Science.gov

Sample records for depressurized core heatup

  1. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    SciTech Connect

    Ball, S.J. )

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR.

  2. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    SciTech Connect

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization.

  3. TMI-2 accident: core heat-up analysis

    SciTech Connect

    Ardron, K.H.; Cain, D.G.

    1981-01-01

    This report summarizes NSAC study of reactor core thermal conditions during the accident at Three Mile Island, Unit 2. The study focuses primarily on the time period from core uncovery (approximately 113 minutes after turbine trip) through the initiation of sustained high pressure injection (after 202 minutes). The transient analysis is based upon established sequences of events; plant data; post-accident measurements; interpretation or indirect use of instrument responses to accident conditions.

  4. Heatup of the TMI-2 lower head during core relocation

    SciTech Connect

    Wang, S.K.; Sienicki, J.J.; Spencer, B.W.

    1989-01-01

    An analysis has been carried out to assess the potential of a melting attack upon the reactor vessel lower head and incore instrument nozzle penetration weldments during the TMI core relocation event at 224 minutes. Calculations were performed to determine the potential for molten corium to undergo breakup into droplets which freeze and form a debris bed versus impinging upon the lower head as one or more coherent streams. The effects of thermal-hydraulic interactions between corium streams and water inside the lower plenum, the effects of the core support assembly structure upon the corium, and the consequences of corium relocation by way of the core former region were examined. 19 refs., 24 figs.

  5. N Reactor core heatup sensitivity study for the 32-inch unit cell model

    SciTech Connect

    Martin, F.; Zimmerman, B.; Heard, F.

    1988-02-01

    A number of N Reactor core heatup studies have been performed using the TRUMP-BD computer code. These studies were performed to address questions concerning the dependency of results on potential variations in the material properties and/or modeling assumptions. This report described and documents a series of 31 TRUMP-BD runs that were performed to determine the sensitivity of calculated inner-fuel temperatures to a variety of TRUMP input parameters and also to a change in the node density in a high-temperature-gradient region. The results of this study are based on the 32-in. model. 18 refs., 17 figs., 2 tab.

  6. Simulation of thermal response of the 250 MWT modular HTGR during hypothetical uncontrolled heatup accidents

    SciTech Connect

    Harrington, R.M.; Ball, S.J.

    1985-01-01

    One of the central design features of the 250 MWT modular HTGR is the ability to withstand uncontrolled heatup accidents without severe consequences. This paper describes calculational studies, conducted to test this design feature. A multi-node thermal-hydraulic model of the 250 MWT modular HTGR reactor core was developed and implemented in the IBM CSMP (Continuous System Modeling Program) simulation language. Survey calculations show that the loss of forced circulation accident with loss of steam generator cooling water and with accidental depressurization is the most severe heatup accident. The peak hot-spot fuel temperature is in the neighborhood of 1600/sup 0/C. Fuel failure and fission product releases for such accidents would be minor. Sensitivity studies show that code input assumptions for thermal properties such as the side reflector conductivity have a significant effect on the peak temperature. A computer model of the reactor vessel cavity concrete wall and its surrounding earth was developed to simulate the extremely unlikely and very slowly-developing heatup accident that would take place if the worst-case loss of forced primary coolant circulation accident were further compounded by the loss of cooling water to the reactor vessel cavity liner cooling system. Results show that the ability of the earth surrounding the cavity to act as a satisfactory long-term heat sink is very sensitive to the assumed rate of decay heat generation and on the effective thermal conductivity of the earth.

  7. Depressurization valve

    DOEpatents

    Skoda, G.I.

    1989-03-28

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.

  8. Depressurization valve

    DOEpatents

    Skoda, George I.

    1989-01-01

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of

  9. Propellant actuated nuclear reactor steam depressurization valve

    DOEpatents

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  10. Depressurization and electrical heating of hydrate sediment for gas production

    NASA Astrophysics Data System (ADS)

    Minagawa, H.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on electrical heating of the hydrate core combined with depressurization for gas production. In-situ dissociation of natural gas hydrate is necessary for commercial recovery of natural gas from natural gas hydrate sediment. Thermal stimulation is an effective dissociation method, along with depressurization.To simulate methane gas production from methane hydrate layer, we investigated electrical heating of methane hydrate sediment. A decrease in core temperature due to the endothermic reaction of methane hydrate dissociation was suppressed and the core temperature increased between 1oC and 4oC above the control temperature with electric heating. A current density of 10A/m2 with depressurization would effectively dissociate hydrate. Therefore, depressurization and additional electrode heating of hydrate sediment saturated with electrolyte solution was confirmed to enable higher gas production from sediment with less electric power.

  11. Continuous coarse ash depressurization system

    DOEpatents

    Liu, Guohai; Peng, Wan Wang; Vimalchand, Pannalal

    2012-11-13

    A system for depressurizing and cooling a high pressure, high temperature dense phase solids stream having coarse solid particles with entrained gas therein. In one aspect, the system has an apparatus for at least partially depressurizing and cooling the high pressure, high temperature dense phase solids stream having gas entrained therein and a pressure letdown device for further depressurization and separating cooled coarse solid particles from a portion of the entrained gas, resulting in a lower temperature, lower pressure outlet of solid particles for downstream processing or discharge to a storage silo for future use and/or disposal. There are no moving parts in the flow path of the solids stream in the system.

  12. Continuous fine ash depressurization system

    DOEpatents

    Liu, Guohai; Peng, Wan Wang; Vimalchand, Pannalal

    2011-11-29

    A system for depressurizing and cooling a high pressure, high temperature fine solid particles stream having entrained gas therein. In one aspect, the system has an apparatus for cooling the high pressure, high temperature fine solid particles stream having entrained gas therein and a pressure letdown device for depressurization by separating the cooled fine solid particles from a portion of the fine solid particles stream having entrained gas therein, resulting in a lower temperature, lower pressure outlet of solid particles for disposal or handling by downstream equipment.

  13. Constraints complicate centrifugal compressor depressurization

    SciTech Connect

    Key, B. ); Colbert, F.L. )

    1993-05-10

    Blowdown of a centrifugal compressor is complicated by process constraints that might require slowing the depressurization rate and by mechanical constraints for which a faster rate might be preferred. The paper describes design constraints such as gas leaks; thrust-bearing overload; system constraints; flare extinguishing; heat levels; and pressure drop.

  14. Depressurization as an accident management strategy to minimize the consequences of direct containment heating

    SciTech Connect

    Hanson, D.J.; Golden, D.W.; Chambers, R.; Miller, J.D.; Hallbert, B.P.; Dobbe, C.A. )

    1990-10-01

    Probabilistic Risk Assessments (PRAs) have identified severe accidents for nuclear power plants that have the potential to cause failure of the containment through direct containment heating (DCH). Prevention of DCH or mitigation of its effects may be possible using accident management strategies that intentionally depressurize the reactor coolant system (RCS). The effectiveness of intentional depressurization during a station blackout TMLB' sequence was evaluated considering the phenomenological behavior, hardware performance, and operational performance. Phenomenological behavior was calculated using the SCDAP/RELAP5 severe accident analysis code. Two strategies to mitigate DCH by depressurization of the RCS were considered. One strategy, called early depressurization, assumed that the reactor head vent and pressurizer power-operated relief valves (PORVs) were latched open at steam generator dryout. The second strategy, called late depression, assumed that the head vent and PORVs were latched open at a core exit temperature of {approximately}922 K (1200{degree}F). Depressurization of the RCS to a low value that may mitigate DCH was predicted prior to reactor pressure vessel breach for both early and late depressurization. The strategy of late depressurization is preferred over early depressurization because there are greater opportunities to recover plant functions prior to core damage and because failure uncertainties are lessened. 22 refs., 38 figs., 6 tabs.

  15. Model for heat-up of structures in VICTORIA

    SciTech Connect

    Bixler, N.E.

    1993-12-01

    VICTORIA is a mechanistic computer code that treats fission product behavior in the reactor coolant system during a severe accident. During an accident, fission products that deposit on structural surfaces produce heat loads that can cause fission products to revaporize and possibly cause structures, such as a pipe, to fail. This mechanism had been lacking from the VICTORIA model. This report describes the structural heat-up model that has recently been implemented in the code. A sample problem shows that revaporization of fission products can occur as structures heat up due to radioactive decay. In the sample problem, the mass of deposited fission products reaches a maximum, then diminishes. Similarly, temperatures of the deposited film and adjoining structure reach a maximum, then diminish.

  16. DURABILITY OF SUBSLAB DEPRESSURIZATION RADON MITIGATION SYSTEMPERFORMANCE

    EPA Science Inventory

    The paper gives results of a review of the quarterly performance ofsub-slab depressurization (SSD) radon mitigation systems in eighthouses in the New Jersey (NJ) Piedmont study and houses in whichthe NJ Department of Environmental Protection measurements haveindicated operation a...

  17. Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization

    SciTech Connect

    Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-06-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  18. Experimental Dissociation of Methane Hydrates Through Depressurization

    NASA Astrophysics Data System (ADS)

    Borgfeldt, T.; Flemings, P. B.; Meyer, D.; You, K.

    2015-12-01

    We dissociated methane hydrates by stepwise depressurization. The initial hydrates were formed by injecting gas into a cylindrical sample of brine-saturated, coarse-grained sand at hydrate-stable conditions with the intention of reaching three-phase equilibrium. The sample was initially at 1°C with a pore pressure of 1775 psi and a salinity of 7 wt. % NaBr. The depressurization setup consisted of one pump filled with tap water attached to the confining fluid port and a second pump attached to the inlet port where the methane was injected. Depressurization was conducted over sixteen hours at a constant temperature of 1°C. The pore pressure was stepwise reduced from 1775 psi to atmospheric pressure by pulling known volumes of gas from the sample. After each extraction, we recorded the instantaneous and equilibrium pore pressure. 0.503 moles of methane were removed from the sample. The pore pressure decreased smoothly and nonlinearly with the cumulative gas withdrawn from the sample. We interpret that hydrate began to dissociate immediately with depressurization, and it continued to dissociate when the pressure decreased below the three-phase pressure for 1°C and 0 wt. % salinity. Two breaks in slope in the pressure vs. mass extracted data are bounded by smooth, nonlinear curves with differing slopes on either side. We attribute the breaks to dissociation of three zones of hydrate concentration. We created a box model to simulate the experimental behavior. For a 10% initial gas saturation (estimated from the hydrate formation experiment and based on mass conservation), an initial hydrate saturation of 55% is required to match the total methane extracted from the sample. Future experiments will be conducted over a longer timespan while monitoring hydrate dissociation with CT imaging throughout the process.

  19. Performance of Core Exit Thermocouple for PWR Accident Management Action in Vessel Top Break LOCA Simulation Experiment at OECD/NEA ROSA Project

    NASA Astrophysics Data System (ADS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Nakamura, Hideo

    Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary side in case of core temperature excursion. Test 6-1 is the first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reasons of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection.

  20. Benchmarks of severe fuel damage tests using a stand-alone version of heatup from MAAP-DOE, Task 3. 6. 8

    SciTech Connect

    Sharon, A.; Burelbach, J.P.; Baumgarten, I.; Tashjian, V.S.; Hammersley, R.J.

    1990-03-01

    The results of three benchmark efforts are presented which assess the adequacy of the core HEATUP model that was developed for MAAP by the DOE in predicting the thermal-hydraulic response of a simulated LWR core under conditions leading to severe fuel damage. The model is applied to experiments performed at Idaho National Engineering Laboratory (PBF-SFD 1-1), Pacific Northwest Laboratory (FLHT-2), and Kernforschungszentrum Karlsruhe (CORA-12). Key quantities of interest in this study are the hydrogen generation rate, the bundle temperature distribution, and material relocation. Consistent good agreement is demonstrated between the model predictions and experimental data. 11 refs., 109 figs., 12 tabs.

  1. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization

    USGS Publications Warehouse

    Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-01-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  2. Release of dissolved nitrogen from water during depressurization

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1978-01-01

    Experiments were run to study depressurization of water containing various concentrations of dissolved nitrogen gas, the primary case being room temperature water saturated with nitrogen at 4 MPa. In a static depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and photographed with high speed movies. The pictures showed that the bubble population at a given pressure increased strongly with decreasing depressurization rate. Flow experiments were performed in an axisymmetric converging-diverging nozzle and in a two-dimensional converging nozzle with glass sidewalls. Depressurization gradients were roughly 500 to 1200 MPa per second. Both nozzles exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of saturated. The flow rates were independent of concentration level and could be computed as incompressible water flow based on the difference between stagnation and throat pressures; however, the throat pressures were significantly different between the two nozzles.

  3. Analysis of depressurized loss-of-forced cooling transients by HERA

    SciTech Connect

    Rider, W.J.; Cappiello, M.W.

    1991-01-01

    The Modular High-Temperature Gas-Cooled Reactor (MHTGR) is one of the next generation reactors, which has passive safety features. Among these safety features is the ability to withstand a depressurized, loss-of-forced cooling of the reactor without release of fission products from the primary containment. In order to assess the capability of the MHTGR to withstand this type of accident condition, the thermal behavior of the reactor core must be well understood. To accomplish this, we have employed the HElium cooled Reactor Analysis code (HERA) to study the MHTGR under these conditions. Our analysis will demonstrate that the MHTGR is capable of withstanding a depressurized loss-of-forced cooling, even under worst case circumstances. 7 refs., 14 figs., 5 tabs.

  4. ACTIVE SOIL DEPRESSURIZATION (ASD) DEMONSTRATION IN A LARGE BUILDING

    EPA Science Inventory

    The report gives results of an evaluation of the feasibility of implementing radon resistant construction techniques -- especially active soil depressurization (ASD) -- in new large buildings in Florida. Indoor radon concentrations and radon entry were monitored in a finished bui...

  5. Mechanical Testing of PMCs under Simulated Rapid Heat-Up Propulsion Environments. II; In-Plane Compressive Behavior

    NASA Technical Reports Server (NTRS)

    Stokes, Eric H.; Shin, E. Eugene; Sutter, James K.

    2003-01-01

    Carbon fiber thermoset polymer matrix composites (PMC) with high temperature polyimide based in-situ polymerized monomer reactant (PMR) resin has been used for some time in applications which can see temperatures up to 550 F. Currently, graphite fiber PMR based composites are used in several aircraft engine components including the outer bypass duct for the GE F-404, exit flaps for the P&W F-100-229, and the core cowl for the GE/Snecma CF6-80A3. Newer formulations, including PMR-II-50 are being investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines that can see temperatures which exceed 550 F. Extensive FEM thermal modeling indicates that these components are exposed to rapid heat-up rates (up to -200 F/sec) and to a maximum temperature of around 600 F. Even though the predicted maximum part temperatures were within the capability of PW-II-50, the rapid heat-up causes significant through-thickness thermal gradients in the composite part and even more unstable states when combined with moisture. Designing composite parts for such extreme service environments will require accurate measurement of intrinsic and transient mechanical properties and the hygrothermal performance of these materials under more realistic use conditions. The mechanical properties of polymers degrade when exposed to elevated temperatures even in the absence of gaseous oxygen. Accurate mechanical characterization of the material is necessary in order to reduce system weight while providing sufficient factors of safety. Historically, the testing of PMCs at elevated temperatures has been plagued by the antagonism between two factors. First, moisture has been shown to profoundly affect the mechanical response of these materials at temperatures above their glass transition temperature while concurrently lowering the material's Tg. Moisture phenomena is due to one or a combination of three effects, i

  6. The effect of sudden depressurization on pilots at cruising altitude.

    PubMed

    Muehlemann, Thomas; Holper, Lisa; Wenzel, Juergen; Wittkowski, Martin; Wolf, Martin

    2013-01-01

    The standard flight level for commercial airliners is ∼12 km (40 kft; air pressure: ∼ 200 hPa), the maximum certification altitude of modern airliners may be as high as 43-45 kft. Loss of structural integrity of an airplane may result in sudden depressurization of the cabin potentially leading to hypoxia with loss of consciousness of the pilots. Specialized breathing masks supply the pilots with oxygen. The aim of this study was to experimentally simulate such sudden depressurization to maximum design altitude in a pressure chamber while measuring the arterial and brain oxygenation saturation (SaO(2) and StO(2)) of the pilots. Ten healthy subjects with a median age of 50 (range 29-70) years were placed in a pressure chamber, breathing air from a cockpit mask. Pressure was reduced from 753 to 148 hPa within 20 s, and the test mask was switched to pure O(2) within 2 s after initiation of depressurization. During the whole procedure SaO(2) and StO(2) were measured by pulse oximetry, respectively near-infrared spectroscopy (NIRS; in-house built prototype) of the left frontal cortex. During the depressurization the SaO(2) dropped from median 93% (range 91-98%) to 78% (62-92%) by 16% (6-30%), while StO(2) decreased from 62% (47-67%) to 57% (43-62%) by 5% (3-14%). Considerable drops in oxygenation were observed during sudden depressurization. The inter-subject variability was high, for SaO(2) depending on the subjects' ability to preoxygenate before the depressurization. The drop in StO(2) was lower than the one in SaO(2) maybe due to compensation in blood flow. PMID:22879031

  7. Analysis of the automatic depressurization system (ADS) tests for the AP600 design

    SciTech Connect

    Brockie, A.J.; Carlson, R.W.; Bueter, T.W.

    1995-12-31

    The AP600 is a Westinghouse advanced pressurized water reactor (PWR) designed with passive plant safety features that rely on natural driving forces, such as gravity, and natural circulation which allows significant simplification of the plant systems equipment and operation. As part of the passive safety concept, the AP600 utilizes an Automatic Depressurization System (ADS) to depressurize the Reactor Coolant System (RCS) allowing long-term gravity injection to be initiated and maintained for passive reflood and long term core cooling. The ADS design consists of four flow paths, two of which are connected to the top of the pressurizer and a flow path from each of the two RCS hot legs. During a postulated accident, the two flow paths from the hot legs discharge directly to containment. The two paths from the pressurizer discharge steam and/or water from the RCS into the In-containment Refueling Water Storage Tank (IRWST) through spargers located underwater where the steam is normally condensed with no increase in containment pressure or temperature. The ADS tests are one part of the planned AP600 Westinghouse test program for the passive core cooling system (PXS). The ADS tests are full-scale simulations of AP600 ADS components. The ADS tests provide dynamic performance data of the ADS for use in computer code validation and design verification.

  8. RECOMMENDED SUB-SLAB DEPRESSURIZATION SYSTEMS DESIGN CRITERIA

    EPA Science Inventory

    The report recommends sub-slab depressurization systems design criteria to the State of Florida's Department of Community Affairs for their building code for radon resistant houses. Numerous details are set forth in the full report. Primary criteria include: (1) the operating soi...

  9. International Space Station (ISS) Airlock Crewlock Depressurization Methods

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Leonard, Daniel J.; Booth, Valori J.; Russell, Matt

    2004-01-01

    The International Space Station (ISS) Airlock Crewlock can be depressurized via various methods. The ISS Airlock is divided into two major sections, the Equipment Lock and Crewlock. The Equipment Lock, as the name indicates, contains the equipment to support EVA activities including Extravehicular Maneuvering/Mobility Unit (EMU) maintenance and refurbishment. The Equipment Lock also contains basic life support equipment in order to support denitrogenzation protocols while the Airlock is isolated from the rest of the ISS. The Crewlock is the section of the Airlock that is depressurized to allow for Extravehicular Activity (EVA) crewmembers to exit the ISS for performance of EVAs. As opposed to the Equipment Lock, the Crewlock is quite simple and basically just contains lights and an assembly to provide services, oxygen, coolant, etc, to the EMUs. For operational flexibility, various methods were derived for Crewlock depressurization. Herein these various different methods of ISS Airlock Crewlock depressurization will be described including their performance, impacts, and risks associated with each method. Each of the different methods will be discussed with flight data, if it exists. Models will be applied to flight cases and to other methods that have not been used on-orbit at this time.

  10. Simplified tornado depressurization design methods for nuclear power plants

    SciTech Connect

    Howard, N.M.; Krasnopoler, M.I.

    1983-05-01

    A simplified approach for the calculation of tornado depressurization effects on nuclear power plant structures and components is based on a generic computer depressurization analysis for an arbitrary single volume V connected to the atmosphere by an effective vent area A. For a given tornado depressurization transient, the maximum depressurization ..delta..P of the volume was found to depend on the parameter V/A. The relation between ..delta..P and V/A can be represented by a single monotonically increasing curve for each of the three design-basis tornadoes described in the U.S. Nuclear Regulatory Commission's Regulatory Guide 1.76. These curves can be applied to most multiple-volume nuclear power plant structures by considering each volume and its controlling vent area. Where several possible flow areas could be controlling, the maximum value of V/A can be used to estimate a conservative value for ..delta..P. This simplified approach was shown to yield reasonably conservative results when compared to detailed computer calculations of moderately complex geometries. Treatment of severely complicated geometries, heating and ventilation systems, and multiple blowout panel arrangements were found to be beyond the limitations of the simplified analysis.

  11. Sensitivity Analyses in Small Break LOCA with HPI-Failure: Effect of Break-Size in Secondary-Side Depressurization

    NASA Astrophysics Data System (ADS)

    Kinoshita, Ikuo; Torige, Toshihide; Yamada, Minoru

    2014-06-01

    In the case of total failure of the high pressure injection (HPI) system following small break loss of coolant accident (SBLOCA) in pressurized water reactor (PWR), the break size is so small that the primary system does not depressurize to the accumulator (ACC) injection pressure before the core is uncovered extensively. Therefore, steam generator (SG) secondary-side depressurization is necessary as an accident management in order to grant accumulator system actuation and core reflood. A thermal-hydraulic analysis using RELAP5/MOD3 was made on SBLOCA with HPI-failure for Oi Units 3/4 operated by Kansai Electoric Power Co., which are conventional 4 loop PWR plants. The effectiveness of SG secondary-side depressurization procedure was investigated for the real plant design and operational characteristics. The sensitivity analyses using RELAP5/MOD3.2 showed that the accident management was effective for a wide range of break sizes, various orientations and positions. The critical break can be 3 inch cold-leg bottom break.

  12. Performing a Launch Depressurization Test on an Inflatable Space Habitat

    NASA Technical Reports Server (NTRS)

    Martin, Patrick J.; Van Velzer, Paul

    2014-01-01

    In July, 2014 JPL's Environmental Test Laboratory successfully performed a launch depressurization test on an inflatable space habitat proposed to be installed on the International Space Station. The inflatable habitat is to be launched in the SpaceX Dragon Trunk. During the launch, the unpressurized Dragon Trunk will rapidly change from ground level atmospheric pressure to the vacuum of space. Since the inflatable habitat is tightly folded during launch with multiple layers of bladder, Kevlar fabric sections, and micro-meteoroid shielding, it was not possible to analyze or simulate how the residual air pockets would behave during the launch. If the inflatable habitat does not vent adequately and expands, it could rupture the payload bay of the launch vehicle. A launch depressurization test was chosen as the best way to qualify the inflatable habitat. When stowed, the inflatable habitat measured approximately 241 cm (95 inches) in diameter by 152 cm (60 inches) high and weighed close to 1361 kg (3,000 pounds). Two vacuum chambers connected by a large vacuum line were used to perform this test. The inflatable habitat was mounted in the smaller chamber, which was 396 cm (13 feet) in diameter and 1128 cm (37 feet) high. The larger chamber, which was 823 cm (27 feet) in diameter and 2,591 cm (85 feet) high, was rough pumped and used as a vacuum reservoir. A two stage axial type compressor and ten Stokes vacuum pumps were also used during the depressurization. Opening a butterfly valve on the vacuum line, at the smaller chamber, was manually controlled so that the smaller chamber's depressurization rate matched the launch pressure profile.

  13. Materials Reliability Program: Development of a New Process for Calculating RPV Heat-Up and Cool-Down Curves - Proof of Concept

    SciTech Connect

    M. EricksonKirk

    2005-04-30

    A strategy and framework were developed for incorporating best-estimate, fracture toughness models and methodologies into procedures for fracture safety assessment of nuclear RPVs during normal heat-up and cool-down operations. The process included detailed process flow diagramming to identify all details of the current process for obtaining heat-up and cool-down curves.

  14. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    SciTech Connect

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-07-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  15. On depressurization of volcanic magma reservoirs by passive degassing

    NASA Astrophysics Data System (ADS)

    Girona, Társilo; Costa, Fidel; Newhall, Chris; Taisne, Benoit

    2014-12-01

    Many active volcanoes around the world alternate episodes of unrest and mildly explosive eruptions with quiescent periods dominated by abundant but passive gas emissions. These are the so-called persistently degassing volcanoes, and well-known examples are Mayon (Philippines) and Etna (Italy). Here, we develop a new lumped-parameter model to investigate by how much the gas released during quiescence can decrease the pressure within persistently degassing volcanoes. Our model is driven by the gas fluxes measured with monitoring systems and takes into account the size of the conduit and reservoir, the viscoelastic response of the crust, the magma density change, the bubble exsolution and expansion at depth, and the hydraulic connectivity between reservoirs and deeper magma sources. A key new finding is that, for a vast majority of scenarios, passive degassing reduces the pressure of shallow magma reservoirs by several MPa in only a few months or years, that is, within the intereruptive timescales of persistently degassing volcanoes. Degassing-induced depressurization could be responsible for the subsidence observed at some volcanoes during quiescence (e.g., at Satsuma-Iwojima and Asama, in Japan; Masaya, in Nicaragua; and Llaima, in Chile), and could play a crucial role in the onset and development of the physical processes which may in turn culminate in new unrest episodes and eruptions. For example, degassing-induced depressurization could promote magma replenishment, induce massive and sudden gas exsolution at depth, and trigger the collapse of the crater floor and reservoir roof.

  16. RADON REDUCTION TECHNIQUES FOR EXISTING DETACHED HOUSES - TECHNICAL GUIDANCE (THIRD EDITION) FOR ACTIVE SOIL DEPRESSURIZATION SYSTEMS

    EPA Science Inventory

    This technical guidance document is designed to aid in the selection, design, installation and operation of indoor radon reduction techniques using soil depressurization in existing houses. Its emphasis is on active soil depressurization; i.e., on systems that use a fan to depre...

  17. Crew Survivability After a Rapid Cabin Depressurization Event

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design-to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporarily incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder

  18. Crew Survivability After a Rapid Cabin Depressurization Event

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2011-01-01

    Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporary incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder

  19. DSMC Simulations of Disturbance Torque to ISS During Airlock Depressurization

    NASA Technical Reports Server (NTRS)

    Lumpkin, F. E., III; Stewart, B. S.

    2015-01-01

    The primary attitude control system on the International Space Station (ISS) is part of the United States On-orbit Segment (USOS) and uses Control Moment Gyroscopes (CMG). The secondary system is part of the Russian On orbit Segment (RSOS) and uses a combination of gyroscopes and thrusters. Historically, events with significant disturbances such as the airlock depressurizations associated with extra-vehicular activity (EVA) have been performed using the RSOS attitude control system. This avoids excessive propulsive "de-saturations" of the CMGs. However, transfer of attitude control is labor intensive and requires significant propellant. Predictions employing NASA's DSMC Analysis Code (DAC) of the disturbance torque to the ISS for depressurization of the Pirs airlock on the RSOS will be presented [1]. These predictions were performed to assess the feasibility of using USOS control during these events. The ISS Pirs airlock is vented using a device known as a "T-vent" as shown in the inset in figure 1. By orienting two equal streams of gas in opposite directions, this device is intended to have no propulsive effect. However, disturbance force and torque to the ISS do occur due to plume impingement. The disturbance torque resulting from the Pirs depressurization during EVAs is estimated by using a loosely coupled CFD/DSMC technique [2]. CFD is used to simulate the flow field in the nozzle and the near field plume. DSMC is used to simulate the remaining flow field using the CFD results to create an in flow boundary to the DSMC simulation. Due to the highly continuum nature of flow field near the T-vent, two loosely coupled DSMC domains are employed. An 88.2 cubic meter inner domain contains the Pirs airlock and the T-vent. Inner domain results are used to create an in flow boundary for an outer domain containing the remaining portions of the ISS. Several orientations of the ISS solar arrays and radiators have been investigated to find cases that result in minimal

  20. A Preliminary Investigation of Rapid Depressurization Phenomena Following a Sudden DLOFC in a VHTR

    SciTech Connect

    Richard C. Martineau; Ray A. Berry

    2010-05-01

    Air ingress has been identified as a potential threat for Very High Temperature gas-cooled Reactors (VHTR). Reactor components constructed of graphite will, at high temperatures, produce exothermic reactions in the presence of oxygen. The danger lies in the possibility of fuel element damage and core structural failure. Previous investigations of air ingress mechanisms have focused on thermal and molecular diffusion, density-driven stratified flow due to hydrodynamic instability, and natural convection. Here, we investigate the possibility of a rapid flow reversal of helium coolant due to a Taylor (rarefaction) wave expansion after a hypothetical sudden Depressurized Loss of Forced Cooling (DLOFC) scenario in a VHTR. Conceivably, flow reversal of the helium coolant could entrain significant quantities of air into the reactor vessel. Our analysis starts with a one-dimensional shock tube simulation to simply illustrate the development of a Taylor wave with resulting reentrant flow. Then, a simulation is performed of an idealized two-dimensional axisymmetric representation of the lower plenum of General Atomics GT-MHR subjected to a hypothetical catastrophic break of the hot duct. Analysis shows the potential for significant and rapid air ingress into the reactor vessel in the case of a large break in the cooling system.

  1. Field measurement of uncontrolled airflow and depressurization in restaurants

    SciTech Connect

    Cummings, J.B.; Fairey, P.W.; Withers, C.R. Jr.; McKendry, B.B.; Moyer, N.A.

    1996-11-01

    Field investigations were done in seven restaurants (subsample of a study of 63 commercial buildings) to identify uncontrolled airflows and pressure imbalances. Testing included building airtightness tests, identification of building air barrier locations, duct system airtightness, characterization of pressure differentials, building airflow balance, and infiltration/ventilation rates. All restaurants were found to operate at negative pressures that ranged from {minus}0.003 in. w.c. ({minus}0.8 Pa) to {minus}0.173 in. w.c. ({minus}43 Pa) and averaged {minus}0.051 in. w.c. ({minus}12.7 Pa) under normal operation. The variables that affect depressurization are large exhaust fans, missing or undersized make up air, intermittent outdoor air caused by the cycling of air handlers, dirty outdoor air and make up air filters, and building airtightness. These uncontrolled airflows and pressure imbalances impact energy use, ventilation rates, sizing of heating and air-conditioning systems, indoor comfort, relative humidity, moisture damage to building materials, mold and mildew growth, operation of combustion equipment, and indoor air quality.

  2. Summary on the depressurization from supercritical pressure conditions

    SciTech Connect

    Anderson, M.; Chen, Y.; Ammirable, L.; Yamada, K.

    2012-07-01

    When a fluid discharges from a high pressure and temperature system, a 'choking' or critical condition occurs, and the flow rate becomes independent of the downstream pressure. During a postulated loss of coolant accident (LOCA) of a water reactor the break flow will be subject to this condition. An accurate estimation of the critical flow rate is important for the evaluation of the reactor safety, because this flow rate controls the loss of coolant inventory and energy from the system, and thus has a significant effect on the accident consequences[1]. In the design of safety systems for a super critical water reactor (SCWR), postulated LOCA transients are particularly important due to the lower coolant inventory compared to a typical PWR for the same power output. This lower coolant inventory would result in a faster transient response of the SCWR, and hence accurate prediction of the critical discharge is mandatory. Under potential two-phase conditions critical flow is dominated by the vapor content or quality of the vapor, which is closely related with the onset of vaporization and the interfacial interaction between phases [2]. This presents a major challenge for the estimation of the flow rate due to the lack of the knowledge of those processes, especially under the conditions of interest for the SCWR. According to the limited data of supercritical fluids, the critical flows at conditions above the pseudo-critical point seem to be fairly stable and consistent with the subcritical homogeneous equilibrium model (HEM) model predictions, while having a lower flow rate than those in the two-phase region. Thus the major difficulty in the prediction of the depressurization flow rates remains in the region where two phases co-exist at the top of the vapor dome. In this region, the flow rate is strongly affected by the nozzle geometry and tends to be unstable. Various models for this region have been developed with different assumptions, e.g. the HEM and Moody model [3

  3. Plants Survive Rapid Depressurization: Implications for Bioregenerative Life Support

    NASA Astrophysics Data System (ADS)

    Wheeler, Raymond; Wehkamp, Cara Ann; Stasiak, Michael; Dixon, Mike

    Understanding the risks and failures of life support technologies will be critical for future space missions. Among the possible system failures would be a loss of pressure in a habitat or containment vessel. Any damage to system components following a loss of pressure must be considered in terms of contingency, repair, or resupply. Plants are the centerpiece to bioregenerative life support approaches proposed for future missions, but have sometimes been criticized as being fragile entities and hence more prone to failure. To test this, we grew radish, wheat, and lettuce plants at two pressures, 97 and 33 kPa, for 21 days, then subjected them to a rapid pressure drop to 1.5 kPa where they were held for 30 min. Each test was repeated three times. Temperatures were maintained near 22 C throughout, although some adiabatic cooling occurred to depressurization. Thus the 1.5 kPa pressure was below the boiling pressure for water. Following this pressures were restored to the original levels and the plants allowed to grow for another 6 days. Immediate inspections of the plants via video camera and photosynthetic gas analysis showed no obvious damage following the low pressure event, with the exception a few wheat leaves that began to droop downward, suggesting a loss of turgor and mild water stress. Comparisons of fresh and dry mass values at final harvest for all three species showed no difference between controls and plants exposed to the rapid pressure drop, and this was true for plants grown either at 97 or 33 kPa. The results demonstrate a remarkable resilience of food crops to a catastrophic pressure loss that would be lethal to humans. Further testing should be conducted to determine how long plants could endure such low pressure to estimate required response times. Related testing should be conducted with all life support technologies, including physico-chemical components, to assess their risks under rapid pressure changes.

  4. Interactive simulations of gas-turbine modular HTGR transients and heatup accidents

    SciTech Connect

    Ball, S.J.; Nypaver, D.J.

    1994-06-01

    An interactive workstation-based simulator has been developed for performing analyses of modular high-temperature gas-cooled reactor (MHTGR) core transients and accidents. It was originally developed at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission to assess the licensability of the US Department of Energy (DOE) steam cycle design 350-MW(t) MHTGR. Subsequently, the code was modified under DOE sponsorship to simulate the 450-MW(t) Gas Turbine (GT) design and to aid in development and design studies. Features of the code (MORECA-GT) include detailed modeling of 3-D core thermal-hydraulics, interactive workstation capabilities that allow user/analyst or ``operator`` involvement in accident scenarios, and options for studying anticipated transients without scram (ATWS) events. In addition to the detailed models for the core, MORECA includes models for the vessel, Shutdown Cooling System (SCS), and Reactor Cavity Cooling System (RCCS), and core point kinetics to accommodate ATWS events. The balance of plant (BOP) is currently not modeled. The interactive workstation features include options for on-line parameter plots and 3-D graphic temperature profiling. The studies to date show that the proposed MHTGR designs are very robust and can generally withstand the consequences of even the extremely low probability postulated accidents with little or no damage to the reactor`s fuel or metallic components.

  5. ORNL analyses of AVR performance and safety

    SciTech Connect

    Cleveland, J.C.

    1985-01-01

    Because of the high interest in modular High Temperature Reactor performance and safety, a cooperative project has been established involving the Oak Ridge National Laboratory (ORNL), Arbeitsgemeinschaft Versuchs Reaktor GmbH (AVR), and Kernforschungsanlage Juelich GmbH (KFA) in reactor physics, performance and safety. This paper presents initial results of ORNL's examination of a hypothetical depressurized core heatup accident and consideration of how a depressurized core heatup test might be conducted by AVR staff. Also presented are initial analyses of a test involving a reduction in core flow and of a test involving reactivity insertion via control rod withdrawal.

  6. A depressurization assistance control based on the posture of a seated patient on a wheelchair.

    PubMed

    Chugo, Daisuke; Fujita, Kazuya; Sakaida, Yuki; Yokota, Sho; Takase, Kunikatsu

    2011-01-01

    For reducing the risk of pressure sore caused by long period sitting on a wheelchair, we develop a depressurization motion assistance system which is low cost and suitable for practical use. Our developing system consists of a seating cushion which the patient sits on and four air cells which can lift or incline the seating cushion. Each air cell is actuated by small air compressor, which can drive using batteries on the wheelchair respectively, and each compressor has a pressure sensor on its body. In this paper, our key ideas are two topics. One topic is mechanical design for practical use. We realize thin mechanism which enables easy implementation to the general wheelchair. For realizing this thinly design, we develop the tilt mechanism using elasticity of acrylic resin and the controller which uses only pressure sensors for estimating its lifting height and inclination. The other topic is assistance control scheme based on the patient's depressurization operation for increasing a rehabilitation performance. For realizing the proposed control scheme, we analyze the hip depressurization operation by the nursing specialists and use its results for estimating the patient's condition. Using our system, the patient can depressurize by his own will on the general wheelchair easily. The performance of our system is verified by experiments using our prototype. PMID:22275566

  7. MODELING THE INFLUENCE OF ACTIVE SUBSLAB DEPRESSURIZATION (ASD) SYSTEMS ON AIRFLOWS IN SUBSLAB AGGREGATE BEDS

    EPA Science Inventory

    A simple model is presented that allows the pressure difference in a subslab aggregate layer to be estimated as a function of radial distance from the central suction point of an active subslab depressurization system by knowing the average size, thickness, porosity, and permeabi...

  8. WHAT ABOUT WHEN SUB-SLAB DEPRESSURIZATION DOESN'T WORK WELL?

    EPA Science Inventory

    The paper discusses the mitigation of radon levels in basementhouses when sub-slab depressurization (SSD), a widely usedmitigation technique, is not a viable option. or example, in somehouses the slab is poured directly on the soil, resulting inpoor-to-nonexistent communication u...

  9. ENGINEERING DESIGN CRITERIA FOR SUB-SLAB DEPRESSURIZATION SYSTEMS IN LOW-PERMEABILTY SOLIDS

    EPA Science Inventory

    The report describes the development of engineering design criteria for the successful design, installation, and operation of sub-slab depressurization systems, based on radon (Rn) mitigation experience on 14 slab-on-grade houses in South Central Florida. The Florida houses are c...

  10. RECOMMENDED SUB-SLAB DEPRESSURIZATION SYSTEMS DESIGN STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report recommends sub-slab depressurization systems design criteria to the State of Florida's Department of Community Affairs for their building code for radon resistant houses. Numerous details are set forth in the full report. Primary criteria include: (1) the operating soi...

