Science.gov

Sample records for deposition microbial cascades

  1. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade

    PubMed Central

    Hodgson, Douglas M.; Smith, Ann; Dahale, Sonal; Stratford, James P.; Li, Jia V.; Grüning, André; Bushell, Michael E.; Marchesi, Julian R.; Avignone Rossa, C.

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723

  2. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade.

    PubMed

    Hodgson, Douglas M; Smith, Ann; Dahale, Sonal; Stratford, James P; Li, Jia V; Grüning, André; Bushell, Michael E; Marchesi, Julian R; Avignone Rossa, C

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723

  3. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities.

    PubMed

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m(-2). Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost. PMID:27270788

  4. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities

    PubMed Central

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J.; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m−2. Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost. PMID:27270788

  5. Microbial shaping of wrinkle structures in siliciclastic deposits

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Mariotti, G.; Pruss, S. B.; Perron, J.; O'Grady, M.

    2013-12-01

    Wrinkle structures are millimeter- to centimeter-scale elongated or reticulate sedimentary structures that resemble symmetric ripples. Sharp-crested and flat-topped wrinkle structures up to 1 cm wide occur on numerous bedding planes in the Neoproterozoic and Cambrian, as well as in some Archean and Phanerozoic siliciclastic deposits. Because similar, but unlithified structures occur in some modern, microbially-colonized sands, wrinkle structures are typically interpreted as microbially induced sedimentary structures. However, it is unclear if physical processes, such as the motion of suspended sand grains, can produce similar features in sand even before microbial colonization. We introduced mat fragments to the surface of silica sand in wave tanks and generated sharp-crested, flat-topped and pitted wrinkle structures. The abrasion of the sandy surface by rolling, low density, millimeter-size fragments of microbial mats produces wrinkle structures at extremely weak orbital velocities that cannot move sand grains in the absence of light particles. Wrinkle structures form in a few hours and can become colonized by microbial mats within weeks. Thus, wrinkle structures are patterns formed by microbially mediated sand motion at low orbital velocities in the absence of bioturbation. Once formed, wrinkle structures can be colonized and stabilized by microbial mats, but the shape of these mats does not dictate the shape of wrinkle structures. These experiments bolster the interpretation of wrinkle structures as morphological signatures of organic particles and early life in Archean and Proterozoic siliciclastic deposits.

  6. Effect of tubing deposition, breathing pattern, and temperature on aerosol mass distribution measured by cascade impactor.

    PubMed

    Gurses, Burak K; Smaldone, Gerald C

    2003-01-01

    Aerosols produced by nebulizers are often characterized on the bench using cascade impactors. We studied the effects of connecting tubing, breathing pattern, and temperature on mass-weighted aerodynamic particle size aerosol distributions (APSD) measured by cascade impaction. Our experimental setup consisted of a piston ventilator, low-flow (1.0 L/min) cascade impactor, two commercially available nebulizers that produced large and small particles, and two "T"-shaped tubes called "Tconnector(cascade)" and "Tconnector(nebulizer)" placed above the impactor and the nebulizer, respectively. Radiolabeled normal saline was nebulized using an airtank at 50 PSIG; APSD, mass balance, and Tconnector(cascade) deposition were measured with a gamma camera and radioisotope calibrator. Flow through the circuit was defined by the air tank (standing cloud, 10 L/min) with or without a piston pump, which superimposed a sinusoidal flow on the flow from the air tank (tidal volume and frequency of breathing). Experiments were performed at room temperature and in a cooled environment. With increasing tidal volume and frequency, smaller particles entered the cascade impactor (decreasing MMAD; e.g., Misty-Neb, 4.2 +/- 0.9 microm at lowest ventilation and 2.7 +/- 0.1 microm at highest, p = 0.042). These effects were reduced in magnitude for the nebulizer that produced smaller particles (AeroTech II, MMAD 1.8 +/- 0.1 to 1.3 +/- 0.1 microm; p = 0.0044). Deposition on Tconnector(cascade) increased with ventilation but was independent of cascade impactor flow. Imaging of the Tconnector(cascade) revealed a pattern of deposition unaffected by cascade impactor flow. These measurements suggest that changes in MMAD with ventilation were not artifacts of tubing deposition in the Tconnector(cascade). At lower temperatures, APSD distributions were more polydisperse. Our data suggest that, during patient inhalation, changes in particle distribution occur that are related to conditions in the tubing and

  7. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    SciTech Connect

    Xiao, Shengmu; Xue, Kai; He, Zhili; VanNostrand, Joy D.; Liu, Jianshe; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNA from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.

  8. Community-specific biogeochemical responses to atmospheric nitrogen deposition in subalpine meadow ecosystems of the Cascade Range

    NASA Astrophysics Data System (ADS)

    Poinsatte, J. P.; Rochefort, R.; Evans, R. D.

    2014-12-01

    Elevated anthropogenic nitrogen (N) emissions result in higher rates of atmospheric N deposition (Ndep) that can saturate sensitive ecosystems. Consequences of increased Ndep include higher emissions of greenhouse gases, eutrophication of watersheds, and deterioration of vegetation communities. Most of the annual N deposition at higher elevations in the Cascades is stored in snowpack until spring snowmelt when it is released as a pulse that can be assimilated by plant and microbial communities, or lost as gaseous emissions or leachate. The relative magnitude of these fluxes is unknown, particularly with accelerated rates of snowpack loss due to climate change. We quantified storage of Ndep in winter snowpack and determined impacts of Ndep on biogeochemical processes in a lush-herbaceous community characterized by Valeriana sitchensis and Lupinus latifolius, a heath-shrub community characterized by Phyllodoce empetriformis and Cassiope mertensiana, and a wet-sedge community dominated by Carex nigricans. These communities were selected to represent early, mid, and late snowmelt vegetation regimes prevalent throughout the Cascades. Ammonium (NH4+) was the dominant form of Ndep in winter snowpack and Ndep rates were higher than anticipated based on nearby National Atmospheric Deposition Program (NADP) measurements. Vegetation N uptake was the dominant N sink in the ecosystem, with the highest growing season uptake occurring in the lush-herbaceous community, while soil N leaching was the dominant N loss, with the lush-herbaceous also having the highest rates. Microbial biomass N fluctuated substantially across the growing season, with high biomass N immediately after snowmelt and again 30 days following snow release. Soil nitrous oxide (N2O) emissions peaked 30 days following snowmelt for all three communities and were greatest in the wet sedge community. These results indicate that subalpine communities have unique responses to Ndep that vary throughout the growing

  9. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  10. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  11. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  12. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  13. 7 CFR 504.2 - Fees for deposit and requisition of microbial cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fees for deposit and requisition of microbial cultures... cultures. (a) Depositors of microbial cultures must pay a one-time $500 user fee for each culture deposited on or after November 1, 1983. (b) For cultures deposited on or after November 1, 1983,...

  14. Application of fluorescent microscopy and cascade filtration methods for analysis of soil microbial community

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin; Pinchuk, Irina; Gorodnichev, Roman; Polyanskaya, Lubov

    2016-04-01

    Methods establishment of soil microbial cells size estimation called from the importance of current needs of research in microbial ecology. Some of the methods need to be improved for more detailed view of changes happen in microbiome of terrestrial ecosystems. The combination of traditional microscopy methods, fluorescence and filtration in addition to cutting-edge DNA analysis gives a wide range of the approaches for soil microbial ecologists in their research questions. In the most of the cases the bacterial cells size is limited of the natural conditions such as lack of nutrients or stress factors due to heterogeneity of soil system. In the samples of soils, lakes and rivers sediments, snow and rain water the bacterial cells were detected minimally of 0.2 microns. We established the combination of the cascade filtration and fluorescent microscopy for complex analysis of different terrestrial ecosystems and various soil types. Our modification based on the use of successively filtered soil suspension for collection of microbes by the membrane pores decrease. Combination with fluorescence microscopy and DNA analysis via FISH method gave the presentation of microbial interactions and review of ecological strategies of soil microorganisms. Humus horizons of primitive arctic soil were the most favorable for bacterial growth. Quantified biomass of soil bacteria depends on the dominance of cells with specific dimensions caused of stress factors. The average bacterial size of different soil varied from 0.23 to 0.38 microns, however in humus horizons of arctic soil we detected the contrast dominance of the bigger bacterial cells sized of 1.85 microns. Fungi in this case contributed to increase the availability of organic matter for bacteria because the fungal mycelium forms the appreciable part of microbial biomass of primitive arctic soil. The dominant content of bigger bacterial cells in forest and fallow soil as well as the opposite situation in arable soils caused

  15. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect

    Song, Yu Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire; Bhat, Rajaram; Zah, Chung-En

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  16. How plant functional traits cascade to microbial function and ecosystem services in mountain grasslands

    NASA Astrophysics Data System (ADS)

    Lavorel, S.; Grigulis, K.; Krainer, U.; Legay, N.; Turner, C.; Dumont, M.; Kastl, E.; Arnoldi, C.; Bardgett, R.; Poly, F.; Pommier, T.; Schloter, M.; Tappeiner, U.; Bahn, M.; Clément, J.-C.

    2012-04-01

    1. There is growing evidence that plant functional diversity and microbial communities of soil are tightly coupled, and that this coupling influences a range of ecosystem functions. Moreover, it has been hypothesized that changes in the nature of interactions between plant functional diversity and microbial communities along environmental gradients contributes to variation in the delivery of ecosystem services. Although there is empirical support for such relationships using broad plant and microbial functional classifications, or from studies of plant monocultures, such relationships and their consequences for ecosystem services have not been quantified under complex field conditions with diverse plant communities. 2. We aimed to provide an explicit quantification of how plant and microbial functional properties interplay to determine key ecosystem functions underlying ecosystem services provided by grasslands. At three mountain grassland sites in the French Alps, Austrian Tyrol and northern England, we quantified, along gradients of management intensity, (i) plant functional diversity, (ii) soil microbial community composition and parameters associated with nitrogen cycling, and (iii) key ecosystem processes related to the carbon and nitrogen cycles including aboveground biomass production, standing litter, litter decomposition, soil organic matter and nitrate and ammonium leaching . Considering that plants strongly determine microbial communities, we used a hierarchical approach that considered first direct effects of plant traits and then effects of soil microorganisms on processes, to determine the relative effects of plant and microbial functional parameters on key ecosystem properties. 3. We identified a gradient of relative effects of plant and microbial traits from properties controlled mostly by aboveground processes, such as plant biomass production and standing litter, to properties controlled mostly by microbial processes, such as soil leaching of

  17. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool.

    PubMed

    Liang, Chao; Balser, Teri C

    2012-01-01

    Microorganisms have a role as gatekeepers for terrestrial carbon fluxes, either causing its release to the atmosphere through their decomposition activities or preventing its release by stabilizing the carbon in a form that cannot be easily decomposed. Although research has focused on microbial sources of greenhouse gas production, somewhat limited attention has been paid to the microbial role in carbon sequestration. However, increasing numbers of reports indicate the importance of incorporating microbial-derived carbon into soil stable carbon pools. Here we investigate microbial residues in a California annual grassland after a continuous 9-year manipulation of three environmental factors (elevated CO(2), warming and nitrogen deposition), singly and in combination. Our results indicate that warming and nitrogen deposition can both alter the fraction of carbon derived from microbes in soils, though for two very different reasons. A reduction in microbial carbon contribution to stable carbon pools may have implications for our predictions of global change impacts on soil stored carbon. PMID:23187622

  18. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    PubMed Central

    Wrede, Christoph; Dreier, Anne; Heller, Christina; Reitner, Joachim; Hoppert, Michael

    2013-01-01

    The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates. PMID:23843725

  19. Paleoproterozoic microbially induced sedimentary structures from lagoonal depositional settings in northern China

    NASA Astrophysics Data System (ADS)

    Lan, Zhongwu

    2015-10-01

    Microbially induced sand cracks/crack-fills occur extensively on the top surface of fine sandstone beds of the Paleoproterozoic Zhaojiazhuang Formation, Changcheng Group (> 1.7 Ga) around the Cangyan Mountain, Hebei Province, northern China. Detailed field and microscopic petrographical evidence reveal that these sand cracks/crack-fills possibly resulted from dehydration and desiccation of microbial mats. The age and peculiar morphology of these microbially induced sedimentary structures do not allow comparison with trace fossils or purely physical desiccation cracks. The fine sandstone beds on the surfaces of which these microbially induced sedimentary structures formed were deposited in a lagoon/brackish depositional setting (marine to non-marine transitional setting) with episodic injection of marine water. As such, these microbially induced sedimentary structures suggest the colonization of the marine to non-marine transitional settings in the Paleoproterozoic period, and that the search for evidence of early microbial life should be sought in the marine to non-marine transitional settings. These broad habitats suggest these microbes could have been eurytopic organisms capable of adapting to varying extents of salt and oxygen content variations, like their modern counterparts.

  20. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    USGS Publications Warehouse

    John, David A.; du Bray, Edward A.; Henry, Christopher D., (compiler); Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  1. Formation of Deep Sea Umber Deposits Linked to Microbial Metal Oxidation at the South Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao

    2015-04-01

    Umber deposits are important metalliferous deposits, which occur in off-axis half-graben structures at ancient and modern ocean floor. The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biochemical mechanisms involved to the precipitation of Mn oxides and co-precipitation of Fe oxyhydroxides and Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data suggest that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic Fe(II)-oxidizing bacteria, which constitute a trophic base that may support the activities of heterotrophic Mn(II)-oxidizing bacteria. The biological origin of umber deposits underscore the importance of geomicrobiologcial interaction in triggering the formation of deep-sea deposits, with important implications for the generation of submarine Mn deposits and crusts.

  2. Geogenic Factors as Drivers of Microbial Community Diversity in Soils Overlying Polymetallic Deposits.

    PubMed

    Reith, Frank; Zammit, Carla M; Pohrib, Rebecca; Gregg, Adrienne L; Wakelin, Steven A

    2015-11-01

    This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity. PMID:26341204

  3. Geogenic Factors as Drivers of Microbial Community Diversity in Soils Overlying Polymetallic Deposits

    PubMed Central

    Zammit, Carla M.; Pohrib, Rebecca; Gregg, Adrienne L.; Wakelin, Steven A.

    2015-01-01

    This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity. PMID:26341204

  4. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Liu, Bingfeng; Ren, Nanqi

    2012-03-15

    Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale. PMID:22197264

  5. Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile).

    PubMed

    Stivaletta, Nunzia; Barbieri, Roberto; Billi, Daniela

    2012-06-01

    The Atacama Desert (Chile), one of the most arid places on Earth, shows hostile conditions for the development of epilithic microbial communities. In this study, we report the association of cyanobacteria (Chroococcidiopsis sp.) and bacteria belonging to Actinobacteria and Beta-Gammaproteobacteria and Firmicutes phyla inhabiting the near surface of salt (halite) deposits of the Salar Grande Basin, Atacama Desert (Chile). The halite deposits were investigated by using optical, confocal and field emission scanning electron microscopes, whereas culture-independent molecular techniques, 16S rDNA clone library, alongside RFLP analysis and 16S rRNA gene sequencing were applied to investigate the bacterial diversity. These microbial communities are an example of life that has adapted to extreme environmental conditions caused by dryness, high irradiation, and metal concentrations. Their adaptation is, therefore, important in the investigation of the environmental conditions that might be expected for life outside of Earth. PMID:22661023

  6. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    NASA Astrophysics Data System (ADS)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  7. Microbial Colonization of the Salt Deposits in the Driest Place of the Atacama Desert (Chile)

    NASA Astrophysics Data System (ADS)

    Stivaletta, Nunzia; Barbieri, Roberto; Billi, Daniela

    2012-06-01

    The Atacama Desert (Chile), one of the most arid places on Earth, shows hostile conditions for the development of epilithic microbial communities. In this study, we report the association of cyanobacteria ( Chroococcidiopsis sp.) and bacteria belonging to Actinobacteria and Beta-Gammaproteobacteria and Firmicutes phyla inhabiting the near surface of salt (halite) deposits of the Salar Grande Basin, Atacama Desert (Chile). The halite deposits were investigated by using optical, confocal and field emission scanning electron microscopes, whereas culture-independent molecular techniques, 16S rDNA clone library, alongside RFLP analysis and 16S rRNA gene sequencing were applied to investigate the bacterial diversity. These microbial communities are an example of life that has adapted to extreme environmental conditions caused by dryness, high irradiation, and metal concentrations. Their adaptation is, therefore, important in the investigation of the environmental conditions that might be expected for life outside of Earth.

  8. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories.

    PubMed

    Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea

    2015-07-01

    The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces. PMID:26193296

  9. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories

    PubMed Central

    Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea

    2015-01-01

    The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces. PMID:26193296

  10. Microbial community diversity associated with moonmilk deposits in a karstic cave system in Ireland

    NASA Astrophysics Data System (ADS)

    Rooney, D.; Hutchens, E.; Clipson, Nick; McDermott, Frank

    2009-04-01

    has been unaltered by human disturbance or practices. The aim of this study was to examine microbial community diversity associated with moonmilk deposits at Ballynamintra Cave, Ireland using automated ribosomal intergenic spacer analysis (ARISA). The results revealed considerable bacterial and fungal diversity associated with moonmilk in a karstic cave system, suggesting that the microbial community implicated in moonmilk formation may be more diverse than previously thought. These results suggest that microbes may have important functional roles in subterranean environments. Although the moonmilk in this study was largely comprised of calcite, microbial involvement in calcite precipitation could result in the bioavailability of a range of organic compounds for subsequent microbial metabolism. References: Baskar, S., Baskar, R., Mauclaire, L., and McKenzie, J.A. 2006. Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science 90: 58-64. Burford, E.P., Fomina, M., Gadd, G. 2003. Fungal involvement in bioweathering and biotrasformations of rocks and minerals. Min Mag 67(6):1172-1155. Engel, A.S., Stern, L.A., Bennett, P.C. 2004. Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32(5): 369-372. Gadd, G.M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist 18: 60-70. Northup, D., Barns, S.M., Yu, Laura, E., Spilde, M.N., Schelble, R.T., Dano, K.E., Crossey, L.J., Connolly, C.A., Boston, P.J., and Dahm, C.N. 2003. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environmental Microbiology 5(11): 1071-1086.

  11. A nontransgenic mouse model shows inducible amyloid-β (Aβ) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade

    PubMed Central

    Dolev, Iftach; Michaelson, Daniel M.

    2004-01-01

    The amyloid-β (Aβ) peptide, a major pathological hallmark of Alzheimer's disease (AD), undergoes a cascade of interactions resulting in the formation of soluble aggregates and their conversion in the brain to insoluble deposits and mature senile plaques. Furthermore, the apoE4 isoform of apolipoprotein E (apoE), which is the major genetic risk factor of AD, is associated with increased Aβ deposition. It is not known how the different Aβ aggregates in the amyloid cascade are formed, contribute to the pathogenesis of AD, or are affected by apoE4. To investigate the initial aggregation stages underlying the amyloid cascade in vivo and how apoE affects them, we examined the effects of prolonged inhibition and subsequent reactivation of the Aβ-degrading protease neprilysin on deposition, disaggregation, and fibrillization of Aβ in apoE-transgenic and control mice. In control mice, intracerebroventricular infusion of thiorphan, which inhibits neprilysin, induced Aβ42 and Aβ40 deposition and fibrillization. On termination of thiorphan treatment, the number of Aβ deposits decreased, whereas the fibrillar Aβ deposits were unaffected. Similar treatments in apoE-deficient mice and mice transgenic for human apoE4 or apoE3 revealed that apoE4 enhances specifically the nucleation and aggregation of immunopositive Aβ deposits and that reversible disaggregation of these deposits and their irreversible conversion to fibrillar deposits are stimulated similarly by the different apoE isoforms. Deposition of Aβ and its enhancement by apoE4 were accompanied by increased astrogliosis both far from and near the Aβ deposits, suggesting that astrogliosis might be triggered by both insoluble and soluble Aβ aggregates. PMID:15365176

  12. Lava Cave Microbial Communities Within Mats and Secondary Mineral Deposits: Implications for Life Detection on Other Planets

    PubMed Central

    Melim, L.A.; Spilde, M.N.; Hathaway, J.J.M.; Garcia, M.G.; Moya, M.; Stone, F.D.; Boston, P.J.; Dapkevicius, M.L.N.E.; Riquelme, C.

    2011-01-01

    Abstract Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai‘i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai‘i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai‘i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. Key Words: Biosignatures—Astrobiology—Bacteria—Caves—Life detection—Microbial mats. Astrobiology 11, 601–618. PMID:21879833

  13. Effects of soot deposition on particle dynamics and microbial processes in marine surface waters

    NASA Astrophysics Data System (ADS)

    Mari, Xavier; Lefèvre, Jérôme; Torréton, Jean-Pascal; Bettarel, Yvan; Pringault, Olivier; Rochelle-Newall, Emma; Marchesiello, Patrick; Menkes, Christophe; Rodier, Martine; Migon, Christophe; Motegi, Chiaki; Weinbauer, Markus G.; Legendre, Louis

    2014-07-01

    Large amounts of soot are continuously deposited on the global ocean. Even though significant concentrations of soot particles are found in marine waters, the effects of these aerosols on ocean ecosystems are currently unknown. Using a combination of in situ and experimental data, and results from an atmospheric transport model, we show that the deposition of soot particles from an oil-fired power plant impacted biogeochemical properties and the functioning of the pelagic ecosystem in tropical oligotrophic oceanic waters off New Caledonia. Deposition was followed by a major increase in the volume concentration of suspended particles, a change in the particle size spectra that resulted from a stimulation of aggregation processes, a 5% decrease in the concentration of dissolved organic carbon (DOC), a decreases of 33 and 23% in viral and free bacterial abundances, respectively, and a factor ~2 increase in the activity of particle-attached bacteria suggesting that soot introduced in the system favored bacterial growth. These patterns were confirmed by experiments with natural seawater conducted with both soot aerosols collected in the study area and standard diesel soot. The data suggest a strong impact of soot deposition on ocean surface particles, DOC, and microbial processes, at least near emission hot spots.

