-weight loss factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the factors contributed to the variance in lumbar spine BMD. AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD. Significant negative associations were observed between bone

  15. Imprecise intron losses are less frequent than precise intron losses but are not rare in plants.

    PubMed

    Ma, Ming-Yue; Zhu, Tao; Li, Xue-Nan; Lan, Xin-Ran; Liu, Heng-Yuan; Yang, Yu-Fei; Niu, Deng-Ke

    2015-05-27

    In this study, we identified 19 intron losses, including 11 precise intron losses (PILs), six imprecise intron losses (IILs), one de-exonization, and one exon deletion in tomato and potato, and 17 IILs in Arabidopsis thaliana. Comparative analysis of related genomes confirmed that all of the IILs have been fixed during evolution. Consistent with previous studies, our results indicate that PILs are a major type of intron loss. However, at least in plants, IILs are unlikely to be as rare as previously reported. This article was reviewed by Jun Yu and Zhang Zhang. For complete reviews, see the Reviewers' Reports section.

  16. Effects of climatic variables on weight loss: a global analysis

    PubMed Central

    Ustulin, Morena; Keum, Changwon; Woo, Junghoon; Woo, Jeong-taek; Rhee, Sang Youl

    2017-01-01

    Several studies have analyzed the effects of weather on factors associated with weight loss. In this study, we directly analyzed the effect of weather on intentional weight loss using global-scale data provided by smartphone applications. Through Weather Underground API and the Noom Coach application, we extracted information on weather and body weight for each user located in each of several geographic areas on all login days. We identified meteorological information (pressure, precipitation, wind speed, dew point, and temperature) and self-monitored body weight data simultaneously. A linear mixed-effects model was performed analyzing 3274 subjects. Subjects in North America had higher initial BMIs than those of subjects in Eastern Asia. During the study period, most subjects who used the smartphone application experienced weight loss in a significant way (80.39%, p-value < 0.001). Subjects who infrequently recorded information about dinner had smaller variations than those of other subjects (βfreq.users dinner*time = 0.007, p-value < 0.001). Colder temperature, lower dew point, and higher values for wind speed and precipitation were significantly associated with weight loss. In conclusion, we found a direct and independent impact of meteorological conditions on intentional weight loss efforts on a global scale (not only on a local level). PMID:28106167

  17. Effects of climatic variables on weight loss: a global analysis.

    PubMed

    Ustulin, Morena; Keum, Changwon; Woo, Junghoon; Woo, Jeong-Taek; Rhee, Sang Youl

    2017-01-20

    Several studies have analyzed the effects of weather on factors associated with weight loss. In this study, we directly analyzed the effect of weather on intentional weight loss using global-scale data provided by smartphone applications. Through Weather Underground API and the Noom Coach application, we extracted information on weather and body weight for each user located in each of several geographic areas on all login days. We identified meteorological information (pressure, precipitation, wind speed, dew point, and temperature) and self-monitored body weight data simultaneously. A linear mixed-effects model was performed analyzing 3274 subjects. Subjects in North America had higher initial BMIs than those of subjects in Eastern Asia. During the study period, most subjects who used the smartphone application experienced weight loss in a significant way (80.39%, p-value < 0.001). Subjects who infrequently recorded information about dinner had smaller variations than those of other subjects (β freq.users dinner*time  = 0.007, p-value < 0.001). Colder temperature, lower dew point, and higher values for wind speed and precipitation were significantly associated with weight loss. In conclusion, we found a direct and independent impact of meteorological conditions on intentional weight loss efforts on a global scale (not only on a local level).

  18. Analysis of Loss-of-Offsite-Power Events 1997-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nancy Ellen; Schroeder, John Alton

    2016-07-01

    Loss of offsite power (LOOP) can have a major negative impact on a power plant’s ability to achieve and maintain safe shutdown conditions. LOOP event frequencies and times required for subsequent restoration of offsite power are important inputs to plant probabilistic risk assessments. This report presents a statistical and engineering analysis of LOOP frequencies and durations at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience during calendar years 1997 through 2015. LOOP events during critical operation that do not result in a reactor trip, are not included. Frequencies and durations weremore » determined for four event categories: plant-centered, switchyard-centered, grid-related, and weather-related. Emergency diesel generator reliability is also considered (failure to start, failure to load and run, and failure to run more than 1 hour). There is an adverse trend in LOOP durations. The previously reported adverse trend in LOOP frequency was not statistically significant for 2006-2015. Grid-related LOOPs happen predominantly in the summer. Switchyard-centered LOOPs happen predominantly in winter and spring. Plant-centered and weather-related LOOPs do not show statistically significant seasonality. The engineering analysis of LOOP data shows that human errors have been much less frequent since 1997 than in the 1986 -1996 time period.« less

  19. Study of ZnO nanoparticles: Antibacterial property and light depolarization property using light scattering tool

    NASA Astrophysics Data System (ADS)

    Roy, Sanchita; Barua, Nilakshi; Buragohain, Alak K.; Ahmed, Gazi A.

    2013-03-01

    Investigations on treatment of ZnO nanoparticles on Staphylococcus aureus MTCC 737 strain was essentially made by using standard biochemical method. The anti-microbial assay against S. aureus, and time kill assay revealed the anti-bacterial activity of ZnO nanoparticles. We have substantiated this property of ZnO nanoparticles and light depolarization property by using light scattering tool. Light scattering measurements were carried out for ZnO, S. aureus, and ZnO treated S. aureus as a function of scattering angle at 543.5 and 632.8 nm wavelengths. This was done in order to find the scattering profile of the consequent product after the action of ZnO nanoparticles on bacteria by means of light scattering tool. S. aureus treated with ZnO nanoparticles showed closer agreement of the scattering profiles at both the wavelengths, however, the scattering profiles of ZnO nanoparticles and untreated S. aureus significantly varied for the two different laser wavelengths. It was also observed that there was higher intensity of scattering from all S. aureus treated with ZnO particles compared to the untreated ones. In our work, we have studied ZnO nanoparticles and the possibility of observing its anti-bacterial activity by using light scattering tool.

  20. The effects of mindfulness training on weight-loss and health-related behaviours in adults with overweight and obesity: A systematic review and meta-analysis.

    PubMed

    Ruffault, Alexis; Czernichow, Sébastien; Hagger, Martin S; Ferrand, Margot; Erichot, Nelly; Carette, Claire; Boujut, Emilie; Flahault, Cécile

    The aim of this study was to conduct a comprehensive quantitative synthesis of the effects of mindfulness training interventions on weight-loss and health behaviours in adults with overweight and obesity using meta-analytic techniques. Studies included in the analysis (k=12) were randomised controlled trials investigating the effects of any form of mindfulness training on weight loss, impulsive eating, binge eating, or physical activity participation in adults with overweight and obesity. Random effects meta-analysis revealed that mindfulness training had no significant effect on weight loss, but an overall negative effect on impulsive eating (d=-1.13) and binge eating (d=-.90), and a positive effect on physical activity levels (d=.42). Meta-regression analysis showed that methodological features of included studies accounted for 100% of statistical heterogeneity of the effects of mindfulness training on weight loss (R 2 =1,00). Among methodological features, the only significant predictor of weight loss was follow-up distance from post-intervention (β=1.18; p<.05), suggesting that the longer follow-up distances were associated with greater weight loss. Results suggest that mindfulness training has short-term benefits on health-related behaviours. Future studies should explore the effectiveness of mindfulness training on long-term post-intervention weight loss in adults with overweight and obesity. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  1. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis

    PubMed Central

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H.; Jalava, Mika; Räsänen, Timo A.

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000–2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs’ and IFLs’ locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses. PMID:26466348

  2. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7).