  11. Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1981-01-01

    Depressurization of water containing various concentrations of dissolved nitrogen gas was studied. In a nonflow depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and a metastable behavior which was a strong function of the depressurization rate was observed. Flow experiments were performed in an axisymmetric, converging diverging nozzle, a two dimensional, converging nozzle with glass sidewalls, and a sharp edge orifice. The converging diverging nozzle exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of the saturation level. The flow rates were independent of concentration level. Flow in the two dimensional, converging, visual nozzle appeared to have a sufficient pressure drop at the throat to cause nitrogen to come out of solution, but choking occurred further downstream. The orifice flow motion pictures showed considerable oscillation downstream of the orifice and parallel to the flow. Nitrogen bubbles appeared in the flow at back pressures as high as 3.28 MPa, and the level at which bubbles were no longer visible was a function of nitrogen concentration.

  12. Analysis of Long-Term Station Blackout without automatic depressurization at Peach Bottom using MELCOR (Version 1.8)

    SciTech Connect

    Madni, I.K.

    1994-05-01

    This report documents the results from MELCOR calculations of the Long-Term Station Blackout Accident Sequence, with failure to depressurize the reactor vessel, at the Peach Bottom (BWR Mark I) plant, and presents comparisons with Source Term Code Package calculations of the same sequence. STCP has calculated the transient out to 13.5, hours after core uncovery. Most of the MELCOR calculations presented have been carried out to between 15 and 16.7 hours after core uncovery. The results include the release of source terms to the environment. The results of several sensitivity calculations with MELCOR are also presented, which explore the impact of varying user-input modeling and timestep control parameters on the accident progression and release of source terms to the environment. Most of the calculations documented here were performed in FY1990 using MELCOR Version 1.8BC. However, the appendices also document the results of more recent calculations performed in FY1991 using MELCOR versions 1.8CZ and 1.8DNX.

  13. Diffusion modeling of fission product release during depressurized core conduction cooldown conditions

    SciTech Connect

    Martin, R.C.

    1990-01-01

    A simple model for diffusion through the silicon carbide layer of TRISO particles is applied to the data for accident condition testing of fuel spheres for the High-Temperature Reactor program of the Federal Republic of Germany (FRG). Categorization of sphere release of {sup 137}Cs based on fast neutron fluence permits predictions of release with an accuracy comparable to that of the US/FRG accident condition fuel performance model. Calculations are also performed for {sup 85}Kr, {sup 90}Sr, and {sup 110m}Ag. Diffusion of cesium through SiC suggests that models of fuel failure should consider fuel performance during repeated accident condition thermal cycling. Microstructural considerations in models in fission product release are discussed. The neutron-induced segregation of silicon within the SiC structure is postulated as a mechanism for enhanced fission product release during accident conditions. An oxygen-enhanced SiC decomposition mechanism is also discussed. 12 refs., 11 figs., 2 tabs.

  14. Characterization of the Transient Response of the ILS with One Module Installed to Heatup Changes in Power Level and Cooldown

    SciTech Connect

    K. G. Condie; C. M. Stoots; J. E. O'Brien; J. S. Herring

    2007-12-01

    This report provides documentation of the initial startup and testing of the first electrolysis module in the Idaho National Laboratory (INL) High Temperature Steam Electrolysis Integrated Laboratory Scale (ILS) facility. Initial shakedown testing of the INL ILS experimental facility commenced on August 22, 2007. This fulfilled a DOE Level 2 milestone. Heatup of the first ILS module started at approximately 4:10 PM on September 24, 2007. Initial module testing continued for 420 hours. The test average H2 production rate was approximately 1.3 Nm3/hr (0.116 kg H2/hr), with a peak measured value of over 2 Nm3/hr (0.179 kg H2/hr). Significant module performance degradation was observed over the first 250 hours, after which no further degradation was noted for the remainder of the test. Once all test objectives had been successfully met, the test was terminated in a controlled fashion. Discussion is included concerning several modifications that will be incorporated into the facility components to improve reliability and ease of operation for future long term testing.

  15. The Effect of Velocity on the Extinction Behavior of a Diffusion Flame during Transient Depressurization

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.; Urban, David L.; Tien, James

    1999-01-01

    Current fire suppression plans for the International Space Station include the use of venting (depressurization) as a method for extinguishing a fire. Until recently this process had only been examined as part of a material flammability experiment performed on Skylab in the early 1970's. Due to the low initial pressure (0.35 Atm) and high oxygen concentration (65%), the Skylab experimental results are not applicable for understanding the effects of venting on a fire in a space station environment (21%O2, 1 Atm). Recent research examined the extinction behavior of a diffusion flame over a polymethyl methacrylate (PMMA) cylinder during a transient depressurization in low-gravity. The numerical model was used to examine extinction limits as a function of depressurization rate, forced flow velocity, and initial solid phase temperature. The experimental and numerically predicted extinction data indicated that as the solid phase temperature increased the pressure required to extinguish the flame decreased. The numerical model was also used to examine conditions not obtainable in the low-gravity experiments. From these simulations, a series of extinction boundaries were generated that showed a region of increased flammability existed at a forced flow of 10 cm/s. Analysis of these extinction boundaries indicated that they were quasi-steady in nature, and that the final extinction conditions were independent of the transient process. The velocity range in the previous study was limited and thus the results did not examine the effects of velocities less than 1 cm/s or greater than 20 cm/s. This study utilized low-gravity experiments performed on NASA's Reduced-gravity Research Aircraft Laboratory and numerical simulations to examine conditions applicable to the Space Station environment. This paper extends the analysis of the previous study to a comprehensive examination of the effect of increased velocity on extinction behavior and extinction limits during a transient

  16. Drag Reduction by Bubble-Covered Surfaces Found in PDMS Microchannel through Depressurization.

    PubMed

    Gao, Yang; Li, Jiang; Shum, Ho Cheung; Chen, Haosheng

    2016-05-17

    Drag reduction was found in polydimethylsiloxane (PDMS) microchannels when the flow was pulled by depressurization at the inlet, and it was attributed to the formation of the bubbles on the PDMS surface. The formed bubbles were examined by atomic force microscopy (AFM), and the resultant effective slip length was measured by microparticle image velocimetry (μPIV). The drag reduction was found to decrease as the bubbles grew and detached from the surface, causing a pulsatile flow in the microchannel. PMID:27123905

  17. HTTF Core Stress Analysis

    SciTech Connect

    Brian D. Hawkes; Richard Schultz

    2012-07-01

    In accordance with the need to determine whether cracking of the ceramic core disks which will be constructed and used in the High Temperature Test Facility (HTTF) for heatup and cooldown experiments, a set of calculation were performed using Abaqus to investigate the thermal stresses levels and likelihood for cracking. The calculations showed that using the material properties provided for the Greencast 94F ceramic, cracking is predicted to occur. However, this modeling does not predict the size or length of the actual cracks. It is quite likely that cracks will be narrow with rough walls which would impede the flow of coolant gases entering the cracks. Based on data recorded at Oregon State University using Greencast 94F samples that were heated and cooled at prescribed rates, it was concluded that the likelihood that the cracks would be detrimental to the experimental objectives is small.

  18. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    USGS Publications Warehouse

    Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T.

    2009-01-01

    In this simulation study, we analyzed the geomechanical response during depressurization production from two known hydrate-bearing permafrost deposits: the Mallik (Northwest Territories, Canada) deposit and Mount Elbert (Alaska, USA) deposit. Gas was produced from these deposits at constant pressure using horizontal wells placed at the top of a hydrate layer (HL), located at a depth of about 900??m at the Mallik site and 600??m at the Mount Elbert site. The simulation results show that general thermodynamic and geomechanical responses are similar for the two sites, but with substantially higher production and more intensive geomechanical responses at the deeper Mallik deposit. The depressurization-induced dissociation begins at the well bore and then spreads laterally, mainly along the top of the HL. The depressurization results in an increased shear stress within the body of the receding hydrate and causes a vertical compaction of the reservoir. However, its effects are partially mitigated by the relatively stiff permafrost overburden, and compaction of the HL is limited to less than 0.4%. The increased shear stress may lead to shear failure in the hydrate-free zone bounded by the HL overburden and the downward-receding upper dissociation interface. This zone undergoes complete hydrate dissociation, and the cohesive strength of the sediment is low. We determined that the likelihood of shear failure depends on the initial stress state as well as on the geomechanical properties of the reservoir. The Poisson's ratio of the hydrate-bearing formation is a particularly important parameter that determines whether the evolution of the reservoir stresses will increase or decrease the likelihood of shear failure.

  19. Effect of Acute Intermittent CPAP Depressurization during Sleep in Obese Patients

    PubMed Central

    Jun, Jonathan C.; Unnikrishnan, Dileep; Schneider, Hartmut; Kirkness, Jason; Schwartz, Alan R.; Smith, Philip L.; Polotsky, Vsevolod Y.

    2016-01-01

    Background Obstructive Sleep Apnea (OSA) describes intermittent collapse of the airway during sleep, for which continuous positive airway pressure (CPAP) is often prescribed for treatment. Prior studies suggest that discontinuation of CPAP leads to a gradual, rather than immediate return of baseline severity of OSA. The objective of this study was to determine the extent of OSA recurrence during short intervals of CPAP depressurization during sleep. Methods Nine obese (BMI = 40.4 ± 3.5) subjects with severe OSA (AHI = 88.9 ± 6.8) adherent to CPAP were studied during one night in the sleep laboratory. Nasal CPAP was delivered at therapeutic (11.1 ± 0.6 cm H20) or atmospheric pressure, in alternating fashion for 1-hour periods during the night. We compared sleep architecture and metrics of OSA during CPAP-on and CPAP-off periods. Results 8/9 subjects tolerated CPAP withdrawal. The average AHI during CPAP-on and CPAP-off periods was 3.6 ± 0.6 and 15.8 ± 3.6 respectively (p<0.05). The average 3% ODI during CPAP-on and CPAP-off was 4.7 ± 2 and 20.4 ± 4.7 respectively (p<0.05). CPAP depressurization also induced more awake (p<0.05) and stage N1 (p<0.01) sleep, and less stage REM (p<0.05) with a trend towards decreased stage N3 (p = 0.064). Conclusion Acute intermittent depressurization of CPAP during sleep led to deterioration of sleep architecture but only partial re-emergence of OSA. These observations suggest carryover effects of CPAP. PMID:26731735

  20. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    SciTech Connect

    Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T.

    2009-02-01

    In this simulation study, we analyzed the geomechanical response during depressurization production from two known hydrate-bearing permafrost deposits: the Mallik (Northwest Territories, Canada) deposit and Mount Elbert (Alaska, USA) deposit. Gas was produced from these deposits at constant pressure using horizontal wells placed at the top of a hydrate layer (HL), located at a depth of about 900 m at the Mallik and 600 m at the Mount Elbert. The simulation results show that general thermodynamic and geomechanical responses are similar for the two sites, but with substantially higher production and more intensive geomechanical responses at the deeper Mallik deposit. The depressurization-induced dissociation begins at the well bore and then spreads laterally, mainly along the top of the HL. The depressurization results in an increased shear stress within the body of the receding hydrate and causes a vertical compaction of the reservoir. However, its effects are partially mitigated by the relatively stiff permafrost overburden, and compaction of the HL is limited to less than 0.4%. The increased shear stress may lead to shear failure in the hydrate-free zone bounded by the HL overburden and the downward-receding upper dissociation interface. This zone undergoes complete hydrate dissociation, and the cohesive strength of the sediment is low. We determined that the likelihood of shear failure depends on the initial stress state as well as on the geomechanical properties of the reservoir. The Poisson's ratio of the hydrate-bearing formation is a particularly important parameter that determines whether the evolution of the reservoir stresses will increase or decrease the likelihood of shear failure.

  1. REFERENCE MANUAL FOR RASSMIT VERSION 2.1: SUB-SLAB DEPRESSURIZATION SYSTEM DESIGN PERFORMANCE SIMULATION PROGRAM

    EPA Science Inventory

    The report is a reference manual for RASSMlT Version 2.1, a computer program that was developed to simulate and aid in the design of sub-slab depressurization systems used for indoor radon mitigation. The program was designed to run on DOS-compatible personal computers to ensure ...

  2. Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations

    SciTech Connect

    Kneafsey, T.; Moridis, G.J.

    2011-01-15

    A preserved sample of hydrate-bearing sandstone from the Mount Elbert Test Well was dissociated by depressurization while monitoring the internal temperature of the sample in two locations and the density changes at high spatial resolution using x-ray CT scanning. The sample contained two distinct regions having different porosity and grain size distributions. The hydrate dissociation occurred initially throughout the sample as a result of depressing the pressure below the stability pressure. This initial stage reduced the temperature to the equilibrium point, which was maintained above the ice point. After that, dissociation occurred from the outside in as a result of heat transfer from the controlled temperature bath surrounding the pressure vessel. Numerical modeling of the test using TOUGH+HYDRATE yielded a gas production curve that closely matches the experimentally measured curve.

  3. Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization.

    PubMed

    Uquiche, Edgar; Antilaf, Ivette; Millao, Sonia

    2016-01-01

    Extraction of compounds from microalgae requires cell disruption as a pretreatment to increase extraction yield. Botryococcus braunii is a microalga with a significant content of carotenoids and other antioxidant compounds, such as chlorophylls. Cell disruption of B. braunii using CO2 rapid depressurization was studied as a pretreatment for the extraction of carotenoid and chlorophyll pigments. We studied the effect of temperature (21-49°C) and pressure (6-13MPa) during static compression on pigment recovery with supercritical CO2 at 40°C, 30MPa and solvent flow of 4.7LNPT/min. Within the experimental region, the extraction yield of carotenoids and chlorophylls increased by 2.4- and 2.2-fold respectively. Static compression conditions of high pressure and low temperature increased the extraction of carotenoids and especially chlorophylls. We selected 21°C and 13MPa as the cell disruption condition, which produced 1.91g/kg d.s. of carotenoids and 14.03mg/kg d.s. of chlorophylls. Pretreated microalga gave a 10-fold higher chlorophyll extraction yield compared to the untreated sample. While for carotenoids and tocopherols were 1.25 and 1.14-fold higher, respectively. Additionally, antioxidant activity of pretreated microalga (33.22mmol TE/kg oil) was significantly higher than the value for the untreated samples (29.11mmol TE/kg oil) (p≤0.05). Confocal microscopy images showed morphological differences between micro-colonies with and without disruption treatment, suggesting that partial cell disruption by rapid depressurization improved the extraction of microalga compounds. PMID:26991281

  4. Pressure Core Characterization

    NASA Astrophysics Data System (ADS)

    Santamarina, J. C.

    2014-12-01

    Natural gas hydrates form under high fluid pressure and low temperature, and are found in permafrost, deep lakes or ocean sediments. Hydrate dissociation by depressurization and/or heating is accompanied by a multifold hydrate volume expansion and host sediments with low permeability experience massive destructuration. Proper characterization requires coring, recovery, manipulation and testing under P-T conditions within the stability field. Pressure core technology allows for the reliable characterization of hydrate bearing sediments within the stability field in order to address scientific and engineering needs, including the measurement of parameters used in hydro-thermo-mechanical analyses, and the monitoring of hydrate dissociation under controlled pressure, temperature, effective stress and chemical conditions. Inherent sampling effects remain and need to be addressed in test protocols and data interpretation. Pressure core technology has been deployed to study hydrate bearing sediments at several locations around the world. In addition to pressure core testing, a comprehensive characterization program should include sediment analysis, testing of reconstituted specimens (with and without synthetic hydrate), and in situ testing. Pressure core characterization technology can be used to study other gas-charged formations such as deep sea sediments, coal bed methane and gas shales.

  5. Depressurization-induced gas production from Class 1 and Class 2hydrate deposits

    SciTech Connect

    Moridis, George J.; Kowalsky, Michael

    2006-05-12

    Class 1 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) underlain by a two-phase zone involving mobile gas. Such deposits are further divided to Class 1W (involving water and hydrate in the HBL) and Class 1G (involving gas and hydrate in the HBL). In Class 2 deposits, a mobile water zone underlies the hydrate zone. Methane is the main hydrate-forming gas in natural accumulations. Using TOUGH-FX/HYDRATE to study the depressurization-induced gas production from such deposits, we determine that large volumes of gas could be readily produced at high rates for long times using conventional technology. Dissociation in Class 1W deposits proceeds in distinct stages, but is continuous in Class 1G deposits. Hydrates are shown to contribute significantly to the production rate (up to 65 percent and 75 percent in Class 1W and 1G, respectively) and to the cumulative volume of produced gas (up to 45 percent and 54 percent in Class 1W and 1G, respectively). Large volumes of hydrate-originating CH4 could be produced from Class 2 hydrates, but a relatively long lead time would be needed before gas production (which continuously increases over time) attains a substantial level. The permeability of the confining boundaries plays a significant role in gas production from Class 2 deposits. In general, long-term production is needed to realize the full potential of the very promising Class 1 and Class 2 hydrate deposits.

  6. Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey Scott

    1996-01-01

    Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.

  7. Physical modelling of LNG rollover in a depressurized container filled with water

    NASA Astrophysics Data System (ADS)

    Maksim, Dadonau; Denissenko, Petr; Hubert, Antoine; Dembele, Siaka; Wen, Jennifer

    2015-11-01

    Stable density stratification of multi-component Liquefied Natural Gas causes it to form distinct layers, with upper layer having a higher fraction of the lighter components. Heat flux through the walls and base of the container results in buoyancy-driven convection accompanied by heat and mass transfer between the layers. The equilibration of densities of the top and bottom layers, normally caused by the preferential evaporation of Nitrogen, may induce an imbalance in the system and trigger a rapid mixing process, so-called rollover. Numerical simulation of the rollover is complicated and codes require validation. Physical modelling of the phenomenon has been performed in a water-filled depressurized vessel. Reducing gas pressure in the container to levels comparable to the hydrostatic pressure in the water column allows modelling of tens of meters industrial reservoirs using a 20 cm laboratory setup. Additionally, it allows to model superheating of the base fluid layer at temperatures close the room temperature. Flow visualizations and parametric studies are presented. Results are related to outcomes of numerical modelling.

  8. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP)

    SciTech Connect

    Zhou Jian; Ye Guang; Breugel, Klaas van

    2010-07-15

    Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuous depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.

  9. An investigation of core liquid level depression in small break loss-of-coolant accidents

    SciTech Connect

    Schultz, R.R.; Watkins, J.C. ); Motley, F.E.; Stumpf, H. ); Chen, Y.S. . Div. of Systems Research)

    1991-08-01

    Core liquid level depression can result in partial core dryout and heatup early in a small break loss-of-coolant accident (SBLOCA) transient. Such behavior occurs when steam, trapped in the upper regions of the reactor primary system (between the loop seal and the core inventory), moves coolant out of the core region and uncovers the rod upper elevations. The net result is core liquid level depression. Core liquid level depression and subsequent core heatups are investigated using subscale data from the ROSA-IV Program's 1/48-scale Large Scale Test Facility (LSTF) and the 1/1705-scale Semiscale facility. Both facilities are Westinghouse-type, four-loop, pressurized water reactor simulators. The depression phenomena and factors which influence the minimum core level are described and illustrated using examples from the data. Analyses of the subject experiments, conducted using the TRAC-PF1/MOD1 (Version 12.7) thermal-hydraulic code, are also described and summarized. Finally, the response of a typical Westinghouse four-loop plant (RESAR-3S) was calculated to qualitatively study coal liquid level depression in a full-scale system. 31 refs., 37 figs., 6 tabs.

  10. Modeling of transport phenomena during gas hydrate decomposition by depressurization and/or thermal stimulation

    NASA Astrophysics Data System (ADS)

    Abendroth*, Sven; Klump, Jens; Thaler, Jan; Schicks, Judith M.

    2013-04-01

    In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam (Beeskow-Strauch et al., this volume). These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. Processes inside LARS are modeled to study the effects of sediment properties as well as physical and chemical processes on parameters such as hydrate dissociation rate and methane production rate. The experimental results from LARS are used to provide details about processes inside the pressure vessel, validate the models through history matching, and feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the observed in experiments and field studies (Uddin and Wright 2005; Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. Uddin and Wright (2005) suggested that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. First results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models featuring gas flow in water. Further experiments with LARS, including hydrate dissociation by depressurization and thermal stimulation by in-situ combustion will be used to

  11. Depressurization of fine powders in a shock tube and dynamics of fragmented magma in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Barmin, A.; Melnik, O.; Sparks, R. S. J.

    2002-11-01

    Samples of fine glass beads (mean grain size equal to 38 and 95 μm) have been depressurized within a vertical shock tube. These short-lived, rapid decompressions resemble discrete, cannon-like vulcanian explosions and produce two-phase flows that are inhomogeneous in density in both vertical and horizontal directions because of the presence of bubble-like heterogeneities. We suggest that also volcanic flows may present similar inhomogeneities in density. In the experimental apparatus the flow velocities increase from approximately 1 to 13 m/s when the pressure drop increases from approximately 200 to 900 mbar. A physical model of the initial velocities of expansions in the shock tube has been applied to a range of volcanic overpressures between 0.1 and 20 MPa, suggesting initial velocities of volcanic flows caused by the removal of a rock plug in volcanic conduits between 25 and 400 m/s. During the experiments at large pressure drops, as the mixture expands and moves up the tube, the flow front becomes highly irregular and bubble-like heterogeneities form. The shape of these bubbles becomes distorted and stretched in the turbulent flow. During the experiments at relatively small pressure drops, the sample oscillates when the particles, after the expansion, flow back and bounce upward again. Jets with diameter smaller than that of the tube are ejected from the oscillating samples generating independent pulses. Large bubble-like heterogeneities whose diameter is a significant fraction of the tube diameter can also discretize the flows. Similar mechanisms in real volcanoes may produce pulse-like ejections of gas-particle mixtures out of the vent.

  12. An Experimental Study of CO2 Exsolution and Relative Permeability Measurements during CO2 Saturated Water Depressurization Relevant to Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zuo, L.; Krevor, S. C.; Falta, R. W.; Benson, S. M.

    2011-12-01

    Saline aquifers and depleted oil and gas fields have been considered as preferred geological sequestration options for carbon dioxide to reduce greenhouse gas emissions. Given the high solubility of CO2 in water, over time, the fraction of CO2 in the subsurface may be dominated by dissolved CO2. CO2 laden brine may permeate cap rocks and carry dissolved CO2 to shallower depths, if there is an upward pressure gradient from the reservoir to the overlying groundwater aquifers. This kind of non-hydrostatic pressure gradients can be caused by gas injection in deeper formations, or groundwater depletion. Such upward flows will depressurize the brine and the dissolved CO2 will come out of solution as pressure drops. We present the results of an experimental investigation into the effects of CO2 exsolution on multiphase flow properties in a CO2-water system with various reservoir rocks and a risk assessment of CO2 leakage due to exsolution in carbon sequestration. The relative permeability of exsolved CO2 and water was measured in a core-flooding apparatus during depressurization with X-ray computed tomography. Very low relative permeabilities of CO2 and water are measured in the exsolution experiments, compared to the relative permeabilities derived from steady-state drainage measurements in the same cores, even when the CO2 saturation is as high as 40%. The large relative permeability reduction in both the CO2 and water phases is hypothesized to result from the presence of a disconnected exsolution gas phase in this flow system. After the CO2 was exsolved, a CO2-saturated water flooding experiment demonstrated the durability and the stability of the low water mobility in the presence of the exsolution gas phase, while the water mobility returned to normal after all of the exsolved CO2 dissolved by a fresh water. A large pressure drop across the core, which is 4~5 times higher than the pressure drop predicted by the drainage relative permeability, was maintained over 120

  13. Effect of spray parameter on containment depressurization during LOCA in KAPP 3 and 4, 700 MWE IPHWR

    SciTech Connect

    Sharma, S. K.; Bhartia, D. K.; Mohan, N.; Malhotra, P. K.; Ghadge, S. G.

    2012-07-01

    KAPP 3 and 4 is an Indian Pressurized Heavy Water Reactor (IPHWR) of 700 MWe capacities. It is a pressure tube type reactor with heavy water as moderator and coolant and natural Uranium Dioxide as fuel. It consists of 392 horizontal fuel channel assemblies and surrounded by three separate water systems i.e. primary coolant, moderator and calandria vault water system. Containment of Indian PHWR is an ultimate barrier, which is designed to envelope whole reactor systems, to prevent the spread of active air-borne fission products in accident condition. Containment Spray System has been provided for energy as well as activity removal from the Containment system. This paper discusses about the studies done to assess the effect of spray parameters such as spray flow rate, droplets diameter and height of fall on containment peak pressure and temperature, long term containment depressurization and energy removal from the containment during Loss of Coolant Accident (LOCA). The spray flow rate and droplets diameter play an important role in removing residual energy from containment atmosphere, which influences depressurization of containment. It is obvious that faster depressurization of containment during postulated LOCA helps in limiting radiological consequences. From radiological considerations, droplets diameter is required to be kept to the lowest practically possible value and flow rate of spray should be high. Spray water droplets fall height governs the exposure time of droplets, which is the direct indication of energy removal rate. However, it is observed from the sensitivity studies that for a height of spray droplet fall more than 16.5 m, for the range of spray water flow rate and droplets sizes considered in the analyses, there is no significant change in heat removal. (authors)

  14. Evaluation of prompt nucleation of bubbles in annular fuel elements during the initial depressurization transient of a DEGB LOCA

    SciTech Connect

    Smith, A.C.

    1997-06-01

    In the first moments following the pipe break, of a DEGB LOCA, the depressurization wave is postulated to propagate rapidly through the system, in the manner of an acoustic or water hammer wave. this is immediately followed by a (reflected) repressurization wave, as the flow of coolant through the break is established. The pressure history is then dictated by the flow from the break and the ability of the pressurizer, pumps and accumulators to supply coolant. The initial sudden drop in pressure may result in the system pressure falling below the saturation pressure of the coolant. This could, in turn, result in bubble formation. Such immediate vapor formation (prompt nucleation of bubbles), in the period before the repressurization wave restores the system pressure to a level above the saturation pressure might initiate flow instability. Such an interruption in flow would allow the fuel tube clad temperature to increase rapidly. Depending on the duration of the flow interruption, the reactor might not be able to survive the initial moments of DEGB LOCA. It has generally been that this phenomenon would not actually occur in an operating reactor. The purpose of this investigation is to evaluate the possibility of occurrence of bubble formation as a result of initial depressurization. 7 refs., 6 figs.

  15. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    as non-equilibrium processes under local constraint of mass and heat fluxes. In this work, we have extended RCB by adding another route for dissociation or reformation of CH4-hydrate towards CH4 into the aqueous phase and water. CH4-hydrate formation and dissociation is resolved by looking at supersaturation and undersaturation with respect to thermodynamics variables. Hydrate instability due to undersaturation of CH4 in the contacting water phase is also considered. A complete non-equilibrium thermodynamic package, developed in-house, was combined with RCB to account for competing phase transitions by considering the minimization of Gibb's free energy. The energy differences were calculated from variations in chemical potentials of hydrate and hydrate formers. Mass transport, heat transport and non-equilibrium thermodynamic effects were implemented through classical nucleation theory to model the kinetic rate of hydrate phase transitions. To illustrate our implementations we ran simulations covering time-spans in the order of hundred years. CH4 production was modelled using the depressurization method, where we employed the Messoyakha field data. We discuss our implementations, as well as results obtained from simulations utilizing our modifications.

  16. Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO(2) foaming.

    PubMed

    Salerno, Aurelio; Zeppetelli, Stefania; Di Maio, Ernesto; Iannace, Salvatore; Netti, Paolo Antonio

    2011-08-01

    This communication reports the design and fabrication of porous scaffolds of poly(ε-caprolactone) (PCL) and PCL loaded with hydroxyapatite (HA) nanoparticles with bimodal pore size distributions by a two step depressurization solid-state supercritical CO(2) (scCO(2) ) foaming process. Results show that the pore structure features of the scaffolds are strongly affected by the thermal history of the starting polymeric materials and by the depressurization profile. In particular, PCL and PCL-HA nanocomposite scaffolds with bimodal and uniform pore size distributions are fabricated by quenching molten samples in liquid N(2) , solubilizing the scCO(2) at 37 °C and 20 MPa, and further releasing the blowing agent in two steps: (1) from 20 to 10 MPa at a slow depressurization rate, and (2) from 10 MPa to the ambient pressure at a fast depressurization rate. The biocompatibility of the bimodal scaffolds is finally evaluated by the in vitro culture of human mesenchymal stem cells (MSCs), in order to assess their potential for tissue engineering applications. PMID:21648005

  17. DESIGN AND TESTING OF SUB-SLAB DEPRESSURIZATION FOR RADON MITIGATION IN NORTH FLORIDA HOUSES - PART I. PERFORMANCE AND DURABILITY - VOLUME 2. DATA APPENDICES

    EPA Science Inventory

    The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...

  18. DESIGN AND TESTING OF SUB-SLAB DEPRESSURIZATION FOR RADON MITIGATION IN NORTH FLORIDA HOUSES - PART I. PERFORMANCE AND DURABILITY - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...

  19. Depressurization of a hydrothermal system following the August and November 2012 Te Maari eruptions of Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Hamling, I. J.; Williams, C. A.; Hreinsdóttir, S.

    2016-01-01

    In 2012, two phreatic eruptions occurred at New Zealand's Tongariro volcano for the first time in over a century. Interferometric Synthetic Aperture Radar data collected by the Italian Space Agency's COSMO-SkyMed satellite constellation, indicates up to 20 mm/yr of post eruptive subsidence focused across a 4 km2 region in the vicinity of the eruption site. Modeling of the deformation data indicates a shallow source at ˜500 m depth (1100 m asl) consistent with the depth of the hydrothermal system. We estimate an annual volume loss of 35,000 m3, leading to a pressure loss of ˜0.09 MPa/yr. We suggest that fracturing associated with the eruptions has enabled the continued depressurization of the shallow hydrothermal system and that subsidence will continue until the fractures become resealed.

  20. Enzymatic hydrolysis of chitin pretreated by rapid depressurization from supercritical 1,1,1,2-tetrafluoroethane toward highly acetylated oligosaccharides.

    PubMed

    Villa-Lerma, Guadalupe; González-Márquez, Humberto; Gimeno, Miquel; Trombotto, Stéphane; David, Laurent; Ifuku, Shinsuke; Shirai, Keiko

    2016-06-01

    The hydrolysis of chitin treated under supercritical conditions was successfully carried out using chitinases obtained by an optimized fermentation of the fungus Lecanicillium lecanii. The biopolymer was subjected to a pretreatment based on suspension in supercritical 1,1,1,2-tetrafluoroethane (scR134a), which possesses a critical temperature and pressure of 101°C and 40bar, respectively, followed by rapid depressurization to atmospheric pressure and further fibrillation. This methodology was compared to control untreated chitins and chitin subjected to steam explosion showing improved production of reducing sugars (0.18mg/mL), enzymatic hydrolysis and high acetylation (FA of 0.45) in products with degrees of polymerization between 2 and 5. PMID:26970920

  1. Development of the Pressure-core Nondestructive Analysis Tools (PNATs) for Methane Hydrate Sedimentary Cores

    NASA Astrophysics Data System (ADS)

    Nagao, Jiro; Yoneda, Jun; Konno, Yoshihiro; Jin, Yusuke

    2015-04-01

    Potential of methane hydrate reservoir as a methane gas resource depends on the physical and chemical properties of geological structure. Seismic, logging and coring are very important information and data to understand these properties. Pressure core analysis is an advanced way to characterize reservoir properties such as the porosity, methane hydrate saturation, permeability, mechanical properties and so on. However, the quality of core samples should be guaranteed, which will be confirmed from the seismic and logging data in advance. Pressure core can be minimalized the dissociation of methane hydrate. The AIST introduced the Pressure-core Nondestructive Analysis Tools (PNATs), in which pressure core is handled without depressurizing the pore pressure until setting up core samples into the tools. The PNATs can evaluate the permeability, hydrate saturation, X-ray CT image, p-wave response, mechanical properties and so on, under the full pressurized operation and provide essential reservoir parameters. In this presentation, we will introduce the details of developed PNATs and several results for pressured cores obtained in the eastern Nankai Trough off Japan. This study is financially supported by METI and Research Consortium for Methane Hydrate Resources in Japan (the MH21 Research Consortium).

  2. A Preliminary Investigation of Rapid Depressurization Phenomena Following a Sudden DLOFC in a VHTR

    SciTech Connect

    Richard C. Martineau; Ray A. Berry; Dana A. Knoll

    2009-03-01

    Air ingress has been identified as a potential threat for Very High Temperature gas-cooled Reactors (VHTR). Reactor components constructed of graphite will, at high temperatures, produce exothermic reactions in the presence of oxygen. The danger lies in the possibility of fuel element damage and core structural failure. Previous investigations of air ingress mechanisms have focused on thermal and molecular diffusion, density-driven stratified flow, and natural convection. Here, we investigate the possibility of a rapid ingress of air due to a Taylor wave expansion after a hypothetical sudden loss of coolant accident (LOCA) scenario in a VHTR. Our analysis starts with a one-dimensional shock tube simulation to simply illustrate the development of a Taylor wave with resulting reentrant flow. Then, a simulation is performed of an idealized two-dimensional axisymmetric representation of the lower plenum of General Atomics GT-MHR subjected to a hypothetical catastrophic break of the hot duct. Analysis shows the potential for significant and rapid air ingress into the reactor vessel in the case of a large break in the cooling system.

  3. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  4. Experimental Study on the Performance of IIST Passive Core Cooling System

    SciTech Connect

    Chin-Jang Chang; Chien-Hsiung Lee; Wen-Tan Hong; Wang, Lance L.C.

    2002-07-01

    The purpose of this study is to conduct the experiments at the Institute of Nuclear Energy Research (INER) Integral System Test (IIST) facility for evaluation of the performance of the passive core cooling system (PCCS) during the cold-leg small break loss-of-coolant accidents (SBLOCAs). Five experiments were performed with (1) three different break sizes, 2%, 0.5%, and 0.2% (approximately corresponding to 1 1/4'', 2'', and 4'' breaks for Maanshan nuclear power plant), and (2) 0.2% and 0.5% without actuation of the first-stage and third-stage automatic depressurization valve (ADS-1 and ADS-3) to initiate PCCS for assessing its capacity in accident management. The detailed descriptions of general system response and the interactions of core makeup tanks (CMTs), accumulators (ACCs), automatic depressurization system (ADS), passive residual heat Removal (PRHR), and in-containment refueling water storage tank (IRWST) on the core heat removal are included. The results show: (1) core long term cooling can be maintained for all cases following the PCCS procedures, (2) the core can be covered for the cases of the 0.2% and 0.5% breaks without actuation of ADS-1 and ADS-3. (authors)

  5. Large break loss-of-coolant accident analyses for the high flux isotope reactor

    SciTech Connect

    Taleyarkhan, R.P. )

    1989-01-01

    The US Department of Energy's High Flux Isotope Reactor (HFIR) was analyzed to evaluate it's response to a spectrum of loss-of-coolant accidents (LOCAs) with potential for leading to core damage. The MELCOR severe accident analysis code (version 1.7.1) was used to evaluate the overall dynamic response of HFIR. Before conducting LOCA analyses, the steady-state thermal-hydraulic parameters evaluated by MELCOR for various loop sections were verified against steady-state operating data. Thereafter, HFIR depressurization tests were simulated to evaluate the system pressure change for a given depletion in coolant inventory. Interesting and important safety-related phenomena were observed. The current analyses (which should be considered preliminary) that occur over a period from 1 to 3 seconds do not lead to core wide fuel melting. Core fluid flashing during the initial rapid depressurization does cause fuel temperature excursions due to adiabatic-like heatup. 3 refs., 4 figs.

  6. Coring Methane Hydrate by using Hybrid Pressure Coring System of D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Kubo, Y.; Mizuguchi, Y.; Inagaki, F.; Eguchi, N.; Yamamoto, K.

    2013-12-01

    Pressure coring is a technique to keep in-situ conditions in recovering sub-seafloor sediment samples, which are potentially rich in soluble or hydrated gas. In regular core sampling, gas fractions are easily lost through the changes in the pressure and temperature during core recovery, and it has significant impact on the chemical components of the sample. Rapid degassing may also cause critical damages of original structures. To study original characteristics of gaseous sub-seafloor sediment, a new Hybrid Pressure Coring System (Hybrid PCS) was developed for the D/V Chikyu operation by adapting some of the existing pressure sampling technologies. Hybrid PCS is composed of three main parts: top section for the wireline operation, middle section for the accumulator and pressure controlling system, and the bottom section for the autoclave chamber. The design concept is based on that of Pressure Core Sampler used in Ocean Drilling Program, and of Pressure Temperature Core Sampler (PTCS) and Non-cooled PTCS of Japan Oil, Gas and Metals National Corporation (JOGMEC). Several modifications were made including that on the ball valve, which operates to close the autoclave after coring. The core samples are 51 mm in diameter and up to 3.5 m in length. The system is combined with the Extented Shoe Coring System on the Chikyu and best suited for coring of semi-consolidated formation up to about 3400 m from the sea level. Sample autoclave is compatible with Pressure Core Analysis and Transfer System (PCATS) of Geotek Ltd for sub-sampling and analysis under in-situ pressure. The analysis in PCATS includes X-ray CT scan and core logging with P-wave velocity and gamma density. Depressurization provides accurate volume of gas and its sub-sampling. Hybrid PCS was first tested during the Chikyu Exp. 906 at a submarine mud-volcano in the Nankai Trough. A 0.9 m of hydrate rich material was recovered from the summit (water depth: 2000 m) and the intact hydrate structure was observed

  7. Residential radon mitigations at Kitigan Zibi Anishinabeg: comparison of above ground level (RIM JOIST) and above roof line discharge of radon mitigation SUB-SLAB depressurization systems.

    PubMed

    Brossard, Mathieu; Brascoupé, Marcel; Ottawa, Celine Brazeau; Falcomer, Renato; Ottawa, William; Scott, Arthur; Whyte, Jeff

    2012-05-01

    Radon mitigations in nine houses were conducted by installing sub-slab depressurization systems (SSDS) with two types of discharge and fan locations: Ground level discharge with the fan located in the basement or roof-discharge with the fan located in the attic. This paper presents a detailed comparative analysis of the radon reduction efficiency, condensation problems, and the cost-effectiveness of both SSDS installation scenarios in nine houses. The mitigations from both SSDS scenarios were successful in reducing radon. The results of rim-joist installations discharging above ground level with the fans located in the basement show that a sealed radon fan with proper fittings and sealed piping were able to reduce the radon to acceptable levels in a cost-effective manner. PMID:22469999

  8. DUBLIN CORE

    EPA Science Inventory

    The Dublin Core is a metadata element set intended to facilitate discovery of electronic resources. It was originally conceived for author-generated descriptions of Web resources, and the Dublin Core has attracted broad ranging international and interdisciplinary support. The cha...

