Science.gov

Sample records for depolymerizable mandrel technique

  1. Fabrication of special ICF targets using a depolymerizable mandrel technique

    SciTech Connect

    Letts, S.A.; Fearon, E.M.; Allison, L.M.; Cook, R.

    1995-10-02

    A technique was developed for fabricating Spherical shell targets for implosion physics experiments with diameters up to several millimeters and with unique structural features such as thin metal layers or texture on the inside surface. We start with a spherical bead or thin shell of poly(alpha-methylstyrene) (PAMS) of the desired size, which can be textured by laser photoablation or overcoated with a thin layer of diagnostic material. The mandrel is next overcoated with plasma polymer (CH) 2 to 50 {mu}m thick. Upon heating, the PAMS depolymerizes to gaseous monomer which diffuses through the thermally stable plasma polymer coating leaving a hollow shell. Shells produced by this technique are uniform in wall thickness, and highly spherical. If the PAMS mandrel is textured, the mandrel topology is transferred to the inner wall of the plasma polymer shell. Likewise thermally stable coatings on the mandrel are transferred to the inner shell wall.

  2. Decomposable Mandrel Project. Progress report

    SciTech Connect

    Letts, S.A.; Fearon, E.; Allison, L.; Buckley, S.; Saculla, M.; Cook, R.

    1995-05-08

    We report on our progress in developing a new technology to produce both Nova and NIF scale capsules using a depolymerizable mandrel. In this technique we use poly({alpha}-methylstyrene) (PAMS) beads or shells as mandrels which are overcoated with plasma polymer. The poly({alpha}-methylstyrene) mandrel is then thermally depolymerized to gas phase monomer which diffuses away through the more thermally stable plasma polymer coating, leaving a hollow shell. Since our last report we have concentrated on characterization of the final shell. Starting with PAMS bead mandrels leads to distorted pyrolyzed shells because of thermally induced creep of the CH coating. We found that plasma polymer coatings on hollow shell mandrels shrink isotropically during pyrolysis and maintain sphericity. We are now concentrating our efforts on the use of microencapsulated shells to prepare targets with buried diagnostic layers or inner wall surface texture.

  3. PROGRESS IN 2 mm GLOW DISCHARGE POLYMER MANDREL DEVELOPMENT FOR NIF

    SciTech Connect

    NIKROO,A; BOUSQUET,J; COOK,R; McQUILLAN,B.W; PAGUIO,R; TAKAGI,M

    2003-06-01

    OAK-B135 All planned National Ignition Facility (NIF) capsule targets except machined beryllium require a glow discharge polymer (GDP) mandrel upon which the albator is applied. This mandrel, {approx} 2 mm in diameter, must at least meet if not exceed the symmetry and surface finish requirements of the final capsule. Such mandrels are currently produced by the three-step depolymerizable mandrel technique. The quality of the final mandrel depends upon precise optimization and execution of each of the three steps. They had shown previously that fabrication of a mandrel which met the symmetry and surface finish requirements was feasible using this technique. In this paper they will discuss recent progress towards converting this process into a high yield, production scale process.

  4. COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES

    SciTech Connect

    NIKROO,A; PONTELANDOLFO,JM; CASTILLO,ER

    2002-04-01

    OAK A271 COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES. Targets for the National Ignition Facility (NIF) need to be about 200 {micro}m thick and 2 mm in diameter. These dimensions are well beyond those currently fabricated on a routine basis. They have investigated fabrication of near NIF scale targets using the depolymerizable mandrel technique. Poly-alpha-methylstyrene (PAMS) mandrels, about 2 mm in diameter, of varying qualities were coated with as much as 125 {micro}m of glow discharge polymer (GDP). The surface finish of the final shells was examined using a variety of techniques. A clear dependence of the modal spectrum of final GDP shell on the quality of the initial PAMS mandrels was observed. isolated features were found to be the greatest cause for a shell not meeting the NIF standard.

  5. Side pocket mandrel

    SciTech Connect

    Crawford, D.W.; Crawford, M.S.; Crawford, W.B.

    1987-12-29

    A side pocket mandrel is described comprising: a tubular body section having a hollow interior that defines a main bore to one side thereof and another bore to the other side thereof; and a short-length seating section welded to one end of the body section. The seating section has a main bore formed to one side thereof aligned with the main bore in the body section, and a valve seating bore formed on the other side thereof generally aligned with the other bore. The seating bore has a polish section adjacent its outer end. The outer end opening through an exterior end surface of the mandrel. The seating bore has a recessed section adjacent the polish section. That provides an inwardly facing stop shoulder at one end thereof and a latch shoulder at the other end thereof facing the stop shoulder; and a tubular member welded to the seating section in axial alignment with the main bores. The axis of the polish section of the seating bore is inclined toward the axes of the main bores at a small angle.

  6. Hydrodynamic Issues in PAMS Mandrel Target Fabrication

    SciTech Connect

    McQuillan, B M; Paguio, R; Subramanian, P; Takagi, M; Zebib, A

    2003-08-27

    Imperfections in PAMS mandrels critically govern the quality of final ICF targets. Imperfections in the mandrels can have a wide range of origins. Here, they present observations of 3 types of imperfections, and data to support the proposal that hydrodynamic factors during the curing of the mandrel are potential causes of these imperfections.

  7. HYDRODYNAMIC ISSUES IN PAMS MANDREL TARGET FABRICATION

    SciTech Connect

    McQUILLAN,B.W; PAGUIO,R; SUBRAMANIAN,P; TAKAGI,M; ZEBIB,A

    2003-09-01

    OAK-B135 Imperfections in PAMS mandrels critically govern the quality of final ICF targets. Imperfections in the mandrels can have a wide range of origins. Here, they present observations of 3 types of imperfections, and data to support the proposal that hydrodynamic factors during the curing of the mandrel are potential causes of these imperfections.

  8. Electro-Chemically Enhanced Mechanical Polishing of Nickel Mandrels

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2006-01-01

    Grinding and mechanical polishing techniques used for x-ray optics mandrel figuring lead to mid-frequency surface ripple. These small figure variations have to be addressed in order to improve the performance of the resulting x-ray mirrors. If the electrochemical etching is combined with mechanical polishing, the figuring and the surface finishing cm be done simultaneously and be used to correct the mid-frequency surface ripple. It is shown that the electrochemical mechanical polishing method allows selective removal of nickel alloy without mandrel surface microroughness degradation.

  9. Ductile mandrel and parting compound facilitate tube drawing

    NASA Technical Reports Server (NTRS)

    Burt, W. R., Jr.; Mayfield, R. M.; Polakowski, N. H.

    1966-01-01

    Refractory tubing is warm drawn over a solid ductile mandrel with a powder parting compound packed between mandrel and the tubes inner surface. This method applies also to the coextrusion of a billet and a ductile mandrel.

  10. Porous mandrels provide uniform deformation in hydrostatic powder metallurgy

    NASA Technical Reports Server (NTRS)

    Gripshover, P. J.; Hanes, H. D.

    1967-01-01

    Porous copper mandrels prevent uneven deformation of beryllium machining blanks. The beryllium powder is arranged around these mandrels and hot isostatically pressed to form the blanks. The mandrels are then removed by leaching.

  11. Recent Progress in NIF Mandrel Production

    SciTech Connect

    Takagi, M; Cook, R; McQuillan, B; Nikroo, A

    2003-09-03

    The production of spherical poly({alpha}-methylstyrene) (P{alpha}MS) mandrels utilizes a small amount (<0.1wt%) of high-molecular-weight poly(acrylic acid) (PAA) in the suspending medium, which substantially increases the interfacial tension during curing relative to methods using poly(vinyl alcohol) (PVA). However, fully cured capsules made by this method displayed a significant level of high frequency surface debris that became especially problematic when the mandrels were subsequently overcoated. To solve this problem we examined the use of PAA in conjunction with PVA in order to reduce these surface features, and explored numerous variations of concentration and timing of the PVA addition. The optimum conditions were found to be initial use of PAA for centering and symmetry of the mandrels, followed by removal of the PAA medium, washing of the mandrels with water, and finally transfer to PVA solution for completion of the curing cycle.

  12. Mandrels For Microtextured Small-Vessel Implants

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Gabriel, Stephen B.

    1989-01-01

    Research shows artificial blood-vessel and heart-valve implants made more compatible with their biological environments by use of regularly microtextured surfaces. In new manufacturing process, ion beam etches patterned array of small pillars on mandrel used to mold tubular plastic implant. Pillars create tiny regularly spaced holes in inner surface of tube. Holes expected to provide sites for attachment of healthy lining. Polytetrafluoroethylene (PTFE) used as mandrel material because it can be etched by ion beam.

  13. Preparation of NIF Scale Poly ((alpha)-METHYLSTYRENE) Mandrels

    SciTech Connect

    Takagi, M; Cook, R; McQuillan, B; Elsner, F; Stephens, R; Nikroo, A; Paguio, S

    2002-06-07

    All planned National Ignition Facility (NIF) capsule targets except machined beryllium require a plastic mandrel upon which the ablator is applied. This mandrel must at least meet if not exceed the symmetry and surface finish requirements of the final capsule. The mandrels are produced by a two-step process. In the first step a thin-walled poly({alpha}-methylstyrene)(P{alpha}MS) shell is produced using microencapsulation techniques. This shell is overcoated with 10 to 15 {micro}m of glow discharge polymer (GDP) and then pyrolyzed at 300 C. This pyrolysis causes the P{alpha}MS to depolymerize to gas phase monomer that diffuses away through the more thermally stable plasma polymer shell, which retains all the symmetry of the original P{alpha}MS shell. Thus our challenge has been to produce 2-mm-diameter P{alpha}MS shells to serve as these initial ''decomposable'' mandrels that meet or exceed the current NIF design specifications. The basic microencapsulation process used in producing P{alpha}MS mandrels involves using a droplet generator to produce a water droplet (Wl) encapsulated by a fluorobenzene solution of P{alpha}MS (O), this compound droplet being suspended in a stirred aqueous bath (W2). Historically this bath has contained poly(vinyl alcohol) (PVA, 88% hydrolyzed, mol. wt. {approx}25,000 g/mol) to prevent agglomeration of the initially fluid compound droplets. As the compound droplets are stirred in the bath, the fluorobenzene solvent slowly dissipates leaving a solid P{alpha}MS shell. The internal water is subsequently removed by low temperature drying. We found using these techniques that 2-mm shells could easily be produced, however their low mode sphericity did not meet design specifications. In our last published report we detailed how replacement of the PVA with poly(acrylic acid) (PAA) resulted in a major improvement in sphericity due to a greatly increased interfacial tension between the bath and the compound droplet, relative to the use of PVA as

  14. A Flexible Alignment Fixture for the Fabrication of Replication Mandrels

    NASA Technical Reports Server (NTRS)

    Cuttino, James F.; Todd, Michael W.

    1996-01-01

    NASA uses precision diamond turning technology to fabricate replication mandrels for its X-ray Calibration Facility (XRCF) optics. The XRCF optics are tubular, and the internal surface contains a parabolic profile over the first section and a hyperbolic profile over the last. The optic is fabricated by depositing layers of gold and nickel on to the replication mandrel and then separating it from the mandrel. Since the mandrel serves as a replication form, it must contain the inverse image of the surface. The difficulty in aligning the mandrel comes from the fabrication steps which it undergoes. The mandrel is rough machined and heat treated prior to diamond turning. After diamond turning, silicon rubber separators which are undercut in radius by 3 mm (0.12 in.) are inserted between the two end caps of the mandrel to allow the plating to wrap around the ends (to prevent flaking). The mandrel is then plated with a nickel-phosphor alloy using an electroless nickel process. At this point, the separators are removed and the mandrel is reassembled for the final cut on the DTM. The mandrel is measured for profile and finish, and polished to achieve an acceptable surface finish. Wrapping the plating around the edges helps to prevent flaking, but it also destroys the alignment surfaces between the parts of the mandrel that insure that the axes of the parts are coincident. Several mandrels have been realigned by trial-and-error methods, consuming significant amounts of setup time. When the mandrel studied in this paper was reassembled, multiple efforts resulted in a minimum radial error motion of 100 microns. Since 50 microns of nickel plating was to be removed, and a minimum plating thickness of 25 microns was to remain on the part, the radial error motion had to be reduced to less than 25 microns. The mandrel was therefore not usable in its current state.

  15. A superconducting magnet mandrel with minimum symmetry laminations for proton therapy

    NASA Astrophysics Data System (ADS)

    Caspi, S.; Arbelaez, D.; Brouwer, L.; Dietderich, D. R.; Felice, H.; Hafalia, R.; Prestemon, S.; Robin, D.; Sun, C.; Wan, W.

    2013-08-01

    The size and weight of ion-beam cancer therapy gantries are frequently determined by a large aperture, curved, ninety degree, dipole magnet. The higher fields achievable with superconducting technology promise to greatly reduce the size and weight of this magnet and therefore also the gantry as a whole. This paper reports advances in the design of winding mandrels for curved, canted cosine-theta (CCT) magnets in the context of a preliminary magnet design for a proton gantry. The winding mandrel is integral to the CCT design and significantly affects the construction cost, stress management, winding feasibility, eddy current power losses, and field quality of the magnet. A laminated mandrel design using a minimum symmetry in the winding path is introduced and its feasibility demonstrated by a rapid prototype model. Piecewise construction of the mandrel using this laminated approach allows for increased manufacturing techniques and material choices. Sectioning the mandrel also reduces eddy currents produced during field changes accommodating the scan of beam energies during treatment. This symmetry concept can also greatly reduce the computational resources needed for 3D finite element calculations. It is shown that the small region of symmetry forming the laminations combined with periodic boundary conditions can model the entire magnet geometry disregarding the ends.

  16. Some aspects of the hydrodynamics of the microencapsulation route to NIF mandrels

    SciTech Connect

    Gresho, P M

    1998-10-20

    Spherical plastic shells for use as mandrels for the fabrication of ICF (Inertial Confinement Fusion) target capsules can be produced by solution-based microencapsulation techniques. The specifications for these mandrels in terms of sphericity are extremely rigorous, and it is clear that various aspects of the solution hydrodynamics associated with their production are important in controlling the quality of the final product. This paper explores what we know (and need to know) about the hydrodynamics of the microencapsulation process in order to lay the foundation for process improvements as well as identify inherent limits.

  17. Removable Mandrels For Vacuum-Plasma-Spray Forming

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Davis, William M.; Power, Christopher A.; Woodford, William H.; Todd, Douglas M.; Liaw, Yoon K.; Holmes, Richard R.; Zimmerman, Frank R.; Mckechnie, Timothy N.

    1995-01-01

    Improved mandrels developed for use in vacuum-plasma-spray (VPS) forming of refractory metal and ceramic furnace cartridge tubes. Designed so after tubes formed on them by VPS, mandrels shrink away from tubes upon cooling back to room temperature and simply slip out of tube.

  18. Forming Mandrels for X-Ray Mirror Substrates

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Saha. To,p; Zhang, Will; O'Dell, Stephen; Kester, Thomas; Jones, William

    2011-01-01

    Precision forming mandrels are one element in X-ray mirror development at NASA. Current mandrel fabrication process is capable of meeting the allocated precision requirements for a 5 arcsec telescope. A manufacturing plan is outlined for a large IXO-scale program.

  19. Challenges and mitigation strategies for resist trim etch in resist-mandrel based SAQP integration scheme

    NASA Astrophysics Data System (ADS)

    Mohanty, Nihar; Franke, Elliott; Liu, Eric; Raley, Angelique; Smith, Jeffrey; Farrell, Richard; Wang, Mingmei; Ito, Kiyohito; Das, Sanjana; Ko, Akiteru; Kumar, Kaushik; Ranjan, Alok; O'Meara, David; Nawa, Kenjiro; Scheer, Steven; DeVillers, Anton; Biolsi, Peter

    2015-03-01

    Patterning the desired narrow pitch at 10nm technology node and beyond, necessitates employment of either extreme ultra violet (EUV) lithography or multi-patterning solutions based on 193nm-immersion lithography. With enormous challenges being faced in getting EUV lithography ready for production, multi-patterning solutions that leverage the already installed base of 193nm-immersion-lithography are poised to become the industry norm for 10 and 7nm technology nodes. For patterning sub-40nm pitch line/space features, self-aligned quadruple patterning (SAQP) with resist pattern as the first mandrel shows significant cost as well as design benefit, as compared to EUV lithography or other multi-patterning techniques. One of the most critical steps in this patterning scheme is the resist mandrel definition step which involves trimming / reformation of resist profile via plasma etch for achieving appropriate pitch after the final pattern. Being the first mandrel, the requirements for the Line Edge Roughness (LER) / Line Width Roughness (LWR); critical dimension uniformity (CDU); and profile in 3-dimensions for the resist trim / reformation etch is extremely aggressive. In this paper we highlight the unique challenges associated in developing resist trim / reformation plasma etch process for SAQP integration scheme and summarize our efforts in optimizing the trim etch chemistries, process steps and plasma etch parameters for meeting the mandrel definition targets. Finally, we have shown successful patterning of 30nm pitch patterns via the resist-mandrel SAQP scheme and its implementation for Si-fin formation at 7nm node.

  20. Incoming Metrology of Segmented X-Ray Mandrels at MSFC

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; ODell, Steve; Kester, Thomas; Lehner, David; Jones, William; Smithers, Martin

    2004-01-01

    The Constellation-X Spectroscopy X-ray telescope (SXT) is designed to be built from X-ray optic segments. The X-ray segments will be fabricated from the segmented mandrels using a replication process. The purpose of the incoming metrology is to map the surface of the mandrels, so the performance of the X-ray optics produced can be predicted. Three Constellation-X segmented mandrels have been delivered to MSFC for incoming metrology. The segmented mandrels are 30-degree sections of a cylindrical surface and have diameters of 1.0 m, 1.2 m and 1.6 m. The maximum dimensions of the optical surface are 1.0 m axial length and 0.5 m azimuthal segment length. The metrology of the mandrels consists of the measurement of their slope differences, roundness, absolute radius, axial profile and microroughness. Accuracy goals for each type of measurement and the accuracy of the instruments used for the measurements will be discussed. The results of the mandrel metrology together with the performance predictions will be presented.

  1. Well tool lock mandrel and handling tools therefor

    SciTech Connect

    Higgins, B.D.