    PubMed

    Zargan, Jamil; Umar, Sadiq; Sajad, Mir; Naime, M; Ali, Shakir; Khan, Haider A

    2011-12-01

    Venom of some species of scorpions induces apoptosis and arrests proliferation in cancer cells. This is an important property that can be harnessed and can lead to isolation of compounds of therapeutic importance in cancer research. Cytotoxicity was investigated using MTT reduction and confirmed with lactate dehydrogenase release following venom exposure. Apoptosis was evaluated with determination of mitochondrial membrane potential, reactive nitrogen species assay, measurement of Caspase-3 activity and DNA fragmentation analysis. To confirm that venom can inhibit DNA synthesis in proliferating breast cancer cells, immunocytochemical detection of BrdU incorporation was done. Our results demonstrated that venom of Odontobuthus doriae not only induced apoptosis but lead to the inhibition of DNA synthesis in human breast cancer cells (MCF-7). Cell viability decreased with parallel increment of LDH release in dose dependent manner after treatment with varying concentrations of venom. Moreover, venom depleted cellular antioxidants evidenced by depression of GSH and Catalases and concomitantly increased reactive nitrogen intermediates (RNI). These events were related to the depolarization of mitochondria and associated Caspase-3 activation following venom treatment in a concentration dependent manner. Finally, fragmentation of nuclear DNA following venom treatment confirmed the apoptotic property of the said venom. These results suggest that venom of O. doriae can be potential source for the isolation of effective anti-proliferative and apoptotic molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    PubMed

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Profit and loss analysis for an intensive care unit (ICU) in Japan: a tool for strategic management

    PubMed Central

    Cao, Pengyu; Toyabe, Shin-ichi; Abe, Toshikazu; Akazawa, Kouhei

    2006-01-01

    Background Accurate cost estimate and a profit and loss analysis are necessary for health care practice. We performed an actual financial analysis for an intensive care unit (ICU) of a university hospital in Japan, and tried to discuss the health care policy and resource allocation decisions that have an impact on critical intensive care. Methods The costs were estimated by a department level activity based costing method, and the profit and loss analysis was based on a break-even point analysis. The data used included the monthly number of patients, the revenue, and the direct and indirect costs of the ICU in 2003. Results The results of this analysis showed that the total costs of US$ 2,678,052 of the ICU were mainly incurred due to direct costs of 88.8%. On the other hand, the actual annual total patient days in the ICU were 1,549 which resulted in revenues of US$ 2,295,044. However, it was determined that the ICU required at least 1,986 patient days within one fiscal year based on a break-even point analysis. As a result, an annual deficit of US$ 383,008 has occurred in the ICU. Conclusion These methods are useful for determining the profits or losses for the ICU practice, and how to evaluate and to improve it. In this study, the results indicate that most ICUs in Japanese hospitals may not be profitable at the present time. As a result, in order to increase the income to make up for this deficit, an increase of 437 patient days in the ICU in one fiscal year is needed, and the number of patients admitted to the ICU should thus be increased without increasing the number of beds or staff members. Increasing the number of patients referred from cooperating hospitals and clinics therefore appears to be the best strategy for achieving these goals. PMID:16403235

  5. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector.

    PubMed

    Pace, D C; Pipes, R; Fisher, R K; Van Zeeland, M A

    2014-11-01

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signature spanning across 50-140 keV. These calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.

  6. AC Loss Analysis of MgB2-Based Fully Superconducting Machines

    NASA Astrophysics Data System (ADS)

    Feddersen, M.; Haran, K. S.; Berg, F.

    2017-12-01

    Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.

  7. Three-dimensional quantitative analysis of adhesive remnants and enamel loss resulting from debonding orthodontic molar tubes

    PubMed Central

    2014-01-01

    Aims Presenting a new method for direct, quantitative analysis of enamel surface. Measurement of adhesive remnants and enamel loss resulting from debonding molar tubes. Material and methods Buccal surfaces of fifteen extracted human molars were directly scanned with an optic blue-light 3D scanner to the nearest 2 μm. After 20 s etching molar tubes were bonded and after 24 h storing in 0.9% saline - debonded. Then 3D scanning was repeated. Superimposition and comparison were proceeded and shape alterations of the entire objects were analyzed using specialized computer software. Residual adhesive heights as well as enamel loss depths have been obtained for the entire buccal surfaces. Residual adhesive volume and enamel loss volume have been calculated for every tooth. Results The maximum height of adhesive remaining on enamel surface was 0.76 mm and the volume on particular teeth ranged from 0.047 mm3 to 4.16 mm3. The median adhesive remnant volume was 0.988 mm3. Mean depths of enamel loss for particular teeth ranged from 0.0076 mm to 0.0416 mm. Highest maximum depth of enamel loss was 0.207 mm. Median volume of enamel loss was 0.104 mm3 and maximum volume was 1.484 mm3. Conclusions Blue-light 3D scanning is able to provide direct precise scans of the enamel surface, which can be superimposed in order to calculate shape alterations. Debonding molar tubes leaves a certain amount of adhesive remnants on the enamel, however the interface fracture pattern varies for particular teeth and areas of enamel loss are present as well. PMID:25208969

  8. A cost analysis of implementing a behavioral weight loss intervention in community mental health settings: Results from the ACHIEVE trial.

    PubMed

    Janssen, Ellen M; Jerome, Gerald J; Dalcin, Arlene T; Gennusa, Joseph V; Goldsholl, Stacy; Frick, Kevin D; Wang, Nae-Yuh; Appel, Lawrence J; Daumit, Gail L

    2017-06-01

    In the ACHIEVE randomized controlled trial, an 18-month behavioral intervention accomplished weight loss in persons with serious mental illness who attended community psychiatric rehabilitation programs. This analysis estimates costs for delivering the intervention during the study. It also estimates expected costs to implement the intervention more widely in a range of community mental health programs. Using empirical data, costs were calculated from the perspective of a community psychiatric rehabilitation program delivering the intervention. Personnel and travel costs were calculated using time sheet data. Rent and supply costs were calculated using rent per square foot and intervention records. A univariate sensitivity analysis and an expert-informed sensitivity analysis were conducted. With 144 participants receiving the intervention and a mean weight loss of 3.4 kg, costs of $95 per participant per month and $501 per kilogram lost in the trial were calculated. In univariate sensitivity analysis, costs ranged from $402 to $725 per kilogram lost. Through expert-informed sensitivity analysis, it was estimated that rehabilitation programs could implement the intervention for $68 to $85 per client per month. Costs of implementing the ACHIEVE intervention were in the range of other intensive behavioral weight loss interventions. Wider implementation of efficacious lifestyle interventions in community mental health settings will require adequate funding mechanisms. © 2017 The Obesity Society.

  9. Probabilistic, meso-scale flood loss modelling

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  10. Analysis of evaporative water loss in the Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Daily evaporative water losses (EWL) during the three Skylab missions were measured using the indirect mass and water balance techniques. A mean inflight EWL of 860 ml/day-m 2 was obtained for nine men who averaged one hour of daily exercise. Although it was expected the EWL would increase in the hypobaric environment of Skylab (1/3 atmosphere), an average decrease from preflight sea level conditions of 11 percent was measured. The results suggest that weightlessness may have been a factor in modifying EWL primarily by decreasing sweat losses during exercise and possibly by reducing insensible skin losses as well. The weightless environment apparently promotes the formation of a sweat film on the skin surface both directly, by reducing heat and mass convective flow and sweat drippage, and perhaps indirectly by inducing measurable biochemical changes resulting in high initial sweating rates. It is proposed that these high levels of skin wettedness favor sweat suppression by a previously described mechanism.

  11. Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics.

