Science.gov

Sample records for der waals equation

  1. Statistical complexity, virial expansion, and van der Waals equation

    NASA Astrophysics Data System (ADS)

    Pennini, F.; Plastino, A.

    2016-09-01

    We investigate the notion of LMC statistical complexity with regards to a real gas and in terms of the second virial coefficient. The ensuing results are applied to the van der Waals equation. Interestingly enough, one finds a complexity-interpretation for the associated phase transition.

  2. A van der Waals Equation of State for a Dilute Boson Gas

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  3. Multiple critical points and liquid liquid equilibria from the van der Waals like equations of state

    NASA Astrophysics Data System (ADS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    2008-06-01

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema.

  4. Van der Waals Forces

    NASA Astrophysics Data System (ADS)

    Parsegian, V. Adrian

    2006-03-01

    This should prove to be the definitive work explaining van der Waals forces, how to calculate them and take account of their impact under any circumstances and conditions. These weak intermolecular forces are of truly pervasive impact, and biologists, chemists, physicists and engineers will profit greatly from the thorough grounding in these fundamental forces that this book offers. Parsegian has organized his book at three successive levels of mathematical sophistication, to satisfy the needs and interests of readers at all levels of preparation. The Prelude and Level 1 are intended to give everyone an overview in words and pictures of the modern theory of van der Waals forces. Level 2 gives the formulae and a wide range of algorithms to let readers compute the van der Waals forces under virtually any physical or physiological conditions. Level 3 offers a rigorous basic formulation of the theory. Author is among the most highly respected biophysicists Van der Waals forces are significant for a wide range of questions and problems in the life sciences, chemistry, physics, and engineering, ranging up to the macro level No other book that develops the subject vigorously, and this book also makes the subject intuitively accessible to students who had not previously been mathematically sophisticated enough to calculate them

  5. Limiting temperature of pion gas with the van der Waals equation of state

    NASA Astrophysics Data System (ADS)

    Poberezhnyuk, R. V.; Vovchenko, V.; Anchishkin, D. V.; Gorenstein, M. I.

    2016-09-01

    The grand canonical ensemble formulation of the van der Waals equation of state that includes the effects of Bose statistics is applied to the equilibrium system of interacting pions. If the attractive interaction between pions is large enough, a limiting temperature T 0 emerges, i.e., no thermodynamical equilibrium is possible at T\\gt {T}0. The system pressure p, particle number density n, and energy density ε remain finite at T={T}0, whereas for T near T 0 both the specific heat C={{d}}\\varepsilon /{{d}}T and the scaled variance of particle number fluctuations ω [N] are proportional to {({T}0-T)}-1/2 and, thus, go to infinity at T\\to {T}0. The limiting temperature also corresponds to the softest point of the equation of state, i.e., the speed of sound squared {c}s2={{d}}p/{{d}}\\varepsilon goes to zero as {({T}0-T)}1/2. Very similar thermodynamical behavior takes place in the Hagedorn model for the special choice of a power, namely {m}-4, in the pre-exponential factor of the mass spectrum ρ (m).

  6. An accurate Van der Waals-type equation of state for the Lennard-Jones fluid

    SciTech Connect

    Mecke, M.; Mueller, A.; Winkelmann, J.

    1996-03-01

    A new equation of state (EOS) is proposed for the Helmholtz energy F of the Lennard-Jones fluid which represents the thermodynamic properties over a wide range of temperatures and densities. The EOS is written in the form of a generalized van der Waals equation, F= F{sub H} + F{sub A}, where F{sub H} is a hard body contribution and FA an attractive dispersion force contribution. The expression for F{sub H} is closely related to the hybrid Barker-Henderson pertubation theory. The construction of FA is accomplished with the Setzmann-Wagner optimization procedure on the basis of virial coefficients and critically assessed computer simulation data. A comparison with the EOS shows improvement in the description of the vapor-liquid coexistence properties, the pvT data, and in peculiar, of the caloric properties. A comparison with the EOS of Kolafa and Nezbeda which appeared after the bulk of this work was finished shows still an improvement in the standard deviations of the pressure and internal energy by about 30%.

  7. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  8. Gas-transfer analysis. Section H - real gas results via the van der Waals equation of state and virial expansion extension of its limiting Abel-Noble form

    SciTech Connect

    Chenoweth, D R

    1983-06-01

    An ideal-gas, quasi-steady, duct-flow model previously formulated for small scale gas-transfer problems is extended to real gases via the van der Waals equation of state as well as general virial expansions. The model is applicable for an arbitrary series of ducting components where each is described empirically by total pressure and total temperature change correlations. The adequacy of the van der Waals model for gas-transfer calculations is verified by comparisons with: (1) real gas PVT data; (2) the magnitudes of the controlling effects; and (3) approximate limiting case solutions with numerical results using more accurate real-gas modeling. 25 figures.

  9. Non-Gaussian particle number fluctuations in vicinity of the critical point for van der Waals equation of state

    NASA Astrophysics Data System (ADS)

    Vovchenko, V.; Poberezhnyuk, R. V.; Anchishkin, D. V.; Gorenstein, M. I.

    2016-01-01

    The non-Gaussian measures of the particle number fluctuations—skewness Sσ and kurtosis κ {σ }2—are calculated in a vicinity of the critical point (CP). This point corresponds to the end point of the first-order liquid-gas phase transition. The gaseous phase is characterized by the positive values of skewness while the liquid phase has negative skew. The kurtosis appears to be significantly negative at the critical density and supercritical temperatures. The skewness and kurtosis diverge at the CP. The classical van der Waals (VDW) equation of state in the grand canonical ensemble formulation is used in our studies. Neglecting effects of the quantum statistics we succeed to obtain the analytical expressions for the rich structures of the skewness and kurtosis in a wide region around the CP. These results have universal form, i.e., they do not depend on particular values of the VDW parameters a and b. The strongly intensive measures of particle number and energy fluctuations are also considered and show singular behavior in the vicinity of the CP.