  14. Palaeoarchean Barite Deposits in the Barberton Greenstone Belt: Origin and Links to Early Microbial Life

    NASA Astrophysics Data System (ADS)

    Mason, P. R.; Peters, A.; Nijman, W.; Reimer, T. O.; Whitehouse, M. J.

    2008-12-01

    Barite deposits are considered important for identifying microbial S cycling in Archean rocks since they can provide information about S isotopes in coexisting sulfate and sulfide minerals. However the degree to which barite and pyrite in metasedimentary rocks are related remains unclear. In this study we have investigated the origin of barite and pyrite in four main horizons seen in both outcrop and fresh drill core material from the Lower Mapepe formation (3.26 to 3.23 Ga), Barberton Greenstone Belt, South Africa. Host rocks include shales, cherts, tuffs and conglomerates that are variably silicified and/or affected by carbonate alteration. The high-energy depositional environment of the host rocks, mineralogical textures, barite chemistry and the occurrence of feldspars from the rarely-found celsian-hyalophane-orthoclase series suggest a seafloor exhalative origin for the barite. In contrast pyrite is closely associated with cherts and dolomitic units where rare earth element and Y data support a marine influence. Pyrite chemistry (Co/Ni= 0.1-1, Se/S <5 x 10- 5) also indicates a low temperature sedimentary origin. Multiple S isotope data (32S, 33S, 34S, determined by SIMS) for pyrite indicates a number of arrays with limited δ34S fractionation at constant Δ33S associated with individual syn-sedimentary microcrystalline pyrite layers. Isolated euhedral pyrites in massive chert and barite rich units show much more scatter and larger degrees of Δ33S variation (-1 to +4 ). Our results are consistent with models invoking microbial mass dependent fractionation of a heterogeneous elemental sulfur source derived from atmospheric photolysis. The sulfate reservoir can also be linked to photolysis but there is no clear relationship between the barite and pyrite S isotope data, suggesting that microbial (or abiotic) sulfate reduction was absent at this time or that the basinal sulfate concentration must have remained significantly lower than the mM level prior to barite

  15. Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest

    PubMed Central

    Wu, Jianping; Liu, Wenfei; Fan, Houbao; Huang, Guomin; Wan, Songze; Yuan, Yinghong; Ji, Chunfeng

    2013-01-01

    Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8 years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m−2 year−1) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered. PMID:24198947

  16. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    PubMed

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies. PMID:21879833

  17. Atmospheric Deposition and Surface-Water Chemistry in Mount Rainier and North Cascades National Parks, U.S.A., Water Years 2000 and 2005-2006

    USGS Publications Warehouse

    Clow, David W.; Campbell, Donald H.

    2008-01-01

    High-elevation aquatic ecosystems in Mount Rainier and North Cascades National Parks are highly sensitive to atmospheric deposition of nitrogen and sulfur. Thin, rocky soils promote fast hydrologic flushing rates during snowmelt and rain events, limiting the ability of basins to neutralize acidity and assimilate nitrogen deposited from the atmosphere. Potential effects of nitrogen and sulfur deposition include episodic or chronic acidification of terrestrial and aquatic ecosystems. In addition, nitrogen deposition can cause eutrophication of water bodies and changes in species composition in lakes and streams. This report documents results of a study performed by the U.S. Geological Survey, in cooperation with the National Park Service, of the effects of atmospheric deposition of nitrogen and sulfur on surface-water chemistry in Mount Rainier and North Cascades National Parks. Inorganic nitrogen in wet deposition was highest in the vicinity of North Cascades National Park, perhaps due to emissions from human sources and activities in the Puget Sound area. Sulfur in wet deposition was highest near the Pacific coast, reflecting the influence of marine aerosols. Dry deposition generally accounted for less than 30 percent of wet plus dry inorganic nitrogen and sulfur deposition, but occult deposition (primarily fog) represents a potentially substantial unmeasured component of total deposition. Trend analyses indicate inorganic nitrogen in wet deposition was relatively stable during 1986-2005, but sulfur in wet deposition declined substantially during that time, particularly after 2001, when emissions controls were added to a large powerplant in western Washington. Surface-water sulfate concentrations at the study site nearest the powerplant showed a statistically significant decrease between 2000 and 2005-06, but there was no statistically significant change in alkalinity, indicating a delayed response in surface-water alkalinity. Seasonal patterns in surface

  18. Linking microbial ultrastructure and physiology to iron depositional processes in deep sea hydrothermal environments

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Fleming, E. J.; Emerson, D.; Edwards, K. J.

    2008-12-01

    Clara S. Chan, Emily Fleming, David Emerson, Katrina J. Edwards Iron microbial mats have been discovered in a variety of deep-sea hydrothermal environments and are increasingly being recognized as more seafloor is explored. The predominant structures found in many of these mats are iron oxyhydroxide-rich filaments. One of the most common structures is a helical stalk bearing a resemblance to the twisted stalk of the terrestrial iron-oxidizing microbe, Gallionella ferruginea. While Gallionella has not been detected in, or isolated from, these mats microaerophilic iron-oxidizing, a stalk- forming bacterium, Mariprofundus ferrooxydans (PV-1 and related strains) has been isolated from mats at the Loihi seamount in Hawaii (Emerson et al. 2007, PLoS One 2(8): e667). Fossilized aggregates of iron filaments have been observed in the rock record (e.g. Little et al. 2004, Geomicrobiol. J. 21:415), and may represent ancient versions of these microbial mats. If this is shown to be true, such filaments would represent one of the few microfossil morphologies that can be linked to a specific microbial metabolism. We have used a combination of test tube culturing, microslide culturing, time lapse microscopy, and electron microscopy to study Mariprofundus stalk morphology and genesis and link these details to physiological responses to environmental chemistry. The goals include determining specific attributes of stalk morphology that can be used to determine the biogenicity of putative iron microfossils, and interpret the conditions of the depositional environment. Light microscopic observation of microslide cultures over the course of several days allowed for determination of bacterial response to developing oxygen and Fe(II) gradients. Once gradients have been established, given an abundant supply of oxygen, cells congregate in a band perpendicular to the gradient and stalks are formed, growing in the direction of increasing oxygen (and decreasing Fe) concentration. This

  19. Sedimentary Parameters Controlling Occurrence and Preservation of Microbial Mats in Siliciclastic Depositional Systems

    NASA Technical Reports Server (NTRS)

    Noffke, Nora; Knoll, Andrew H.

    2001-01-01

    Shallow-marine, siliciclastic depositional systems are governed by physical sedimentary processes. Mineral precipitation or penecontemporaneous cementation play minor roles. Today, coastal siliciclastic environments may be colonized by a variety of epibenthic, mat-forming cyanobacteria. Studies on microbial mats showed that they are not randomly distributed in modern tidal environments. Distribution and abundancy is mainly function of a particular sedimentary facies. Fine-grained sands composed of "clear" (translucent) quartz particles constitute preferred substrates for cyanobacteria. Mat-builders also favor sites characterized by moderate hydrodynamic flow regimes, which permit biomass enrichment and construction of mat fabrics without lethal burial of mat populations by fine sediments. A comparable facies relationship can be observed in ancient siliciclastic shelf successions from the terminal Neoproterozoic Nama Group, Namibia. Wrinkle structures that record microbial mats are present but sparsely distributed in mid- to inner shelf sandstones of the Nudaus Formation. The sporadic distribution of these structures reflects both the narrow ecological window that governs mat development and the distinctive taphonomic conditions needed to preserve the structures. These observations caution that statements about changing mat abundance across the Proterozoic-Cambrian boundary must be firmly rooted in paleoenvironmental and taphonomic analysis. Understanding the factors that influence the formation and preservation of microbial structures in siliciclastic regimes can facilitate exploration for biological signatures in Earth's oldest rocks. Moreover, insofar as these structures can be preserved on bedding surfaces and are not easily mimicked by physical processes, they constitute a set of biological markers that can be searched for on Mars by remotely controlled rovers.

  20. Homogeneous Matrix Deposition on Dried Agar for MALDI Imaging Mass Spectrometry of Microbial Cultures

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Dorrestein, Pieter C.

    2015-11-01

    Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.

  1. Bioaerosol Deposition to Food Crops near Manure Application: Quantitative Microbial Risk Assessment.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Holsen, Thomas M; Grimberg, Stefan J; Ramler, Ivan P; Kim, Seungo

    2016-03-01

    Production of both livestock and food crops are central priorities of agriculture; however, food safety concerns arise where these practices intersect. In this study, we investigated the public health risks associated with potential bioaerosol deposition to crops grown in the vicinity of manure application sites. A field sampling campaign at dairy manure application sites supported the emission, transport, and deposition modeling of bioaerosols emitted from these lands following application activities. Results were coupled with a quantitative microbial risk assessment model to estimate the infection risk due to consumption of leafy green vegetable crops grown at various distances downwind from the application area. Inactivation of pathogens ( spp., spp., and O157:H7) on both the manure-amended field and on crops was considered to determine the maximum loading of pathogens to plants with time following application. Overall median one-time infection risks at the time of maximum loading decreased from 1:1300 at 0 m directly downwind from the field to 1:6700 at 100 m and 1:92,000 at 1000 m; peak risks (95th percentiles) were considerably greater (1:18, 1:89, and 1:1200, respectively). Median risk was below 1:10,000 at >160 m downwind. As such, it is recommended that a 160-m setback distance is provided between manure application and nearby leafy green crop production. Additional distance or delay before harvest will provide further protection of public health. PMID:27065414

  2. Effect of microbial treatment on the prevention and removal of paraffin deposits on stainless steel surfaces.

    PubMed

    Xiao, Meng; Li, Wen-Hong; Lu, Mang; Zhang, Zhong-Zhi; Luo, Yi-Jing; Qiao, Wei; Sun, Shan-Shan; Zhong, Wei-Zhang; Zhang, Min

    2012-11-01

    In this study, biosurfactant-producing strain N2 and non-biosurfactant producing stain KB18 were used to investigate the effects of microbial treatment on the prevention and removal of paraffin deposits on stainless steel surfaces. Strain N2, with a biosurfactant production capacity, reduced the contact angle of stainless steel to 40.04°, and the corresponding adhesion work of aqueous phase was decreased by 26.5 mJ/m(2). By contrast, KB18 could only reduce the contact angle to 50.83°, with a corresponding 7.6 mJ/m(2) decrease in the aqueous phase work adhesion. The paraffin removal test showed that the paraffin removal efficiencies of strain N2 and KB18 were 79.0% and 61.2%, respectively. Interestingly, the N2 cells could attach on the surface of the oil droplets to inhibit droplets coalescence. These results indicate that biosurfactant-producing strains can alter the wettability of stainless steel and thus eliminate paraffin deposition. PMID:22989649

  3. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    NASA Astrophysics Data System (ADS)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  4. Microbial Composition of Near-Boiling Silica-Depositing Thermal Springs throughout Yellowstone National Park

    PubMed Central

    Blank, Carrine E.; Cady, Sherry L.; Pace, Norman R.

    2002-01-01

    The extent of hyperthermophilic microbial diversity associated with siliceous sinter (geyserite) was characterized in seven near-boiling silica-depositing springs throughout Yellowstone National Park using environmental PCR amplification of small-subunit rRNA genes (SSU rDNA), large-subunit rDNA, and the internal transcribed spacer (ITS). We found that Thermocrinis ruber, a member of the order Aquificales, is ubiquitous, an indication that primary production in these springs is driven by hydrogen oxidation. Several other lineages with no known close relatives were identified that branch among the hyperthermophilic bacteria. Although they all branch deep in the bacterial tree, the precise phylogenetic placement of many of these lineages is unresolved at this time. While some springs contained a fair amount of phylogenetic diversity, others did not. Within the same spring, communities in the subaqueous environment were not appreciably different than those in the splash zone at the edge of the pool, although a greater number of phylotypes was found along the pool's edge. Also, microbial community composition appeared to have little correlation with the type of sinter morphology. The number of cell morphotypes identified by fluorescence in situ hybridization and scanning electron microscopy was greater than the number of phylotypes in SSU clone libraries. Despite little variation in Thermocrinis ruber SSU sequences, abundant variation was found in the hypervariable ITS region. The distribution of ITS sequence types appeared to be correlated with distinct morphotypes of Thermocrinis ruber in different pools. Therefore, species- or subspecies-level divergences are present but not detectable in highly conserved SSU sequences. PMID:12324363

  5. Alpine Microbial Community Responses to Climate Change and Atmospheric Nitrogen Deposition in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Osborne, B. B.; Baron, J.; Wallenstein, M. D.; Richer, E.

    2010-12-01

    Remote alpine ecosystems of the western US exhibit vulnerability to anthropogenic drivers of change. Atmospheric nitrogen (N) deposition and a changing climate introduce nutrients, alter hydrological processes, and expose soils to modified temperature regimes. We cannot yet predict the interacting effects and far-reaching biogeochemical consequences of this influence. Importantly, long-term data reveal headwater nitrate (NO3-) concentration trends increasing >50% from the 1990s to 2006 along the Colorado Front Range in conjunction with warm summer temperatures. Such a change in nutrient cycling raises concern for eutrophication in nutrient-poor alpine lakes. Increasing stream NO3- suggests terrestrial microbes may be responding to changes in important controls of community development and activity: temperature and ammonium (NH4+) availability. Nitrifying bacteria and archaea strongly influence alpine soil NO3- concentrations. Little is understood about alpine microbes. Our research characterizes nitrifier abundance and activity in alpine substrates by exposing them to experimental NH4+ and temperature treatments. Soil substrates fall along a gradient of succession commonly represented in alpine catchments due to deglaciation. These include well-developed meadow soils, unvegetated talus substrate, and newly-exposed glacial sediments. All three substrate types were collected from the Loch Vale watershed in Rocky Mountain National Park, a long-term research site in the Colorado Front Range known to receive elevated levels of atmospheric N deposition. All soils have been evaluated for initial %C, %N, microbial biomass, NO3-, NH4+, and DOC concentrations, and nitrifier abundance. After temperature and NH4+ treatments, samples will be evaluated for changes in biomass and nitrifier abundance as well as net and gross nitrification. Linking the influence of relative soil temperature and NH4+ concentrations on alpine substrates, at a range of successional stages, will

  6. Characterization of early microbial communities on volcanic deposits along a vegetation gradient on the island of Miyake, Japan.

    PubMed

    Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki

    2014-01-01

    The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576

  7. Characterization of Early Microbial Communities on Volcanic Deposits along a Vegetation Gradient on the Island of Miyake, Japan

    PubMed Central

    Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki

    2014-01-01

    The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576

  8. Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars

    NASA Astrophysics Data System (ADS)

    Parnell, J.; Lee, P.; Cockell, C. S.; Osinski, G. R.

    2004-07-01

    Hydrothermal gypsum deposits in the Haughton impact structure, Devon Island, Canada, contain microbial communities in an endolithic habitat within individual gypsum crystals. Cyanobacterial colonies occur as masses along cleavage planes, up to 5 cm from crystal margins. The crystals are transparent, so allow transmission of light for photosynthesis, while affording protection from dehydration and wind. The colonies appear to have modified their mineral host to provide additional space as they expanded. The colonies are black due to UV-screening pigments. The relative ease with which microbial colonization may be detected and identified in impact-generated sulphate deposits at Haughton suggests that analogous settings on other planets might merit future searches for biosignatures. The proven occurrence of sulphates on the Martian surface suggests that sulphate minerals should be a priority target in the search for life on Mars.

  9. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    NASA Astrophysics Data System (ADS)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha‑1•yr‑1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  10. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    PubMed Central

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-01-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N∙ha−1∙yr−1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations. PMID:27302857

  11. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations.

    PubMed

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-01-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N∙ha(-1)∙yr(-1). IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations. PMID:27302857

  12. Soil erosion increases soil microbial activity at the depositional position of eroding slopes

    NASA Astrophysics Data System (ADS)

    Meng, Xu; Cardenas, Laura M.; Donovan, Neil; Zhang, Junling; Murray, Phil; Zhang, Fusuo; Dungait, Jennifer A. J.

    2016-04-01

    ) contents were greater at the bottom and foot slope positions. The biomarker PLFAs for Gram positive bacteria and fungi were relatively 13C-enriched, indicating the incorporation of C from Zea mays residues compared with 13C-depletion in biomarker PLFA in Actinobacteria indicating utilization of SOC. An average of 72% C incorporated by the all microbial groups was derived from SOC at the slope foot, suggesting a large amount of SOC was mineralized at the depositional position. We observed the highest emissions of N2O and CO2 from the incubated soils sampled from the bottom slope position. We conclude that the conditions in the depositional positions of eroding slopes can promote GHG emissions reducing the previously reported sink capacity of soil erosion. Quinton et al (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience 3, 311 - 314.

  13. Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308).

    PubMed

    Nunoura, Takuro; Soffientino, Bruno; Blazejak, Anna; Kakuta, Jungo; Oida, Hanako; Schippers, Axel; Takai, Ken

    2009-09-01

    The subseafloor microbial communities in the turbidite depositional basins Brazos-Trinity Basin IV (BT Basin) and the Mars-Ursa Basin (Ursa Basin) on the Gulf of Mexico continental slope (IODP holes U1319A, U1320A, U1322B and U1324B) were investigated by PCR-dependent molecular analyses targeted to the small subunit (SSU) rRNA genes, dsrA and mcrA, and hydrogenase activity measurements. Biomass at both basins was very low, with the maximum cell or the SSU rRNA gene copy number <1 x 10(7) cells mL(-1) or copies g(-1) sediments, respectively. Hydrogenase activity correlated with biomass estimated by SSU rRNA gene copy number when all data sets were combined. We detected differences in the SSU rRNA gene community structures and SSU rRNA gene copy numbers between the basin-fill and basement sediments in the BT Basin. Examination of microbial communities and hydrogenase activity in the context of geochemical and geophysical parameters and sediment depositional environments revealed that differences in microbial community composition between the basin-fill and basement sediments in the BT Basin were associated with sedimentation regimes tied to the sea-level change. This may also explain the distributions of relatively similar archaeal communities in the Ursa Basin sediments and basement sediments in the BT Basin. PMID:19583789

  14. [Prokaryotic microbial diversity of the ancient salt deposits in the Kunming Salt Mine, P.R. China].

    PubMed

    Xiao, Wei; Peng, Qian; Liu, Hong-wei; Wen, Meng-liang; Cui, Xiao-long; Yang, Ya-ling; Duan, Dong-cheng; Chen, Wei; Deng, Lan; Li, Qin-yuan; Chen, Yi-guang; Wang, Zhi-gang; Ren, Zhen; Liu, Ji-hui

    2007-04-01

    The prokaryotic microbial diversity of the ancient salt deposits in the Kunming Salt Mine, PR China was investigated using PCR-DGGE and rRNA approaches. Total community DNA was extracted and purified by a direct method, which yielded amplified DNA of high molecular weight for samples. A variable region of 16S rRNA gene was then amplified by PCR with bacterial and archaeal primers and analyzed by denaturing gradient gel electrophoresis (DGGE). Twenty-seven major bands were detected in the bacterial DGGE profile of the sample, but only one band of pure culture strains of bacteria isolated from the Kunming Salt Mine matched with one band of sample. No band of pure culture strains of archaea isolated from the Kunming Salt Mine matched with 18 major bands of sample. The results indicated that most of microbes in this environment are likely uncultivable. Clones on the plate were not the predominant species in the community. Two 16S rRNA gene clone libraries (bacteria and archaea) were also constructed, and 36 and 20 clones were selected for amplified ribosomal DNA restriction analysis (ARDRA). ARDRA with enzymes Afa I, Hha I, Hae III revealed 10 bacterial operational taxonomic units (OTUs), with three most abundant OTUs accounting for 38.9%, 25.0%, 16.7% of all the bacterial 16S rDNA clones, respectively. The remaining 7 OTUs presented at low levels, were represented by a single clone. Eight archaeal OTUs were obtained but no predominant OTUs. Some clones were sequenced and each sequence was compared with all nucleotide sequences in GenBank database. Examination of 16S rDNA clones showed that the ancient salt deposits in the Kunming Salt Mine contained a phylogenetically diverse population of organisms from the Bacteria domain with members of three major lineages represented: alpha-proteobacteria, gamma-Proteobacteria and Actinobacteria, especially Pseudomonas. Surprisingly, we recovered a variety of sequence closely related to Actinobacteria which was not found in other

  15. Increased nitrogen deposition did not affect the composition and turnover of plant and microbial biomarkers in forest soil density fractions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2013-04-01

    Increased atmospheric nitrogen (N) deposition and elevated CO2 concentrations affect many forests and their ecosystem functions, including organic matter cycling in soils, the largest carbon pool of terrestrial ecosystems. However, it is still not clear how, and what the underlying mechanisms are. Specific molecules of plant and microbial origin (biomarkers) might respond differently to N deposition, depending on their internal N content. Microbial cell-wall-constituents with high-N content like amino sugars are reliable biomarkers to distinguish between fungal- and bacterial-derived organic residues. Individual lipids are plant-specific biomarkers that lack N in their molecular structure. Here, we tested the effects of elevated CO2 and increased N deposition on the dynamics of plant and microbial biomarkers by studying their composition and turnover in forest soil density fractions. Furthermore, we tested the hypothesis that these biomarkers respond differently to increased N deposition, depending on their internal N content. We used soil samples from a 4-year elevated CO2 and N deposition experiment in model forest ecosystems (open-top chambers), that were fumigated with ambient and 13C-depleted CO2 and treated with two levels of 15N-labeled fertilizer. Bulk soil was separated into free light fraction, occluded light fraction and heavy fraction by density fractionation and ultrasonic dispersion. The heavy fraction was further particle-size fractionated with 20 μm as a cut-off. We determined carbon and N concentrations and their isotopic compositions (δ13C, δ15N) within bulk soil and density fractions. Therein, we extracted and quantified individual amino sugars and lipids and conducted compound-specific stable-isotope-analysis using GC- and LC-IRMS. Results show that amino sugars were mainly stabilized in association with soil minerals. Especially bacterial amino sugars were preferentially associated with soil minerals, exemplified by a consistent decrease

  16. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments

    NASA Astrophysics Data System (ADS)

    Woods, Adam D.