    1988-05-24

    A lock mandrel and running tool assembly for setting and locking a well tool in a landing nipple along a well bore is described comprising: a lock mandrel having a body provided with at least one side window; a support shoulder on the body for supporting the mandrel in a no-go landing nipple; a radially movable locking dog in the side window; a longitudinally movable expander sleeve in the body movable within the dog for expanding and locking the dog outwardly and releasing the dog for inward movement, the expander sleeve having an internal annular recess for engagement by a handling tool to move the sleeve upwardly and downwardly and an external annular latch boss along an upper end portion thereof; and a latch ring in the body around the expander sleeve above the locking dog for engagement with the latch boss on the sleeve when the sleeve is at an upper locking position to releasably hold the sleeve in the upper position. The running tool includes a head assembly for connection with an operating tool string; an upper retainer dog assembly supported from the head assembly for releasably coupling the running tool with the body of the lock mandrel; a lower locking lug assembly supported from the head assembly for releasably coupling the running tool with the expander sleeve of the lock mandrel to move the expander sleeve between locking and release positions.

  2. Oriented valve and latch for side pocket mandrel

    SciTech Connect

    Crawford, D.W.; Crawford, W.B.; Crawford, M.S.

    1991-10-22

    This patent describes a gas lift valve apparatus for use with a side pocket mandrel having a main bore, a seating bore laterally offset from said main bore, and a longitudinal slot formed in a wall of said mandrel between said man and seating bores. It comprises: a body section having guide means thereon adapted to enter said slot and maintain rotational orientation of said body section in a predetermined position, said body section having gas flow passage; and outlet prot means in said body section communicating with said passage and opening through an outer wall of said guide means, whereby lift gas emanating from said port means is directed only toward main bore of the mandrel.

  3. Analysis of a Lifting Fixture to Hold a Steel Mandrel Horizontally from one End Support

    SciTech Connect

    Cease, H.; /Fermilab

    1999-04-07

    A lifting fixture (drawing number 3823.113-MD-372382) that lifts large steel mandrels from one end through the mandrel's end support web is described. The mandrels are used as a mold to form carbon fiber cylinders. The mandrels are held from one end to allow the carbon cylinder to be pulled horizontally off the mandrel. Only mandrels as described in drawing numbers 3823.113-MD-358992 and 3823.1 13-MD-358994 are lifted by the fixture. The largest mandrel is 41 inches in diameter, 120 inches long, and weighs approximately 3,000 lbs. A detailed procedure for removing the carbon cylinder from the steel mandrel is given in the Appendix. The fixture is to be supported only using Fermilab Forklift 10207 or equivalent. The forklift has a nameplate capacity of 12,000 lbs 24 inches from the mast at an elevation of 130 inches from the floor. The forklift forks must be removed from the truck prior to using the fixture. The forklift is to be used to support the mandrels only during the lifting operation and is not to be used to transport the mandrels. Stresses at the lifting fixture are shear stresses on the support brackets due to the overall weight of the mandrel and moment loads due to the cantilever style suppOrt. The moment on the forklift due to the overhanging weight of the mandrel is calculated. Stresses in the mandrel due to the method of support are also described.

  4. A Stainless-Steel Mandrel for Slumping Glass X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Gubarev, Mikhail V.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2008-01-01

    We have fabricated a precision full -cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm-diameter primary (paraboloid) mirror of an 840-cm focal-lengthWolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C-of glass mirror segments at Goddard Space Flight Center, in support of NASA fs participation in the International X -ray Observatory (IXO). Precision turning of stainless ]steel mandrels may offer a lowcost alternative to conventional figuring of fused -silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  5. A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2009-01-01

    We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  6. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  7. Fabrication of ceramic substrate-reinforced and free forms by mandrel plasma spraying metal-ceramic composites

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

  8. Inflatable mandrel fabrication technology - Advantages for the containment of rocket propellants

    NASA Astrophysics Data System (ADS)

    Moser, Daniel J.

    1992-07-01

    This paper discusses and compares the attributes of various mandrel types as they pertain to the fabrication of filament-wound composite containment vessels for rocket propellants, solid or liquid. The issues of dimensional conformity, processing parameters, unit costs, vessel performance, and development lead times are raised. The continuous fiber reinforced, reusable inflatable mandrel concept is explained and shown to have unique advantages over more traditional mandrel types. Burst pressure performance is equivalent to, or slightly better than, the results from vessels built on the more conventional net metal mandrel. The co-cured insulator process used in conjunction with the inflatable mandrel is shown to be superior in some respects. Some experimental findings are presented along with description of the processing parameters that must be understood when using inflatable mandrels.

  9. Preparation of hollow shell ICF targets using a depolymerizing model

    SciTech Connect

    Letts, S.A.; Fearon, E.M.; Buckley, S.R.

    1994-11-01

    A new technique for producing hollow shell laser fusion capsules was developed that starts with a depolymerizable mandrel. In this technique we use poly(alpha-methylstyrene) (PAMS) beads or shells as mandrels which are overcoated with plasma polymer. The PAMS mandrel is thermally depolymerized to gas phase monomer, which diffuses through the permeable and thermally more stable plasma polymer coating, leaving a hollow shell. We have developed methods for controlling the size of the PAMS mandrel by either grinding to make smaller sizes or melt sintering to form larger mandrels. Sphericity and surface finish are improved by heating the PAMS mandrels in hot water using a surfactant to prevent aggregation. Using this technique we have made shells from 200 {mu}m to 5 mm diameter with 15 to 100 {mu}m wall thickness having sphericity better than 2 {mu}m and surface finish better than 10 nm RMS.

  10. Mandrel replication for hard x-ray optics using titanium nitride

    NASA Astrophysics Data System (ADS)

    Romaine, S.; Boike, J.; Bruni, R.; Engelhaupt, D.; Gorenstein, P.; Gubarev, M.; Ramsey, B.

    2009-08-01

    X-ray astronomy grazing incidence telescopes use the principle of nested shells to maximize the collecting area. Some of the more recent missions, such as XMM-Newton, have used an electroformed nickel replication process to fabricate the mirror shells. We have been developing coatings to simplify and improve this electroforming process. This paper discusses our most recent results from studies using TiN as a mandrel hardcoat in the electroforming process of fabricating nickel shell optics. The results indicate that nickel replicas separate easily from the TiN coated mandrel, and little (if any) degradation of the mandrel occurs after more than 20 replications. AFM characterization of the mandrel and replica surfaces is shown. Preliminary results are also included from studies which use this same process to replicate multilayer coatings; these results indicate no change in the multilayer stack after separation from the mandrel.

  11. System for maintaining the alignment of mandrels in filament winding operations

    DOEpatents

    Robinson, S.C.; Dodge, W.G.; Pollard, R.E.

    1983-10-12

    The present invention is directed to a system for sensing and correcting the alignment of a mandrel being wound with filamentary material with respect to the filamentary material winding mechanism. A positioned reference pin attached to the mandrel is positioned in a beam of collimated light emanating from a laser so as to bisect the light beam and create a shadow therebetween. A pair of photocells are positioned to receive the bisected light beam with the shadow uniformly located between the photocells when the pin is in a selected position. The mandrel is supported in the selected position for the winding of a filamentary material by a position adjustable roller mechanism which is coupled by a screw drive to a reversible motor. Changes in the pin position such as caused by winding growth are sensed by the photocells to provide the displacement of the roller mechanism in the direction necessary to return the mandrel to the selected position.

  12. System for maintaining the alignment of mandrels in filament winding operations

    DOEpatents

    Robinson, Samuel C.; Dodge, William G.; Pollard, Roy E.

    1984-01-01

    The present invention is directed to a system for sensing and correcting the alignment of a mandrel being wound with filamentary material with respect to the filamentary material winding mechanism. A positioned reference pin attached to the mandrel is positioned in a beam of collimated light emanating from a laser so as to bisect the light beam and create a shadow therebetween. A pair of photocells are positioned to receive the bisected light beam with the shadow uniformly located between the photocells when the pin is in a selected position. The mandrel is supported in the selected position for the winding of a filamentary material by a position adjustable roller mechanism which is coupled by a screw drive to a reversible motor. Changes in the pin position such as caused by winding growth are sensed by the photocells to provide the displacement of the roller mechanism in the direction necessary to return the mandrel to the selected position.

  13. Superpolishing and Precision Metrology on a Metal Mandrel and Replicated Segments for Constellation-X

    NASA Technical Reports Server (NTRS)

    Content, D.; Lyons, J.; Saha, T.; Wright, G.; Zaniewski, J.; Petre, R.; Chan, K. W.

    1999-01-01

    We have superpolished a diamond-turned aluminum mandrel (coated with electroless Ni) to an axial roughness of 0.34 nm rms. The mandrel is made to the Astro-E secondary mirror design for the 81st shell. Precision metrology at 100 mm to submicron scales has established the power spectral density of the mandrel and ultralightweight gold coated replicated segments. Predicted image quality of a set of optimally aligned replicated segments of this and a matching primary is substantially improved as compared to the flight mirrors for Astro-E. This approach using metal mandrels, superpolishing, and replicated ultralightweight foil mirrors, may represent a cost-effective approach to meeting the 15 arcsec half-energy width and weight requirements for the Constellation-X mission. Descriptions of the polishing apparatus, the precision metrology instruments, and the surface data analysis are presented. The general methods described are applicable to precision optics for both normal incidence and grazing incidence optics.

  14. Superpolishing and Precision Metrology on a Metal Mandrel and Replicated Segments for Constellation-X

    NASA Technical Reports Server (NTRS)

    Content, D.; Saha, T.; Petre, R.; Lyons, J. J., III; Wright, G.; Zaniewski, J.; Chan, K. W.

    1999-01-01

    We have superpolished a diamond-turned aluminum mandrel (coated with electroless Ni) to an axial roughness of 6.34 nm rms. The mandrel is made to the Astro-E secondary mirror design for the 81st shell. Precision metrology at 100 mm to submicron scales has established the power spectral density of the mandrel and ultralightweight gold coated replicated segments. Predicted image quality of a set of optimally aligned replicated segments of this and a matching primary is substantially improved as compared to the flight mirrors for Astro-E. This approach using metal mandrels, superpolishing, and replicated ultralightweight foil mirrors, may represent a cost-effective approach to meeting the 15 arcsec half-energy width and weight requirements for the Constellation-X mission. Descriptions of the polishing apparatus, the precision metrology instruments, and the surface data analysis are presented. The general methods described are applicable to precision optics for both normal incidence and grazing incidence optics.

  15. Perspectives of ion beam polishing of mandrels for x-ray replication optics

    NASA Astrophysics Data System (ADS)

    Ghigo, Mauro; Citterio, Oberto; Conconi, Paolo; Loi, Ralf; Mazzoleni, Franco

    1995-06-01

    The optical system requirements for high throughput, high resolution, x-ray telescopes for future space missions that foresee the use of a manufacturing process by replica method, demand a tight control of the shape of the mandrels used for the production of the shells. Since the number of mandrels to be manufactured for a project is generally high, it's also important that the technology adopted for the shape control be cost-effective. With the proposed approach, the aluminum-kanigen mandrels are diamond turned and superpolished to the required microroughness. The final figuring is then obtained with the ion-beam polishing technology that allows the fine tuning of the mandrel shape preserving its microroughness. This method has significant advantages over other conventional figuring processes since no physical load is applied to the mandrel and the material removal function generated from the ion source is stable and repeatable, allowing a deterministic final figuring in one or few passes. A computer simulation of the ion-beam polishing of a mandrel has been executed. An evaluation of the effect of the size of the material removal function used, the final surface error, and the working time required have been obtained.

  16. Computer-Controlled Cylindrical Polishing Process for Large X-Ray Mirror Mandrels

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    We are developing high-energy grazing incidence shell optics for hard-x-ray telescopes. The resolution of a mirror shells depends on the quality of cylindrical mandrel from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation software is developed to model the residual surface figure errors of a mandrel due to the polishing process parameters and the tools used, as well as to compute the optical performance of the optics. The study carried out using the developed software was focused on establishing a relationship between the polishing process parameters and the mid-spatial-frequency error generation. The process parameters modeled are the speeds of the lap and the mandrel, the tool s influence function, the contour path (dwell) of the tools, their shape and the distribution of the tools on the polishing lap. Using the inputs from the mathematical model, a mandrel having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. The preliminary results of a series of polishing experiments demonstrate a qualitative agreement with the developed model. We report our first experimental results and discuss plans for further improvements in the polishing process. The ability to simulate the polishing process is critical to optimize the polishing process, improve the mandrel quality and significantly reduce the cost of mandrel production

  17. Automated Figuring and Polishing of Replication Mandrels for X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Krebs, Carolyn (Technical Monitor); Content, David; Fleetwood, Charles; Wright, Geraldine; Arsenovic, Petar; Collela, David; Kolos, Linette

    2003-01-01

    In support of the Constellation X mission the Optics Branch at Goddard Space Flight Center is developing technology for precision figuring and polishing of mandrels used to produce replicated mirrors that will be used in X-Ray telescopes. Employing a specially built machine controlled in 2 axes by a computer, we are doing automated polishing/figuring of 15 cm long, 20 cm diameter cylindrical, conical and Wolter mandrels. A battery of tests allow us to fully characterize all important aspects of the mandrels, including surface figure and finish, mid-frequency errors, diameters and cone angle. Parts are currently being produced with surface roughnesses at the .5nm RMS level, and half-power diameter slope error less than 2 arcseconds.

  18. Evaluation of left ventricular assist device pump bladders cast from ion-sputtered polytetrafluorethylene mandrels

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.

  19. Fabrication of a demonstration mandrel for ESA's XEUS mirror development program

    NASA Astrophysics Data System (ADS)

    Altmann, Juergen; Egle, Wilhelm J.; Hafner, Wolfgang; Derst, Gerhard; Matthes, Axel; Doehring, Th.

    2000-07-01

    ESA's XEUS x-ray telescope design asks for segmented Wolter 1 mirror plates with radii up to 5 m and a focal length of 50 m. The mirror plates shall have an excellent optical performance (< 5 arcsec HEW). They shall be made by metal (e.g. Nickel) electroforming. This design approach requires highest quality segmented Wolter 1 mandrel plates, with an on-axis HEW < 2 arcsec and a micro-roughness better than 0.3 nm (rms). We will report about the novel design concept, fabrication approach and verification of the x-ray optical performance of the first XEUS demonstration mandrel.

  20. New approaches to the preparation of P(alpha)MS beads as mandrels for NIF-scale target capsules

    SciTech Connect

    Buckley, S R; Cook, R C; Fearon, E; Letts, S A

    1998-10-20

    We report on a new method using heated density gradient columns for preparing spherical poly({alpha} - methylstyrene) (P{alpha}MS) bead mandrels for inertial confinement fusion spherical shell targets. Using 1,2 propane diol/glycerol mixtures, stable density gradient columns for supporting P{alpha}MS beads can be prepared at temperatures as high as 150 {degrees}C. At these temperatures plasticized commercial beads become fluid and spherical, however loss of the plasticizer and very low molecular weight components of the bead due to limited solubility in the column fluid leads to surface finish problems. We also present results on P{alpha}MS beads prepared in an aqueous bath batch mode. Using these techniques beads with maximum out-of-rounds less than 5 {micro}m have been produced.

  1. Hydraulic fluid serves as mandrel for small diameter refractory tube drawing

    NASA Technical Reports Server (NTRS)

    Mayfield, R. M.

    1966-01-01

    Sealing hydraulic fluid within a tube and passing the tube through a reducing die produces high quality small diameter refractory metal tubing. The encased fluid eliminates the need for mandrel or ductile core removal and drawing can proceed with less handling operations.

  2. Split mandrel versus split sleeve coldworking: Dual methods for extending the fatigue life of metal structures

    NASA Astrophysics Data System (ADS)

    Rodman, Geoffrey A.; Creager, Matthew

    1994-09-01

    It is common practice to use split sleeve coldworking of fastener holes as a means of extending the fatigue life of metal structures. In search of lower manufacturing costs, the aerospace industry is examining the split mandrel (sleeveless) coldworking process as an alternative method of coldworking fastener holes in metal structures. The split mandrel process (SpM) significantly extends the fatigue life of metal structures through the introduction of a residual compressive stress in a manner that is very similar to the split sleeve system (SpSl). Since the split mandrel process is significantly less expensive than the split sleeve process and more adaptable to robotic automation, it will have a notable influence upon other new manufacture of metal structures which require coldworking a significant number of holes, provided the aerospace community recognizes that the resulting residual stress distributions and fatigue life improvement are the same for both processes. Considerable testing has validated the correctness of that conclusion. The findings presented in this paper represent the results of an extensive research and development program, comprising data collected from over 400 specimens fabricated from 2024-T3 and 7075-T651 aluminum alloys in varied configurations, which quantify the benefits (fatigue enhancement and cost savings) of automating a sleeveless coldworking system.

  3. Split mandrel versus split sleeve coldworking: Dual methods for extending the fatigue life of metal structures

    NASA Technical Reports Server (NTRS)

    Rodman, Geoffrey A.; Creager, Matthew

    1994-01-01

    It is common practice to use split sleeve coldworking of fastener holes as a means of extending the fatigue life of metal structures. In search of lower manufacturing costs, the aerospace industry is examining the split mandrel (sleeveless) coldworking process as an alternative method of coldworking fastener holes in metal structures. The split mandrel process (SpM) significantly extends the fatigue life of metal structures through the introduction of a residual compressive stress in a manner that is very similar to the split sleeve system (SpSl). Since the split mandrel process is significantly less expensive than the split sleeve process and more adaptable to robotic automation, it will have a notable influence upon other new manufacture of metal structures which require coldworking a significant number of holes, provided the aerospace community recognizes that the resulting residual stress distributions and fatigue life improvement are the same for both processes. Considerable testing has validated the correctness of that conclusion. The findings presented in this paper represent the results of an extensive research and development program, comprising data collected from over 400 specimens fabricated from 2024-T3 and 7075-T651 aluminum alloys in varied configurations, which quantify the benefits (fatigue enhancement and cost savings) of automating a sleeveless coldworking system.

  4. Air backed mandrel type fiber optic hydrophone with low noise floor

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; V, Sreehari C.; N, Praveen Kumar; Awasthi, R. L.; K, Vivek; B, Vishnu M.; Santhanakrishnan, T.; Moosad, K. P. B.; Mathew, Basil

    2014-10-01

    Low noise fiber optic hydrophone based on optical fiber coil wound on air-backed mandrel was developed. The sensor can be effectively used for underwater acoustic sensing. The design and characterization of the hydrophone is illustrated in this paper. A fiber Mach-Zehnder Interferometer (MZI) was developed and coupled with a Distributed Feedback (DFB) fiber laser source and an optical phase demodulation system, with an active modulation in one of the arms. The sensor head design was optimized to achieve noise spectral density <10 μrad/√Hz, for yielding sufficient sensitivity to sense acoustic pressure close to Deep Sea Sate Zero (DSS0).