  10. ARPES studies of van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Eryin; Lu, Xiaobo; Chen, Guorui; Fedorov, Alexei V.; Zhang, Yuanbo; Zhang, Guangyu; Zhou, Shuyun

    Van der Waals heterostructures are a novel class of ``materials by design'' which are formed by stacking different two-dimensional crystals together via van der Waals interaction. The periodic potential by the Moir é superlattice can be used as a control knob for tuning the electronic properties of two dimensional materials and can induce various novel quantum phenomena. Here we report direct electronic structure studies the of a model van der Waals heterostructure using angle-resolved photoemission spectroscopy (ARPES). This work is supported by the National Natural Science Foundation of China and Ministry of Education of China.

  11. Excited nucleon as a van der Waals system of partons

    SciTech Connect

    Jenkovszky, L. L.; Muskeyev, A. O. Yezhov, S. N.

    2012-06-15

    Saturation in deep inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) is associated with a phase transition between the partonic gas, typical of moderate x and Q{sup 2}, and partonic fluid appearing at increasing Q{sup 2} and decreasing Bjorken x. We suggest the van der Waals equation of state to describe properly this phase transition.

  12. A mathematical recursive model for accurate description of the phase behavior in the near-critical region by Generalized van der Waals Equation

    NASA Astrophysics Data System (ADS)

    Kim, Jibeom; Jeon, Joonhyeon

    2015-01-01

    Recently, related studies on Equation Of State (EOS) have reported that generalized van der Waals (GvdW) shows poor representations in the near critical region for non-polar and non-sphere molecules. Hence, there are still remains a problem of GvdW parameters to minimize loss in describing saturated vapor densities and vice versa. This paper describes a recursive model GvdW (rGvdW) for an accurate representation of pure fluid materials in the near critical region. For the performance evaluation of rGvdW in the near critical region, other EOS models are also applied together with two pure molecule group: alkane and amine. The comparison results show rGvdW provides much more accurate and reliable predictions of pressure than the others. The calculating model of EOS through this approach gives an additional insight into the physical significance of accurate prediction of pressure in the nearcritical region.

  13. Dielectric Genome of van der Waals Heterostructures.

    PubMed

    Andersen, Kirsten; Latini, Simone; Thygesen, Kristian S

    2015-07-01

    Vertical stacking of two-dimensional (2D) crystals, such as graphene and hexagonal boron nitride, has recently lead to a new class of materials known as van der Waals heterostructures (vdWHs) with unique and highly tunable electronic properties. Ab initio calculations should in principle provide a powerful tool for modeling and guiding the design of vdWHs, but in their traditional form such calculations are only feasible for commensurable structures with a few layers. Here we show that the dielectric properties of realistic, incommensurable vdWHs comprising hundreds of layers can be efficiently calculated using a multiscale approach where the dielectric functions of the individual layers (the dielectric building blocks) are computed ab initio and coupled together via the long-range Coulomb interaction. We use the method to illustrate the 2D-3D transition of the dielectric function of multilayer MoS2 crystals, the hybridization of quantum plasmons in thick graphene/hBN heterostructures, and to demonstrate the intricate effect of substrate screening on the non-Rydberg exciton series in supported WS2. The dielectric building blocks for a variety of 2D crystals are available in an open database together with the software for solving the coupled electrodynamic equations. PMID:26047386

  14. Resonance broadening and van der waals broadening

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.

    2010-11-01

    Resonance broadening is important for the hydrogen lines in the spectra of F-type and later stars. In the corresponding temperature regime, the extended wings of the Balmer lines are used as a stellar effective temperature indicator. We show the effect of the use of two broadening theories, Ali & Griem (1965, 1966) and Barklem et al. (2000a, 2000b), on the effective temperature derived in non-LTE from Hα and Hβ in the Sun and the metal-poor star HD19445. Van der Waals broadening is important for strong spectral lines in the atmospheres of F-type and later stars. For the selected transitions in Ca I and Ca II, line profile comparisons are made between applying the van der Waals damping constants from laboratory measurements, the ABO perturbation theory, and the classic Unsöld approximation.

  15. van der Waals Forces between Cylinders

    PubMed Central

    Mitchell, D. J.; Ninham, B. W.; Richmond, P.

    1973-01-01

    We derive the retarded van der Waals interaction between two long thin parallel dielectric cylinders immersed in a solvent. The result shows that the ultraviolet interactions which may be responsible for the specificity of macromolecular interactions do not operate strongly over distances R ≥ 50 Å. For greater distances the contribution of these frequencies ξ is damped by a factor ∞ e-ξR/c. PMID:4696763

  16. van der Waals Heterostructures Grown by MBE

    NASA Astrophysics Data System (ADS)

    Hinkle, Christopher

    In this work, we demonstrate the high-quality MBE heterostructure growth of various layered 2D materials by van der Waals epitaxy (VDWE). The coupling of different types of van der Waals materials including transition metal dichalcogenide thin films (e.g., WSe2, WTe2, HfSe2) , insulating hexagonal boron nitride (h-BN), and topological insulators (e.g., Bi2Se3) allows for the fabrication of novel electronic devices that take advantage of unique quantum confinement and spin-based characteristics. The relaxed lattice-matching criteria of van der Waals epitaxy has allowed for high-quality heterostructure growth with atomically abrupt interfaces, allowing us to couple these materials based primarily on their band alignment and electronic properties. We will discuss the impact of sample preparation, surface reactivity, and lattice mismatch of various substrates (sapphire, graphene, TMDs, Bi2Se3) on the growth mode and quality of the films and will discuss our studies of substrate temperature and flux rates on the resultant growth and grain size. Structural and chemical characterization was conducted via reflection high energy electron diffraction (RHEED, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning tunneling microscopy/spectroscopy (STM/S), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Experimentally determined band alignments have been determined and compared with first-principles calculations allowing the design of novel low-power logic and magnetic memory devices. Initial results from the electrical characterization of these grown thin films and some simple devices will also be presented. These VDWE grown layered 2D materials show significant potential for fabricating novel heterostructures with tunable band alignments and magnetic properties for a variety of nanoelectronic and optoelectronic applications.