    2013-06-01

    Lower Triassic sedimentary rocks contain a variety of unusual facies and fabrics, with microbialites being a distinctive component of many carbonates deposited following the Permian-Triassic mass extinction. Coated grains are common in shallow water facies from the upper Lower Triassic (Spathian) Virgin Limestone (Moenkopi Formation) in southern Nevada, and were investigated in order to determine their origin. Petrographic analysis reveals that the majority of the coated grains found within the Virgin Limestone are micritic ooids with a concentric fabric, or with a homogenous fabric composed of dense, often cloudy micrite. In addition, asymmetric ooids, aggregate grains, and distorted ooids are also locally common in some oolitic units; low-Mg calcite ooids and bimineralic ooids composed of low-Mg calcite and dense, cloudy micrite are less commonly found, but are also documented from the Virgin Limestone. Cortoids (i.e., grains that are coated with constructive micrite envelopes) are a minor component of oolitic grainstones and packstones (typically 10-15% of the grains), although they may also comprise entire beds. The cortoids are coated with micrite similar to that which comprises the ooid cortices, and may be finely laminated or dense and cloudy in nature. The micrite ooids and constructive micrite envelopes are interpreted as microbial in origin based on the finely laminated or cloudy, dense nature of the micrite, as well as coatings that are uneven, or often of greater thickness on one side of elongate nuclei, such as bivalve shells or phylliod algae blades. The origin of the low-Mg calcite ooids and layers is less certain, but may also be microbial. The results of this study suggest that a microbial bloom occurred in shallow water environments, which was the result of 3 factors: (1) the unusual chemistry of Early Triassic oceans; (2) runoff of nutrient-rich waters, which enhanced microbialite growth; and, (3) wave agitation and warm waters that led to CO2

  17. Microbial communities established on Mont Blanc summit with Saharan dust deposition

    NASA Astrophysics Data System (ADS)

    Chuvochina, M.; Alekhina, I.; Normand, P.; Petit, J. R.; Bulat, S.

    2009-04-01

    Dust originating from the Sahara desert can be uplifted during storms, transported across the Mediterranean towards the Alpine region and deposited during snowfalls. The microbes associated with dust particles can be involved in establishing microbiota in icy environments as well as affect ecosystem and human health. Our objective was to use a culture-free DNA-based approach to assess bacterial content and diversity and furthermore, to identify ‘icy' microbes which could be brought on the Mont Blanc (MtBl) summit with Saharan dust and became living in the snow. Saharan dust fallout on MtBl summit from one event (MB5, event June 2006) vs. control libraries and that from another event (May 2008) were collected in Grenoble (SD, 200 m a.s.l.) and at Col du Dome (MB-SD, 4250 m a.s.l.). Soil from Ksar Ghilane (SS, Saharan desert, Tunisia, March 2008) was taken for overall comparison as a possible source population. Fresh snow falling in Grenoble (85) was collected as example of diversity in this area. To assess the microbial diversity 16S rRNA gene libraries (v3-v5 region) were constructed for corresponding dust-snow samples (MB5, SS, SD, 85 and MB-SD) along with clear snow samples and several controls. For both MB5 and MB-SD samples full-gene technique was evoked in attempt to differentiate reproduced bacteria from damaged DNA. Before sequencing the clones were rybotyped. All clone libraries were distinct in community composition except for some single phylotypes (or closely related groups) overlap. Thus, clone libraries from two different events that were collected at Col du Dome area within 2 year interval (MB5 and MB-SD) were different in community composition except one of the abundant phylotype from MB-SD library (Geodermatophilus sp.) which was shared (98% sequence similarity) with single representative from MB-5 library. These bacteria are pigmented and radiation-resistant, so it could be an indicator of desert origin for our sequences. For MB5 library two

  18. The impact and significance of tephra deposition on a Holocene forest environment in the North Cascades, Washington, USA

    NASA Astrophysics Data System (ADS)

    Egan, Joanne; Fletcher, William J.; Allott, Tim E. H.; Lane, Christine S.; Blackford, Jeff J.; Clark, Douglas H.

    2016-04-01

    High-resolution palaeoecological analyses (stratigraphy, tephra geochemistry, radiocarbon dating, pollen and ordination) were used to reconstruct a Holocene vegetation history of a watershed in the Pacific Northwest of America to evaluate the effects and duration of tephra deposition on a forest environment and the significance of these effects compared to long-term trends. Three tephra deposits were detected and evaluated: MLF-T158 and MLC-T324 from the climactic eruption of Mount Mazama, MLC-T480 from a Late Pleistocene eruption of Mount Mazama and MLC-T485 from a Glacier Peak eruption. Records were examined from both the centre and fringe of the basin to elucidate regional and local effects. The significance of tephra impacts independent of underlying long-term trends was confirmed using partial redundancy analysis. Tephra deposition from the climactic eruption of Mount Mazama approximately 7600 cal. years BP caused a significant local impact, reflected in the fringe location by changes to open habitat vegetation (Cyperaceae and Poaceae) and changes in aquatic macrophytes (Myriophyllum spicatum, Potamogeton, Equisetum and the alga Pediastrum). There was no significant impact of the climactic Mazama tephra or other tephras detected on the pollen record of the central core. Changes in this core are potentially climate driven. Overall, significant tephra fall was demonstrated through high resolution analyses indicating a local effect on the terrestrial and aquatic environment, but there was no significant impact on the regional forest dependent of underlying environmental changes.

  19. Effects of nitrogen deposition and cattle grazing on productivity, invasion impact, and soil microbial processes in a serpentine grassland

    NASA Astrophysics Data System (ADS)

    Pasari, J.; Hernandez, D.; Selmants, P. C.; Keck, D.

    2010-12-01

    In recent decades, human activities have vastly increased the amount of biologically available nitrogen (N) in the biosphere. The resulting increase in N availability has broadly affected ecosystems through increased productivity, changes in species composition, altered nutrient cycles, and increases in invasion by exotic plant species, especially in systems that were historically low in N. California serpentine grasslands are N-limited ecosystems historically dominated by native species including several threatened and endangered plants and animals. Cattle grazing has emerged as the primary tool for controlling the impact of nitrophilic exotic grasses whose increased abundance has paralleled the regional traffic-derived increase in atmospheric N deposition. We examined the interactive effects of cattle grazing and N deposition on plant community composition, productivity, invasion resistance, and microbial processes in the Bay Area's largest serpentine grassland to determine the efficacy of current management strategies as well as the biogeochemical consequences of exotic species invasion. In the first two years of the study, aboveground net primary productivity decreased in response to grazing and increased in response to nitrogen addition. However, contrary to our hypotheses the change in productivity was not due to an increase in exotic species cover as there was little overall effect of grazing or N addition on species composition. Microbial activity was more responsive to grazing and N. Potential net N mineralization rates increased with N addition, but were not affected by grazing. In contrast, soil respiration rates were inhibited by grazing, but were not affected by N addition; suggesting strong carbon-limitation of soil microbial activity, particularly under grazing. Site differences in soil depth and grazing intensity were often more important than treatment effects. We suspect that the unusually dry conditions in the first two growing seasons inhibited

  20. ARTIFICIAL WIND-GUST LIBERATION OF MICROBIAL BIOAEROSOLS PREVIOUSLY DEPOSITED ON PLANTS

    EPA Science Inventory

    Due to the increasing potential for the use of genetically engineered microorganisms (GEMS) as pest control agents in forestry and agricultural spray applications, there is a need to assess the risk associated with the post-application downwind drift of microbial bioaerosols from...

  1. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    NASA Technical Reports Server (NTRS)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  2. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.

    PubMed

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S

    2011-01-01

    Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of

  3. The Effect of Local Topographic Unevenness on Contourite Paleo-Deposition Around Marine Capes: A Novel "Geostrophic Cascade" in Cape Suvero and Cape Cilento (Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Salusti, E.; Chiocci, F. L.; Martorelli, E.; Falcini, F.

    2014-12-01

    Despite the fact that two neighboring headlands in the Italian Southern Tyrrhenian Sea, Cape Cilento and Cape Suvero, have rather similar morphology and contouring flows, their contourite drifts were recognized, respectively, upstream the Cape Cilento tip and downstream Cape Suvero tip. Such an intriguing difference is discussed in terms of paleo-sedimentary processes induced by the interaction between large scale marine current turbulence and seafloor morphology around a cape (Martorelli et al., 2010). However Martorelli's et al. model for contourite location - which allows only an upstream contourite location for this kind of capes - fails in trying to explain such a difference. We thus focus on the local effect of a topographic depression, viz. a landslide scar off Cape Suvero, on flows contouring a cape. By applying the classical conservation of marine water potential vorticity we find a steady cyclonic circulation over the scar, that generates a "geostrophic cascade" that affects contourite deposition and stability. All this intuitively reminds the current dynamics around the Galileo's Red Spot in Jupiter's atmosphere. We thus show that the application of the potential vorticity conservation can provide a novel theoretical tool for investigating sedimentary structures and their evolution.

  4. Physical vapor deposited titanium thin films for biomedical applications: Reproducibility of nanoscale surface roughness and microbial adhesion properties

    NASA Astrophysics Data System (ADS)

    Lüdecke, Claudia; Bossert, Jörg; Roth, Martin; Jandt, Klaus D.

    2013-09-01

    The surface topography is of great importance for the biological performance of titanium based implants since it may influence the initial adsorption of proteins, cell response, as well as microbial adhesion. A recently described technique for the preparation of titanium thin films with an adjustable surface roughness on the nanometer scale is the physical vapor deposition (PVD). The aims of this study were to statistically evaluate the reproducibility of nanorough titanium thin films prepared by PVD using an atomic force microscopy (AFM) based approach, to test the microbial adhesion in dependence of the nanoscale surface roughness and to critically discuss the parameters used for the characterization of the titanium surfaces with respect to AFM microscope settings. No statistically significant differences were found between the surface nanoroughnesses of the PVD prepared titanium thin films. With increasing surface nanoroughness, the coverage by Escherichia coli decreased and the microbial cells were increasingly patchy distributed. The calculated roughness values significantly increased with increasing AFM scan size, while image resolution and pixel density had no influence on this effect. Our study shows that PVD is a suitable tool to reproducibly prepare titanium thin films with a well-defined surface topography on the nanometer scale. These surfaces are, thus, a suitable 2D model system for studies addressing the interaction between surface nanoroughness and the biological system. First results show that surface roughness even on the very low nanometer scale has an influence on bacterial adhesion behavior. These findings give new momentum to biomaterials research and will support the development of biomaterials surfaces with anti-infectious surface properties.

  5. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  6. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    SciTech Connect

    Flores, Gilberto E; Campbell, James H; Kirshtein, Julie D; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua; Seewald, Jeffrey S; Tivey, Margaret Kingston; Voytek, Mary A; Reysenbach, Anna-Louise; Yang, Zamin Koo

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 17'N, 32 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 13'N, 33 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  7. Atmospheric and Microbial Nitrate Contributions to Streams across a Regional Nitrogen Deposition Gradient

    NASA Astrophysics Data System (ADS)

    Rose, L.; Elliott, E. M.

    2014-12-01

    Chronically elevated atmospheric nitrate deposition has increased nitrate export from forests worldwide. This problem is particularly evident in the eastern U.S., where elevated stream nitrate concentrations and export from forested watersheds has led to the suggestion that some forests may be at or nearing a state of nitrogen saturation. To investigate the utility of nitrate stable isotopes in assessing the nitrogen saturation status of forests, we measured monthly δ15N, δ18O, Δ17O, and concentrations of nitrate in precipitation and stream water from reference watersheds at Coweeta (North Carolina), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Forests from August 2012 to July 2013. Long-term mean nitrate deposition ranges from 11 kg ha-1 yr-1 to 17 kg ha-1 yr-1 and is significantly different (p<0.05) among the sites. Nitrate concentrations and isotopic compositions of precipitation did not differ significantly among the sites during the study. Seasonal trends in δ18O and Δ17O of nitrate values were also similar among sites, and were indicative of seasonal variation in dominant NOx oxidation pathway. The study sites differed significantly with respect to stream nitrate concentration (p<0.05) and isotopic composition (p<0.05). The high deposition site (Fernow) had the highest mean stream water nitrate concentration during the study period but the lowest percentages of atmospheric nitrate in monthly samples and on an annual average basis. In contrast, the low deposition site (Coweeta) had the lowest mean stream nitrate concentrations during the study and the highest mean percentage of atmospheric nitrate in the stream. Unprocessed atmospheric nitrate was also present in Coweeta stream samples during every month that isotope analyses were conducted for this site. Among these watersheds, stream nitrate concentration was negatively related to the proportion of unprocessed atmospheric nitrate in streams (R2=0.23; p<0.05). We will explore

  8. Viable halobacteria from Permo-Triassic salt deposits and the possibility of extraterrestrial microbial life

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Radax, C.; Gruber, C.; Legat, A.; Pfaffenhuemer, M.; Wieland, H.

    2001-08-01

    The range of physico-chemical parameters for the presence of life is ever expanding, making it conceivable to search in seemingly inhospitable environments for extraterrestrial forms of life. Extremely halophilic archaebacteria (haloarchaea) were isolated from ancient salt deposits, adding another dimension - potentially exorbitant longevity - to the unusual characteristics of prokaryotic life. Distribution of haloarchaea in salt sediments appears to be world-wide; one particular strain, Halococcus salifodinae, was found in Alpine and Zechstein sediments. By using amplification of 16S rRNA genes with DNA extracted from rock salt, we obtained evidence for numerous haloarchaea, which have not been cultivated yet. Phylogenetic analysis revealed novel taxa within known lineages of haloarchaea. The results could be of relevance for astrobiology: together with the recent findings of halite, sylvite and water in some meteorites, it is intriguing to consider a specific search for extreme halophiles in Mars return samples or other materials from celestial bodies.

  9. Use of sputter-deposited 316L stainless steel ultrathin films for microbial influenced corrosion studies

    SciTech Connect

    Suci, P.A.; Geesey, G.G.; Pedraza, A.J.; Godbole, M.J.

    1993-12-31

    Ultra thin films (12nm) were sputter deposited onto cylindrical germanium internal reflection elements pre-coated with a thin (2 nm) layer of Cr{sub 2}O{sub 3}. Two crystals were inserted into Circle cell flow-through chambers and mounted on the optical bench of an Fourier Transform Infrared (FT-IR) spectrometer. One chamber was maintained as a sterile control while the other was sequentially inoculated with four bacterial species: Psudomonas aeruginosa, Bacillus subtillis, Hafnia alvei, and Desulfovibrio gigas, in that order. The water absorption band (1640cm{sup -4}) was monitored and used to follow that deterioration of the ultra thin films. In this respect, the sterile control and inoculated films exhibited only slight differences during the 1000h course of the experiment. Assay of the visible biofilm that has accumulated on the surface of the inoculated crystal after 1000h revealed that the film incorporated viable cells from all four strains.

  10. Microbial Diversity Associated with High Temperature Sulfide Deposits Along the East Pacific Rise Deep-Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Brooks, D.; Hoek, J.; Banta, A. B.; von Damm, K.; Reysenbach, A.

    2002-12-01

    In January 2002, hydrothermal chimneys were collected using DSV Alvin from active vents from 9° 17N to 9° 50N and 20° 49N to 20° 50N. Hydrothermal fluids were collected for end member chemistry prior to collecting the sulfide deposits. Chimney samples were sub-sectioned, separating surface and associated biofilm samples from inner chimney samples. Microbial diversity of sub-samples was assessed using culture-dependent and culturing-independent small subunit (16S) ribosomal RNA-based techniques. Initial bacterial diversity assessments using denaturing gradient gel electrophoresis (DGGE) support the global prevalence of epsilon Proteobacteria associated with deep-sea sulfide structures. These are closely related to the sulfur-reducing isolate Nautilia lithotrophica. The biofilm communities varied in complexity with one sample containing several 16S rRNA sequences (phylotypes, OTU's) of alpha, epsilon, and gamma Proteobacteria while others contained a single phylotype of epsilon Proteobacteria. One proteobacterial phylotype was present in all but one of the surface samples, and this sample contained unique alpha and epsilon proteobacterial sequences. The inner chimney samples lacked the most common epsilon proteobacterial 16S rRNA sequences. Enrichment culturing was restricted to selecting for thermophilic chemolithoautotrophic hydrogen-oxidizing Bacteria. The widespread distribution of Persephonella spp. was confirmed, and novel enrichments of a sheathed and as yet unidentified chemolithotroph were obtained.

  11. Chronic Nitrate Deposition, Litter Biochemistry, and Microbial Community Effects on Litter Decomposition and C Flux in a Northern Hardwood Forest Soil

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Zak, D. R.; Balckwood, C. B.

    2006-12-01

    Recent studies of northern hardwood forest ecosystems have demonstrated that chronic experimental nitrate deposition can suppress soil respiration and increase the export of dissolved organic carbon. The exact mechanism(s) controlling these responses are unknown; however, further studies of mineral soil respiration and DOC source have suggested that these responses may be associated with changes in the decomposition of fresh leaf litter in the forest floor. We hypothesized that altered patterns of C cycling in response to chronic experimental nitrate deposition are associated with changes in the function and composition of the microbial decomposer community and not alteration of litter biochemistry in response to greater N availability. To address the separate and combined effects of litter biochemistry (source), microbial decomposer community composition, and N availability (site) in controlling these processes, we conducted a reciprocal litterbag transplant study using partially decomposed forest floor litter and freshly fallen leaf litter from two previously studied Great Lakes Sugar Maple-dominated northern hardwood forest stands receiving ambient and experimental (ambient + 3 g N m-2 yr-1) nitrate deposition. Prior to placing litterbags in the field, half of the bags were sterilized to eliminate the resident microbial community. We measured soil and litter respiration (twice monthly) and potential DOC leaching from litter (monthly) during the growing season of 2004, 2005, and 2006. Results from the first year showed that microbial community and litter source had no significant effect on soil respiration rates. Differences in respiration rates were associated with significantly higher litter-free soil respiration rates in the ambient N deposition sites (146.5 ± 16.3 umol C m-2 s-1) versus (105.2 ± 11.2 umol C m-2 s-1) the experimental N deposition sites. Potential DOC production in partially decomposed litter was not influenced by site or litter source, but

  12. PERSISTENCE AND FATE OF POLYNUCLEAR AROMATIC HYDROCARBONS DEPOSITED ON SLASH BURN SITES IN THE CASCADE MOUNTAINS AND COAST RANGE OF OREGON

    EPA Science Inventory

    The persistence of polynuclear aromatic hydrocarbons (PNAH) on slash burn sites and movement of these compounds between compartments of the sites has been investigated in the Cascade Mountains and Coast Range of Oregon. Phenanthrene and fluoranthene were gradually lost from the l...

  13. Evidence for participation of microbial mats in the deposition of the siliciclastic ‘ore formation’ in the Copperbelt of Zambia

    NASA Astrophysics Data System (ADS)

    Porada, H.; Druschel, G.