  5. Operation of molds and mandrels during electroslag casting of hollow billets

    NASA Astrophysics Data System (ADS)

    Volokhonskii, L. A.; Kuznetsov, L. N.; Kissel'Man, M. A.; Demidov, V. A.; Pavlova, N. P.; Polovinkin, V. N.

    2007-12-01

    One method of electroslag casting is the remelting of a metallic consumable electrode in a short movable mold as they move toward each other. The main advantages of this method are the saving of copper required to make the mold, a decrease in the electric-furnace height, and a decrease in energy consumption. The most important disadvantage of this method is the erosion of the mold and mandrel copper walls. The wear of the mold’s copper walls depends on the electric current through the mold and the specific surface power released in the slag bath-mold wall contact zone. The erosion-induced fracture of the movable mold and mandrel cannot be fully avoided during electroslag casting; however, the wear (fracture) rate can be reduced using several measures. A procedure is proposed for calculation of a rational geometry of the broadened portion of the movable mold in order to estimate the electrical parameters and the wear resistance of the equipment designed for the electroslag casting of hollow steel billets.

  6. Electromagnetic levitation coil fabrication technique for MSFC containerless processing facilities

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Theiss, J.; Curreri, P. A.; Abbaschian, G. J.

    1983-01-01

    A technique is described for more reproducible fabrication of electromagnetic levitation coils. A split mandrel was developed upon which the coil is wound. After fabrication the mandrel can be disassembled to remove it from the coil. Previously, a full day was required to fabricate a levitation coil and the success rate for a functional coil was only 50 percent. About eight coils may be completed in one day using the technique developed and 95 percent of them are good levitation coils.

  7. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    PubMed

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  8. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  9. Characterization of a flat superpolished mandrel prototype with hard (TiN/SiC) overcoating to enhance the surface durability

    NASA Astrophysics Data System (ADS)

    Spiga, Daniele

    2004-02-01

    A number of hard X-Ray (10 - 100 KeV) astronomical missions of near future will make use of multilayer-coated focusing mirrors. The technology based on Nickel electroformed replication is suitable for the multilayer optics realization, since multi-modular telescopes are foreseen. For example, for the Constellation-X mission there is the need of realizing up to 14 identical modules (12 flight modules plus two spares) which can be replicated by the same series of mandrels. The Ni replication approach is derived from the method already successfully used for making the Au coated soft X-ray mirrors with good imaging performances of the missions BeppoSAX, XMM-Newton and Swift. In the technological extension of the process to the multilayer optics fabrication, it would be convenient to overcoat the external surface of mandrels (normally in Kanigen) with a layer made of a very hard material. This would help to maintain the very low roughness level requested by the application (typically less than a couple of Angstroms for a 1 micrometer scan length with AFM) also after many replications and successive cleaning of the mandrel. Good material candidate are at this regard TiN and SiC, both characterized by a very high hardness. We have proven that flat prototypes with TiN and SiC overcoating can be superpolished at a level comparable to the traditional electroless Nickel coating. In this paper we will present a characterization by topographic measurement (AFM and WYKO) and by X-Ray scattering of two of these samples.

  10. Study on the Influence of Clearance Ratio between Mandrel and Workpiece on the Spinning Stability of Cylindrical Workpiece with Extra Diameter-Thick Ratio

    NASA Astrophysics Data System (ADS)

    Li, Xinhe; Yan, Yuesheng; Deng, Rui

    2011-08-01

    In spinning process, our group found that the main problem of extra diameter-thick ratio Nickel alloy tube spinning was drum instability and the main influence factor was clearance ratio between mandrel and workpiece. Apply the finite element software MARC to simulate the drum instability phenomenon of loading workpiece under the condition of different clearance ratio. Analyse the influence law of clearance ratio between mandrel and workpiece on the drum instability and verify it by experiment, so as to provide theory instruction for researching the manufacturing technology of cylindrical workpiece with extra thin-wall and extra diameter-thick ratio.

  11. Removal of diamond-turning signatures on x-ray mandrels and metal optics by fluid-jet polishing

    NASA Astrophysics Data System (ADS)

    Beaucamp, A.; Freeman, R.; Morton, R.; Ponudurai, Karthik; Walker, D. D.

    2008-07-01

    This paper describes a major advance in the post-treatment of diamond-turned surfaces to remove repetitive micro-structure; a result which could have a major beneficial impact on fabrication of Walter-type X-ray mandrels, and metal mirrors. Diamond-turning is highly deterministic and versatile in producing axially-symmetric forms, and through fast-tool servos, non-axially symmetric, free-form and micro-structured surfaces. However, the fine turning marks left in the metal surface limit performance. In this paper, we describe how fluid-jet polishing under CNC control can be used to eliminate these structures, without significantly degrading the surface roughness or form produced by the prior turning operation.

  12. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited

  13. Technique for the efficient and reproducible fabrication of electromagnetic levitation coils

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Curreri, P. A.; Theiss, J.; Abbaschian, G. J.

    1984-01-01

    A technique has been developed for fabricating electromagnetic induction coils in a reproducible manner. The process utilizes a split mandrel that can be disassembled to remove the mandrel from the coil. The technique has increased coil production rates by a factor of 8 over the freehand winding method. The success rate for producing a functional levitation coil has been increased from 50 percent to 95 percent. The levitation coil designed during this work has successfully levitated and melted a variety of alloys including Cu, Ag, Ag-Ni, Cu-Fe, Fe-C, and Nb-Ge. W was also levitated but not melted at temperatures as high as 2700 C. The highest sample melt temperature achieved was 2400 C for the Nb-Ge samples.

  14. A Comparison of Fabrication Techniques for Hollow Retroreflectors

    NASA Technical Reports Server (NTRS)

    Preston, Alix; Merkowitz, Stephen

    2014-01-01

    Despite the wide usage of hollow retroreflectors, there is limited literature involving their fabrication techniques and only two documented construction methods could be found. One consists of an adjustable fixture that allows for the independent alignment of each mirror, while the other consists of a modified solid retroreflector that is used as a mandrel. Although both methods were shown to produce hollow retroreflectors with arcsecond dihedral angle errors, a comparison and analysis of each method could not be found which makes it difficult to ascertain which method would be better suited to use for precision-aligned retroreflectors. Although epoxy bonding is generally the preferred method to adhere the three mirrors, a relatively new method known as hydroxide-catalysis bonding (HCB) presents several potential advantages over epoxy bonding. HCB has been used to bond several optical components for space-based missions, but has never been applied for construction of hollow retroreflectors. In this paper we examine the benefits and limitations of each bonding fixture as well as present results and analysis of hollow retroreflectors made using both epoxy and HCB techniques.

  15. Differential deposition technique for figure corrections in grazing-incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.; Gregory, Don A.

    2011-10-01

    A differential deposition technique was investigated as a way to minimize axial figure errors in full-shell, grazing-incidence, reflective x-ray optics. These types of optics use a combination of off-axis conic segments--hyperbolic, parabolic, and/or elliptical, to reflect and image x-rays. Several such mirrors or ``shells'' of decreasing diameter are typically concentrically nested to form a single focusing unit. Individual mirrors are currently produced at Marshall Space Flight Center using an electroforming technique, in which the shells are replicated off figured and superpolished mandrels. Several factors in this fabrication process lead to low- and mid-spatial frequency deviations in the surface profile of the shell that degrade the imaging quality of the optics. A differential deposition technique, discussed in this paper, seeks to improve the achievable resolution of the optics by correcting the surface profile deviations of the shells after fabrication. As a proof of concept, the technique was implemented on small-animal radionuclide-imaging x-ray optics being considered for medical applications. This paper discusses the deposition technique, its implementation, and the experimental results obtained to date.

  16. Dismantling techniques

    SciTech Connect

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  17. Stapedectomy technique.

    PubMed

    House, J W

    1993-06-01

    This article reviews the evolution of the author's stapedectomy technique from total footplate removal with single loop wire prosthesis and Gelfoam seal to small fenestra stapedectomy with platinum ribbon piston prosthesis and blood seal. The author concludes that the microdrill is effective, safe, and cost effective for performing this procedure. Since using this technique, the author has had no cases of sensorineural hearing loss and few complaints of dizziness or vertigo. PMID:8341570

  18. Spatial Techniques

    NASA Astrophysics Data System (ADS)

    Jabeur, Nafaa; Sahli, Nabil

    The environment, including the Earth and the immense space, is recognized to be the main source of useful information for human beings. During several decades, the acquisition of data from this environment was constrained by tools and techniques with limited capabilities. However, thanks to continuous technological advances,spatial data are available in huge quantities for different applications. The technological advances have been achieved in terms of hardware and software as well. They are allowing for better accuracy and availability, which in turn improves the quality and quantity of useful knowledge that can be extracted from the environment. They have been applied to geography, resulting in geospatial techniques. Applied to both science and technology, geospatial techniques resulted in areas of expertise, such as land surveying, cartography, navigation, remote sensing, Geographic Infor-mation Systems (GISs), and Global Positioning Systems (GPSs). They had evolved quickly with advances in computing, satellite technology and a growing demand to understand our global environment. In this chapter, we will discuss three important techniques that are widely used in spatial data acquisition and analysis: GPS and remote sensing techniques that are used to collect spatial data and a GIS that is used to store, manipulate, analyze, and visualize spatial data. Later in this book, we will discuss the techniques that are currently available for spatial knowledge discovery.

  19. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  20. Tracer Technique

    NASA Astrophysics Data System (ADS)

    Haba, H.; Motomura, S.; Kamino, S.; Enomoto, S.

    In radioactive tracer technique, radioactive nuclides are used to follow the behavior of elements or chemical species in chemical and other processes. This is realized by means of radioactivity measurement. In 1913, Hevesy and Paneth succeeded in determining the extremely low solubility of lead salts by using naturally occurring 210Pb as a radioactive tracer. As various radioactive nuclides became artificially available, this technique has been widely employed in studies of chemical equilibrium and reactions as well as in chemical analysis. It is also an essential technique in biochemical, biological, medical, geological, and environmental studies. Medical diagnosis and industrial process control are the fields of its most important practical application. In this chapter, fundamental ideas concerning radioactive tracers will be described followed by their application with typical examples. Detailed description on their application to life sciences and medicine is given in Vol. 4.

  1. Miscellaneous Techniques

    NASA Astrophysics Data System (ADS)

    Jha, Shyam N.

    Nondestructive way of determining the food quality is the need of the hour. Till now major methods such as colour measurements and their modeling; machine vision systems; X-ray, CT and MRI; NIR spectroscopy; electronic nose and tongue; and ultrasonic technology have been discussed in detail. These techniques, in general, are considered to be sophisticated and costly, and therefore probably are not being adopted as fast as it should be. I am however of the reverse opinion. While going through these techniques, it has been seen that majority of quality parameters have been measured and correlated with the signals obtained using different equipment.

  2. Titration Techniques

    NASA Astrophysics Data System (ADS)

    Jacobsen, Jerrold J.; Houston Jetzer, Kelly; Patani, Néha; Zimmerman, John; Zweerink, Gerald

    1995-07-01

    Significant attention is paid to the proper technique for reading a meniscus. Video shows meniscus-viewing techniques for colorless and dark liquids and the consequences of not reading a meniscus at eye level. Lessons are provided on approaching the end point, focusing on end point colors produced via different commonly used indicators. The concept of a titration curve is illustrated by means of a pH meter. Carefully recorded images of the entire range of meniscus values in a buret, pipet, and graduated cylinder are included so that you can show your students, in lecture or pre-lab discussion, any meniscus and discuss how to read the buret properly. These buret meniscus values are very carefully recorded at the rate of one video frame per hundredth of a milliliter, so that an image showing any given meniscus value can be obtained. These images can be easily incorporated into a computer-based multimedia environment for testing or meniscus-reading exercises. Two of the authors have used this technique and found the exercise to be very well received by their students. Video on side two shows nearly 100 "bloopers", demonstrating both the right way and wrong ways to do tasks associated with titration. This material can be used in a variety of situations: to show students the correct way to do something; to test students by asking them "What is this person doing wrong?"; or to develop multimedia, computer-based lessons. The contents of Titration Techniques are listed below: Side 1 Titration: what it is. A simple titration; Acid-base titration animation; A brief redox titration; Redox titration animation; A complete acid-base titration. Titration techniques. Hand technique variations; Stopcock; Using a buret to measure liquid volumes; Wait before reading meniscus; Dirty and clean burets; Read meniscus at eye level (see Fig. 1); Meniscus viewing techniques--light colored liquids; Meniscus viewing techniques--dark liquids; Using a magnetic stirrer; Rough titration

  3. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  4. [Tracheostomy techniques].

    PubMed

    Mieth, M; Schellhaaß, A; Hüttner, F J; Larmann, J; Weigand, M A; Büchler, M W

    2016-01-01

    Due to the comprehensive establishment of modern techniques, tracheostomy has become a routine procedure in intensive care units (ICU). The negative effects of prolonged translaryngeal intubation on the laryngeal and tracheal mucosa up to tracheal stenosis can be reduced by tracheostomy. Furthermore, long-term ventilation is facilitated; however, there is no clear evidence on the optimal timing of tracheostomy in critically ill patients. The specific indications and contraindications of surgical as well as percutaneous tracheostomy must be strictly observed for a safe and successful intervention. Exchanging the tracheostomy tube may lead to potentially dangerous situations especially after percutaneous tracheostomy. A standardized and structured approach is therefore recommended. PMID:26643155

  5. Separation techniques.

    PubMed

    Duke, T

    1998-10-01

    The past two years have seen continued development of capillary electrophoresis methods. The separation performance of flowable sieving media now equals, and in some respects exceeds, that provided by gels. The application of microfabrication techniques to separation science is gaining pace. There is a continuing trend towards miniaturization and integration of separation with preparative or analytical steps. Innovative separation methods based on microfabrication technology include electrophoresis in purpose-designed molecular sieves, dielectric, trapping using microelectrodes, and force-free motion in Brownian ratchets. PMID:9818184

  6. New techniques

    NASA Astrophysics Data System (ADS)

    Pisacane, V. L.

    1983-04-01

    Equipment, operations, calibration, and accuracy of existing positioning, geodetic, and gravimetric equipment are explored. Radio navigation and positioning systems now include OMEGA, LORAN, VOR, DME, TACAN, and LONAR. Dedicated positioning satellites comprise the Transit and Navstar systems, with positioning accuracies of 8 m available with the GPS. Missile tracking, particularly for submarine launched rockets, is accomplished with the Satrack satellite, which furnishes position and velocity accuracy to within 40 ft and 0.08 ft/sec, respectively. VLBI techniques permit sighting of astronomical objects to obtain 20 cm accuracy for pole positioning and 1 m/sec for earth rotation speeds. Methods have been devised to use portable equipment which compensates for refraction when using lasers and masers in ranging trials. NASA has established a fixed and mobile global laser tracking network to provide a ranging accuracy of 100 cm when employed with satellite and lunar reflectors. Lasers are also used for terrain contouring, aircraft ranging, and satellite altimetry. A free-fall gravimeter has been developed which involves dropping one reflector of a two-beam Michelson interferometer, yielding an accuracy of 10 microgal. It is noted that new standards are needed for the NASA Deep Space Network.

  7. Chemistry and processing of polymer shells

    NASA Astrophysics Data System (ADS)

    Alfonso, Emmanuel Limjuco

    The fabrication of high-quality spherical shells, used as fuel capsules in fusion experiments, is essential to the progress of the inertial confinement fusion program. Two types of shell were produced: (1) Polystyrene shells were made in a microencapsulation method. The yield, diameter, wall thickness, vacuole content, and surface finish were determined for shells prepared with an organic phase of toluene and 1,2-dichloroethane with polystyrene concentrations varied from 5 to 13 wt% and an internal water phase that sometimes contained surfactants. (2) Polyimide shells were made by vapor-phase deposition onto depolymerizable spherical mandrels. High-aspect-ratio polyimide shells with diameters ranging from 700 to 1000 mum and wall thicknesses from 2 to 13 mum have been fabricated. Estimates of the composition, surface roughness, burst and buckle pressures, elastic modulus, tensile strength, permeability, and film stress have been obtained. These shells have been characterized in terms of morphological properties: the shell dimensions (diameter and wall thickness), sphericity, wall structure, outer and inner surface finish, and transparency. The structure of the outer surface and wall cross section varied strongly with the processing conditions (e.g., deposition temperatures, system pressure), while the inner surface was shown to be very smooth. The transparency of near-stoichiometric polyimide shells and flat films was demonstrated. Rutherford backscattering and nuclear resonance analysis techniques were used to provide the elemental composition and density, which were very near the theoretical values. Polyimide shells' minimum tensile strengths and moduli were determined from burst and buckle pressure tests. The tensile strength approached that reported for Kapton-HN film. The elastic moduli varied with processing conditions. The vapor-deposited polyimide was found to possess mechanical strength properties similar to commercially available polyimides. The room

  8. Shrink tape technique for heat-forming aluminum substrates for thin foil x-ray mirrors and the Neutron Star Interior Composition Explorer x-ray concentrators

    NASA Astrophysics Data System (ADS)

    Balsamo, Erin; Gendreau, Keith; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter; Jalota, Lalit; Kenyon, Steven; Spartana, Nicholas; Fickau, David; Koenecke, Richard

    2016-01-01

    Consistent improvements in the design and fabrication of thin-foil, epoxy-replicated x-ray mirrors for astronomical telescopes have yielded increasingly higher quality and more precise astrophysical data. The Neutron Star Interior Composition Explorer (NICER) x-ray timing mission optics continues this tradition and introduces design elements that promise even more accurate measurements and precise astrophysical parameters. The singly reflecting concentrators have a curved axial profile to improve photon concentration and a sturdy full shell structure for enhanced module stability. These design elements introduced the challenge of reliably forming mirror substrates at an acceptable production rate. By developing a technique using heat shrink tape to compress and conform thin aluminum mirror substrates to shaping mandrels, production rate improved with successful fabrication. The technique's efficiency was analyzed by measuring hundreds of substrate profiles postforming, performance testing completely assembled concentrators composed of every size substrate, and comparing the results to simulated fabrication scenarios. On average, the profiles were copied within 4.6±3.7%. These measurements and the overall success of NICER's optics, via ground calibration, have shown that the heat-shrink tape method is reliable, repeatable, and could be used in future missions to increase production rate and improve performance.

  9. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  10. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  11. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques.