  17. Phonons in nonlocal van der Waals density functional theory

    NASA Astrophysics Data System (ADS)

    Sabatini, Riccardo; Küçükbenli, Emine; Pham, Cong Huy; de Gironcoli, Stefano

    2016-06-01

    We extend the formulation of density functional perturbation theory to treat nonlocal density functionals, accounting for van der Waals interactions, in a rigorous and efficient way. We provide a general formalism, suitable for any functional in this family, and give specific equations for the most widely used ones. We then study the lattice dynamics of graphite, comparing several nonlocal functionals and the local density approximation, showing that our recent revision of the VV10 functional [R. Sabatini et al., Phys. Rev. B 87, 041108(R) (2013), 10.1103/PhysRevB.87.041108] gives the best comparison with experiments.

  18. Tunnelling in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mishchenko, Artem; Novoselov, Kostya; Geim, Andre; Eaves, Laurence; Falko, Vladimir

    When graphene and other conductive two-dimensional (2D) materials are separated by an atomically thin insulating 2D crystal, quantum mechanical tunnelling leads to appreciable current between two 2D conductors due to the overlap of their wavefunctions. These tunnel devices demonstrate interesting physics and potential for applications: such effects as resonant tunnelling, negative differential conductance, light emission and detection have already been demonstrated. In this presentation we will outline the current status and perspectives of tunnelling transistors based on 2D materials assembled into van der Waals heterostructures. Particularly, we will present results on mono- and bilayer graphene tunnelling, tunnelling in 2D crystal-based quantum wells, and tunnelling in superconducting 2D materials. Such effects as momentum and chirality conservation, phonon- and impurity-assisted tunnelling will also be discussed. Finally, we will ponder the implications of discovered effects for practical applications.

  19. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  20. Picosecond photoresponse in van der Waals heterostructures.

    PubMed

    Massicotte, M; Schmidt, P; Vialla, F; Schädler, K G; Reserbat-Plantey, A; Watanabe, K; Taniguchi, T; Tielrooij, K J; Koppens, F H L

    2016-01-01

    Two-dimensional crystals such as graphene and transition-metal dichalcogenides demonstrate a range of unique and complementary optoelectronic properties. Assembling different two-dimensional materials in vertical heterostructures enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides with a picosecond photoresponse comparable to that of graphene, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices. PMID:26436565

  1. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  2. Supercurrent in van der Waals Josephson junction

    PubMed Central

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-01-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency. PMID:26830754

  3. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  4. Modern theory of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dobson, John

    2014-03-01

    van der Waals (vdW, dispersion) interactions are important in diverse areas such as colloid, surface and nano science, cohesion of molecular crystals, and biomolecular science. They also provide competition in experiments to discover the fifth fundamental force.While vdW interactions have been understood in principle for a century, their quantitative first-principles prediction and modelling down to chemical contact separations have proven stubbornly difficult because the quantal many-electron problem is involved. After some brief historical material, the current state of the art will be discussed with particular reference to several approaches: pairwise additive, perturbative quantum chemical, vdW-DF, Lifshitz-like scattering, RPA-like, Adiabatic Connection Fluctuation Dissipation / Time Dependent DFT based etc.. A potentially useful classification will be introduced to aid in understanding the physical causes of departures from pairwise additivity, that is from the usual sum of C6R-6 contributions. These departures result in non-standard power law decays of nanostructure vdW interactions as a function of separation D, as well as surprising dependences of the attraction on the number, N, of atoms within each vdW-interacting fragment. Some further recent results on non-additivity will also be presented. Work supported by an Australian Research Council Discovery Grant.

  5. Picosecond photoresponse in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L.

    2016-01-01

    Two-dimensional crystals such as graphene and transition-metal dichalcogenides demonstrate a range of unique and complementary optoelectronic properties. Assembling different two-dimensional materials in vertical heterostructures enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides with a picosecond photoresponse comparable to that of graphene, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices.

  6. Supercurrent in van der Waals Josephson junction

    NASA Astrophysics Data System (ADS)

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-02-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency.

  7. Van der Waals Interactions in Aspirin

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2015-03-01

    The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  8. Supercurrent in van der Waals Josephson junction.

    PubMed

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-01-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency. PMID:26830754

  9. van der Waals forces influencing adhesion of cells

    PubMed Central

    Kendall, K.; Roberts, A. D.

    2015-01-01

    Adhesion molecules, often thought to be acting by a ‘lock and key’ mechanism, have been thought to control the adhesion of cells. While there is no doubt that a coating of adhesion molecules such as fibronectin on a surface affects cell adhesion, this paper aims to show that such surface contamination is only one factor in the equation. Starting from the baseline idea that van der Waals force is a ubiquitous attraction between all molecules, and thereby must contribute to cell adhesion, it is clear that effects from geometry, elasticity and surface molecules must all add on to the basic cell attractive force. These effects of geometry, elasticity and surface molecules are analysed. The adhesion force measured between macroscopic polymer spheres was found to be strongest when the surfaces were absolutely smooth and clean, with no projecting protruberances. Values of the measured surface energy were then about 35 mJ m−2, as expected for van der Waals attractions between the non-polar molecules. Surface projections such as abrasion roughness or dust reduced the molecular adhesion substantially. Water cut the measured surface energy to 3.4 mJ m−2. Surface active molecules lowered the adhesion still further to less than 0.3 mJ m−2. These observations do not support the lock and key concept. PMID:25533101

  10. Characterization of rarefaction waves in van der Waals fluids

    NASA Astrophysics Data System (ADS)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  11. Characterization of rarefaction waves in van der Waals fluids.