    2010-10-01

    The Copperbelt of Zambia is the world's largest sediment-hosted stratiform copper province, hosted in siliciclastic sediments of the Roan Group, which forms the basal part of the Neoproterozoic-Paleozoic Katanga Supergroup. Much of the ore deposition occurred between 880 Ma and 780 Ma, on a rimmed platform consisting of a carbonate barrier, a lagoonal basin and tidal flats grading into sabkhas in the hinterland. Various sedimentary structures developed in the ore formation at the Mindola Open Pit mine, are herein considered to be microbially induced and are identified as microbial shrinkage cracks, wrinkle structures, mat deformation structures, petees, concentric microfaults, and microbial mat chips. The occurrence of these structures in all ore formation units at the Mindola Mine suggests microbial mats grew on the paleo-sediment surface throughout deposition of the cupriferous succession. As these structures require cohesive layers, the mats were likely of the cyanobacterial type, that grew in the well aerated intertidal to lower supratidal zones. Cyanobacterial mats typically consist of a surface layer of filamentous cyanobacteria underlain by anaerobic, heterotrophic sulfate reducing bacteria (SRB). A distinct sulfide mineral zonation, developed in all major deposits of the Copperbelt, ranges from barren supratidal (sabkha) sediments, through chalcocite in the lower supratidal zone, to bornite followed by chalcopyrite in the intertidal zone, and pyrite in the subtidal zone and anoxic lagoonal depotcentre. This sequence of minerals can be modelled as a paragenetic sequence of mineralization resulting from the progressive reduction of a source fluid, indicating that geochemical conditions of ore formation, at least, are produced by the activity of SRB.

  14. Microbial Paleontology, Mineralogy and Geochemistry of Modern and Ancient Thermal Spring Deposits and Their Recognition on the Early Earth and Mars"

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.

    2004-01-01

    The vision of this project was to improve our understanding of the processes by which microbiological information is captured and preserved in rapidly mineralizing sedimentary environments. Specifically, the research focused on the ways in which microbial mats and biofilms influence the sedimentology, geochemistry and paleontology of modem hydrothermal spring deposits in Yellowstone national Park and their ancient analogs. Toward that goal, we sought to understand how the preservation of fossil biosignatures is affected by 1) taphonomy- the natural degradation processes that affect an organism from the time of its death, until its discovery as a fossil and 2) diagenesis- longer-term, post-depositional processes, including cementation and matrix recrystallization, which collectively affect the mineral matrix that contains fossil biosignature information. Early objectives of this project included the development of observational frameworks (facies models) and methods (highly-integrated, interdisciplinary approaches) that could be used to explore for hydrothermal deposits in ancient terranes on Earth, and eventually on Mars.

  15. ESEM Studies of Colloidal Sulfur Deposition in a Natural Microbial Community from a Cold Sulfide Spring Near Ancaster, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Douglas, S.; Douglas, D.

    2000-01-01

    We have used a relatively new microscopial technique, environmental scanning electron microscopy (ESEM), together with transmission electron microscopy (TEM) and light microscopy to investigate a unique microbial community from a temperate climate, cold sulfide spring near Ancaster, Ontario, Canada.

  16. Microbial ecology of á-Proteobacteria ammonia-oxidizers along a concentration gradient of dry atmospheric nitrogen deposition in the San Bernadino Mountain Range.

    NASA Astrophysics Data System (ADS)

    Jordan, F. L.; Fenn, M. E.; Stein, L. Y.

    2002-12-01

    The fate of atmospherically-deposited nitrogen from industrial pollution is of major concern in the montane ecosystems bordering the South Coast California Air Basin. Nitrogen deposition rates in the more exposed regions of the San Bernardino Mountains (SBM) are among the highest in North America often exceeding 40 kg ha-1 year-1 in throughfall deposition of nitrate and ammonium (Fenn and Poth, 1999). Forest ecosystems with elevated N deposition generally exhibit elevated accumulation of soil nitrate, leaching and runoff, elevated emissions of nitrogenous gases, increased nitrification, and decreased litter decomposition rates. The role of nitrifying microbial populations, especially those taxonomically associated with the beta-Proteobacteria ammonia-oxidizers (AOB), will provide insight into nitrogen-cycling in these extremely N-saturated environments. Using 16S ribosomal DNA-based molecular techniques (16S rDNA clone library construction and Restriction Fragment Length Polymorphism), we are comparing AOB community diversity at 3 different locations along a natural atmospheric N-deposition concentration gradient in the SBM: from high at Camp Paviaka (CP), medium at Strawberry Peak (SP) to low at Dogwood (DW). As observed for wet N-deposition systems on the east coast, we hypothesized a negative correlation between AOB community diversity, abundance and function with nitrogen loading in the dry N deposition system of SBM. Nitrification potentials determined for the 3 sites along the N-deposition gradient were in the order of CP less than SP less than DW. Preliminary results indicate no correlation between diversity of AOB and increased nitrogen loading. Shannon-Weiner diversity indices calculated for ammonia-oxidizer RFLP group units were 2.22, 2.66 and 1.80 for CP, SP and DW, respectively.

  17. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean.

    PubMed

    Liao, Li; Xu, Xue-Wei; Jiang, Xia-Wei; Wang, Chun-Sheng; Zhang, Dong-Sheng; Ni, Jian-Yu; Wu, Min

    2011-12-01

    Cobalt-rich crusts are important metallic mineral resources with great economic potential, usually distributed on seamounts located in the Pacific Ocean. Microorganisms are believed to play a role in the formation of crusts as well as in metal cycling. To explore the microbial diversity related to cobalt-rich crusts, 16S ribosomal RNA gene clone libraries were constructed from three consecutive sediment layers. In total, 417 bacterial clones were obtained from three bacterial clone libraries, representing 17 distinct phylogenetic groups. Proteobacteria dominated in the bacterial communities, followed by Acidobacteria and Planctomycetes. Compared with high bacterial diversity, archaea showed a remarkably low diversity, with all 137 clones belonging to marine archaeal group I except one novel euryarchaeotal clone. The microbial communities were potentially involved in sulfur, nitrogen and metal cycling in the area of cobalt-rich crusts. Sulfur oxidation and metal oxidation were potentially major sources of energy for this ecosystem. This is the first reported investigation of microbial diversity in sediments associated with cobalt-rich crusts, and it casts fresh light on the microbial ecology of these important ecosystems. PMID:22067077

  18. EVALUATION OF COMMERCIAL, MICROBIAL-BASED PRODUCTS TO TREAT PARAFFIN DEPOSITION IN TANK BOTTOMS AND OIL PRODUCTION EQUIPMENT

    EPA Science Inventory

    Introduction:

    Paraffins are naturally-occurring components of crude oils, but often form solids within oil reservoirs and on oil production equipment when oil is harvested from hot subsurface temperatures to the cooler surface environments. Microbial t...

  19. Atmospheric deposition, water-quality, and sediment data for selected lakes in Mount Rainer, North Cascades, and Olympic National Parks, Washington, 2008-10

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Moran, Patrick W.; Swarzenski, Peter W.

    2012-01-01

    To evaluate the potential effect from atmospheric deposition of nitrogen to high-elevation lakes, the U.S. Geological Survey partnered with the National Park Service to develop a "critical load" of nitrogen for sediment diatoms. A critical load is defined as the level of a given pollutant (in this case, nitrogen) at which detrimental effects to a target endpoint (sediment diatoms) result. Because sediment diatoms are considered one of the "first responders" to ecosystem changes from nitrogen, they are a sensitive indicator for nitrogen deposition changes in natural areas. This report presents atmospheric deposition, water quality, sediment geochronology, and sediment diatom data collected from July 2008 through August 2010 in support of this effort.

  20. Physicochemical and Microbial Properties of Burrows of the Deposit-feeding Thalassinidean Ghost Shrimp Biffarius arenosus (Decapoda: Callianassidae)

    NASA Astrophysics Data System (ADS)

    Bird, F. L.; Boon, P. I.; Nichols, P. D.

    2000-09-01

    The physicochemical and microbial properties of the burrows of Biffarius arenosus, a ghost shrimp common in temperate south-eastern Australia, were investigated and shown to be more similar to the surface sediments than to the surrounding subsurface sediments. The burrow walls had a similar organic carbon content to that of the surrounding sediment, a result which was consistent with their lack of a discrete mucous lining. Burrow walls, however, were lined with compacted and smoothed sediment and were coloured a distinct light yellow/brown compared with the dark grey of the surrounding subsurface sediments. Moderately reducing redox conditions were found in both the burrow wall and surface sediment (means 213 mV and 243 mV, respectively), indicative of a burrow environment regularly flushed with overlying water by the resident shrimp. Microbial activity (measured as fluorescein diacetate hydrolysis) in the burrow walls was higher than in the surrounding sediments, but there were no significant differences across sediment types in bacterial abundances (epifluorescence microscopy total counts, using DAPI) or in microbial biomasses (total phospholipid contents). Biomarker analysis of the phospholipid fatty acid (PLFA) profiles indicated that bacteria dominated the benthic community (˜80% of total PLFAs), and showed the presence of both aerobic and anaerobic bacteria in all sediment samples.

  1. Organic geochemistry of endoevaporitic environments: Microbial diversity and lipid biomarkers from gypsum deposits at the E.S.S.A Salt Works, Guerrero Negro, Baja, Mexico

    NASA Astrophysics Data System (ADS)

    Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Turk, K. A.; Kubo, M. D.

    2006-12-01

    microbial populations and organic matter diagenesis. This locality is relevant to extremophile studies because it is a biological analogue for evaporite deposits recently discovered on Mars and constitutes a complex hypersaline ecosystem where extreme sulfate concentrations affect carbon and oxygen cycles.

  2. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    EPA Science Inventory

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  3. The reinterpretation of Leone Lake sediments as a pyroclastic surge deposit and its tectonic significance. [volcanics in Cascade Range of Oregon

    NASA Technical Reports Server (NTRS)

    Mcdonough, W. F.; Waibel, A. F.; Gannett, M. W.

    1984-01-01

    The Leone Lake sediments, previously interpreted as being of fluvial and lacustrine origin, are reinterpreted as subaerial pyroclastic surge and palagonite tuff cone deposits. This conclusion is based on bedforms, particle morphology, the primary mineral assemblage, and the nature and mineralogy of the alteration. The principal characteristics of the pyroclastic surge units and palagonite tuffs are examined, and the tectonic significance of the reinterpretation is briefly discussed.

  4. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    USGS Publications Warehouse

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100??y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous

  5. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    NASA Astrophysics Data System (ADS)

    John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.

    2008-08-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km 3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1 km of the edifice axis, developed chiefly in porous breccias

  6. South Cascade Glacier bibliography

    SciTech Connect

    Fountain, A.G.; Fulk, M.A.

    1984-01-01

    South Cascade Glacier, in Washington State, resides in a well-defined basin with mainly unglacierized divides making it ideal for most glaciological and hydrological studies. This bibliography is divided into three cateogories: (1) studies done about South Cascade Glacier specifically; (2) studies that use data from South Cascade Glacier but do not focus on or give insight to the glacier itself; and (3) instrumentation studies and non-glacier projects including snow studies done in the basin. (ACR)

  7. Thermally cascaded thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Flaherty, R.

    1970-01-01

    High efficiency thermoelectric generator utilizes a high-temperature thermoelectric material in thermal series with a low-temperature material. A thermally cascaded generator increases system efficiency.

  8. Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Golden, D. C.; Ming, Doug W.

    2012-11-01

    Six Mars analog soils were created to simulate a range of potentially biotoxic geochemistries relevant to the survival of terrestrial microorganisms on Mars, and included basalt-only (non-toxic control), salt, acidic, alkaline, aeolian, and perchlorate rich geochemistries. Experiments were designed to simulate the dry-deposition of Mars soils onto spacecraft surfaces during an active descent landing scenario with propellant engines. Six eubacteria were initially tested for tolerance to desiccation, and the spore-former Bacillus subtilis HA101 and non-spore former Enterococcus faecalis ATCC 29212 were identified to be strongly resistant (HA101) and moderately resistant (29212) to desiccation at 24 °C. Furthermore, tests with B. subtilis and E. faecalis demonstrated that at least 1 mm of Mars analog soil was required to fully attenuate the biocidal effects of a simulated Mars-normal equatorial UV flux. Biotoxicity experiments were conducted under simulated Martian conditions of 6.9 mbar, -10 °C, CO2-enriched anoxic atmosphere, and a simulated equatorial solar spectrum (200-1100 nm) with an optical depth of 0.1. For B. subtilis, the six analog soils were found, in general, to be of low biotoxicity with only the high salt and acidic soils exhibiting the capacity to inactivate a moderate number of spores (<1 log reductions) exposed 7 days to the soils under simulated Martian conditions. In contrast, the overall response of E. faecalis to the analog soils was more dramatic with between two and three orders of magnitude reductions in viable cells for most soils, and between six and seven orders of magnitude reductions observed for the high-salt soil. Results suggest that Mars soils are likely not to be overtly biotoxic to terrestrial microorganisms, and suggest that the soil geochemistries on Mars will not preclude the habitability of the Martian surface.

  9. Travertine-Depositing Cool-Springs of the Rio Grande Rift, New Mexico: Links Between Geochemistry, Tectonic Setting, and Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Newell, D. L.; Crossey, L. J.; Dahm, C. N.; Takacs-Vesbach, C.

    2005-12-01

    Travertine-depositing cool springs found within the Rio Grande rift in New Mexico may represent the distal discharges of deep hydrothermal systems related to continental rifting. We hypothesize that these springs represent overlooked ecological niches that host chemolithotrophic microorganisms relying on spring chemistry for metabolism. The geochemistry of these springs is in many ways similar to seafloor and continental hot springs, such as Yellowstone, where thermophilic microbes representing the deepest branches of the universal phylogenetic tree are found. We analyzed cool springs that varied in water type from Ca-Mg-HCO3 to Na-Cl and Na-SO4 waters and ranged from dilute to high (23,000 ppm) in total dissolved solids. Carbon dioxide comprised up to 99% of the water-free spring gases. Hydrogen was present up to tenths of percent, equating to 7-3400 nM dissolved H2. Methane and hydrogen sulfide were detected in some springs up to 0.1 and 4%, respectively. Oxygen was deficient to absent. 3 He4He ratios ranged from 0.1 to 0.6 RA (relative to air), equating to 1-7% mantle-derived helium. The δ13CO2 of spring gases ranged from -4.6 to -1.0 permil PDB, overlapping the mantle and marine limestone ranges. Mixing models using carbon and helium isotopes suggest that at least 5% of the CO2 was mantle derived. We hypothesize that the source of high H2 levels was mantle-derived magmatism. The lack of oxygen, abundance of hydrogen and carbon (dissolved CO2), and high concentrations of aqueous species such as sulfate have created an environment suitable for chemolithotrophic microbes. The presence of methane and hydrogen sulfide suggest that methanogenic and sulfate reducing microbes are active. Microbial community analysis using PCR-DGGE will test for microbial diversity and identify potential trends in metabolism related to spring geochemistry. The apparent link between mantle-derived gases and deeply-circulated fluids in a continental rift setting with the presence of

  10. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  11. Recreating Microbial Ecosystems of the Late Archean

    NASA Astrophysics Data System (ADS)

    Juarez Rivera, M.; Sumner, D. Y.

    2016-05-01

    Microbialites are important deposits for studying early microbial life. Cuspate and plumose microbialites of the Gamohaan Formation provide evidence for multiple microbial communities that grew contemporaneously with different growth rates.

  12. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  13. Homogeneous deposition-assisted synthesis of iron-nitrogen composites on graphene as highly efficient non-precious metal electrocatalysts for microbial fuel cell power generation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Jin, Xiao-Jun; Dionysiou, Dionysios D.; Liu, Hong; Huang, Yu-Ming

    2015-03-01

    This work proposed a novel strategy for synthesizing highly efficient non-precious metal oxygen reduction reaction (ORR) electrocatalysts. Fe complexes were homogeneously deposited (HD) on graphene oxide through in situ hydrolysis of urea, followed by two-step pyrolysis under Ar and NH3 atmospheres, resulting in formation of Fe- and N-functionalized graphene (HD-FeN/G). The morphology, crystalline structure and elemental composition of HD-FeN/G were characterized. ORR activity was evaluated by using a rotary disk electrode (RDE) electrochemical system. HD improved the loading and distribution of the Fe-Nx composites on graphene. The ORR activity of the as-prepared HD-FeN/G in neutral medium was comparable to that of the state-of-the-art commercial Pt/C and significantly superior to a FeN/G counterpart produced via traditional approach. The ORR electron transfer number of HD-FeN/G was as high as 3.83 ± 0.08, which suggested that ORR catalysis proceeds through a four-electron pathway. HD-FeN/G was used as a cathodic electrocatalyst in microbial fuel cells (MFCs), and the resultant HD-FeN/G-MFC showed comparable voltage output and maximum power density to those of Pt/C-MFC. The HD-FeN/G-MFC achieved a maximum power density of 885 mW m-2, which was much higher than that of FeN/G-MFC (708 mW m-2). These findings demonstrate that HD-FeN/G produced through the novel synthesis strategy proposed in this work would be a good candidate as cathodic electrocatalyst in MFCs.

  14. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2

  15. Quantum cascade laser investigations of CH4 and C2H2 interconversion in hydrocarbon/H2 gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH4 and C2H2 molecules (and their interconversion) in hydrocarbon/rare gas/H2 gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm-1 using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H2 plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r ,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH4 and C2H2 molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH4 and C2H2. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH4→C2H2 conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400

  16. 5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE CREEK FROM 100 YARDS WEST OF THE ROSTRUM (ROCK FORMATION ON SOUTH SIDE OF MERCED RIVER). HIGHWAY 140 IS AT BOTTOM OF FRAME. HIGHWAY 120, THE BIG OAK FLAT ROAD CROSSES FRAME JUST ABOVE CENTER. - Cascade Creek Bridge, Spanning Cascade Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  17. Unsteady Euler cascade analysis

    NASA Technical Reports Server (NTRS)

    Liu, Jong-Shang; Sockol, Peter M.

    1989-01-01

    The results of an investigation of the rotor-stator interaction phenomena in turbomachines are presented. Numerical study was carried out by solving the unsteady Euler equations in the blade-to-blade direction for a variety of cascade geometries. The problem of uneven rotor and stator blades is addressed by adopting the tilted time domain technique. Computed solutions are presented and discussed for a NACA 0012 type cascade and the first stage fuel turbopump of the Space Shuttle Main Engine (SSME).

  18. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  19. Tracking Earthquake Cascades

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2011-12-01

    In assessing their risk to society, earthquakes are best characterized as cascades that can propagate from the natural environment into the socio-economic (built) environment. Strong earthquakes rarely occur as isolated events; they usually cluster in foreshock-mainshock-aftershock sequences, seismic swarms, and extended sequences of large earthquakes that propagate along major fault systems. These cascades are regulated by stress-mediated interactions among faults driven by tectonic loading. Within these cascades, each large event can itself cause a chain reaction in which the primary effects of faulting and ground shaking induce secondary effects, including tsunami, landslides, liquefaction, and set off destructive processes within the built environment, such as fires and radiation leakage from nuclear plants. Recent earthquakes have demonstrated how the socio-economic effects of large earthquakes can reverberate for many years. To reduce earthquake risk and improve the resiliency of communities to earthquake damage, society depends on five geotechnologies for tracking earthquake cascades: long-term probabilistic seismic hazard analysis (PSHA), short-term (operational) earthquake forecasting, earthquake early warning, tsunami warning, and the rapid production of post-event information for response and recovery (see figure). In this presentation, I describe how recent advances in earthquake system science are leading to improvements in this geotechnology pipeline. In particular, I will highlight the role of earthquake simulations in predicting strong ground motions and their secondary effects before and during earthquake cascades

  20. Resonant Cascaded Downconversion

    SciTech Connect

    Weedbrook, Christian; Parrett, Ben; Kheruntsyan, Karen; Drummond, Peter; Pooser, Raphael C; Pfister, Olivier

    2012-01-01

    We analyze an optical parametric oscillator (OPO) in which cascaded down-conversion occurs inside a cavity resonant for all modes but the initial pump. Due to the resonant cascade design, the OPO presents two {chi}{sup (2)}-level oscillation thresholds that are therefore much lower than for a {chi}{sup (3)} OPO. This is promising for reaching the regime of an effective third-order nonlinearity well above both thresholds. Such a {chi}{sup (2)} cascaded device also has potential applications in frequency conversion to far-infrared regimes. But, most importantly, it can generate novel multipartite quantum correlations in the output radiation, which represent a step beyond squeezed or entangled light. The output can be highly non-Gaussian and therefore not describable by any semiclassical model. In this paper, we derive quantum stochastic equations in the positive-P representation and undertake an analysis of steady-state and dynamical properties of this system.

  1. Hadron cascades produced by electromagnetic cascades

    SciTech Connect

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps.

  2. Collisional Cascades Revisited

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke; Pan, M.

    2013-01-01

    Collisional cascades are believed to be the primary mechanism operating in circumstellar dusty debris disks, and are thought to be important in the Kuiper and Asteroid belt. Collisional cascades transfer mass via destructive collisions from larger bodies to smaller ones. Their widespread occurrence and potential importance in understanding planet formation and planet-disk interactions have motivated detailed studies of collisional cascades. The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. We relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan & Sari (2005) can steepen to values as large as q = 3.26. These differences in the size distribution power law index are very important when estimating the total disk mass, including larger bodies, by extrapolating from the observed dust masses. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies in, for example, extrasolar debris disks may constrain the total mass in large bodies stirring the cascade as well as the colliding bodies

  3. Explosives detection using quantum cascade laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Castro-Suarez, John R.; Pollock, Yadira S.; Hernandez-Rivera, Samuel P.