    PubMed

    LaPrè, A K; Price, M A; Wedge, R D; Umberger, B R; Sup, Frank C

    2018-04-01

    Musculoskeletal modeling and marker-based motion capture techniques are commonly used to quantify the motions of body segments, and the forces acting on them during human gait. However, when these techniques are applied to analyze the gait of people with lower limb loss, the clinically relevant interaction between the residual limb and prosthesis socket is typically overlooked. It is known that there is considerable motion and loading at the residuum-socket interface, yet traditional gait analysis techniques do not account for these factors due to the inability to place tracking markers on the residual limb inside of the socket. In the present work, we used a global optimization technique and anatomical constraints to estimate the motion and loading at the residuum-socket interface as part of standard gait analysis procedures. We systematically evaluated a range of parameters related to the residuum-socket interface, such as the number of degrees of freedom, and determined the configuration that yields the best compromise between faithfully tracking experimental marker positions while yielding anatomically realistic residuum-socket kinematics and loads that agree with data from the literature. Application of the present model to gait analysis for people with lower limb loss will deepen our understanding of the biomechanics of walking with a prosthesis, which should facilitate the development of enhanced rehabilitation protocols and improved assistive devices. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Emotional eating is associated with weight loss success among adults enrolled in a weight loss program.

    PubMed

    Braden, Abby; Flatt, Shirley W; Boutelle, Kerri N; Strong, David; Sherwood, Nancy E; Rock, Cheryl L

    2016-08-01

    To examine associations between decreased emotional eating and weight loss success; and whether participation in a behavioral weight loss intervention was associated with a greater reduction in emotional eating over time compared to usual care. Secondary data analysis of a randomized controlled trial conducted at two university medical centers with 227 overweight adults with diabetes. Logistic and standard regression analyses examined associations between emotional eating change and weight loss success (i.e., weight loss of ≥7 % of body weight and decrease in BMI). After 6 months of intervention, decreased emotional eating was associated with greater odds of weight loss success (p = .05). The odds of weight loss success for subjects with decreased emotional eating at 12 months were 1.70 times higher than for subjects with increased emotional eating. No differences in change in emotional eating were found between subjects in the behavioral weight loss intervention and usual care. Strategies to reduce emotional eating may be useful to promote greater weight loss among overweight adults with diabetes.

  13. Boundary element analyses for sound transmission loss of panels.

    PubMed

    Zhou, Ran; Crocker, Malcolm J

    2010-02-01

    The sound transmission characteristics of an aluminum panel and two composite sandwich panels were investigated by using two boundary element analyses. The effect of air loading on the structural behavior of the panels is included in one boundary element analysis, by using a light-fluid approximation for the eigenmode series to evaluate the structural response. In the other boundary element analysis, the air loading is treated as an added mass. The effect of the modal energy loss factor on the sound transmission loss of the panels was investigated. Both boundary element analyses were used to study the sound transmission loss of symmetric sandwich panels excited by a random incidence acoustic field. A classical wave impedance analysis was also used to make sound transmission loss predictions for the two foam-filled honeycomb sandwich panels. Comparisons between predictions of sound transmission loss for the two foam-filled honeycomb sandwich panels excited by a random incidence acoustic field obtained from the wave impedance analysis, the two boundary element analyses, and experimental measurements are presented.

  14. Mapping and uncertainty analysis of energy and pitch angle phase space in the DIII-D fast ion loss detector

    DOE PAGES

    Pace, D. C.; Pipes, R.; Fisher, R. K.; ...

    2014-08-05

    New phase space mapping and uncertainty analysis of energetic ion loss data in the DIII-D tokamak provides experimental results that serve as valuable constraints in first-principles simulations of energetic ion transport. Beam ion losses are measured by the fast ion loss detector (FILD) diagnostic system consisting of two magnetic spectrometers placed independently along the outer wall. Monte Carlo simulations of mono-energetic and single-pitch ions reaching the FILDs are used to determine the expected uncertainty in the measurements. Modeling shows that the variation in gyrophase of 80 keV beam ions at the FILD aperture can produce an apparent measured energy signaturemore » spanning across 50-140 keV. As a result, these calculations compare favorably with experiments in which neutral beam prompt loss provides a well known energy and pitch distribution.« less

  15. Palm Oil in Myanmar: A Spatiotemporal Analysis of the Effects of Industrial Farming on Biodiversity Loss

    PubMed Central

    Nicholas, Khristopher; Fanzo, Jessica; MacManus, Kytt

    2018-01-01

    Background: Palm oil consumption is potentially deleterious to human health, and its production has resulted in 11 million hectares of deforestation globally. Importing roughly 394,000 metric tons of palm oil in 2012 alone, the Burmese government has recently pushed for intensive oil palm development to sate domestic demand for consumption and become international market players. Given well-studied linkages between biodiversity loss and ecosystem instability, this study aims to characterize the nature of deforestation for oil palm production in Myanmar, its relationship to increased biodiversity loss, and contextualize the potential impacts of this loss on diets and human health in rural Myanmar. Methods: First, a GIS land suitability analysis overlaying spatial data on rainfall, elevation, and slope was conducted in order to identify areas of Myanmar best suited to oil palm tree growth. Second, after narrowing the geographic range, vegetation indices using varying spectral band models in ENVI (Environment for Visualizing Images) allowed a more granular examination of changes in vegetation phenology from 1975 to 2015. Lastly, ground truthing permitted an in-person verification of GIS and ENVI results and provided contextual understanding of oil palm development in Myanmar. Results: GIS analysis revealed that the Tanintharyi Region, one of the most biodiverse regions in Myanmar, is highly suitable for oil palm growth. Next, vegetation indices revealed a progressive shift from smallholder farming, with little observable deforestation between 1975 and 1990, to industrial oil palm plantations all throughout Tanintharyi starting around 2000—a shift concomitant with biodiversity loss of primary forestland. Ground truthing indicated that plantation development has advanced rapidly, though not without barriers to growth. Conclusions: If these trends of Burmese oil palm intensification continue, 4 key outcomes may follow: (1) even higher levels of biodiversity loss, (2

  16. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  17. Progress of Stirling cycle analysis and loss mechanism characterization

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1986-01-01

    An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.

  18. A general model for the analysis of mark-resight, mark-recapture, and band-recovery data under tag loss

    USGS Publications Warehouse

    Conn, P.B.; Kendall, W.L.; Samuel, M.D.

    2004-01-01

    Estimates of waterfowl demographic parameters often come from resighting studies where birds fit with individually identifiable neck collars are resighted at a distance. Concerns have been raised about the effects of collar loss on parameter estimates, and the reliability of extrapolating from collared individuals to the population. Models previously proposed to account for collar loss do not allow survival or harvest parameters to depend on neck collar presence or absence. Also, few models have incorporated recent advances in mark-recapture theory that allow for multiple states or auxiliary encounters such as band recoveries. We propose a multistate model for tag loss in which the presence or absence of a collar is considered as a state variable. In this framework, demographic parameters are corrected for tag loss and questions related to collar effects on survival and recovery rates can be addressed. Encounters of individuals between closed sampling periods also can be incorporated in the analysis. We discuss data requirements for answering questions related to tag loss and sampling designs that lend themselves to this purpose. We illustrate the application of our model using a study of lesser snow geese (Chen caerulescens caerulescens).

  19. Impacts of the Venezuelan Crude Oil Production Loss

    EIA Publications

    2003-01-01

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  20. Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    NASA Astrophysics Data System (ADS)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.