  9. Interpretation of the results of the CORA-33 dry core BWR test

    SciTech Connect

    Ott, L.J.; Hagen, S.

    1993-11-01

    All BWR degraded core experiments performed prior to CORA-33 were conducted under ``wet`` core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ``dry`` core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ``dry`` core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions of a ``dry`` BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ``dry`` core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed.

  10. Core thermal response and hydrogen generation of the N Reactor hydrogen mitigation design basis accident

    SciTech Connect

    White, M.D.; Lombardo, N.J.; Heard, F.J.; Ogden, D.M.; Quapp, W.J.

    1988-04-01

    Calculations were performed to determine core heatup, core damage, and subsequent hydrogen production of a hypothetical loss-of-cooling accident at the Department of Energy's N Reactor. The thermal transient response of the reactor core was solved using the TRUMP-BD computer program. Estimates of whole-core thermal damage and hydrogen production were made by weighting the results of multiple half-length pressure tube simulations at various power levels. The Baker-Just and Wilson parabolic rate equations for the metal-water chemical reactions modeled the key phenomena of chemical energy and hydrogen evolution. Unlimited steam was assumed available for continuous oxidation of exposed Zircaloy-2 surfaces and for uranium metal with fuel cladding beyond the failure temperature (1038 C). Intact fuel geometry was modeled. Maximum fuel temperatures (1181 C) in the cooled central regions of the core were predicted to occur one-half hour into the accident scenario. Maximum fuel temperatures of 1447 C occurred in the core GSCS-regions at the end of the 10-h transient. After 10-h 26% of the fuel inventory was predicted to have failed. Peak hydrogen evolution equaled 42 g/s, while 10-h integrated hydrogen evolution equaled 167 kg. 12 refs., 12 figs., 2 tabs.

  11. MNSR transient analyses and thermal-hydraulic safety margins for HEU and LEU cores using PARET

    SciTech Connect

    Olson, Arne P.; Jonah, S.A.

    2008-07-15

    Thermal-hydraulic performance characteristics of Miniature Neutron Source Reactors under long-term steady-state and transient conditions are investigated. Safety margins and limiting conditions attained during these events are determined. Modeling extensions are presented that enable the PARET/ANL code to realistically track primary loop heatup, heat exchange to the pool, and heat loss from the pool to air over the pool. Comparisons are made of temperature predictions for HEU and LEU fueled cores under transient conditions. Results are obtained using three different natural convection heat transfer correlations: the original (PARET/ANL version 5), Churchill-Chu, and an experiment- based correlation from the China Institute of Atomic Energy (CIAE). The MNSR, either fueled by HEU or by LEU, satisfies the design limits for long-term transient operation. (author)

  12. 24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES FOR A BRASS GATE VALVE BODY MADE ON A CORE BOX, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  13. TRACE/PARCS Core Modeling of a BWR/5 for Accident Analysis of ATWS Events

    SciTech Connect

    Cuadra A.; Baek J.; Cheng, L.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    The TRACE/PARCS computational package [1, 2] isdesigned to be applicable to the analysis of light water reactor operational transients and accidents where the coupling between the neutron kinetics (PARCS) and the thermal-hydraulics and thermal-mechanics (TRACE) is important. TRACE/PARCS has been assessed for itsapplicability to anticipated transients without scram(ATWS) [3]. The challenge, addressed in this study, is to develop a sufficiently rigorous input model that would be acceptable for use in ATWS analysis. Two types of ATWS events were of interest, a turbine trip and a closure of main steam isolation valves (MSIVs). In the first type, initiated by turbine trip, the concern is that the core will become unstable and large power oscillations will occur. In the second type,initiated by MSIV closure,, the concern is the amount of energy being placed into containment and the resulting emergency depressurization. Two separate TRACE/PARCS models of a BWR/5 were developed to analyze these ATWS events at MELLLA+ (maximum extended load line limit plus)operating conditions. One model [4] was used for analysis of ATWS events leading to instability (ATWS-I);the other [5] for ATWS events leading to emergency depressurization (ATWS-ED). Both models included a large portion of the nuclear steam supply system and controls, and a detailed core model, presented henceforth.

  14. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.

    2013-12-01

    Effective and absolute permeability are key parameters for gas production from methane-hydrate-bearing sandy sediments. Effective and/or absolute permeability have been measured using methane-hydrate-bearing sandy cores and clayey and silty cores recovered from Daini Atsumi Knoll in the Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. Liquid-nitrogen-immersed cores were prepared by rapid depressurization of pressure cores recovered by a pressure coring system referred to as the Hybrid PCS. Cores were shaped cylindrically on a lathe with spraying of liquid nitrogen to prevent hydrate dissociation. Permeability was measured by a flooding test or a pressure relaxation method under near in-situ pressure and temperature conditions. Measured effective permeability of hydrate-bearing sediments is less than tens of md, which are order of magnitude less than absolute permeability. Absolute permeability of clayey cores is approximately tens of μd, which would perform a sealing function as cap rocks. Permeability reduction due to a swelling effect was observed for a silty core during flooding test of pure water mimicking hydrate-dissociation-water. Swelling effect may cause production formation damage especially at a later stage of gas production from methane hydrate deposits. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).

  15. Characterization of sediment cores containing methane hydrate recovered from the Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Nagao, J.; Jin, Y.; Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Kida, M.; Nakatsuka, Y.; Suzuki, K.; Fujii, T.; Yamamoto, K.

    2013-12-01

    On the March 2013, Japan Oil, Gas and Metals National Corporation (JOGMEC) has conducted the first gas production test from methane hydrate deposits in the Nankai Trough offshore Japan. In the Eastern Nankai Trough area off the Pacific coast of Japan, highly concentrated methane hydrate deposits were discovered in Pleistocene turbidite sediments.. Along with geological information, structure and physical properties of the sediments are essential information to understand the nature and origin of the deposits, and preserving those in-situ values in core samples for laboratory testing on surface is a quite important scientific challenge. To solve the problem, JOGMEC and JAMSTEC have developed a pressure coring device and utilized it on D/V Chikyu for our coring operation before the production test. In this operation, we obtained two types of cores; one is the dissociation preserved core by rapidly cooled by emerging into liquid nitrogen (LN2 core), the other is stored in special pressure vessels without depressurizing and kept under original pressure and temperature (pressure core). Here the summary of LN2 core sample analyses, such as X-ray CT, p-wave velocity, particle analysis, permeability, mechanical properties, and gas composition, is presented. Also future analysis plan for pressure core is explained. This work was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by METI.

  16. Effects of Fluid Saturation on Gas Recovery from Class-3 Hydrate Accumulations Using Depressurization: Case Study of Yuan-An Ridge Site in Southwestern Offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jyun; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2016-04-01

    Gas hydrates are crystalline compounds in which guest gas molecules are trapped in host lattices of ice crystals. In Taiwan, the significant efforts have recently begun to evaluate the reserves of hydrate because the vast accumulations of gas hydrates had been recognized in southwestern offshore Taiwan. Class-3 type hydrate accumulations are referred to an isolated hydrate layer without an underlying zone of mobile fluids, and the entire hydrate layer may be well within the hydrate stability zone. The depressurization method is a useful dissociation method for gas production from Class-3 hydrate accumulations. The dissociation efficiency is controlled by the responses of hydrate to the propagating pressure disturbance, and the pressure propagation is relating to the amount (or saturation) of the mobile fluid in pore space of the hydrate layer. The purpose of this study is to study the effects of fluid saturation on the gas recovery from a class-3 hydrate accumulation using depressurization method. The case of a class-3 hydrate deposit of Yuan-An Ridge in southwestern offshore Taiwan is studied. The numerical method was used in this study. The reservoir simulator we used to study the dissociation of hydrate and the production of gas was the STARS simulator developed by CMG, which coupled heat transfer, geo-chemical, geo-mechanical, and multiphase fluid flow mechanisms. The study case of Yuan-An Ridge is located in southwestern offshore Taiwan. The hydrate deposit was found by the bottom simulating reflectors (BSRs). The geological structure of the studied hydrate deposit was digitized to build the geological model (grids) of the case. The formation parameters, phase behavior data, rock and fluid properties, and formation's initial conditions were assigned sequentially to grid blocks, and the completion and operation conditions were designed to wellbore blocks to finish the numerical model. The changes of reservoir pressure, temperature, saturation due to the hydrate

  17. Core strengthening.

    PubMed

    Arendt, Elizabeth A

    2007-01-01

    Several recent studies have evaluated interventional techniques designed to reduce the risk of serious knee injuries, particularly noncontact anterior cruciate ligament injuries in female athletes. Maintenance of rotational control of the limb underneath the pelvis, especially in response to cutting and jumping activities, is a common goal in many training programs. Rotational control of the limb underneath the pelvis is mediated by a complex set of factors including the strength of the trunk muscles and the relationship between the core muscles. It is important to examine the interrelationship between lower extremity function and core stability. PMID:17472321

  18. Desalination of oil sands process-affected water and basal depressurization water in Fort McMurray, Alberta, Canada: application of electrodialysis.

    PubMed

    Kim, Eun-Sik; Dong, Shimiao; Liu, Yang; Gamal El-Din, Mohamed

    2013-01-01

    The high content of inorganic species in water used to extract bitumen from the Alberta oil sands and in the groundwater below the oil sands is an increasing environmental concern. These water matrices require treatment before they can be reused or safely discharged. Desalination of the oil sands process-affected water (OSPW) and groundwater, or basal depressurization water (BDW), can be accomplished with deionization techniques such as electrodialysis (ED). In order to achieve the effective ED treatment, OSPW and BDW were pretreated with coagulation-flocculation-sedimentation to remove solid species and turbidity. We demonstrated that a conductivity range for industrial reuse of OSPW and BDW can be achieved with the ED treatment and showed the possibility of applying ED in the oil sands industry. A continuous ED system that reuses the diluate stream as a source for the concentrate stream was designed. The cost of a hypothetical ED water treatment plant in Fort McMurray, Alberta, was estimated to be C$10.71 per cubic meter of treated water. PMID:24355856

  19. Experimental study of effectiveness of four radon mitigation solutions, based on underground depressurization, tested in prototype housing built in a high radon area in Spain.

    PubMed

    Frutos Vázquez, Borja; Olaya Adán, Manuel; Quindós Poncela, Luis Santiago; Sainz Fernandez, Carlos; Fuente Merino, Ismael

    2011-04-01

    The present paper discusses the results of an empirical study of four approaches to reducing indoor radon concentrations based on depressurization techniques in underground sumps. The experiments were conducted in prototype housing built in an area of Spain where the average radon concentration at a depth of 1 m is 250 kBq m(-3). Sump effectiveness was analysed in two locations: underneath the basement, which involved cutting openings into the foundation, ground storey and roof slabs, and outside the basement walls, which entailed digging a pit alongside the building exterior. The effectiveness of both sumps was likewise tested with passive and forced ventilation methods. The systems proved to be highly efficient, lowering radon levels by 91-99%, except in the solution involving passive ventilation and the outside sump, where radon levels were reduced by 53-55%. At wind speeds of over 8 m/s, however, passive ventilation across an outside sump lowered radon levels by 95% due to a Venturi effect induced drop in pressure. PMID:21382656

  20. A research program to reduce interior noise in general aviation airplanes. Influence of depressurization and damping material on the noise reduction characteristics of flat and curved stiffened panels

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.; Streeter, B.; Koontz, S.; Roskam, J.

    1981-01-01

    Some 20 x 20 aluminum panels were studied in a frequency range from 20 Hz to 5000 Hz. The noise sources used were a swept sine wave generator and a random noise generator. The effect of noise source was found to be negligible. Increasing the pressure differential across the panel gave better noise reduction below the fundamental resonance frequency due to an increase in stiffness. The largest increase occurred in the first 1 psi pressure differential. The curved, stiffened panel exhibited similar behavior, but with a lower increase of low frequency noise reduction. Depressurization on these panels resulted in decreased noise reduction at higher frequencies. The effect of damping tapes on the overall noise reduction values of the test specimens was small away from the resonance frequency. In the mass-law region, a slight and proportional improvement in noise reduction was observed by adding damping material. Adding sound absorbtion material to a panel with damping material beneficially increased noise reduction at high frequencies.

  1. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    SciTech Connect

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  2. Safety evaluation of MHTGR licensing basis accident scenarios

    SciTech Connect

    Kroeger, P.G.

    1989-04-01

    The safety potential of the Modular High-Temperature Gas Reactor (MHTGR) was evaluated, based on the Preliminary Safety Information Document (PSID), as submitted by the US Department of Energy to the US Nuclear Regulatory Commission. The relevant reactor safety codes were extended for this purpose and applied to this new reactor concept, searching primarily for potential accident scenarios that might lead to fuel failures due to excessive core temperatures and/or to vessel damage, due to excessive vessel temperatures. The design basis accident scenario leading to the highest vessel temperatures is the depressurized core heatup scenario without any forced cooling and with decay heat rejection to the passive Reactor Cavity Cooling System (RCCS). This scenario was evaluated, including numerous parametric variations of input parameters, like material properties and decay heat. It was found that significant safety margins exist, but that high confidence levels in the core effective thermal conductivity, the reactor vessel and RCCS thermal emissivities and the decay heat function are required to maintain this safety margin. Severe accident extensions of this depressurized core heatup scenario included the cases of complete RCCS failure, cases of massive air ingress, core heatup without scram and cases of degraded RCCS performance due to absorbing gases in the reactor cavity. Except for no-scram scenarios extending beyond 100 hr, the fuel never reached the limiting temperature of 1600/degree/C, below which measurable fuel failures are not expected. In some of the scenarios, excessive vessel and concrete temperatures could lead to investment losses but are not expected to lead to any source term beyond that from the circulating inventory. 19 refs., 56 figs., 11 tabs.

  3. Regional and National Estimates of the PotentialEnergy Use, Energy Cost, and CO{sub 2} Emissions Associated with Radon Mitigation by Sub-slab Depressurization

    SciTech Connect

    Riley, W.J.; Fisk, W.J.; Gadgil, A.J.

    1996-03-01

    Active sub-slab depressurization (SSD) systems are an effective means of reducing indoor radon concentrations in residential buildings. However, energy is required to operate the system fan and to heat or cool the resulting increased building ventilation. We present regional and national estimates of the energy requirements, operating expenses, and CO{sub 2} emissions associated with using SSD systems at saturation (i.e., in all U.S. homes with radon concentrations above the EPA remediation guideline and either basement or slab-on-grade construction). The primary source of uncertainty in these estimates is the impact of the SSD system on house ventilation rate. Overall, individual SSD system operating expenses are highest in the Northeast and Midwest at about $99 y{sup -1}, and lowest in the South and West at about $66 y{sup -1}. The fan consumes, on average, about 40% of the end-use energy used to operate the SSD system and accounts for about 60% of the annual expense. At saturation, regional impacts are largest in the Midwest because this area has a large number of mitigable houses and a relatively high heating load. We estimate that operating SSD systems in U.S. houses where it is both appropriate and possible (about 2.6 million houses), will annually consume 1.7 x 10{sup 4} (6.4 x 10{sup 3} to 3.9 x 10{sup 4}) TJ of end-use energy, cost $230 (130 to 400) million (at current energy prices), and generate 2.0 x 10{sup 9} (1.2 x 10{sup 9} to 3.5 x 10{sup 9}) kg of CO{sub 2}. Passive or energy efficient radon mitigation systems currently being developed offer opportunities to substantially reduce these impacts.

  4. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 312 site, northern Gulf of Mexico

    SciTech Connect

    Myshakin, Evgeniy M.; Gaddipati, Manohar; Rose, Kelly; Anderson, Brian J.

    2012-06-01

    In 2009, the Gulf of Mexico (GOM) Gas Hydrates Joint-Industry-Project (JIP) Leg II drilling program confirmed that gas hydrate occurs at high saturations within reservoir-quality sands in the GOM. A comprehensive logging-while-drilling dataset was collected from seven wells at three sites, including two wells at the Walker Ridge 313 site. By constraining the saturations and thicknesses of hydrate-bearing sands using logging-while-drilling data, two-dimensional (2D), cylindrical, r-z and three-dimensional (3D) reservoir models were simulated. The gas hydrate occurrences inferred from seismic analysis are used to delineate the areal extent of the 3D reservoir models. Numerical simulations of gas production from the Walker Ridge reservoirs were conducted using the depressurization method at a constant bottomhole pressure. Results of these simulations indicate that these hydrate deposits are readily produced, owing to high intrinsic reservoir-quality and their proximity to the base of hydrate stability. The elevated in situ reservoir temperatures contribute to high (5–40 MMscf/day) predicted production rates. The production rates obtained from the 2D and 3D models are in close agreement. To evaluate the effect of spatial dimensions, the 2D reservoir domains were simulated at two outer radii. The results showed increased potential for formation of secondary hydrate and appearance of lag time for production rates as reservoir size increases. Similar phenomena were observed in the 3D reservoir models. The results also suggest that interbedded gas hydrate accumulations might be preferable targets for gas production in comparison with massive deposits. Hydrate in such accumulations can be readily dissociated due to heat supply from surrounding hydrate-free zones. Special cases were considered to evaluate the effect of overburden and underburden permeability on production. The obtained data show that production can be significantly degraded in comparison with a case using

  5. Dual-core antiresonant hollow core fibers.

    PubMed

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters. PMID:27464191

  6. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  7. MELCOR simulation of long-term station blackout at Peach Bottom

    SciTech Connect

    Madni, I.K.

    1990-01-01

    This paper presents the results from MELCOR (Version 1.8BC) calculations of the Long-Term Station Blackout Accident Sequence, with failure to depressurize the reactor vessel, at the Peach Bottom (BWR Mark I) plant, and presents comparisons with Source Term Code Package (STCP) calculations of the same sequence. This sequence assumes that batteries are available for six hours following loss of all power to the plant. Following battery failure, the reactor coolant system (RCS) inventory is boiled off through the relief valves by continued decay heat generation. This leads to core uncovery, heatup, clad oxidation, core degradation, relocation, and, eventually, vessel failure at high pressure. STCP has calculated the transient out to 13.5 hours after core uncovery. The results include the timing of key events, pressure and temperature response in the reactor vessel and containment, hydrogen production, and the release of source terms to the environment. 12 refs., 23 figs., 3 tabs.

  8. Academic Rigor: The Core of the Core

    ERIC Educational Resources Information Center

    Brunner, Judy

    2013-01-01

    Some educators see the Common Core State Standards as reason for stress, most recognize the positive possibilities associated with them and are willing to make the professional commitment to implementing them so that academic rigor for all students will increase. But business leaders, parents, and the authors of the Common Core are not the only…

  9. Interpretation of experimental results from the CORA core melt progression experiments

    SciTech Connect

    Hohorst, J.K.; Allison, C.M.

    1991-01-01

    Data obtained from the CORA bundle heatup and melting experiments, performed at Kernforschungszentrum, Karlsruhe, Germany, are being analyzed at the Idaho National Engineering Laboratory. The analysis is being performed as part of a systematic review of core melt progression experiments for the United States Nuclear Regulatory Commission to (a) develop an improved understanding of important phenomena occurring during a severe accident, (b) to validate existing severe accident models, and (c) where necessary, develop improved models. An assessment of the variations in damage progression behavior because of variations in test parameters (a) bundle design and size, (b) system pressure, (c) slow cooling of the damaged bundles in argon versus rapid quenching in water, and (d) bundle inlet temperatures and flow rates is provided in the paper. The influence of uncertainties in important test conditions is also discussed. Specific results presented include (a) bundle temperature, (b) the onset and movement of the oxidation front within the bundle, (c) fuel rod ballooning and rod failure, and (d) melt relocation and associated material interactions between bundle components and structures. 12 refs., 16 figs., 2 tabs.

  10. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  11. The Core Skills Initiative.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    A British initiative that aims to identify, develop, and assess core skills in post-16 courses and qualifications is summarized in this bulletin. The first section discusses expectations regarding what core skills can achieve. The following section focuses on other purposes to which core skills could contribute, such as broadening the post-16…

  12. Core Competence and Education.

    ERIC Educational Resources Information Center

    Holmes, Gary; Hooper, Nick

    2000-01-01

    Outlines the concept of core competence and applies it to postcompulsory education in the United Kingdom. Adopts an educational perspective that suggests accreditation as the core competence of universities. This economic approach suggests that the market trend toward lifetime learning might best be met by institutions developing a core competence…

  13. Core Design Applications

    Energy Science and Technology Software Center (ESTSC)

    1995-07-12

    CORD-2 is intended for core desigh applications of pressurized water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refueling).

  14. Geotechnical properties of core sample from methane hydrate deposits in Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Masui, A.; Egawa, K.; Konno, Y.; Ito, T.; Kida, M.; Jin, Y.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.

    2013-12-01

    To date, MH extraction has been simulated in several ways to help ensure the safe and efficient production of gas, with a particular focus on the investigation of landsliding, uneven settlement, and production well integrity. The mechanical properties of deep sea sediments and gas-hydrate-bearing sediments, typically obtained through material tests, are essential for the geomechanical response simulation to hydrate extraction. We conducted triaxial compression tests and the geotechnical properties of the sediments was investigated. Consolidated undrained compression tests were performed for silty sediments. And consolidated drained tests were performed for sandy samples. In addition, permeability was investigated from isotropic consolidation results. These core samples recovered from methane hydrate deposits of Daini Atsumi Knoll in Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. The pressure core samples were rapidly depressurized on the ship and it were frozen using liquid nitrogen to prevent MH dissociation. Undrained shear strength of the core samples increase linearly with depth from sea floor. These core samples should be normally consolidated sample in-situ. Drained shear strength increases dramatically with hydrate saturation increases. Peak stress ratio q/p' of the core sample which has 73% of hydrate saturation was approximately 2.0 and it decrease down to 1.3 at the critical state. Dilatancy also changed from compressive tendency to dilative tendency with hydrate saturation increase. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).

  15. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  16. "Snowing" Core in Earth?

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Cormier, V.; Gao, L.; Gubbins, D.; Kharlamova, S. A.; He, K.; Yang, H.

    2008-12-01

    As a planet cools, an initially molten core gradually solidifies. Solidification occurs at shallow depths in the form of "snow", if the liquidus temperature gradient of the core composition is smaller than the adiabatic temperature gradient in the core. Experimental data on the melting behavior of iron-sulfur binary system suggest that the cores of Mercury and Ganymede are probably snowing at the present time. The Martian core is predicted to snow in the future, provided that the sulfur content falls into the range of 10 to 14 weight percent. Is the Earth's core snowing? If so, what are the surface manifestations? If the Earth's core snowed in the past, how did it affect the formation of the solid inner core and the geodynamo? Here, we evaluate the likelihood and consequences of a snowing core throughout the Earth's history, on the basis of mineral physics data describing the melting behavior, equation-of-state, and thermodynamic properties of iron-rich alloys at high pressures. We discuss if snowing in the present-day Earth can reproduce the shallow gradients of compressional wave velocity above the inner-core boundary, and whether or not snowing in the early Earth may reconcile the apparent young age of the solid inner core with a long-lived geodynamo.

  17. Continuous coring drill bit

    SciTech Connect

    Ford, G.A.

    1987-09-22

    A continuous coring drill bit is described comprising: (a) body means defining a vertical axis and adapted for connection to drill pipe and forming an internal body cavity disposed in eccentric relation with the vertical axis and a generally circular throat in communication with the body cavity for conducting drilling fluid. The throat defining a throat axis coincident with the vertical axis and being of a configuration permitting passage of a formation core into the body cavity; (b) a generally cylindrical tubular core breaker being rotatably mounted within the body cavity and defining a vertical axis of rotation of generally parallel and offset relation with the vertical axis of the body means; and (c) a buttress element extending inwardly from the core breaker and adapted to contact the formation core. Upon each rotation of the drill bit the buttress element applying transverse force to the core for fracturing of the core into sections sufficiently small for transport by the drilling fluid.

  18. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    SciTech Connect

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  19. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    USGS Publications Warehouse

    Kneafsey, T.J.; Lu, H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-01-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  20. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  1. 23. CORE WORKER OPERATING A COREBLOWER THAT PNEUMATICALLY FILLED CORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORE WORKER OPERATING A CORE-BLOWER THAT PNEUMATICALLY FILLED CORE BOXES WITH RESIGN IMPREGNATED SAND AND CREATED A CORE THAT THEN REQUIRED BAKING, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  2. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and

  3. Lunar core: occam's razor?

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Whether or not the earth's moon has a core is a much bandied question. Like many notions about the properties of the moon, ideas of a lunar core changed drastically after the Apollo studies. A review of the development of these ideas was given a scholarly treatment by S.K. Runcorn recently (Nature, 304, 589-596, 1983). In contrast, L.L. Hood, C.P. Sonett, and L.J. Srnka have questioned the concept in serious detail (Nature, 307, 661-662, 1984).Whether or not the moon actually has or has had a fluid metallic core is of great consequence for a number of geophysical theories about the solar system. Most investigators concede that the possible existence of a lunar core remains one of the major unanswered, and yet most critical, questions about the moon. A lot rides on the answer: Can a lunar-sized body have a core? Is the core metallic? How is the core related to lunar magnetism and its paleomagnetism? Is or was a lunar core related to lunar volcanism? If the moon can have a core, is planetary core formation in the solar system a simple matter of gravitationally segregating metallic fragments that were formed elsewhere? Implications of the questions are without limit. There is, perhaps, no more valid issue about the moon to explore scientifically.

  4. Core sample extractor

    NASA Technical Reports Server (NTRS)

    Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark

    1989-01-01

    The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.

  5. The core paradox.

    NASA Technical Reports Server (NTRS)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  6. AN Core Analysis

    NASA Astrophysics Data System (ADS)

    Barbarino, Andrea; Tomatis, Daniele

    2014-06-01

    Several alternative approximations of neutron transport have been proposed in years to move around the known limitations imposed by neutron diffusion in the modeling of nuclear cores. However, only a few complied with the industrial requirements of fast numerical computation, concentrating more on physical accuracy. In this work, the AN transport methodology is discussed with particular interest in core performance calculations. The implementation of the methodology in full core codes is discussed with particular attention to numerical issues and to the integration within the entire simulation process. Finally, first results from core studies in AN transport are analyzed in detail and compared to standard results of neutron diffusion.

  7. Helicopter engine core noise

    NASA Astrophysics Data System (ADS)

    Vonglahn, U. H.

    1982-07-01

    Calculated engine core noise levels, based on NASA Lewis prediction procedures, for five representative helicopter engines are compared with measured total helicopter noise levels and ICAO helicopter noise certification requirements. Comparisons are made for level flyover and approach procedures. The measured noise levels are generally significantly greater than those predicted for the core noise levels, except for the Sikorsky S-61 and S-64 helicopters. However, the predicted engine core noise levels are generally at or within 3 dB of the ICAO noise rules. Consequently, helicopter engine core noise can be a significant contributor to the overall helicopter noise signature.

  8. Helicopter engine core noise

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1982-01-01

    Calculated engine core noise levels, based on NASA Lewis prediction procedures, for five representative helicopter engines are compared with measured total helicopter noise levels and ICAO helicopter noise certification requirements. Comparisons are made for level flyover and approach procedures. The measured noise levels are generally significantly greater than those predicted for the core noise levels, except for the Sikorsky S-61 and S-64 helicopters. However, the predicted engine core noise levels are generally at or within 3 dB of the ICAO noise rules. Consequently, helicopter engine core noise can be a significant contributor to the overall helicopter noise signature.

  9. Core Research Center

    USGS Publications Warehouse

    Hicks, Joshua; Adrian, Betty

    2009-01-01

    The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.

  10. Reconceptualising Core Skills

    ERIC Educational Resources Information Center

    Canning, Roy

    2007-01-01

    The paper provides an analysis of Core Skill policy and practice in the UK. The author presents a conceptual basis for re-thinking generic Core Skills within educational approaches in teaching and learning. The discussion looks at whether universal notions of generic skills are appropriate when considering post-compulsory pedagogic approaches to…

  11. The Common Core.

    ERIC Educational Resources Information Center

    Boyer, Ernest L.

    Current curricula in institutions of higher education are criticized in this speech for their lack of a common core of education. Several possibilities for developing such a common core include education centered around our common heritage and the challenges of the present. It is suggested that all students must be introduced to the events,…

  12. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  13. Iowa Core Annual Report

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2015

    2015-01-01

    One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…

  14. CORE - Performance Feedback System

    Energy Science and Technology Software Center (ESTSC)

    2009-10-02

    CORE is an architecture to bridge the gaps between disparate data integration and delivery of disparate information visualization. The CORE Technology Program includes a suite of tools and user-centered staff that can facilitate rapid delivery of a deployable integrated information to users.

  15. Core Skills in Action.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin provides an update on current developments in core skills in further education. Section 1 contains information about the Further Education Unit's (FEU's) Core Skills Post-16 project, in which colleges are testing principles that underpin all good quality learning programs. Important findings and examples are outlined under the five…

  16. NFE Core Bibliographies.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Inst. for International Studies in Education.

    This collection of core bibliographies, which expands on an initial bibliography published in 1979 of the core resources housed in the Non-Formal Education Information Center at Michigan State University, comprises a basic stock of materials on nonformal education and women in development that have been contributed by development planners,…

  17. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  18. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  19. Internal core tightener

    DOEpatents

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  20. The relationship between gas hydrate saturation and P-wave velocity of pressure cores obtained in the Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Fujii, T.; Nagao, J.

    2014-12-01

    P-wave velocity is an important parameter to estimate gas hydrate saturation in sediments. In this study, the relationship between gas hydrate saturation and P-wave velocity have been analyzed using natural hydrate-bearing-sediments obtained in the Eastern Nankai Trough, Japan. The sediment samples were collected by the Hybrid Pressure Coring System developed by Japan Agency for Marine-Earth Science and Technology during June-July 2012, aboard the deep sea drilling vessel CHIKYU. P-wave velocity was measured on board by the Pressure Core Analysis and Transfer System developed by Geotek Ltd. The samples were maintained at a near in-situ pressure condition during coring and measurement. After the measurement, the samples were stored core storage chambers and transported to MHRC under pressure. The samples were manipulated and cut by the Pressure-core Non-destructive Analysis Tools or PNATs developed by MHRC. The cutting sections were determined on the basis of P-wave velocity and visual observations through an acrylic window equipped in the PNATs. The cut samples were depressurized to measure gas volume for saturation calculations. It was found that P-wave velocity correlates well with hydrate saturation and can be reproduced by the hydrate frame component model. Using pressure cores and pressure core analysis technology, nondestructive and near in-situ correlation between gas hydrate saturation and P-wave velocity can be obtained. This study was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI), Japan.

  1. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  2. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  3. Boson core compressibility

    NASA Astrophysics Data System (ADS)

    Khorramzadeh, Y.; Lin, Fei; Scarola, V. W.

    2012-04-01

    Strongly interacting atoms trapped in optical lattices can be used to explore phase diagrams of Hubbard models. Spatial inhomogeneity due to trapping typically obscures distinguishing observables. We propose that measures using boson double occupancy avoid trapping effects to reveal two key correlation functions. We define a boson core compressibility and core superfluid stiffness in terms of double occupancy. We use quantum Monte Carlo on the Bose-Hubbard model to empirically show that these quantities intrinsically eliminate edge effects to reveal correlations near the trap center. The boson core compressibility offers a generally applicable tool that can be used to experimentally map out phase transitions between compressible and incompressible states.

  4. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  5. Core shroud corner joints

    DOEpatents

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  6. Magnetorotational iron core collapse

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.

    1984-01-01

    During its final evolutionary stages, a massive star, as considered in current astrophysical theory, undergoes rapid collapse, thereby triggering a sequence of a catastrophic event which results in a Type II supernova explosion. A remnant neutron star or a black hole is left after the explosion. Stellar collapse occurs, when thermonuclear fusion has consumed the lighter elements present. At this stage, the core consists of iron. Difficulties arise regarding an appropriate model with respect to the core collapse. The present investigation is concerned with the evolution of a Type II supernova core including the effects of rotation and magnetic fields. A simple neutrino model is developed which reproduced the spherically symmetric results of Bowers and Wilson (1982). Several two-dimensional computational models of stellar collapse are studied, taking into account a case in which a 15 solar masses iron core was artificially given rotational and magnetic energy.

  7. Contaminated Sediment Core Profiling

    EPA Science Inventory

    Evaluating the environmental risk of sites containing contaminated sediments often poses major challenges due in part to the absence of detailed information available for a given location. Sediment core profiling is often utilized during preliminary environmental investigations ...

  8. Core assembly storage structure

    DOEpatents

    Jones, Jr., Charles E.; Brunings, Jay E.

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  9. Geophysics: Earth's core problem

    NASA Astrophysics Data System (ADS)

    Dobson, David

    2016-06-01

    Measurements of the electrical resistance and thermal conductivity of iron at extreme pressures and temperatures cast fresh light on controversial numerical simulations of the properties of Earth's outer core. See Letters p.95 & 99

  10. Biospecimen Core Resource - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) Biospecimen Core Resource centralized laboratory reviews and processes blood and tissue samples and their associated data using optimized standard operating procedures for the entire TCGA Research Network.

  11. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The

  12. Analysis of two small break loss-of-coolant experiments in the BETHSY facility using RELAP5/MOD3

    SciTech Connect

    Roth, P.A.; Schultz, R.R. ); Choi, C.J. )

    1992-07-01

    Small break loss-of-coolant accident (SBLOCA) data were recorded during tests 9.lb and 6.2 TC in the Boucle d'Etudes Thermohydrouliques Systeme (BETHSY) facility at the Centre d'Etudes Nucleares de Grenoble (CENG) complex in Grenoble, France. The data from test 9.lb form the basis for the International Standard Problem number 27 (ISP-27). For each test the primary system depressurization, break flow rate, core heat-up, and effect of operator actions were analyzed. Based on the test 9.lb/ISP-27 and 6.2 TC data, an assessment study of the RELAP5/MOD3 version 7 code was performed which included a study of the above phenomena along with countercurrent flow limitation and vapor pull-through. The code provided a reasonable simulation of the various phenomena which occurred during the tests.

  13. Analysis of two small break loss-of-coolant experiments in the BETHSY facility using RELAP5/MOD3

    SciTech Connect

    Roth, P.A.; Schultz, R.R.; Choi, C.J.

    1992-07-01

    Small break loss-of-coolant accident (SBLOCA) data were recorded during tests 9.lb and 6.2 TC in the Boucle d`Etudes Thermohydrouliques Systeme (BETHSY) facility at the Centre d`Etudes Nucleares de Grenoble (CENG) complex in Grenoble, France. The data from test 9.lb form the basis for the International Standard Problem number 27 (ISP-27). For each test the primary system depressurization, break flow rate, core heat-up, and effect of operator actions were analyzed. Based on the test 9.lb/ISP-27 and 6.2 TC data, an assessment study of the RELAP5/MOD3 version 7 code was performed which included a study of the above phenomena along with countercurrent flow limitation and vapor pull-through. The code provided a reasonable simulation of the various phenomena which occurred during the tests.

  14. Micro coring apparatus

    NASA Technical Reports Server (NTRS)

    Collins, David; Brooks, Marshall; Chen, Paul; Dwelle, Paul; Fischer, Ben

    1989-01-01

    A micro-coring apparatus for lunar exploration applications, that is compatible with the other components of the Walking Mobile Platform, was designed. The primary purpose of core sampling is to gain an understanding of the geological composition and properties of the prescribed environment. This procedure has been used extensively for Earth studies and in limited applications during lunar explorations. The corer is described and analyzed for effectiveness.

  15. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  16. Core bounce supernovae

    SciTech Connect

    Cooperstein, J.

    1987-01-01

    The gravitational collapse mechanism for Type II supernovae is considered, concentrating on the direct implosion - core bounce - hydrodynamic explosion picture. We examine the influence of the stiffness of the dense matter equation of state and discuss how the shock wave is formed. Its chances of success are determined by the equation of state, general relativistic effects, neutrino transport, and the size of presupernova iron core. 12 refs., 1 tab.

  17. Emergency core cooling system

    DOEpatents

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  18. MCNP LWR Core Generator

    SciTech Connect

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  19. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase

  20. Source Term Estimation for Small-Sized HTRs: Status and Further Needs, Extracted from German Safety Analyses

    SciTech Connect

    Moormann, Rainer; Schenk, Werner; Verfondern, Karl

    2001-09-15

    The stringent safety demands for advanced small pebble bed high-temperature reactors (HTRs) are outlined. Main results of German studies on source term estimation are discussed. Core heatup events are no longer dominant for modern fuel, but fission product transport during water ingress accidents (steam cycle plants) and He-circuit depressurizations are relevant, mainly due to remobilization of fission products that were plated out in the course of normal operation or that became dust borne. The following important lack of knowledge was identified: Data on plateout in normal operation are insufficient, as are data on behavior of dust-borne activity in total; better knowledge in these fields is also important for maintenance/repair and design/shielding. For core heatup events, the influence of burnup on temperature-induced fission product release has to be measured for future Pu-containing high burnup fuel; furthermore, transport mechanisms out of the He circuit into the environment require further examination. For water/steam ingress events, mobilization of plated-out fission products by steam or water has to be considered in detail along with steam interaction with kernels of particles with defective coatings. For source terms of depressurization, a more detailed knowledge of flow pattern and shear forces on surfaces is necessary. To improve the knowledge on plateout and dust in normal operation and to generate specimens for experimental remobilization studies, planning/design of plateout/dust examination facilities to be added to HTRs running in the next future reactors [HTR10 and the High-Temperature Engineering Test Reactor (HTTR)] is proposed. For severe air ingress and reactivity accidents, which belong to hypothetical events with frequencies <1 x 10{sup -7} yr{sup -1}, behavior of future advanced fuel elements has to be experimentally tested.

  1. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  2. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  3. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  4. Molten core retention assembly

    DOEpatents

    Lampe, Robert F.

    1976-06-22

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical, imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods.

  5. Mars' Inner Core

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This figure shows a cross-section of the planet Mars revealing an inner, high density core buried deep within the interior. Dipole magnetic field lines are drawn in blue, showing the global scale magnetic field that one associates with dynamo generation in the core. Mars must have one day had such a field, but today it is not evident. Perhaps the energy source that powered the early dynamo has shut down. The differentiation of the planet interior - heavy elements like iron sinking towards the center of the planet - can provide energy as can the formation of a solid core from the liquid.

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  6. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  7. NUCLEAR REACTOR CORE DESIGN

    DOEpatents

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  8. Theory of core excitons

    SciTech Connect

    Dow, J. D.; Hjalmarson, H. P.; Sankey, O. F.; Allen, R. E.; Buettner, H.