    2013-05-01

    An infrared spectroscopy based explosives detection system using a quantum cascade laser (QCL) as excitation source was used to record mid infrared spectral signals of highly energetic materials (HEM) deposited on real world substrates such as travel baggage, cardboard and wood. The HEMs used were nitroaromatic military explosive trinitrotoluene (TNT), aliphatic nitrate ester pentaerythritol tetranitrate (PETN) and aliphatic nitramine hexahydrotrinitrotriazine (RDX). Various deposition methods including sample smearing, spin coating, spray deposition and partial immersion were evaluated for preparing samples and standards used as part of the study. Chemometrics statistical routines such as principal component analysis (PCA) regression with various preprocessing steps were applied to the recorded infrared spectra of explosives deposited as trace contaminants on target substrates. The results show that the dispersive infrared vibrational technique investigated using QCL is useful for detection of HEMs in the types of substrates studied.

  4. Intra Nucleon Cascade Program

    Energy Science and Technology Software Center (ESTSC)

    1998-08-18

    The package consists of three programs ISABEL, EVA, and PACE-2. ISABEL and PACE-2 are part of the LAHET code. ISABEL is an intra-nucleon cascade program. The output cascades are used as directly as input files to the two evaporation programs EVA and PACE-2. EVA ignores the effect of the angular momentum of the excited nuclei on the deexcitation and also ignores the possibility of gamma emission as long as particle emission is energetically allowed. PACE-2more » takes full account of angular momentum effects including irast levels and gamma emission at all stages of the evaporation chain.« less

  5. Linking Microbial Phylogeny to Metabolic Activity at the Single-Cell Level by Using Enhanced Element Labeling-Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (EL-FISH) and NanoSIMS▿ †

    PubMed Central

    Behrens, Sebastian; Lösekann, Tina; Pett-Ridge, Jennifer; Weber, Peter K.; Ng, Wing-On; Stevenson, Bradley S.; Hutcheon, Ian D.; Relman, David A.; Spormann, Alfred M.

    2008-01-01

    To examine phylogenetic identity and metabolic activity of individual cells in complex microbial communities, we developed a method which combines rRNA-based in situ hybridization with stable isotope imaging based on nanometer-scale secondary-ion mass spectrometry (NanoSIMS). Fluorine or bromine atoms were introduced into cells via 16S rRNA-targeted probes, which enabled phylogenetic identification of individual cells by NanoSIMS imaging. To overcome the natural fluorine and bromine backgrounds, we modified the current catalyzed reporter deposition fluorescence in situ hybridization (FISH) technique by using halogen-containing fluorescently labeled tyramides as substrates for the enzymatic tyramide deposition. Thereby, we obtained an enhanced element labeling of microbial cells by FISH (EL-FISH). The relative cellular abundance of fluorine or bromine after EL-FISH exceeded natural background concentrations by up to 180-fold and allowed us to distinguish target from non-target cells in NanoSIMS fluorine or bromine images. The method was optimized on single cells of axenic Escherichia coli and Vibrio cholerae cultures. EL-FISH/NanoSIMS was then applied to study interrelationships in a dual-species consortium consisting of a filamentous cyanobacterium and a heterotrophic alphaproteobacterium. We also evaluated the method on complex microbial aggregates obtained from human oral biofilms. In both samples, we found evidence for metabolic interactions by visualizing the fate of substrates labeled with 13C-carbon and 15N-nitrogen, while individual cells were identified simultaneously by halogen labeling via EL-FISH. Our novel approach will facilitate further studies of the ecophysiology of known and uncultured microorganisms in complex environments and communities. PMID:18359832

  6. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  7. 'Cascade Gold' raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  8. Cascaded thermoacoustic devices

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  9. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  10. Results from Grimethorpe PFBC turbine cascade tests

    SciTech Connect

    Not Available

    1986-12-01

    The test program at the Grimethorpe Pressurized Fluidized-Bed Combustion (PFBC) facility included an assessment of the potential for deposition, corrosion, and erosion of gas turbine blade materials when exposed to PFBC off gases. Flue gas from the combustor was fed through three stages of cyclones before entering the cascade. The impulse foils were approximately the size and shape of the first stage blades in the GE MS-1002 gas turbine. The cascade operated through three test series, accumulating a total of 649 hours. The conditions experienced are summarized. The paper lists the alloys tested, and discusses the efficiency of the cyclones, the particle size distribution of the dusts not removed by the cyclones, and corrosion of the turbine blades. 4 references, 1 figure, 2 tables.

  11. Single mode terahertz quantum cascade amplifier

    SciTech Connect

    Ren, Y. Wallis, R.; Shah, Y. D.; Jessop, D. S.; Degl'Innocenti, R.; Klimont, A.; Kamboj, V.; Beere, H. E.; Ritchie, D. A.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-mode radiation output is demonstrated.

  12. Cascaded humidified advanced turbine

    SciTech Connect

    Nakhamkin, M.; Swenson, E.C.; Cohn, A.; Bradshaw, D.; Taylor, R.; Wilson, J.M.; Gaul, G.; Jahnke, F.; Polsky, M.

    1995-05-01

    This article describes how, by combining the best features of simple- and combined-cycle gas turbine power plants, the CHAT cycle concept offers power producers a clean, more efficient and less expensive alternative to both. The patented cascaded advanced turbine and its cascaded humidified advanced turbine (CHAT) derivative offer utilities and other power producers a practical advanced gas turbine power plant by combining commercially-available gas turbine and industrial compressor technologies in a unique way. Compared to combined-cycle plants, a CHAT power plant has lower emissions and specific capital costs-approximately 20 percent lower than what is presently available. Further, CHAT`s operating characteristics are especially well-suited to load following quick start-up scenarios and they are less susceptible to power degradation from higher ambient air temperature conditions.

  13. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  14. Information cascade on networks

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  15. Superconducting cascade electron refrigerator

    NASA Astrophysics Data System (ADS)

    Camarasa-Gómez, M.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.; Giazotto, F.

    2014-05-01

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  16. Simultaneous monitoring of biofilm growth, microbial activity, and inorganic deposits on surfaces with an in situ, online, real-time, non-destructive, optical sensor.

    PubMed

    Strathmann, Martin; Mittenzwey, Klaus-Henrik; Sinn, Gert; Papadakis, Wassilios; Flemming, Hans-Curt

    2013-01-01

    Deposits on surfaces in water-bearing systems, also known as 'fouling', can lead to substantial losses in the performance of industrial processes as well as a decreased product quality. Early detection and localization of such deposits can, to a considerable extent, save such losses. However, most of the surfaces that become fouled, for example, in process water pipes, membrane systems, power plants, and food and beverage industries, are difficult to access and analyses conducted on the water phase do not reveal the site or extent of deposits. Furthermore, it is of interest to distinguish biological from non-biological deposits. Although they usually occur together, different countermeasures are necessary. Therefore, sensors are required that indicate the development of surface fouling in real-time, non-destructively, and in situ, preferably allowing for discrimination between chemical and/or biological deposits. In this paper, an optical deposit sensor is presented which fulfills these requirements. Based on multiple fluorescence excitation emission matrix analysis, it detects autofluorescence of amino acids as indicators of biomass. Autofluorescence of nicotinamide adenine dinucleotide + hydrogen is interpreted as an indicator of biological activity, thus it acts as a viability marker, making the method suited for assessing the efficacy of disinfection treatments. Scattering signals from abiotic deposits such as calcium carbonate or corrosion products can clearly be distinguished from biotic substances and monitored separately. The sensor provides an early warning of fouling, allowing for timely countermeasures to be deployed. It also provides an assessment of the success of cleaning treatments and is a promising tool for integrated antifouling strategies. PMID:23682638

  17. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  18. The Ufm1 Cascade

    PubMed Central

    Daniel, Jens; Liebau, Eva

    2014-01-01

    The ubiquitin-fold modifier 1 (Ufm1) is a posttranslational modifier that belongs to the ubiquitin-like protein (UBL) family. Ufm1 is present in nearly all eukaryotic organisms, with the exception of fungi. It resembles ubiquitin in its ability to be ligated to other proteins, as well as in the mechanism of ligation. While the Ufm1 cascade has been implicated in endoplasmic reticulum functions and cell cycle control, its biological role still remains poorly understood. In this short review, we summarize the current state of Ufm1 research and its potential role in human diseases, like diabetes, ischemic heart disease and cancer. PMID:24921187

  19. Reconciliation of Cascade Impaction during Wet Nebulization.

    PubMed

    Solomita, Mario; Smaldone, Gerald C

    2009-03-01

    Cascade impaction is an important tool for measuring aerosol distributions from wet nebulizers; however, results vary depending on laboratory and technique. The focus of this study was to reconcile the contribution of particle evaporation to these reported differences. To measure the effect of evaporation, we compared aerosol distributions from circuits ventilated with humidified air, ambient air, and a nonventilated, standing cloud circuit using low-flow cascade impaction (1.0 L/min). Aerosol distributions were similar for the humidified/ventilated and standing cloud models [mass median aerodynamic diameter (MMAD) 3.4 microm, and 3.6 microm Aero-Eclipse, 5.8 and 5.1 microm Misty-Neb, 3.8 and 3.2 microm Pari LC Plus]. In the ventilated/ambient air model, smaller particle sizes were measured (2.2 microm AeroEclipse, 2.4 microm Misty-Neb, 2.1 microm Pari LC Plus). Techniques of cascade impaction significantly affected measured aerosol distributions. MMAD were defined by nebulizer type and conditions of particle evaporation not by impactor. Aerosol mixing with ambient air caused evaporation and shrinkage of particles, and accounts for differences between laboratories. Patients breathing from nebulizers may entrain ambient air possibly affecting deposition. PMID:19392585

  20. Cascade Error Projection Learning Algorithm

    NASA Technical Reports Server (NTRS)

    Duong, T. A.; Stubberud, A. R.; Daud, T.

    1995-01-01

    A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

  1. Two terminal CuInSe2 based cascade cells

    NASA Astrophysics Data System (ADS)

    Baron, B. N.; Birkmire, R. W.; McCandless, B. E.; Phillips, J. E.

    1990-07-01

    This report presents results and conclusions of a two-year research program on multijunction thin-film solar cells using a CuInSe2 heterojunction for the low-band-gap bottom cell and either an a-Si:H (E(sub g) = 1.8 eV) or a CdTe (E(sub g) = 1.5 eV) heterojunction for the high-band-gap top cell in a monolithic two-terminal cascade structure. Photochemical vapor deposition was used to deposit a-Si cells. The presence of a CuInSe2/(CdZn)S cell in the a-Si deposition reactor did not introduce contaminants or adversely affect the performance of conventional p-i-n cells. Procedures were developed for fabricating monolithic cascade devices with the configuration ITO/a-Si(n-i-p)/ZnO/(CdZn)S/CuInSe2/Mo/glass. A prototype two-terminal a-Si/CuInSe2 cascade cell had an open-circuit voltage over IV and an efficiency of 5.8 percent. Physical vapor deposition with extrinsic doping was studied as a preparation technique for depositing low-resistivity p-type CdTe on transparent contact materials at low temperatures.

  2. Cascade physics at CLAS12

    SciTech Connect

    Guo, Lei

    2009-01-01

    Cascade spectroscopy offers rich discovering opportunities that are essential to the current JLAB spectroscopy program at both CLAS, CLAS12 and GLUEX. Recent CLAS results have demonstrated the feasibility to study cascade resonances through photoproduction. The cross sections for the ground state cascade is observed to increase as a function of energy in the range of 2.8-5GeV. With the maximum achievable energy at CLAS12 with the current tagger being 6.3~GeV, cascade resonances up to 2.4~GeV are expected to be produced with reasonable rates. The possible addition of a RICH detector would certainly benefit physics programs requiring the detection of kaons, especially cascade physics.

  3. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  4. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  5. Interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J. R.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Höfling, S.

    2015-04-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3-6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm-2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT.

  6. Cascade Mtns. Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The ground near one of the long-dormant Three Sisters volcanoes in the Cascade Mountains of west-central Oregon has risen approximately 10centimeters in a 10-by-20-km parcel since 1996, meaning that magma or underground lava is slowly flowing into the area, according to a research team from the U.S. Geological Survey. The Three Sisters area -- which contains five volcanoes -- is only about 170 miles from Mount St. Helens, which erupted in 1980. Both are part of the Cascades Range, a line of 27volcanoes stretching from British Columbia in Canada to northern California. This perspective view was created by draping a simulated natural color ASTER image over digital topography from the U.S. Geological Survey National Elevation Dataset.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical

  7. Cascading Effects Following Intervention

    PubMed Central

    Patterson, Gerald R.; Forgatch, Marion S.; DeGarmo, David S.

    2010-01-01

    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial (RCT) of a preventive intervention using Parent Management Training – Oregon Model (PMTO™). The social interaction learning (SIL) model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments. PMID:20883592

  8. Terahertz quantum cascade VECSEL

    NASA Astrophysics Data System (ADS)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Itoh, Tatsuo; Williams, Benjamin S.

    2016-03-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) have been successfully used in the visible and near-infrared to achieve high output power with excellent Gaussian beam quality. However, the concept of VECSEL has been impossible to implement for quantum-cascade (QC) lasers due to the "intersubband selection rule". We have recently demonstrated the first VECSEL in the terahertz range. The enabling component for the QC-VECSEL is an amplifying metasurface reflector composed of a sparse array of metallic sub-cavities, which allows the normally incident radiation to interact with the electrically pumped QC gain medium. In this work, we presented multiple design variations based on the first demonstrated THz QC-VECSEL, regarding the lasing frequencies, the output coupler and the intra-cavity aperture. Our work on THz QC-VECSEL initiates a new approach towards achieving scalable output power in combination with a diffraction-limited beam pattern for THz QC-lasers. The design variations presented in this work further demonstrate the practicality and potential of VECSEL approach to make ideal terahertz QC-laser sources.

  9. Design of choking cascade turns

    NASA Astrophysics Data System (ADS)

    Baird, J.

    1982-12-01

    Five different shock-positioning cascades, for short-radius turns in ramjet inlet diffusers, were designed and tested on the AFIT water table. These flow controllers were to perform the same function as the conventional arrangement of an aerodynamic grid and a long-radius turn. The tests were to determine the suitability of the water table for such experimentation, in addition to determining the flow-control capabilities and pressure recovery of the cascades. All five designs accomplished the flow-control function as designed, and two designs exhibited the same or better pressure recovery than the aerodynamic grid. The water table proved to be an excellent means of testing these cascades, primarily due to the ease of flow visualization in the tests done. The shock-positioning cascade, short-radius turn concept shows promise and should be tested further in gas-dynamic apparatus.

  10. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  11. Stochastic background of atmospheric cascades

    NASA Astrophysics Data System (ADS)

    Wilk, G.; WŁOdarczyk, Z.

    1993-06-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.

  12. Computation of inverse magnetic cascades

    SciTech Connect

    Montgomery, D.

    1981-10-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  13. Stochastic background of atmospheric cascades

    SciTech Connect

    Wilk, G. ); Wlodarczyk, Z. )

    1993-06-15

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.

  14. Computation of inverse magnetic cascades

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1981-01-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  15. The cascade high productivity language

    NASA Technical Reports Server (NTRS)

    Callahan, David; Chamberlain, Branford L.; Zima, Hans P.

    2004-01-01

    This paper describes the design of Chapel, the Cascade High Productivity Language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface.

  16. Cascading gravity is ghost free

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  17. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  18. The Microbial Opsin Family of Optogenetic Tools

    PubMed Central

    Zhang, Feng; Vierock, Johannes; Yizhar, Ofer; Fenno, Lief E.; Tsunoda, Satoshi; Kianianmomeni, Arash; Prigge, Matthias; Berndt, Andre; Cushman, John; Polle, Jürgen; Magnuson, Jon; Hegemann, Peter; Deisseroth, Karl

    2014-01-01

    The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. Recent advances in understanding microbial opsins have been driven by molecular engineering for optogenetics and by comparative genomics. Here we provide a Primer on these light-activated ion channels and pumps, describe a group of opsins bridging prior categories, and explore the convergence of molecular engineering and genomic discovery for the utilization and understanding of these remarkable molecular machines. PMID:22196724

  19. Interband Cascade Photovoltaic Cells

    SciTech Connect

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  20. Flow characteristics of the Cascade granular blanket

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1985-07-01

    Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.

  1. Flow characteristics of the Cascade granular blanket

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1985-04-15

    Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.

  2. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser. PMID:26072764

  3. Rescuing Ecosystems from Extinction Cascades

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  4. Autoregressive cascades on random networks

    NASA Astrophysics Data System (ADS)

    Iyer, Srikanth K.; Vaze, Rahul; Narasimha, Dheeraj

    2016-04-01

    A network cascade model that captures many real-life correlated node failures in large networks via load redistribution is studied. The considered model is well suited for networks where physical quantities are transmitted, e.g., studying large scale outages in electrical power grids, gridlocks in road networks, and connectivity breakdown in communication networks, etc. For this model, a phase transition is established, i.e., existence of critical thresholds above or below which a small number of node failures lead to a global cascade of network failures or not. Theoretical bounds are obtained for the phase transition on the critical capacity parameter that determines the threshold above and below which cascade appears or disappears, respectively, that are shown to closely follow numerical simulation results.

  5. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  6. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  7. Nanowire terahertz quantum cascade lasers

    SciTech Connect

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  8. Cascaded target normal sheath acceleration

    SciTech Connect

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  9. Characteristics for two kinds of cascading events

    NASA Astrophysics Data System (ADS)

    Zou, Sheng-Rong; Gu, Ai-Hua; Liu, Ai-Fen; Xu, Xiu-Lian; Wang, Jian; He, Da-Ren

    2011-04-01

    Avalanche or cascade failure is ubiquitous. We first classify the cascading phenomena into two categories: the cascading disasters which result in large-scale functional failures and the cascading events that do not lead to disasters. We elucidate that two important factors, the increasing amount of events and the acceleration of event frequency, can induce the crossover from the cascading phenomenon to the cascading disaster. Through a simplified sandpile model and a heuristic logistic map, we demonstrate that the dependence of the event number on the observation time behaves as a power-law and as an exponential for these two different cascading events, respectively. The analytic derivations are found to be consistent with several empirical observations. Our present findings contribute to the understanding of the transition between different cascading events, providing a basis for the further understanding of the transitions among more general critical events.

  10. Engineering Light: Quantum Cascade Lasers

    ScienceCinema

    Claire Gmachl

    2010-09-01

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  11. Applications of cascade multilevel inverters.

    PubMed

    Peng, Fang-zen; Qian, Zhao-ming

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters. PMID:14566981

  12. Critical transitions in colliding cascades

    PubMed

    Gabrielov; Keilis-Borok; Zaliapin; Newman

    2000-07-01

    We consider here the interaction of direct and inverse cascades in a hierarchical nonlinear system that is continuously loaded by external forces. The load is applied to the largest element and is transferred down the hierarchy to consecutively smaller elements, thereby forming a direct cascade. The elements of the system fail (i. e., break down) under the load. The smallest elements fail first. The failures gradually expand up the hierarchy to the larger elements, thus forming an inverse cascade. Eventually the failures heal, ensuring that the system will function indefinitely. The direct and inverse cascades collide and interact. Loading triggers the failures, while failures release and redistribute the load. Notwithstanding its relative simplicity, this model reproduces the major dynamical features observed in seismicity, including the seismic cycle, intermittence of seismic regime, power-law energy distribution, clustering in space and time, long-range correlations, and a set of seismicity patterns premonitory to a strong earthquake. In this context, the hierarchical structure of the model crudely imitates a system of tectonic blocks spread by a network of faults (note that the behavior of such a network is different from that of a single fault). Loading mimics the impact of tectonic forces, and failures simulate earthquakes. The model exhibits three basic types of premonitory pattern reflecting seismic activity, clustering of earthquakes in space and time, and the range of correlation between the earthquakes. The colliding-cascade model seemingly exhibits regularities that are common in a wide class of complex hierarchical systems, not necessarily Earth specific. PMID:11088457

  13. PANEL CODE FOR PLANAR CASCADES

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1994-01-01

    The Panel Code for Planar Cascades was developed as an aid for the designer of turbomachinery blade rows. The effective design of turbomachinery blade rows relies on the use of computer codes to model the flow on blade-to-blade surfaces. Most of the currently used codes model the flow as inviscid, irrotational, and compressible with solutions being obtained by finite difference or finite element numerical techniques. While these codes can yield very accurate solutions, they usually require an experienced user to manipulate input data and control parameters. Also, they often limit a designer in the types of blade geometries, cascade configurations, and flow conditions that can be considered. The Panel Code for Planar Cascades accelerates the design process and gives the designer more freedom in developing blade shapes by offering a simple blade-to-blade flow code. Panel, or integral equation, solution techniques have been used for several years by external aerodynamicists who have developed and refined them into a primary design tool of the aircraft industry. The Panel Code for Planar Cascades adapts these same techniques to provide a versatile, stable, and efficient calculation scheme for internal flow. The code calculates the compressible, inviscid, irrotational flow through a planar cascade of arbitrary blade shapes. Since the panel solution technique is for incompressible flow, a compressibility correction is introduced to account for compressible flow effects. The analysis is limited to flow conditions in the subsonic and shock-free transonic range. Input to the code consists of inlet flow conditions, blade geometry data, and simple control parameters. Output includes flow parameters at selected control points. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 590K of 8 bit bytes. This program was developed in 1982.