    PubMed

    Yuen, Albert; Barnard, John J

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015)] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy. PMID:26764692

  12. Hemiquantal mechanics. I. Vibrational predissociation of van der Waals molecules

    NASA Astrophysics Data System (ADS)

    Halcomb, Lawrence L.; Diestler, D. J.

    1986-03-01

    The ``hemiquantal'' equations (HQE), which pertain to a system consisting of a quantally-behaving (``light'') subsystem coupled to a classically-behaving (``heavy'') one, result from a partial classical limit of Heisenberg's equations of motion. In effect, all heavy particles are required to follow precisely their classical trajectories. The HQE are applied to vibrational predissociation in a collinear model of the van der Waals molecule He ṡ ṡ ṡI2(B). Here, the vibration of I2 is the classical subsystem and the motion of He relative to the center of mass of I2 is the quantal subsystem. In this case, the HQE comprise a partial differential equation (Schrödinger's equation for the He motion) coupled to two ordinary differential equations (Hamilton's equations for the I2 vibration). These were solved numerically on the CYBER 205 supercomputer by means of an algorithm that uses a second-order predictor-corrector for Hamilton's equations and second-order time differencing for Schrödinger's equation. A scheme based on the fast Fourier transform was used to evaluate the spatial derivative of the wave function. The computed rates of vibrational predissociation are compared with the results of previous quasiclassical and fully quantal calculations and with experimental results.

  13. Van der Waals interaction in uniaxial anisotropic media

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.

    2013-01-01

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  14. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts. PMID:23234868

  15. Maxwell's Relations for a van der Waals Gas and a Nuclear Paramagnetic System.

    ERIC Educational Resources Information Center

    Herlihy, James; And Others

    1981-01-01

    Since Maxwell's relations are derived in general form from the first to second laws, and students often wonder what they mean and how they are used, appropriate partition functions for van der Waals gas and the nuclear paramagnetic system are used to obtain entropy expressions and equations of state. (Author/SK)

  16. van der Waals interactions between excited atoms in generic environments

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Passante, Roberto; Rizzuto, Lucia; Buhmann, Stefan Yoshi

    2016-07-01

    We consider the van der Waals force involving excited atoms in general environments, constituted by magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field, mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is spatially oscillating. We show how this latter force can be related to the known oscillating Casimir-Polder force on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times much larger that the atomic lifetime the atoms will decay to their ground states leading to the van der Waals interaction between ground-state atoms.

  17. Spontaneous stacking faults in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Boussinot, G.

    2016-08-01

    The rapid developments in the manipulation of two-dimensional monoatomic layers such as graphene or h-BN allow one to create heterostructures consisting of possibly many chemically different layers, stacked owing to van der Waals attraction. We propose a Frenkel-Kontorova model including a transverse degree of freedom in order to describe local deformations in these heterostructures. We study the case where two dissimilar monolayers are alternatively stacked, and find that stacking faults may emerge spontaneously for a large enough number of stacked layers as a result of the competition between adhesion and elastic energies. This symmetry-breaking transition should become of fundamental importance for the description of three-dimensional van der Waals heterostructures as soon as a precise control on the lattice orientation of the van der Waals layers is achieved.

  18. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  19. Collisional stabilization of van der Waals states of ozone

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail V.; Babikov, Dmitri

    2011-05-01

    The mixed quantum-classical theory developed earlier [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the collisional energy transfer and the ro-vibrational energy flow in a recombination reaction that forms ozone. Assumption is that the van der Waals states of ozone are formed in the O + O2 collisions, and then stabilized into the states of covalent well by collisions with bath gas. Cross sections for collision induced dissociation of van der Waals states of ozone, for their stabilization into the covalent well, and for their survival in the van der Waals well are computed. The role these states may play in the kinetics of ozone formation is discussed.

  20. The Economics of van der Waals Force Engineering

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-01-01

    As micro-electro-mechanical system (MEMS) fabrication continues on an ever-decreasing scale, new technological challenges must be successfully negotiated if Moore's Law is to be an even approximately valid model of the future of device miniaturization. Among the most significant obstacles is the existence of strong surface forces related to quantum mechanical van der Waals interatomic interactions, which rapidly diverge as the distance between any two neutral boundaries decreases. The van der Waals force is a contributing factor in several device failures and limitations, including, for instance, stiction and oscillator non-linearities. In the last decade, however, it has been conclusively shown that van der Waals forces are not just a MEMS limitation but can be engineered in both magnitude and sign so as to enable classes of proprietary inventions which either deliver novel capabilities or improve upon existing ones. The evolution of van der Waals force research from an almost exclusively theoretical field in quantum-electro-dynamics to an enabling nanotechnology discipline represents a useful example of the ongoing paradigm shift from government-centered to private-capital funded R&D in cutting-edge physics leading to potentially profitable products. In this paper, we discuss the reasons van der Waals force engineering may lead to the creation of thriving markets both in the short and medium terms by highlighting technical challenges that can be competitively addressed by this novel approach. We also discuss some notable obstacles to the cultural transformation of the academic research community required for the emergence of a functional van der Waals force engineering industry worldwide.