    2017-11-01

    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  1. Adherence to a behavioral weight loss treatment program enhances weight loss and improvements in biomarkers

    PubMed Central

    Acharya, Sushama D; Elci, Okan U; Sereika, Susan M; Music, Edvin; Styn, Mindi A; Turk, Melanie Warziski; Burke, Lora E

    2009-01-01

    Objectives: To describe participants’ adherence to multiple components (attendance, energy intake, fat gram, exercise goals, and self-monitoring eating and exercise behaviors) of a standard behavioral treatment program (SBT) for weight loss and how adherence to these components may influence weight loss and biomarkers (triglycerides, low density lipoproteins [LDL], high density lipoprotein, and insulin) during the intensive and less-intensive intervention phases. Methods: A secondary analysis of a randomized clinical trial consisting of a SBT with either fat-restricted standard or lacto-ovo vegetarian diet. The 12-month intervention was delivered in 33 group sessions. The first six months reflected the intensive phase; the second six months, the less-intensive intervention phase. We conducted the analysis without regard to treatment assignment. Eligible participants included overweight/obese adults (N = 176; mean body mass index = 34.0 kg/m2). The sample was 86.9% female, 70.5% White, and 44.4 ± 8.6 years old. The outcome measures included weight and biomarkers. Results: There was a significant decline in adherence to each treatment component over time (P < 0.0001). In the first six months, adherence to attendance, self-monitoring and the energy goal were significantly associated with greater weight loss (P < 0.05). Adherence to attendance and exercise remained significantly associated with weight loss in the second six months (P < 0.05). Adherence to attendance, self-monitoring and exercise had indirect effects through weight loss on LDL, triglycerides, and insulin (P < 0.05). Conclusions: We observed a decline in adherence to each treatment component as the intervention intensity was reduced. Adherence to multiple treatment components was associated with greater weight loss and improvements in biomarkers. Future research needs to focus on improving and maintaining adherence to all components of the treatment protocol to promote weight loss and maintenance

  2. Thermal analysis and evolution of shape loss phenomena during polymer burnout in powder metal processing

    NASA Astrophysics Data System (ADS)

    Enneti, Ravi Kumar

    2005-07-01

    Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate

  3. Effect of different postoperative limb positions on blood loss and range of motion in total knee arthroplasty: An updated meta-analysis of randomized controlled trials.

    PubMed

    Wu, Yuangang; Yang, Timin; Zeng, Yi; Si, Haibo; Li, Canfeng; Shen, Bin

    2017-01-01

    Postoperative limb positioning has been reported to be an efficient and simple way to reduce blood loss and improve range of motion following total knee arthroplasty (TKA). This meta-analysis was designed to compare the effectiveness of two different limb positions in primary TKA. A meta-analysis of the PubMed, CENTRAL, Web of Science, EMBASE and Google Search Engine electronic databases was performed. In this meta-analysis, two postoperative limb positions were considered: mild-flexion (flexion less than 60°) and high-flexion (flexion at 60° or more). The subgroups were analysed using RevMan 5.3. Nine RCTs were included with a total sample size of 913 patients. The mild- and high-flexion positions significantly reduced postoperative total blood loss (P = 0.04 and P = 0.01; respectively). Subgroup analysis indicated that knee flexion significantly reduced hidden blood loss when the knee was fixed in mild-flexion (P = 0.0004) and significantly reduced transfusion requirements (P = 0.03) and improved range of motion (ROM) (P < 0.00001) when the knee was fixed in high-flexion. However, the rates of wound-related infection, deep venous thrombosis (DVT) and pulmonary embolism (PE) did not significantly differ between the two flexion groups. This meta-analysis suggests that mild- and high-flexion positions have similar efficacy in reducing total blood loss. In addition, subgroup analysis indicates that the mild-flexion position is superior in decreasing hidden blood loss compared with high-flexion; the high-flexion position is superior to mild-flexion in reducing transfusion requirements and improving postoperative ROM. Thus, the use of the high-flexion position is a viable option to reduce blood loss in patients following primary TKA without increasing the risk of wound-related infection, DVT or PE. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Diabetes mellitus reduces the function and expression of ATP-dependent K⁺ channels in cardiac mitochondria.

    PubMed

    Fancher, Ibra S; Dick, Gregory M; Hollander, John M

    2013-03-28

    Our goal was to determine the effects of type I diabetes mellitus on the function and expression of ATP-dependent K(+) channels in cardiac mitochondria (mitoKATP), composed of a pore-forming subunit (Kir6.1) and a diazoxide-sensitive sulphonylurea receptor (SUR1). We tested the hypothesis that diabetes reduces Kir6.1 and SUR1 expression as well as diazoxide-induced depolarization of mitochondrial membrane potential (ΔΨm). Male FVB mice were made diabetic for 5weeks with multiple low dose injections of streptozotocin. Cardiac mitochondria were separated into two populations: subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). mitoKATP expression was determined via Western blot analysis of Kir6.1 and SUR1 proteins. mitoKATP function was determined by measuring ΔΨm with the potentiometric dye rhodamine 123. Diabetes reduced Kir6.1 and SUR1 expression in IFM by over 40% (p<0.05 for both). Similarly, diabetes reduced Kir6.1 expression in SSM by approximately 40% (p<0.05); however, SUR1 expression was unaffected. Opening mitoKATP with diazoxide (100μM) depolarized control IFM ΔΨm by 80% of the valinomycin maximum; diabetic IFM depolarized only 30% (p<0.05). Diazoxide-induced depolarization was much less in SSM (20-30%) and unaffected by diabetes. Our data indicate that diabetes reduces mitoKATP expression and function in IFM. These changes in mitoKATP may provide an opportunity to understand mechanisms leading to diabetic cardiomyopathy and loss of cardioprotective mechanisms in the diabetic heart. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A meta-analysis of the effects of shockwave and high pressure processing on color and cook loss of fresh meat.

    PubMed

    Ha, Minh; Dunshea, Frank R; Warner, Robyn D

    2017-10-01

    Meta-analysis is a statistical approach for investigating experimental differences across studies. Meta-analyses were performed to examine the effects of hydrodynamic processing (shockwave; n=12 papers) and high pressure processing (HPP; n=8 papers) on the color and cook loss of fresh meat. Shockwave did not affect color (L*, a*), whereas cook loss was increased by 0.6% relative to untreated meat. HPP resulted in an increase in lightness (L*) and a decrease in redness (a*), with the effect being greater at higher pressures (>300MPa vs <300MPa). In addition, HPP applied at moderate pressure (<300MPa) reduced cook loss but at high pressure (>300MPa) the cook loss was increased (-1.5% vs 3.0% respectively). The increased cook loss with shockwave and high pressure (>300MPa) processing needs to be balanced against benefits in texture if this technology is applied to meat. The reduced cook loss of meat treated at moderate pressures (<300MPa) is an advantage which would likely improve sensory traits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Noise-induced hearing loss: a military perspective.

    PubMed

    Pfannenstiel, Travis J

    2014-10-01

    To summarize relevant literature occurring over the past 12-18 months forwarding understanding of noise-induced hearing loss in relation to military service. Hearing loss prior to entry into military service is highly predictive of subsequent hearing loss and hearing loss disability. Tightly controlled organic solvent exposure may not be a significant risk factor for noise-induced hearing loss. Increasingly detailed analysis of high intensity noise, impulse and blast noise exposures, and the methods used to mitigate these exposures are leading to breakthroughs in understanding and predicting hearing loss in military service. Prevention, mitigation, treatment, and prediction of the effects of hazardous noise exposure in military service continue to require a multidisciplinary team of individuals from around the world fully aware of the detrimental effect to service members and their societies of hearing loss disability.