  14. Common themes in microbial pathogenicity.

    PubMed Central

    Finlay, B B; Falkow, S

    1989-01-01

    A bacterial pathogen is a highly adapted microorganism which has the capacity to cause disease. The mechanisms used by pathogenic bacteria to cause infection and disease usually include an interactive group of virulence determinants, sometimes coregulated, which are suited for the interaction of a particular microorganism with a specific host. Because pathogens must overcome similar host barriers, common themes in microbial pathogenesis have evolved. However, these mechanisms are diverse between species and not necessarily conserved; instead, convergent evolution has developed several different mechanisms to overcome host barriers. The success of a bacterial pathogen can be measured by the degree with which it replicates after entering the host and reaching its specific niche. Successful microbial infection reflects persistence within a host and avoidance or neutralization of the specific and nonspecific defense mechanisms of the host. The degree of success of a pathogen is dependent upon the status of the host. As pathogens pass through a host, they are exposed to new environments. Highly adapted pathogenic organisms have developed biochemical sensors exquisitely designed to measure and respond to such environmental stimuli and accordingly to regulate a cascade of virulence determinants essential for life within the host. The pathogenic state is the product of dynamic selective pressures on microbial populations. PMID:2569162

  15. Eruptive history of South Sister, Oregon Cascades

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.; Calvert, A.T.

    2011-01-01

    South Sister is southernmost and highest of the Three Sisters, three geologically dissimilar stratovolcanoes that together form a spectacular 20km reach along the Cascade crest in Oregon. North Sister is a monotonously mafic edifice as old as middle Pleistocene, Middle Sister a basalt-andesite-dacite cone built between 48 and 14ka, and South Sister is a basalt-free edifice that alternated rhyolitic and intermediate modes from 50ka to 2ka (largely contemporaneous with Middle Sister). Detailed mapping, 330 chemical analyses, and 42 radioisotopic ages show that the oldest exposed South Sister lavas were initially rhyolitic ~50ka. By ~37ka, rhyolitic lava flows and domes (72-74% SiO2) began alternating with radially emplaced dacite (63-68% SiO2) and andesite (59-63% SiO2) lava flows. Construction of a broad cone of silicic andesite-dacite (61-64% SiO2) culminated ~30ka in a dominantly explosive sequence that began with crater-forming andesitic eruptions that left fragmental deposits at least 200m thick. This was followed at ~27ka by growth of a steeply dipping summit cone of agglutinate-dominated andesite (56-60.5% SiO2) and formation of a summit crater ~800m wide. This crater was soon filled and overtopped by a thick dacite lava flow and then by >150m of dacitic pyroclastic ejecta. Small-volume dacite lavas (63-67% SiO2) locally cap the pyroclastic pile. A final sheet of mafic agglutinate (54-56% SiO2) - the most mafic product of South Sister - erupted from and drapes the small (300-m-wide) present-day summit crater, ending a summit-building sequence that lasted until ~22ka. A 20kyr-long-hiatus was broken by rhyolite eruptions that produced (1) the Rock Mesa coulee, tephra, and satellite domelets (73.5% SiO2) and (2) the Devils Chain of ~20 domes and short coulees (72.3-72.8% SiO2) from N-S vent alignments on South Sister's flanks. The compositional reversal from mafic summit agglutinate to recent rhyolites epitomizes the frequently changing compositional modes of the

  16. Bankruptcy Cascades in Interbank Markets

    PubMed Central

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  17. Cascade Chaotic System With Applications.

    PubMed

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level. PMID:25373135

  18. Bankruptcy cascades in interbank markets.

    PubMed

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  19. Microbial biotechnology.

    PubMed

    Demain, A L

    2000-01-01

    For thousands of years, microorganisms have been used to supply products such as bread, beer and wine. A second phase of traditional microbial biotechnology began during World War I and resulted in the development of the acetone-butanol and glycerol fermentations, followed by processes yielding, for example, citric acid, vitamins and antibiotics. In the early 1970s, traditional industrial microbiology was merged with molecular biology to yield more than 40 biopharmaceutical products, such as erythropoietin, human growth hormone and interferons. Today, microbiology is a major participant in global industry, especially in the pharmaceutical, food and chemical industries. PMID:10631778

  20. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  1. Lens Coupled Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  2. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  3. Quantum cascade lasers with dual-wavelength interdigitated cascades

    NASA Astrophysics Data System (ADS)

    Mosely, Trinesha S.; Straub, Axel; Gmachl, Claire; Colombelli, Raffaele; Troccoli, Mariano; Capasso, Federico; Sivco, Deborah L.; Cho, Alfred Y.

    2002-03-01

    A quantum cascade (QC) laser with a dual-wavelength interdigitated cascade is presented. Its active core consists of a stack of active regions and injectors designed for emission at one wavelength (8.0 μm) interleaved with a second stack emitting at a substantially different wavelength (9.5 μm), and the two injectors were designed to either bridge the 8.0 μm active region to the 9.5 μm one, or vice versa. Clear two-wavelength laser action is observed, demonstrating the viability of this approach to achieve multi-wavelength laser emission in the mid-infrared. Aside from providing two-wavelength operation, this laser design can also be used to test the role of charge transport in the injectors, which customarily bridge successive active regions together. We will present early results of this study. The work was partly supported by DARPA/US ARO under contract number DAAD19-00-C-0096. A. S. acknowledges the support of the Deutsche Studienstiftung. T. S. M. present address: Southern University and A&M College, Baton Rouge, LA.

  4. Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio

    NASA Astrophysics Data System (ADS)

    Spohn, M.

    2015-02-01

    Soil microbial respiration is a central process in the terrestrial carbon (C) cycle. In this study, I tested the effect of the carbon-to-nitrogen (C:N) ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global data set on microbial respiration per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled from literature data. It was found that qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and was negatively correlated with the litter nitrogen (N) concentration. The positive relation between qCO2 and the litter C:N ratio resulted from an increase in respiration with the C:N ratio in combination with no significant effect of the litter C:N ratio on the soil microbial biomass C concentration. The results suggest that soil microorganisms respire more C both in absolute terms and per unit microbial biomass C when decomposing N-poor substrate. The reasons for the observed relationship between qCO2 and the litter layer C:N ratio could be microbial N mining, overflow respiration or the inhibition of oxidative enzymes at high N concentrations. In conclusion, the results show that qCO2 increases with the litter layer C:N ratio. Thus, the findings indicate that atmospheric N deposition, leading to decreased litter C:N ratios, might decrease microbial respiration in soils.

  5. How sesquiterpenes modulate signaling cascades in cancers.

    PubMed

    Jabeen, S; Qureshi, M Z; Attar, R; Aslam, A; Kanwal, S; Khalid, S; Qureshi, J M; Aras Perk, A; Farooqi, A A; Ismail, M

    2016-01-01

    Data obtained from high-throughput technologies has started to shed light on the interplay between signal transduction cascades and chromatin modifications thus adding another layer of complexity to the already complex regulation of the protein network. Based on the insights gleaned from almost a decade of research, it has now been convincingly revealed that sesquiterpenes effectively modulated different intracellular signaling cascades in different cancers. In this review we summarize how sesquiterpenes mediated Wnt, Shh, Notch and TRAIL induced signaling cascades. PMID:27453282

  6. Cascade photo production at CLAS

    SciTech Connect

    Goetz, John; Hicks, Kenneth H.

    2014-09-01

    The famous discovery of the Omega in 1964 put the quark model on firm ground and since then a lot of effort has been spent on mapping out the baryonic and mesonic states. Over the following decades, many excited baryons with light quarks (up, down and strange) have been measured, but by most predictions, only a small percentage of those expected have been found. In this talk, I will discuss a newly developing technique using an (unflavored) photon beam to excite protons to doubly-strange "Cascade" (Xi) states. Advantages of such an experiment and associated difficulties will be presented, along with recent results from the CLAS detector at Jefferson Lab in Virginia.

  7. Logic synthesis of cascade circuits

    NASA Astrophysics Data System (ADS)

    Zakrevskii, A. D.

    The work reviews aspects of the logic design of cascade circuits, particularly programmable logic matrices. Effective methods for solving various problems of the analysis and synthesis of these devices are examined; these methods are based on a matrix representation of the structure of these devices, and a vector-matrix interpretation of certain aspects of Boolean algebra. Particular consideration is given to the theory of elementary matrix circuits, methods for the minimization of Boolean functions, the synthesis of programmable logic matrices, multilevel combinational networks, and the development of automata with memory.

  8. Kinetic Simulation of the Dissipation of a Turbulent Cascade

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Roytershteyn, V.; Wicks, R. T.

    2015-12-01

    The solar wind fluctuations undergo a turbulent cascade that presumably results, in some unknown fashion, in the deposition of energy into randomized motions, i.e. "heating." The observed evolution of spectra, cross-helicity, and non-adiabatic thermal properties of the plasma provide strong evidence for a nonlinear cascade, but the currently available temporal/spatial resolution of (mostly) single spacecraft measurments leaves many questions open. Large-scale particle-in-cell simulations allow us to explore the fate of cascading energy from "MHD" scales to the scales where wave-particle interactions become important. Simulations to date have shown a number of characteristics similar to that of solar wind plasma, including steeper magnetic spectra parallel to the mean magnetic field than perpendicular to it, a spectral break near the ion inertial length, and bounded anisotropic temperatures. Detailed analysis has revealed "magnetic holes" and nonthermal particle distributions. We are in the process of analyzing a variety of initial conditions as well as looking in more detail at issues such as nonlinear vs linear dynamics, and of how distribution functions vary with conditions in the plasma. This paper will report latest results on these and other issues.

  9. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    SciTech Connect

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph E-mail: pgary@lanl.gov

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  10. Lie cascades and Random Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Lovejoy, S.; Tchiguirinskaia, I.

    2009-04-01

    Lie cascades were defined as a broad generalization of scalar cascades (Schertzer and Lovejoy 1995, Tchiguirinskaia and Schertzer, 1996) with the help of (infinitesimal) sub-generators being white noise vector fields on manifolds, instead of being white noise scalar fields on vector spaces. Lie cascades were thus closely related to stochastic flows on manifolds as defined by Kunita (1990). However, the concept of random dynamical systems (Arnold,1998) allows to make a closer and simpler connection between stochastic differential equations and the dynamical system approach. In this talk, we point out some relationships between Lie cascades and random dynamical systems, and therefore to dynamical system approach.

  11. Contingency Analysis of Cascading Line Outage Events

    SciTech Connect

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  12. Cascade control and defense in complex networks.

    PubMed

    Motter, Adilson E

    2004-08-27

    Complex networks with a heterogeneous distribution of loads may undergo a global cascade of overload failures when highly loaded nodes or edges are removed due to attacks or failures. Since a small attack or failure has the potential to trigger a global cascade, a fundamental question regards the possible strategies of defense to prevent the cascade from propagating through the entire network. Here we introduce and investigate a costless strategy of defense based on a selective further removal of nodes and edges, right after the initial attack or failure. This intentional removal of network elements is shown to drastically reduce the size of the cascade. PMID:15447153

  13. Dynamics and structure of energetic displacement cascades

    SciTech Connect

    Averback, R.S.; Diaz de la Rubia, T.; Benedek, R.

    1987-12-01

    This paper summarizes recent progress in the understanding of energetic displacement cascades and the primary state of damage in metals. On the theoretical side, the availability of supercomputers has greatly enhanced our ability to simulate cascades by molecular dynamics. Recent application of this simulation technique to Cu and Ni provides new insight into the dynamics of cascade processes. On the experimental side, new data on ion beam mixing and in situ electron microscopy studies of ion damage at low temperatures reveal the role of the thermodynamic properties of the material on cascade dynamics and structure. 38 refs., 9 figs.

  14. Tri-bimaximal Mixing from Cascades

    SciTech Connect

    Takahashi, Ryo

    2008-11-23

    We investigate fermion mass matrices of the cascade form which lead to the tri-bimaximal mixing in the lepton sector. The cascade neutrino matrix predicts a parameter-independent relation among the observables, which are the neutrino mixing angles and mass squared differences. The relation predicts that the atmospheric neutrino mixing angle is close to maximal. We also study phenomenological aspect of the cascade form in supersymmetric theory, which are lepton flavor violation and thermal leptogenesis. A dynamical realivation of the cascade mass matrix are also presented in U(1) flavor theory.

  15. Cascade decays of hollow ions

    SciTech Connect

    Omar, G. ); Hahn, Y. )

    1991-05-01

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe{sup 14+} ions with the initial 1{ital s}, 2{ital s}, and 2{ital p} vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1{ital s} holes is analyzed, and the result compared with that for the case of one 1{ital s} hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts.

  16. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  17. Physics of interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Vurgaftman, I.; Bewley, W. W.; Merritt, C. D.; Canedy, C. L.; Kim, C. S.; Abell, J.; Meyer, J. R.; Kim, M.

    2012-01-01

    The interband cascade laser (ICL) is a unique device concept that combines the effective parallel connection of its multiple-quantum-well active regions, interband active transitions, and internal generation of electrons and holes at a semimetallic interface within each stage of the device. The internal generation of carriers becomes effective under bias, and the role of electrical injection is to replenish the carriers consumed by recombination processes. Major strides have been made toward fundamentally understanding the rich and intricate ICL physics, which has in turn led to dramatic improvements in the device performance. In this article, we review the physical principles of the ICL operation and designs of the active region, electron and hole injectors, and optical waveguide. The results for state-of- the-art ICLs spanning the 3-6 μm wavelength range are also briefly reviewed. The cw threshold input powers at room temperature are more than an order of magnitude lower than those for quantum cascade lasers throughout the mid-IR spectral range. This will lengthen battery lifetimes and greatly relax packaging and size/weight requirements for fielded sensing systems.

  18. Analysis of cascade impactor mass distributions.

    PubMed

    Dunbar, Craig; Mitchell, Jolyon

    2005-01-01

    The purpose of this paper is to review the approaches for analyzing cascade impactor (CI) mass distributions produced by pulmonary drug products and the considerations necessary for selecting the appropriate analysis procedure. There are several methods available for analyzing CI data, yielding a hierarchy of information in terms of nominal, ordinal and continuous variables. Mass distributions analyzed as a nominal function of the stages and auxiliary components is the simplest approach for examining the whole mass emitted by the inhaler. However, the relationship between the mass distribution and aerodynamic diameter is not described by such data. This relationship is a critical attribute of pulmonary drug products due to the association between aerodynamic diameter and the mass of particulates deposited to the respiratory tract. Therefore, the nominal mass distribution can only be utilized to make decisions on the discrete masses collected in the CI. Mass distributions analyzed as an ordinal function of aerodynamic diameter can be obtained by introducing the stage size range, which generally vary in magnitude from one stage to another for a given type of CI, and differ between CIs of different designs. Furthermore, the mass collected by specific size ranges within the CI are often incorrectly used to estimate in vivo deposition at various regions of the respiratory tract. A CI-generated mass distribution can be directly related to aerodynamic diameter by expressing the mass collected by each size-fractionating stage in terms of either mass frequency or cumulative mass fraction less than the aerodynamic size appropriate to each stage. Analysis of the aerodynamic diameter as a continuous variable allows comparison of mass distributions obtained from different products, obtained by different CI designs, as well as providing input to in vivo particle deposition models. The lack of information about the mass fraction emitted by the inhaler that is not size-analyzed by

  19. Bacterial community response to changes in a tri-trophic cascade during a whole-lake fish manipulation.

    PubMed

    Saarenheimo, J; Aalto, S L; Syväranta, J; Devlin, S P; Tiirola, M; Jones, R I

    2016-03-01

    Microbial communities play a key role in biogeochemical processes by degrading organic material and recycling nutrients, but can also be important food sources for upper trophic levels. Trophic cascades might modify microbial communities either directly via grazing or indirectly by inducing changes.in other biotic or in abiotic factors (e.g., nutrients). We studied the effects of a tri-trophic cascade on microbial communities during a whole-lake manipulation in which European perch (Perca fluviatilis) were added to a naturally fishless lake divided experimentally into two basins. We measured environmental parameters (oxygen, temperature, and nutrients) and zooplankton biomass and studied the changes in the bacterial community using next generation sequencing of 16S rRNA genes and cell counting. Introduction of fish reduced the biomass of zooplankton, mainly Daphnia, which partly altered the bacterial community composition and affected the bacterial cell abundances. However, the microbial community composition was mainly governed by stratification patterns and associated vertical oxygen concentration. Slowly growing green sulfur bacteria (Chlorobium) dominated the anoxic water layers together with bacteria of the candidate division ODI. We conclude that alterations in trophic interactions can affect microbial abundance, but that abiotic factors seem to be more significant controls of microbial community composition in sheltered boreal lakes. PMID:27197395

  20. Microbial effects

    SciTech Connect

    Lamborg, M.R.; Hardy, R.W.F.; Paul, E.A.

    1983-01-01

    The postulated doubling of atmospheric CO/sub 2/ is not likely to have direct effect on soil microbial activity because during the growing season, the concentration of CO/sub 2/ in the soil atmosphere is already ten to fifty times higher than existing atmospheric CO/sub 2/. Based on all available experimental information, it is estimated that a doubling of atmospheric CO/sub 2/ will cause an increase in primary productivity of 10 to 40% depending on locale. The increase in biomass will, in turn, produce a limitation of available soil nutrients, especially nitrogen and phosphorus. Increased organic carbon together with nitrogen and/or phosphorus limitation will result in a preferential increase in nitrogen fixation and mycorrhizal activities as the expedient means for supplying required nutrients to sustain the predicted increase in primary productivity. Therefore, increased emphasis should be placed on fundamental research related to soil microbiology with special reference to nitrogen-fixing, nitrifying and denitrifying bacteria, and to the mycorrhizal fungi. 111 references, 2 figures.

  1. Uranium Neutron Capture Gamma Cascade Generation and Transport Simulation for Capture Tank Response

    NASA Astrophysics Data System (ADS)

    Rosener, Thomas Jay

    1992-01-01

    A computer analysis has been performed to evaluate the energy dependent response of a capture tank to the gamma-ray cascades emitted from excited ^ {239}U. The GAMINT code was developed to simulate the decay of the ^{239 }U nucleus, formed in the ^{238}U(n,gamma)^{239 }U reaction, in order to provide the source spectrum for the complete analysis of the capture tank efficiency. This model determines the energies of the gamma-ray cascades, the order of emission of the gamma rays in a cascade, and the gamma-ray multiplicities by Monte Carlo techniques. A gamma-ray emission spectrum for the excited ^{239}U nucleus is generated. In the GAMINT code, known level data for ^{239}U is used below 1 MeV. A statistical approach based on the back-shifted Fermi gas model is used for the continuum level density. A single -particle model description for transition rates, with hindrance factors applied, is used to determine the gamma ray transition probabilities. Internal conversion probabilities are determined and the inclusion of this competing process suppresses the low energy portion of the gamma spectrum. A capture tank responds to the combined effect of the gamma rays of various energies from a cascade, after being transported through the material between the sample and the capture tank. Examined is the energy deposition, in a capture tank, by the cascades generated from resonant and off-resonant capture in a ^{238 }U sample. Internal conversion has a negligible effect on the average cascade energy deposited in the tank. Off -resonant (volumetric) capture deposits, on the average, less energy than resonant (surface) capture in the capture tank as a result of self-shielding of the gamma rays in the capture sample.

  2. Cascade Harvest’ red raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cascade Harvest’ is a new floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). ‘Cascade Harvest’ produces a high yield of large, firm fruit suited to machine harves...

  3. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  4. Cascade Error Projection: An Efficient Hardware Learning Algorithm

    NASA Technical Reports Server (NTRS)

    Duong, T. A.

    1995-01-01

    A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.

  5. 2. LOOKING EAST AT PARKING AREA BETWEEN TAMARACK AND CASCADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LOOKING EAST AT PARKING AREA BETWEEN TAMARACK AND CASCADE CREEK BRIDGES. RAILING AT RIGHT EDGE IS THE EAST END OF TAMARACK BRIDGE. - Cascade Creek Bridge, Spanning Cascade Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  6. MAPK Cascades in Guard Cell Signal Transduction

    PubMed Central

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  7. MAPK Cascades in Guard Cell Signal Transduction.

    PubMed

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  8. Stochastic annealing simulation of cascades in metals

    SciTech Connect

    Heinisch, H.L.

    1996-04-01

    The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.

  9. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  10. Microbial Communities Associated with Biogenic Iron Oxide Mineralization in Circumneutral pH Environments

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Banfield, J. F.