  1. Curves of growth for van der Waals broadened spectral lines

    NASA Technical Reports Server (NTRS)

    Park, C.

    1980-01-01

    Curves of growth are evaluated for a spectral line broadened by the van der Waals interactions during collisions. The growth of the equivalent widths of such lines is shown to be dependent on the product of the perturber density and the 6/10 power of the van der Waals potential coefficient. When the parameter is small, the widths grow as the 1/2 power of the optical depth as they do for the Voigt profile: but when the parameter is large, they grow as 2/3 power and, hence, faster than the Voigt profile. An approximate analytical expression for the computed growth characteristics is given.

  2. Thermal effects on van der Waals adhesive forces

    NASA Astrophysics Data System (ADS)

    Pinon, A. V.; Wierez-Kien, M.; Craciun, A. D.; Beyer, N.; Gallani, J. L.; Rastei, M. V.

    2016-01-01

    We present an experimental and theoretical study on how thermal energy alters van der Waals adhesion forces in nanoscale contacts stretched by mechanical probes. The force follows a distribution whose density function is an asymmetric bell-shaped curve presenting a temperature-dependent negative skewness. With increasing temperature the asymmetry increases whereas the most probable force value decreases. Using a 2-8 Lennard-Jones interaction potential within the reaction rate theory, we offer a theoretical framework permitting an evaluation of the microscopic parameters governing adhesion in a van der Waals nanocontact subjected to mechanical fluctuations.

  3. Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter

    NASA Astrophysics Data System (ADS)

    Abourabia, A. M.; Morad, A. M.

    2015-11-01

    Analytical solutions of the van der Waals normal form for fluidized granular media have been done to study the phase separation phenomenon by using two different exact methods. The Painlevé analysis is discussed to illustrate the integrability of the model equation. An auto-Bäcklund transformation is presented via the truncated expansion and symbolic computation. The results show that the exact solutions of the model introduce solitary waves of different types. The solutions of the hydrodynamic model and the van der Waals equation exhibit a behavior similar to the one observed in molecular dynamic simulations such that two pairs of shock and rarefaction waves appear and move away, giving rise to the bubbles. The dispersion properties and the relation between group and phase velocities of the model equation are studied using the plane wave assumption. The diagrams are drawn to illustrate the physical properties of the exact solutions, and indicate their stability and bifurcation.

  4. Inflationary magnetogenesis, derivative couplings, and relativistic Van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2015-08-01

    When the gauge fields have derivative couplings to scalars, like in the case of the relativistic theory of Van der Waals (or Casimir-Polder) interactions, conformal invariance is broken but the magnetic and electric susceptibilities are not bound to coincide. We analyze the formation of large-scale magnetic fields in slow-roll inflation and find that they are generated at the level of a few hundredths of a nG and over typical length scales between few Mpc and 100 Mpc. Using a new time parametrization that reduces to conformal time but only for coincident susceptibilities, the gauge action is quantized while the evolution equations of the corresponding mode functions are more easily solvable. The power spectra depend on the normalized rates of variation of the two susceptibilities (or of the corresponding gauge couplings) and on the absolute value of their ratio at the beginning of inflation. We pin down explicit regions in the parameter space where all the physical requirements (i.e., the backreaction constraints, the magnetogenesis bounds and the naturalness of the initial conditions of the scenario) are jointly satisfied. Weakly coupled initial data are favored if the gauge couplings are of the same order at the end of inflation. Duality is systematically used to simplify the analysis of the wide parameter space of the model.

  5. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

    PubMed Central

    2014-01-01

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817

  6. Aqueous gating of van der Waals materials on bilayer nanopaper.

    PubMed

    Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing

    2014-10-28

    In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors. PMID:25283598

  7. Charge Transfer Excitons at van der Waals Interfaces.

    PubMed

    Zhu, Xiaoyang; Monahan, Nicholas R; Gong, Zizhou; Zhu, Haiming; Williams, Kristopher W; Nelson, Cory A

    2015-07-01

    The van der Waals interfaces of molecular donor/acceptor or graphene-like two-dimensional (2D) semiconductors are central to concepts and emerging technologies of light-electricity interconversion. Examples include, among others, solar cells, photodetectors, and light emitting diodes. A salient feature in both types of van der Waals interfaces is the poorly screened Coulomb potential that can give rise to bound electron-hole pairs across the interface, i.e., charge transfer (CT) or interlayer excitons. Here we address common features of CT excitons at both types of interfaces. We emphasize the competition between localization and delocalization in ensuring efficient charge separation. At the molecular donor/acceptor interface, electronic delocalization in real space can dictate charge carrier separation. In contrast, at the 2D semiconductor heterojunction, delocalization in momentum space due to strong exciton binding may assist in parallel momentum conservation in CT exciton formation. PMID:26001297

  8. Generalized van der Waals density functional theory for nonuniform polymers

    SciTech Connect

    Patra, Chandra N.; Yethiraj, Arun

    2000-01-15

    A density functional theory is presented for the effect of attractions on the structure of polymers at surfaces. The theory treats the ideal gas functional exactly, and uses a weighted density approximation for the hard chain contribution to the excess free energy functional. The attractive interactions are treated using a van der Waals approximation. The theory is in good agreement with computer simulations for the density profiles at surfaces for a wide range of densities and temperatures, except for low polymer densities at low temperatures where it overestimates the depletion of chains from the surface. This deficiency is attributed to the neglect of liquid state correlations in the van der Waals term of the free energy functional. (c) 2000 American Institute of Physics.

  9. Millimeter-wave rubidium Rydberg van der Waals spectroscopy

    SciTech Connect

    Han Jianing; Gallagher, T. F.