    PubMed

    Kidoaki, Satoru; Kwon, Il Kuen; Matsuda, Takehisa

    2005-01-01

    To design a mesoscopically ordered structure of the matrices and scaffolds composed of nano- and microscale fiber meshes for artificial and tissue-engineering devices, two new electrospinning techniques are proposed: multilayering electrospinning and mixing electrospinning. First, the following four kinds of component polymers were individually electrospun to determine the conditions for producing stable nano- and microfibers by optimizing the formulation parameters (solvent and polymer concentration) and operation parameters (voltage, air gap, and flow rate) for each polymer: (a) type I collagen, (b) styrenated gelatin (ST-gelatin), (c) segmented polyurethane (SPU), and (d) poly(ethylene oxide). A trilayered electrospun mesh, in which individual fiber meshes (type I collagen, ST-gelatin, and SPU) were deposited layer by layer, was formed by sequential electrospinning; this was clearly visualized by confocal laser scanning microscopy. The mixed electrospun-fiber mesh composed of SPU and PEO was prepared by simultaneous electrospinning on a stainless-steel mandrel with high-speed rotation and traverse movement. A bilayered tubular construct composed of a thick SPU microfiber mesh as an outer layer and a thin type I collagen nanofiber mesh as an inner layer was fabricated as a prototype scaffold of artificial grafts, and visualized by scanning electron microscopy. PMID:15193879

  12. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  13. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  14. Seals and Sealing Techniques

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Developments by the aerospace industry in seals and sealing techniques are announced for possible use in other areas. The announcements presented are grouped as: sealing techniques for cryogenic fluids, high pressure applications, and modification for improved performance.

  15. Surgical forceps techniques.

    PubMed

    Malden, N

    2001-01-01

    This paper considers two new elevator and dental forceps techniques for the atraumatic removal of teeth to avoid a surgical procedure where possible. The techniques described should be applicable in relatively well defined but commonly occurring situations. The two techniques involve the unconventional use of conventional dental extraction forceps, with the aim of facilitating removal of the retained roots of certain teeth: the first for incisors, canines and premolars and the second for lower first molars. The term 'surgical forceps technique's is tentatively put forward as a description of these hybrid procedures. PMID:11819949

  16. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  17. Contamination Control Techniques

    SciTech Connect

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  18. Techniques for Teachers Section

    ERIC Educational Resources Information Center

    Tait, A., Ed.

    1973-01-01

    Includes a simple technique to demonstrate Millikan's oil drop experiment, an environmental studies experiment to measure dissolved oxygen in water samples, and a technique to demonstrate action-reaction. Science materials described are the Pol-A-Star Tomiscope, Nuffield chemistry film loops, air pucks and pH meters. (JR)

  19. TECHNIQUES FOR EFFECTIVE TEACHING.

    ERIC Educational Resources Information Center

    HASTINGS, GERALDINE; AND OTHERS

    A COMPENDIUM OF WORKABLE AND REASONABLE TECHNIQUES TO PROVIDE TEACHERS WITH ALTERNATIVES IN SELECTING LEARNING EXPERIENCES IS PRESENTED. MATERIALS ARE DESIGNED TO AID TEACHERS AND LEARNERS IN ALL SUBJECT MATTER AREAS. TEACHING TECHNIQUES DESCRIBED ARE (1) THE CASE STUDY, (2) DISCUSSIONS SUCH AS SYMPOSIUM, COLLOQUIUM, BUZZ SESSIONS, AND…

  20. Emerging Imaging Techniques

    PubMed Central

    McVeigh, Elliot R.

    2007-01-01

    This article reviews recent developments in selected imaging technologies focused on the cardiovascular system. The techniques covered are: ultrasound biomicroscopy (UBM), microSPECT, microPET, near infrared imaging, and quantum dots. For each technique, the basic physical principles are explained and recent example applications demonstrated. PMID:16614313

  1. Simulation verification techniques study

    NASA Technical Reports Server (NTRS)

    Schoonmaker, P. B.; Wenglinski, T. H.

    1975-01-01

    Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided.

  2. Electrical termination techniques

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Schleicher, R. R.

    1976-01-01

    A technical review of high reliability electrical terminations for electronic equipment was made. Seven techniques were selected from this review for further investigation, experimental work, and preliminary testing. From the preliminary test results, four techniques were selected for final testing and evaluation. These four were: (1) induction soldering, (2) wire wrap, (3) percussive arc welding, and (4) resistance welding. Of these four, induction soldering was selected as the best technique in terms of minimizing operator errors, controlling temperature and time, minimizing joint contamination, and ultimately producing a reliable, uniform, and reusable electrical termination.

  3. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  4. Interpretation Techniques Development

    NASA Technical Reports Server (NTRS)

    Alford, W. L.

    1973-01-01

    The processes, algorithms and procedures for extraction and interpretation of ERTS-1 data are discussed. Analysis of data acquired temporally is possible through geometric correction, correlation, and registration techniques. The powerful techniques in image enhancement developed for the lunar and planetary programs are valuable for Earth Resources Survey programs. There is evidence that both optical and digital methods of spatial information extraction can provide valuable sources of data information the ERTS system. The techniques available, even for a limited number of bands and limited resolution can be effectively used to extract much of the information required by resource managers.

  5. Small Scale Organic Techniques

    ERIC Educational Resources Information Center

    Horak, V.; Crist, DeLanson R.

    1975-01-01

    Discusses the advantages of using small scale experimentation in the undergraduate organic chemistry laboratory. Describes small scale filtration techniques as an example of a semi-micro method applied to small quantities of material. (MLH)

  6. Relaxation techniques for stress

    MedlinePlus

    ... fall. There are also many other types of breathing techniques you can learn. In many cases, you do ... These sensors measure your skin temperature, brain waves, ... time, you can learn to change them without using the monitor.

  7. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  8. "Techniques for Teachers" Section

    ERIC Educational Resources Information Center

    Tait, A.

    1972-01-01

    A series of short articles describe a method of combined developing/fixing for monochrome film, techniques for thin layer chromatography, experiments with lasers, and safety precautions to be used with lasers in school laboratories. (AL)

  9. Renal Tumor Biopsy Technique

    PubMed Central

    Zhang, Lei; Li, Xue-Song; Zhou, Li-Qun

    2016-01-01

    Objective: To review hot issues and future direction of renal tumor biopsy (RTB) technique. Data Sources: The literature concerning or including RTB technique in English was collected from PubMed published from 1990 to 2015. Study Selection: We included all the relevant articles on RTB technique in English, with no limitation of study design. Results: Computed tomography and ultrasound were usually used for guiding RTB with respective advantages. Core biopsy is more preferred over fine needle aspiration because of superior accuracy. A minimum of two good-quality cores for a single renal tumor is generally accepted. The use of coaxial guide is recommended. For biopsy location, sampling different regions including central and peripheral biopsies are recommended. Conclusion: In spite of some limitations, RTB technique is relatively mature to help optimize the treatment of renal tumors. PMID:27174334

  10. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  11. Exemplary Management Techniques

    ERIC Educational Resources Information Center

    School Business Affairs, 1977

    1977-01-01

    Featured in the third article of the series are management techniques for school insurance record management and for reducing the amount of time school maintenance personnel spend driving from school to school. (Author/MLF)

  12. Nondestructive testing techniques

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; McBride, Don

    A comprehensive reference covering a broad range of techniques in nondestructive testing is presented. Based on years of extensive research and application at NASA and other government research facilities, the book provides practical guidelines for selecting the appropriate testing methods and equipment. Topics discussed include visual inspection, penetrant and chemical testing, nuclear radiation, sonic and ultrasonic, thermal and microwave, magnetic and electromagnetic techniques, and training and human factors. (No individual items are abstracted in this volume)

  13. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  14. Techniques for colorectal anastomosis

    PubMed Central

    Ho, Yik-Hong; Ashour, Mohamed Ahmed Tawfik

    2010-01-01

    Colorectal anastomotic leak remains one of the most feared post-operative complications, particularly after anterior resection of the rectum with, the shift from abdomino-peritoneal resections to total mesorectal excision and primary anastomosis. The literature fails to demonstrate superiority of stapled over hand-sewn techniques in colorectal anastomosis, regardless of the level of anastomosis, although a high stricture rate was noted in the former technique. Thus, improvements in safety aspects of anastomosis and alternatives to hand-sewn and stapled techniques are being sought. Here, we review alternative anastomotic techniques used to fashion bowel anastomosis. Compression anastomosis using compression anastomotic clips, endoluminal compression anastomotic rings, AKA-2, biofragmental anastomotic rings, or Magnamosis all involve the concept of creating a sutureless end-to-end anastomosis by compressing two bowel ends together, leading to a simultaneous necrosis and healing process that joins the two lumens. Staple line reinforcement is a new approach that reduce the drawbacks of staplers used in colorectal practice, i.e. leakage, bleeding, misfiring, and inadequate tissue approximation. Various non-absorbable, semi or fully absorbable materials are now available. Two other techniques can provide alternative anastomotic support to the suture line: a colorectal drain and a polyester stent, which can be utilized in ultra-low rectal excision and can negate the formation of a defunctioning stoma. Doxycycline coated sutures have been used to overcome the post-operative weakness in anastomosis secondary to rapid matrix degradation mediated by matrix metalloproteinase. Another novel technique, the electric welding system, showed promising results in construction of a safe, neat, smooth sutureless bowel anastomosis. Various anastomotic techniques have been shown to be comparable to the standard techniques of suturing and stapling. However, most of these alternatives need

  15. Techniques of Male Circumcision

    PubMed Central

    Abdulwahab-Ahmed, Abdullahi; Mungadi, Ismaila A.

    2013-01-01

    Male circumcision is a controversial subject in surgical practice. There are, however, clear surgical indications of this procedure. The American Academy of Pediatrics (AAP) recommends newborn male circumcision for its preventive and public health benefits that has been shown to outweigh the risks of newborn male circumcision. Many surgical techniques have been reported. The present review discusses some of these techniques with their merits and drawbacks. This is an attempt to inform the reader on surgical aspects of male circumcision aiding in making appropriate choice of a technique to offer patients. Pubmed search was done with the keywords: Circumcision, technique, complications, and history. Relevant articles on techniques of circumcision were selected for the review. Various methods of circumcision including several devices are in use for male circumcision. These methods can be grouped into three: Shield and clamp, dorsal slit, and excision. The device methods appear favored in the pediatric circumcision while the risk of complications increases with increasing age of the patient at surgery. PMID:24470842

  16. MEMS metrology techniques

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2004-12-01

    The MEMS industry currently produces over $13 billion in annual revenue, with devices in such diverse applications as blood pressure sensors, projection displays, optical switches, printers, hard drives, and gyroscopes. As production techniques improve, ever more functions may be served by MEMS, and the industry is growing at an annual rate of more than 15%. The large diversity of MEMS leads to many challenges in metrology, as each design has different critical factors which will affect its performance. Unlike traditional semiconductor devices, MEMS require characterization both in their static state and under actuation. Parameters of interest include shape, dimensions, surface roughness, sidewall angles, film thickness, residual stress, feature volumes, response times, thermal properties, resonance frequencies, stiction, environmental immunity and more. This talk will discuss the strengths and weaknesses of a variety of techniques for MEMS surface metrology. Bright- and dark-field microscopy, scanning electron microscopy, contact and non-contact surface profilometry, atomic force microscopy, laser Doppler vibrometry and digital holography are some of the primary techniques used to evaluate MEMS surfaces and motion. While no single technique can fully characterize all MEMS devices, or even one device under all conditions, the utility of each of the different types of instruments is increasing as they are pushed by MEMS and other industries to provide more characterization capability. With a broad understanding of the various metrology techniques available, the one or few critical instruments to measure a given class of devices will hopefully be more easily understood.

  17. MEMS metrology techniques

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2005-01-01

    The MEMS industry currently produces over $13 billion in annual revenue, with devices in such diverse applications as blood pressure sensors, projection displays, optical switches, printers, hard drives, and gyroscopes. As production techniques improve, ever more functions may be served by MEMS, and the industry is growing at an annual rate of more than 15%. The large diversity of MEMS leads to many challenges in metrology, as each design has different critical factors which will affect its performance. Unlike traditional semiconductor devices, MEMS require characterization both in their static state and under actuation. Parameters of interest include shape, dimensions, surface roughness, sidewall angles, film thickness, residual stress, feature volumes, response times, thermal properties, resonance frequencies, stiction, environmental immunity and more. This talk will discuss the strengths and weaknesses of a variety of techniques for MEMS surface metrology. Bright- and dark-field microscopy, scanning electron microscopy, contact and non-contact surface profilometry, atomic force microscopy, laser Doppler vibrometry and digital holography are some of the primary techniques used to evaluate MEMS surfaces and motion. While no single technique can fully characterize all MEMS devices, or even one device under all conditions, the utility of each of the different types of instruments is increasing as they are pushed by MEMS and other industries to provide more characterization capability. With a broad understanding of the various metrology techniques available, the one or few critical instruments to measure a given class of devices will hopefully be more easily understood.

  18. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  19. Renal imaging techniques.

    PubMed

    Hierholzer, K; Hierholzer, J

    1997-01-01

    The ancient approach to obtain an image of the kidneys (and other internal organs) was 'section-inspection-imaging' by drawing, painting, sculpturing, and modelling. The present study follows chronologically the development and use of sectioning techniques from ancient (often forbidden) methods to modern microdissection and maceration of silicone-rubber-injected tubules. Inspection evolved from the use of the naked eye to magnifying lenses, microscopes and finally electron microscopy. Pertinent examples such as the description of the kidneys as the site of urine formation, the visualization of loop structures in the renal medulla and the imaging of tight junction strands are discussed. Inspection or visualization of renal structure and function has been revolutionized by modern noninvasive techniques, such as X-ray imaging, imaging by radioisotopes, ultrasound, computer tomography and nuclear magnetic resonance. Pertinent examples are given demonstrating the potency of the various techniques. The contribution of computerized data evaluation is discussed. The development of micropuncture and microperfusion techniques has opened the field for direct imaging not only of renal (sub)structural details but also of functional parameters such as transtubular reabsorption rates, single glomerular capillary filtration and conductance of the paracellular pathway. We focus particularly on techniques specifically designed to visualize renal hemodynamic and transport parameters. PMID:9189257

  20. Fritting techniques in chromatography.

    PubMed

    Cheong, Won Jo

    2014-03-01

    It is surprising that there has been no devoted review article for frits and relevant studies so far despite the long history of packed columns and the use of frits in them. This review was activated for such a reason. Both separate frits and in situ permanent frits have been covered since the appearance of primitive frits. The in situ fritting methods such as the formation of organic monoliths, sol-gel technology, sintering, fritless techniques such as tapered tip and capillary restrictors, and miscellaneous fritting techniques including magnetically trapped frits and single particle frits are introduced and discussed. In addition, frit-related studies and patents are also introduced. Finally, some conclusive comments on the choice of fritting technique in different situations and future perspectives are given. PMID:24510688

  1. Novel Foraminal Expansion Technique

    PubMed Central

    Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer

    2016-01-01

    The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis. PMID:27559460

  2. Novel Foraminal Expansion Technique.

    PubMed

    Ozer, Ali Fahir; Senturk, Salim; Ciplak, Mert; Oktenoglu, Tunc; Sasani, Mehdi; Egemen, Emrah; Yaman, Onur; Suzer, Tuncer

    2016-08-01

    The technique we describe was developed for cervical foraminal stenosis for cases in which a keyhole foraminotomy would not be effective. Many cervical stenosis cases are so severe that keyhole foraminotomy is not successful. However, the technique outlined in this study provides adequate enlargement of an entire cervical foraminal diameter. This study reports on a novel foraminal expansion technique. Linear drilling was performed in the middle of the facet joint. A small bone graft was placed between the divided lateral masses after distraction. A lateral mass stabilization was performed with screws and rods following the expansion procedure. A cervical foramen was linearly drilled medially to laterally, then expanded with small bone grafts, and a lateral mass instrumentation was added with surgery. The patient was well after the surgery. The novel foraminal expansion is an effective surgical method for severe foraminal stenosis. PMID:27559460

  3. Neuronavigation. Principles. Surgical technique.

    PubMed

    Ivanov, Marcel; Ciurea, Alexandru Vlad

    2009-01-01

    Neuronavigation and stereotaxy are techniques designed to help neurosurgeons precisely localize different intracerebral pathological processes by using a set of preoperative images (CT, MRI, fMRI, PET, SPECT etc.). The development of computer assisted surgery was possible only after a significant technological progress, especially in the area of informatics and imagistics. The main indications of neuronavigation are represented by the targeting of small and deep intracerebral lesions and choosing the best way to treat them, in order to preserve the neurological function. Stereotaxis also allows lesioning or stimulation of basal ganglia for the treatment of movement disorders. These techniques can bring an important amount of confort both to the patient and to the neurosurgeon. Neuronavigation was introduced in Romania around 2003, in four neurosurgical centers. We present our five-years experience in neuronavigation and describe the main principles and surgical techniques. PMID:20108488

  4. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1984-01-01

    The coherent radar technique is reviewed with special emphasis to mesosphere-stratosphere-troposphere (MST) radars operating in the VHF band. Some basic introduction to Doppler radar measurements and the radar equation is followed by an outline of the characteristics of atmospheric turbulence, viewed from the scattering and reflection processes of radar signals. Radar signal acquisition and preprocessing, namely coherent detection, digital sampling, pre-integration and coding, is briefly discussed. The data analysis is represented in terms of the correlation and spectrum analysis, yielding the essential parameters: power, signal-to-noise ratio, average and fluctuating velocity and persistency. The techniques to measure wind velocities, viz. the different modes of the Doppler method as well as the space antenna method are surveyed and the feasibilities of the MST radar interferometer technique are elucidated. A general view on the criteria to design phased array antennas is given. An outline of the hardware of a typical MST radar system is presented.

  5. Digital vibration control techniques

    NASA Technical Reports Server (NTRS)

    Chapman, P.; Kim, B. K.; Boctor, W.

    1974-01-01

    Analog vibration control techniques are reviewed and are compared with digital techniques. The advantages of the digital methods over the analog methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing; (2) methods of computer-controlled sinewave vibration testing; and (3) methods of computer-controlled shock testing. Basic concepts are stressed rather than specific techniques or equipment. General algorithms are described in the form of block diagrams and flow diagrams. Specific problems and potential problems are discussed. The material is computer sciences oriented but is kept at a level that facilitates an understanding of the basic concepts of computer-controlled induced environmental test systems.

  6. Remote Raman measurement techniques

    NASA Astrophysics Data System (ADS)

    Leonard, D. A.

    1981-02-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  7. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  8. Remote Raman Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Leonard, Donald A.

    1981-02-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  9. Stochastic Feedforward Control Technique

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  10. Dermal exposure assessment techniques.