    1980-01-01

    The observation of core excitons with binding energies much larger than those of the valence excitons in the same material has posed a long-standing theoretical problem. A proposed solution to this problem is presented, and Frenkel excitons and Wannier excitons are shown to coexist naturally in a single material. (GHT)

  9. Some Core Contested Concepts

    ERIC Educational Resources Information Center

    Chomsky, Noam

    2015-01-01

    Core concepts of language are highly contested. In some cases this is legitimate: real empirical and conceptual issues arise. In other cases, it seems that controversies are based on misunderstanding. A number of crucial cases are reviewed, and an approach to language is outlined that appears to have strong conceptual and empirical motivation, and…

  10. Authentic to the Core

    ERIC Educational Resources Information Center

    Kukral, Nicole; Spector, Stacy

    2012-01-01

    When educators think about what makes learning relevant to students, often they narrow their thinking to electives or career technical education. While these provide powerful opportunities for students to make relevant connections to their learning, they can also create authentic experiences in the core curriculum. In the San Juan Unified School…

  11. From Context to Core

    ERIC Educational Resources Information Center

    Campus Technology, 2008

    2008-01-01

    At Campus Technology 2008, Arizona State University Technology Officer Adrian Sannier mesmerized audiences with his mandate to become more efficient by doing only the "core" tech stuff--and getting someone else to slog through the context. This article presents an excerpt from Sannier's hour-long keynote address at Campus Technology '08. Sannier…

  12. Core Directions in HRD.

    ERIC Educational Resources Information Center

    1996

    This document consists of four papers presented at a symposium on core directions in human resource development (HRD) moderated by Verna Willis at the 1996 conference of the Academy of Human Resource Development. "Reengineering the Organizational HRD Function: Two Case Studies" (Neal Chalofsky) reports an action research study in which the…

  13. A Multidisciplinary Core Curriculum.

    ERIC Educational Resources Information Center

    Jordan, Trace

    2002-01-01

    Describes New York University's commitment to general mathematics and science education for undergraduate students, embodied in the College of Arts and Science's core curriculum, the Morse Academic Plan, which includes a three-course sequence, Foundations of Scientific Inquiry, specifically designed for non-majors. (EV)

  14. The Tom Core Complex

    PubMed Central

    Ahting, Uwe; Thun, Clemens; Hegerl, Reiner; Typke, Dieter; Nargang, Frank E.; Neupert, Walter; Nussberger, Stephan

    1999-01-01

    Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of ∼2.1 nm and a height of ∼7 nm. Tom40 is the key structural element of the TOM core complex. PMID:10579717

  15. The Uncommon Core

    ERIC Educational Resources Information Center

    Ohler, Jason

    2013-01-01

    This author contends that the United States neglects creativity in its education system. To see this, he states, one may look at the Common Core State Standards. If one searches the English Language Arts and Literacy standards for the words "creative," "innovative," and "original"--and any associated terms, one will find scant mention of the words…

  16. EXPOSURE ASSESSMENT FACILITY CORE

    EPA Science Inventory

    The Exposure Assessment Facility Core will continue to collect environmental measures including personal and indoor air monitoring and repeat collection of dust samples from the home and biologic measures including urine and blood samples collected from the mother during pregn...

  17. University City Core Plan.

    ERIC Educational Resources Information Center

    Philadelphia City Planning Commission, PA.

    A redevelopment plan for an urban core area of about 300 acres was warranted by--(1) unsuitable building conditions, (2) undesirable land usage, and (3) faulty traffic circulation. The plan includes expansion of two universities and creation of a regional science center, high school, and medical center. Guidelines for proposed land use and zoning…

  18. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  19. Looking for Core Values

    ERIC Educational Resources Information Center

    Carter, Margie

    2010-01-01

    People who view themselves as leaders, not just managers or teachers, are innovators who focus on clarifying core values and aligning all aspects of the organization with these values to grow their vision. A vision for an organization can't be just one person's idea. Visions grow by involving people in activities that help them name and create…

  20. Life from the core

    NASA Astrophysics Data System (ADS)

    Doglioni, Carlo; Coleman, Max; Pignatti, Johannes; Glassmeier, Karl-Heinz

    2010-05-01

    Life on Earth is the result of the chaotic combination of several independent chemical and physical parameters. One of them is the shield from ionizing radiation exerted by the atmosphere and the Earth's magnetic field. We hypothesise that the first few billion years of the Earth's history, dominated by bacteria, were characterized by stronger ionizing radiation. Bacteria can survive under such conditions better than any other organism. During the Archean and early Proterozoic the shield could have been weaker, allowing the development of only a limited number of species, more resistant to the external radiation. The Cambrian explosion of life could have been enhanced by the gradual growth of the solid inner core, which was not existent possibly before 1 Ga. The cooling of the Earth generated the solidification of the iron alloy in the center of the planet. As an hypothesis, before the crystallization of the core, the turbulence in the liquid core could have resulted in a lower or different magnetic field from the one we know today, being absent the relative rotation between inner and external core.

  1. The Earth's Core.

    ERIC Educational Resources Information Center

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  2. Navagating the Common Core

    ERIC Educational Resources Information Center

    McShane, Michael Q.

    2014-01-01

    This article presents a debate over the Common Core State Standards Initiative as it has rocketed to the forefront of education policy discussions around the country. The author contends that there is value in having clear cross state standards that will clarify the new online and blended learning that the growing use of technology has provided…

  3. Resolving Supercritical Orion Cores

    NASA Astrophysics Data System (ADS)

    Li, Di; Chapman, N.; Goldsmith, P.; Velusamy, T.

    2009-01-01

    The theoretical framework for high mass star formation (HMSF) is unclear. Observations reveal a seeming dichotomy between high- and low-mass star formation, with HMSF occurring only in Giant Molecular Clouds (GMC), mostly in clusters, and with higher star formation efficiencies than low-mass star formation. One crucial constraint to any theoretical model is the dynamical state of massive cores, in particular, whether a massive core is in supercritical collapse. Based on the mass-size relation of dust emission, we select likely unstable targets from a sample of massive cores (Li et al. 2007 ApJ 655, 351) in the nearest GMC, Orion. We have obtained N2H+ (1-0) maps using CARMA with resolution ( 2.5", 0.006 pc) significantly better than existing observations. We present observational and modeling results for ORI22. By revealing the dynamic structure down to Jeans scale, CARMA data confirms the dominance of gravity over turbulence in this cores. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  4. Nucleosome Core Particle

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  5. Renewing the Core Curriculum

    ERIC Educational Resources Information Center

    Lawson, Hal A.

    2007-01-01

    The core curriculum accompanied the development of the academic discipline with multiple names such as Kinesiology, Exercise and Sport Science, and Health and Human Performance. It provides commonalties for undergraduate majors. It is timely to renew this curriculum. Renewal involves strategic reappraisals. It may stimulate change or reaffirm the…

  6. A World Core Curriculum.

    ERIC Educational Resources Information Center

    Muller, Robert

    1993-01-01

    Robert Muller's "World Core Curriculum" is designed to give children: a good picture of planet Earth and the universe; a correct picture of the commonalities and diversity of the human family; an accurate picture of the time period into which they are born; and a sense of their own importance and the role that they can play in society. (MDM)

  7. Core Competencies. SPEC Kit.

    ERIC Educational Resources Information Center

    McNeil, Beth, Comp.

    2002-01-01

    This SPEC (Systems and Procedures Exchange Center) Kit presents the results of a survey of Association of Research Libraries (ARL) member libraries designed to investigate the status of core competencies (i.e., the skills, knowledge, abilities, and attributes that employees across an organization are expected to have to contribute successfully…

  8. The ADNI PET Core

    PubMed Central

    Jagust, William J.; Bandy, Dan; Chen, Kewei; Foster, Norman L.; Landau, Susan M.; Mathis, Chester A.; Price, Julie C.; Reiman, Eric M.; Skovronsky, Daniel; Koeppe, Robert A.

    2010-01-01

    Background This is a progress report of the Alzheimer's Disease Neuroimaging Initiative (ADNI) PET Core. Methods The Core has supervised the acquisition, quality control, and analysis of longitudinal [18F]fluorodeoxyglucose PET (FDG-PET) data in approximately half of the ADNI cohort. In an “add on” study, approximately 100 subjects also underwent scanning with [11C]PIB-PET for amyloid imaging. The Core developed quality control procedures and standardized image acquisition by developing an imaging protocol that has been widely adopted in academic and pharmaceutical industry studies. Data processing provides users with scans that have identical orientation and resolution characteristics despite acquisition on multiple scanner models. The Core labs have used a number of different approaches to characterize differences between subject groups (AD, MCI, controls), to examine longitudinal change over time in glucose metabolism and amyloid deposition, and to assess the use of FDG-PET as a potential outcome measure in clinical trials. Results ADNI data indicate that FDG-PET increases statistical power over traditional cognitive measures, might aid subject selection, and could substantially reduce the sample size in a clinical trial. PIB-PET data showed expected group differences, and identified subjects with significant annual increases in amyloid load across the subject groups. The next activities of the PET core in ADNI will entail developing standardized protocols for amyloid imaging using the [18F]-labeled amyloid imaging agent AV45, which can be delivered to virtually all ADNI sites. Conclusions ADNI has demonstrated the feasibility and utility of multicenter PET studies and is helping to clarify the role of biomarkers in the study of aging and dementia. PMID:20451870

  9. Lunar Polar Coring Lander

    NASA Technical Reports Server (NTRS)

    Angell, David; Bealmear, David; Benarroche, Patrice; Henry, Alan; Hudson, Raymond; Rivellini, Tommaso; Tolmachoff, Alex

    1990-01-01

    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed.

  10. BWR Core Heat Transfer Code System.

    Energy Science and Technology Software Center (ESTSC)

    1999-04-27

    Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less

  11. Pumping and Depressurizing of Insulation Materials

    NASA Technical Reports Server (NTRS)

    Porter, Amber

    2010-01-01

    The Fluids Testing and Technology Branch is a group that researches and tests efficient ways to use various Cryogenic Fluids, such as Liquid Nitrogen or Liquid Helium, in ground and space systems. Their main goal is to develop new technologies involving Cryogenic temperatures as well as making sure the existing technologies are understood. During my time here a lot of insulation testing has been done which is where insulation systems are tested for cryogenic systems that are in space for long durations.

  12. Application of Core Dynamics Modeling to Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia

    2003-01-01

    Observations have demonstrated that length of day (LOD) variation on decadal time scales results from exchange of axial angular momentum between the solid mantle and the core. There are in general four core-mantle interaction mechanisms that couple the core and the mantle. Of which, three have been suggested likely the dominant coupling mechanism for the decadal core-mantle angular momentum exchange, namely, gravitational core-mantle coupling arising from density anomalies in the mantle and in the core (including the inner core), the electromagnetic coupling arising from Lorentz force in the electrically conducting lower mantle (e.g. D-layer), and the topographic coupling arising from non-hydrostatic pressure acting on the core-mantle boundary (CMB) topography. In the past decades, most effort has been on estimating the coupling torques from surface geomagnetic observations (kinematic approach), which has provided insights on the core dynamical processes. In the meantime, it also creates questions and concerns on approximations in the studies that may invalidate the corresponding conclusions. The most serious problem is perhaps the approximations that are inconsistent with dynamical processes in the core, such as inconsistencies between the core surface flow beneath the CMB and the CMB topography, and that between the D-layer electric conductivity and the approximations on toroidal field at the CMB. These inconsistencies can only be addressed with numerical core dynamics modeling. In the past few years, we applied our MoSST (Modular, Scalable, Self-consistent and Three-dimensional) core dynamics model to study core-mantle interactions together with geodynamo simulation, aiming at assessing the effect of the dynamical inconsistencies in the kinematic studies on core-mantle coupling torques. We focus on topographic and electromagnetic core-mantle couplings and find that, for the topographic coupling, the consistency between the core flow and the CMB topography is

  13. Long Valley Coring Project

    USGS Publications Warehouse

    Sass, John; Finger, John; McConnel, Vicki

    1998-01-01

    In December 1997, the California Energy Commission (CEC) agreed to provide funding for Phase III continued drilling of the Long Valley Exploratory Well (LVEW) near Mammoth Lakes, CA, from its present depth. The CEC contribution of $1 million completes a funding package of $2 million from a variety of sources, which will allow the well to be cored continuously to a depth of between 11,500 and 12,500 feet. The core recovered from Phase III will be crucial to understanding the origin and history of the hydrothermal systems responsible for the filling of fractures in the basement rock. The borehole may penetrate the metamorphic roof of the large magmatic complex that has fed the volcanism responsible for the caldera and subsequent activity.

  14. Silica aerogel core waveguide.

    PubMed

    Grogan, M D W; Leon-Saval, S G; England, R; Birks, T A

    2010-10-11

    We have selectively filled the core of hollow photonic crystal fibre with silica aerogel. Light is guided in the aerogel core, with a measured attenuation of 0.2 dB/cm at 1540 nm comparable to that of bulk aerogel. The structure guides light by different mechanisms depending on the wavelength. At long wavelengths the effective index of the microstructured cladding is below the aerogel index of 1.045 and guidance is by total internal reflection. At short wavelengths, where the effective cladding index exceeds 1.045, a photonic bandgap can guide the light instead. There is a small region of crossover, where both index- and bandgap-guided modes were simultaneously observed. PMID:20941148

  15. Geomagnetism of earth's core

    NASA Technical Reports Server (NTRS)

    Benton, E. R.

    1983-01-01

    Instrumentation, analytical methods, and research goals for understanding the behavior and source of geophysical magnetism are reviewed. Magsat, launched in 1979, collected global magnetometer data and identified the main terrestrial magnetic fields. The data has been treated by representing the curl-free field in terms of a scalar potential which is decomposed into a truncated series of spherical harmonics. Solutions to the Laplace equation then extend the field upward or downward from the measurement level through intervening spaces with no source. Further research is necessary on the interaction between harmonics of various spatial scales. Attempts are also being made to analytically model the main field and its secular variation at the core-mantle boundary. Work is also being done on characterizing the core structure, composition, thermodynamics, energetics, and formation, as well as designing a new Magsat or a tethered satellite to be flown on the Shuttle.

  16. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  17. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  18. Variable depth core sampler

    DOEpatents

    Bourgeois, Peter M.; Reger, Robert J.

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  19. Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Albright, Dennis; Butler, Carey; West, Nicole; Cole, John W. (Technical Monitor)

    2002-01-01

    Institute for Scientific Research, Inc. (ISR) research program consist of: 1.Study core physics by adapting existing codes: MCNP4C - Monte Carlo code; COMBINE/VENTURE - diffusion theory; SCALE4 - Monte Carlo, with many utility codes. 2. Determine feasibility and study major design parameters: fuel selection, temperature and reflector sizing. 3. Study reactor kinetics: develop QCALC1 to model point kinetics; study dynamic behavior of the power release.

  20. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  1. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  2. Toroidal core winder

    DOEpatents

    Potthoff, Clifford M.

    1978-01-01

    The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.

  3. Variable depth core sampler

    DOEpatents

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  4. Electromagnetic pump stator core

    DOEpatents

    Fanning, A.W.; Olich, E.E.; Dahl, L.R.

    1995-01-17

    A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter. 21 figures.

  5. GEOS-CORE

    Energy Science and Technology Software Center (ESTSC)

    2014-06-24

    GEOS-CORE is a code that integrates open source Libraries for linear algebra and I/O with two main LLNL-written components: (i) a set of standard finite, discrete, and discontinuous displacement element physics solvers for resolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of physical behaviors both implicitly and explicitly, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone formore » linearly elastic and quasistatic damage problems; problems involving hydraulic fracturing, where the mesh topology is dynamically changed; and general granular materials behavior. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GEOS-CORE also has interfaces to call external libraries for, e.g., material models and equations fo state; however, LLNL-developed EOS and material models, beyond the aforementioned linear elastic and quasi-static damage models, will not be part of the current release. GEOS-CORE's secondary applications include granular materials behavior under different load paths.« less

  6. GEOS-CORE

    SciTech Connect

    2014-06-24

    GEOS-CORE is a code that integrates open source Libraries for linear algebra and I/O with two main LLNL-written components: (i) a set of standard finite, discrete, and discontinuous displacement element physics solvers for resolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of physical behaviors both implicitly and explicitly, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone for linearly elastic and quasistatic damage problems; problems involving hydraulic fracturing, where the mesh topology is dynamically changed; and general granular materials behavior. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GEOS-CORE also has interfaces to call external libraries for, e.g., material models and equations fo state; however, LLNL-developed EOS and material models, beyond the aforementioned linear elastic and quasi-static damage models, will not be part of the current release. GEOS-CORE's secondary applications include granular materials behavior under different load paths.

  7. Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Baird, Mark L; Chertkow, Merek A; Lee, Ching-Tsai; Blondin, J. M.; Bruenn, S. W.; Messer, Bronson; Mezzacappa, Anthony

    2013-01-01

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{51}$ ergs of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  8. Nutrient Composition of the "Core of the Core" Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Samples from the Core Collection designated as the Core of the Core Collection were analyzed from the 2005 crop year. Samples were analyzed for individual amino acids, folic acid and total oil content. Oil mechanically expressed from the seed was analyzed for individual tocopherols and fatty acids...

  9. 33. BENCH CORE STATION, GREY IRON FOUNDRY CORE ROOM WHERE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BENCH CORE STATION, GREY IRON FOUNDRY CORE ROOM WHERE CORE MOLDS WERE HAND FILLED AND OFTEN PNEUMATICALLY COMPRESSED WITH A HAND-HELD RAMMER BEFORE THEY WERE BAKED. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  10. Nutrient Composition of the Peanut Core of the Core Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts from the Core Collection designated as the Core of the Core Collection were grown in Tifton, GA in 2005. Amino acids, folic acid and total oil content were determined on the whole seed. Amino acid concentrations were generally close to commonly reported values. Folic acid concentration var...

  11. Selenium semiconductor core optical fibers

    SciTech Connect

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  12. Optimizing performance by improving core stability and core strength.

    PubMed

    Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain

    2008-01-01

    Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities. PMID:19026017

  13. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The

  14. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  15. Sneak in Some Core Subjects

    ERIC Educational Resources Information Center

    Clarke, Lynne

    2011-01-01

    Even if students don't have an aversion to core subjects, they may not see the relationship between the core subjects and their career path. In this article, the author outlines a career path project that can be adapted to work in any career and technical education (CTE) class to highlight the relationship between core subjects and the real world.…

  16. Combustion and core noise

    NASA Astrophysics Data System (ADS)

    Mahan, J. Robert; Karchmer, Allen

    1991-08-01

    Two types of aircraft power plant are considered: the gas turbine and the reciprocating engine. The engine types considered are: the reciprocating engine, the turbojet engine, the turboprop engine, and the turbofan engine. Combustion noise in gas turbine engines is discussed, and reciprocating-engine combustion noise is also briefly described. The following subject areas are covered: configuration variables, operational variables, characteristics of combustion and core noise, sources of combustion noise, combustion noise theory and comparison with experiment, available prediction methods, diagnostic techniques, measurement techniques, data interpretation, and example applications.

  17. CANOPEN Controller IP Core

    NASA Astrophysics Data System (ADS)

    Caramia, Maurizio; Montagna, Mario; Furano, Gianluca; Winton, Alistair

    2010-08-01

    This paper will describe the activities performed by Thales Alenia Space Italia supported by the European Space Agency in the definition of a CAN bus interface to be used on Exomars. The final goal of this activity is the development of an IP core, to be used in a slave node, able to manage both the CAN bus Data Link and Application Layer totally in hardware. The activity has been focused on the needs of the EXOMARS mission where devices with different computational performances are all managed by the onboard computer through the CAN bus.

  18. Automated Core Design

    SciTech Connect

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2005-07-15

    Multistate searching methods are a subfield of distributed artificial intelligence that aims to provide both principles for construction of complex systems involving multiple states and mechanisms for coordination of independent agents' actions. This paper proposes a multistate searching algorithm with reinforcement learning for the automatic core design of a boiling water reactor. The characteristics of this algorithm are that the coupling structure and the coupling operation suitable for the assigned problem are assumed and an optimal solution is obtained by mutual interference in multistate transitions using multiagents. Calculations in an actual plant confirmed that the proposed algorithm increased the convergence ability of the optimization process.

  19. PROCESS FOR JACKETING A CORE

    DOEpatents

    Last, G.A.

    1960-07-19

    A process is given for enclosing the uranium core of a nuclear fuel element by placing the core in an aluminum cup and closing the open end of the cup over the core. As the metal of the cup is brought together in a weld over the center of the end of the core, it is extruded inwardly as internal projection into a central recess in the core and outwardly as an external projection. Thus oxide inclusions in the weld of the cup are spread out into the internal and external projections and do not interfere with the integrity of the weld.

  20. NEUTRONIC REACTOR CORE

    DOEpatents

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  1. Models of the Earth's Core.

    PubMed

    Stevenson, D J

    1981-11-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data. PMID:17839632

  2. Models of the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  3. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  4. Complex coacervate core micelles.

    PubMed

    Voets, Ilja K; de Keizer, Arie; Cohen Stuart, Martien A

    2009-01-01

    In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized. PMID:19038373

  5. Growth outside the core.

    PubMed

    Zook, Chris; Allen, James

    2003-12-01

    Growth in an adjacent market is tougher than it looks; three-quarters of the time, the effort fails. But companies can change those odds dramatically. Results from a five-year study of corporate growth conducted by Bain & Company reveal that adjacency expansion succeeds only when built around strong core businesses that have the potential to become market leaders. And the best place to look for adjacency opportunities is inside a company's strongest customers. The study also found that the most successful companies were able to consistently, profitably outgrow their rivals by developing a formula for pushing out the boundaries of their core businesses in predictable, repeatable ways. Companies use their repeatability formulas to expand into any number of adjacencies. Some companies make repeated geographic moves, as Vodafone has done in expanding from one geographic market to another over the past 13 years, building revenues from $1 billion in 1990 to $48 billion in 2003. Others apply a superior business model to new segments. Dell, for example, has repeatedly adapted its direct-to-customer model to new customer segments and new product categories. In other cases, companies develop hybrid approaches. Nike executed a series of different types of adjacency moves: it expanded into adjacent customer segments, introduced new products, developed new distribution channels, and then moved into adjacent geographic markets. The successful repeaters in the study had two common characteristics. First, they were extraordinarily disciplined, applying rigorous screens before they made an adjacency move. This discipline paid off in the form of learning curve benefits, increased speed, and lower complexity. And second, in almost all cases, they developed their repeatable formulas by studying their customers and their customers' economics very, very carefully. PMID:14712545

  6. Analysis of wall heat capacity effects on core makup tank drain-down behavior in ROSA/AP600 experiments

    SciTech Connect

    Kondo, Masaya; Yonomoto, Taisuke; Asaka, Hideaki

    1997-12-01

    The thermal-hydraulic behavior of the core makeup tank (CMT) during scaled integral experiments on the Westinghouse AP600 reactor design was analyzed using the RELAP5/Mod3 (version 5M5) code. The natural circulation rate through the CMT was predicted well, although the prediction of the thermal stratification in the CMT had a problem due to inability to predict multidimensional mixing in the CMT upper regions. The over-scaled CMT metal mass in the experimental facility affected the CMT drain-down behavior in two experiments: (i) a multiple-failure experiment where the system depressurization became extremely slow due to the simulated failure of the ADS valves; and (ii) a relatively-large break experiment where the CMT started draining before thermal stratification developed in the CMT water inventory. In both experiments, the CMT wall became a heat sink and was a large steam condensation site. This had a effect to limit the CMT drain rate. 6 refs., 15 figs.

  7. Coupling between core and cladding modes in a helical core fiber with large core offset

    NASA Astrophysics Data System (ADS)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2016-05-01

    We analyzed the effect of resonant coupling between core and cladding modes in a helical core fiber with large core offset using the fully vectorial method based on the transformation optics formalism. Our study revealed that the resonant couplings to lower order cladding modes predicted by perturbative methods and observed experimentally in fibers with small core offsets are in fact prohibited for larger core offsets. This effect is related to the lack of phase matching caused by elongation of the optical path of the fundamental modes in the helical core. Moreover, strong couplings to the cladding modes of the azimuthal modal number much higher than predicted by perturbative methods may be observed for large core offsets, as the core offset introduces higher order angular harmonics in the field distribution of the fundamental modes. Finally, in contrast to previous studies, we demonstrate the existence of spectrally broad polarization sensitive couplings to the cladding modes suggesting that helical core fibers with large core offsets may be used as broadband circular polarizers.

  8. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  9. Core percolation on complex networks.

    PubMed

    Liu, Yang-Yu; Csóka, Endre; Zhou, Haijun; Pósfai, Márton

    2012-11-16

    We analytically solve the core percolation problem for complex networks with arbitrary degree distributions. We find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is continuous while for directed networks it is discontinuous (and hybrid) if the in- and out-degree distributions differ. We also find that core percolations on undirected and directed networks have completely different critical exponents associated with their critical singularities. PMID:23215509

  10. IN-CORE FUEL MANAGEMENT: PWR Core Calculations Using MCRAC

    NASA Astrophysics Data System (ADS)

    PetroviĆ, B. G.

    1991-01-01

    The following sections are included: * INTRODUCTION * IN-CORE FUEL MANAGEMENT CALCULATIONS * In-Core Fuel Management * Methodological Problems of In-Core Fuel Management * In-Core Fuel Management Analytical Tools * PENN STATE FUEL MANAGEMENT PACKAGE * Penn State Fuel Management Package (PFMP) * Assembly Data Description (ADD) * Linking PSU-LEOPARD and MCRAC: An Example * MULTICYCLE REACTOR ANALYSIS CODE (MCRAC) * Main Features and Options of MCRAC code * Core geometry * Diffusion equations * 1.5-group model * Multicycle neutronic analysis * Multicycle cost analysis * Criticality search * Power-dependent xenon feedback calculations * Control rod and burnable absorber simulation * Search for LP with flat BOC power distribution * Artificial ADD option * Variable dimensioning technique * RBI version of MCRAC code * Programming changes in PC version * Fuel interchange option * MCRAC Input/Output * General input description * Sample input * Sample output * EXPERIENCE WITH MCRAC CODE * CONCLUSIONS * REFERENCES

  11. Necrosome core machinery: MLKL.

    PubMed

    Zhang, Jing; Yang, Yu; He, Wenyan; Sun, Liming

    2016-06-01

    In the study of regulated cell death, the rapidly expanding field of regulated necrosis, in particular necroptosis, has been drawing much attention. The signaling of necroptosis represents a sophisticated form of a death pathway. Anti-caspase mechanisms (e.g., using inhibitors of caspases, or genetic ablation of caspase-8) switch cell fate from apoptosis to necroptosis. The initial extracellular death signals regulate RIP1 and RIP3 kinase activation. The RIP3-associated death complex assembly is necessary and sufficient to initiate necroptosis. MLKL was initially identified as an essential mediator of RIP1/RIP3 kinase-initiated necroptosis. Recent studies on the signal transduction using chemical tools and biomarkers support the idea that MLKL is able to make more functional sense for the core machinery of the necroptosis death complex, called the necrosome, to connect to the necroptosis execution. The experimental data available now have pointed that the activated MLKL forms membrane-disrupting pores causing membrane leakage, which extends the prototypical concept of morphological and biochemical events following necroptosis happening in vivo. The key role of MLKL in necroptosis signaling thus sheds light on the logic underlying this unique "membrane-explosive" cell death pathway. In this review, we provide the general concepts and strategies that underlie signal transduction of this form of cell death, and then focus specifically on the role of MLKL in necroptosis. PMID:27048809

  12. Variable depth core sampler

    SciTech Connect

    Bourgeois, P.M.; Reger, R.J.

    1994-12-31

    This invention relates to a sampling means, more particularly to a device to sample hard surfaces at varying depths. Often it is desirable to take samples of a hard surface wherein the samples are of the same diameter but of varying depths. Current practice requires that a full top-to-bottom sample of the material be taken, using a hole saw, and boring a hole from one end of the material to the other. The sample thus taken is removed from the hole saw and the middle of said sample is then subjected to further investigation. This paper describes a variable depth core sampler comprimising a circular hole saw member, having longitudinal sections that collapse to form a point and capture a sample, and a second saw member residing inside the first hole saw member to support the longitudinal sections of the first member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside the the first hole saw member.

  13. Adult educators' core competences

    NASA Astrophysics Data System (ADS)

    Wahlgren, Bjarne

    2016-05-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or "core" requirements, organising them into four thematic subcategories: (1) communicating subject knowledge; (2) taking students' prior learning into account; (3) supporting a learning environment; and (4) the adult educator's reflection on his or her own performance. At the end of his analysis of different competence profiles, the author notes that adult educators' ability to train adult learners in a way which then enables them to apply and use what they have learned in practice (thus performing knowledge transfer) still seems to be overlooked.

  14. Adult educators' core competences

    NASA Astrophysics Data System (ADS)

    Wahlgren, Bjarne

    2016-06-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or "core" requirements, organising them into four thematic subcategories: (1) communicating subject knowledge; (2) taking students' prior learning into account; (3) supporting a learning environment; and (4) the adult educator's reflection on his or her own performance. At the end of his analysis of different competence profiles, the author notes that adult educators' ability to train adult learners in a way which then enables them to apply and use what they have learned in practice (thus performing knowledge transfer) still seems to be overlooked.

  15. Core-mantle Mill Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Yikun

    2003-05-01

    Based on radiation mechanics, the history of Earth can be interpreted by core-mantle mill theory. The theory confesses the inner core as a ferromagnet. The ferromagnetism of inner core is supported by observed anisotropic property of inner core in transmitting seismic waves. Rotation of Earth originates from the magnetic interaction between Earth and Jovian planets. Since the torque caused by the magnetic interaction between Earth and Jovian planets only acts on the iron core of Earth, the core behaves as a rotating engine, tending to change both the rate and axis of Earth's rotation, while the mantle is the resistant to any alternation of rotation. The interplay between the two leads to formations of fluid outer core, basalt magmas, oceanic crust, and differential rotation between the inner core and mantle. Rock materials at the core-mantle boundary are ground into basalt magma due to the differential rotation between the inner core and mantle. Mid-ocean ridge systems are interpreted as the huge dike systems rooted in some principal magma chambers in the core-mantle boundary layer. The anisotropy of background radiation in the polar directions determines the patterns of mid-ocean ridge systems on the Earth's surface and the global tectonic movement of the Earth's crust. The theory also explains the causes of geomagnetic reversals, mass extinctions and global climate changes. The history of Earth is featured by three stages: without oceanic crust (before 2.7Ga), creation of oceanic crust (2.7-2.25Ga) and growth of continents (after 2.25Ga).

  16. Common Core: Victory Is Yours!

    ERIC Educational Resources Information Center

    Fink, Jennifer L. W.

    2012-01-01

    In this article, the author discusses how to implement the Common Core State Standards in the classroom. She presents examples and activities that will leave teachers feeling "rosy" about tackling the new standards. She breaks down important benchmarks and shows how other teachers are doing the Core--and loving it!

  17. The Common Core Takes Hold

    ERIC Educational Resources Information Center

    Rothman, Robert

    2014-01-01

    A survey administered in the spring of 2013 by the Center on Education Policy (CEP) inquired into the implementation of Common Core State Standards at that time. Based on self-reports by state officials, the survey found that curricula aligned to the common core were already being taught in at least some districts or grade levels. All states…

  18. Complicated Politics to the Core

    ERIC Educational Resources Information Center

    McGuinn, Patrick

    2015-01-01

    People dislike the Common Core for several different reasons, and so it is important to disaggregate the sources of opposition and to assess and then to dispel some of the myths that have built up around it. It also is important to understand the unusual political alliances that have emerged in opposition to Common Core implementation and how they…

  19. COVERING A CORE BY EXTRUSION

    DOEpatents

    Karnie, A.J.

    1963-07-16

    A method of covering a cylindrical fuel core with a cladding metal ms described. The metal is forced between dies around the core from both ends in two opposing skirts, and as these meet the ends turn outward into an annular recess in the dics. By cutting off the raised portion formed by the recess, oxide impurities are eliminated. (AEC)

  20. Understanding Common Core State Standards

    ERIC Educational Resources Information Center

    Kendall, John S.

    2011-01-01

    Now that the Common Core standards are coming to just about every school, what every school leader needs is a straightforward explanation that lays out the benefits of the Common Core in plain English, provides a succinct overview, and gets everyone thinking about how to transition to this promising new paradigm. This handy, inexpensive booklet…

  1. Anisotropic charged core envelope star

    NASA Astrophysics Data System (ADS)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  2. Viscosity of the earth's core

    NASA Technical Reports Server (NTRS)

    Hide, R.

    1972-01-01

    Estimates of the coefficient of kinematical viscosity nu of the earth's liquid metallic core that are given in the geophysical literature range from approximately 0.001 sq cm/s, the viscosity of molten iron at ordinary pressures, to approximately less than 10 to the 8th power sq cm/s, based on the observation that compressional waves traverse the core without suffering serious attenuation. Bumps on the core-mantle boundary with typical horizontal dimensions up to a few thousand km and vertical dimensions h of a few km would produce the topographic coupling between the core and mantle that is evidently implied by the observed decade variations in the length of the day (unless the coupling is due to the presence of rapidly fluctuating magnetic fields in the core).

  3. Core formation by giant impacts

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1991-01-01

    Ideas about the accretion and early evolution of the Earth and the other terrestrial planets have recently undergone a number of revolutionary changes. It has become clear that giant impacts were far from rare events. In the later stages of accretion any given planetary embryo is liable to be struck several times by other bodies of up to half its own diameter. Such an impact may have the ability to trigger core formation. Traditional accretion models have had great difficulty explaining the formation of the core. If one admits the importance of infrequent large events that may melt an entire hemisphere, the core formation difficulty vanishes. Millimeter-size iron blebs in the melted region will rain out due to their density difference with the silicate melt. Core formation may not require the melting of the entire hemisphere of the planet. The conditions are explored under which impact induced core formation may occur.

  4. Data interchange across cores of multi-core optical fibers

    NASA Astrophysics Data System (ADS)

    Awad, Ehab S.

    2015-12-01

    A novel device for data interchange among space-division multiplexed cores inside MCF is demonstrated using numerical simulations. The device allows complete exchange of all WDM data channels between MCF cores in propagation direction whether the channels have the same or different sets of wavelengths. This is crucial in future MCF optical networks where in-fiber data interchange over space-division multiplexed cores can allow for a simple and fast data swapping among cores without a need for space-division demultiplexing to single-mode single-core fibers. The data core-interchange (DCI) device consists of a graded refractive-index rectangular waveguide enclosing the two interchanged cores in addition to the cladding region in between them. Both finite-difference-time-domain (FDTD) and eigenmode expansion (EME) simulations are performed to verify the device operation and characterize its performance. The simulations demonstrate that the DCI has a very short-length with polarization independent operation, and high performance over the broadband wavelength range S, C, L, and U bands. Moreover, the device shows a high coupling-factor of -0.13 dB with small cross-talk, back-reflection, and return-loss of -26.3, -46.1, and -48.8 dB, respectively.

  5. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  6. Crystallization in Earth's Core after High-Temperature Core Formation

    NASA Astrophysics Data System (ADS)

    Hirose, K.; Morard, G.; Hernlund, J. W.; Helffrich, G. R.; Ozawa, H.

    2015-12-01

    Recent core formation models based on the metal-silicate partitioning of siderophile elements suggest that the Earth's core was formed by metal segregation at high pressure and high temperature in a deep magma ocean. It is also thought that the simultaneous solubility of silicon and oxygen in liquid iron are strongly enhanced at high pressure and high temperature, such that at the end of accretion the core was rich in both silicon and oxygen. Here we performed crystallization experiments on the Fe-Si binary and Fe-Si-O ternary systems up to core pressure in a laser-heated diamond-anvil cell. The starting material for the latter was a homogeneous mixture of fine-grain Fe-Si and SiO2 (<1 µm). We prepared cross sections of samples recovered from the DAC using a focused ion beam (FIB) and subsequently performed textural and chemical characterization with field-emission-type electron microprobe (FE-EPMA). Quenched liquid alloy was found at the hottest part coexisting with a solid phase (liquidus phase) at the periphery. These results combined with literature data on the melting phase relations in the Fe-FeO binary system demonstrate that the liquidus field of SiO2 is very wide at the Fe-rich portion of the Fe-Si-O ternary system at the core pressure range. It indicates that the original Fe-Si-O core liquid should have crystallized a large amount SiO2 until it lost either silicon or oxygen. The recent finding of high thermal conductivity of the core suggests that core thermal convection is difficult to sustain without extreme degrees of secular cooling. However, even for modest degrees of joint Si-O incorporation into the early core, the buoyancy released by crystallization of SiO2 is sufficient to overcome thermal stratification and sustain the geodynamo.

  7. Radiation Effects: Core Project

    NASA Technical Reports Server (NTRS)

    Dicello, John F.

    1999-01-01

    The risks to personnel in space from the naturally occurring radiations are generally considered to be one of the most serious limitations to human space missions, as noted in two recent reports of the National Research Council/National Academy of Sciences. The Core Project of the Radiation Effects Team for the National Space Biomedical Research Institute is the consequences of radiations in space in order to develop countermeasure, both physical and pharmaceutical, to reduce the risks of cancer and other diseases associated with such exposures. During interplanetary missions, personnel in space will be exposed to galactic cosmic rays, including high-energy protons and energetic ions with atomic masses of iron or higher. In addition, solar events will produce radiation fields of high intensity for short but irregular durations. The level of intensity of these radiations is considerably higher than that on Earth's surface, and the biological risks to astronauts is consequently increased, including increased risks of carcinogenesis and other diseases. This group is examining the risk of cancers resulting from low-dose, low-dose rate exposures of model systems to photons, protons, and iron by using ground-based accelerators which are capable of producing beams of protons, iron, and other heavy ions at energies comparable to those encountered in space. They have begun the first series of experiments using a 1-GeV iron beam at the Brookhaven National Laboratory and 250-MeV protons at Loma Linda University Medical Center's proton synchrotron facility. As part of these studies, this group will be investigating the potential for the pharmaceutical, Tamoxifen, to reduce the risk of breast cancer in astronauts exposed to the level of doses and particle types expected in space. Theoretical studies are being carried out in a collaboration between scientists at NASA's Johnson Space Center and Johns Hopkins University in parallel with the experimental program have provided

  8. Bent core liquid crystal elastomers

    SciTech Connect

    Verduzco, R.; DiMasi, E.; Luchette, P.; Ho Hong, S.; Harden, J.; Palffy-Muhoray, P.; Kilbey II, S.M.; Sprunt, S.; Gleeson, G.T. Jakli, A.