    2009-05-15

    We have observed the diatomic nsns{yields}ns(n+1)s{yields}(n+1)s(n+1)s microwave transitions of pairs of cold Rb Rydberg atoms for 36der Waals shift due to its near degeneracy with the nearby np{sub 3/2}np{sub 3/2} state. In fact, the energy difference and the van der Waals shift change sign at n=38 and we observe shifts of both signs. The combined excitation of the ns(n+1)s and (n+1)s(n+1)s states leads to an unusual line shape which can be described by a three-level Floquet model.

  10. Van der Waals density functional applied to adsorption systems

    NASA Astrophysics Data System (ADS)

    Hamada, Ikutaro

    2013-03-01

    The van der Waals density functional (vdW-DF) is a promising density functional to describe the van der Waals forces within density functional theory. However, despite the recent efforts, there is still room for further improvement, especially for describing molecular adsorption on metal surfaces. I will show that by choosing appropriate exchange and nonlocal correlation functionals, it is possible to calculate geometries and electronic structures for adsorption systems accurately within the framework of vdW-DF. Applicability of the present approach will be illustrated with its applications to graphene/metal, fullerene/metal, and water/graphene interfaces. This work is partly supported by a Grant-in-Aid for Scientific Research on Innovative Area (No. 23104501). AIMR was established by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  11. Van der Waals interaction-tuned heat transfer in nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Wang, Jianxiang; Kang, Wei

    2012-12-01

    Interfaces usually impede heat transfer in heterogeneous structures. Recent experiments show that van der Waals (vdW) interactions can significantly enhance thermal conductivity parallel to the interface of a bundle of nanoribbons compared to a single layer of freestanding nanoribbon. In this paper, by simulating heat transfer in nanostructures based on a model of nonlinear one-dimensional lattices interacting via van der Waals interactions, we show that the vdW interface interaction can adjust the thermal conductivity parallel to the interface. The efficiency of the adjustment depends on the intensity of interactions and temperature. The nonlinear dependence of the conductivity on the intensity of interactions agrees well with experimental results for carbon nanotube bundles, multi-walled carbon nanotubes, multi-layer graphene, and nanoribbons.

  12. van der Waals explosion of cold Rydberg clusters

    NASA Astrophysics Data System (ADS)

    Faoro, R.; Simonelli, C.; Archimi, M.; Masella, G.; Valado, M. M.; Arimondo, E.; Mannella, R.; Ciampini, D.; Morsch, O.

    2016-03-01

    We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with interparticle distances of around 5 μ m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.

  13. Spin-Flavor van der Waals Forces and NN interaction

    SciTech Connect

    Alvaro Calle Cordon, Enrique Ruiz Arriola

    2011-12-01

    A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computed either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.

  14. Quantum field theory of van der Waals friction

    SciTech Connect

    Volokitin, A. I.; Persson, B. N. J.

    2006-11-15

    van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-infinite solid is studied using thermal quantum field theory in the Matsubara formulation. We show that the friction to linear order in the sliding velocity can be obtained from the equilibrium Green functions and that our treatment can be extended for bodies with complex geometry. The calculated friction agrees with the friction obtained using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation theorem. We show that it should be possible to measure the van der Waals friction in noncontact friction experiment using state-of-the-art equipment.

  15. A van der Waals free energy in electrolytes revisited

    NASA Astrophysics Data System (ADS)

    Jancovici, B.

    2006-01-01

    A system of three electrolytes separated by two parallel planes is considered. Each region is described by a dielectric constant and a Coulomb fluid in the Debye-Hückel regime. In their book Dispersion Forces, Mahanty and Ninham have given the van der Waals free energy of this system. We rederive this free energy by a different method, using linear response theory and the electrostatic Maxwell stress tensor for obtaining the dispersion force.

  16. Structure and dynamics of small van der Waals complexes

    SciTech Connect

    Loreau, J.

    2014-10-06

    We illustrate computational aspects of the calculation of the potential energy surfaces of small (up to five atoms) van der Waals complexes with high-level quantum chemistry techniques such as the CCSD(T) method with extended basis sets. We discuss the compromise between the required accuracy and the computational time. Further, we show how these potential energy surfaces can be fitted and used in dynamical calculations such as non-reactive inelastic scattering.

  17. Van der Waals and Casimir-Polder interactions between neutrons

    NASA Astrophysics Data System (ADS)

    Babb, James F.; Hussein, Mahir S.

    2016-03-01

    We investigate the van der Waals interaction between neutrons using the theory of Casimir and Polder, wherein the potential for asymptotically large separations falls off as the inverse seventh power, and compare it to the similar interaction between a neutron and a proton, for which the asymptotic interaction falls off as the inverse fourth power. Modifications of the formalism to extend the validity to smaller separations using dynamic electric and magnetic dipole polarizability data are discussed.

  18. Steady dynamics of exothermic chemical wave fronts in van der Waals fluids.

    PubMed

    Dumazer, G; Antoine, C; Lemarchand, A; Nowakowski, B

    2009-12-01

    We study the steady dynamics of an exothermic Fisher-Kolmogorov-Petrovsky-Piskunov chemical wave front traveling in a one-dimensional van der Waals fluid. The propagating wave is initiated by a nonuniformity in reactant concentration contrary to usual combustion ignition processes. The heat release and activation energy of the reaction play the role of control parameters. We recently proved that the propagation of an exothermic chemical wave front in a perfect gas displays a forbidden interval of stationary wave front speeds [G. Dumazer, M. Leda, B. Nowakowski, and A. Lemarchand, Phys. Rev. E 78, 016309 (2008)]. We examine how this result is modified for nonideal fluids and determine the effect of the van der Waals parameters and fluid density on the bifurcation between diffusion flames and Chapman-Jouguet detonation waves as heat release increases. Analytical predictions are confirmed by the numerical solution of the hydrodynamic equations including reaction kinetics. PMID:20365269

  19. Direct Measurement of the van der Waals Interaction between Two Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Béguin, L.; Vernier, A.; Chicireanu, R.; Lahaye, T.; Browaeys, A.