    2002-12-01

    Lithotrophic growth on iron is a metabolism that has been found in a variety of neutral pH environments and is likely important in sustaining life in microaerophilic solutions, especially those low in organics. The composition of the microbial communities, especially the organisms that are responsible for iron oxidation, and carbon and nitrogen fixation, are not known, yet the ability to recognize these contributions is vital to our understanding of iron cycling in natural environments. Our approach has been to study the microbial community structure, mineralogy, and geochemistry of ~20 cm thick, 100's meters long, fluffy iron oxide-encrusted biological mats growing in the Piquette Mine tunnel, and to compare the results to those from geochemically similar environments. In situ measurements (Hydrolab) and geochemical characterization of bulk water samples and peepers (dialysis sampling vials) indicate that the environment is microaerobic, with micromolar levels of iron, high carbonate and sulfate, and typical groundwater nitrate and nitrite concentrations. 16S rDNA clone libraries show that the microbial mat and water contain communities with considerable diversity within the Bacterial domain, a large proportion of Nitrospira and Betaproteobacteria, and no Archaea. Because clone library data are not necessarily indicative of actual abundance, fluorescence in-situ hybridization (FISH) was performed on water, mat, and sediment samples from the Piquette mine and two circumneutral iron- and carbonate-rich springs in the Oregon Cascade Range. Domain- and phylum-level probes were chosen based on the clone library results (Nitrospira, Beta- and Gammaproteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Planctomyces). FISH data reveal spatial associations between specific microbial groups and mineralized structures. The organisms responsible for making the mineralized sheaths that compose the bulk of the iron oxide mat are Betaproteobacteria (probably Leptothrix

  11. Diversity Cascades and Malaria Vectors

    PubMed Central

    CARLSON, JOHN C.; DYER, LEE A.; OMLIN, FRANCOIS X.; BEIER, JOHN C.

    2009-01-01

    The interactions between predator diversity and primary consumer abundance can include direct effects and indirect, cascading effects. Understanding these effects on immature Anopheles mosquitoes is important in sub-Saharan Africa, where most cases of malaria occur. Aquatic predators and immature mosquitoes were collected from shallow pools of varying age previously excavated by brickmakers in the western highlands of Kenya. Path analysis showed an indirect negative effect of habitat age on An. gambiae (Giles, 1902) mediated by effects on predator diversity. Disturbance resets habitats to an earlier successional stage, diminishing predator diversity and increasing An. gambiae populations. The increase in vector abundance as a result of reduced predator diversity highlights the public health value in conserving native insect diversity. PMID:19496413

  12. Weak Interactions and Instability Cascades.

    PubMed

    Kadoya, Taku; McCann, Kevin S

    2015-01-01

    Food web theory states that a weak interactor which is positioned in the food web such that it tends to deflect, or mute, energy away from a potentially oscillating consumer-resource interaction often enhances community persistence and stability. Here we examine how adding other weak interactions (predation/harvesting) on the stabilizing weak interactor alters the stability of food web using a set of well-established food web models/modules. We show that such "weak on weak" interaction chains drive an indirect dynamic cascade that can rapidly ignite a distant consumer-resource oscillator. Nonetheless, we also show that the "weak on weak" interactions are still more stable than the food web without them, and so weak interactions still generally act to stabilize food webs. Rather, these results are best interpreted to say that the degree of the stabilizing effect of a given important weak interaction can be severely compromised by other weak interactions (including weak harvesting). PMID:26219561

  13. The Geant4 Bertini Cascade

    SciTech Connect

    Wright, D. H.; Kelsey, M. H.

    2015-12-01

    One of the medium energy hadron–nucleus interaction models in the Geant4 simulation toolkit is based partly on the Bertini intranuclear cascade model. Since its initial appearance in the toolkit, this model has been largely re-written in order to extend its physics capabilities and to reduce its memory footprint. Physics improvements include extensions in applicable energy range and incident particle types, and improved hadron–nucleon cross-sections and angular distributions. Interfaces have also been developed which allow the model to be coupled with other Geant4 models at lower and higher energies. The inevitable speed reductions due to enhanced physics have been mitigated by memory and CPU efficiency improvements. Details of these improvements, along with selected comparisons of the model to data, are discussed.

  14. Cascades in interdependent flow networks

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  15. The Geant4 Bertini Cascade

    NASA Astrophysics Data System (ADS)

    Wright, D. H.; Kelsey, M. H.

    2015-12-01

    One of the medium energy hadron-nucleus interaction models in the GEANT4 simulation toolkit is based partly on the Bertini intranuclear cascade model. Since its initial appearance in the toolkit, this model has been largely re-written in order to extend its physics capabilities and to reduce its memory footprint. Physics improvements include extensions in applicable energy range and incident particle types, and improved hadron-nucleon cross-sections and angular distributions. Interfaces have also been developed which allow the model to be coupled with other GEANT4 models at lower and higher energies. The inevitable speed reductions due to enhanced physics have been mitigated by memory and CPU efficiency improvements. Details of these improvements, along with selected comparisons of the model to data, are discussed.

  16. Compact Quantum Cascade Laser Transmitter

    SciTech Connect

    Anheier, Norman C.; Hatchell, Brian K.; Gervais, Kevin L.; Wojcik, Michael D.; Krishnaswami, Kannan; Bernacki, Bruce E.

    2009-04-01

    ): In this paper we present design considerations, thermal and optical modeling results, and device performance for a ruggedized, compact laser transmitter that utilizes a room temperature quantum cascade (QC) laser source. The QC laser transmitter is intended for portable mid-infrared (3-12 µm) spectroscopy applications, where the atmospheric transmission window is relatively free of water vapor interference and where the molecular rotational vibration absorption features can be used to detect and uniquely identify chemical compounds of interest. Initial QC laser-based sensor development efforts were constrained by the complications of cryogenic operation. However, improvements in both QC laser designs and fabrication processes have provided room-temperature devices that now enable significant miniaturization and integration potential for national security, environmental monitoring, atmospheric science, and industrial safety applications.

  17. Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.

    2011-01-01

    reflects extensional tectonics that dominated during these periods of arc magmatism. Mineral deposits associated with ancestral Cascades arc rocks are uncommon; most are small and low grade relative to those found in other continental magmatic arcs. The small size, low grade, and dearth of deposits, especially in the southern two-thirds of the ancestral arc, probably reflect many factors, the most important of which may be the prevalence of extensional tectonics within this arc domain during this magmatic episode. Progressive clockwise rotation of the forearc block west of the evolving Oregon part of the ancestral Cascades magmatism produced an extensional regime that did not foster significant mineral deposit formation. In contrast, the Washington arc domain developed in a transpressional to mildly compressive regime that was more conducive to magmatic processes and hydrothermal fluid channeling critical to deposit formation. Small, low-grade porphyry copper deposits in the northern third of the ancestral Cascades arc segment also may be a consequence of more mature continental crust, including a Mesozoic component, beneath Washington north of Mount St. Helens.

  18. Tracking multiple sediment cascades at the river network scale identifies controls and emerging patterns of sediment connectivity

    NASA Astrophysics Data System (ADS)

    Schmitt, Rafael J. P.; Bizzi, Simone; Castelletti, Andrea

    2016-05-01

    Sediment connectivity in fluvial networks results from the transfer of sediment between multiple sources and sinks. Connectivity scales differently between all sources and sinks as a function of distance, source grain size and sediment supply, network topology and topography, and hydrologic forcing. In this paper, we address the challenge of quantifying sediment connectivity and its controls at the network scale. We expand the concept of a single, catchment-scale sediment cascade toward representing sediment transport from each source as a suite of individual cascading processes. We implement this approach in the herein presented CAtchment Sediment Connectivity And DElivery (CASCADE) modeling framework. In CASCADE, each sediment cascade establishes connectivity between a specific source and its multiple sinks. From a source perspective, the fate of sediment is controlled by its detachment and downstream transport capacity, resulting in a specific trajectory of transfer and deposition. From a sink perspective, the assemblage of incoming cascades defines provenance, sorting, and magnitude of sediment deliveries. At the network scale, this information reveals emerging patterns of connectivity and the location of bottlenecks, where disconnectivity occurs. In this paper, we apply CASCADE to quantitatively analyze the sediment connectivity of a major river system in SE Asia. The approach provides a screening model that can support analyses of large, poorly monitored river systems. We test the sensitivity of CASCADE to various parameters and identify the distribution of energy between the multiple, simultaneously active sediment cascades as key control behind network sediment connectivity. To conclude, CASCADE enables a quantitative, spatially explicit analysis of network sediment connectivity with potential applications in both river science and management.

  19. Cascades on clique-based graphs

    NASA Astrophysics Data System (ADS)

    Hackett, Adam; Gleeson, James P.

    2013-06-01

    We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of highly clustered random graphs introduced by Gleeson [J. P. Gleeson, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.036107 80, 036107 (2009)]. A condition for the existence of global cascades is also derived. Applications of this approach include analyses of percolation, and Watts's model. We show how our techniques can be used to study the effects of in-group bias in cascades on social networks.

  20. Cascade Screening in Familial Hypercholesterolemia: Advancing Forward.

    PubMed

    Santos, Raul D; Frauches, Thiago S; Chacra, Ana P M

    2015-01-01

    Familial hypercholesterolemia is a genetic disorder associated with elevated LDL-cholesterol and high lifetime cardiovascular risk. Both clinical and molecular cascade screening programs have been implemented to increase early definition and treatment. In this systematic review, we discuss the main issues found in 65 different articles related to cascade screening and familial hypercholesterolemia, covering a range of topics including different types/strategies, considerations both positive and negative regarding cascade screening in general and associated with the different strategies, cost and coverage consideration, direct and indirect contact with patients, public policy around life insurance and doctor-patient confidentiality, the "right to know," and public health concerns regarding familial hypercholesterolemia. PMID:26194978

  1. Gust Response Analysis of a Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Gorla, R. S. R.; Reddy, T. S. R.; Reddy, D. R.; Kurkov, A. P.

    2001-01-01

    A study was made of the gust response of an annular turbine cascade using a two-dimensional Navier Stokes code. The time-marching CFD code, NPARC, was used to calculate the unsteady forces due to the fluid flow. The computational results were compared with a previously published experimental data for the annular cascade reported in the literature. Reduced frequency, Mach number and angle of incidence were varied independently and the gust velocity was sinusoidal. For the high inlet velocity case, the cascade was nearly choked.

  2. Microbial mineral recovery

    SciTech Connect

    Ehrlich, H.L.; Brierly, C.L.

    1989-01-01

    This book presents the scientific basis for using microbial biomass to remove metals from solution. Reports on current and potential microbial technology, including bioleaching of ores, bio-benefication of ores and fossil fuels, metal recovery from solution, and microbial EOR. Examines how microorganisms used in these technologies might improve through genetic engineering.

  3. Cascade-able spin torque logic gates with input-output isolation

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2015-06-01

    Spin torque majority gate (STMG) is one of the promising options for beyond-complementary metal-oxide-semiconductor non-volatile logic circuits for normally-off computing. Modeling of prior schemes demonstrated logic completeness using majority operation and nonlinear transfer characteristics. However significant problems arose with cascade-ability and input output isolation manifesting as domain walls (DWs) stopping, reflecting off ends of wires or propagating back to the inputs. We introduce a new scheme to enable cascade-ability and isolation based on (a) in-plane DW automotion in interconnects, (b) exchange coupling of magnetization between two FM layers, and (c) ‘round-about’ topology for the majority gate. We performed micro-magnetic simulations that demonstrate switching operation of this STMG scheme. These circuits were verified to enable isolation of inputs from output signals and to be cascade-able without limitations.

  4. Quantum Cascade Laser Frequency Combs

    NASA Astrophysics Data System (ADS)

    Faist, Jérôme; Villares, Gustavo; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2016-06-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100mW and frequency coverage of 100 cm-1 in the mid-infrared region. In the THz range, 10mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four-wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the first dual-comb spectroscopy measurements. The capability of the structure to integrate monothically nonlinear optical elements as well as to operate as a detector shows great promise for future chip integration of dual-comb systems.

  5. Intracrater Evaporite Deposits of the Lake St. Martin Impact Structure: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Stromberg, J.; Berard, G.; Mann, P.; Cloutis, E.

    2011-03-01

    The gypsum-rich intracrater evaporate deposits of the Lake St. Martin impact structure and its spectrally detectable endolithic microbial communities make it a relevant analogue for similar deposits on Mars.

  6. Cascade Error Projection: A New Learning Algorithm

    NASA Technical Reports Server (NTRS)

    Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.

    1995-01-01

    A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.

  7. Modeling and analysis of cascade solar cells

    NASA Technical Reports Server (NTRS)

    Ho, F. D.

    1986-01-01

    A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed.

  8. MAP kinase cascades: scaffolding signal specificity.

    PubMed

    van Drogen, Frank; Peter, Matthias

    2002-01-22

    Scaffold proteins organize many MAP kinase pathways by interacting with several components of these cascades. Recent studies suggest that scaffold proteins provide local activation platforms that contribute to signal specificity by insulating different MAP kinase pathways. PMID:11818078

  9. HELIUM EFFECTS ON DISPLACEMENT CASCADE IN TUNGSTEN

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.; Wirth, Brian D.

    2013-09-30

    Molecular dynamics (MD) simulations were performed to investigate He effects on displacement cascades in W. Helium content, proportion of interstitial and substitutional He and temperature were varied to reveal the various effects. The effect of interstitial He on the number of self-interstitial atoms (SIAs) produced during cascade damage appears to be insignificant. However, interstitial He tends to fill a vacancy (V). Nevertheless, this process is less favorable than SIA-V recombination particularly when excess SIAs are present before a cascade. The efficiency of He filling and SIA-V recombination increases as temperature increases due to increased point defect mobility. Likewise, substitutional He is more susceptible to displacement during a collision cascade than W. This susceptibility increases towards higher temperatures. Consequently, the number of surviving V is governed by the interplay between displaced substitutional He and SIA-V recombination. The temperature dependence of these processes results in a minimum number of V reached at an intermediate temperature.

  10. Displacement Cascade Damage Production in Metals

    SciTech Connect

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    2015-01-01

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.

  11. Signalling pathways: jack of all cascades.

    PubMed

    Cahill, M A; Janknecht, R; Nordheim, A

    1996-01-01

    The transcription factors that bind the c-fos promoter element SRE are targeted by multiple, independent signalling cascades; the identities of these signalling pathways and their modes of activation are being elucidated. PMID:8805215

  12. SAMPLING CHARGED PARTICLES WITH CASCADE IMPACTORS

    EPA Science Inventory

    The report discusses three sets of experiments which demonstrate that a cascade impactor sampling a charged aerosol may yield a particle size distribution measurement that deviates from the time distribution. The distributions indicated more large particles and fewer small partic...

  13. Network effects, cascades and CCP interoperability

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobing; Hu, Haibo; Pritsker, Matthew

    2014-03-01

    To control counterparty risk, financial regulations such as the Dodd Frank Act are increasingly requiring standardized derivatives trades to be cleared by central counterparties (CCPs). It is anticipated that in the near-term future, CCPs across the world will be linked through interoperability agreements that facilitate risk-sharing but also serve as a conduit for transmitting shocks. This paper theoretically studies a network with CCPs that are linked through interoperability arrangements, and studies the properties of the network that contribute to cascading failures. The magnitude of the cascading is theoretically related to the strength of network linkages, the size of the network, the logistic mapping coefficient, a stochastic effect and CCP's defense lines. Simulations indicate that larger network effects increase systemic risk from cascading failures. The size of the network N raises the threshold value of shock sizes that are required to generate cascades. Hence, the larger the network, the more robust it will be.

  14. Determining the direction of a turbulent cascade

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter; Cerbus, Rory

    2015-11-01

    In two-dimensional (2D) turbulence, one expects a cascade of energy to larger spatial scales, while the enstrophy cascade is to smaller ones. Here we present a new tool to study cascades using simple ideas borrowed from information theory. It is entirely unrelated to the Navier-Stoke's equations or any scaling arguments. We use the conditional entropy (conditioned uncertainty) of velocity fluctuations on one scale conditioned on another larger or smaller scale. If the entropy is larger after conditioning on larger scales rather than smaller ones, then the cascade is to smaller scales. By varying the scale of the velocity fluctuations used in the conditioning, we can test both direction and locality. We use these tools on experimental data taken from a flowing soap film, an approximately 2D turbulent flow. The Reynolds number is varied over a wide range to determine the entropy's scaling with Reynolds number OIST.

  15. A DATA REDUCTION SYSTEM FOR CASCADE IMPACTORS

    EPA Science Inventory

    The report describes a computer-based data reduction system for cascade impactors. The system utilizes impactor-specific calibration information, together with operating conditions and other pertinent information (e.g., stage weights, sampling duration), to determine particle siz...

  16. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 2: Translation mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.

  17. Cascading effects of a highly specialized beech-aphid–fungus interaction on forest regeneration

    PubMed Central

    Maynard, Lauren; Lemoine, Nathan P.; Shue, Jessica; Parker, John D.

    2014-01-01

    Specialist herbivores are thought to often enhance or maintain plant diversity within ecosystems, because they prevent their host species from becoming competitively dominant. In contrast, specialist herbivores are not generally expected to have negative impacts on non-hosts. However, we describe a cascade of indirect interactions whereby a specialist sooty mold (Scorias spongiosa) colonizes the honeydew from a specialist beech aphid (Grylloprociphilus imbricator), ultimately decreasing the survival of seedlings beneath American beech trees (Fagus grandifolia). A common garden experiment indicated that this mortality resulted from moldy honeydew impairing leaf function rather than from chemical or microbial changes to the soil. In addition, aphids consistently and repeatedly colonized the same large beech trees, suggesting that seedling-depauperate islands may form beneath these trees. Thus this highly specialized three-way beech-aphid–fungus interaction has the potential to negatively impact local forest regeneration via a cascade of indirect effects. PMID:25024911

  18. Forward and Inverse Cascades in EMHD Turbulence

    NASA Astrophysics Data System (ADS)

    Cho, Jungyeon

    2016-05-01

    Electron magnetohydrodynamics (EMHD) provides a simple fluid-like description of physics below the proton gyro-scale in collisionless plasmas, such as the solar wind. In this paper, we discuss forward and inverse cascades in EMHD turbulence in the presence of a strong mean magnetic field. Similar to Alfvén waves, EMHD waves, or EMHD perturbations, propagate along magnetic field lines. Therefore, two types of EMHD waves can exist: waves moving parallel to and waves moving anti-parallel to the the magnetic field lines. For energy cascade in EMHD turbulence, the relative amplitudes of opposite-traveling waves are important. When the amplitudes are balanced, we will see fully-developed forward cascade with a k -7/3 energy spectrum and a scale-dependent anisotropy. On the other hand, when the amplitudes are imbalanced, we will see inverse cascade, as well as (presumably not fully developed) forward cascade. The underlying physics for the inverse cascade is magnetic helicity conservation.

  19. Emergence of event cascades in inhomogeneous networks.

    PubMed

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-01-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network. PMID:27625183

  20. Duality cascade in brane inflation

    SciTech Connect

    Bean, Rachel; Chen Xingang; Hailu, Girma; Henry Tye, S-H; Xu Jiajun E-mail: xgchen@mit.edu E-mail: tye@lepp.cornell.edu

    2008-03-15

    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario, where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude compared to that in previously studied large field models. In the IR DBI scenario, where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.

  1. Snow chemistry of the Cascade-Sierra Nevada Mountains

    USGS Publications Warehouse

    Laird, L.B.; Taylor, H.E.; Kennedy, V.C.

    1986-01-01

    This investigation assesses geographic variations in atmospheric deposition in Washington, Oregon, and California using snow cores from the Cascade-Sierra Nevada Mountains, collected from late February to mid-March 1983. A statistical analysis of the analytical and sampling precision was made. The snowpack in the higher Cascades and Sierra Nevada is not strongly influenced by anthropogenic activities at present. The pH of snow samples ranges from 5.11 to 5.88. Sulfate and nitrate correlate with H+ in some segments of the sample traverse. The SO4 data show apparent influence from major source areas in Washington and California; nitrate does not. An apparent decrease in NH4 in snow in Washington and California suggests atmospheric interactions resulting in the removal of NH4. The NH4 reduction raises questions about nutrient supply to the mountain vegetation. Heavy-metal correlations included Cd, Cu, and Fe with Pb, and Mn with K and DOC, among others. No correlation was found between constituents and snow-water content.

  2. Efficiency and spatial resolution of the CASCADE thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Köhli, M.; Allmendinger, F.; Häußler, W.; Schröder, T.; Klein, M.; Meven, M.; Schmidt, U.

    2016-08-01

    We report on the CASCADE project - a detection system, which has been designed for the purposes of neutron Spin Echo spectroscopy and which is continuously further developed and adapted to various applications. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid 10B coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard counting gas environment. This multi-layer setup efficiently increases the detection efficiency and by extracting the signal of the charge traversing the stack the conversion layer can be identified allowing a precise determination of the time-of-flight. The spatial resolution is found by optical contrast determination to be σ =(1.39 ± 0.05) mm and by divergence corrected aperture measurements σ =(1.454 ± 0.007) mm , which is in agreement with the simulated detector model. Furthermore this enabled to investigate and describe the non-Gaussian resolution function. At the HEiDi diffractometer the absolute detection efficiency has been studied. At 0.6 Å for the 6 layer detector, which is currently part of the RESEDA spectrometer, an efficiency of 7.8% has been measured, which by means of Monte Carlo simulations translates to (21.0±1.5)% for thermal neutrons at 1.8 Å and (46.9±3.3)% at 5.4 Å.

  3. Simulation of collision cascades and thermal spikes in ceramics

    SciTech Connect

    Devanathan, Ramaswami; Weber, William J.