  7. GAD vaccine reduces insulin loss in recently diagnosed type 1 diabetes: findings from a Bayesian meta-analysis.

    PubMed

    Beam, Craig A; MacCallum, Colleen; Herold, Kevan C; Wherrett, Diane K; Palmer, Jerry; Ludvigsson, Johnny

    2017-01-01

    GAD is a major target of the autoimmune response that occurs in type 1 diabetes mellitus. Randomised controlled clinical trials of a GAD + alum vaccine in human participants have so far given conflicting results. In this study, we sought to see whether a clearer answer to the question of whether GAD65 has an effect on C-peptide could be reached by combining individual-level data from the randomised controlled trials using Bayesian meta-analysis to estimate the probability of a positive biological effect (a reduction in C-peptide loss compared with placebo approximately 1 year after the GAD vaccine). We estimate that there is a 98% probability that 20 μg GAD with alum administered twice yields a positive biological effect. The effect is probably a 15-20% reduction in the loss of C-peptide at approximately 1 year after treatment. This translates to an annual expected loss of between -0.250 and -0.235 pmol/ml in treated patients compared with an expected 2 h AUC loss of -0.294 pmol/ml at 1 year for untreated newly diagnosed patients. The biological effect of this vaccination should be developed further in order to reach clinically desirable reductions in insulin loss in patients recently diagnosed with type 1 diabetes.

  8. [Hearing loss and idoneity--the segnalation of noise-induced hearing loss hearing Loss].

    PubMed

    Albera, Roberto; Dagna, Federico; Cassandro, Claudia; Canale, Andrea

    2011-01-01

    Work idoneity in hearing loss must be related to working ability and evolution risks. Working ability is referred to the difficulties found in speech comprehension and in signals perception. As regards hearing loss evolution it is necessary to define if the subject is affected by conductive or neurosensorial hearing loss. In conductive hearing loss it is necessary to evaluate entity and frequential distribution of the deficit. In neurosensorial hearing loss it is necessary to distinguish between noise-induced hearing loss and extraprofessional hearing loss. In noise-induced hearing loss the evolution risk is high if the noise exposure is less than 10-15 years or the actual noise exposure is louder than the former. In case of extraprofessional hearing loss the evolution risk is higher in presbycusis, endolymphatic hydrops and toxic hearing loss. The necessity to report the presence on professionale noise-induced hearing loss arises if audiometric threshold is more than 25 dB at 0.5-1-2-3-4 kHz and if it is verified the professional origine of hearing loss.

  9. Energy loss of fast quarks in nuclei.

    PubMed

    Johnson, M B; Kopeliovich, B Z; Potashnikova, I K; McGaughey, P L; Moss, J M; Peng, J C; Garvey, G T; Leitch, M J; Adams, M R; Alde, D M; Baer, H W; Barlett, M L; Brown, C N; Cooper, W E; Carey, T A; Danner, G; Hoffmann, G W; Hsiung, Y B; Kaplan, D M; Klein, A; Lee, C; Lillberg, J W; McCarthy, R L; Mishra, C S; Wang, M J

    2001-05-14

    We report an analysis of the nuclear dependence of the yield of Drell-Yan dimuons from the 800 GeV/c proton bombardment of 2H, C, Ca, Fe, and W targets. Employing a new formulation of the Drell-Yan process in the rest frame of the nucleus, this analysis examines the effect of initial-state energy loss and shadowing on the nuclear-dependence ratios versus the incident proton's momentum fraction and dimuon effective mass. The resulting energy loss per unit path length is -dE/dz = 2.32+/-0.52+/-0.5 GeV/fm. This is the first observation of a nonzero energy loss of partons traveling in a nuclear environment.

  10. Complete tooth loss as status passage.

    PubMed

    Gibson, Barry John; Sussex, Philip V; Fitzgerald, Ruth P; Thomson, William Murray

    2017-03-01

    The aim of this article is to add to the literature on the sociology of oral health and dentistry by presenting the relevance of status passage to the study of complete tooth loss. The article reports on an analysis of data taken from participants residing in the Nelson region of New Zealand. In total the data include interviews from 20 participants, all of whom had their remaining natural teeth removed before 1960. In total, 12 women and eight men were interviewed. All were from a European background with an age range of 71 to 101 years. Following a narrative approach, participants were interviewed on the nature of the social factors that resulted in complete tooth loss by starting with their family history and then focusing on the factors and events leading up to their total tooth loss. Data were analysed using the methods and techniques of grounded theory. This article provides an outline of the importance of scheduling, prescribing, social factors, 'compound awareness contexts' and reversibility to the status passage into complete tooth loss. We conclude by arguing that the theory of status passage may enable a detailed analysis of the 'time-space extensionality' of trajectories into complete tooth loss. © 2016 Foundation for the Sociology of Health & Illness.

  11. Genetic Considerations in Recurrent Pregnancy Loss

    PubMed Central

    Hyde, Kassie J.; Schust, Danny J.

    2015-01-01

    Human reproduction is remarkably inefficient; nearly 70% of human conceptions do not survive to live birth. Spontaneous fetal aneuploidy is the most common cause for spontaneous loss, particularly in the first trimester of pregnancy. Although losses owing to de novo fetal aneuploidy occur at similar frequencies among women with sporadic and recurrent losses, some couples with recurrent pregnancy loss have additional associated genetic factors and some have nongenetic etiologies. Genetic testing of the products of conception from couples experiencing two or more losses may aid in defining the underlying etiology and in counseling patients about prognosis in a subsequent pregnancy. Parental karyotyping of couples who have experienced recurrent pregnancy loss (RPL) will detect some couples with an increased likelihood of recurrent fetal aneuploidy; this may direct interventions. The utility of preimplantation genetic analysis in couples with RPL is unproven, but new approaches to this testing show great promise. PMID:25659378

  12. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    PubMed Central

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  13. Psychological and behavioral consequences of job loss: a covariance structure analysis using Weiner's (1985) attribution model.

    PubMed

    Prussia, G E; Kinicki, A J; Bracker, J S

    1993-06-01

    B. Weiner's (1985) attribution model of achievement motivation and emotion was used as a theoretical foundation to examine the mediating processes between involuntary job loss and employment status. Seventy-nine manufacturing employees were surveyed 1 month prior to permanent displacement, and finding another job was assessed 18 months later. Covariance structure analysis was used to evaluate goodness of fit and to compare the model to alternative measurement and structural representations. Discriminant validity analyses indicated that the causal dimensions underlying the model were not independent. Model predictions were supported in that internal and stable attributions for job loss negatively influenced finding another job through expectations for re-employment. These predictions held up even after controlling for influential unmeasured variables. Practical and theoretical implications are discussed.

  14. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    NASA Astrophysics Data System (ADS)

    Li, Guangchun; Pickup, Peter G.

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO 2 and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol.

  15. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells.

    PubMed

    Szebeni, Gábor J; Balázs, Árpád; Madarász, Ildikó; Pócz, Gábor; Ayaydin, Ferhan; Kanizsai, Iván; Fajka-Boja, Roberta; Alföldi, Róbert; Hackler, László; Puskás, László G

    2017-10-07

    Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G₀/G₁ cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5 , ATF4, XBP1 , and DDIT3 . The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  16. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl

    PubMed Central

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2016-01-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl. PMID:26477559

  17. Emergent risk factors associated with eyeball loss and ambulatory vision loss after globe injuries.

    PubMed

    Hyun Lee, Seung; Ahn, Jae Kyoun

    2010-07-01

    The objective of this study was to evaluate risk factors associated with eyeball loss and ambulatory vision loss on emergent examination of patients with ocular trauma. We reviewed the medical records of 1,875 patients hospitalized in a single tertiary referral center between January 2003 and December 2007. Emergent examinations included a history of trauma, elapsed time between injury and hospital arrival, visible intraocular tissues, and initial visual acuity (VA) using a penlight. The main outcome measures were ocular survival and ambulatory vision survival (>20/200) at 1 year after trauma using univariate and multivariate regression analysis. The ocular trauma scores were significantly higher in open globe injuries than in closed globe injuries (p < 0.01). In open globe injuries, initial VA less than light perception (LP) and a history of golf ball injury were the significant risk factors associated with eyeball loss. Elapsed time more than 12 hours and visible intraocular tissues were the significant risk factors associated with ambulatory vision loss. The most powerful predictor of eyeball loss and ambulatory vision loss was eyeball rupture. In closed globe injuries, there were no significant risk factors of eyeball loss, whereas initial vision less than LP and the presence of relative afferent pupillary defect were the significant risk factors associated with ambulatory vision loss. An initial VA less than LP using a penlight, a history of golf ball injury, and elapsed time more than 12 hours between ocular trauma and hospital arrival were associated with eyeball loss and ambulatory vision loss. Physicians should bear these factors in mind so that they can more effectively counsel patients with such injuries.