    2013-06-01

    We report the direct measurement of the van der Waals interaction between two isolated, single Rydberg atoms separated by a controlled distance of a few micrometers. Working in a regime where the single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction, we observe partial Rydberg blockade, whereby the time-dependent populations of the various two-atom states exhibit coherent oscillations with several frequencies. Quantitative comparison of the data with a simple model based on the optical Bloch equations allows us to extract the van der Waals energy, and observe its characteristic C6/R6 dependence. The measured C6 coefficients agree well with ab initio calculations, and we observe their dramatic increase with the principal quantum number n of the Rydberg state.

  20. Application of diffusion Monte Carlo to materials dominated by van der Waals interactions

    SciTech Connect

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols; Kim, Jeongnim; Von Lilienfeld, Anatole

    2014-01-01

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  1. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions

    DOE PAGESBeta

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; von Lilienfeld, O. Anatole

    2014-06-12

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  2. Ionized van-der-Waals systems: Structure and interactions

    SciTech Connect

    Zuelicke, L.

    1996-12-31

    Ions of molecular systems with internal interactions partly of van-der-Waals type differ significantly from their neutral parent species in binding, structure and dynamics. Theoretical knowledge is still rather scarce. The paper discusses some recent advances from theoretical work in the field concerning (i) electronic and geometric structure of triatomic rare-gas containing cations like Ar{sub 3}{sup +} and ArHCI{sup +}, in ground and excited electronic states; (ii) potential energy surfaces for the interaction of H{sup +} or H{sup -} with diatomic molecules, in ground and excited electronic states; (iii) some features of the dynamics of these systems.

  3. Impact of van der Waals Interactions on Single Asperity Friction

    NASA Astrophysics Data System (ADS)

    Lessel, Matthias; Loskill, Peter; Hausen, Florian; Gosvami, Nitya Nand; Bennewitz, Roland; Jacobs, Karin

    2013-07-01

    Single asperity measurements on Si wafers with variable SiO2 layer thickness, yet identical roughness, revealed the influence of van der Waals (vdW) interactions on friction: on thin (1 nm) SiO2 layers, higher friction and jump-off forces were observed as compared to thick (150 nm) SiO2 layers. The vdW interactions were additionally controlled by a set of silanized Si wafers, exhibiting the same trend. The experimental results demonstrate the influence of the subsurface material and are quantitatively described by combining calculations of interactions of the involved materials and the Derjaguin-Müller-Toporov model.

  4. Impact of van der Waals interactions on single asperity friction.

    PubMed

    Lessel, Matthias; Loskill, Peter; Hausen, Florian; Gosvami, Nitya Nand; Bennewitz, Roland; Jacobs, Karin

    2013-07-19

    Single asperity measurements on Si wafers with variable SiO(2) layer thickness, yet identical roughness, revealed the influence of van der Waals (vdW) interactions on friction: on thin (1 nm) SiO(2) layers, higher friction and jump-off forces were observed as compared to thick (150 nm) SiO(2) layers. The vdW interactions were additionally controlled by a set of silanized Si wafers, exhibiting the same trend. The experimental results demonstrate the influence of the subsurface material and are quantitatively described by combining calculations of interactions of the involved materials and the Derjaguin-Müller-Toporov model. PMID:23909336

  5. Hybrid Meson Potentials and the Gluonic van der Waals Force

    SciTech Connect

    O. Lakhina; E.S. Swanson

    2004-03-01

    The chromoelectric polarizability of mesons governs the strength of the gluonic van der Waals force and therefore of non-quark-exchange processes in hadronic physics. We compute the polarizability of heavy mesons with the aid of lattice gauge theory and the Born--Oppenheimer adiabatic expansion. We find that the operator product expansion breaks down at surprisingly large quarks masses due to nonperturbative gluodynamics and that previous conclusions concerning J/{psi}--nuclear matter interactions and J/{psi} dissociation in the quark-gluon plasma must be substantially modified.

  6. Van der Waals Epitaxy of Ultrathin Halide Perovkistes

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Yunfeng; Shi, Jian

    We present our understanding, with CH3NH3PbX3 as a model system, on the 2D van der Waals growth and kinetics of 3D parent materials. We show the successful synthesis of ultrathin (sub-10 nm), large scale (a few tens of μm) single crystalline 2D perovskite thin films on layered mica substrate by van der Waals (VDW) epitaxy. Classical nucleation and growth model explaining conventional epitaxy has been modified to interpret the unique 2D results under VDW mechanism. The generalization of our model shows that a 3D crystal with low cohesive energy tends to favor the 2D growth while the one with strong cohesive energy has less kinetic window. With Monte Carlo simulations, we show that the fractal 2D morphology in perovskite precisely manifests the kinetic competition between VDW diffusivity and thermodynamic driving force, a unique phenomenon to VDW growth, suggesting a fundamental limit on the morphology stability of the 2D form of a 3D material. On the other hand, our single crystal thin film growth results and subsequent cryogenic study in the iodide perovskite provide a perfect resource for the exploration of its complex optical and electronic properties and unveiling the origins of its popularity in the energy conversion field.