    2010-07-28

    Liquid crystal (LC) elastomers with bent-core side-groups incorporate the properties of bent-core liquid crystals in a flexible and self-supporting polymer network. Bent-core liquid crystal elastomers (BCEs) with uniform alignment were prepared by attaching a reactive bent-core LC to poly(hydrogenmethylsiloxane) and crosslinking with a divinyl crosslinker. Phase behavior studies indicate a nematic phase over a wide temperature range that approaches room temperature, and thermoelastic measurements show that these BCEs can reversibly change their length by more than a factor of two upon heating and cooling. Small-angle X-ray scattering studies reveal multiple, broad low-angle peaks consistent with short-range smectic C order of the bent-core side groups. A comparison of these patterns with predictions of a Landau model for short-range smectic C order shows that the length scale for smectic ordering in BCEs is similar to that seen in pure bent-core LCs. The combination of rubber elasticity and smectic ordering of the bent-core side groups suggests that BCEs may be promising materials for sensing, actuating, and other advanced applications.

  9. Simplified cut core inductor design

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1974-01-01

    Although filter inductor designers have routinely tended to specify molypermalloy powder cores for use in high frequency power converters and pulse-width modulated switching regulators, there are sigificant advantages in specifying C cores and cut toroids fabricated from grain oriented silicon steels which should not be overlooked. Such steel cores can develop flux densities of 1.6 tesla, with useful linearity to 1.2 tesla, whereas molypermalloy cores carrying d.c. current have useful flux density capabilities only to about 0.3 tesla. The use of silicon steel cores thus makes it possible to design more compact cores, and therefore inductors of reduced volume, or conversely to provide greater load capacity in inductors of a given volume. Information is available which makes it possible to obtain quick and close approximations of significant parameters such as size, weight and temperature rise for silicon steel cores for breadboarding. Graphs, nomographs and tables are presented for this purpose, but more complete mathematical derivations of some of the important parameters are also included for a more rigorous treatment.

  10. Inner Core Structure Behind the PKP Core Phase Triplication

    NASA Astrophysics Data System (ADS)

    Blom, N.; Paulssen, H.; Deuss, A. F.; Waszek, L.

    2015-12-01

    Despite its small size, the Earth's inner core plays an important role in the Earth's dynamics. Because it is slowly growing, its structure - and the variation thereof with depth - may reveal important clues about the history of the core, its convection and the resulting geodynamo. Learning more about this structure has been a prime effort in the past decades, leading to discoveries about anisotropy, hemispheres and heterogeneity in the inner core in general. In terms of detailed structure, mainly seismic body waves have contributed to these advances. However, at depths between ~100-200 km, the seismic structure is relatively poorly known. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, whose simultaneous arrival hinders the measurement of inner core waves PKIKP at epicentral distances between roughly 143-148°. As a consequence, the interpretation of deeper structure also remains difficult. To overcome these issues, we stack seismograms in slowness and time, separating PKP and PKIKP phases which arrive simultaneously, but with different slowness. We apply this method to study the inner core's Western hemisphere between South and Central America using paths travelling in the quasi-polar direction between epicentral distances of 140-150°. This enables us to measure PKiKP-PKIKP differential travel times up to greater epicentral distance than has previously been done. The resulting differential travel time residuals increase with epicentral distance, indicating a marked increase in seismic velocity with depth compared to reference model AK135 for the studied polar paths. Assuming a homogeneous outer core, these findings can be explained by either (i) inner core heterogeneity due to an increase in isotropic velocity, or (ii) increase in anisotropy over the studied depth range. Our current data set cannot distinguish between the two hypotheses, but in light of previous work we prefer the latter interpretation.

  11. PRESTELLAR CORES IN THE COALSACK

    SciTech Connect

    Saul, M.; Cunningham, M.; Rathborne, J.; Walsh, W.; Butner, H. M. E-mail: mariac@phys.unsw.edu.au E-mail: wwalsh@cfa.harvard.edu

    2011-09-10

    We present high spectral resolution millimeter mapped observations of seven prestellar cores in the Coalsack, including imaging in five optically thin molecular species of the kinematic structure of two of the densest cores, C2 and C4. Various collapse-critical indices are calculated; critical masses needed for collapse are consistently greater than those observed, the latter ranging from 0.4 to 2.4 M{sub sun}. The molecular emission in several of the cores shows line profiles with infall characteristics as well as elongated areas of increased line widths and reversals of center velocity gradients, implying that accretion disks may be forming.

  12. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  13. Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald

    2013-01-01

    Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.

  14. Assessing Core Competencies

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2004-12-01

    Catherine Palomba and Trudy Banta offer the following definition of assessment, adapted from one provided by Marches in 1987. Assessment in the systematic collection, review, and use of information about educational programs undertaken for the purpose of improving student learning and development. (Palomba and Banta 1999). It is widely recognized that sophisticated computing technologies are becoming a key element in today's classroom instructional techniques. Regardless, the Professor must be held responsible for creating an instructional environment in which the technology actually supplements learning outcomes of the students. Almost all academic disciplines have found a niche for computer-based instruction in their respective professional domain. In many cases, it is viewed as an essential and integral part of the educational process. Educational institutions are committing substantial resources to the establishment of dedicated technology-based laboratories, so that they will be able to accommodate and fulfill students' desire to master certain of these specific skills. This type of technology-based instruction may raise some fundamental questions about the core competencies of the student learner. Some of the most important questions are : 1. Is the utilization of these fast high-powered computers and user-friendly software programs creating a totally non-challenging instructional environment for the student learner ? 2. Can technology itself all too easily overshadow the learning outcomes intended ? 3. Are the educational institutions simply training students how to use technology rather than educating them in the appropriate field ? 4. Are we still teaching content-driven courses and analysis oriented subject matter ? 5. Are these sophisticated modern era technologies contributing to a decline in the Critical Thinking Capabilities of the 21st century technology-savvy students ? The author tries to focus on technology as a tool and not on the technology

  15. The ADNI PET Core: 2015

    PubMed Central

    Jagust, William J.; Landau, Susan M.; Koeppe, Robert A.; Reiman, Eric M.; Chen, Kewei; Mathis, Chester A.; Price, Julie C.; Foster, Norman L.; Wang, Angela Y.

    2015-01-01

    INTRODUCTION This paper reviews the work done in the ADNI PET core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI. METHODS The PET Core has utilized [18F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of FDG-PET in clinical trials, and relationships between different biomarkers and cognition. RESULTS Converging evidence from the PET Core has indicated that cross-sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale. CONCLUSION The PET Core has demonstrated a variety of methods for standardization of biomarkers such as florbetapir PET in a multicenter setting. PMID:26194311

  16. Core Recursive Hierarchical Image Segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James

    2011-01-01

    The Recursive Hierarchical Image Segmentation (RHSEG) software has been repackaged to provide a version of the RHSEG software that is not subject to patent restrictions and that can be released to the general public through NASA GSFC's Open Source release process. Like the Core HSEG Software Package, this Core RHSEG Software Package also includes a visualization program called HSEGViewer along with a utility program HSEGReader. It also includes an additional utility program called HSEGExtract. The unique feature of the Core RHSEG package is that it is a repackaging of the RHSEG technology designed to specifically avoid the inclusion of the certain software technology. Unlike the Core HSEG package, it includes the recursive portions of the technology, but does not include processing window artifact elimination technology.

  17. Convection, nucleosynthesis, and core collapse

    NASA Technical Reports Server (NTRS)

    Bazan, Grant; Arnett, David

    1994-01-01

    We use a piecewise parabolic method hydrodynamics code (PROMETHEUS) to study convective burning in two dimensions in an oxygen shell prior to core collapse. Significant mixing beyond convective boundaries determined by mixing-length theory brings fuel (C-12) into the convective regon, causing hot spots of nuclear burning. Plumes dominate the velocity structure. Finite perturbations arise in a region in which O-16 will be explosively burned to Ni-56 when the star explodes; the resulting instabilities and mixing are likely to distribute Ni-56 throughout the supernova envelope. Inhomogeneities in Y(sub e) may be large enough to affect core collapse and will affect explosive nucleosynthesis. The nature of convective burning is dramatically different from that assumed in one-dimensional simulations; quantitative estimates of nucleosynthetic yields, core masses, and the approach to core collapse will be affected.

  18. Lunar magnetism. [primordial core model

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1975-01-01

    It is shown, for a very simple model of the moon, that the existence of a primordial core magnetic field would give rise to a present day nonzero dipole external field. In the investigation a uniformly magnetized core embedded in a permeable mantle is considered. The significance of the obtained results for the conclusions reported by Runcorn (1975) is discussed. Comments provided by Runcorn to the discussion are also presented.

  19. Viscosity of the earth's core.

    NASA Technical Reports Server (NTRS)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  20. The ancient lunar core dynamo.

    PubMed

    Runcorn, S K

    1978-02-17

    Lunar paleomagnetism provides evidence for the existence of an ancient lunar magnetic field generated in an iron core. Paleointensity experiments give a surface field of 1.3 gauss, 4.0 x 10(9) years ago, subsequently decreasing exponentially. Thermodynamic arguments give a minimum value of the heat source in the core at that time: known sources, radioactive and other, are quantitatively implausible, and it is suggested that superheavy elements were present in the early moon. PMID:17836293

  1. Bonding core mating surfaces improves transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1978-01-01

    Modifications to assembly procedures for C-core transformers virtually eliminates changes in core end gaps due to temperature cycling during impregnation and potting stages, thus stabilizing magnetization properties of core.

  2. Residential Utility Core Wall System - ResCore

    SciTech Connect

    Boyd, G.; Lundell, C.; Wendt, R.

    1999-06-01

    This paper describes activities associated with the RESidential utility CORE wall system (ResCore) developed by students and faculty in the Department of Industrial Design at Auburn University between 1996 and 1998. These activities analyize three operational prototype units installed in Habitat for Humanity Houses. The paper contains two Parts: 1) analysis of the three operational prototype units, 2) exploration of alternative design solutions. ResCore is a manufactured construction component designed to expedite home building by decreasing the need for skilled labor at the work site. The unit concentrates untility elements into a wall unit(s), which is shipped to the construction site and installed in minimum time. The ResCore unit is intended to be built off-site in a manufacturing environment where the impact of vagaries of weather and work-crew coordination and scheduling are minimized. The controlled environment of the factory enhances efficient production of building components through material and labor throughput controls, enabling the production of components at a substantially reduced per-unit cost. The ResCore unit when compared to traditional "stick-built" utility wall components is in may ways analogous to the factory built roof truss compared to on-site "stick-Built" roof framing.

  3. Side polished twin-core fiber coupler

    NASA Astrophysics Data System (ADS)

    Wang, Xianbin; Yuan, Libo

    2015-07-01

    A novel optical fiber coupler was proposed and fabricated for coupling each core of a twin-core fiber (TCF) with a single-core fiber (SCF) core simultaneously and accessing independently both cores of the TCF. The coupler is mainly composed of two sides polished SCF and a side polished TCF. Each optical field launched from the TCF could be coupled into the side polished SCF. The coupler has a simple structure and less cross-talk between the two cores.

  4. Beyond The Cores Of Cool Core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Hallman, E. J.; Motl, P. M.; Norman, M. L.

    2006-06-01

    We will present the results of cosmological hydro/N-body adaptive mesh refinement simulations in a concordance LCDM cosmology with a peak resolution of approximately 16 kpc. These simulations include radiative cooling, star formation, and supernova feedback. We find that there are very significant differences between cool core (CC) and non-cool core (NCC) galaxy clusters in their properties beyond the cores (r>100 kpc). For example, the shapes and outer slopes of the synthetic X-ray surface brightness and the temperature profiles are strikingly different between NCC and CC clusters. Beta models are poor fits for r>500 kpc in CC clusters leading to inaccurate global mass estimates and strong deviations from scaling relations in contrast to NCC clusters. We will discuss possible explanations involving differences in the local environments in which these clusters form and evolve.

  5. Soft core thermodynamics from self-consistent hard core fluids.

    PubMed

    Schöll-Paschinger, Elisabeth; Reiner, Albert

    2006-10-28

    In an effort to generalize the self-consistent Ornstein-Zernike approximation (SCOZA)-an accurate liquid state theory that has been restricted so far to hard core systems-to arbitrary soft core systems we study a combination of SCOZA with a recently developed perturbation theory. The latter was constructed by Ben-Amotz and Stell [J. Phys. Chem. B 108, 6877 (2004)] as a reformulation of the Weeks-Chandler-Andersen [J. Chem. Phys. 54, 5237 (1971)] perturbation theory directly in terms of an arbitrary hard sphere reference system. We investigate the accuracy of the combined approach for the Lennard-Jones fluid in comparison with simulation data and pure perturbation theory predictions and determine the dependence of the thermodynamic properties and the phase behavior on the choice of the effective hard core diameter of the reference system. PMID:17092101

  6. Core and Off-Core Processes in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian; Forsberg, Kevin

    2010-01-01

    An emerging methodology of organizing systems-engineering plans is based on a concept of core and off-core processes or activities. This concept has emerged as a result of recognition of a risk in the traditional representation of systems-engineering plans by a Vee model alone, according to which a large system is decomposed into levels of smaller subsystems, then integrated through levels of increasing scope until the full system is constructed. Actual systems-engineering activity is more complicated, raising the possibility that the staff will become confused in the absence of plans which explain the nature and ordering of work beyond the traditional Vee model.

  7. Core formation in silicate bodies

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; O'Brien, D. P.; Kleine, T.

    2008-12-01

    Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re

  8. Impact Vaporization of Planetesimal Cores

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Root, S.; Lemke, R. W.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2013-12-01

    The degree of mixing and chemical equilibration between the iron cores of planetesimals and the mantle of the growing Earth has important consequences for understanding the end stages of Earth's formation and planet formation in general. At the Sandia Z machine, we developed a new shock-and-release technique to determine the density on the liquid-vapor dome of iron, the entropy on the iron shock Hugoniot, and the criteria for shock-induced vaporization of iron. We find that the critical shock pressure to vaporize iron is 507(+65,-85) GPa and show that decompression from a 15 km/s impact will initiate vaporization of iron cores, which is a velocity that is readily achieved at the end stages of planet formation. Vaporization of the iron cores increases dispersal of planetesimal cores, enables more complete chemical equilibration of the planetesimal cores with Earth's mantle, and reduces the highly siderophile element abundance on the Moon relative to Earth due to the expanding iron vapor exceeding the Moon's escape velocity. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  9. Core break-off mechanism

    NASA Technical Reports Server (NTRS)

    Myrick, Thomas M. (Inventor)

    2003-01-01

    A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.

  10. Reactor core isolation cooling system

    DOEpatents

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  11. Reactor core isolation cooling system

    DOEpatents

    Cooke, Franklin E.

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  12. Grain Alignment in Starless Cores

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to {{A}V}˜ 48. We find that {{P}K}/{{τ }K} continues to decline with increasing AV with a power law slope of roughly -0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by {{A}V}≳ 20 the slope for P versus τ becomes ˜-1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than {{A}V}˜ 20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  13. Environmental information from ice cores

    SciTech Connect

    Delmas, R.J. )

    1992-02-01

    Information from snow and ice core studies which is useful for documenting the interplay between the climate and the chemistry of the natural atmosphere is reviewed. Particular attention is given to the formation and interpretation of the ice records for the present conditions and the data obtained from the analysis of the Vostok ice core. It is concluded that the deep ice core data provide precise information on the ice-age environmental conditions. When polar temperatures were approximately 10 C lower than now, atmospheric CO2 and CH4 contents were factors of 2 and 4 lower, respectively, than the present conditions. At this time, sea salt and overall crustal dust depositions were significantly higher. According to modifications in source intensity and transport of gaseous precursors the biogeochemical cycles of S and N were also disturbed. 91 refs.

  14. Foam Core Shielding for Spacecraft

    NASA Technical Reports Server (NTRS)

    Adams, Marc

    2007-01-01

    A foam core shield (FCS) system is now being developed to supplant multilayer insulation (MLI) systems heretofore installed on spacecraft for thermal management and protection against meteoroid impacts. A typical FCS system consists of a core sandwiched between a face sheet and a back sheet. The core can consist of any of a variety of low-to-medium-density polymeric or inorganic foams chosen to satisfy application-specific requirements regarding heat transfer and temperature. The face sheet serves to shock and thereby shatter incident meteoroids, and is coated on its outer surface to optimize its absorptance and emittance for regulation of temperature. The back sheet can be dimpled to minimize undesired thermal contact with the underlying spacecraft component and can be metallized on the surface facing the component to optimize its absorptance and emittance. The FCS systems can perform better than do MLI systems, at lower mass and lower cost and with greater volumetric efficiency.

  15. Core Leadership: Teacher Leaders and Common Core Implementation in Tennessee

    ERIC Educational Resources Information Center

    Aspen Institute, 2014

    2014-01-01

    In the summer of 2012, thousands of teachers across the United States attended several days of professional development workshops. The workshops, which focused on the Common Core State Standards, were part of a Tennessee Department of Education initiative in teacher leadership. The department recruited and trained 200 highly-effective teachers to…

  16. Ice Core Dating Software for Interactive Dating of Ice Cores

    NASA Astrophysics Data System (ADS)

    Kurbatov, A. V.; Mayewski, P. A.; Abdul Jawad, B. S.

    2005-12-01

    Scientists involved in ice core dating are well familiar with the problem of identification and recording the depth of annual signals using stable isotopes, glaciochemistry, ECM (electrical conductivity), DEP (dielectric properties) and particle counter data. Traditionally all parameters used for ice core dating were plotted as a function of depth, printed and after years were marked on the paper, converted to depth vs. age time scale. To expedite this tedious and manual process we developed interactive computer software, Ice core Dating (ICD) program. ICD is written in Java programming language, and uses GPL and GPL site licensed graphic libraries. The same 3.5 Mb in size pre-compiled single jar file, that includes all libraries and application code, was successfully tested on WinOS, Mac OSX, Linux, and Solaris operating systems running Java VM version 1.4. We have followed the modular design philosophy in our source code so potential integration with other software modules, data bases and server side distributed computer environments can be easily implemented. We expect to continue development of new suites of tools for easy integration of ice core data with other available time proxies. ICD is thoroughly documented and comes with a technical reference and cookbook that explains the purpose of the software and its many features, and provides examples to help new users quickly become familiar with the operation and philosophy of the software. ICD is available as a free download from the Climate Change Institute web site ( under the terms of GNU GPL public license.

  17. Moon model - An offset core.

    NASA Technical Reports Server (NTRS)

    Ransford, G.; Sjogren, W.

    1972-01-01

    The lunar model proposed helps to account for the offset of the center of gravity from the center of the optical figure, the moments of inertia of the Moon, the 'mascons,' the localization of the maria basins on the near side of the Moon, the igneous nature of rocks, and the remanent magnetism. In the proposed model the Moon has a core whose center is offset from the center of the outside spheroid towards the earth. Such a core will be formed if the Moon were entirely molten at some time in its past, and on solidification was synchronous with the earth.

  18. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothesis passes the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale range. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length-scale 1/k, if one presumes kinetic energy is converted in either eddy-overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small-scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magnetogeostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other

  19. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynmcal hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothes pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at lentgh-scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto-geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core- mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order l20 years is pseudo-scale-invarient. Magnetic spectra of other

  20. Core-shell nanostructured catalysts.

    PubMed

    Zhang, Qiao; Lee, Ilkeun; Joo, Ji Bong; Zaera, Francisco; Yin, Yadong

    2013-08-20

    Novel nanotechnologies have allowed great improvements in the syn-thesis of catalysts with well-controlled size, shape, and surface properties. Transition metal nanostructures with specific sizes and shapes, for instance, have shown great promise as catalysts with high selectivities and relative ease of recycling. Researchers have already demonstrated new selective catalysis with solution-dispersed or supported-metal nanocatalysts, in some cases applied to new types of reactions. Several challenges remain, however, particularly in improving the structural stability of the catalytic active phase. Core-shell nanostructures are nanoparticles encapsulated and protected by an outer shell that isolates the nanoparticles and prevents their migration and coalescence during the catalytic reactions. The synthesis and characterization of effective core-shell catalysts has been at the center of our research efforts and is the focus of this Account. Efficient core-shell catalysts require porous shells that allow free access of chemical species from the outside to the surface of nanocatalysts. For this purpose, we have developed a surface-protected etching process to prepare mesoporous silica and titania shells with controllable porosity. In certain cases, we can tune catalytic reaction rates by adjusting the porosity of the outer shell. We also designed and successfully applied a silica-protected calcination method to prepare crystalline shells with high surface area, using anatase titania as a model system. We achieved a high degree of control over the crystallinity and porosity of the anatase shells, allowing for the systematic optimization of their photocatalytic activity. Core-shell nanostructures also provide a great opportunity for controlling the interaction among the different components in ways that might boost structural stability or catalytic activity. For example, we fabricated a SiO₂/Au/N-doped TiO₂ core-shell photocatalyst with a sandwich structure that showed

  1. City Core - detecting the anthropocene in urban lake cores

    NASA Astrophysics Data System (ADS)

    Kjaer, K. H.; Ilsøe, P.; Andresen, C. S.; Rasmussen, P.; Andersen, T. J.; Frei, R.; Schreiber, N.; Odgaard, B.; Funder, S.; Holm, J. M.; Andersen, K.

    2011-12-01

    Here, we presents the preliminary results from lake cores taken in ditches associated with the historical fortifications enclosing the oldest - central Copenhagen to achieve new knowledge from sediment deposits related to anthropogenic activities. We have examined sediment cores with X-ray fluorescence (XRF) analyzers to correlate element patterns from urban and industrial emissions. Thus, we aim to track these patterns back in time - long before regular routines of recording of atmospheric environment began around 1978. Furthermore, we compare our data to alternative sources of information in order to constrain and expand the temporal dating limits (approximately 1890) achieved from 210Pb activity. From custom reports and statistic sources, information on imported volumes from coal, metal and oil was obtained and related contaminants from these substances to the sediment archives. Intriguingly, we find a steep increase in import of coal and metals matching the exponential increase of lead and zinc counts from XRF-recordings of the sediment cores. In this finding, we claim to have constrain the initiation of urban industrialization. In order to confirm the age resolution of the lake cores, DNA was extracted from sediments, sedaDNA. Thus we attempt to trace plantation of well documented exotic plants to, for instance, the Botanical Garden. Through extraction and sampling of sedaDNA from these floral and arboreal specimens we intend to locate their strataigraphic horizons in the sediment core. These findings may correlate data back to 1872, when the garden was established on the area of the former fortification. In this line of research, we hope to achieve important supplementary knowledge of sedaDNA-leaching frequencies within freshwater sediments.

  2. Producing gapped-ferrite transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1980-01-01

    Improved manufacturing techniques make reproducible gaps and minimize cracking. Molded, unfired transformer cores are cut with thin saw and then fired. Hardened semicircular core sections are bonded together, placed in aluminum core box, and fluidized-coated. After winding is run over box, core is potted. Economical method significantly reduces number of rejects.

  3. 38 CFR 0.602 - Core Characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Core Characteristics. 0.602 Section 0.602 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS VALUES... § 0.602 Core Characteristics. While Core Values define VA employees, the Core Characteristics...

  4. Gelcasting Alumina Cores for Investment Casting

    SciTech Connect

    Janney, M A; Klug, F J

    2001-01-01

    General Electric currently uses silica investment casting cores for making superalloy turbine blades. The silica core technology does not provide the degree of dimensional control needed for advanced turbine system manufacture. The sum of the various process variables in silica core manufacturing produces cores that have more variability than is allowed for in advanced, power-generation gas turbine airfoils.

  5. Visual Feedback for Rover-based Coring

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Helmick, Daniel; Bajracharya, Max

    2008-01-01

    Technology for coring from a low-mass rover has been developed to enable core sample acquisition where a planetary rover experiences moderate slip during the coring operation. A new stereo vision technique, Absolute Motion Visual Odometry, is used to measure rover slip during coring and the slip is accommodated through corresponding arm pose updating. Coring rate is controlled by feedback of themeasured force of the coring tool against the environment. Test results in the JPL Marsyard show for the first time that coring from a low-mass rover with slip is feasible.

  6. Core-melt source reduction system

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-04-25

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

  7. Core-melt source reduction system

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

  8. Common Core: Rx for Change

    ERIC Educational Resources Information Center

    Jaeger, Paige

    2012-01-01

    When David Coleman, one of the authors of the Common Core State Standards (CCSS), spoke to New York educators, he stated that over the last forty years 8th grade reading scores have been flat. Despite doubling expenditures on classroom instruction, there has been little growth. Most educators are aware that what worked for the students of the…

  9. "Common Core Implementation Best Practices"

    ERIC Educational Resources Information Center

    Martin, Carmel

    2014-01-01

    This document presents the testimony of Carmel Martin, Executive Vice President for Policy at the Center for American Progress, delivered at the New York State Office of the Governor Common Core Implementation Panel on Wednesday, February 19, 2014. In this statement, Martin began by saying that The Center for American Progress believes that this…

  10. The fluffy core of Enceladus

    NASA Astrophysics Data System (ADS)

    Roberts, James H.

    2015-09-01

    Enceladus is well known for its young south polar terrain, observed by Cassini to emit several GW of heat as well as plumes of vapor and ice. The source of this energy is believed to be tidal dissipation. However, the observed south polar heat flux cannot be sustained over the age of the Solar System. Furthermore, thermal evolution models suggest that any global subsurface ocean should freeze on a timescale of tens to hundreds of My, sharply reducing future tidal heating, unless large amounts of antifreeze are present in the ocean. Here I propose an alternative internal structure for Enceladus, in which the silicate core is fragmented, and that the tidal deformation of the core may be partially controlled by interstitial ice. I find that fragmentation of the core increases tidal dissipation by a factor of 20, consistent with the long-term dynamically sustainable level, even when the interior is completely frozen, but only if the interior starts out warm and tidal heating is strong from the beginning. If this is not the case, radioactive heating will be insufficient to prevent the interior from cooling. Although an ocean need not be present in order for the interior to experience significant tidal heating, all models that dissipate enough heat to prevent runaway cooling are also warm enough to have an ocean. Tidal dissipation in the weak core provides an additional source of heat that may prevent a global subsurface ocean from freezing.

  11. Earth rotation and core topography

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.; Clayton, Robert W.; Spieth, Mary Ann

    1988-01-01

    The NASA Geodynamics program has as one of its missions highly accurate monitoring of polar motion, including changes in length of day (LOD). These observations place fundamental constraints on processes occurring in the atmosphere, in the mantle, and in the core of the planet. Short-timescale (t less than or approx 1 yr) variations in LOD are mainly the result of interaction between the atmosphere and the solid earth, while variations in LOD on decade timescales result from the exchange of angular momentum between the mantle and the fluid core. One mechanism for this exchange of angular momentum is through topographic coupling between pressure variations associated with flow in the core interacting with topography at the core-mantel boundary (CMB). Work done under another NASA grant addressing the origin of long-wavelength geoid anomalies as well as evidence from seismology, resulted in several models of CMB topography. The purpose of work supported by NAG5-819 was to study further the problem of CMB topography, using geodesy, fluid mechanics, geomagnetics, and seismology. This is a final report.

  12. Droplet Core Nuclear Rocket (DCNR)

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.

  13. The Common Core Math Standards

    ERIC Educational Resources Information Center

    Wurman, Ze'ev; Wilson, W. Stephen

    2012-01-01

    More than 40 states have now signed onto the Common Core standards in English language arts and math, which have been both celebrated as a tremendous advance and criticized as misguided and for bearing the heavy thumbprint of the federal government. This article presents an interview with Ze'ev Wurman and W. Stephen Wilson. Wurman, who was a U.S.…

  14. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  15. CopperCore Service Integration

    ERIC Educational Resources Information Center

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob

    2007-01-01

    In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will…

  16. Common Core: Fact vs. Fiction

    ERIC Educational Resources Information Center

    Greene, Kim

    2012-01-01

    Despite students' interest in informational text, it has played second fiddle in literacy instruction for years. Now, though, nonfiction is getting its turn in the spotlight. The Common Core State Standards require that students become thoughtful consumers of complex, informative texts--taking them beyond the realm of dry textbooks and…

  17. Stability of Molten Core Materials

    SciTech Connect

    Layne Pincock; Wendell Hintze

    2013-01-01

    The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

  18. An Overview of Project CORES.

    ERIC Educational Resources Information Center

    Reynolds, Bill J.

    This paper describes the activities of Project Covert and Overt Responses to Education Simulation (CORES) designed to provide an identity for students and faculty desiring to engage in simulation-related research and development activities. Activities for investigating the use of simulation are in the directions of administrative decision making,…

  19. 10 Core External Environmental Trends.

    ERIC Educational Resources Information Center

    El Camino Coll., Torrance, CA.

    This is an institutional report summarizing 10 core external environmental trends and their implications for El Camino College and the surrounding community. The report offers a brief description for the following trends: (1) there is more emphasis on colleges becoming learning institutions rather than teaching institutions; (2) the current and…

  20. Connecticut's Common Core of Learning.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Curriculum and Instruction.

    Since its adoption in January 1987, Connecticut's Common Core of Learning has set the standard of an educated citizen for the state, and the five 1991-1995 Statewide Educational Goals for Students incorporate its policy on the skills, knowledge and attitudes that are expected of Connecticut's public secondary school graduates. The Common Core…

  1. [Core competencies in internal medicine].

    PubMed

    Porcel, J M; Casademont, J; Conthe, P; Pinilla, B; Pujol, R; García-Alegría, J

    2011-06-01

    The working group of the Spanish Society of Internal Medicine (SEMI) on "Competencies of the Internist" has defined the basic medical knowledge, skills and attitudes that all internists in Spain should have. This list of competencies represents the Internal Medicine core curriculum within the context of the future educational framework of medical specialties in Health Sciences. PMID:21531405

  2. Common Core State Standards 101

    ERIC Educational Resources Information Center

    Rothman, Robert

    2013-01-01

    The Common Core State Standards (CCSS) represent the first time that nearly every state has set common expectations for what students should know and be able to do. In the past, each state set its own standards, and the results varied widely. And while states collectively developed these common standards, decisions about the curriculum and…

  3. Laminated grid and web magnetic cores

    DOEpatents

    Sefko, John; Pavlik, Norman M.

    1984-01-01

    A laminated magnetic core characterized by an electromagnetic core having core legs which comprise elongated apertures and edge notches disposed transversely to the longitudinal axis of the legs, such as high reluctance cores with linear magnetization characteristics for high voltage shunt reactors. In one embodiment the apertures include compact bodies of microlaminations for more flexibility and control in adjusting permeability and/or core reluctance.

  4. Experience with the BEACON core monitoring system

    SciTech Connect

    Beard, C.L. ); Icide, C.A. )

    1992-01-01

    The BEACON operational core support system was developed for use in pressurized water reactors to provide an integrated system to perform reactor core monitoring, core measurement reduction, core analysis and follow, and core predictions. It is based on the very fast and accurate three-dimensional SPNOVA nodal program. The experience to date has shown the importance of an accurate integrated system. The benefits accrued are greater for the total system than the benefits that are possible separately.

  5. Magnectic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth s core and uncertainty. If this agrees with the seismologic value, then the hypotheses pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth s core, this yields a JGR-PI, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change.In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length- scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto- geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core- source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non

  6. The core to regulatory reform

    SciTech Connect

    Partridge, J.W. Jr.

    1993-06-15

    Federal Energy Regulatory Commission (FERC) Orders 436, 500, and 636, the Clean Air Act Amendments of 1990, Public Utility Holding Company Act reform, and the 1992 Energy Policy Act all can have significant effects on an LDC's operations. Such changes in an LDC's environments must be balanced by changes within the utility, its marketplace, and its state regulatory environment. The question is where to start. For Columbia Gas Distribution Cos., based in Columbus, OH, the new operating foundation begins with each employee. Internal strength is critical in designing initiatives that meet the needs of the marketplace and are well-received by regulators. Employees must understand not only the regulatory environment in which the LDC operates, but also how their work contributes to a positive regulatory relationship. To achieve this, Columbia initiated the COntinuing Regulatory Education program, or CORE, in 1991. CORE is a regulatory-focused, information-initiative program coordinated by Columbia's Regulatory Policy, Planning, and Government Affairs Department. The CORE programs can take many forms, such as emerging issue discussions, dialogues with regulators and key parties, updates on regulatory fillings, regulatory policy meetings, and formal training classes. The speakers and discussion facilitators can range from human resource department trainers to senior officers, from regulatory department staff members to external experts, or from state commissioners to executives from other LDCs. The goals of CORE initiatives are to: Support a professional level of regulatory expertise through employee participation in well-developed regulatory programs presented by credible experts. Encourage a constructive state regulatory environment founded on communication and cooperation. CORE achieves these goals via five program levels: introductory basics, advanced learning, professional expertise, crossfunctional dialogues, and external idea exchanges.

  7. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    SciTech Connect

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

  8. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar.

    PubMed

    Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A

    2015-12-01

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mEh) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies. PMID:26646872

  9. Rheology of Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    van Orman, J. A.

    2004-05-01

    Here I use mineral physics constraints to evaluate the viscosity and creep mechanisms of iron at the conditions of the inner core. At low to intermediate stresses and temperatures near the melting point solid materials may deform by any of three mechanisms: power law creep, diffusion creep and Harper-Dorn creep. Both power law and Harper-Dorn creep are dislocation processes, and the transition between the two occurs at a stress level on the order of the Peierls stress, with power law creep dominating at higher stresses. The transition stress is predicted to be ~3 MPa for hcp-Fe at inner core conditions, which is far higher than the stresses of ~102 to 103 Pa expected from magnetic or gravitational forces. Harper-Dorn creep dominates diffusion creep above a certain grain size, which is predicted to be ~200 microns for hcp-Fe. At the high temperatures and low stresses of the inner core the grain size is expected to be several orders of magnitude larger than the transition value. Harper-Dorn creep is therefore predicted to be the dominant deformation mechanism in the inner core. Harper-Dorn creep is accomplished by the motion of dislocations and can lead to strong lattice preferred orientation. The viscosity in this regime is Newtonian and is given by μ = (kT)/(ADb) where k is Boltzmann's constant, T is temperature, D is the self-diffusion coefficient, b is the Burgers vector and A is a dimensionless constant predicted to have a value of ~1.7 x 1011 for hcp-Fe. No diffusion data exist for hcp-Fe, but metals with similar structure all have nearly the same self-diffusion coefficient at the same homologous temperature. Assuming an inner core temperature of 5700 K and melting temperature for pure iron of 6200 K, the diffusivity is predicted to be ~4 × 10-13 m2 s-1 and the viscosity ~6 × 1013 Pa s. The corresponding strain rate for a shear stress of 100 Pa is ~2 × 10-12 s-1, implying that large strains are possible on timescales less than 100,000 years. It is therefore

  10. Logging-while-coring method and apparatus

    DOEpatents

    Goldberg, David S.; Myers, Gregory J.

    2007-11-13

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  11. Logging-while-coring method and apparatus

    DOEpatents

    Goldberg, David S.; Myers, Gregory J.

    2007-01-30

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  12. Mars: a new core-crystallization regime.

    PubMed

    Stewart, Andrew J; Schmidt, Max W; van Westrenen, Wim; Liebske, Christian

    2007-06-01

    The evolution of the martian core is widely assumed to mirror the characteristics observed for Earth's core. Data from experiments performed on iron-sulfur and iron-nickel-sulfur systems at pressures corresponding to the center of Mars indicate that its core is presently completely liquid and that it will not form an outwardly crystallizing iron-rich inner core, as does Earth. Instead, planetary cooling will lead to core crystallization following either a "snowing-core" model, whereby iron-rich solids nucleate in the outer portions of the core and sink toward the center, or a "sulfide inner-core" model, where an iron-sulfide phase crystallizes to form a solid inner core. PMID:17540900

  13. Processing of Activated Core Components

    SciTech Connect

    Friske, A.; Gestermann, G.; Finkbeiner, R.

    2003-02-26

    Used activated components from the core of a NPP like control elements, water channels from a BWR, and others like in-core measurement devices need to be processed into waste forms suitable for interim storage, and for the final waste repository. Processing of the activated materials can be undertaken by underwater cutting and packaging or by cutting and high-pressure compaction in a hot cell. A hot cell is available in Germany as a joint investment between GNS and the Karlsruhe Research Center at the latter's site. Special transport equipment is available to transport the components ''as-is'' to the hot cell. Newly designed underwater processing equipment has been designed, constructed, and operated for the special application of NPP decommissioning. This equipment integrates an underwater cutting device with an 80 ton force underwater in-drum compactor.

  14. EARLY EVOLUTION OF PRESTELLAR CORES

    SciTech Connect

    Horedt, G. P.

    2013-08-20

    Prestellar cores are approximated by singular polytropic spheres. Their early evolution is studied analytically with a Bondi-like scheme. The considered approximation is meaningful for polytropic exponents {gamma} between 0 and 6/5, implying radial power-law density profiles between r {sup -1} and r {sup -2.5}. Gravitationally unstable Jeans and Bonnor-Ebert masses differ at most by a factor of 3.25. Tidally stable prestellar cores must have a mean density contrast {approx}> 8 with respect to the external parent cloud medium. The mass-accretion rate relates to the cube of equivalent sound speed, as in Shu's seminal paper. The prestellar masses accreted over 10{sup 5} years cover the whole stellar mass spectrum; they are derived in simple closed form, depending only on the polytropic equation of state. The stellar masses that can be formed via strict conservation of angular momentum are at most of the order of a brown dwarf.

  15. Accelerator driven sub-critical core

    DOEpatents

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  16. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  17. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  18. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  19. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, Alan W.

    1995-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference.

  20. Finding your next core business.

    PubMed

    Zook, Chris

    2007-04-01

    How do you know when your core needs to change? And how do you determine what should replace it? From an in-depth study of 25 companies, the author, a strategy consultant, has discovered that it's possible to measure the vitality of a business's core. If it needs reinvention, he says, the best course is to mine hidden assets. Some of the 25 companies were in deep crisis when they began the process of redefining themselves. But, says Zook, management teams can learn to recognize early signs of erosion. He offers five diagnostic questions with which to evaluate the customers, key sources of differentiation, profit pools, capabilities, and organizational culture of your core business. The next step is strategic regeneration. In four-fifths of the companies Zook examined, a hidden asset was the centerpiece of the new strategy. He provides a map for identifying the hidden assets in your midst, which tend to fall into three categories: undervalued business platforms, untapped insights into customers, and underexploited capabilities. The Swedish company Dometic, for example, was manufacturing small absorption refrigerators for boats and RVs when it discovered a hidden asset: its understanding of, and access to, customers in the RV market. The company took advantage of a boom in that market to refocus on complete systems for live-in vehicles. The Danish company Novozymes, which produced relatively low-tech commodity enzymes such as those used in detergents, realized that its underutilized biochemical capability in genetic and protein engineering was a hidden asset and successfully refocused on creating bioengineered specialty enzymes. Your next core business is not likely to announce itself with fanfare. Use the author's tools to conduct an internal audit of possibilities and pinpoint your new focus. PMID:17432154

  1. Grain alignment in starless cores

    SciTech Connect

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  2. Rich-Cores in Networks

    PubMed Central

    Ma, Athen; Mondragón, Raúl J.