    PubMed

    Fenske, R A

    1993-12-01

    Exposure of the skin to chemical substances can contribute significantly to total dose in many workplace situations, and its relative importance will increase when airborne occupational exposure limits are reduced, unless steps to reduce skin exposure are undertaken simultaneously. Its assessment employs personal sampling techniques to measure skin loading rates, and combines these measurements with models of percutaneous absorption to estimate absorbed dose. Knowledge of dermal exposure pathways is in many cases fundamental to hazard evaluation and control. When the skin is the primary contributor to absorbed dose, dermal exposure measurements and biological monitoring play complementary roles in defining occupational exposures. Exposure normally occurs by one of three pathways: (i) immersion (direct contact with a liquid or solid chemical substance); (ii) deposition of aerosol or uptake of vapour through the skin; or (iii) surface contact (residue transfer from contaminated surfaces). Sampling methods fall into three categories: surrogate skin; chemical removal; and fluorescent tracers. Surface sampling represents a supplementary approach, providing an estimate of dermal exposure potential. Surrogate skin techniques involve placing a chemical collection medium on the skin. Whole-body garment samplers do not require assumptions relating to distribution, an inherent limitation of patch sampling. The validity of these techniques rests on the ability of the sampling medium to capture and retain chemicals in a manner similar to skin. Removal techniques include skin washing and wiping, but these measure only what can be removed from the skin, not exposure: laboratory removal efficiency studies are required for proper interpretation of data. Fluorescent tracer techniques exploit the visual properties of fluorescent compounds, and combined with video imaging make quantification of dermal exposure patterns possible, but the need to introduce a chemical substance (tracer

  11. Gisting technique development

    NASA Astrophysics Data System (ADS)

    Bamberg, P. G.; Bahler, L. G.; Baker, J. M.; Kellett, H. G.

    1981-12-01

    This report documents the methods utilized to improve and simplify the procedure for operating reference templates and word models used in the key word recognition process. Commands necessary for the automatic generation of reference templates have been added and the procedure for word model generation has been automated. Test results show a modest performance improvement over previous methods. Recognition was improved with a 20-word English set from 33.5% to 41% operating at a threshold of 2.52 false alarms/hr/word. Techniques have also been developed for on-line reference generation that requires no auxiliary mass storage devices. These techniques are also described.

  12. Craniospinal irradiation techniques

    NASA Astrophysics Data System (ADS)

    Scarlatescu, Ioana; Virag, Vasile; Avram, Calin N.

    2015-12-01

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  13. Craniospinal irradiation techniques

    SciTech Connect

    Scarlatescu, Ioana Avram, Calin N.; Virag, Vasile

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  14. Suggestion and psychoanalytic technique.

    PubMed

    Levy, S T; Inderbitzin, L B

    2000-01-01

    The role of the analyst's suggestive influence on the course and outcome of psychoanalytic treatment is explored, and traditional and newer perspectives on analytic technique are contrasted. The intersubjective critique of the neutral, objective analyst in relation to suggestion is examined. The inevitable presence and need for suggestive factors in analysis, and the relationship of suggestion to transference susceptibility, are emphasized. The manner in which the analysis of suggestive factors is subsumed in transference analysis as part of traditional technique is highlighted. PMID:11059395

  15. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  16. Mathematical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on theoretical and applied mathematics are introduced. The articles cover information that might be of interest to workers in statistics and information theory, computational aids that could be used by scientists and engineers, and mathematical techniques for design and control.

  17. Problem Solving Techniques Seminar.

    ERIC Educational Resources Information Center

    Massachusetts Career Development Inst., Springfield.

    This booklet is one of six texts from a workplace literacy curriculum designed to assist learners in facing the increased demands of the workplace. Six problem-solving techniques are developed in the booklet to assist individuals and groups in making better decisions: problem identification, data gathering, data analysis, solution analysis,…

  18. Blood Typing--Technique.

    ERIC Educational Resources Information Center

    Johnstone, W. T., Jr.

    This instructional packet deals with the study of hematology. It is recommended for all high school students of biology. A general understanding of antigen-antibody reactions is necessary before attempting this learning activity. Behavioral objectives place emphasis on the techniques of and understanding of blood typing. The equipment and…

  19. DATA ANALYSIS TECHNIQUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food scientists use standards and calibrations to relate the concentration of a compound of interest to the instrumental response. The techniques used include classical, single point, and inverse calibrations, as well as standard addition and internal standards. Several fundamental criteria -- sel...

  20. Log10 technique charts.

    PubMed

    Stopford, J E

    1979-01-01

    The purpose of this article is to offer a reliable and easily formulated alternative to random technique selection or control panel roulette when producing diagnostic radiographs. This system requires only minutes to complete and will reduce the radiation dose to patients, the radiographic film wasted, and the time lost repeating examinations. PMID:523624

  1. Values Concepts and Techniques.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC.

    This book contains 29 articles for elementary and secondary teachers dealing with fundamental concepts and teaching techniques in values education. Part one of the book deals with concepts. Louis E. Raths examines valuing and its relationship to freedom and intelligence. The cognitive developmental approach to moral education is discussed by…

  2. Merchandising Techniques and Libraries.

    ERIC Educational Resources Information Center

    Green, Sylvie A.

    1981-01-01

    Proposes that libraries employ modern booksellers' merchandising techniques to improve circulation of library materials. Using displays in various ways, the methods and reasons for weeding out books, replacing worn book jackets, and selecting new books are discussed. Suggestions for learning how to market and 11 references are provided. (RBF)

  3. Assessing Classroom Assessment Techniques

    ERIC Educational Resources Information Center

    Simpson-Beck, Victoria

    2011-01-01

    Classroom assessment techniques (CATs) are teaching strategies that provide formative assessments of student learning. It has been argued that the use of CATs enhances and improves student learning. Although the various types of CATs have been extensively documented and qualitatively studied, there appears to be little quantitative research…

  4. Techniques for Vocal Health.

    ERIC Educational Resources Information Center

    Wiest, Lori

    1997-01-01

    Outlines a series of simple yet effective practices, techniques, and tips for improving the singing voice and minimizing stress on the vocal chords. Describes the four components for producing vocal sound: respiration, phonation, resonation, and articulation. Provides exercises for each and lists symptoms of sickness and vocal strain. (MJP)

  5. The Symbolic Identity Technique.

    ERIC Educational Resources Information Center

    Goud, Nelson H.

    2001-01-01

    Explains the role of symbols in attaining total psychic growth by applying concepts of C. Jung, R. Assagiolo, and L. Kubie. Describes a new strategy, the symbolic identity technique, which involves environmental exploration in a relaxed, receptive manner in order to discover something in the outer environment that reflects one's inner nature.…

  6. The attribute measurement technique

    SciTech Connect

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  7. Study of coronagraphic techniques

    NASA Astrophysics Data System (ADS)

    Tolls, Volker; Aziz, Michael; Gonsalves, Robert A.; Korzennik, Sylvain; Labeyrie, Antoine; Lyon, Richard; Melnick, Gary; Schlitz, Ruth; Somerstein, Steve; Vasudevan, Gopal; Woodruff, Robert

    2006-06-01

    Smithsonian Astrophysical Observatory (SAO) has set up a program to study coronagraphic techniques. The program consists of the development of new fabrication methods of occulter masks, characterization of the manufactured masks, and application of the masks to study speckle reduction technique. Our occulter mask fabrication development utilizes a focused ion beam system to directly shape mask profiles from absorber material. Initial milling trials show that we can shape nearly Gaussian-shaped mask profiles. Part of this development is the characterization of absorber materials, poly(methyl methacrylate) doped with light-stable chromophores. For the characterization of the masks we have built a mask scanner enabling us to scan the transmission function of occulter masks. The real mask transmission profile is retrieved applying the maximum entropy method to deconvolve the mask transmission function from the beam profile of the test laser. Finally, our test bed for studying coronagraphic techniques is nearing completion. The optical setup is currently configured as a classical coronagraph and can easily be re-configured for studying speckle reduction techniques. The development of the test bed control software is under way. This paper we will give an update of the status of the individual program elements.

  8. Techniques in Adlerian Psychology.

    ERIC Educational Resources Information Center

    Carlson, Jon, Ed.; Slavik, Steven, Ed.

    This book is a collection of classic and recent papers (published between 1964 and 1994) reprinted from the "Journal of Juvenile Psychology""Individual Psychologist," and "Individual Psychology." Each of the five sections is introduced by the editor's comments. "General Techniques" contains the following articles: (1) "I-Thou Relationship Versus…

  9. Art Appreciation and Technique.

    ERIC Educational Resources Information Center

    Dean, Diane R.; Milam, Debora

    1985-01-01

    Presents examples of independent study units for gifted high school students in a resource room setting. Both art appreciation and technique are covered in activities concerned with media (basics of pencil, India ink, pastels, crayons, oil, acrylics, and watercolors), subject matter (landscapes, animals, the human figure), design and illustration…

  10. Correlative Techniques in Microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imaging is an important component in basic research, product development and understanding structure/function relationships in agricultural commodities and products. An array of microscopes and techniques can be used illustrate the structure and microchemistry of diverse samples. Examples of the var...

  11. Suture techniques in rhinoplasty.

    PubMed

    Gruber, Ronald P; Chang, Edward; Buchanan, Edward

    2010-04-01

    Suture techniques are an indispensable means to biologically sculpt the cartilage of the nose. Here the authors review their use in tip-plasty and present a 4-suture algorithm that allows for simple, complete control in sculpting the shape of all nasal tips in primary rhinoplasty. After a standard cephalic trim of the lateral crus leaving it 6 mm wide, one or more of the four suture techniques are applied. One of the newest techniques that has yielded excellent results is the hemi-transdomal suture, a variation of the conventional transdomal suture. This technique narrows the dome but also everts the lateral crus slightly to avoid concavities of the nostril rim. The 4-suture algorithm is useful in both the open and closed approaches. A more general use of sutures is described and referred to as the "universal horizontal mattress suture," which can be applied to remove all unwanted convexities or concavities and can be used not only to straighten the cartilage but also strengthen it. This suture has applications for the crooked septum, the collapsed lateral crus (external valve), and the collapsed internal valve, as well as for converting ear cartilage grafts into straighter, stronger grafts than previously thought possible. PMID:20206741

  12. Super Techniques for Teachers.

    ERIC Educational Resources Information Center

    Foley, Michael K.

    A variety of techniques can help a teacher create the atmosphere of a "quality circle," a Japanese management method in which each member of a group shares and contributes to the learning experience. "Creating a Commercial" allows students to create original oratory for presentation to the class. In "The Good News First," students improve their…

  13. Managerial Techniques in Educational Administration.

    ERIC Educational Resources Information Center

    Lane, John J.

    1983-01-01

    Management techniques developed during the past 20 years assume the rational bureaucratic model. School administration requires contingent techniques. Quality Circle, Theory Z, and the McKenzie 7-Framework are discussed as techniques to increase school productivity. (MD)

  14. Whole cell entrapment techniques.

    PubMed

    Trelles, Jorge A; Rivero, Cintia W

    2013-01-01

    Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases). PMID:23934817

  15. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  16. Laser beam shaping techniques

    SciTech Connect

    DICKEY,FRED M.; WEICHMAN,LOUIS S.; SHAGAM,RICHARD N.

    2000-03-16

    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  17. Data collection techniques.

    PubMed

    Morgan, G A; Harmon, R J

    2001-08-01

    We have provided an overview of techniques used to assess variables in the applied behavioral sciences. Most of the methods are used by both quantitative/positivist and qualitative/constructivist researchers but to different extents. Qualitative researchers prefer more open-ended, less structured data collection techniques than do quantitative researchers. Direct observation of participants is common in experimental and qualitative research; it is less common in so-called survey research, which tends to use self-report questionnaires. It is important that investigators use instruments that are reliable and valid for the population and purpose for which they will be used. Standardized instruments have manuals that provide norms and indexes of reliability and validity. However, if the populations and purpose on which these data are based are different from yours, it may be necessary for you to develop your own instrument or provide new evidence of reliability and validity. PMID:11501698

  18. CTV rendezvous techniques

    NASA Astrophysics Data System (ADS)

    Jennings, Jerry L.; Anderson, Robert L.

    The cargo transfer vehicle (CTV) requires the capability to perform automated rendezvous with Space Station Freedom (SSF) using onboard sensors and algorithms. The current approach to CTV rendezvous applies techniques developed during the orbital maneuvering vehicle (OMV) program which have been mechanized for automatic, onboard execution. The initial catch up sequence can be described as a passive rendezvous without explicit time of arrival control. The ultimate requirement for this rendezvous technique is to place the CTV on the SSF V-bar axis at some specified downrange distance. The launch vehicle will use yaw steering during orbit injection to achieve the proper phantom plane for nodal biasing. This presentation describes the primary components of the CTV rendezvous scheme.

  19. CTV rendezvous techniques

    NASA Technical Reports Server (NTRS)

    Jennings, Jerry L.; Anderson, Robert L.

    1991-01-01

    The cargo transfer vehicle (CTV) requires the capability to perform automated rendezvous with Space Station Freedom (SSF) using onboard sensors and algorithms. The current approach to CTV rendezvous applies techniques developed during the orbital maneuvering vehicle (OMV) program which have been mechanized for automatic, onboard execution. The initial catch up sequence can be described as a passive rendezvous without explicit time of arrival control. The ultimate requirement for this rendezvous technique is to place the CTV on the SSF V-bar axis at some specified downrange distance. The launch vehicle will use yaw steering during orbit injection to achieve the proper phantom plane for nodal biasing. This presentation describes the primary components of the CTV rendezvous scheme.

  20. [Histological techniques in oncodermatology].

    PubMed

    Chaput, B; Le Guellec, S; Courtade-Saïdi, M; Gangloff, D; Meresse, T; Chavoin, J-P; Grolleau, J-L; Garrido, I

    2012-04-01

    The skin oncology or "oncodermatology" requires a surgical treatment in most cases. For some surgeons, the oncodermatology takes a very important part of their practice. In the course of diagnostic and therapeutic of skin lesions, the pathologist plays now an essential role. He will guide our surgery. The techniques used by this specialist are numerous. Therefore, the objective of this paper is to review the different histological methods used to improve our management of skin tumors. PMID:22463986

  1. Weld braze technique

    DOEpatents

    Kanne, Jr., William R.; Kelker, Jr., John W.; Alexander, Robert J.

    1982-01-01

    High-strength metal joints are formed by a combined weld-braze technique. A hollow cylindrical metal member is forced into an undersized counterbore in another metal member with a suitable braze metal disposed along the bottom of the counterbore. Force and current applied to the members in an evacuated chamber results in the concurrent formation of the weld along the sides of the counterbore and a braze along the bottom of the counterbore in one continuous operation.

  2. Resin infiltration transfer technique

    DOEpatents

    Miller, David V.; Baranwal, Rita

    2009-12-08

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  3. Ozone flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.

    1981-01-01

    Flow visualization techniques using ozone for tracing gas flows are proposed whereby ozone is detected through its strong absorption of ultraviolet light, which is easily made visible with fluorescent materials, or through its reaction with nitric oxide to form excited nitrogen dioxide, which in relaxing emits detectable light. It is shown that response speeds in the kHz range are possible with an ultraviolet detection system for initial ozone concentrations of about 1%.

  4. Site characterization techniques

    USGS Publications Warehouse

    U.S. Geological Survey

    1995-01-01

    Geoelectrical methods have been used since the 1920's to search for metallic ore deposits. During the last decade, traditional mining geophysical techniques have been adapted for environmental site characterization. Geoelectrical geophysics is now a well developed engineering specialty, with different methods to focus both on a range of targets and on depths below the surface. Most methods have also been adapted to borehole measurements.

  5. Endoscopic Techniques in Tympanoplasty.

    PubMed

    Anzola, Jesus Franco; Nogueira, João Flávio

    2016-10-01

    The endoscope has transformed the way we observe, understand, and treat chronic ear disease. Improved view, exclusive transcanal techniques, assessment of ventilation routes and mastoid tissue preservation have led to decreased morbidity and functional enhancement of minimally invasive reconstruction of the middle ear. The philosophical identity of endoscopic ear surgery is evolving; new research, long-term results, and widespread acknowledgement of its postulates will undoubtedly define its role in otology. PMID:27565390

  6. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  7. Miniaturization Techniques for Accelerators

    SciTech Connect

    Spencer, James E.

    2003-05-27

    The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

  8. Electronic Packaging Techniques

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A characteristic of aerospace system design is that equipment size and weight must always be kept to a minimum, even in small components such as electronic packages. The dictates of spacecraft design have spawned a number of high-density packaging techniques, among them methods of connecting circuits in printed wiring boards by processes called stitchbond welding and parallel gap welding. These processes help designers compress more components into less space; they also afford weight savings and lower production costs.

  9. Amoco technique gains support

    SciTech Connect

    1995-10-01

    Amoco Corp.`s low-cost horizontal drilling technique and equipment are gaining acceptance in the oilpatch after five years of design and fine-tuning work. The system is purely mechanical, and it`s designed to operate with a workover rig instead of a drilling rig. It`s engineered to drill short-radius horizontal wells with lateral sup to 1,000 feet, so far.

  10. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  11. EEG data compression techniques.

    PubMed

    Antoniol, G; Tonella, P

    1997-02-01

    In this paper, electroencephalograph (EEG) and Holter EEG data compression techniques which allow perfect reconstruction of the recorded waveform from the compressed one are presented and discussed. Data compression permits one to achieve significant reduction in the space required to store signals and in transmission time. The Huffman coding technique in conjunction with derivative computation reaches high compression ratios (on average 49% on Holter and 58% on EEG signals) with low computational complexity. By exploiting this result a simple and fast encoder/decoder scheme capable of real-time performance on a PC was implemented. This simple technique is compared with other predictive transformations, vector quantization, discrete cosine transform (DCT), and repetition count compression methods. Finally, it is shown that the adoption of a collapsed Huffman tree for the encoding/decoding operations allows one to choose the maximum codeword length without significantly affecting the compression ratio. Therefore, low cost commercial microcontrollers and storage devices can be effectively used to store long Holter EEG's in a compressed format. PMID:9214790

  12. Covariance mapping techniques

    NASA Astrophysics Data System (ADS)

    Frasinski, Leszek J.

    2016-08-01

    Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.

  13. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  14. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  15. [Progress in imaging techniques].