  18. Alpha-lipoic acid (ALA) as a supplementation for weight loss: results from a meta-analysis of randomized controlled trials.

    PubMed

    Kucukgoncu, S; Zhou, E; Lucas, K B; Tek, C

    2017-05-01

    Obesity is associated with significant morbidity and mortality rates. Even modest weight loss may be associated with health benefits. Alpha-lipoic acid (ALA) is a naturally occurring antioxidant. Studies have suggested anti-obesity properties of ALA; however, results are inconsistent. The purpose of this study is to conduct a meta-analysis of the effect of ALA on weight and body mass index (BMI). A comprehensive, systematic literature search identified 10 articles on randomized, double-blind, placebo-controlled studies involving ALA. We conducted a meta-analysis of mean weight and BMI change differences between ALA and placebo treatment groups. Alpha-lipoic acid treatment coincided with a statistically significant 1.27 kg (confidence interval = 0.25 to 2.29) greater mean weight loss compared with the placebo group. A significant overall mean BMI difference of -0.43 kg/ m 2 (confidence interval = -0.82 to -0.03) was found between the ALA and placebo groups. Meta-regression analysis showed no significance in ALA dose on BMI and weight changes. Study duration significantly affected BMI change, but not weight change. Alpha-lipoic acid treatment showed small, yet significant short-term weight loss compared with placebo. Further research is needed to examine the effect of different doses and the long-term benefits of ALA on weight management. © 2017 World Obesity Federation.

  19. Quantifying the impacts of road construction on wetlands loss : preliminary analysis

    DOT National Transportation Integrated Search

    1997-06-10

    Over the past decades, the role of federal programs in the generation of wetlands losses has received much attention. One of the federal programs most responsible for wetlands losses and degradation is believed to be the Federal Aid Highway Program. ...

  20. Photographic Analysis Technique for Assessing External Tank Foam Loss Events

    NASA Technical Reports Server (NTRS)

    Rieckhoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A video camera and recorder were placed inside the solid rocket booster forward skirt in order to view foam loss events over an area on the external tank (ET) intertank surface. In this Technical Memorandum, a method of processing video images to allow rapid detection of permanent changes indicative of foam loss events on the ET surface was defined and applied to accurately count, categorize, and locate such events.

  1. Diabetes and tooth loss: an analysis of data from the National Health and Nutrition Examination Survey, 2003-2004.

    PubMed

    Patel, Manthan H; Kumar, Jayanth V; Moss, Mark E

    2013-05-01

    The authors conducted an analysis of data from the National Health and Nutrition Examination Survey (NHANES) to understand the association between diabetes and tooth loss in the United States. The authors analyzed the oral examination and self-reported diabetes data obtained from the NHANES 2003-2004 cycle and included 2,508 participants representing a civilian, noninstitutionalized U.S. population 50 years and older. The authors calculated the prevalence of edentulism and the number of missing teeth among dentate people, and they used multiple regression analyses to assess the association between diabetes and tooth loss. The prevalence of edentulism was 28 percent and 14 percent among people with and without diabetes, respectively. The multiple logistic regression analysis revealed that people with diabetes were more likely to be edentulous than were those without diabetes (adjusted odds ratio = 2.25; 95 percent confidence interval, 1.19-4.21). Among dentate adults, those with diabetes had a higher number of missing teeth than did adults without diabetes (mean [standard error {SE}] = 9.8 [0.67]), mean [SE] = 6.7 [0.29]); P < .01). These study results revealed that adults with diabetes are at higher risk of experiencing tooth loss and edentulism than are adults without diabetes. One of every five cases of edentulism in the United States is linked to diabetes. Practical Implications. Although the association between diabetes and periodontal disease is well established, health care professionals also need to recognize the risk of tooth loss and its effect on quality of life among people with diabetes.

  2. Parameter uncertainty analysis for the annual phosphorus loss estimator (APLE) model

    USDA-ARS?s Scientific Manuscript database

    Technical abstract: Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, we conduct an uncertainty analys...

  3. Genetic considerations in recurrent pregnancy loss.

    PubMed

    Hyde, Kassie J; Schust, Danny J

    2015-02-06

    Human reproduction is remarkably inefficient; nearly 70% of human conceptions do not survive to live birth. Spontaneous fetal aneuploidy is the most common cause for spontaneous loss, particularly in the first trimester of pregnancy. Although losses owing to de novo fetal aneuploidy occur at similar frequencies among women with sporadic and recurrent losses, some couples with recurrent pregnancy loss have additional associated genetic factors and some have nongenetic etiologies. Genetic testing of the products of conception from couples experiencing two or more losses may aid in defining the underlying etiology and in counseling patients about prognosis in a subsequent pregnancy. Parental karyotyping of couples who have experienced recurrent pregnancy loss (RPL) will detect some couples with an increased likelihood of recurrent fetal aneuploidy; this may direct interventions. The utility of preimplantation genetic analysis in couples with RPL is unproven, but new approaches to this testing show great promise. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Parents' preferences for services for children with hearing loss: a conjoint analysis study.

    PubMed

    Fitzpatrick, Elizabeth; Coyle, Douglas E; Durieux-Smith, Andrée; Graham, Ian D; Angus, Douglas E; Gaboury, Isabelle

    2007-12-01

    Early identification of permanent childhood hearing loss through universal newborn hearing screening is rapidly becoming a standard of care. However, it is well recognized that hearing screening must be embedded within a comprehensive system of rehabilitation and parent support services. This study was undertaken with parents of young children with permanent hearing loss to examine their preferences for characteristics associated with intervention services. A secondary goal was to explore whether preferences may differ according to patient subgroups. Conjoint analysis, a preference-based economic technique, was used to investigate parents' strength of preferences. A cross-sectional survey that consisted of hypothetical clinic scenarios was developed based on information from qualitative interviews with parents. The questionnaire was administered to parents receiving intervention services in the province of Ontario, Canada, shortly after the implementation of a universal hearing screening program. The sample was recruited from three different clinical programs. A total of 48 of 75 respondents completed the questionnaire, a response rate of 64%. The participants varied by screening status of the child (25 screened, 23 not screened), type of device (23 hearing aids, 25 cochlear implants), and region. All five characteristics of care that were selected for inclusion in the survey were found to be statistically significant attributes of services: coordinated services, access to parent support, access to information, frequency of services, and location of services. Parents showed a preference for clinic-based rather than home-based services. Preferences toward once a week therapy services rather than services two to three times weekly were also found. In particular, parents valued service models that consisted of well-coordinated care with access to support from other parents. Differences in respondents according to hearing screening status (screened or unscreened), type

  5. Mediators of weight loss and weight loss maintenance in middle-aged women.

    PubMed

    Teixeira, Pedro J; Silva, Marlene N; Coutinho, Sílvia R; Palmeira, António L; Mata, Jutta; Vieira, Paulo N; Carraça, Eliana V; Santos, Teresa C; Sardinha, Luís B