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585

  3. Coring in deep hardrock formations

    SciTech Connect

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  4. Counterrotating core in IC 1459

    SciTech Connect

    Franx, M.; Illingworth, G.D.

    1988-04-01

    The radio elliptical IC 1459 is shown to have a massive rapidly counterrotating stellar core. Along the major axis a strong peak in the rotational velocity is observed at a distance of 2 arcsec (0.3 kpc) from the center. The velocity reaches 170 + or - 20 km/s. The rotational velocity in the outer parts rises to 45 + or - 8 km/s, but in the opposite sense to the rotation of the center. Along the minor axis, no significant rotation is measured, neither in the center nor in the outer parts. Line profiles derived from cross-correlated spectra along the major axis in the core show a clear asymmetry. Ionized gas rotates around the minor axis in the same sense as the outer part of the galaxy. The other properties are typical of normal ellipticals. The galaxy has a regular color gradient and line strength gradient. The mass of the counterrotating component is estimated to be about 10 to the 10th solar masses. It is postulated that such a core could form, following the merger of two galaxies, either by the tidal disruption of the victim or through a starburst-like event. 27 references.

  5. A core dynamo in Vesta?

    NASA Astrophysics Data System (ADS)

    Formisano, M.; Federico, C.; De Angelis, S.; De Sanctis, M. C.; Magni, G.

    2016-05-01

    A recent study of Fu et al. analysed the remaining magnetization in the eucrite meteorite Allan Hills A81001, which mostly likely has been produced during the cooling phase of the life of the asteroid Vesta, arguing that an ancient dynamo in the advective liquid metallic core could be set in. Using petrographic and paleomagnetic arguments, Fu et al. estimated a surface magnetic field of at least 2 μT. In this work, we verify the possibility that an early core dynamo took place in Vesta by analysing four different possible fully differentiated configurations of Vesta, characterized by different chondritic compositions, with the constraints on core size and density provided by Ermakov et al. We only incorporate the thermal convection, by neglecting the effects of the compositional convection, so our results in terms of magnetic Reynolds number and duration of the dynamo can be interpreted as a lower bound. The presence of a magnetic field would make Vesta a peculiar object of the Solar system, a `small-Earth', since it has also a differentiated structure like Earth and the magnetic field has preserved Vesta from the space weathering.

  6. Core Stability Training for Injury Prevention

    PubMed Central

    Huxel Bliven, Kellie C.; Anderson, Barton E.

    2013-01-01

    Context: Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. Evidence Acquisition: PubMed was searched for epidemiologic, biomechanic, and clinical studies of core stability for injury prevention (keywords: “core OR trunk” AND “training OR prevention OR exercise OR rehabilitation” AND “risk OR prevalence”) published between January 1980 and October 2012. Articles with relevance to core stability risk factors, assessment, and training were reviewed. Relevant sources from articles were also retrieved and reviewed. Results: Stabilizer, mobilizer, and load transfer core muscles assist in understanding injury risk, assessing core muscle function, and developing injury prevention programs. Moderate evidence of alterations in core muscle recruitment and injury risk exists. Assessment tools to identify deficits in volitional muscle contraction, isometric muscle endurance, stabilization, and movement patterns are available. Exercise programs to improve core stability should focus on muscle activation, neuromuscular control, static stabilization, and dynamic stability. Conclusion: Core stabilization relies on instantaneous integration among passive, active, and neural control subsystems. Core muscles are often categorized functionally on the basis of stabilizing or mobilizing roles. Neuromuscular control is critical in coordinating this complex system for dynamic stabilization. Comprehensive assessment and training require a multifaceted approach to address core muscle strength, endurance, and recruitment requirements for functional demands associated with daily activities, exercise, and sport. PMID:24427426

  7. Helium in Earth's Early Core

    NASA Astrophysics Data System (ADS)

    Jephcoat, A. P.; Bouhifd, M. A.; Heber, V.; Kelley, S. P.

    2006-12-01

    The high 3He/4He ratios for some ocean-island basalts, and more recent observations for solar components of the other rare gases (Ne, Ar and possibly Xe), continue to raise questions on primordial source reservoirs as well as on accretionary and incorporation processes of rare gases. A number of geochemical mantle models have been made to explain the observed 3He/4He ratios, the most popular of which has been an undegassed primordial reservoir. Isotope systematics of other radiogenic elements do not support such an isolated source and changes in the accepted models of mantle convection style have made it harder to rely on the deep mantle as a reservoir. The core has remained a particularly unfavourable location either because of difficulty in constructing a retention mechanism during planetary accretion or simply because of a lack of data: Partitioning studies at pressure are rare and complicated by the difficulty in reproducing not only absolute concentrations, but confinement of gas in high-pressure apparatus and post-run analysis. We present experiments on helium solubility and partitioning between molten silicates and Fe-rich metal liquids up to 16 GPa and 3000 K, with the laser-heated diamond-anvil cell, and the quenched run products analysed by ultra-violet laser ablation mass spectrometry (UVLAMP). Our results indicate a significantly higher partition coefficient for He between molten silicates and Fe-rich alloy liquids of about 10-2 at 16 GPa and 3000~K -- two orders of magnitude more helium is measured in the metal phase compared to the only previous data of Matsuda et al., (1993). The solubility mechanism is varied and involves a distinguishable bulk component and an apparent surface signature (that may be the result of the quench process). Whether surface effects are included or not, the early Earth's core would have incorporated non-negligible amounts of primordial helium if its segregation took place under mid-depth, magma-ocean conditions. The process

  8. CORE SHAPES AND ORIENTATIONS OF CORE-SÉRSIC GALAXIES

    SciTech Connect

    Dullo, Bililign T.; Graham, Alister W.

    2015-01-01

    The inner and outer shapes and orientations of core-Sérsic galaxies may hold important clues to their formation and evolution. We have therefore measured the central and outer ellipticities and position angles for a sample of 24 core-Sérsic galaxies using archival Hubble Space Telescope (HST) images and data. By selecting galaxies with core-Sérsic break radii R{sub b} —a measure of the size of their partially depleted core—that are ≳ 0.''2, we find that the ellipticities and position angles are quite robust against HST seeing. For the bulk of the galaxies, there is a good agreement between the ellipticities and position angles at the break radii and the average outer ellipticities and position angles determined over R {sub e}/2 < R < R {sub e}, where R {sub e} is the spheroids' effective half light radius. However there are some interesting differences. We find a median ''inner'' ellipticity at R{sub b} of ε{sub med} = 0.13 ± 0.01, rounder than the median ellipticity of the ''outer'' regions ε{sub med} = 0.20 ± 0.01, which is thought to reflect the influence of the central supermassive black hole at small radii. In addition, for the first time we find a trend, albeit weak (2σ significance), such that galaxies with larger (stellar deficit-to-supermassive black hole) mass ratios—thought to be a measure of the number of major dry merger events—tend to have rounder inner and outer isophotes, suggesting a connection between the galaxy shapes and their merger histories. We show that this finding is not simply reflecting the well known result that more luminous galaxies are rounder, but it is no doubt related.

  9. Core Shapes and Orientations of Core-Sérsic Galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2015-01-01

    The inner and outer shapes and orientations of core-Sérsic galaxies may hold important clues to their formation and evolution. We have therefore measured the central and outer ellipticities and position angles for a sample of 24 core-Sérsic galaxies using archival Hubble Space Telescope (HST) images and data. By selecting galaxies with core-Sérsic break radii Rb —a measure of the size of their partially depleted core—that are >~ 0.''2, we find that the ellipticities and position angles are quite robust against HST seeing. For the bulk of the galaxies, there is a good agreement between the ellipticities and position angles at the break radii and the average outer ellipticities and position angles determined over R e/2 < R < R e, where R e is the spheroids' effective half light radius. However there are some interesting differences. We find a median "inner" ellipticity at Rb of epsilonmed = 0.13 ± 0.01, rounder than the median ellipticity of the "outer" regions epsilonmed = 0.20 ± 0.01, which is thought to reflect the influence of the central supermassive black hole at small radii. In addition, for the first time we find a trend, albeit weak (2σ significance), such that galaxies with larger (stellar deficit-to-supermassive black hole) mass ratios—thought to be a measure of the number of major dry merger events—tend to have rounder inner and outer isophotes, suggesting a connection between the galaxy shapes and their merger histories. We show that this finding is not simply reflecting the well known result that more luminous galaxies are rounder, but it is no doubt related.

  10. 38 CFR 0.601 - Core Values.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of their grade, specialty area, or location. These Core Values are Integrity, Commitment, Advocacy, Respect, and Excellence. Together, the first letters of the Core Values spell “I CARE,” and VA...

  11. 38 CFR 0.601 - Core Values.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of their grade, specialty area, or location. These Core Values are Integrity, Commitment, Advocacy, Respect, and Excellence. Together, the first letters of the Core Values spell “I CARE,” and VA...

  12. MCNP modelling of the PBMR equilibrium core

    SciTech Connect

    Albornoz, F.; Korochinsky, S.

    2006-07-01

    A complete MCNP model of the PBMR equilibrium core is presented, which accounts for the same fuel regions defined in the PBMR core management code, as well as for complete fuel and reflector temperature distributions. This comprehensive 3D model is the means to calculate and characterize the neutron and photon boundary sources of the equilibrium core, and is also used to support some specific core neutronic studies needing detailed geometry modelling. Due to the geometrical modelling approach followed, an unrealistic partial cutting of fuel kernels and pebbles is introduced in the model. The variations introduced by this partial cutting both on the packing fraction and on the uranium load of the modelled core and its corresponding effect on core reactivity and flux levels, have been investigated and quantified. A complete set of high-temperature cross-section data was applied to the calculation of the PBMR equilibrium core, and its effect on the calculated core reactivity is also reported. (authors)

  13. Liquid molded hollow cell core composite articles

    NASA Technical Reports Server (NTRS)

    Bernetich, Karl R. (Inventor)

    2005-01-01

    A hollow core composite assembly 10 is provided, including a hollow core base 12 having at least one open core surface 14, a bondable solid film 22 applied to the open core surface 14, at least one dry face ply 30 laid up dry and placed on top of the solid film 22, and a liquid resin 32 applied to the at least one dry face ply 30 and then cured.

  14. H. W. Wilson "Nonbook Materials Core Collection"

    ERIC Educational Resources Information Center

    Harper, Meghan

    2009-01-01

    The "Nonbook Materials Core Collection" is one of H. W. Wilson's new subscription-based electronic core collection development databases. It is a new addition to the five-volume core collection series formerly known as the "Standard Catalog Series." Other titles in this series have long been staples of collection development resources for both…

  15. Common Core: Teaching Optimum Topic Exploration (TOTE)

    ERIC Educational Resources Information Center

    Karge, Belinda Dunnick; Moore, Roxane Kushner

    2015-01-01

    The Common Core has become a household term and yet many educators do not understand what it means. This article explains the historical perspectives of the Common Core and gives guidance to teachers in application of Teaching Optimum Topic Exploration (TOTE) necessary for full implementation of the Common Core State Standards. An effective…

  16. Honeycomb Core Permeability Under Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.

    1997-01-01

    A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.

  17. Simplifying the ELA Common Core; Demystifying Curriculum

    ERIC Educational Resources Information Center

    Schmoker, Mike; Jago, Carol

    2013-01-01

    The English Language Arts (ELA) Common Core State Standards ([CCSS], 2010) could have a transformational effect on American education. Though the process seems daunting, one can begin immediately integrating the essence of the ELA Common Core in every subject area. This article shows how one could implement the Common Core and create coherent,…

  18. Causes and consequences of outer core stratification

    NASA Astrophysics Data System (ADS)

    Helffrich, George; Kaneshima, Satoshi

    2013-10-01

    The Earth’s outer core appears to be compositionally layered. Exotic mechanisms such as an original chemically layered core preserved from the Earth’s accretionary period, or compositionally different core material delivered by a Moon-creating impactor are conceivable, but require a core whose outermost part has been stratified throughout core history, relying on unknowable processes to achieve. Barodiffusion and core-mantle reaction lead to layers significantly thinner than observed. We show that a balance of mass transferred from the inner core to the top of the outer core is possible, and that the stratification could arise as a byproduct of light element accumulation. However, if a subadiabatic thermal gradient at the top of the outer core exists that quells radial flow, it could serve as a witness of light element accumulation by preventing mixing with the convecting part of the core. The temperature difference through a subadiabatic layer could be 80-300 K and carry heat fluxes through the core-mantle boundary of 0.5-23 TW, given uncertainty in core properties.

  19. Improving Core Strength to Prevent Injury

    ERIC Educational Resources Information Center

    Oliver, Gretchen D.; Adams-Blair, Heather R.

    2010-01-01

    Regardless of the sport or skill, it is essential to have correct biomechanical positioning, or postural control, in order to maximize energy transfer. Correct postural control requires a strong, stable core. A strong and stable core allows one to transfer energy effectively as well as reduce undue stress. An unstable or weak core, on the other…

  20. Core Competencies in Information Management Education.

    ERIC Educational Resources Information Center

    Gorman, G. E.; Corbitt, B. J.

    2002-01-01

    Discusses core competencies in library and information science and in information systems to use as a background for an examination of core competencies in information management. Suggests a set of core competencies and educational outcomes that might be applied to curricula in both developed and developing countries. (Author/LRW)

  1. Core Journal Lists: Classic Tool, New Relevance

    ERIC Educational Resources Information Center

    Paynter, Robin A.; Jackson, Rose M.; Mullen, Laura Bowering

    2010-01-01

    Reviews the historical context of core journal lists, current uses in collection assessment, and existing methodologies for creating lists. Outlines two next generation core list projects developing new methodologies and integrating novel information/data sources to improve precision: a national-level core psychology list and the other a local…

  2. Reinforcement core facilitates O-ring installation

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Reinforcement core holds O-ring in place within a structure while adjacent parts are being assembled. The core in the O-ring adds circumferential rigidity to the O-ring material. This inner core does not appreciably affect the sectional elasticity or gland-sealing characteristics of the O-ring.

  3. ARTEMISTM Core Simulator: Latest Developments

    NASA Astrophysics Data System (ADS)

    Hobson, Greg; Bolloni, Hans-Wilhelm; Breith, Karl-Albert; Dall'Osso, Aldo; van Geemert, René; Haase, Hartmut; Hartmann, Bettina; Leberig, Mario; Porsch, Dieter; Pothet, Baptiste; Riedmann, Michael; Sieber, Galina; Tomatis, Daniele

    2014-06-01

    AREVA has developed a new coupled neutronics/thermal-hydraulics code system, ARCADIA®. It makes use of modern computing resources to enable more realistic reactor analysis as improved understanding of nuclear reactor behavior is the basis for efficient margin management, i.e. optimization of safety and performance. One of the principal components of this new system is the core simulator, ARTEMIS™. The purpose of this paper is to recall its features, present the latest developments and give a summary of the validation tests.

  4. Antiferromagnetic hedgehogs with superconducting cores

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Sheehy, Daniel E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.

  5. Antiferromagnetic hedgehogs with superconducting cores

    SciTech Connect

    Goldbart, P.M.; Sheehy, D.E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  6. NRC confirmatory AP600 safety system phase I testing in the ROSA/AP600 test facility

    SciTech Connect

    Rhee, G.S.; Kukita, Yutaka; Schultz, R.R.

    1996-03-01

    The NRC confirmatory phase I testing for the AP600 safety systems has been completed in the modified ROSA (Rig of Safety Assessment) test facility located at the Japan Atomic Energy Research Institute (JAERI) campus in Tokai, Japan. The test matrix included a variety of accident scenarios covering both design and beyond-design basis accidents. The test results indicate the AP600 safety systems as reflected in ROSA appear to perform as designed and there is no danger of core heatup for the accident scenarios investigated. In addition, no detrimental system interactions nor adverse effects of non-safety systems on the safety system functions were identified. However, three phenomena of interest have been identified for further examination to determine whether they are relevant to the AP600 plant. Those three phenomena are: (1) a potential for water hammer caused by rapid condensation which may occur following the actuation of the automatic depressurization system (ADS), (2) a large thermal gradient in the cold leg pipe where cooled water returns from the passive residual heat removal system and forms a thermally stratified layer, and (3) system-wide oscillations initiating following the ADS stage 4 actuation and persisting until the liquid in the pressurizer drains and steam generation in the core becomes insignificant.

  7. Hydrophobic-Core Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  8. Hydrophilic-Core Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophilic-core microcapsules and methods of their formation are provided. A hydrophilic-core microcapsule may include a shell that encapsulates water with the core substance dissolved or dispersed therein. The hydrophilic-core microcapsules may be formed from an emulsion having hydrophilic-phase droplets dispersed in a hydrophobic phase, with shell-forming compound contained in the hydrophilic phase or the hydrophobic phase and the core substance contained in the hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  9. Core Injuries Remote from the Pubic Symphysis.

    PubMed

    Belair, Jeffrey A; Hegazi, Tarek M; Roedl, Johannes B; Zoga, Adam C; Omar, Imran M

    2016-09-01

    The core, or central musculoskeletal system of the torso, is essential for participating in sports and other physical activities. Core injuries are commonly encountered in athletes and active individuals. The importance of the midline pubic plate and rectus abdominis-adductor aponeurosis for core stability and function is discussed in the literature. This review article examines other important core injuries remote from the pubic symphysis, relevant clinical features, and preferred approaches to imaging. Several specific syndromes encountered in the core are reviewed. By protocoling imaging studies and identifying pathology, radiologists can add value to the clinical decision-making process and help guide therapeutic options. PMID:27545427

  10. Magnetic-Plasmonic Core-Shell Nanoparticles

    PubMed Central

    Levin, Carly S.; Hofmann, Cristina; Ali, Tamer A.; Kelly, Anna T.; Morosan, Emilia; Nordlander, Peter; Whitmire, Kenton H.; Halas, Naomi J.

    2013-01-01

    Nanoparticles composed of magnetic cores with continuous Au shell layers simultaneously possess both magnetic and plasmonic properties. Faceted and tetracubic nanocrystals consisting of wüstite with magnetite-rich corners and edges retain magnetic properties when coated with an Au shell layer, with the composite nanostructures showing ferrimagnetic behavior. The plasmonic properties are profoundly influenced by the high dielectric constant of the mixed-iron-oxide nanocrystalline core. A comprehensive theoretical analysis that examines the geometric plasmon tunability over a range of core permittivities enables us to identify the dielectric properties of the mixed-oxide magnetic core directly from the plasmonic behavior of the core-shell nanoparticle. PMID:19441794

  11. Generator stator core vent duct spacer posts

    DOEpatents

    Griffith, John Wesley; Tong, Wei

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  12. Vortex Cores of Inertial Particles.

    PubMed

    Günther, Tobias; Theisel, Holger

    2014-12-01

    The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines. PMID:26356967

  13. Research on plasma core reactors

    NASA Technical Reports Server (NTRS)

    Jarvis, G. A.; Barton, D. M.; Helmick, H. H.; Bernard, W.; White, R. H.

    1976-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diameter by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17 cm thick by 89 cm diameter beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000 cu cm aluminum canister in the central region was fueled with UF6 gas and fission density distributions determined. These results are to be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  14. Inflow Models of Nearby Cores

    NASA Astrophysics Data System (ADS)

    De La Cruz, David; De Vries, C. H.; Arce, H. G.

    2012-01-01

    We obtained observations of nearby (d < 300 pc) isolated pre-stellar and Class 0 cores from the Caltech Submillimeter Observatory. The optically thick HCO+ J=3-2 rotational transition was observed in order to detect the blue-asymmetric infall signature often seen in pre-stellar cores. The asymmetric spectral line profiles were analyzed by using a 1-D radiative transfer model that assumes a uniform infall velocity and a realistic radial excitation profile. The model is able to reproduce the asymmetric line profile in most cases by varying only 5 physical cloud parameters. The analysis was used to obtain a reliable estimate of the infall rate. The sources presented here and observed in the HCO+ J=3-2 rotational transition were B228, CB130 SMM2, OPH MM 126, and RCRA SMM1A. Analysis of these spectra yielded some unexpected results. Our analysis did a good job at fitting the spectral lines in some sources while it performed poorly for others. We observed infall velocities ranging from -1.1, indicating expansion, to 0.4 km/s in these sources and found line center optical depths ranging from 0.03 to 520. The peak excitation temperature for the HCO+ J=3-2 transition was found to range from 3 to 57 K.

  15. The core legion object model

    SciTech Connect

    Lewis, M.; Grimshaw, A.

    1996-12-31

    The Legion project at the University of Virginia is an architecture for designing and building system services that provide the illusion of a single virtual machine to users, a virtual machine that provides secure shared object and shared name spaces, application adjustable fault-tolerance, improved response time, and greater throughput. Legion targets wide area assemblies of workstations, supercomputers, and parallel supercomputers, Legion tackles problems not solved by existing workstation based parallel processing tools; the system will enable fault-tolerance, wide area parallel processing, inter-operability, heterogeneity, a single global name space, protection, security, efficient scheduling, and comprehensive resource management. This paper describes the core Legion object model, which specifies the composition and functionality of Legion`s core objects-those objects that cooperate to create, locate, manage, and remove objects in the Legion system. The object model facilitates a flexible extensible implementation, provides a single global name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects.

  16. Core hysteresis in nematic defects

    NASA Astrophysics Data System (ADS)

    Kralj, Samo; Virga, Epifanio G.

    2002-08-01

    We study field-induced transformations in the biaxial core of a nematic disclination with strength m=1, employing the Landau-de Gennes order tensor parameter Q. We first consider the transition from the defectless escaped radial structure into the structure hosting a line defect with a negative uniaxial order parameter along the axis of a cylinder of radius R. The critical field of the transition monotonically increases with R and asymptotically approaches a value corresponding to ξb/ξf~0.3, where the correlation lengths ξb and ξf are related to the biaxial order and the external field, respectively. Then, in the same geometry, we focus on the line defect structure with a positive uniaxial ordering along the axis, surrounded by the uniaxial sheath, the uniaxial cylinder of radius ξu with negative order parameter and director in the transverse direction. We study the hysteresis in the position of the uniaxial sheath upon increasing and decreasing the field strength. In general, two qualitatively different solutions exist, corresponding to the uniaxial sheath located close to the defect symmetry axis or close to the cylinder wall. This latter solution exists only for strong enough anchorings. The uniaxial sheath is for a line defect what the uniaxial ring is for a point defect: by resorting to an approximate analytic estimate, we show that essentially the same hysteresis exhibited by the uniaxial sheath is expected to occur at the uniaxial ring in the core structure of a point defect.

  17. Asteroid core crystallization by inward dendritic growth

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Scott, Edward R. D.

    1992-01-01

    The physics of the asteroid core crystallization process in metallic asteroids is investigated, with special attention given to the initial conditions for core crystallization, the manner of crystallization, the mechanisms acting in the stirring of the liquid, and the effects of elements such as sulfur on crystallization of Fe-Ni. On the basis of theoretical considerations and the published data on iron meteorites, it is suggested that the mode of crystallization in asteroid core was different from the apparent outward concentric crystallization of the earth core, in that the crystallization of asteroidal cores commenced at the base of the mantle and proceeded inward. The inward crystallization resulted in complex dendritic growth. These dendrites may have grown to lengths of hundreds of meters or perhaps even as large as the core radius, thereby dividing the core into separate magma chambers.

  18. DIODE STEERED MANGETIC-CORE MEMORY

    DOEpatents

    Melmed, A.S.; Shevlin, R.T.; Laupheimer, R.

    1962-09-18

    A word-arranged magnetic-core memory is designed for use in a digital computer utilizing the reverse or back current property of the semi-conductor diodes to restore the information in the memory after read-out. In order to ob tain a read-out signal from a magnetic core storage unit, it is necessary to change the states of some of the magnetic cores. In order to retain the information in the memory after read-out it is then necessary to provide a means to return the switched cores to their states before read-out. A rewrite driver passes a pulse back through each row of cores in which some switching has taken place. This pulse combines with the reverse current pulses of diodes for each column in which a core is switched during read-out to cause the particular cores to be switched back into their states prior to read-out. (AEC)

  19. Mars: A New Core-Crystallization Regime

    NASA Astrophysics Data System (ADS)

    Stewart, Andrew J.; Schmidt, Max W.; van Westrenen, Wim; Liebske, Christian

    2007-06-01

    The evolution of the martian core is widely assumed to mirror the characteristics observed for Earth’s core. Data from experiments performed on iron-sulfur and iron-nickel-sulfur systems at pressures corresponding to the center of Mars indicate that its core is presently completely liquid and that it will not form an outwardly crystallizing iron-rich inner core, as does Earth. Instead, planetary cooling will lead to core crystallization following either a “snowing-core” model, whereby iron-rich solids nucleate in the outer portions of the core and sink toward the center, or a “sulfide inner-core” model, where an iron-sulfide phase crystallizes to form a solid inner core.

  20. Double-diffusive inner core translation

    NASA Astrophysics Data System (ADS)

    Deguen, Renaud; Alboussière, Thierry; Labrosse, Stéphane

    2015-04-01

    The hemispherical asymmetry of the inner core has recently been interpreted as resulting form a high-viscosity mode of inner core convection, consisting in a translation of the inner core. With melting on one hemisphere and crystallization on the other one, inner core translation would impose a strongly asymmetric buoyancy flux at the bottom of the outer core, with likely strong implications for the dynamics of the outer core and the geodynamo. The main requirement for convective instability in the inner core is an adverse radial density gradient. While older estimates of the inner core thermal conductivity favored a superadiabatic temperature gradient and the existence of thermal convection, the much higher values recently proposed make thermal convection unlikely. Compositional convection might be a viable alternative to thermal convection: an unstable compositional gradient may arise in the inner core either because the light elements present in the core are predicted to become increasingly incompatible as the inner core grows (Gubbins et al. 2013), or because of a possibly positive feedback of the development of the F-layer on inner core convection. Though the magnitude of the destabilizing effect of the compositional field is predicted to be similar to or smaller than the stabilizing effect of the thermal field, the huge difference between thermal and chemical diffusivities implies that double-diffusive instabilities may still arise even if the net density decreases upward. We propose here a theoretical (linear stability analysis) and numerical study of double diffusive convection in the inner core, focusing on the translation mode, and discuss in what conditions inner core translation can develop.

  1. Structural analysis and evaluation of the 241SY101 tank annulus heat-up

    SciTech Connect

    Ziada, H.H.

    1994-10-19

    This document provides the structural analysis (static and thermal loads) of the 241SY101 tank to determine the maximum allowable temperature and rate of heating that could be applied to tank 241SY101 through annulus air heating without detrimental effects to the structural integrity of the concrete and steel liner of the tank.

  2. Final Report - BRER Core Support

    SciTech Connect

    Evan B. Douple

    2007-01-09

    This contract provided core support for activities of the advisory committee of experts comprising the Board on Radiation Effects Research (BRER), in The National Academies' Division on Earth and Life Studies. That committee met two times during the funding period. The committee members provided oversight and advice regarding ongoing BRER projects and also assisted in the identification of potential committee members for new studies and the development of proposals for projects in the radiation sciences worthy for future study. In addition, funding provided support for the planning, advertisement, and invited speakers' travel-expense reimbursement for the Third and Fourth Gilbert W. Beebe Symposia held at The National Academies on December 1, 2004 and on November 30, 2005, respectively.

  3. Shuttle Spacelab Core Equipment Freezer

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.

    1977-01-01

    This paper describes the preliminary design of a Shuttle Spacelab Core Equipment Freezer. The unit will provide the capability to freeze and store many experiment specimens. Two models of the unit are planned. One model provides storage at -70 C; the other model will provide -70 C storage, a freeze dry capability, storage at a selectable temperature in the range of 0 C to -70 C, and means of maintaining close temperature tolerances. In addition an exchanger loop will be available at 4 C for cooling of a centrifuge and a remote storage compartment. A test tube holder, a dish holder and thermal capacitors for rapid freezing of large specimens will also be provided. A Stirling Cycle was selected as the active refrigerator for minimum cost and weight.

  4. Nuclear core and fuel assemblies

    DOEpatents

    Downs, Robert E.

    1981-01-01

    A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

  5. From Prestellar to Protostellar Cores

    NASA Astrophysics Data System (ADS)

    Aikawa, Yuri; Wakelam, Valentine; Hersant, Franck; Garrod, Robin; Herbst, Eric

    2012-07-01

    We investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from dense cloud cores to protostellar cores. We solve a gas-grain reaction network, which is extended to include multi-deuterated species, using a 1-D radiative hydrodynamic model with infalling fluid parcels to derive molecular distribution in assorted evolutionary stages. We find that the abundances of large organic species in the central region increase with time. The duration of the warm-up phase, in which large organic species are efficiently formed, is longer in infalling fluid parcels at later stages. Formation of unsaturated carbon chains in the CH4 sublimation zone (warm carbon chain chemistry) is more effective in later stage. The carbon ion, which reacts with CH4 to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are both heavily deuterated, mainly because their mother molecules have high D/H ratios, which are set in the cold phase. The observed CH2DOH/CH3OH ratio towards protostars is reproduced if we assume that the grain-surface exchange and abstraction reactions of CH3OH + D occurs efficiently. In our 1-D collapse model, the fluid parcels directly fall into the protostar, and the warm-up phase in the fluid parcels is rather short. But, in reality, a circumstellar disk is formed, and fluid parcels will stay there for a longer timescale than a free-fall time. We investigate the molecular evolution in such a disk by assuming that a fluid parcel stays at a constant temperature (i.e. a fixed disk radius) after the infall. The species CH3OCH3 and HCOOCH3 become more abundant in the disk than in the envelope. Both have high D/H abundance ratios as well.

  6. Mercury's thermal evolution and core crystallization regime

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Van Hoolst, T.; Dumberry, M.; Steinle-Neumann, G.

    2015-10-01

    Unlike the Earth, where the liquid core isentrope is shallower than the core liquidus, at the lower pressures inside Mercury's core the isentrope can be steeper than the melting temperature. As a consequence, upon cooling, the isentrope may first enter a solid stability field near the core mantle boundary and produce ironrich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, crystallization initiated near the top might generate sufficient buoyancy flux to drive magnetic field generation by compositional convection.In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for an internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high-pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials. We use a 1-dimensional parametrized thermal evolution model in the stagnant lid regime for the mantle (e.g. [1]) that is coupled to the core. The model for the mantle takes into account the formation of the crust due to melting at depth. Mantle convection is driven by heat producing radioactive elements, heat loss from secular cooling and from the heat supplied by the core. The heat generated inside the core is mainly provided from secular cooling, from the latent heat released at iron freezing, and from gravitational energy resulting form the release of light elements at the inner core-outer core boundary as well as from the sinking of iron-rich snow and subsequent upwellings of light elements in the snow zone. If the heat flow out of the core is smaller than the heat transported along the core isentrope a thermal boundary will from at the top of the outer core. To determine the extension of the convecting region inside the liquid core we calculate the convective power [2]. Finally, we

  7. Outer-core compositional stratification from observed core wave speed profiles.

    PubMed

    Helffrich, George; Kaneshima, Satoshi

    2010-12-01

    Light elements must be present in the nearly pure iron core of the Earth to match the remotely observed properties of the outer and inner cores. Crystallization of the inner core excludes light elements from the solid, concentrating them in liquid near the inner-core boundary that potentially rises and collects at the top of the core, and this may have a seismically observable signal. Here we present array-based observations of seismic waves sensitive to this part of the core whose wave speeds require there to be radial compositional variation in the topmost 300 km of the outer core. The velocity profile significantly departs from that of compression of a homogeneous liquid. Total light-element enrichment is up to five weight per cent at the top of the core if modelled in the Fe-O-S system. The stratification suggests the existence of a subadiabatic temperature gradient at the top of the outer core. PMID:21150995

  8. Progressive Curation of IODP Core Material at Kochi Core Center, Japan

    NASA Astrophysics Data System (ADS)

    Gupta, L. P.; Hisamitsu, T.; Ahagon, N.; Kuramoto, T.; Tokuyama, H.; Kinoshita, M.

    2014-12-01

    Kochi Core Center (KCC) is one of the 3 IODP core repositories in the world, and is in-charge of curating core materials collected/to be collected from most of the Indian Ocean, west Pacific Ocean and Bering Sea. Curation of IODP core material in the KCC began in 2007 as it started receiving 83 km of Legacy cores from the other IODP core repositories. Since then the KCC has not only maintained curatorial standards of the IODP, but also added many services for convenience of the IODP researchers that include curation of cuttings and deep frozen aliquots of cores, open access to logging equipment in the KCC for core measurements, virtual core library to provide quick online access to 3-D XCT images of the cores collected by the D/V Chikyu, online summary of the cores being curated in the KCC, and up-to-date online images of working half to show status of samples available for prospective users. With its existing stock of 104 km of the IODP & Legacy cores and cores to be recovered from the Indian Ocean in near future by the JOIDES Resolution, and a huge new reefer building with storage capacity of ca. 150 km core becoming part of the KCC this August, the KCC is bound to play a significant role in promoting earth and biogeo-sciences throughout the world, especially in neighboring Asian countries.

  9. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  10. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.

  11. REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO THE HEATED CORE BOX THAT SETS THE RESIN CREATING THE HARDENED CORE SHOWN HERE. - Southern Ductile Casting Company, Core Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  12. SCDAP/RELAP5 Evaluation of the Potential for Steam Generator Tube Ruptures as a Result of Severe Accidents in Operating PWRs

    SciTech Connect

    Knudson, Darrell Lee; Ghan, Larry Scott; Dobbe, Charles Albin

    1998-09-01

    Natural circulation flows can develop within a reactor coolant system (RCS) during certain severe reactor accidents, transferring decay energy from the core to other parts of the RCS. The associated heatup of RCS structures can lead to pressure boundary failures; with notable vulnerabilities in the pressurizer surge line, the hot leg nozzles, and the steam generator (SG) tubes. The potential for a steam generator tube rupture (SGTR) is of particular concern because fission products could be released to the environment through such a failure. The Nuclear Regulatory Commission (NRC) developed a program to address SG tube integrity issues in operating pressurized water reactors (PWRs) based on the possibility for environmental release. An extensive effort to evaluate the potential for accident-induced SGTRs using SCDAP/RELAP5 at the Idaho National Engineering and Environmental Laboratory (INEEL) was directed as one part of the NRC program. All SCDAP/RELAP5 calculations performed during the INEEL evaluation were based on station blackout accidents (and variations thereof) because those accidents are considered to be one of the more likely scenarios leading to natural circulation flows at temperatures and pressures that could threaten SG tube integrity (as well as the integrity of other vulnerable RCS pressure boundaries). Variations that were addressed included consideration of the effects of RCP seal leaks, intentional RCS depressurization through pressurizer PORVs, SG secondary depressurization, DC-HL bypass flows, U-tube SG sludge accumulation, and quenching of upper plenum stainless steel upon relocation to the lower head. Where available, experimental data was used to guide simulation of natural circulation flows. Independent reviews of the applicability of the natural circulation experimental data, the suitability of the code, and the adequacy of the modeling were completed and review recommendations were incorporated into the evaluation within budget and

  13. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  14. Infrared and Submilllimeter Studies of Dense Cores

    NASA Astrophysics Data System (ADS)

    Bourke, Tyler L.

    2014-07-01

    Dense Cores are the birthplace of stars, and so understanding their structure and evolution is key to understanding star formation. Information on the density, temperature, and motions within cores are needed to describe these properties, and are obtained through continuum and line observations at far infrared and submm/mm wavelengths. Recent observations of dust emission with Herschel and molecular line observations with single-dish telescopes and interferometers provide the wavelength coverage and resolution to finally map core properties without appealing to spherical simplifications. Although large scale Herschel observations reveal numerous filaments in molecular clouds which are well described by cylindrical geometries, cores are still modeled as spherical entities. A few examples of other core geometries exist in the literature, and the wealth of new data on cloud filaments demand that non-spherical models receive more attention in future studies. This talk will examine the evidence for non-spherical cores and their connection to the filaments from which they form.

  15. Why Do Some Cores Remain Starless?

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.

    2016-08-01

    Prestellar cores, by definition, are gravitationally bound but starless pockets of dense gas. Physical conditions that could render a core starless (in the local Universe) is the subject of investigation in this work. To this end, we studied the evolution of four starless cores, B68, L694-2, L1517B, L1689, and L1521F, a VeLLO. We demonstrate: (i) cores contracted in quasistatic manner over a timescale on the order of ~ 105 yr. Those that remained starless briefly acquired a centrally concentrated density configuration that mimicked the profile of a unstable BonnorEbert sphere before rebounding, (ii) three cores viz. L694-2, L1689-SMM16, and L1521F remained starless despite becoming thermally super-critical. By contrast, B68 and L1517B remained sub-critical; L1521F collapsed to become a VeLLO only when gas-cooling was enhanced by increasing the size of dust-grains. This result is robust, for other starless cores viz. B68, L694-2, L1517B, and L1689 could also be similarly induced to collapse. The temperature-profile of starless cores and those that collapsed was found to be radically different. While in the former type, only very close to the centre of a core was there any evidence of decline in gas temperature, by contrast, a core of the latter type developed a more uniformly cold interior. Our principle conclusions are: (a) thermal super-criticality of a core is insufficient to ensure it will become protostellar, (b) potential star-forming cores (the VeLLO L1521F here), could be experiencing dust-coagulation that must enhance gasdust coupling and in turn lower gas temperature, thereby assisting collapse. This also suggests, mere gravitational/virial boundedness of a core is insufficient to ensure it will form stars.

  16. Prestellar cores: initial orbit and boundary

    NASA Astrophysics Data System (ADS)

    Horedt, G. P.

    2016-06-01

    The initial orbit of a prestellar core in the resisting intercore medium is found to be an elliptic spiral round the mass centre of the parent molecular cloud (clump), with exponentially decreasing semiaxes, high constant eccentricity, and constant period. Prestellar cores are stable against perturbations caused by the parent cloud, if the corresponding mean density contrast is larger than about 10. This value defines the safe boundary of a prestellar core within its parent cloud and is in accordance with observations.