    PubMed

    Mishima, Kazuaki; Otsuka, Tsukasa

    2013-05-01

    Today it is common to perform real-time diagnosis and treatment via live broadcast as a method of education and to spread new technology for diagnosis and therapy in medical fields. Live medical broadcasts have developed along with broadcast technology. In the early days, live video feeds were sent from operating rooms to classrooms and lecture halls in universities and hospitals. However, the development of imaging techniques and communication networks enabled live broadcasts that bi-directionally link operating rooms and meeting halls during scientific meetings and live demonstration courses. Live broadcasts therefore became an important method for education and the dissemination of new medical technologies. The development of imaging techniques has contributed to more realistic live broadcasts through such innovative techniques as three-dimensional viewing and higher-definition 4K technology. In the future, live broadcasts will be transmitted on personal computers using regular Internet connections. In addition to the enhancement of image delivery technology, it will also be necessary to examine the entire image delivery environment carefully, including issues of security and privacy of personal information. PMID:23789334

  16. Feasibility of organo-beryllium target mandrels using organo-germanium PECVD as a surrogate

    SciTech Connect

    Brusasco, R.M.; Dittrich, T.; Cook, R.C.

    1995-03-09

    Inertial Confinement Fusion capsules incorporating beryllium are becoming attractive for use in implosion experiments designed for modest energy gain. This paper explores the feasibility of chemical vapor deposition of organo-beryllium precursors to form coating materials of interest as ablators and fuel containers. Experiments were performed in a surrogate chemical system utilizing tetramethylgermane as the organometallic precursor. Coatings with up to 60 mole percent germanium were obtained. These coatings compare favorably with those previously reported in the literature and provide increasing confidence that a similar deposition process with an organo-beryllium precursor would be successful.

  17. Special mandrel permits uniform welding of out-of-round tubing

    NASA Technical Reports Server (NTRS)

    Dor, M. E.; Fueg, L. B.; Whiffen, E. L.

    1966-01-01

    Clamp holds irregularly shaped pieces in lathe chuck without damage and eliminates excessive time in selecting optimum mounting. Interchangeable jaws ride in standard jaw slots but swivel so that the jaw face bears evenly against the workpiece regardless of contour. The jaws can be used on both engine and turret lathes.

  18. Method and apparatus for heat extraction by controlled spray cooling

    DOEpatents

    Edwards, Christopher Francis; Meeks, Ellen; Kee, Robert; McCarty, Kevin

    1999-01-01

    Two solutions to the problem of cooling a high temperature, high heat flux surface using controlled spray cooling are presented for use on a mandrel. In the first embodiment, spray cooling is used to provide a varying isothermal boundary layer on the side portions of a mandrel by providing that the spray can be moved axially along the mandrel. In the second embodiment, a spray of coolant is directed to the lower temperature surface of the mandrel. By taking advantage of super-Leidenfrost cooling, the temperature of the high temperature surface of the mandrel can be controlled by varying the mass flux rate of coolant droplets. The invention has particular applicability to the field of diamond synthesis using chemical vapor deposition techniques.

  19. Rapid mixing kinetic techniques.

    PubMed

    Martin, Stephen R; Schilstra, Maria J

    2013-01-01

    Almost all of the elementary steps in a biochemical reaction scheme are either unimolecular or bimolecular processes that frequently occur on sub-second, often sub-millisecond, time scales. The traditional approach in kinetic studies is to mix two or more reagents and monitor the changes in concentrations with time. Conventional spectrophotometers cannot generally be used to study reactions that are complete within less than about 20 s, as it takes that amount of time to manually mix the reagents and activate the instrument. Rapid mixing techniques, which generally achieve mixing in less than 2 ms, overcome this limitation. This chapter is concerned with the use of these techniques in the study of reactions which reach equilibrium; the application of these methods to the study of enzyme kinetics is described in several excellent texts (Cornish-Bowden, Fundamentals of enzyme kinetics. Portland Press, 1995; Gutfreund, Kinetics for the life sciences. Receptors, transmitters and catalysis. Cambridge University Press, 1995).There are various ways to monitor changes in concentration of reactants, intermediates and products after mixing, but the most common way is to use changes in optical signals (absorbance or fluorescence) which often accompany reactions. Although absorbance can sometimes be used, fluorescence is often preferred because of its greater sensitivity, particularly in monitoring conformational changes. Such methods are continuous with good time resolution but they seldom permit the direct determination of the concentrations of individual species. Alternatively, samples may be taken from the reaction volume, mixed with a chemical quenching agent to stop the reaction, and their contents assessed by techniques such as HPLC. These methods can directly determine the concentrations of different species, but are discontinuous and have a limited time resolution. PMID:23729251

  20. Applied ALARA techniques

    SciTech Connect

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  1. Monovision techniques for telerobots

    NASA Technical Reports Server (NTRS)

    Goode, Plesent W.; Cornils, Karin

    1987-01-01

    The primary task of the vision sensor in a telerobotic system is to provide information about the position of the system's effector relative to objects of interest in its environment. The subtasks required to perform the primary task include image segmentation, object recognition, and object location and orientation in some coordinate system. The accomplishment of the vision task requires the appropriate processing tools and the system methodology to effectively apply the tools to the subtasks. This paper describes the functional structure of the telerobotic vision system used in the Langley Research Center's (LaRC) Intelligent Systems Research Laboratory (ISRL) and discusses two monovision techniques for accomplishing the vision subtasks.

  2. Techniques in protein methylation.

    PubMed

    Lee, Jaeho; Cheng, Donghang; Bedford, Mark T

    2004-01-01

    Proteins can be methylated on the side-chain nitrogens of arginine and lysine residues or on carboxy-termini. Protein methylation is a way of subtly changing the primary sequence of a peptide so that it can encode more information. This common posttranslational modification is implicated in the regulation of a variety of processes including protein trafficking, transcription and protein-protein interactions. In this chapter, we will use the arginine methyltransferases to illustrate different approaches that have been developed to assess protein methylation. Both in vivo and in vitro methylation techniques are described, and the use of small molecule inhibitors of protein methylation will be demonstrated. PMID:15173617

  3. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1982-01-01

    Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.

  4. Formulation techniques for nanofluids.

    PubMed

    Rivera-Solorio, Carlos I; Payán-Rodríguez, Luis A; García-Cuéllar, Alejandro J; Ramón-Raygoza, E D; L Cadena-de-la-Peña, Natalia; Medina-Carreón, David

    2013-11-01

    Fluids with suspended nanoparticles, commonly known as nanofluids, may be formulated to improve the thermal performance of industrial heat transfer systems and applications. Nanofluids may show enhanced thermal and electrical properties such as thermal conductivity, viscosity, heat transfer coefficient, dielectric strength, etc. However, stability problems may arise as nanoparticles usually have the tendency to agglomerate and sediment producing deterioration in the increment of these properties. In this review, we discuss patents that report advances in the formulation of nanofluids including: production methods, selection of components (nanoparticles, base fluid and surfactants), their chemical compositions and morphologies, and characterization techniques. Finally, current and future directions in the development of nanofluid formulation are discussed. PMID:24330043

  5. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  6. RFI emitter location techniques

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    The possibility is discussed of using Doppler techniques for determining the location of ground based emitters causing radio frequency interference with low orbiting satellites. An error analysis indicates that it is possible to find the emitter location within an error range of 2 n.mi. The parameters which determine the required satellite receiver characteristic are discussed briefly along with the non-real time signal processing which may by used in obtaining the Doppler curve. Finally, the required characteristics of the satellite antenna are analyzed.

  7. Brief inpatient psychotherapeutic technique.

    PubMed

    Stein, Michelle B; Jacobo, Michelle C

    2013-09-01

    Trainees rotate onto the medical psychiatric inpatient unit at Massachusetts General Hospital every 6 weeks to learn how to conduct brief inpatient psychotherapy from two staff psychologists and one staff psychiatrist. This article focuses on four key therapeutic principles/techniques used when teaching these trainees about brief inpatient psychotherapy. These include support, affective experience and expression, chain analysis, and identification of relational styles/maladaptive relational patterns. We also briefly discuss our approach to training. Theoretical rationale, numerous clinical examples, and empirical support (of inpatient psychotherapy) are provided. PMID:24000872

  8. Optical Techniques in Optogenetics

    PubMed Central

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-01-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially-controlled optogenetic stimulation and detection of cellular activities. PMID:26412943

  9. Monovision techniques for telerobots

    SciTech Connect

    Goode, P.W.; Cornils, K.

    1987-01-01

    The primary task of the vision sensor in a telerobotic system is to provide information about the position of the system's effector relative to objects of interest in its environment. The subtasks required to perform the primary task include image segmentation, object recognition, and object location and orientation in some coordinate system. The accomplishment of the vision task requires the appropriate processing tools and the system methodology to effectively apply the tools to the subtasks. This paper describes the functional structure of the telerobotic vision system used in the Langley Research Center's (LaRC) Intelligent Systems Research Laboratory (ISRL) and discusses two monovision techniques for accomplishing the vision subtasks. 11 references.

  10. Monovision techniques for telerobots

    NASA Technical Reports Server (NTRS)

    Goode, P. W.; Carnils, K.

    1987-01-01

    The primary task of the vision sensor in a telerobotic system is to provide information about the position of the system's effector relative to objects of interest in its environment. The subtasks required to perform the primary task include image segmentation, object recognition, and object location and orientation in some coordinate system. The accomplishment of the vision task requires the appropriate processing tools and the system methodology to effectively apply the tools to the subtasks. The functional structure of the telerobotic vision system used in the Langley Research Center's Intelligent Systems Research Laboratory is discussed as well as two monovision techniques for accomplishing the vision subtasks.

  11. Principles of Electromigration Techniques

    NASA Astrophysics Data System (ADS)

    Dziubakiewicz, Ewelina; Buszewski, Bogusław

    Electromigration techniques provide the separation of analyzed sample components owing to external voltage generating electrokinetic phenomena—electrophoresis and electroosmosis. Taking into account the relatively large number of parameters dealt with during electrophoretic analyses, it is essential to know their influence on the achieved separation of analytes. In this chapter the theoretical and practical aspects of a resolution optimization, as well as the effect of different separation parameters on the migration behavior are described. These, among others, include migration time, efficiency, selectivity, and resolution. The influence of electrods polarization, applied voltage, temperature, capillary, background electrolyte, and various additives on the separation is also discussed.

  12. Propeller flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.

    1982-01-01

    Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.

  13. Optical techniques in optogenetics

    NASA Astrophysics Data System (ADS)

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-07-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience, and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially controlled optogenetic stimulation and detection of cellular activities.

  14. The Autonomy of Technique Revisited

    ERIC Educational Resources Information Center

    Vanderburg, Willem H.

    2004-01-01

    Jacques Ellul's claim that technique became an autonomous phenomenon during the middle of the 20th century, and subsequently a system, means that the influence people have on technique is much less decisive than the influence technique has on people. As a sociohistorical description of the relationship between technique and society, it can be…

  15. Neutron detection technique

    SciTech Connect

    Oblath, N.S.; Poon, A.W.P.

    2000-09-14

    The Sudbury Neutrino Observatory (SNO) has the ability to measure the total flux of all active flavors of neutrinos using the neutral current reaction, whose signature is a neutron. By comparing the rates of the neutral current reaction to the charged current reaction, which only detects electron neutrinos, one can test the neutrino oscillation hypothesis independent of solar models. It is necessary to understand the neutron detection efficiency of the detector to make use of the neutral current reaction. This report demonstrates a coincidence technique to identify neutrons emitted from the {sup 252}Cf neutron calibration source. The source releases on average four neutrons when a {sup 252}Cf nucleus spontaneously fissions. Each neutron is detected as a separate event when the neutron is captured by a deuteron, releasing a gamma ray of approximately 6.25 MeV. This gamma ray is in turn detected by the photomultiplier tube (PMT) array. By investigating the time and spatial separation between neutron-like events, it is possible to obtain a pure sample of neutrons for calibration study. Preliminary results of the technique applied to two calibration runs are presented.

  16. Velocimetry Using Heterodyne Techniques

    SciTech Connect

    Strand, O T; Berzins, L V; Goosman, D R; Kuhlow, W W; Sargis, P D; Whitworth, T L

    2004-08-10

    At LLNL, we have been using heterodyne techniques for the past year and a half to measure velocities up to several kilometers-per-second on different types of experiments. We assembled this diagnostic, which we call the Heterodyne Velocimeter (HetV), using commercially available products developed for the communications industry. We use a 1550 nm fiber laser and single mode fibers to deliver light to and from the target. The return Doppler-shifted light is mixed with the original laser light to generate a beat frequency proportional to the velocity. At a velocity of 1000 m/s, the beat signal has a frequency of 1.29 GHz. We record the beat signals directly onto fast digitizers. The maximum velocity is limited by the bandwidth of the electronics and the sampling rate of the digitizers. The record length is limited by the amount of memory contained in the digitizers. This paper describes our approach to measuring velocities with this technique and presents recent data obtained with the HetV.

  17. Code Optimization Techniques

    SciTech Connect

    MAGEE,GLEN I.

    2000-08-03

    Computers transfer data in a number of different ways. Whether through a serial port, a parallel port, over a modem, over an ethernet cable, or internally from a hard disk to memory, some data will be lost. To compensate for that loss, numerous error detection and correction algorithms have been developed. One of the most common error correction codes is the Reed-Solomon code, which is a special subset of BCH (Bose-Chaudhuri-Hocquenghem) linear cyclic block codes. In the AURA project, an unmanned aircraft sends the data it collects back to earth so it can be analyzed during flight and possible flight modifications made. To counter possible data corruption during transmission, the data is encoded using a multi-block Reed-Solomon implementation with a possibly shortened final block. In order to maximize the amount of data transmitted, it was necessary to reduce the computation time of a Reed-Solomon encoding to three percent of the processor's time. To achieve such a reduction, many code optimization techniques were employed. This paper outlines the steps taken to reduce the processing time of a Reed-Solomon encoding and the insight into modern optimization techniques gained from the experience.

  18. Study of Coronagraphic Techniques

    NASA Astrophysics Data System (ADS)

    Tolls, V.; Aziz, M.; Gonsalves, R.; Korzennik, S.; Labeyrie, A.; Lyon, R.; Melnick, G.; Somerstein, S.; Vasudevan, G.; Woodruff, R.

    Direct imaging of extra-solar planets is important for determining the properties of individual planets, for studying multi-planet systems, and for observing the spatial structure of debris disks. Obtaining spectra of extra-solar planets enables us to constrain the composition of planetary atmospheres and surfaces, their climates, and their rotation periods. The techniques required to isolate and detect an extra-solar planet next to its host star are quite challenging and require significant improvement. SAO has set up a testbed to study coronagraphic techniques, starting with Labeyrie's multi-step speckle reduction technique. The testbed consists of a classical coronagraph with high precision optics. A telescope is simulated by a 2 inch spherical mirror with lambda/1000 surface quality. The focal length (1 meter) of this mirror was chosen that spherical aberration can be neglected. A spatially-filtered laser simulates the host star and an optional attenuated second laser simulates the planet. As an additional option, we can incorporate apodizing masks to further improve the performance of the coronagraph. The output signal of the coronagraph is fed into a single Labeyrie correction stage. It consists of a mirror to relay the light onto a 140-element MEMS deformable mirror (DM) for the phase correction. The reflected light is then focused onto a second occulter to block most of the speckle light and finally imaged onto a CCD. The phase correction function and, thus, the drive signal for the DM, is derived from images taken in and slightly out of the focal plane using phase diversity. The expected performance improvement is about one order of magnitude. An advanced concept utilizing phase and amplitude correction promises an even higher degree of speckle light suppression. In addition, we are using the testbed to characterize occulter masks developed in collaboration with Harvard University and Lockheed Martin Corp. At Harvard University we are developing a method

  19. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  20. Thermoelastic vibration test techniques

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Snyder, H. Todd

    1991-01-01

    The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.

  1. Extended Ewald summation technique

    NASA Astrophysics Data System (ADS)

    Kylänpää, Ilkka; Räsänen, Esa

    2016-09-01

    We present a technique to improve the accuracy and to reduce the computational labor in the calculation of long-range interactions in systems with periodic boundary conditions. We extend the well-known Ewald method by using a linear combination of screening Gaussian charge distributions instead of only one. This enables us to find faster converging real-space and reciprocal space summations. The combined simplicity and efficiency of our method is demonstrated, and the scheme is readily applicable to large-scale periodic simulations, classical as well as quantum. Moreover, apart from the required a priori optimization the method is straightforward to include in most routines based on the Ewald method within, e.g., density-functional, molecular dynamics, and quantum Monte Carlo calculations.

  2. Micro- and Nanofabrication Techniques

    NASA Astrophysics Data System (ADS)

    Fermon, C.

    This chapter is intended to give readers a brief overview of the numerous techniques involved in the fabrication of small magnetic devices. Until recently there has been a wide distinction between semi-conductor engineering and metallic and magnetic devices fabrication, the main reason being due to the huge investments in terms of money and manpower devoted to semiconductors rather than real technical limitations. With the advent of spin electronics, the number of metal and magnetic devices are increasing and in some instances, semiconductor and magnetic device fabrication have started to merge and are currently the topic of intensive research in some areas (e.g. in MRAMs). In the future it is anticipated, that metal and magnetic devices will be further employed at an accelerated pace in the electronics and computing sectors due to their inherent advantages, e.g. smaller, faster, more powerful non-volatile memories.

  3. Percutaneous Sacroiliac Screw Technique.

    PubMed

    Tidwell, John; Cho, Rosa; Reid, J Spence; Boateng, Henry; Copeland, Carol; Sirlin, Edward

    2016-08-01

    Remembering that preoperative planning, surgical indications, and fracture reduction are paramount for this procedure, presented here is our technique for performing percutaneous sacroiliac screws, both transiliac-transsacral and sacral style. A combination of video, still pictures, and fluoroscopy images will guide the viewer through the process we routinely use highlighting specific details. Patient positioning and intraoperative fluoroscopy imaging are critical to a successful procedure. Although inlet and outlet films remain important, we find the procedure best started on the lateral sacral view to reduce the need for start site, trajectory, and imaging position changes during the case. A cannulated pig sticker (drill guide) used with long drill tip guide wires provide improved manual control to both finding a good start site and directing the trajectory. For patient safety, sacral anatomy and safe zones are discussed as well. Using these technical points will help make this a successful procedure. PMID:27441927

  4. Techniques of infrared thermography.

    PubMed

    Jatteau, M

    1975-01-01

    Considering the main objectives of thermographic techniques and the particular characteristics of passive infrared detection, the essential arguments in favor of single detector scanners have been pointed out after a brief discussion of the detection and image pickup methods when quantitative and precise (0.1 degrees C) information on the temperature distribution near ambient temperature must be obtained. Single detector scanners can have sufficiently good performance to reach the objectives of precise thermography, but their real technical limits must be well-known in practice; consequently, the thermograph performance must be clearly defined by means of the modulation transfer function, the intrinsic thermal resolution and the response uniformity, as we indicate in the second part of this paper. PMID:1180865

  5. Technique for microswitch manufacture

    NASA Technical Reports Server (NTRS)

    Kitamura, T.; Kiyoyama, S.