    2010-10-01

    Classical molecular dynamics simulations have been employed to examine defect production by energetic recoils in UO2, Gd2Ti2O7, Gd2Zr2O7 and ZrSiO4. These atomistic simulations provide details of the nature and size distribution of defect clusters produced in collision cascades. The accommodation of recoil damage by lower energy cation exchange and greater occupation of anion structural vacancies is a contributing factor for the greater radiation tolerance of Gd2Zr2O7 relative to Gd2Ti2O7. In addition, electronic energy loss processes in UO2 has been modeled in the form of a thermal spike to study the details of track formation and track structure. For thermal spikes with energy deposition of 4 keV/nm in UO2, a track was not formed and mainly isolated Frenkel pairs are produced.

  4. Microbial limitation in a changing world: A stoichiometric approach for predicting microbial resource limitation and fluxes

    NASA Astrophysics Data System (ADS)

    Midgley, M.; Phillips, R.

    2014-12-01

    Microbes mediate fluxes of carbon (C), nitrogen (N), and phosphorus (P) in soils depending on ratios of available C, N, and P relative to microbial demand. Hence, characterizing microbial C and nutrient limitation in soils is critical for predicting how ecosystems will respond to human alterations of climate and nutrient availability. Here, we take a stoichiometric approach to assessing microbial C, N, and P limitation by using threshold element ratios (TERs). TERs enable shifting resource limitation to be assessed by matching C, N and P ratios from microbial biomass, extracellular enzyme activities, and soil nutrient concentrations. We assessed microbial nutrient limitation in temperate forests dominated by trees that associate with one of two mycorrhizal symbionts: arbsucular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. We found that both ECM and AM microbial communities were co-limited by C and N, supporting conventional wisdom that microbes are C-limited and temperate forests are N-limited. However, AM microbial communities were relatively more C-limited than ECM communities (P=0.001). In response to chronic field N fertilization, both AM and ECM communities became relatively more P-limited (P=0.011), but they remained N- and C-limited overall. Thus, realistic levels of N deposition may not dampen microbial N limitation. Reflecting differences in relative limitation, N mineralization rates were higher in AM soils than in ECM soils (P=0.004) while C mineralization rates were higher in ECM soils than in AM soils (P=0.023). There were no significant differences in P flux between AM and ECM soils or detectable mineralization responses to N addition, indicating that mineralization rates are closely tied to C and nutrient limitation. Overall, we found that 1) microbial resource limitation can be detected without resource addition; and 2) TERs and ratios of labile resources are viable tools for predicting mineralization responses to resource additions.

  5. Lead-isotopic data from sulfide minerals from the Cascade Range, Oregon and Washington

    USGS Publications Warehouse

    Church, S.E.; LeHuray, A.P.; Grant, A.R.; Delevaux, M.H.; Gray, J.E.

    1986-01-01

    Lead-isotopic studies of mineral deposits associated with Tertiary plutons found in the Cascade Range of Oregon and Washington demonstrate a rather uniform isotopic composition in various sulfide minerals ( 206Pb 204Pb = 18.84 to 19.05; 207Pb 204Pb = 15.57 to 15.62; 208Pb 204Pb = 38.49 to 38.74), show less variation than data from the volcanic rocks of the Cascade Range and fall within the mixing array defined by the MORB regression line and continental sediments. An evaluation of the role of crustal assimilation by hydrothermal convection during emplacement was made on five sulfide deposits associated with a single composite batholith, the Cloudy Pass pluton. The Pb-isotopic data and mass balance calculations suggest that only minor amounts of the lead were derived from the overlying Precambrian (?) Swakane Biotite Gneiss during emplacement. The bulk of the metal that occurs in sulfide deposits in the Cascade mineral belt appears to have been derived from subducted continental detritus. The variation of the Pb-isotopic signature of Sulfides from specific districts or deposits suggests that there is a correlation with age and structure of the crust. 206Pb 204Pb is greater than 18.92 in northern Washington and southern Oregon where deposits have intruded Mesozoic or older crust. However, the ore deposits between the northern Oregon border and central Oregon, south of Eugene, have intruded younger crust composed largely of mafic and andesitic volcanic rocks and 206Pb 204Pb lies between 18.84 and 18.92. This region, previously called the Columbia embayment, appears to be underlain by Tertiary volcanic rocks. Lead-isotopic data may be used to define the boundaries between discontinuous blocks of Mesozoic crust and Tertiary volcanic cover. ?? 1986.

  6. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  7. Significance and future role of microbial resource centers.

    PubMed

    Overmann, Jörg

    2015-06-01

    Isolated strains constitute the basis for microbial systematics as well as for numerous applications in biotechnology, pharmacology, agronomy and public health. Microbial resource centers (mBRCs) are institutions capable of safeguarding, maintaining and distributing authenticated microbial strains, their genomic DNA and the associated data in a quality-controlled manner. They allow the deposit and distribution of type strains that form the basis of microbial taxonomy. Beyond taxonomy, deposited strains enable follow-up scientific studies and lead to a significantly improved recognition of scientific work. Considerable added value is generated through the labor-intensive steps of enrichment, enrichment screening, isolation, characterization, conservation and long-term storage of microbial strains. Here, a microbial strain is calculated to attain a value of 9836 Euro through its isolation and another 918 Euro through its deposit, adding up to a total value of 10,754 Euro. mBRCs provide a highly cost-effective way of preserving this value of microbial strains. A considerable future challenge of mBRCs will be to secure a larger fraction of strains that are isolated in research labs worldwide. mBRCs provide the expert knowledge and the cultivation and preservation skills crucial to access the large fraction of uncharted microbial diversity. mBRCs also provide the expertise and support the depositors of microbial resources to meet new legal challenges after implementation of the Nagoya Protocol. A suitable roadmap is described that allows mBRCs to meet the new demands emerging in science, technology and economy through an integration of novel technology, expansion of their duties and establishing an improved global mBRC network. PMID:25883055

  8. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2012-02-29

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  9. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.; Zierke, W. C.

    1986-01-01

    The purpose of NASA Research Grant NSG-3264 is to characterize the flowfield about an airfoil in a cascade at chord Reynolds number(R sub C)near 5 x 10 to the 5th power. The program is experimental and combines laser Doppler velocimeter (LDV) measurements with flow visualization techniques in order to obtain detailed flow data, e.g., boundary layer profiles, points of separation and the transition zone, on a cascade of highly-loaded compressor blades. The information provided by this study is to serve as benchmark data for the evaluation of current and future compressor cascade predictive models, in this way aiding in the compressor design process. Summarized is the research activity for the period 1 December 1985 through 1 June 1986. Progress made from 1 June 1979 through 1 December 1985 is presented. Detailed measurements have been completed at the initial cascade angle of 53 deg. (incidence angle 5 degrees). A three part study, based on that data, has been accepted as part of the 1986 Gas Turbine Conference and will be submitted for subsequent journal publication. Also presented are data for a second cascade angle of 45 deg (an incidence angle of 3 degrees).

  10. Stability of Helium Clusters during Displacement Cascades

    SciTech Connect

    Yang, Li; Zu, Xiaotao T.; Xiao, H. Y.; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Wang, Zhiguo; Liu, K. Z.

    2007-02-01

    The interaction of displacement cascades with helium-vacancy clusters is investigated using molecular dynamics simulations. The He-vacancy clusters initially consist of 20 vacancies with a Helium-to-vacancy ratio ranging from 0.2 to 3. The primary knock-on atom (PKA) energy, Ep, varies from 2 keV to 10 keV, and the PKA direction is chosen such that a displacement cascade is able to directly interact with a helium-vacancy cluster. The simulation results show that the effect of displacement cascades on a helium-vacancy cluster strongly depends on both the helium-to-vacancy ratio and the PKA energy. For the same PKA energy, the size of helium-vacancy clusters increases with the He/V ratio, but for the same ratio, the cluster size changes more significantly with increasing PKA energy. It has been observed that the He-vacancy clusters can be dissolved when the He/V ratio less than 1, but they are able to re-nucleate during the thermal spike phase, forming small He-V nuclei. When the He/V ratio is larger than 1, the He-V clusters can absorb a number of vacancies produced by displacement cascades, forming larger He-V clusters. These results are discussed in terms of PKA energy, helium-to-vacancy ratio, number of vacancies produced by cascades, and mobility of helium atoms.

  11. On the edge of an inverse cascade.

    PubMed

    Seshasayanan, Kannabiran; Benavides, Santiago Jose; Alexakis, Alexandros

    2014-11-01

    We demonstrate that systems with a parameter-controlled inverse cascade can exhibit critical behavior for which at the critical value of the control parameter the inverse cascade stops. In the vicinity of such a critical point, standard phenomenological estimates for the energy balance will fail since the energy flux towards large length scales becomes zero. We demonstrate this using the computationally tractable model of two-dimensional (2D) magnetohydrodynamics in a periodic box. In the absence of any external magnetic forcing, the system reduces to hydrodynamic fluid turbulence with an inverse energy cascade. In the presence of strong magnetic forcing, the system behaves as 2D magnetohydrodynamic turbulence with forward energy cascade. As the amplitude of the magnetic forcing is varied, a critical value is met for which the energy flux towards the large scales becomes zero. Close to this point, the energy flux scales as a power law with the departure from the critical point and the normalized amplitude of the fluctuations diverges. Similar behavior is observed for the flux of the square vector potential for which no inverse flux is observed for weak magnetic forcing, while a finite inverse flux is observed for magnetic forcing above the critical point. We conjecture that this behavior is generic for systems of variable inverse cascade. PMID:25493730

  12. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  13. Petrology and stratigraphy of Paleogene nonmarine sandstones, Cascade Range, Washington

    USGS Publications Warehouse

    Frizzell, Virgil A.

    1979-01-01

    The Cascade Range of Washington north of 47? latitude is composed of probable Paleozoic and Mesozoic metamorphic rocks and Mesozoic and Tertiary plutonic rocks. Several Paleogene nonmarine arkosic sandstone units fringe and in part occur within the complex crystalline core. The early to middle Eocene Chuckanut Formation is present on the west side of the crystalline core in the western foothills of the Cascades. The early to middle Eocene Swauk Formation partially encircles the Mt. Stuart massif of the central Cascades. In the western foothills of the Cascades, between the main body of Chuckanut Formation near Bellingham and the main outcrop area of the Swauk Formation south of Mt. Stuart, many smaller bodies of arkosic sandstone have variously been referred to either the Swauk or Chuckanut Formations. The early Eocene Manastash Formation occurs locally in an area south of the Yakima River. The middle to late Eocene Chumstick Formation is mostly confined to the Chiwaukum graben within the crystalline core and is separated from the Swauk Formation on the southwest by the Leavenworth Fault. The Oligocene Wenatchee Formation unconformably over lies the Chumstick Formation near Wenatchee. The middle to late Eocene Roslyn Formation crops out north of the Yakima River and is underlain by the Teanaway Basalt which separates the Roslyn from the older Swauk Formation. The middle Eocene to early Oligocene Naches Formation forms a north-trending body that crosses the Yakima River and is in fault contact with both the Swauk and Manastash Formations. The middle to late Eocene Puget Group underlies the Quaternary deposits of the Puget Lowland southeast of Seattle on the western flank of the Cascades. The various formations are all composed predominantly of fine- to medium-grained sandstones with lesser amounts of interbedded shale, conglomerate and coal. Compositionally, the units are predominantly either feldspathic or litho-feldspathic subquartzose sandstones. Volcanic rocks

  14. Microbial communities associated with wet flue gas desulfurization systems

    PubMed Central

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  15. Microbial communities associated with wet flue gas desulfurization systems.

    PubMed

    Brown, Bryan P; Brown, Shannon R; Senko, John M

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SO(x) gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  16. Succession in a microbial mat community - A Gaian perspective

    NASA Technical Reports Server (NTRS)

    Stolz, J. F.

    1984-01-01

    The contribution of prokaryotes to Gaian control systems is discussed. The survival of the Microcoleus-dominated stratified microbial community at Laguna Figueroa, after heavy rains flooded the evaporite flat with up to 3 m of water and deposited 5-10 cm of allocthonous sediment, demonstrates the resiliency of these communities to short-term perturbations while the microbial fossil record attests to their persistence over geologic time. It is shown that the great diversity of microbial species and their short generation time make them uniquely suited for Gaian mechanisms.

  17. High frequency energy cascades in inviscid hydrodynamics

    NASA Astrophysics Data System (ADS)

    Costa, Adam Smith N.; de Araújo, J. M.; Cohen, Nir; Lucena, Liacir S.; Viswanathan, G. M.

    2014-04-01

    With the aim of gaining insight into the notoriously difficult problem of energy and vorticity cascades in high dimensional incompressible flows, we take a simpler and very well understood low dimensional analog and approach it from a new perspective, using the Fourier transform. Specifically, we study, numerically and analytically, how kinetic energy moves from one scale to another in solutions of the hyperbolic or inviscid Burgers equation in one spatial dimension (1D). We restrict our attention to initial conditions which go to zero as x→±∞. The main result we report here is a Fourier analytic way of describing the cascade process. We find that the cascade proceeds by rapid growth of a crossover scale below which there is asymptotic power law decay of the magnitude of the Fourier transform.

  18. Optical filtering enabled by cascaded parametric amplification.

    PubMed

    McKinstrie, C J; Dailey, J M; Agarwal, A; Toliver, P

    2016-06-27

    A cascaded parametric amplifier consists of a first parametric amplifier, which amplifies an input signal and generates an idler, which is a copy of the signal, a signal processor, which controls the phases of the signal and idler, and a second parametric amplifier, which combines the signal and idler in a phase-sensitive manner. In this paper, cascaded parametric amplification is modeled and the conditions required to maximize the constructive-destructive extinction ratio are determined. The results show that a cascaded parametric amplifier can be operated as a filter: A desired signal-idler pair is amplified, whereas undesired signal-idler pairs are deamplified. For the desired signal and idler, the noise figures of the filtering process (input signal-to-noise ratio divided by the output ratios) are only slightly higher than those of the copying process: Signal-processing functionality can be achieved with only a minor degradation in signal quality. PMID:27410581

  19. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  20. Geothermal systems of the Cascade Range

    USGS Publications Warehouse

    Muffler, L.J.; Bacon, Charles R.; Duffield, W.A.

    1982-01-01

    In the central and southern Cascade Range, plate convergence is oblique, and Quaternary volcanism produces mostly basalt and mafic andesite; large andesite-dacite composite volcanoes and silicic dome fields occur in restricted areas of long-lived igneous activity. To the north, plate convergence is normal, producing widely spaced centers in which mafic lavas are minor. Most Cascade volcanoes are short-lived and unlikely to be underlain at shallow levels by large magma bodies that could support high-temperature geothermal systems. Such systems are known, however, near Meager Mountain, at Newberry Volcano, and near Lassen Peak. Persistent fumaroles occur on several major composite volcanoes, but drilling to date has been insufficient to determine whether exploitable geothermal reservoirs occur at depth. Thermal springs away from the major volcanic centers are few and generally inconspicuous. However, significant geothermal systems along and west of the Cascade Range may well be masked by abundant cold ground water.

  1. Cascade enzymatic reactions for efficient carbon sequestration.

    PubMed

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  2. Bifurcations analysis of turbulent energy cascade

    SciTech Connect

    Divitiis, Nicola de

    2015-03-15

    This note studies the mechanism of turbulent energy cascade through an opportune bifurcations analysis of the Navier–Stokes equations, and furnishes explanations on the more significant characteristics of the turbulence. A statistical bifurcations property of the Navier–Stokes equations in fully developed turbulence is proposed, and a spatial representation of the bifurcations is presented, which is based on a proper definition of the fixed points of the velocity field. The analysis first shows that the local deformation can be much more rapid than the fluid state variables, then explains the mechanism of energy cascade through the aforementioned property of the bifurcations, and gives reasonable argumentation of the fact that the bifurcations cascade can be expressed in terms of length scales. Furthermore, the study analyzes the characteristic length scales at the transition through global properties of the bifurcations, and estimates the order of magnitude of the critical Taylor-scale Reynolds number and the number of bifurcations at the onset of turbulence.

  3. Tandem Mass Spectrum Identification via Cascaded Search.

    PubMed

    Kertesz-Farkas, Attila; Keich, Uri; Noble, William Stafford

    2015-08-01

    Accurate assignment of peptide sequences to observed fragmentation spectra is hindered by the large number of hypotheses that must be considered for each observed spectrum. A high score assigned to a particular peptide-spectrum match (PSM) may not end up being statistically significant after multiple testing correction. Researchers can mitigate this problem by controlling the hypothesis space in various ways: considering only peptides resulting from enzymatic cleavages, ignoring possible post-translational modifications or single nucleotide variants, etc. However, these strategies sacrifice identifications of spectra generated by rarer types of peptides. In this work, we introduce a statistical testing framework, cascade search, that directly addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a statistically rigorous fashion. PMID:26084232

  4. Fundamental Investigation of Circumferentially Varying Stator Cascades

    NASA Astrophysics Data System (ADS)

    Farnsworth, John A. N.

    2011-12-01

    The fundamentals of circumferentially varying stator cascades and their interactions with a downstream fixed pitch propeller were investigated experimentally utilizing multiple measurement techniques. The flow physics associated with the isolated circumferentially varying, or cyclic, stator cascade was studied in a wind tunnel environment through string tuft flow visualization, 2-D PIV, Stereoscopic PIV, and static surface pressure measurements. The coupled wake physics of the cyclic stator cascade with propeller were then investigated in a water tunnel using Stereo PIV. Finally, the global performance of components and the coupled system were quantified through force and moment measurements on the model in the water tunnel. A cyclic distribution of the stators' deflections resulted in non-axisymmetric distributions of the surface pressure and the flow field downstream of the stator array. In the model near wake the flow field is associated with secondary flow patterns in the form of coherent streamwise vortical structures that can be described by potential flow mechanisms. The collective pitch distribution of the stators produces a flow field that resembles a potential Rankine vortex, whereas the cyclic pitch distribution generates a flow pattern that can be described by a potential vortex pair in a cross flow. The stator distribution alone produces a significant side force that increases linearly with stator pitch amplitude. When a propeller is incorporated downstream from the cyclic cascade the side force from the stator cascade is reduced, but a small vertical force and pitching moment are created. The generation of these secondary forces and moments can be related to the redistribution of the tangential flow from the cyclic cascade into the axial direction by the retreating and advancing blade states of the fixed pitch propeller.

  5. Tandem Mass Spectrum Identification via Cascaded Search

    PubMed Central

    2016-01-01

    Accurate assignment of peptide sequences to observed fragmentation spectra is hindered by the large number of hypotheses that must be considered for each observed spectrum. A high score assigned to a particular peptide–spectrum match (PSM) may not end up being statistically significant after multiple testing correction. Researchers can mitigate this problem by controlling the hypothesis space in various ways: considering only peptides resulting from enzymatic cleavages, ignoring possible post-translational modifications or single nucleotide variants, etc. However, these strategies sacrifice identifications of spectra generated by rarer types of peptides. In this work, we introduce a statistical testing framework, cascade search, that directly addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a statistically rigorous fashion. PMID:26084232

  6. Experimental studies of cascade phenomena in metals

    SciTech Connect

    Jenkins, M.L.; Kirk, M.A.; Phythian, W.J.

    1992-06-01

    We review recent ion-irradiation experiments which have been performed to investigate the collapse of displacement cascades to dislocation loops in a range of metals and alloys. Many of the results including the dependencies of the collapse probabilities on irradiation temperature, and ion dose, energy and mass, can be explained within the framework of a thermal spike/cascade melting model which has been suggested by computer molecular dynamics simulations. Other aspects, such as the dependence of collapse propabilities on the crystal structure and the effects of alloying and impurities, are less well understood.

  7. Temperature cascade control of distillation columns

    SciTech Connect

    Wolff, E.A.; Skogestad, S.

    1996-02-01

    This paper examines how difficult control tasks are enhanced by introducing secondary measurements, creating control cascades. Temperature is much used as secondary measurement because of cheap implementation and quick and accurate response. Distillation is often operated in this manner due to slow or lacking composition measurements, although the benefits have hardly been investigated closely, especially for multivariable control applications. The authors therefore use distillation as the example when quantifying improvements in interaction and disturbance rejection. They also give analytical expressions for the secondary controller gain. The improvements are reached through simple cascade operation of the control system and require no complicated estimator function.

  8. Cascaded metasurfaces for broadband antenna isolation

    NASA Astrophysics Data System (ADS)

    Shrekenhamer, David; Miragliotta, Joseph A.; Scott, Robert; Jablon, Allan; Friedman, Jerry; Harshbarger, Derek; Sievenpiper, Daniel F.

    2015-09-01

    In this paper, we present a computational and experimental design of a metasurface for broadband microwave antenna isolation. Our current emphasis is on the development of a high-impedance surface (HIS) that enables broadband isolation between transmit and receive antennas. For our specific HIS, we have formed a cascade of HIS unit cells and have thus expanded the isolation to provide 56 dB/meter over one octave (7.5 to 18 GHz) relative to the bare metal ground plane. Computational models are used to design the cascaded structure to assure maximum isolation amplitude and bandwidth.

  9. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber

    NASA Astrophysics Data System (ADS)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C.; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  10. Microbial Mechanisms Enhancing Soil C Storage

    SciTech Connect

    Zak, Donald

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiological processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C