  17. Core Facilities: Maximizing the Return on Investment

    PubMed Central

    Farber, Gregory K.; Weiss, Linda

    2011-01-01

    To conduct high-quality state-of-the-art research, clinical and translational scientists need access to specialized core facilities and appropriately trained staff. In this time of economic constraints and increasing research costs, organized and efficient core facilities are essential for researchers who seek to investigate complex translational research questions. Here, we describe efforts at the U.S . National Institutes of Health and academic medical centers to enhance the utility of cores. PMID:21832235

  18. Relationship between cycling mechanics and core stability.

    PubMed

    Abt, John P; Smoliga, James M; Brick, Matthew J; Jolly, John T; Lephart, Scott M; Fu, Freddie H

    2007-11-01

    Core stability has received considerable attention with regards to functional training in sports. Core stability provides the foundation from which power is generated in cycling. No research has described the relationship between core stability and cycling mechanics of the lower extremity. The purpose of this study was to determine the relationship between cycling mechanics and core stability. Hip, knee, and ankle joint kinematic and pedal force data were collected on 15 competitive cyclists while cycling untethered on a high-speed treadmill. The exhaustive cycling protocol consisted of cycling at 25.8 km x h(-1) while the grade was increased 1% every 3 minutes. A core fatigue workout was performed before the second treadmill test. Total frontal plane knee motion (test 1: 15.1 +/- 6.0 degrees ; test 2: 23.3 +/- 12.5 degrees), sagittal plane knee motion (test 1: 69.9 +/- 4.9 degrees ; test 2: 79.3 +/- 10.1 degrees), and sagittal plane ankle motion (test 1: 29.0 +/- 8.5 degrees ; test 2: 43.0 +/- 22.9 degrees) increased after the core fatigue protocol. No significant differences were demonstrated for pedaling forces. Core fatigue resulted in altered cycling mechanics that might increase the risk of injury because the knee joint is potentially exposed to greater stress. Improved core stability and endurance could promote greater alignment of the lower extremity when riding for extended durations as the core is more resistant to fatigue. PMID:18076271

  19. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to

  20. Compilation Techniques for Core Plus FPGA Systems

    NASA Technical Reports Server (NTRS)

    Conte, Tom

    2001-01-01

    The overall system architecture targeted in this study is a core-plus-fpga design, which is composed of a core VLIW DSP with on-chip memory and a set of special-purpose functional units implemented using FPGAs. A figure is given which shows the overall organization of the core-plus-fpga system. It is important to note that this architecture is relatively simple in concept and can be built from off-the-shelf commercial components, such as one of the Texas Instruments 320C6x family of DSPs for the core processor.

  1. Core Public Health Functions for New Zealand.

    PubMed

    Williams, Daniel; Garbutt, Barbara; Peters, Julia

    2015-07-24

    This special article defines the public health principles and core public health functions that are combined to produce the public health services essential for a highly-functioning New Zealand health system. The five core functions are: health assessment and surveillance; public health capacity development; health promotion; health protection; and preventive interventions. The core functions are interconnected and are rarely delivered individually. Public health services are not static, but evolve in response to changing needs, priorities, evidence and organisational structures. The core functions describe the different ways public health contributes to health outcomes in New Zealand and provide a framework for ensuring services are comprehensive and robust. PMID:26367356

  2. The nature of the earth's core

    NASA Technical Reports Server (NTRS)

    Jeanloz, Raymond

    1990-01-01

    The properties of the earth's core are overviewed with emphasis on seismologically determined regions and pressures and seismologically measured density, elastic wave velocities, and gravitational acceleration. Attention is given to solid-state convection of the inner core, and it is noted that though seismological results do not conclusively prove that the inner core is convective, the occurrence and magnitude of seismic anisotropy are explained by the effects of solid-state convection. Igneous petrology and geochemistry of the inner core, a layer at the base of the mantle and contact metasomatism at the core-mantle boundary, and evolution of the core-mantle system are discussed. It is pointed out that high-pressure melting experiments indicate that the temperature of the core is ranging from 4500 to 6500 K, and a major implication of such high temperature is that the tectonics and convection of the mantle, as well as the resulting geological processes observed at the surface, are powered by heat from the core. As a result of the high temperatures, along with the compositional contrast between silicates and iron alloy, the core-mantle boundary is considered to be most chemically active region of the earth.

  3. The Cores of Elliptical Galaxies in Coma

    NASA Astrophysics Data System (ADS)

    Lucey, John

    1995-07-01

    The cores of galaxies are astrophysically unique. They canhost high energy nuclei, star formation and perhaps even blackholes. HST observations have established that the cores ofellipticals are related to their global properties, and so canbe used as diagnostics of the physical processes occurring atthe time of formation. HST images of galaxy cores havedistinguished two different types of core luminosity profiles:`soft' and `hard' types. It is suggested that luminous, slowlyrotating galaxies have `soft' cores and the less luminousdisky galaxies have `hard' cores. This can be interpreted interms of a formation scenario based on a merger hierarchy inwhich the low luminosity systems experience highly dissipativemergers, but as the luminous systems are assembled the mergersbecome increasingly stellar. In this picture, the type of corea galaxy generates is intimately related to its evolutionaryhistory, i.e. the degree of interaction/merging experiencedand the availability of cold gas. In turn, this should notonly depend on luminosity but also on the galaxy's localenvironment. Here we propose to test the gaseous/stellarmerger picture by imaging a set of Coma cluster ellipticalsfrom a wide range of cluster radii. In the gas poorenvironment of the cluster core there may be insufficent coldgas for the low luminosity galaxies to form `hard' cores.Similarly, at the cluster turnround radius even luminousgalaxies may have experienced a dissipative core formation andpossess

  4. Overview of Core Diagnostics for TEXTOR

    SciTech Connect

    Donne, A.J.H.; Bock, M.F.M. de; Classen, I.G.J.

    2005-02-15

    The diagnostic system of TEXTOR comprises about 50 individual diagnostic devices. Since the start of the Trilateral Euregio Cluster collaboration, part of the emphasis in the experimental program has shifted toward the study of physics processes in the plasma core. To aid these studies several new and advanced core diagnostics have been implemented, whereas a number of other core diagnostics have been upgraded to higher resolution, more channels, and better accuracy. In this paper a brief overview is given of the present set of plasma core diagnostics at TEXTOR.

  5. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia; Richard, Monique N.; Dehne, Aaron; Phillips, Jonathan; Stamm, Kimber L.; Fanson, Paul T.

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  6. Long Valley Coring Project, Inyo County, California, 1998, preliminary stratigraphy and images of recovered core

    USGS Publications Warehouse

    Sackett, Penelope C.; McConnell, Vicki S.; Roach, Angela L.; Priest, Susan S.; Sass, John H.

    1999-01-01

    Phase III of the Long Valley Exploratory Well, the Long Valley Coring Project, obtained continuous core between the depths of 7,180 and 9,831 ft (2,188 to 2,996 meters) during the summer of 1998. This report contains a compendium of information designed to facilitate post-drilling research focussed on the study of the core. Included are a preliminary stratigraphic column compiled primarily from field observations and a general description of well lithology for the Phase III drilling interval. Also included are high-resolution digital photographs of every core box (10 feet per box) as well as scanned images of pieces of recovered core. The user can easily move from the stratigraphic column to corresponding core box photographs for any depth. From there, compressed, "unrolled" images of the individual core pieces (core scans) can be accessed. Those interested in higher-resolution core scans can go to archive CD-ROMs stored at a number of locations specified herein. All core is stored at the USGS Core Research Center in Denver, Colorado where it is available to researchers following the protocol described in this report. Preliminary examination of core provided by this report and the archive CD-ROMs should assist researchers in narrowing their choices when requesting core splits.

  7. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles. PMID:25456348

  8. PRISMATIC CORE COUPLED TRANSIENT BENCHMARK

    SciTech Connect

    J. Ortensi; M.A. Pope; G. Strydom; R.S. Sen; M.D. DeHart; H.D. Gougar; C. Ellis; A. Baxter; V. Seker; T.J. Downar; K. Vierow; K. Ivanov

    2011-06-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  9. Alpine Corsica Metamorphic Core Complex

    NASA Astrophysics Data System (ADS)

    Fournier, Marc; Jolivet, Laurent; Goffé, Bruno; Dubois, Roland

    1991-12-01

    Alpine Corsica is an example where superficial nonmetamorphic allochtonous units rest upon a highly strained metamorphic complex. Early ductile deformation under high pressure-low temperature (HP-LT) conditions is due to the westward thrusting of oceanic material onto a continental basement as shown by previous studies. New thermobarometric estimates yield minimal peak HP-LT metamorphism conditions of 11 kbar at 400°C. The early deformation is overprinted by a ductile deformation with an eastward sense of shear postdating or contemporaneous with mineral recrystallizations in the greenschist facies conditions. Early compressive thrust contacts are reworked as east dipping ductile normal faults and the less competent units display only eastward shear criteria. The upper units are affected by an extensional brittle deformation, and east dipping brittle normal faults bound to the west the early to middle Miocene Saint-Florent half-graben. The greenschist metamorphic event lasted until 33 Ma, which is contemporaneous with the beginning of the extension in the Liguro-Provençal basin. We interpret the second deformation stage as the result of a ductile extension following the overthickening of the crust due to the westward thrusting. Extension reduces the thickness of the crust so that upper units free from early P-T conditions are brought into close contact with a HP-LT metamorphic core complex. The geometry of the late extension is controlled by that of the early compressive thrust.

  10. Core Forensics: Earth's Accretion and Differentiation

    NASA Astrophysics Data System (ADS)

    Badro, J.; Brodholt, J. P.; Siebert, J.; Piet, H.; Ryerson, F. J.

    2013-12-01

    Earth's accretion and its primitive differentiation are intimately interlinked processes. One way to constrain accretionary processes is by looking at the major differentiation event that took place during accretion: core formation. Understanding core formation and core composition can certainly shed a new light on early and late accretionary processes. On the other hand, testing certain accretionary models and hypothesis (fluxes, chemistries, timing) allows -short of validating them- at the very least to unambiguously refute them, through the 'filter'' of core formation and composition. Earth's core formed during accretion as a result of melting, phase-separation, and segregation of accretionary building blocks (from meteorites to planetesimals). The bulk composition of the core and mantle depends on the evolution (pressure, temperature, composition) of core extraction during accretion. The entire process left a compositional imprint on both reservoirs: (1) in the silicate Earth, in terms of siderophile trace-element (Ni, Co, V, Cr, among others) concentrations and isotopic fractionation (Si, Cu, among others), a record that is observed in present-day mantle rocks; and (2) on the core, in terms of major element composition and light elements dissolved in the metal, a record that is observed by seismology through the core density-deficit. This imprint constitutes actually a fairly impressive set of evidence (siderophile element concentration and fractionation, volatile and siderophile element isotopic fractionation), can be used today to trace back the primordial processes that occurred 4.5 billion years ago. We are seeking to provide an overhaul of the standard core formation/composition models, by using a new rationale that bridges geophysics and geochemistry. The new ingredients are (1) new laser-heated diamond anvil cell partitioning data, dramatically extending the previous P-T conditions for experimental work, (2) ab initio molecular dynamics calculations to

  11. Double-diffusive inner core convective translation

    NASA Astrophysics Data System (ADS)

    Deguen, Renaud; Alboussière, Thierry; Labrosse, Stéphane

    2016-04-01

    The hemispherical asymmetry of the inner core has been interpreted as resulting form a high-viscosity mode of inner core convection, consisting in a translation of the inner core. With melting on one hemisphere and crystallization on the other one, inner core translation would impose a strongly asymmetric buoyancy flux at the bottom of the outer core, with likely strong implications for the dynamics of the outer core and the geodynamo. The main requirement for convective instability in the inner core is an adverse radial density gradient. While older estimates of the inner core thermal conductivity favored a superadiabatic temperature gradient and the existence of thermal convection, the much higher values recently proposed makes thermal convection very unlikely. Compositional convection might be a viable alternative to thermal convection: an unstable compositional gradient may arise in the inner core either because the light elements present in the core are predicted to become increasingly incompatible as the inner core grows (Gubbins et al. 2013), or because of a possibly positive feedback of the development of the F-layer on inner core convection. Though the magnitude of the destabilizing effect of the compositional field is predicted to be similar to or smaller than the stabilizing effect of the thermal field, the huge difference between thermal and chemical diffusivities implies that double-diffusive instabilities can still arise even if the net density decreases upward. We propose here a theoretical and numerical study of double diffusive convection in the inner core that demonstrate that a translation mode can indeed exist if the compositional field is destabilizing, even if the temperature profile is subadiabatic, and irrespectively of the relative magnitude of the destabilizing compositional gradient and stabilizing temperature field. The predicted inner core translation rate is similar to the mean inner core growth rate, which is more consistent with

  12. Dense Molecular Cores Being Externally Heated

    NASA Astrophysics Data System (ADS)

    Kim, Gwanjeong; Lee, Chang Won; Gopinathan, Maheswar; Jeong, Woong-Seob; Kim, Mi-Ryang

    2016-06-01

    We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μm) imaging observations with the AKARI telescope and molecular line (HCN and N2H+) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L ⊙. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼105 years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

  13. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    PubMed

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system. PMID:20860401

  14. FP core carrier technique: thermoplasticized gutta-percha root canal obturation technique using polypropylene core.

    PubMed

    Kato, Hiroshi; Nakagawa, Kan-Ichi

    2010-01-01

    Core carrier techniques are unique among the various root canal filling techniques for delivering and compacting gutta-percha in the prepared root canal system. Thermafil (TF), considered the major core carrier device, is provided as an obturator consisting of a master core coated with thermoplasticized gutta-percha. We have devised a thermoplasticized gutta-percha filling technique using a polypropylene core, FlexPoint® NEO (FP), which was developed as a canal filling material that can be sterilized in an autoclave. Therefore, FP can be coated onto thermoplasticized gutta-percha and inserted into the prepared canal as a core carrier. The FP core carrier technique offers many advantages over the TF system: the core can be tested in the root canal and verified radiographically; the core can be adjusted to fit and surplus material easily removed; furthermore the core can be easily removed for retreatment. The clinical procedure of the FP core carrier technique is simple, and similar that with the TF system. Thermoplasticized gutta-percha in a syringe is heated in an oven and extruded onto the FP core carrier after a trial insertion. The FP core carrier is inserted into the root canal to the working length. Excess FP is then removed with a red-hot plastic instrument at the orifice of the root canal. The FP core carrier technique incorporates the clinical advantages of the existing TF system while minimizing the disadvantages. Hence the FP core carrier technique is very useful in clinical practice. This paper describes the FP core carrier technique as a new core based method. PMID:21139375

  15. Comparison of silica-core optical fibers

    NASA Astrophysics Data System (ADS)

    McCann, Brian P.

    1991-07-01

    Silica-core optical fibers have become a standard vehicle to remotely deliver high-power laser energy from surgical lasers operating between 200 and 2400 nm. The three primary types of silica-core fibers: plastic-clad; hard-clad; and silica-clad; are discussed. The performance advantages of each are addressed and actual general-surgery medical applications are provided.

  16. After Common Core, States Set Rigorous Standards

    ERIC Educational Resources Information Center

    Peterson, Paul E.; Barrows, Samuel; Gift, Thomas

    2016-01-01

    In spite of Tea Party criticism, union skepticism, and anti-testing outcries, the campaign to implement Common Core State Standards (otherwise known as Common Core) has achieved phenomenal success in statehouses across the country. Since 2011, 45 states have raised their standards for student proficiency in reading and math, with the greatest…

  17. Analysis of circuits including magnetic cores (MTRAC)

    NASA Technical Reports Server (NTRS)

    Hanzen, G. R.; Nitzan, D.; Herndon, J. R.

    1972-01-01

    Development of automated circuit analysis computer program to provide transient analysis of circuits with magnetic cores is discussed. Allowance is made for complications caused by nonlinearity of switching core model and magnetic coupling among loop currents. Computer program is conducted on Univac 1108 computer using FORTRAN IV.

  18. Overview of the Core Commitments Initiative

    ERIC Educational Resources Information Center

    McTighe Musil, Caryn

    2013-01-01

    This chapter provides an overview of the Core Commitments Initiative conducted by the Association of American Colleges and Universities (AAC&U). Core Commitments was intended to reinvigorate the conversation about personal and social responsibility within higher education, and served as the impetus for this "New Directions" volume.

  19. Fractions, Decimals, and the Common Core

    ERIC Educational Resources Information Center

    Kreith, Kurt

    2014-01-01

    At grade 7, Common Core's content standards call for the use of long division to find the decimal representation of a rational number. With an eye to reconciling this requirement with Common Core's call for "a balanced combination of procedure and understanding," a more transparent form of long division is developed. This leads to the…

  20. Instructional Leadership and the Common Core

    ERIC Educational Resources Information Center

    Groth, Karla; Bennett-Schmidt, Sally J.

    2013-01-01

    Following the 2012-13 administrators welcome back kick-off meeting, superintendent Pat highlighted the district's plan to roll-out of the new Common Core State Standards (CCSS), including integration of learning experiences that would prepare students for the new Common Core assessments from the Smarter Balanced Assessment Consortium (SBAC).…

  1. Dynamically scalable dual-core pipelined processor

    NASA Astrophysics Data System (ADS)

    Kumar, Nishant; Aggrawal, Ekta; Rajawat, Arvind

    2015-10-01

    This article proposes design and architecture of a dynamically scalable dual-core pipelined processor. Methodology of the design is the core fusion of two processors where two independent cores can dynamically morph into a larger processing unit, or they can be used as distinct processing elements to achieve high sequential performance and high parallel performance. Processor provides two execution modes. Mode1 is multiprogramming mode for execution of streams of instruction of lower data width, i.e., each core can perform 16-bit operations individually. Performance is improved in this mode due to the parallel execution of instructions in both the cores at the cost of area. In mode2, both the processing cores are coupled and behave like single, high data width processing unit, i.e., can perform 32-bit operation. Additional core-to-core communication is needed to realise this mode. The mode can switch dynamically; therefore, this processor can provide multifunction with single design. Design and verification of processor has been done successfully using Verilog on Xilinx 14.1 platform. The processor is verified in both simulation and synthesis with the help of test programs. This design aimed to be implemented on Xilinx Spartan 3E XC3S500E FPGA.

  2. Core labeling of adenovirus with EGFP

    SciTech Connect

    Le, Long P.; Le, Helen N.; Nelson, Amy R.; Matthews, David A.; Yamamoto, Masato; Curiel, David T. . E-mail: curiel@uab.edu

    2006-08-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expression vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.

  3. No Common Opinion on the Common Core

    ERIC Educational Resources Information Center

    Henderson, Michael B.; Peterson, Paul E.; West, Martin R.

    2015-01-01

    According to the three authors of this article, the 2014 "EdNext" poll yields four especially important new findings: (1) Opinion with respect to the Common Core has yet to coalesce. The idea of a common set of standards across the country has wide appeal, and the Common Core itself still commands the support of a majority of the public.…

  4. Benefits of a High School Core Curriculum

    ERIC Educational Resources Information Center

    ACT, Inc., 2006

    2006-01-01

    Since the publication of "A Nation at Risk", ACT has recommended that students take a core curriculum in high school in order to be prepared for college-level work. ACT's recommended core curriculum consists of four years of English and three years each of mathematics, science, and social studies. The benefits to students of taking the right…

  5. Future Directions for Research on Core Competencies

    ERIC Educational Resources Information Center

    Bradshaw, Catherine P.; Guerra, Nancy G.

    2008-01-01

    This concluding commentary highlights common themes that emerged across the chapters in this volume. We identify strengths and limitations of the core competencies framework and discuss the importance of context, culture, and development for understanding the role of the core competencies in preventing risk behavior in adolescence. We also outline…

  6. Core Knowledge Confusions among University Students

    ERIC Educational Resources Information Center

    Lindeman, Marjaana; Svedholm, Annika M.; Takada, Mikito; Lonnqvist, Jan-Erik; Verkasalo, Markku

    2011-01-01

    Previous studies have demonstrated that university students hold several paranormal beliefs and that paranormal beliefs can be best explained with core knowledge confusions. The aim of this study was to explore to what extent university students confuse the core ontological attributes of lifeless material objects (e.g. a house, a stone), living…

  7. Method and apparatus for recovering unstable cores

    DOEpatents

    McGuire, Patrick L.; Barraclough, Bruce L.

    1983-01-01

    A method and apparatus suitable for stabilizing hydrocarbon cores are given. Such stabilized cores have not previously been obtainable for laboratory study, and such study is believed to be required before the hydrate reserves can become a utilizable resource. The apparatus can be built using commercially available parts and is very simple and safe to operate.

  8. Just the Facts: Common Core State Standards

    ERIC Educational Resources Information Center

    Williams, Cheryl Scott

    2012-01-01

    In this article, the author talks about the Common Core State Standards and what they mean to teachers and their students. The Common Core State Standards Initiative provides an opportunity for classroom practitioners across the nation to hone their skills, focus on student learning, and ensure that all the students they serve will be working…

  9. Mineral Physics Quest to the Earth's Core

    NASA Astrophysics Data System (ADS)

    Dubrovinsky, Leonid; Lin, Jung-Fu

    2009-01-01

    Because of its remoteness, together with pressures from 140 to 360 gigapascals and temperatures from 4000 to 7000 K, most direct observations of the Earth's core properties have come from teleseismic studies, requiring large earthquake sources and well-positioned seismometers to detect weak wave signals that have traversed the Earth's deepest interior. The decoding of geochemical signatures of the core—potentially carried to the surface in plumes originating at the core-mantle boundary—faces numerous challenges of the debated integrity of this hypothesis. For these reasons, understanding the Earth's core requires multidisciplinary efforts. In the past two decades, deep-Earth scientists have unveiled a number of unusual and enigmatic phenomena of the core, including inner core anisotropy, differential rotation of the inner core, fine-scale seismic heterogeneity, and the possible existence of the prefer-oriented hexagonal close packed (hcp, in which two closely packed layers stack alternately along a crystallographic axis) and/or body-centered cubic (bcc, in which eight atoms reside at the corners and one atom resides at the center of the cubic cell) iron/nickel/light element alloys in the inner core (Figure 1). In this feature article, we summarize recent new findings and frontiers about the nature of the core from mineral physics research.

  10. List of Core Journals in Earth Sciences.

    ERIC Educational Resources Information Center

    International Council for Scientific and Technical Information, Paris (France).

    Selection and acquisition of relevant materials for building and developing an information infrastructure are modern worldwide problems. This document provides a core listing of journals in the earth sciences in an effort to develop a tool for the improvement of information handling and transfer. The core list was generated using several databases…

  11. Torsional Oscillations of the Earths's Core

    NASA Technical Reports Server (NTRS)

    Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.

    1997-01-01

    Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.

  12. Core-Formation Models and Extinct Nuclides

    NASA Technical Reports Server (NTRS)

    Jacobsen, S. B.; Yin, Q.-Z.

    2001-01-01

    Zr and W isotope data are consistent with the Earth's core forming in a single event subsequent to about 113 Ma after the formation of the solar system. With continuous models of core formation the process can start early. Additional information is contained in the original extended abstract.

  13. Go Figure: Math and the Common Core

    ERIC Educational Resources Information Center

    Burns, Marilyn

    2013-01-01

    In this article about the Common Core State Standards and mathematics, the author wanted to point out what's familiar in these standards and to give teachers clear access to what's different about them. She wanted to emphasize what has made her passionate about the Common Core standards--which is their two-part structure: Standards for…

  14. Lateral restraint assembly for reactor core

    DOEpatents

    Gorholt, Wilhelm; Luci, Raymond K.

    1986-01-01

    A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

  15. The Core Journal Concept in Black Studies

    ERIC Educational Resources Information Center

    Weissinger, Thomas

    2010-01-01

    Black Studies scholars have shown interest in the core journal concept. Indeed, the idea of core journals for the study of the Black experience has changed several times since 1940. While Black Studies scholars are citing Black Studies journals with frequency, they also cite traditional disciplinary journals a great deal of the time. However,…

  16. Music Core Curriculum: Grades 7-12.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    Designed by the Utah State Board of Education, this music core curriculum represents the standards of learning for all students in grades 7 through 12 including the ideas, concepts, and skills that provide a foundation for subsequent learning. The curriculum guide describes the elementary and secondary school core curriculum and high school…

  17. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  18. Community College Presidents' Core Internal Metaphors

    ERIC Educational Resources Information Center

    DeBraak, LaRonna S.

    2011-01-01

    This study identified the core internal metaphors of 8 community college presidents, 4 females and 4 males. The participants of this study resided in both rural and metropolitan communities. Core internal metaphors were adopted due to a strong association to a primary conceptual metaphor, which the participants had internalized as a result of…

  19. Does coring contribute to tree mortality?

    USGS Publications Warehouse

    van Mantgem, P.J.; Stephenson, N.L.

    2004-01-01

    We assess the potential of increment coring, a common method for measuring tree ages and growth, to contribute to mortality. We used up to 21 years of annual censuses from two cored and two uncored permanent plots in the Sierra Nevada of California, to detect changes in mortality rates 12 years following coring for individuals >5 cm DBH from two coniferous species, Abies concolor (Gordon & Glend.) Lindl. (white fir) and Abies magnifica A. Murr. (red fir). Using a randomized before-after control impact (BACI) design, we found no differences in mortality rates following coring for 825 cored and 525 uncored A. concolor and 104 cored and 66 uncored A. magnifica. These results support the view that collecting tree cores can be considered nondestructive sampling, but we emphasize that our 12-year postcoring records are short compared with the maximum life-span of these trees and that other species in different environments may prove to be more sensitive to coring. ?? 2004 NRC Canada.

  20. Method and apparatus for recovering unstable cores

    SciTech Connect

    McGuire, P.L.; Barraclough, B.L.

    1981-04-01

    A method and apparatus suitable for stabilizing hydrocarbon cores are given. Such stabilized cores have not previously been obtainable for laboratory study, and such study is believed to be required before the hydrate reserves can become a utilizable resource. The apparatus can be built using commercially available parts and is very simple and safe to operate.

  1. Core sampling system spare parts assessment

    SciTech Connect

    Walter, E.J.

    1995-04-04

    Soon, there will be 4 independent core sampling systems obtaining samples from the underground tanks. It is desirable that these systems be available for sampling during the next 2 years. This assessment was prepared to evaluate the adequacy of the spare parts identified for the core sampling system and to provide recommendations that may remediate overages or inadequacies of spare parts.

  2. The Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Akkus, Murat

    2016-01-01

    The Common Core State Standards for Mathematics (CCSSM) was published in 2010 and includes a complete collection of standards that are published and reviewed as a "common core" in which math skills have been extensively adopted. The recommendations provided have been entirely or partially adapted by more than 47 states of the US.…

  3. Explicit Instruction in Core Reading Programs

    ERIC Educational Resources Information Center

    Reutzel, D. Ray; Child, Angela; Jones, Cindy D.; Clark, Sarah K.

    2014-01-01

    The purpose of this study was to conduct a content analysis of the types and occurrences of explicit instructional moves recommended for teaching five essentials of effective reading instruction in grades 1, 3, and 5 core reading program teachers' editions in five widely marketed core reading programs. Guided practice was the most frequently…

  4. Common Core in the Real World

    ERIC Educational Resources Information Center

    Hess, Frederick M.; McShane, Michael Q.

    2013-01-01

    There are at least four key places where the Common Core intersects with current efforts to improve education in the United States--testing, professional development, expectations, and accountability. Understanding them can help educators, parents, and policymakers maximize the chance that the Common Core is helpful to these efforts and, perhaps…

  5. The CORE Model to Student Organization Development.

    ERIC Educational Resources Information Center

    Conyne, Robert K.

    Student organization development (SOD) is an emerging technology for conducting intentional student development through positive alteration of student organizations. One model (CORE) for conceptualizing SOD is in use at the Student Development Center of the University of Cincinnati. The CORE model to SOD is comprised of three concentric rings, the…

  6. Organized Interests and the Common Core

    ERIC Educational Resources Information Center

    McDonnell, Lorraine M.; Weatherford, M. Stephen

    2013-01-01

    Among the notable aspects of the Common Core State Standards (CCSS) is the diverse array of interest groups supporting them. These organizations must now apply the strategies they used so effectively in advancing the Common Core to stem mounting opposition to it. This article draws on theories of political and policy learning and interviews with…

  7. Autofrettage: Stress distribution under load and retained stresses after depressurization

    NASA Astrophysics Data System (ADS)

    Avitzur, Boaz

    1992-07-01

    There is a long-standing interest in developing a capability to predict the distribution of retained stresses in thick-walled tubes after the removal of an internal pressure-post autofrettage. In this report, four different methods of calculating such stresses are presented and compared. The methods presented are based on the following assumed yield criteria and deformation conditions: (1) Tresca's yield criterion; (2) Tresca's yield criterion 2/3; (3) Mises' yield criterion in plane-stress; and (4) Mises' yield criterion in plane-strain.

  8. Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.

    2014-01-01

    In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.

  9. VLBI Observations of the Free Core Nutations

    NASA Astrophysics Data System (ADS)

    Smylie, D. E.

    2012-12-01

    At core scale lengths with periods from a few hours to days, the Coriolis acceleration dominates the Lorentz force density and core modes can be considered as purely mechanical. One of the most interesting core modes is the spin-over mode, which reflects the ability of the outer core to rotate about an axis different from that of either the inner core or the shell. It has a nearly diurnal period. In the Earth frame of reference, this mode produces the nearly diurnal retrograde wobble. In the space frame of reference it is accompanied by the free core nutations. When the flattening of the boundaries of the fluid outer core and the figure-figure gravitational coupling are taken into account, as well as the deformability of the boundaries, both a retrograde free core nutation and a prograde free core nutation are found. The retrograde free core nutation was first predicted by Poincare (1910) for a completly fluid, incompressible core bounded by a rigid shell. In a variational calculation of wobble-nutation modes in realistic Earth models, Jiang (1993) found the classical retrograde free core nutation (RFCN) but discovered a prograde free core nutation (PFCN) as well. VLBI residuals in longitude and obliquity compared to the 1980 IAU nutation series, and their standard errors, were downloaded from the Goddard Space Flight Center website, for the period August 3, 1979 to March 6, 2003, giving 3343 points over a span of 8617 days. In an overlapping segment analysis, the discrete Fourier transform (DFT) for each segment was found for the corresponding series of unequally spaced nutation residuals by singular value decomposition (SVD), with the number of singular values eliminated determined by the satisfaction of Parseval's theorem. Both the RFCN and the PFCN resonances were found in the resulting power spectrum. The nutation resonances were found to be in free decay, the half-life of the PFCN at 2620 days and that of the RFCN at 2229 days, with Ekman boundary layer

  10. Beyond the Core: Peer Observation Brings Common Core to Vocational and Electives Classes

    ERIC Educational Resources Information Center

    Thurber Rasmussen, Harriette

    2014-01-01

    This article describes how a Washington State School District increased professional learning around the Common Core State Standards. The challenge was how to establish a way for career and technical education and electives teachers to learn and apply Common Core in their classes. Weaving Common Core literacy standards into vocational and…

  11. Controlled Release of Ciprofloxacin from Core-Shell Nanofibers with Monolithic or Blended Core.

    PubMed

    Zupančič, Špela; Sinha-Ray, Sumit; Sinha-Ray, Suman; Kristl, Julijana; Yarin, Alexander L

    2016-04-01

    Sustained controlled drug release is one of the prominent contributions for more successful treatment outcomes in the case of several diseases. However, the incorporation of hydrophilic drugs into nanofibers, a promising novel delivery system, and achieving a long-term sustained release still pose a challenging task. In this work we demonstrated a robust method of avoiding burst release of drugs and achieving a sustained drug release from 2 to 4 weeks using core-shell nanofibers with poly(methyl methacrylate) (PMMA) shell and monolithic poly(vinyl alcohol) (PVA) core or a novel type of core-shell nanofibers with blended (PVA and PMMA) core loaded with ciprofloxacin hydrochloride (CIP). It is also shown that, for core-shell nanofibers with monolithic core, drug release can be manipulated by varying flow rate of the core PVA solution, whereas for core-shell nanofibers with blended core, drug release can be manipulated by varying the ratios between PMMA and PVA in the core. During coaxial electrospinning, when the solvent from the core evaporates in concert with the solvent from the shell, the interconnected pores spanning the core and the shell are formed. The release process is found to be desorption-limited and agrees with the two-stage desorption model. Ciprofloxacin-loaded nanofiber mats developed in the present work could be potentially used as local drug delivery systems for treatment of several medical conditions, including periodontal disease and skin, bone, and joint infections. PMID:26950163

  12. Core formation and core composition from coupled geochemical and geophysical constraints

    PubMed Central

    Badro, James; Brodholt, John P.; Piet, Hélène; Siebert, Julien; Ryerson, Frederick J.

    2015-01-01

    The formation of Earth’s core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal−silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth’s magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7–5% oxygen along with 2–3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium. PMID:26392555

  13. Content of some nutrients in the core of the core of the peanut germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The usefulness of core collections of germplasm collections has been well established. The U. S. germplasm collection for peanuts was selectively reduced to a mini core or “Core of the Core” collection composed of 112 of the 7432 accessions in the whole collection to make it more efficient for stud...

  14. Core formation and core composition from coupled geochemical and geophysical constraints.

    PubMed

    Badro, James; Brodholt, John P; Piet, Hélène; Siebert, Julien; Ryerson, Frederick J

    2015-10-01

    The formation of Earth's core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal-silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth's magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7-5% oxygen along with 2-3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium. PMID:26392555

  15. The EPOS Integrated Core Services

    NASA Astrophysics Data System (ADS)

    Jeffery, Keith; Michelini, Alberto; Bailo, Daniele

    2013-04-01

    EPOS also including other work packages in EPOS such as those concerned with legalistics and financing; (c) a prototype based on the woodman architecture in one domain (seismology) to provide assurance that the architecture is valid. The key aspect is the metadata catalog. In one dimension this is described in 3 levels: (1) discovery metadata using well-known and commonly used standards such as DC (Dublin Core) to enable users (via an intelligent user interface) to search for objects within the EPOS environment relevant to their needs; (2) contextual metadata providing the context of the object described in the catalog to enable a user or the system to determine the relevance of the discovered object(s) to their requirement - the context includes projects, funding, organisations involved, persons involved, related publications, facilities, equipment etc and utilises CERIF (Common European Research Information Format) see www.eurocris.org ; (3) detailed metadata which is specific to a domain or to a particular object and includes the schema describing the object to processing software. The other dimension of the metadata concerns the objects described. These are classified into users, services (including software), data and resources (computing, data storage, instruments and scientific equipment). The core services include not only user access to data, software, services, equipment and associated processing but also facilities for interaction and cooperative working between users and storage of history and experience. EPOS will operate a full e-Science environment including metadata and persistent identifiers.

  16. Mercury's thermal evolution and core crystallization regime

    NASA Astrophysics Data System (ADS)

    Rivoldini, Attilio; Dumberry, Mathieu; Van Hoolst, Tim; Steinle-Neumann, Gerd

    2015-04-01

    Unlike the Earth, where the liquid core isentrope is less steep than the core melting temperature, at the lower pressures inside Mercury's core the isentrope can be steepper than the melting temperature. As a consequence, upon cooling, the isentrope may first cross the melting temperature near the core mantle boundary and produce iron-rich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, top down crystallization is expected to generate sufficient buoyancy flux to drive magnetic field generation by compositional convection. In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials.

  17. Heater utilizing copper-nickel alloy core

    SciTech Connect

    Van Egmond, C.F.H.

    1991-10-22

    This patent describes a well heater. It comprises: at least one heating section which is capable of extending for at least a hundred feet within a well borehole adjacent to an interval of subterranean earth formation to be heated, contains at least one electrical heating cable, and contains a combination of heating cable core resistance and core cross-sectional areas capable of producing temperatures between about 600[degrees]C and 1000[degrees]C within the subterranean earth formation, wherein the heating cable is an electrical resistance heating cable comprising: a core consisting essentially of 6 percent by weight nickel and 94 percent by weight copper; electrical insulation surrounding the core; and surrounding the electrical insulation, a metal sheath; and a means of supplying electrical power to the heating cable core.

  18. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  19. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  20. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  1. Core-nucleus distortation in hypernuclei

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.

    1995-08-01

    We are completing a study of the effects of the spherical distortion of the {open_quotes}core{close_quotes} nucleus by the {Lambda} in a hypernucleus. The response of the core was determined by an appropriately chosen energy-density functional which depends, in particular, on the nuclear compressibility. The forcing action of the A is determined by the nuclear density dependence of the {Lambda} binding in nuclear matter which is obtained from our work on the {Lambda} single-particle energies. Because of the strongly repulsive {Lambda}NN forces, this {Lambda} binding {open_quotes}saturates{close_quotes} at a density close to the central density of nuclei, and results in a reduced core-nucleus distortion much less than would otherwise be obtained. The effects of the core distortion then turn out to be very small even for quite light hypernuclei. This result justifies the assumption that spherical core nuclei are effectively undistorted in a hypernucleus.

  2. Core rotational dynamics and geological events

    PubMed

    Greff-Lefftz; Legros

    1999-11-26

    A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency. PMID:10576731

  3. Fast Fossil Rotation of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Melatos, A.

    2012-12-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ~103 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  4. Engineered Magnetic Core-Shell Structures.

    PubMed

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field. PMID:26377655

  5. A radiographic scanning technique for cores

    USGS Publications Warehouse

    Hill, G.W.; Dorsey, M.E.; Woods, J.C.; Miller, R.J.

    1979-01-01

    A radiographic scanning technique (RST) can produce single continuous radiographs of cores or core sections up to 1.5 m long and up to 30 cm wide. Changing a portable industrial X-ray unit from the normal still-shot mode to a scanning mode requires simple, inexpensive, easily constructed, and highly durable equipment. Additional components include a conveyor system, antiscatter cylinder-diaphragm, adjustable sample platform, developing tanks, and a contact printer. Complete cores, half cores, sample slabs or peels may be scanned. Converting the X-ray unit from one mode to another is easy and can be accomplished without the use of special tools. RST provides the investigator with a convenient, continuous, high quality radiograph, saves time and money, and decreases the number of times cores have to be handled. ?? 1979.

  6. Core organization of directed complex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2013-03-01

    The recursive removal of leaves (dead end vertices) and their neighbors from an undirected network results, when this pruning algorithm stops, in a so-called core of the network. This specific subgraph should be distinguished from k-cores, which are principally different subgraphs in networks. If the vertex mean degree of a network is sufficiently large, the core is a giant cluster containing a finite fraction of vertices. We find that generalization of this pruning algorithm to directed networks provides a significantly more complex picture of cores. By implementing a rate equation approach to this pruning procedure for directed uncorrelated networks, we identify a set of cores progressively embedded into each other in a network and describe their birth points and structure.