    1983-01-01

    A five-step technique for microswitch manufacture is described: (1) A clad board is inlaid with a precious metal and the board is pressed. (2) One end of the fixed contact containing a precious metal inlay section is curved, and this edge of the precious metal inlay section becomes a fixed contact. (3) Inserts are formed in the unit body and terminal strips are placed through the top and bottom of the base and held. (4) The unit body is held by the base and the sequential contact strips are cut off. (5) Movable stripes are attached to the support of the terminal strips on the movable side and movable contacts are placed opposite the fixed contacts.

  6. Techniques for fire detection

    NASA Technical Reports Server (NTRS)

    Bukowski, Richard W.

    1987-01-01

    An overview is given of the basis for an analysis of combustable materials and potential ignition sources in a spacecraft. First, the burning process is discussed in terms of the production of the fire signatures normally associated with detection devices. These include convected and radiated thermal energy, particulates, and gases. Second, the transport processes associated with the movement of these from the fire to the detector, along with the important phenomena which cause the level of these signatures to be reduced, are described. Third, the operating characteristics of the individual types of detectors which influence their response to signals, are presented. Finally, vulnerability analysis using predictive fire modeling techniques is discussed as a means to establish the necessary response of the detection system to provide the level of protection required in the application.

  7. Contamination Control Techniques

    SciTech Connect

    EBY, J.L.

    2001-05-17

    Controlling the spread of radioactive contamination during work on nuclear systems is one of the tougher jobs we face as radiation, safety specialists. Discussion will include airborne, waterborne, fixed and loose surface contamination engineered controls of the past and present. With increased emphasis on getting jobs done faster, safer and better, we need to look at innovative ways to control the spread of radioactive contamination. This class will show the student the latest techniques in confining the spread of radioactive contamination to the environment and improved methods to reduce the number of skin and clothing contamination that can occur. Discussions and demonstrations will provide choices concerning work practices and products that confine the spread of contamination. The class will have a number of tools and pieces of equipment used at Hanford and other nuclear facilities, that will passed around for the student to have ''hands on'' training.

  8. [Hepatobiliary anastomosis techniques].

    PubMed

    Heidenhain, C; Rosch, R; Neumann, U P

    2011-01-01

    The success of hepatobiliary anastomoses is influenced by the diameter of the bile duct, the location within the biliary tract, the situation of primary or revision surgery and accompanying infections. The exact preoperative diagnostics of the anatomy of the biliary tract are indispensable for low complication rates. Within reconstructive surgery, hepaticojejunostomy has been established as the standard technique and a biliodigestive anastomosis is performed proximal to the cystic duct and 2-3 cm below the fork in the hepatic duct. In general, end-to-end anastomoses of the common bile duct are not recommended due to the high risk for stenosis. Within the liver hilus an exact preparation of all tubular structures is mandatory. With regard to possible perioperative complications operations on the hepatic duct or segmental bile ducts should be performed in specialized centers. Methods of drainage in hepatobiliary surgery are percutaneous transhepatic cholangiodrainage (PTCD), internal-external drainage, internal drainage with endoscopic or surgically placed stents, external-internal-external drainage and the T-drain. PMID:21153387

  9. Nozzle fabrication technique

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor)

    1991-01-01

    A block of electrically conductive material which is to be formed into a body with internal and/or external surfaces that approximate hyperboloids of one sheet is placed so that its axis is set at a predetermined skew angle with relation to a traveling EDM electrode wire. The electrode wire is then moved into cutting proximity of the body wire. Thereafter, by revolving the body about its own axis, the external and/or internal surfaces of the body will be cut into an approximate hyperbolic surface of revolution depending upon whether the body is positioned with the cutting wire outside of the body or in a previously formed longitudinal passage in the body. As an alternative technique, elongated channels can also be cut into the wall of the body by successively orienting the body to a selected number of angular positions, with the electrode wire being either outside of the body or in a previously formed passage in the body. At each of these angular positions, the electrode wire is moved orthogonally with respect to the axis of the wire, while both the body axis skew angle and the rotational position about that axis is controlled by cutting a channel or groove in the body to relieve stresses in the body material or to convey a coolant fluid.

  10. Nozzle fabrication technique

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor)

    1989-01-01

    A block of electrically-conductive material which is to be formed into a body with internal and/or external surfaces that approximate hyperboloids of one sheet is placed so that its axis is set at a predetermined skew angle with relation to a travelling EDM electrode wire and the electrode wire is then moved into cutting proximity of the body. Thereafter, by revolving the body about its own axis, the external and/or internal surfaces of the body will be cut into an approximate hyperbolic surface of revolution depending upon whether the body is positioned with the cutting wire outside of the body or in a previously-formed longitudinal passage in the body. As an alternative technique, elongated channels can also be cut into the walls of the body by successively orienting the body to a selected number of angular positions with the electrode wire being either outside of the body or in a previously-formed passage in the body. At each of these angular positions, the electrode wire is moved orthogonally with respect to the axis of the wire while both the body axis skew angle and the rotational position about that axis are controlled for cutting a channel or groove in the body as required to relieve stresses in the material of the body or to convey a coolant fluid.

  11. Laser Scar Management Technique

    PubMed Central

    Ohshiro, Toshio; Sasaki, Katsumi

    2013-01-01

    Background and Aims: Scars are common and cause functional problems and psychological morbidity. Recent advances in optical technologies have produced various laser systems capable of revising the appearance of scars from various etiologies to optimize their appearance. Methods: Laser treatment can commence as early as the time of the initial injury and as late as several years after the injury. Several optical technologies are currently available and combined laser/light treatments are required for treatment of scars. Since 2006, we have set up a scar management department in our clinic and more than 2000 patients have been treated by our combined laser irradiation techniques. Herein, we review several available light technologies for treatment of surgical, traumatic, and inflammatory scars, and discuss our combined laser treatment of scars, based upon our clinical experience. Results and Conclusions: Because scars have a variety of potential aetiologies and take a number of forms, no single approach can consistenty provide good scar treatment and management. The combination of laser and devices is essential, the choice of wavelength and approach being dictated by each patient as an individual. PMID:24511202

  12. MFIX documentation numerical technique

    SciTech Connect

    Syamlal, M.

    1998-01-01

    MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose hydrodynamic model for describing chemical reactions and heat transfer in dense or dilute fluid-solids flows, which typically occur in energy conversion and chemical processing reactors. The calculations give time-dependent information on pressure, temperature, composition, and velocity distributions in the reactors. The theoretical basis of the calculations is described in the MFIX Theory Guide. Installation of the code, setting up of a run, and post-processing of results are described in MFIX User`s manual. Work was started in April 1996 to increase the execution speed and accuracy of the code, which has resulted in MFIX 2.0. To improve the speed of the code the old algorithm was replaced by a more implicit algorithm. In different test cases conducted the new version runs 3 to 30 times faster than the old version. To increase the accuracy of the computations, second order accurate discretization schemes were included in MFIX 2.0. Bubbling fluidized bed simulations conducted with a second order scheme show that the predicted bubble shape is rounded, unlike the (unphysical) pointed shape predicted by the first order upwind scheme. This report describes the numerical technique used in MFIX 2.0.

  13. Techniques of Electrode Fabrication

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Li, Xinyong; Chen, Guohua

    Electrochemical applications using many kinds of electrode materials as an advanced oxidation/reduction technique have been a focus of research by a number of groups during the last two decades. The electrochemical approach has been adopted successfully to develop various environmental applications, mainly including water and wastewater treatment, aqueous system monitoring, and solid surface analysis. In this chapter, a number of methods for the fabrication of film-structured electrode materials were selectively reviewed. Firstly, the thermal decomposition method is briefly described, followed by introducing chemical vapor deposition (CVD) strategy. Especially, much attention was focused on introducing the methods to produce diamond novel film electrode owing to its unique physical and chemical properties. The principle and influence factors of hot filament CVD and plasma enhanced CVD preparation were interpreted by refereeing recent reports. Finally, recent developments that address electro-oxidation/reduction issues and novel electrodes such as nano-electrode and boron-doped diamond electrode (BDD) are presented in the overview.

  14. Improved Search Techniques

    NASA Technical Reports Server (NTRS)

    Albornoz, Caleb Ronald

    2012-01-01

    Thousands of millions of documents are stored and updated daily in the World Wide Web. Most of the information is not efficiently organized to build knowledge from the stored data. Nowadays, search engines are mainly used by users who rely on their skills to look for the information needed. This paper presents different techniques search engine users can apply in Google Search to improve the relevancy of search results. According to the Pew Research Center, the average person spends eight hours a month searching for the right information. For instance, a company that employs 1000 employees wastes $2.5 million dollars on looking for nonexistent and/or not found information. The cost is very high because decisions are made based on the information that is readily available to use. Whenever the information necessary to formulate an argument is not available or found, poor decisions may be made and mistakes will be more likely to occur. Also, the survey indicates that only 56% of Google users feel confident with their current search skills. Moreover, just 76% of the information that is available on the Internet is accurate.

  15. Technique Selectively Represses Immune System

    MedlinePlus

    ... Research Matters December 3, 2012 Technique Selectively Represses Immune System Myelin (green) encases and protects nerve fibers (brown). A new technique prevents the immune system from attacking myelin in a mouse model of ...

  16. Programing techniques for CDC equipment

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Tiffany, S. H.

    1979-01-01

    Five techniques reduce core requirements for fast batch turnaround time and interactive-terminal capability. Same techniques increase program versatility, decrease problem-configuration dependence, and facilitate interprogram communication.

  17. Dramatic Techniques in ESL Instruction.

    ERIC Educational Resources Information Center

    Radin, Barbara

    Three techniques have been found to be helpful in using dramatic techniques to provide motivation, self-confidence, and self-esteem to students of English as a second language at Hostos Community College. Strategic interaction is a technique based on the open-ended scenario, in which students are free to respond to the problem presented in the…

  18. [Thoracic drainage technique for emergencies].

    PubMed

    Orsini, B; Bonnet, P M; Avaro, J P

    2010-02-01

    The purpose of this report is to describe a simple, reproducible technique for pleural drainage. This technique that requires scant resources should be used only in life-threatening situations calling for pleural drainage. It is not intended to replace conventional techniques. PMID:20337108

  19. [Laparoscopic rectal resection technique].

    PubMed

    Anthuber, M; Kriening, B; Schrempf, M; Geißler, B; Märkl, B; Rüth, S

    2016-07-01

    The quality of radical oncological operations for patients with rectal cancer determines the rate of local recurrence and long-term survival. Neoadjuvant chemoradiotherapy for locally advanced tumors, a standardized surgical procedure for rectal tumors less than 12 cm from the anus with total mesorectal excision (TME) and preservation of the autonomous nerve system for sexual and bladder function have significantly improved the oncological results and quality of life of patients. The TME procedure for rectal resection has been performed laparoscopically in Germany for almost 20 years; however, no reliable data are available on the frequency of laparoscopic procedures in rectal cancer patients in Germany. The rate of minimally invasive procedures is estimated to be less than 20 %. A prerequisite for using the laparoscopic approach is implicit adherence to the described standards of open surgery. Available data from prospective randomized trials, systematic reviews and meta-analyses indicate that in the early postoperative phase the generally well-known positive effects of the minimally invasive approach to the benefit of patients can be realized without any long-term negative impact on the oncological results; however, the results of many of these studies are difficult to interpret because it could not be confirmed whether the hospitals and surgeons involved had successfully completed the learning curve. In this article we would like to present our technique, which we have developed over the past 17 years in more than 1000 patients. Based on our experiences the laparoscopic approach can be highly recommended as a suitable alternative to the open procedure. PMID:27277556

  20. Dose Reduction Techniques

    SciTech Connect

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  1. Techniques in Broadband Interferometry

    SciTech Connect

    Erskine, D J

    2004-01-04

    This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the official versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.

  2. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-12-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ``builds in`` the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ``process capability`` is illustrated and a comparison of 10-keV x-ray and Co{sup 60} gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe`s Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  3. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  4. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S.; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M. )

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-kev x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co[sup 60] gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  5. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  6. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  7. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  8. Aseptic technique in microgravity.

    PubMed

    McCuaig, K

    1992-11-01

    Within the next decade, the United States will launch a space station into low Earth orbit as a preliminary step toward a manned mission to Mars. Provision of asepsis in the unique microgravity environment, essential in operative and invasive procedures, is addressed. An assessment of conventional terrestrial aseptic methods and possible modifications for a microgravity environment was done during the microgravity portion of parabolic flight on NASA KC-135 aircraft. During 110 parabolas on three flight days, a "surgical team" (surgeon, scrub nurse and circulating nurse) using a life size mannequin fastened to a prototype surgical "work station" (operating table), evaluated open and closed gloving (ten parabolas), skin preparation (six parabolas), surgical scrub methods (24 parabolas), gowning (22 parabolas) and draping (48 parabolas). Evaluated were povidone iodine solution, 1 percent povidone iodine detergent, Chloroxylenol with detergent, wet prep soap sponge, a water insoluble iodophor polymer (DuraPrep, 3M), disposable towels, disposable and reusable gowns, large and small disposable drapes with and without adhesive edges, disposable latex surgeon's gloves with and without packaging modifications and restraint mechanisms (tether, swiss seat, waist and foot restraint devices, fairfield and wire clamps and clips). Ease of use, provision of restraint for supplies and personnel and waste disposal were assessed. The literature was reviewed and its relevance to the space environment discussed, including risk factors, environmental contamination, immune status and microbiology. The microgravity environment, limited water supply and restricted operating area mandated that modifications of fabrication and packaging of supplies and technique be made to create and preserve asepsis. Material must meet stringent flammability and off-gassing standards. Either a chlorhexidine or povidone iodine detergent prepackaged brush and sponge would provide an adequate scrub plus

  9. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  10. Classroom Assessment Techniques

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2003-12-01

    and the learner should be carefully observed and monitored. Forrest says that Student Portfolios, which document learning in more detail, seldom reveal how teaching contributes to students' progress. Cerbin further indicates that a course portfolio is essentially, a like a manuscript of scholarly work in progress. In this example, it is a work that explains what, how, and why students learn or do not learn in a course. In this paper, the author reports on a dozen techniques that could perhaps be used to document assessment of student learning. References : Cerbin, W. (1993). Fostering a culture of teaching as scholarship. The Teaching Professor, 7(3), 1-2. Edgerton, R., Hutchings, P., & Quinlan, P. (1991). The teaching portfolio: Capturing the scholarship in teaching. Washington, DC: American Association for Higher Education. Forrest, A. (1990). Time will tell: Portfolio-assisted assessment of general education. Washington, DC: American Association for Higher Education. Linn, R., Baker, E., & Dunbar, S. (1991). Complex, Performance-based Assessment: Expectations and Validation Criteria. Educational Researcher, 20 (8), 15-21. Narayanan, M. (2003). Assessment in Higher Education: Partnerships in Learning. Paper presented at the 23rd Annual Lilly Conference on College Teaching, Miami University, Oxford, OH. Seldin, P. (1991). The teaching portfolio. Bolton, MA: Anker. Young, C. O., Sr., & Young, L. H. (1999). Assessing Learning in Interactive Courses. Journal on Excellence in College Teaching, 10 (1), 63-76.

  11. A simplified technique of performing splenorenal shunt (Omar's technique).

    PubMed

    Shah, Omar Javed; Robbani, Irfan

    2005-01-01

    The splenorenal shunt procedure introduced by Robert Linton in 1947 is still used today in those regions of the world where portal hypertension is a common problem. However, because most surgeons find Linton's shunt procedure technically difficult, we felt that a simpler technique was needed. We present the surgical details and results of 20 splenorenal anastomosis procedures performed within a period of 30 months. Half of the patients (Group I) underwent Linton's conventional technique of splenorenal shunt; the other half (Group II) underwent a newly devised, simplified shunt technique. This new technique involves dissection of the fusion fascia of Toldt. The outcome of the 2 techniques was identical with respect to the reduction of preshunt portal pressure. However, our simplified technique was advantageous in that it significantly reduced the duration of surgery (P <0.001) and the amount of intraoperative blood loss (P <0.003). No patient died after either operation. Although Linton's splenorenal shunt is difficult and technically demanding, it is still routinely performed. The new technique described here, in addition to being simpler, helps achieve good vascular control, permits easier dissection of the splenic vein, enables an ideal anastomosis, decreases intraoperative blood loss, and reduces the duration of surgery. Therefore, we recommend the routine use of this simplified technique (Omar's technique) for the surgical treatment of portal hypertension. PMID:16429901

  12. Process for making electroformed stents

    DOEpatents

    Hines, Richard A.

    2000-02-01

    This invention is directed to an expandable stent useful for implantation into an artery or the like. The stents are made using electroforming techniques in which an electrically-conductive mandrel is coated with a suitable resist material, after which the resist is exposed to an appropriate light pattern and frequency so as to form a stent pattern in the resist. The mandrel is then electroplated with a suitable stent material. The mandrel is etched away once a sufficient layer of stent material is deposited, leaving a completed stent.

  13. Electroform replication used for multiple X-ray mirror production

    NASA Technical Reports Server (NTRS)

    Kowalski, M. P.; Ulmer, M. P.; Purcell, W. R., Jr.; Loughlin, J. E. A.

    1984-01-01

    The electroforming technique for producing X-ray mirrors is described, and results of X-ray tests performed on copies made from a simple conical mandrel are reported. The design of the mandrel is depicted and the total reflectivity as well as the full-wave half modulation resolution are shown as a function of energy. The reported work has improved on previous studies by providing smaller grazing angles, making measurements at higher energies, producing about four times as many replicas from one mandrel, and obtaining better angular resolution.

  14. Fast Hadamard Spectroscopic Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Goelman, G.

    1994-07-01

    Fast Hadamard spectroscopic imaging (HSI) techniques are presented. These techniques combine transverse and longitudinal encoding to obtain multiple-volume localization. The fast techniques are optimized for nuclei with short T2 and long T1 relaxation times and are therefore suitable for in vivo31P spectroscopy. When volume coils are used in fast HSI techniques, the signal-to-noise ratio per unit time (SNRT) is equal to the SNRT in regular HSI techniques. When surface coils are used, fast HSI techniques give significant improvement of SNRT over conventional HSI. Several fast techniques which are different in total experimental time and pulse demands are presented. When the number of acquisitions in a single repetition time is not higher than two, fast HSI techniques can be used with surface coils and the B1 inhomogeneity does not affect the localization. Surface-coil experiments on phantoms and on human calf muscles in vivo are presented. In addition, it is shown that the localization obtained by the HSI techniques are independent of the repetition times.