    2010-04-01

    Long-term behavioral self-regulation is the hallmark of successful weight control. We tested mediators of weight loss and weight loss maintenance in middle-aged women who participated in a randomized controlled 12-month weight management intervention. Overweight and obese women (N = 225, BMI = 31.3 +/- 4.1 kg/m(2)) were randomly assigned to a control or a 1-year group intervention designed to promote autonomous self-regulation of body weight. Key exercise, eating behavior, and body image variables were assessed before and after the program, and tested as mediators of weight loss (12 months, 86% retention) and weight loss maintenance (24 months, 81% retention). Multiple mediation was employed and an intention-to-treat analysis conducted. Treatment effects were observed for all putative mediators (Effect size: 0.32-0.79, P < 0.01 vs. controls). Weight change was -7.3 +/- 5.9% (12-month) and -5.5 +/- 5.0% (24-month) in the intervention group and -1.7 +/- 5.0% and -2.2 +/- 7.5% in controls. Change in most psychosocial variables was associated with 12-month weight change, but only flexible cognitive restraint (P < 0.01), disinhibition (P < 0.05), exercise self-efficacy (P < 0.001), exercise intrinsic motivation (P < 0.01), and body dissatisfaction (P < 0.05) predicted 24-month weight change. Lower emotional eating, increased flexible cognitive restraint, and fewer exercise barriers mediated 12-month weight loss (R(2) = 0.31, P < 0.001; effect ratio: 0.37), but only flexible restraint and exercise self-efficacy mediated 24-month weight loss (R(2) = 0.17, P < 0.001; effect ratio: 0.89). This is the first study to evaluate self-regulation mediators of weight loss and 2-year weight loss maintenance, in a large sample of overweight women. Results show that lowering emotional eating and adopting a flexible dietary restraint pattern are critical for sustained weight loss. For long-term success, interventions must also be effective in promoting exercise intrinsic motivation and

  6. Hearing loss and paid employment: Australian population survey findings.

    PubMed

    Hogan, Anthony; O'Loughlin, Kate; Davis, Adrian; Kendig, Hal

    2009-03-01

    This paper provides an analysis of participation in paid employment for people with a hearing loss over the full span of adult ages. The paper is based on original analysis of the 2003 Australian survey of disability, aging and carers (SDAC). This analysis shows that hearing loss was associated with an increased rate of non-participation in employment of between 11.3% and 16.6%. Advancing age and the existence of co-morbidities contribute significantly to reduced participation in employment. A disproportionate impact is evident for women and for those having low education and communication difficulties. Controlling for co-morbidities, hearing loss was associated with a 2.1% increase of non-participation in employment, a proportional difference of 1.4 times the population. People with hearing loss were less likely to be found in highly skilled jobs and were over-represented among low income earners. The SDAC data set provides self-report findings on the experience of disability rather than hearing impairment. As such, these findings serve as a conservative estimate of the impact of hearing loss on accessing well-paid employment.

  7. Urban Earthquake Shaking and Loss Assessment

    NASA Astrophysics Data System (ADS)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Zulfikar, C.; Durukal, E.; Erdik, M.

    2009-04-01

    This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Level 2 analysis of the ELER Software (similar to HAZUS and SELENA) is essentially intended for earthquake risk assessment (building damage, consequential human casualties and macro economic loss quantifiers) in urban areas. The basic Shake Mapping is similar to the Level 0 and Level 1 analysis however, options are available for more sophisticated treatment of site response through externally entered data and improvement of the shake map through incorporation

  8. Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat.

    PubMed

    Rudomin, P; Lomelí, J

    2007-01-01

    We have examined in the anesthetized cat the threshold changes produced by sensory and supraspinal stimuli on intraspinal collaterals of single afferents from the posterior articular nerve (PAN). Forty-eight fibers were tested in the L3 segment, in or close to Clarke's column, and 70 fibers in the L6-L7 segments within the intermediate zone. Of these, 15 pairs of L3 and L6-L7 collaterals were from the same afferent. Antidromically activated fibers had conduction velocities between 23 and 74 m/s and peripheral thresholds between 1.1 and 4.7 times the threshold of the most excitable fibers (xT), most of them below 3 xT. PAN afferents were strongly depolarized by stimulation of muscle afferents and by cutaneous afferents, as well as by stimulation of the bulbar reticular formation and the midline raphe nuclei. Stimulation of muscle nerves (posterior biceps and semitendinosus, quadriceps) produced a larger PAD (primary afferent depolarization) in the L6-L7 than in the L3 terminations. Group II were more effective than group I muscle afferents. As with group I muscle afferents, the PAD elicited in PAN afferents by stimulation of muscle nerves could be inhibited by conditioning stimulation of cutaneous afferents. Stimulation of the cutaneous sural and superficial peroneal nerves increased the threshold of few terminations (i.e., produced primary afferent hyperpolarization, PAH) and reduced the threshold of many others, particularly of those tested in the L6-L7 segments. Yet, there was a substantial number of terminals where these conditioning stimuli had minor or no effects. Autogenetic stimulation of the PAN with trains of pulses increased the intraspinal threshold in 46% and reduced the threshold in 26% of fibers tested in the L6-L7 segments (no tests were made with trains of pulses on fibers ending in L3). These observations indicate that PAN afferents have a rather small autogenetic PAD, particularly if this is compared with the effects of heterogenetic stimulation

  9. The influence of implant-abutment connection to peri-implant bone loss: A systematic review and meta-analysis.

    PubMed

    Caricasulo, Riccardo; Malchiodi, Luciano; Ghensi, Paolo; Fantozzi, Giuliano; Cucchi, Alessandro

    2018-05-15

    Different implant-abutment connections are available and it has been claimed they could have an effect on marginal bone loss. The aim of this review is to establish if implant connection configuration influences peri-implant bone loss (PBL) after functional loading. A specific question was formulated according to the Population, Intervention, Control, and Outcome (PICO): Does the type of implant-abutment connection (external, internal, or conical) have an influence on peri-implant bone loss? A PubMed/MEDLINE electronic search was conducted to identify English language publications published in international journals during the last decade (from 2006 to 2016). The search was conducted by using the Medical Subject Headings (MeSH) keywords "dental implants OR dental abutment AND external connection OR internal connection OR conical connection OR Morse Taper." Selected studies were randomized clinical trials and prospective studies; in vitro studies, case reports and retrospective studies were excluded. Titles and abstracts and, in the second phase, full texts, were evaluated autonomously and in duplicate by two reviewers. A total of 1649 articles were found, but only 14 studies met the pre-established inclusion criteria and were considered suitable for meta-analytic analysis. The network meta-analysis (NMA) suggested a significant difference between the external and the conical connections; this was less evident for the internal and conical ones. Platform-switching (PS) seemed to positively affect bone levels, non-regarding the implant-connection it was applied to. Within the limitations of this systematic review, it can be concluded that crestal bone levels are better maintained in the short-medium term when internal kinds of interface are adopted. In particular, conical connections seem to be more advantageous, showing lower peri-implant bone loss, but further studies are necessary to investigate the efficacy of implant-abutment connection on stability of crestal

  10. The efficacy of combined intra-articular and intravenous tranexamic acid for blood loss in primary total knee arthroplasty: A meta-analysis.

    PubMed

    Wang, Zhao; Shen, Xiaofei

    2017-10-01

    This meta-analysis aimed to illustrate the efficacy and safety of combined topical and intravenous (IV) tranexamic acid (TXA) for blood loss control in primary total knee arthroplasty (TKA) patients. In April 2017, a systematic computer-based search was conducted in PubMed, EMBASE, Web of Science, Cochrane Database of Systematic Reviews, and Google database. Data on patients prepared for TKA surgery in studies that compared combined topical and IV TXA versus placebo, topical, or IV TXA alone were retrieved. The primary endpoint was the need for transfusion, total blood loss, hemoglobin drop, and the occurrence of deep venous thrombosis (DVT), pulmonary embolism (PE), and the infection. After testing for publication bias and heterogeneity between studies, data were aggregated for random-effects models when necessary. Seven clinical studies were ultimately included in the meta-analysis. Compared with IV TXA and control group, combined TXA was associated with less need for transfusion, blood loss, and hemoglobin drop (P < .05). There was no significant difference between the combined TXA and topical TXA in terms of the need for transfusion, total blood loss, and hemoglobin drop (P > .05). There was no significant difference between the complications (DVT, PE, and infection) between the combined TXA, IV TXA, topical TXA, and control group. Current meta-analysis suggests that the combined IV and topical TXA was superior than IV TXA or control group. There is still need for more studies to identify whether combined TXA was superior than topical TXA alone.