  7. Tapered polysilicon core fibers for nonlinear photonics.

    PubMed

    Suhailin, Fariza H; Shen, Li; Healy, Noel; Xiao, Limin; Jones, Maxwell; Hawkins, Thomas; Ballato, John; Gibson, Ursula J; Peacock, Anna C

    2016-04-01

    We propose and demonstrate a novel approach to obtaining small-core polysilicon waveguides from the silicon fiber platform. The fibers were fabricated via a conventional drawing tower method and, subsequently, tapered down to achieve silicon core diameters of ∼1  μm, the smallest optical cores for this class of fiber to date. Characterization of the material properties have shown that the taper process helps to improve the local crystallinity of the silicon core, resulting in a significant reduction in the material loss. By exploiting the combination of small cores and low losses, these tapered fibers have enabled the first observation of nonlinear transmission within a polycrystalline silicon waveguide of any type. As the fiber drawing method is highly scalable, it opens a route for the development of low-cost and flexible nonlinear silicon photonic systems. PMID:27192236

  8. Incorporation of Passive Safety Systems in the Generation-IV Multi-Application Small Light Water Reactor (MASLWR)

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.; Fisher, James; Weaver, Kevan

    2002-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Nexant Inc. and the Oregon State University (OSU) developed an innovative Multi-Application Small Light Water Reactor (MASLWR) concept. The MASLWR is a small, modular, safe, and economic natural circulation light water reactor developed with the primary goal of producing electric power, but with the flexibility to be used for water desalination or district heating with deployment in a variety of locations. The MASLWR was developed, by design, to be a safe and economic reactor concept that can be deployed in the near term by utilizing current experience and capabilities of the industry. The key features of the MASLWR concept are the extreme simplicity of the design and its passive safety systems. This paper provides an overview of safety analyses performed for the MASLWR concept and explores potential for the increase in passive safety via the implementation of new features. The results of these safety studies demonstrate that the reactor core will be provided with a stable cooling source adequate to remove decay heat without significant cladding heatup under all credible scenarios. The response of the system to accident conditions is a controlled depressurization, whereby most of the primary system blowdown occurs via the submerged ADS blowdown pathway. (authors)

  9. Thermal-hydraulic modeling needs for passive reactors

    SciTech Connect

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  10. Chemical Models of Star-Forming Cores

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.

    2013-10-01

    We review chemical models of low-mass star forming cores including our own work. Chemistry in molecular clouds are not in equilibrium. Molecular abundances in star forming cores change not only with physical conditions in cores but also with time. In prestellar cores, temperature stays almost constant ˜ 10 K, while the gas density increases as the core collapses. Three chemical phenomena are observed in this cold phase: molecular depletion, chemical fractionation, and deuterium enrichment. They are reproduced by chemical models combined with isothermal gravitational collapse. The collapse timescale of prestellar cores depends on the initial ratios of thermal, turbulent and magnetic pressure to gravitational energy. Since the chemical timescales, such as adsorption timescale of gas particle onto grains, are comparable to the collapse timescale, molecular abundances in cores should vary depending on the collapse timescale. Observations found that molecular abundances in some cores deviate from those in other cores, in spite of their similar central densities; it could originate in the pressure to gravity ratio in the cores. As the core contraction proceeds, compressional heating eventually overwhelms radiative cooling, and the core starts to warm up. Temperature of the infalling gas rises, as it approaches the central region. Grain-surface reactions of adsorbed molecules occur in this warm-up phase, as well as in prestellar phase. Hydrogenation is efficient at T ≤ 20 K, whereas radicals can migrate on grain surface and react with each other to form complex organic molecules (COMs) at T ≥ 30 K. Grain-surface species are sublimated to the gas phase and re-start gas-phase reactions; e.g. unsaturated carbon chains are formed from sublimated methane. Our model calculation predicts that COMs increases as the warm region extends outwards and the abundances of unsaturated carbon chains depend on the gas density in the CH4 sublimation zone. Recent detection of COMs in

  11. Scoring Dawg Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Backes, Paul G.

    2011-01-01

    This novel core break-off and retention mechanism consists of a scoring dawg controlled by a set of two tubes (a drill tube and an inner tube). The drill tube and the inner tube have longitudinal concentric holes. The solution can be implemented in an eccentric tube configuration as well where the tubes have eccentric longitudinal holes. The inner tube presents at the bottom two control surfaces for controlling the orientation of the scoring dawg. The drill tube presents a sunk-in profile on the inside of the wall for housing the scoring dawg. The inner tube rotation relative to the drill tube actively controls the orientation of the scoring dawg and hence its penetration and retrieval from the core. The scoring dawg presents a shaft, two axially spaced arms, and a tooth. The two arms slide on the control surfaces of the inner tube. The tooth, when rotated, can penetrate or be extracted from the core. During drilling, the two tubes move together maintaining the scoring dawg completely outside the core. After the desired drilling depth has been reached the inner tube is rotated relative to the drill tube such that the tooth of the scoring dawg moves toward the central axis. By rotating the drill tube, the scoring dawg can score the core and so reduce its cross sectional area. The scoring dawg can also act as a stress concentrator for breaking the core in torsion or tension. After breaking the core, the scoring dawg can act as a core retention mechanism. For scoring, it requires the core to be attached to the rock. If the core is broken, the dawg can be used as a retention mechanism. The scoring dawg requires a hard-tip insert like tungsten carbide for scoring hard rocks. The relative rotation of the two tubes can be controlled manually or by an additional actuator. In the implemented design solution the bit rotation for scoring was in the same direction as the drilling. The device was tested for limestone cores and basalt cores. The torque required for breaking the

  12. Beyond the Cool Core: The Formation of Cool Core Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Hallman, E. J.; Gantner, B.; Motl, P. M.; Norman, M. L.

    Why do some clusters have cool cores while others do not? In this paper, cosmological simulations, including radiative cooling and heating, are used to examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. Numerical CC clusters at z=0 accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, the CCs survived the collisions. By contrast, NCC clusters of similar mass experienced major mergers early in their evolution that destroyed embryonic cool cores and produced conditions that prevent CC re-formation. We discuss observational consequences.

  13. Enzymatic hydrolysis of organic-core microcapsules to produce aqueous-core microcapsules.

    PubMed

    Breguet, Veronique; Vojinovic, Vojislav; Von Stockar, Urs; Marison, Ian W

    2008-05-01

    This paper describes the development of a new method to obtain aqueous-core microcapsules from organic-core capsules. The direct production of microcapsules, using tripropionin as organic material, followed by the hydrolysis of the core by a lipase was investigated. The enzymatic study showed that the enzyme obeyed a Michaelis-Menten mechanism and conditions for optimal activity were pH 7.5, 25-37 degrees C and 0% NaCl. Under these conditions, incubation of tripropionin-alginate microcapsules in a buffer containing the enzyme successfully produced aqueous-core capsules with reduced accumulation of alginate in the core in approximately 3 h. PMID:18382924

  14. Planetary cores: a geodynamic perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2010-12-01

    How can measurements of planetary core materials improve our understanding of their geodynamical behaviour? Here I will focus on three aspects of this questions: 1) core formation; 2) the growth and rheology of solid cores; 3) dynamo activity. Core formation occurs either due to the heat generated by short-lived nuclides (for small bodies) or due to gravitational energy released during impacts (for large bodies) [1]. Core formation results in elemental fractionation; such fractionation depends on P,T and oxygen fugacity [2], and for Earth-mass bodies occurs as a succession of discrete events. Experimental measurements of siderophile element partition coefficients are necessary to infer conditions during accretion, though these inferences are non-unique [3]. Core formation may also lead to isotopic fractionation of elements such as Si [4] and Fe [5], although the latter in particular is currently uncertain and merits further experimental investigation. Core solidification depends on the slopes of the adiabat and melting curve, and on the concentration and nature of the light element(s) present [6,7]. Solidification may proceed from outside in (for small bodies) or from inside out (for larger bodies); the solid may be either lighter or heavier than the fluid, depending on the core composition. Thus, core solidification is complex and poorly understood; for instance, Ganymede and Mercury’s cores may be in a completely different solidification regime to that of the Earth [8,9]. Solidification can also vary spatially, giving rise to inner core seismological structure [10,11]. The viscosity of a solid inner core is an important and poorly constrained parameter [12] which controls core deformation, core-mantle coupling and tidal heating. Super-Earths probably lack solid inner cores [13], though further high-P experimental data are needed. Core dynamos are usually thought to be driven by compositional or thermal buoyancy [14] , with the former effect dominant for small

  15. Multiple Core Galaxies: Implications for M31

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    It is generally perceived that two cores cannot survive very long within the nuclear regions of a galaxy. The recent HST discovery of a double nucleus in M31 brings this question into prominence. Physical conditions in the nuclear regions of a typical galaxy help a second core survive so it can orbit for a long time, possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Modifications to the experimental method allow the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 parsec comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter, core (P1) in M31. The same physical principles apply in other astronomical situations, such as dumbbell galaxies, galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.

  16. Fossil Cores In The Kepler Data

    NASA Astrophysics Data System (ADS)

    Jackson, Brian

    Most gas giant exoplanets with orbital periods < few days are unstable against tidal decay and may be tidally disrupted before their host stars leave the main sequence. These gas giants probably contain rocky/icy cores, and so their cores will be stranded near their progenitor's Roche limit (few hours orbital period). These fossil cores will evade the Kepler mission's transit search because it is focused on periods > 0.5 days, but finding these fossil cores would provide unprecedented insights into planetary interiors and formation ? e.g., they would be a smoking gun favoring formation of gas giants via core accretion. We propose to search for and characterize fossil cores in the Kepler dataset. We will vet candidates using the Kepler photometry and auxiliary data, collect ground-based spectra of the host stars and radial-velocity (RV) and adaptive optics (AO) data to corroborate candidates. We will also constrain stellar tidal dissipation efficiencies (parameterized by Q) by determining our survey's completeness, elucidating dynamical origins and evolution of exoplanets even if we find no fossil cores. Our preliminary search has already found several dozen candidates, so the proposed survey has a high likelihood of success.

  17. Linking Core Promoter Classes to Circadian Transcription

    PubMed Central

    Westermark, Pål O.

    2016-01-01

    Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription. PMID:27504829

  18. Chemical Evolution of Infrared Dark Cloud Cores

    NASA Astrophysics Data System (ADS)

    Finn, Susanna C.; Jackson, J. M.; Chambers, E. T.; Rathborne, J. M.; Simon, R.

    2009-05-01

    Infrared dark clouds (IRDCs) are molecular clouds seen as extinction features against the mid-infrared Galactic background. Studies of IRDCs have shown them to be cold (< 25 K), dense (> 10^5 cm^-3), and have very high column densities ( 10^23-10^25 cm^-2, e.g., Egan et al. 1998; Carey et al. 1998, 2000). IRDCs host the earliest stages of high-mass star and cluster formation (Rathborne et al. 2005, 2006, 2007). We have mapped 59 IRDC protostellar cores in the fourth Galactic quadrant using the ATNF Mopra telescope simultaneously in HCN (1-0), HC3N (10-9), HCO+ (1-0), HNC (1-0), N2H+ (1-0), and SiO (2-1). We found that the ratios of intensities of the different molecular tracers vary greatly from cloud to cloud, and from core to core within clouds. These different line ratios probably correspond to chemical differences which arise in different evolutionary sequences. We show that specific line ratios distinguish cold pre-stellar cores from warm star-forming cores. N2H+ was found to be a good tracer of active star-forming cores, correlating well with cores containing "green fuzzies,” i.e., extended 4.5 micron emission due to shocked gas (Chambers et al., in press). This work was funded by NSF grant AST-0808001.

  19. Linking Core Promoter Classes to Circadian Transcription.

    PubMed

    Westermark, Pål O

    2016-08-01

    Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription. PMID:27504829

  20. Core/shell colloidal semiconductor nanoplatelets.

    PubMed

    Mahler, Benoit; Nadal, Brice; Bouet, Cecile; Patriarche, Gilles; Dubertret, Benoit

    2012-11-14

    We have recently synthesized atomically flat semiconductor colloidal nanoplatelets with quasi 2D geometry. Here, we show that core/shell nanoplatelets can be obtained with a 2D geometry that is conserved. The epitaxial growth of the shell semiconductor is performed at room temperature. We report the detailed synthesis of CdSe/CdS and CdSe/CdZnS structures with different shell thicknesses. The shell growth is characterized both spectroscopically and structurally. In particular, the core/shell structure appears very clearly on high-resolution, high-angle annular dark-field transmission electron microscope images, thanks to the difference of atomic density between the core and the shell. When the nanoplatelets stand on their edge, we can precisely count the number of atomic planes forming the core and the shell. This provides a direct measurement, with atomic precision, of the core nanoplatelets thickness. The constraints exerted by the shell growth on the core is analyzed using global phase analysis. The core/shell nanoplatelets we obtained have narrow emission spectra with full-width at half-maximum close to 20 nm, and quantum yield that can reach 60%. PMID:23057684

  1. Oak Ridge National Laboratory Core Competencies

    SciTech Connect

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.; Hildebrand, S.G.; Hartman, F.C.; Honea, R.B.; Jones, J.E. Jr.; Moon, R.M. Jr.; Saltmarsh, M.J.; Shelton, R.B.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competency represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.

  2. Observations of Pre-Stellar Cores

    NASA Astrophysics Data System (ADS)

    Tafalla, M.

    2005-08-01

    Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains in the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected toward the core centers. Such a selective behavior of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large `freeze out holes' in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has begun to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.

  3. Pallasite paleomagnetism: Quiescence of a core dynamo

    NASA Astrophysics Data System (ADS)

    Nichols, Claire I. O.; Bryson, James F. J.; Herrero-Albillos, Julia; Kronast, Florian; Nimmo, Francis; Harrison, Richard J.

    2016-05-01

    Recent paleomagnetic studies of two Main Group pallasites, the Imilac and Esquel, have found evidence for a strong, late-stage magnetic field on the parent body. It has been hypothesized that this magnetic field was generated by a core dynamo, driven by compositional convection during core solidification. Cooling models suggest that the onset of core solidification occurred ∼200 Ma after planetary accretion. Prior to core solidification, a core dynamo may have been generated by thermal convection; however a thermal dynamo is predicted to be short-lived, with a duration of ∼10 Ma to ∼40 Ma after planetary accretion. These models predict, therefore, a period of quiescence between the thermally driven dynamo and the compositionally driven dynamo, when no core dynamo should be active. To test this hypothesis, we have measured the magnetic remanence recorded by the Marjalahti and Brenham pallasites, which based on cooling-rate data locked in any magnetic field signals present ∼95 Ma to ∼135 Ma after planetary accretion, before core solidification began. The cloudy zone, a region of nanoscale tetrataenite islands within a Fe-rich matrix was imaged using X-ray photoemission electron microscopy. The recovered distribution of magnetisation within the cloudy zone suggests that the Marjalahti and Brenham experienced a very weak magnetic field, which may have been induced by a crustal remanence, consistent with the predicted lack of an active core dynamo at this time. We show that the transition from a quiescent period to an active, compositionally driven dynamo has a distinctive paleomagnetic signature, which may be a crucial tool for constraining the time of core solidification on differentiated bodies, including Earth.

  4. Apparatus for controlling molten core debris. [LMFBR

    DOEpatents

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  5. Sponge coring apparatus with reinforced sponge

    SciTech Connect

    Park, A.; Wilson, B. T.

    1985-03-05

    A well coring apparatus includes an outer barrel and an inner barrel. A hollow sponge is disposed along a liner for insertion into the inner barrel. The sponge is operable to absorb subterranean fluid from a well core. A plurality of reinforcing members are disposed on the inner surface of the liner to prevent movement of the sponge with respect thereto. A plurality of orifices are disposed in the surface of the liner to allow gas and/or fluid to escape from the interior thereof when the subterranean fluid contained within the core bleeds into the sponge.

  6. A buoyancy profile for the Earth's core

    NASA Astrophysics Data System (ADS)

    Davies, C. J.; Gubbins, D.

    2011-11-01

    We investigate the thermal and chemical buoyancy forces that drive convection in the Earth's liquid outer core and derive a radial buoyancy profile that can be used in geodynamo models. We assume the core is well mixed, adiabatic and cools as a result of mantle convection. The buoyancy profile is developed for a Boussinesq fluid and incorporates secular cooling, latent heat release at the inner core boundary, radiogenic heating, the effect of the adiabat, and compositional buoyancy due to inner core freezing. Surprisingly, these complex effects can be modelled accurately by a simple combination of bottom heating and near-uniform heat sinks, which is implemented using a cotemperature formulation that converts compositional effects into effective thermal effects. The relative importance of internal and bottom heating is then defined by just two parameters, the cooling rate at the core-mantle boundary (CMB) and the uniform rate of internal radiogenic heat production, both of which can be obtained from core evolution calculations. We vary these parameters in geodynamo models and compare basic features of the generated fields with the geomagnetic field; in this manner we link core evolution models, geodynamo simulations and geomagnetic observations. We consider three end-member scenarios for core evolution: (1) rapid cooling and a young inner core; (2) moderate cooling and neutral stability at the CMB; (3) slow cooling and enough radiogenic heating to allow the inner core to be 3.5 Gyr old. We find that compositional buoyancy dominates thermal buoyancy everywhere except near the CMB, even with large amounts of radiogenic heating, and buoyancy forces are far larger at depth than higher up. Reducing the cooling rate and increasing radiogenic heating reduces the drop in the superadiabatic gradient between the inner and outer boundaries: for rapid cooling the drop is by a factor 50; for slow cooling it is a factor of 5. We demonstrate the effects of these different buoyancy

  7. Magnetic core studies at LBNL and LLNL

    SciTech Connect

    Molvik, A.W.; Faltens, A.; Reginato, L.; Blaszkiewicz, M.; Smith, C.; Wood, R.

    1997-09-20

    The objective of this work is to minimize the cost of the materials and maximize the performance of magnetic cores, a major cost component of a Heavy-Ion-Fusion, HIF, induction accelerator driver. This includes selection of the alloy for cost and performance, and maximizing the performance of each alloy evaluated. The two major performance parameters are the magnetic flux swing and the energy loss. The volt seconds of the cores, obtained from the flux swing with Faraday's Law, determines the beam energy and duration. Core losses from forming domains and moving their boundaries are a major factor in determining the efficiency of an induction accelerator.

  8. Apparatus for controlling molten core debris

    DOEpatents

    Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA

    1977-07-19

    Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

  9. Anti-resonant hexagram hollow core fibers.

    PubMed

    Hayes, John R; Poletti, Francesco; Abokhamis, Mousavi S; Wheeler, Natalie V; Baddela, Naveen K; Richardson, David J

    2015-01-26

    Various simple anti-resonant, single cladding layer, hollow core fiber structures are examined. We show that the spacing between core and jacket glass and the shape of the support struts can be used to optimize confinement loss. We demonstrate the detrimental effect on confinement loss of thick nodes at the strut intersections and present a fabricated hexagram fiber that mitigates this effect in both straight and bent condition by presenting thin and radially elongated nodes. This fiber has loss comparable to published results for a first generation, multi-cladding ring, Kagome fiber with negative core curvature and has tolerable bend loss for many practical applications. PMID:25835888

  10. Vortex core-driven magnetization dynamics.

    PubMed

    Choe, S B; Acremann, Y; Scholl, A; Bauer, A; Doran, A; Stöhr, J; Padmore, H A

    2004-04-16

    Time-resolved x-ray imaging shows that the magnetization dynamics of a micron-sized pattern containing a ferromagnetic vortex is determined by its handedness, or chirality. The out-of-plane magnetization in the nanometer-scale vortex core induces a three-dimensional handedness in the planar magnetic structure, leading to a precessional motion of the core parallel to a subnanosecond field pulse. The core velocity was an order of magnitude higher than expected from the static susceptibility. These results demonstrate that handedness, already well known to be important in biological systems, plays an important role in the dynamics of microscopic magnets. PMID:15087545

  11. Magnetic permeability measurements and a lunar core

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Phillips, R. J.; Russell, C. T.

    1976-01-01

    Measurements of the magnetic field induced in the moon while it is in the geomagnetic tail lobes have been interpreted in terms of lunar magnetic permeability due to free iron content; such studies ignored the possibility that a highly conducting lunar core (Fe or FeS) would exclude magnetic fields with an apparent diamagnetic effect. Using lunar chemical and thermal models to determine plausible limits of magnetic permeability, we interpret measurements of the induced moment. The maximum likely radius of a lunar core is 580 km. Subsatellite and ALSEP measurements of the induced field are in disagreement. Resolving the differences is critical to determining whether a core could or does exist.

  12. Mercury's inner core size and core-crystallization régime

    NASA Astrophysics Data System (ADS)

    Dumberry, M.; Rivoldini, A.

    2014-04-01

    Geodetic observations provide insights about the interior structure of Mercury. In particular, they constrain the radius of the core-mantle boundary and on the bulk densities of the core and mantle [5, 3]. Here, we show that they also yield information about the radius of the inner core and on the crystallization regime in the liquid core. Recently, the MESSENGER spacecraft has measured Mercury's internally generated magnetic field and shown that the magnetic field is about two orders of magnitude smaller than Earth's [4]. Dynamo models that agree with those observations require a magnetic field that is driven by chemical convection and generated in a thin spherical shell located deep inside the fluid core that is overlain by a stable thermallystratified layer [1]. We have build models of Mercury that include a sub-adiabatic temperature profile in the upper part of the liquid core. In those models, the dominant light element inside the core is sulfur. Unlike the Earth, upon cooling the core adiabat may first cross the liquidus near the core-mantle boundary resulting in the precipitation of solid iron snow from the liquid Fe - FeS liquid alloy. Cooling extends the precipitation zone to greater depth and produces a stable compositional gradient [2]. Depending on the thermal state of the core the snow zone could extent to the inner core boundary. In that case the inner core would grow through the sedimentation of solid iron snow. If, somewhere below the snow layer, the temperature crosses the liquidus, then inner core growth will proceed in an Earth-like manner. Our study shows that models that best agree with recently measured geodesy observations (88 - day libration and polar moment of inertia) require an inner core that is not larger than 1325 ± 250km. If the inner core radius is smaller than about 650km they have an iron snow layer in the upper part of the fluid core, consistent with a deep seated dynamo. However, if the inner core radius is larger than about 650

  13. Investigating the relationship between k-core and s-core network decompositions

    NASA Astrophysics Data System (ADS)

    Eidsaa, Marius; Almaas, Eivind

    2016-05-01

    Network decomposition methods, such as the much used k-core analysis, are able to identify globally central regions of networks. The decomposition approaches are hierarchical and identify nested sets of nodes with increasing centrality properties. While most studies have been concerned with unweighted networks, i.e. k-core analysis, recent works have introduced network decomposition methods that apply to weighted networks. Here, we investigate the relationship between k-core decomposition for unweighted networks and s-core decomposition for weighted networks by systematically employing a link-weight scheme that gradually discretizes the link weights. We applied this approach to the Erdős-Rényi model and the scale-free configuration model for five different weight distributions, and two empirical networks, the US air traffic network and a Facebook network. We find that (1) both uniformly random and positively correlated link-weight distributions give rise to highly stable s-core decompositions with respect to discretization levels. (2) For negatively correlated link-weight distributions, the resulting s-core decomposition has no similarity to the k-cores. Since several combinations of network topology and link-weight distributions give rise to a core-structure that is highly similar to the full s-core for a large range of link-discretization levels, it is possible to significantly speed up the numerical s-core analysis for these situations.

  14. EXPOSED LONG-LIFETIME FIRST CORE: A NEW MODEL OF FIRST CORES BASED ON RADIATION HYDRODYNAMICS

    SciTech Connect

    Tomida, Kengo; Tomisaka, Kohji; Machida, Masahiro N.; Saigo, Kazuya; Matsumoto, Tomoaki E-mail: tomisaka@th.nao.ac.j E-mail: saigo.kazuya@nao.ac.j

    2010-12-20

    A first adiabatic core is a transient object formed in the early phase of star formation. The observation of a first core is believed to be difficult because of its short lifetime and low luminosity. On the basis of radiation hydrodynamic simulations, we propose a novel theoretical model of first cores, the Exposed Long-lifetime First core (ELF). In the very low-mass molecular core, the first core evolves slowly and lives longer than 10,000 years because the accretion rate is considerably low. The evolution of ELFs is different from that of ordinary first cores because radiation cooling has a significant effect there. We also carry out a radiation-transfer calculation of dust-continuum emission from ELFs to predict their observational properties. ELFs have slightly fainter but similar spectral energy distributions to ordinary first cores in radio wavelengths, therefore they can be observed. Although the probabilities that such low-mass cores become gravitationally unstable and start to collapse are low, we still can expect that a considerable number of ELFs can be formed because there are many low-mass molecular cloud cores in star-forming regions that could be progenitors of ELFs.

  15. Armor systems including coated core materials

    SciTech Connect

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  16. Core Technical Capability Laboratory Management System

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda; Dugger, Curtis; Griffin, Laurie

    2008-01-01

    The Core Technical Capability Lab - oratory Management System (CTCLMS) consists of dynamically generated Web pages used to access a database containing detailed CTC lab data with the software hosted on a server that allows users to have remote access.

  17. Beta-peptide bundles with fluorous cores.

    PubMed

    Molski, Matthew A; Goodman, Jessica L; Craig, Cody J; Meng, He; Kumar, Krishna; Schepartz, Alanna

    2010-03-24

    We reported recently that certain beta-peptides self-assemble spontaneously into cooperatively folded bundles whose kinetic and thermodynamic metrics mirror those of natural helix bundle proteins. The structures of four such beta-peptide bundles are known in atomic detail. These structures reveal a solvent-sequestered, hydrophobic core stabilized by a unique arrangement of leucine side chains and backbone methylene groups. Here we report that this hydrophobic core can be re-engineered to contain a fluorous subdomain while maintaining the characteristic beta-peptide bundle fold. Like alpha-helical bundles possessing fluorous cores, fluorous beta-peptide bundles are stabilized relative to hydrocarbon analogues and undergo cold denaturation. Beta-peptide bundles with fluorous cores represent the essential first step in the synthesis of orthogonal protein assemblies that can sequester selectively in an interstitial membrane environment. PMID:20196598

  18. Core Stabilization Exercise Prescription, Part I

    PubMed Central

    Brumitt, Jason; Matheson, J. W.; Meira, Erik P.

    2013-01-01

    Context: Injury to the low back can cause significant pain and dysfunction, which can affect an athlete’s performance and result in time lost from sport. A common conservative treatment is therapeutic core stabilization exercises, which can address pain and musculoskeletal dysfunction in patients with low back pathology. Evidence Acquisition: MEDLINE and CINAHL were searched (from 1966 to March 2013) to identify relevant research. Keywords and keyword combinations searched included motor control exercise, segmental stabilization, core stabilization, transversus abdominis, multifidi, and low back pain. Results: There are 2 popular rehabilitation strategies to assess core function and promote core stabilization. Each has been developed based on biomechanical models of lumbar segmental stability and observed motor control dysfunction in patients with low back pain. Conclusion: Controversy exists among clinical and research groups as to the optimal strategy for an athlete with low back pain. PMID:24427424

  19. The Population One Core of the Galaxy

    NASA Technical Reports Server (NTRS)

    Burton, Michael G.; Allen, David A.

    1995-01-01

    Spectral imaging in the near-infrared of the central parsec of the Galaxy has revealed that a population of massive young stars resides in the core of our Galaxy. We suggest it has undergone a mild starburst.

  20. Emergence of core-peripheries in networks.

    PubMed

    Verma, T; Russmann, F; Araújo, N A M; Nagler, J; Herrmann, H J

    2016-01-01

    A number of important transport networks, such as the airline and trade networks of the world, exhibit a characteristic core-periphery structure, wherein a few nodes are highly interconnected and the rest of the network frays into a tree. Mechanisms underlying the emergence of core-peripheries, however, remain elusive. Here, we demonstrate that a simple pruning process based on removal of underutilized links and redistribution of loads can lead to the emergence of core-peripheries. Links are assumed beneficial if they either carry a sufficiently large load or are essential for global connectivity. This incentivized redistribution process is controlled by a single parameter, which balances connectivity and profit. The obtained networks exhibit a highly resilient and connected core with a frayed periphery. The balanced network shows a higher resilience than the world airline network or the world trade network, revealing a pathway towards robust structural features through pruning. PMID:26822856

  1. Elastic anisotropy of Earth's inner core.

    PubMed

    Belonoshko, Anatoly B; Skorodumova, Natalia V; Rosengren, Anders; Johansson, Börje

    2008-02-01

    Earth's solid-iron inner core is elastically anisotropic. Sound waves propagate faster along Earth's spin axis than in the equatorial plane. This anisotropy has previously been explained by a preferred orientation of the iron alloy hexagonal crystals. However, hexagonal iron becomes increasingly isotropic on increasing temperature at pressures of the inner core and is therefore unlikely to cause the anisotropy. An alternative explanation, supported by diamond anvil cell experiments, is that iron adopts a body-centered cubic form in the inner core. We show, by molecular dynamics simulations, that the body-centered cubic iron phase is extremely anisotropic to sound waves despite its high symmetry. Direct simulations of seismic wave propagation reveal an anisotropy of 12%, a value adequate to explain the anisotropy of the inner core. PMID:18258912

  2. Seasonal precipitation timing and ice core records

    SciTech Connect

    Steig, E.J.; Grootes, P.M.; Stuiver, M. )

    1994-12-16

    This is a commentary on global circulation model experiments of moisture source changes in Greenland, urging caution in how they are applied because they have important implications for paleoclimate reconstruction from ice cores. The work comes from preliminary find is of a ice core (GISP2) of the authors. The authors conclude that at present anomalies in Greenland ice core records should not be interpreted solely in terms of source region variations. The combined use of oxygen 18, D and ionic species in the new Summit, Greenland cores should make it possible to answer empirically some of the questions raised by the GCM experiments as to the interpretation of oxygen 18 records in terms of temperature. 4 refs., 1 fig.

  3. Emergence of core-peripheries in networks

    NASA Astrophysics Data System (ADS)

    Verma, T.; Russmann, F.; Araújo, N. A. M.; Nagler, J.; Herrmann, H. J.

    2016-01-01

    A number of important transport networks, such as the airline and trade networks of the world, exhibit a characteristic core-periphery structure, wherein a few nodes are highly interconnected and the rest of the network frays into a tree. Mechanisms underlying the emergence of core-peripheries, however, remain elusive. Here, we demonstrate that a simple pruning process based on removal of underutilized links and redistribution of loads can lead to the emergence of core-peripheries. Links are assumed beneficial if they either carry a sufficiently large load or are essential for global connectivity. This incentivized redistribution process is controlled by a single parameter, which balances connectivity and profit. The obtained networks exhibit a highly resilient and connected core with a frayed periphery. The balanced network shows a higher resilience than the world airline network or the world trade network, revealing a pathway towards robust structural features through pruning.

  4. Armor systems including coated core materials

    SciTech Connect

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  5. Solar core homology, solar neutrinos and helioseismology

    SciTech Connect

    Bludman, S.A.; Kennedy, D.C.

    1995-12-31

    Precise numerical standard solar models (SSMs) now agree with one another and with helioseismological observations in the convective and outer radiative zones. Nevertheless these models obscure how luminosity, neutrino production and g-mode core helioseismology depend on such inputs as opacity and nuclear cross sections. Although the Sun is not homologous, its inner core by itself is chemically evolved and almost homologous, because of its compactness, radiative energy transport, and ppI-dominated luminosity production. We apply luminosity-fixed homology transformations to the core to estimate theoretical uncertainties in the SSM and to obtain a broad class of non-SSMs, parameterized by central temperature and density and purely radiative energy transport in the core. 25 refs., 3 figs., 3 tabs.

  6. KSI's Cross Insulated Core Transformer Technology

    SciTech Connect

    Uhmeyer, Uwe

    2009-08-04

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  7. Ferrofluid-based Stretchable Magnetic Core Inductors

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Meyer, C. D.

    2015-12-01

    Magnetic materials are commonly used in inductor and transformer cores to increase inductance density. The emerging field of stretchable electronics poses a new challenge since typical magnetic cores are bulky, rigid and often brittle. This paper presents, for the first time, stretchable inductors incorporating ferrofluid as a liquid magnetic core. Ferrofluids, suspensions of nanoscale magnetic particles in a carrier liquid, provide enhanced magnetic permeability without changing the mechanical properties of the surrounding elastomer. The inductor tested in this work consisted of a liquid metal solenoid wrapped around a ferrofluid core in separate channels. The low frequency inductance was found to increase from 255 nH before fill to 390 nH after fill with ferrofluid, an increase of 52%. The inductor was also shown to survive uniaxial strains of up to 100%.

  8. Inquiry, New Literacies, and the Common Core

    ERIC Educational Resources Information Center

    Stegman, Bridget

    2014-01-01

    For 21st century learning, students need to be well versed in techniques for inquiry using new literacies. Developing these skills also will meet the rigorous expectations of the Common Core State Standards.

  9. Planetary cores: current knowledge and future prospects

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2011-12-01

    Observations of planetary cores tell us about the: formation; evolution; and present-day state of silicate bodies. In this review I will highlight recent results and future prospects. Formation. Core formation is detectable geochemically from siderophile element abundances and both unstable (e.g. Hf-W [1]) and stable (e.g. Cr [2], Si [3]) isotopic systems. Hf-W studies tell us that small bodies (like Vesta and perhaps Mars [4]) underwent differentiation very early, presumably due to 26Al decay [1]. Larger silicate-dominated bodies experienced stochastic addition of core material over tens of Myr, during large impacts [5]. Bodies with massive cores may result from hit-and-run collisions [6] or mantle-stripping impacts [7]. The apparent existence of a lunar core [8] places constraints on the Moon's formation. Evolution. Core solidification results in significant volume changes and surface contraction. Surface tectonics thus provides a constraint on core evolution [e.g. 9]. Dynamo generation usually depends on the rate of core cooling/solidification, which in turn depends on the mantle's ability to remove heat. Thus, an extant or ancient dynamo tells us about the long-term thermal evolution of the body [10]. In some cases, magnetic field characteristics may be related to the details of core structure and/or solidification. In others, mechanical forcing, such as tidally-driven motion [11] or impacts [12] may cause dynamo activity. Bodies with (presumed) liquid cores but no dynamo (Io, Venus) also require explanation. Present day. A body's angular momentum and tidal response depend on core properties such as CMB topography, inner core viscosity, magnetic field strength and other factors. Thus, measurements of time-varying spin state and/or gravity can be used to infer the existence of a liquid layer [13-15] and (for the Earth) core properties such as the magnetic field strength [16]. Ground-based radar observations of Mercury [14] and (in future) Europa and Io should

  10. MODULAR CORE UNITS FOR A NEUTRONIC REACTOR

    DOEpatents

    Gage, J.F. Jr.; Sherer, D.B.

    1964-04-01

    A modular core unit for use in a nuclear reactor is described. Many identical core modules can be placed next to each other to make up a complete core. Such a module includes a cylinder of moderator material surrounding a fuel- containing re-entrant coolant channel. The re-entrant channel provides for the circulation of coolant such as liquid sodium from one end of the core unit, through the fuel region, and back out through the same end as it entered. Thermal insulation surrounds the moderator exterior wall inducing heat to travel inwardly to the coolant channel. Spaces between units may be used to accommodate control rods and support structure, which may be cooled by a secondary gas coolant, independently of the main coolant. (AEC)

  11. KSI's Cross Insulated Core Transformer Technology

    NASA Astrophysics Data System (ADS)

    Uhmeyer, Uwe

    2009-08-01

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  12. Multiple network interface core apparatus and method

    SciTech Connect

    Underwood, Keith D.; Hemmert, Karl Scott

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  13. Magnetic suspension using high temperature superconducting cores

    NASA Technical Reports Server (NTRS)

    Scurlock, R. G.

    1992-01-01

    The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.

  14. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.

    PubMed

    El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan

    2016-02-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  15. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures

    NASA Astrophysics Data System (ADS)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A.; Labis, Joselito Puzon; Alothman, Zeid A.; Alhoshan, Mansour; Elzatahry, Ahmed A.; Zhang, Fan

    2016-01-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  16. Radio core dominance of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are < log Rrangle = 0.99±0.87 for FDBs and < log Rrangle = -0.62±1.15 for the non-FDBs. A K-S test shows that the probability for the two distributions of FDBs and non-FDBs to come from the same parent distribution is near zero (P =9.12×10^{-52}). Secondly, we also investigated the variability index (V.I.) in the γ-ray band for FDBs, and we found V.I.=(0.12 ±0.07) log R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0

  17. Panelized wall system with foam core insulation

    DOEpatents

    Kosny, Jan; Gaskin, Sally

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  18. Acoustic detection of air shower cores

    NASA Technical Reports Server (NTRS)

    Gao, X.; Liu, Y.; Du, S.

    1985-01-01

    At an altitude of 1890m, a pre-test with an Air shower (AS) core selector and a small acoustic array set up in an anechoic pool with a volume of 20x7x7 cu m was performed, beginning in Aug. 1984. In analyzing the waveforms recorded during the effective working time of 186 hrs, three acoustic signals which cannot be explained as from any source other than AS cores were obtained, and an estimation of related parameters was made.

  19. High resolution imaging of galaxy cores

    NASA Technical Reports Server (NTRS)

    Crane, P.; Stiavelli, M.; King, I. R.; Deharveng, J. M.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Disney, M. J.; Jakobsen, P.

    1993-01-01

    Surface photometry data obtained with the Faint Object Camera of the Hubble Space Telescope in the cores of ten galaxies is presented. The major results are: (1) none of the galaxies show truly 'isothermal' cores, (2) galaxies with nuclear activity show very similar light profiles, (3) all objects show central mass densities above 10 exp 3 solar masses/cu pc3, and (4) four of the galaxies (M87, NGC 3862, NGC 4594, NGC 6251) show evidence for exceptional nuclear mass concentrations.

  20. The Moon's Molten Core and Tidal Q

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    1998-01-01

    The rotation of the Moon is influenced by solid-body tides and interaction at a liquid-core/solid-mantle boundary. The Lunar Laser Ranging (LLR) data are sensitive to variations in lunar rotation. Analysis of those ranges reveals four dissipation periodicities in the rotation. These signatures can be explained with the combined effects of tide plus core, but not with either alone. The fluid core detection exceeds three times its uncertainty. The inferred core radius has a 1 -sigma upper limit of 352 km for iron and up to 374 km if sulfur is present. The tidal dissipation is strong, Q at one month is 37 +/- 5 .Q increases for longer periods and is 60 (-15, +40) at one year.Dynamical evidence for a fluid lunar core has previously been presented. These-earlier solutions included three dissipation parameters. New solutions benefit from additional LLR data and an improved gravity field from Doppler tracking of Lunar Prospector. Five dissipation parameters are now solved for. There are several options for dissipation parameters: a core coupling parameter, a time delay for tidal distortion of the moments of inertia, and five periodic terms in the rotation angles. Solutions with different combinations of these are compatible (a theory relates K/C and time delay to a series of periodic terms). The solutions used K/C, time delay, and one periodic term. When dissipation signatures at five rotation frequencies are solved for, four amplitudes (4 to 263 milliarcseconds) are detected above the noise. Attempts to explain these results using either tides alone or core alone fail (less than 3(sigma) discrepancy for the former and 9(sigma), for the latter). A combination of tides and liquid core matches the results well.