  15. Spare Roof Technique: A Middle Third New Technique.

    PubMed

    Ferreira, Miguel Gonçalves; Monteiro, Daniel; Reis, Claudia; Almeida e Sousa, Cecilia

    2016-02-01

    To our knowledge, the spare roof technique (SRT) is the first technique that is based on a complete skeletonization/preservation of the upper lateral cartilages. This technique is used to keep the natural roof of the nose's middle third, while dehumping and/or correcting the crooked septum. From January 2014 till March 2015, a total of 40 rhinoplasties were performed through the SRT: 28 reduction rhinoplasties, 6 complex crooked noses (with extracorporeal septoplasty), and 6 mixed cases. The SRT is an excellent middle third technique. The natural roof was kept and fitted the accurate new position in almost all cases with no surgical complexity. It is an easy technique with many applications and it is also very useful in the classical humpectomy of the Caucasian nose and correction of the crooked nose. PMID:26862972

  16. Exponential Finite-Difference Technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1989-01-01

    Report discusses use of explicit exponential finite-difference technique to solve various diffusion-type partial differential equations. Study extends technique to transient-heat-transfer problems in one dimensional cylindrical coordinates and two and three dimensional Cartesian coordinates and to some nonlinear problems in one or two Cartesian coordinates.

  17. Field techniques for sampling ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants occur in most environments and ecologists ask a diverse array of questions involving ants. Thus, a key consideration in ant studies is to match the environment and question (and associated environmental variables) to the ant sampling technique. Since each technique has distinct limitations, usi...

  18. Techniques for Improving Cash Management.

    ERIC Educational Resources Information Center

    Lykins, Ronald G.

    1973-01-01

    This article deals with several techniques for regulating cash inflow and outflow and investing surplus cash for short periods of time. The techniques are: (1) consolidating checking accounts, (2) determining surplus cash by examining bank balances in conjunction with the cash book, (3) selecting a minimum bank balance, (4) investing a greater…

  19. SPECTRAL IMAGING TECHNIQUES FOR GRAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three spectral imaging techniques were employed for the purpose of assessing the quality of cereal grains. Each of these techniques provided unique, yet complementary, information. Nuclear magnetic resonance (NMR), also called magnetic resonance imaging (MRI), was used to detect mobile components ...

  20. TECHNIQUES FOR TEACHING CONSERVATION EDUCATION.

    ERIC Educational Resources Information Center

    BROWN, ROBERT E.; MOUSER, G.W.

    CONSERVATION PRINCIPLES, FIELD METHODS AND TECHNIQUES, AND SPECIFIC FIELD LEARNING ACTIVITIES ARE INCLUDED IN THIS REFERENCE VOLUME FOR TEACHERS. CONSERVATION PRINCIPLES INCLUDE STATEMENTS PERTAINING TO (1) SOIL, (2) WATER, (3) FOREST, AND (4) WILDLIFE. FIELD METHODS AND TECHNIQUES INCLUDE (1) PREPARING FOR A FIELD TRIP, (2) GETTING STUDENT…

  1. Numerical grid generation techniques. [conference

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The state of the art in topology and flow geometry is presented. Solution techniques for partial differential equations are reviewed and included developments in coordinate transformations, conformal mapping, and invariant imbeddings. Applications of these techniques in fluid mechanics, flow geometry, boundary value problems, and fluidics are presented.

  2. [Operative technique: The clitoral transposition].

    PubMed

    Chevrot, A; Lousquy, R; Arfi, A; Haddad, B; Paniel, B J; Touboul, C

    2015-10-01

    Female sexual mutilations result in an important physical and mental suffering. A large number of women have been affected and require a global management, including surgical clitoral transposition. This surgical technique is allowing a rapid improvement of clinical symptoms. In this article, we will describe the indications and operative technique of the clitoral transposition. PMID:25818112

  3. Single Cell Electrical Characterization Techniques

    PubMed Central

    Mansor, Muhammad Asraf; Ahmad, Mohd Ridzuan

    2015-01-01

    Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell’s electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell’s electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed. PMID:26053399

  4. Murine heterotopic heart transplant technique.

    PubMed

    Plenter, Robert J; Grazia, Todd J

    2014-01-01

    It is now over forty years since this technique was first reported by Corry, Wynn and Russell. Although it took some years for other labs to become proficient in and utilize this technique, it is now widely used by many laboratories around the world. A significant refinement to the original technique was developed and reported in 2001 by Niimi. Described here are the techniques that have evolved over more than a decade in the hands of three surgeons (Plenter, Grazia, Pietra) in our center. These techniques are now being passed on to a younger generation of surgeons and researchers. Based largely on the Niimi experience, the procedures used have evolved in the fine details - details which we will endeavor to relate here in such a way that others may be able to use this very useful model. Like Niimi, we have found that a video aid to learning is a priceless resource for the beginner. PMID:25046118

  5. Theorists and Techniques: Connecting Education Theories to Lamaze Teaching Techniques.

    PubMed

    Podgurski, Mary Jo

    2016-01-01

    Should childbirth educators connect education theory to technique? Is there more to learning about theorists than memorizing facts for an assessment? Are childbirth educators uniquely poised to glean wisdom from theorists and enhance their classes with interactive techniques inspiring participant knowledge and empowerment? Yes, yes, and yes. This article will explore how an awareness of education theory can enhance retention of material through interactive learning techniques. Lamaze International childbirth classes already prepare participants for the childbearing year by using positive group dynamics; theory will empower childbirth educators to address education through well-studied avenues. Childbirth educators can provide evidence-based learning techniques in their classes and create true behavioral change. PMID:26848246

  6. Presentation-Oriented Visualization Techniques.

    PubMed

    Kosara, Robert

    2016-01-01

    Data visualization research focuses on data exploration and analysis, yet the vast majority of visualizations people see were created for a different purpose: presentation. Whether we are talking about charts showing data to help make a presenter's point, data visuals created to accompany a news story, or the ubiquitous infographics, many more people consume charts than make them. Traditional visualization techniques treat presentation as an afterthought, but are there techniques uniquely suited to data presentation but not necessarily ideal for exploration and analysis? This article focuses on presentation-oriented techniques, considering their usefulness for presentation first and any other purposes as secondary. PMID:26780762

  7. The history of cesarean technique.

    PubMed

    Lurie, Samuel; Glezerman, Marek

    2003-12-01

    Cesarean section has been practiced since ancient times. Unfortunately, no ancient medical documents describing the techniques for cesarean section are extant. In the early medieval period, cesarean section was usually performed by midwives. One of the first explicit instructions in medical literature on cesarean technique dates from about 1480 ce from southern Germany. We discuss the evolution of cesarean surgical technique and point up the contribution of many giants in the field of obstetrics and gynecology, such as Blundell, Frank, Harris, Joel-Cohen, Kehrer, Kerr, Lebas, Levret, Maylard, Pfannenstiel, Porro, Portes, and Sanger. PMID:14710118

  8. Multigrid techniques for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  9. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  10. [Plasmapheresis: technique, complications and indications].

    PubMed

    Pruijm, M T; Cherpillod, A; Vogt, B; Burnier, M

    2008-03-01

    Plasmapheresis is an extracorporeal technique used to remove pathogenic macromolecules from the plasma. Plasmapheresis is used to treat neurological, renal, hematological as well as systemic diseases, which explains why many different specialties in medicine can be involved. Plasmapheresis has evolved in forty years into a frequently used, relatively safe procedure. Nowadays a large spectrum of different techniques exists, each with its own possible complications. In this article we will give an overview of these different techniques, their complications and indications, in order to familiarize the reader with this fascinating treatment. PMID:18402016

  11. PIGE technique implementation at ININ

    SciTech Connect

    Policroniades, R. Martínez-Quiroz, E.; Méndez-Garrido, B.; Murillo, G.; Moreno, E.; Villaseñor, P.

    2015-07-23

    In this work, we present a general overview about the implementation at ININ of a Particle Induced Gamma Emission (PIGE) analysis technique, based on the bombardment of samples by protons and deuterons at different energies within our tandem accelerator facility. As it is well known, this technique is based on the detection of γ-rays emitted by nuclei in a target following a charged particle irradiation. The main feature of this technique, apart from being non-destructive and low time consuming, is that it allows a multi-elemental analysis of a sample, permitting an isotopic identification of many nuclides. Advances and some preliminary results are presented.

  12. Submucosal tunneling techniques: current perspectives

    PubMed Central

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments. PMID:24741323

  13. Gender, Persuasion Techniques, and Collaboration.

    ERIC Educational Resources Information Center

    Raign, Kathryn Rosser; Sims, Brenda R.

    1993-01-01

    Examines preconceptions of four proposal developers about three factors: effective and ineffective collaboration; gender's effects on collaboration; and gender's effect on persuasion. Finds the discourse techniques used by men and women do not parallel a person's gender. (RS)

  14. Data Analysis Techniques at LHC

    SciTech Connect

    Boccali, Tommaso

    2005-10-12

    A review of the recent developments on data analysis techniques for the upcoming LHC experiments is presented, with the description of early tests ('Data Challenges'), which are being performed before the start-up, to validate the overall design.

  15. Telephone Techniques for Secretarial Students

    ERIC Educational Resources Information Center

    Anderson, Avis O.; McCabe, Helen

    1977-01-01

    A program integrating classroom study and internship placement at LaGuardia Community College was designed to provide secretarial students with expertise in telephone techniques. Specific lesson objectives and a field assignment are included as examples. (TA)

  16. Document restoration by computer techniques

    NASA Technical Reports Server (NTRS)

    Mogavero, L.; Spuck, W.; Levitt, I. M.

    1977-01-01

    Technique utilizes automated electronic data-processing machine to successfully recover illegible information from faded or age distorted documents. Once recovered, information can be displayed on cathode-ray-tube screen or reproduced in any desired size.

  17. Radio frequency baseband recording technique

    NASA Technical Reports Server (NTRS)

    Heckman, D. C.

    1970-01-01

    Technique uses a helical-scan video recorder with auxiliary signal-conditioning equipment to provide an inexpensive, high-capacity magnetic tape recording of a 112 channel, phase-locked, multiplexed, baseband signal.

  18. Modern Observational Techniques for Comets

    NASA Technical Reports Server (NTRS)

    Brandt, J. C. (Editor); Greenberg, J. M. (Editor); Donn, B. (Editor); Rahe, J. (Editor)

    1981-01-01

    Techniques are discussed in the following areas: astrometry, photometry, infrared observations, radio observations, spectroscopy, imaging of coma and tail, image processing of observation. The determination of the chemical composition and physical structure of comets is highlighted.

  19. Discovering the Botnet Detection Techniques

    NASA Astrophysics Data System (ADS)

    Rahim, Aneel; Bin Muhaya, Fahad T.

    Botnet is a network of compromised computers. It just fellow the master slave concept. Bots are comprised computers and do the tasks what ever their master orders them. Internet Relay Chat (IRC) is used for the communication between the master and bots. Information is also encrypted to avoid the effect of third party. In this paper we discuss the Botnets detection techniques and comparative analysis of these techniques on the basis of DNS query, History data and group activity.

  20. Multicomponent analysis using established techniques

    NASA Astrophysics Data System (ADS)

    Dillehay, David L.

    1991-04-01

    Recent environmental concerns have greatly increased the need, application and scope of real-time continuous emission monitoring systems. New techniques like Fourier Transform Infrared have been applied with limited success for this application. However, the use of well-tried and established techniques (Gas Filter Correlation and Single Beam Dual Wavelength) combined with sophisticated microprocessor technology have produced reliable monitoring systems with increased measurement accuracy.

  1. Tri-soft shell technique.

    PubMed

    Arshinoff, Steve A; Norman, Richard

    2013-08-01

    Soft-shell techniques exist for lower viscosity dispersive with higher viscosity cohesive ophthalmic viscosurgical devices (OVDs) (soft-shell technique [SST]), viscoadaptive OVDs with balanced salt solution (ultimate soft-shell technique), intraoperative floppy-iris syndrome (soft-shell bridge), and many specific modifications for disinserted zonular fibers, frayed iris strands, Fuchs endothelial dystrophy, small holes in the posterior capsule with protruding vitreous, capsular dye use, and others. Soft-shell techniques exist because it is rheologically impossible to control the surgical environment with a single OVD as well as with an ordered combination of rheologically different OVDs. Surgeons frequently confuse these techniques because of their multitude. This paper unifies all SSTs into a single improved tri-soft shell technique (TSST), from which basic specific applications to unusual circumstances are simple and intuitive. As shown with previous SSTs, the TSST allows surgeons to perform complex tasks with greater surgical facility and to protect endothelial cells better than with single OVDs. PMID:23889867

  2. Testing methods and techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mechanical testing techniques, electrical and electronics testing techniques, thermal testing techniques, and optical testing techniques are the subject of the compilation which provides technical information and illustrations of advanced testing devices. Patent information is included where applicable.

  3. Landing Techniques in Beach Volleyball

    PubMed Central

    Tilp, Markus; Rindler, Michael

    2013-01-01

    The aims of the present study were to establish a detailed and representative record of landing techniques (two-, left-, and right-footed landings) in professional beach volleyball and compare the data with those of indoor volleyball. Beach volleyball data was retrieved from videos taken at FIVB World Tour tournaments. Landing techniques were compared in the different beach and indoor volleyball skills serve, set, attack, and block with regard to sex, playing technique, and court position. Significant differences were observed between men and women in landings following block actions (χ2(2) = 18.19, p < 0.01) but not following serve, set, and attack actions. Following blocking, men landed more often on one foot than women. Further differences in landings following serve and attack with regard to playing technique and position were mainly observed in men. The comparison with landing techniques in indoor volleyball revealed overall differences both in men (χ2(2) = 161.4, p < 0.01) and women (χ2(2) = 84.91, p < 0.01). Beach volleyball players land more often on both feet than indoor volleyball players. Besides the softer surface in beach volleyball, and therefore resulting lower loads, these results might be another reason for fewer injuries and overuse conditions compared to indoor volleyball. Key Points About 1/3 of all jumping actions in beach volleyball result in a landing on one foot. Especially following block situations men land on one foot more often than women. Landing techniques are related to different techniques and positions. Landings on one foot are less common in beach volleyball than indoor volleyball. This could be a reason for fewer injuries and overuse conditions. PMID:24149150

  4. Landing techniques in beach volleyball.

    PubMed

    Tilp, Markus; Rindler, Michael

    2013-01-01

    The aims of the present study were to establish a detailed and representative record of landing techniques (two-, left-, and right-footed landings) in professional beach volleyball and compare the data with those of indoor volleyball. Beach volleyball data was retrieved from videos taken at FIVB World Tour tournaments. Landing techniques were compared in the different beach and indoor volleyball skills serve, set, attack, and block with regard to sex, playing technique, and court position. Significant differences were observed between men and women in landings following block actions (χ(2)(2) = 18.19, p < 0.01) but not following serve, set, and attack actions. Following blocking, men landed more often on one foot than women. Further differences in landings following serve and attack with regard to playing technique and position were mainly observed in men. The comparison with landing techniques in indoor volleyball revealed overall differences both in men (χ(2)(2) = 161.4, p < 0.01) and women (χ(2)(2) = 84.91, p < 0.01). Beach volleyball players land more often on both feet than indoor volleyball players. Besides the softer surface in beach volleyball, and therefore resulting lower loads, these results might be another reason for fewer injuries and overuse conditions compared to indoor volleyball. Key PointsAbout 1/3 of all jumping actions in beach volleyball result in a landing on one foot.Especially following block situations men land on one foot more often than women.Landing techniques are related to different techniques and positions.Landings on one foot are less common in beach volleyball than indoor volleyball. This could be a reason for fewer injuries and overuse conditions. PMID:24149150

  5. Applications of Electromigration Techniques: Electromigration Techniques in Detection of Microorganisms

    NASA Astrophysics Data System (ADS)

    Dziubakiewicz, Ewelina; Buszewski, Bogusław

    The detection and identification of microbes is a challenge and an important aspect in many fields of our lives from medicine to bioterrorism defense. However, the analysis of such complex molecules brings a lot of questions mainly about their behavior. Bacteria are biocolloid, whose surface charge originates from the ionization of carboxyl, phosphate, or amino groups and the adsorption of ions from solution. Consequently, the charged cell wall groups determine the spontaneous formation of the electrical double layer. In this chapter application of electromigration techniques for microorganism's identification and separation are described. This approach represents the possibility to apply electromigration techniques in medical diagnosis, detection of food contamination, and sterility testing.

  6. Review of uranium bioassay techniques

    SciTech Connect

    Bogard, J.S.

    1996-04-01

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  7. Authentication techniques for smart cards

    SciTech Connect

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.

  8. The Circumrotational Technique for Mastopexy.

    PubMed

    Miotto, Gabriele Cáceres; Eaves, Felmont F

    2015-09-01

    Numerous combinations of pedicle design and incision patterns have been described for mastopexy, but upper pole volume deficiency, suboptimal shape, or recurrent ptosis are still undesired postoperative findings. The challenges of preventing such outcomes are amplified in the massive weight loss (MWL) patient population, where both the extent of morphologic deformation and alterations in tissue characteristics (ie, a materials failure) can be severe. To correct this problem, we propose a technique that combines breast circumference-reduction with maximal glandular rotation and superomedial repositioning: the circumrotational technique. The technique reduces the circumference of the breast base, enhances anterior projection, and defines the lateral breast border by maximal glandular rotation and elevation, reorienting and engaging lax structural elements within the parenchyma. It also recruits ptotic lateral breast tissue into the upper pole, maximizing volume. This technique proposes an initial glandular hyperelevation, upper pole tissue "stacking," and broad peripheral fixation of the breast-to-chest wall to support the breast during the healing period and combat the propensity for recurrence. The circumrotational technique has been mostly used for mastopexy after MWL, but can also be used for typical mastopexies in non-MWL patients with grade 2 or 3 breast ptosis. PMID:26319075

  9. Cane Technique: Modifying the Touch Technique for Full Path Coverage

    ERIC Educational Resources Information Center

    Uslan, Mark M.

    1978-01-01

    Measurements of height of cane hand, cane length, step size, and forearm length of 17 cane using blind (14-21 years old) Ss were taken for the purpose of testing the hypothesis that the touch technique does not provide 100 percent path coverage. (Author)

  10. NASA standard: Trend analysis techniques

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Descriptive and analytical techniques for NASA trend analysis applications are presented in this standard. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. This document should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend analysis is neither a precise term nor a circumscribed methodology: it generally connotes quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this document. The basic ideas needed for qualitative and quantitative assessment of trends along with relevant examples are presented.