  11. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  12. Loss-Aversion or Loss-Attention: The Impact of Losses on Cognitive Performance

    ERIC Educational Resources Information Center

    Yechiam, Eldad; Hochman, Guy

    2013-01-01

    Losses were found to improve cognitive performance, and this has been commonly explained by increased weighting of losses compared to gains (i.e., loss aversion). We examine whether effects of losses on performance could be modulated by two alternative processes: an attentional effect leading to increased sensitivity to task incentives; and a…

  13. Bi-stable dendrite in constant electric field: a model analysis.

    PubMed

    Baginskas, A; Gutman, A; Svirskis, G

    1993-03-01

    Some neurons possess dendritic persistent inward current, which is activated during depolarization. Dendrites can be stably depolarized, i.e. they are bi-stable if the net current is inward. A proper method to show the existence of dendritic bi-stability is putting the neuron into the electric field to induce transmembrane potential changes along the dendrites. Here we present analytical and computer simulation of the bi-stable dendrite in the d.c. field. A prominent jump to a depolarization plateau can be seen in the soma upon initial hyperpolarization of its membrane. If a considerable portion of dendrites are parallel to the field it is impossible to switch off the depolarization plateau by changing the direction and the strength of the electric field. There is nothing similar in neurons with ohmic dendrites. The results of the simulation conform to the experimental observations in turtle motoneurons [Hounsgaard J. and Kiehn O. (1993) J. Physiol., Lond. (in press)]; comparison of the theoretical and the experimental results makes semi-quantitative estimation of some electrical parameters of dendrites possible. We propose modifications of the experiment which enable one to measure dendritic length constants and other parameters of stained neurons.

  14. Depressed affect and historical loss among North American Indigenous adolescents.

    PubMed

    Whitbeck, Les B; Walls, Melissa L; Johnson, Kurt D; Morrisseau, Allan D; McDougall, Cindy M

    2009-01-01

    This study reports on the prevalence and correlates of perceived historical loss among 459 North American Indigenous adolescents aged 11-13 years from the northern Midwest of the United States and central Canada. The adolescents reported daily or more thoughts of historical loss at rates similar to their female caretakers. Confirmatory factor analysis indicated that our measure of perceived historical loss and the Center for Epidemiologic Studies Depression scale were separate but related constructs. Regression analysis indicated that, even when controlling for family factors, perceived discrimination, and proximal negative life events, perceived historical loss had independent effects on adolescents' depressive symptoms. The construct of historical loss is discussed in terms of Indigenous ethnic cleansing and life course theory.

  15. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  16. Identifying hearing loss by means of iridology.

    PubMed

    Stearn, Natalie; Swanepoel, De Wet

    2006-11-13

    Isolated reports of hearing loss presenting as markings on the iris exist, but to date the effectiveness of iridology to identify hearing loss has not been investigated. This study therefore aimed to determine the efficacy of iridological analysis in the identification of moderate to profound sensorineural hearing loss in adolescents. A controlled trial was conducted with an iridologist, blind to the actual hearing status of participants, analyzing the irises of participants with and without hearing loss. Fifty hearing impaired and fifty normal hearing subjects, between the ages of 15 and 19 years, controlled for gender, participated in the study. An experienced iridologist analyzed the randomised set of participants' irises. A 70% correct identification of hearing status was obtained by iridological analyses with a false negative rate of 41% compared to a 19% false positive rate. The respective sensitivity and specificity rates therefore came to 59% and 81%. Iridological analysis of hearing status indicated a statistically significant relationship to actual hearing status (P < 0.05). Although statistically significant sensitivity and specificity rates for identifying hearing loss by iridology were not comparable to those of traditional audiological screening procedures.

  17. Damping ratio analysis of tooth stability under various simulated degrees of vertical alveolar bone loss and different root types.

    PubMed

    Ho, Kuo-Ning; Lee, Sheng-Yang; Huang, Haw-Ming

    2017-08-03

    The purpose of this study was to evaluate the feasibility of using damping ratio (DR) analysis combined with resonance frequency (RF) and periotest (PTV) analyses to provide additional information about natural tooth stability under various simulated degrees of alveolar vertical bone loss and various root types. Three experimental tooth models, including upper central incisor, upper first premolar, and upper first molar were fabricated using Ti6Al4V alloy. In the tooth models, the periodontal ligament and alveolar bone were simulated using a soft lining material and gypsum, respectively. Various degrees of vertical bone loss were simulated by decreasing the surrounding bone level apically from the cementoenamel junction in 2-mm steps incrementally downward for 10 mm. A commercially available RF analyzer was used to measure the RF and DR of impulse-forced vibrations on the tooth models. The results showed that DRs increased as alveolar vertical bone height decreased and had high coefficients of determination in the linear regression analysis. The damping ratio of the central incisor model without a simulated periodontal ligament were 11.95 ± 1.92 and 27.50 ± 0.67% respectively when their bone levels were set at 2 and 10 mm apically from the cementoenamel junction. These values significantly changed to 28.85 ± 2.54% (p = 0.000) and 51.25 ± 4.78% (p = 0.003) when the tooth model was covered with simulated periodontal ligament. Moreover, teeth with different root types showed different DR and RF patterns. Teeth with multiple roots had lower DRs than teeth with single roots. Damping ratio analysis combined with PTV and RF analysis provides more useful information on the assessment of changes in vertical alveolar bone loss than PTV or RF analysis alone.

  18. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation

    PubMed Central

    2012-01-01

    Background Fluorescence loss in photobleaching (FLIP) is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs) for further analysis which is subjective and does not allow for comparing different cells and experimental settings. Results We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp) function is fitted to fluorescence loss (FL) inside and outside the bleached region. We show by reaction–diffusion simulations, that the StrExp function can describe both, binding/barrier–limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP), we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ) disease proteins like mutant huntingtin (mtHtt) can form large aggregates called inclusion bodies (IB’s). The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB’s to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt) between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and experiments. Conclusions We

  19. Noise induced hearing loss of forest workers in Turkey.

    PubMed

    Tunay, M; Melemez, K

    2008-09-01

    In this study, a total number of 114 workers who were in 3 different groups in terms of age and work underwent audiometric analysis. In order to determine whether there was a statistically significant difference between the hearing loss levels of the workers who were included in the study, variance analysis was applied with the help of the data obtained as a result of the evaluation. Correlation and regression analysis were applied in order to determine the relations between hearing loss and their age and their time of work. As a result of the variance analysis, statistically significant differences were found at 500, 2000 and 4000 Hz frequencies. The most specific difference was observed among chainsaw machine operators at 4000 Hz frequency, which was determined by the variance analysis. As a result of the correlation analysis, significant relations were found between time of work and hearing loss in 0.01 confidence level and between age and hearing loss in 0.05 confidence level. Forest workers using chainsaw machines should be informed, they should wear or use protective materials and less noising chainsaw machines should be used if possible and workers should undergo audiometric tests when they start work and once a year.

  20. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Haiyan; Zhu, Ye; Dwyer, Christian

    2014-12-31

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). Atmore » greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.« less