  7. Synthesis and Investigation of van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Culbertson, James; Currie, Marc; Jonker, Berend

    2015-03-01

    The recent isolation of single layers of transition metal dichalcogenides (TMD) has demonstrated that reducing dimensionality can alter the material properties. In particular, MoS2, MoSe2, WS2, and WSe2 exhibit an abrupt transition from indirect to direct bandgap semiconductors at monolayer thickness. Monolayer TMDs are promising materials for electronic components due to their high mobility, high on/off ratio, and low standby power dissipation. Additionally, selective layer-by-layer stacking to form van der Waals (vdW) heterostructures may provide the ability to controllably engineer electronic, optic, and spintronic properties. Recently, several methods were investigated to achieve vdW heterostructures including sequential exfoliation, stacking of chemical vapor deposition (CVD) grown monolayers, and epitaxial growth of bilayers. We detail our CVD synthesis of the monolayer TMDs (MoS2, MoSe2, WS2 and WSe2) and the subsequent fabrication and characterization of vdW heterostructures. In our heterostructures, we observe a dramatic decrease in PL intensity compared to the monolayer constituents. The Raman spectra exhibit clear and distinct differences from a superposition of monolayer spectra, demonstrating that interactions across the van der Waals interface in these heterostructures may significantly modify the net electronic properties. We find the observed behaviors are influenced by many factors, including charge transfer, substrate effects, stacking sequence, as well as intra- and inter-layer exciton formation, which will be discussed here.

  8. Two-dimensional van der Waals C60 molecular crystal

    PubMed Central

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-01-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55–100 GPa, 90–155 MPa, and 1.5–2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics. PMID:26183501

  9. Two-dimensional van der Waals C60 molecular crystal

    NASA Astrophysics Data System (ADS)

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-07-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55-100 GPa, 90-155 MPa, and 1.5-2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics.

  10. van der Waals interaction as a summable asymptotic series

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ruzsinszky, Adrienn; Sun, Jianwei; Glindmeyer, Stephen; Csonka, Gabor I.

    2012-12-01

    The dynamic multipole polarizabilities and thus the second-order van der Waals coefficients C2k of all orders are known exactly for the interaction between two classical spherical conducting shells, each of uniform electron density ρ with outer radius R and thickness t. The result is C2k=-ck(t/R)4πρ[(2R)2]k. The ck approach a limiting constant value, so the infinite series for the van der Waals interaction at separation d, -C6/d6-C8/d8-⋯, can be summed analytically, diverging only for d≤2R. This divergence can be removed without changing the asymptotic series. Real quasispherical objects like nanoclusters, fullerenes, and even atoms can be approximated by this spherical-shell model, with R fixed by the true static dipole polarizability. Once t/R is fixed, all the higher coefficients are determined by just C6 and C8. Finally, we compare the exact C2k to those from a pair interaction model, which works for solid spheres (t=R) but not for fullerenes.

  11. Quantum Monte Carlo Simulation of condensed van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; Anatole von Lilienfeld, O.

    2012-02-01

    Van der Waals forces are as ubiquitous as infamous. While post-Hartree-Fock methods enable accurate estimates of these forces in molecules and clusters, they remain elusive for dealing with many-electron condensed phase systems. We present Quantum Monte Carlo [1,2] results for condensed van der Waals systems. Interatomic many-body contributions to cohesive energies and bulk modulus will be discussed. Numerical evidence is presented for crystals of rare gas atoms, and compared to experiments and methods [3]. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.[4pt] [1] J. Kim, K. Esler, J. McMinis and D. Ceperley, SciDAC 2010, J. of Physics: Conference series, Chattanooga, Tennessee, July 11 2011 [0pt] [2] QMCPACK simulation suite, http://qmcpack.cmscc.org (unpublished)[0pt] [3] O. A. von Lillienfeld and A. Tkatchenko, J. Chem. Phys. 132 234109 (2010)

  12. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene?

    NASA Astrophysics Data System (ADS)

    Park, Je-Geun

    2016-08-01

    There has been a huge increase of interests in two-dimensional van der Waals materials over the past ten years or so with the conspicuous absence of one particular class of materials: magnetic van der Waals systems. In this Viewpoint, we point it out and illustrate how we might be able to benefit from exploring these so-far neglected materials.

  13. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as

  14. Body-assisted van der Waals interaction between two atoms

    SciTech Connect

    Safari, Hassan; Buhmann, Stefan Yoshi; Welsch, Dirk-Gunnar; Ho Trung Dung

    2006-10-15

    Using fourth-order perturbation theory, a general formula for the van der Waals potential of two neutral, unpolarized, ground-state atoms in the presence of an arbitrary arrangement of dispersing and absorbing magnetodielectric bodies is derived. The theory is applied to two atoms in bulk material and in front of a planar multilayer system, with special emphasis on the cases of a perfectly reflecting plate and a semi-infinite half space. It is demonstrated that the enhancement and reduction of the two-atom interaction due to the presence of a perfectly reflecting plate can be understood, at least in the nonretarded limit, by using the method of image charges. For the semi-infinite half space, both analytical and numerical results are presented.

  15. Heterostructures based on inorganic and organic van der Waals systems

    SciTech Connect

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-09-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  16. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya

    2015-12-01

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  17. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    SciTech Connect

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  18. Coincident-site lattice matching during van der Waals epitaxy

    PubMed Central

    Boschker, Jos E.; Galves, Lauren A.; Flissikowski, Timur; Lopes, Joao Marcelo J.; Riechert, Henning; Calarco, Raffaella

    2015-01-01

    Van der Waals (vdW) epitaxy is an attractive method for the fabrication of vdW heterostructures. Here Sb2Te3 films grown on three different kind of graphene substrates (monolayer epitaxial graphene, quasi freestanding bilayer graphene and the SiC (6√3 × 6√3)R30° buffer layer) are used to study the vdW epitaxy between two 2-dimensionally (2D) bonded materials. It is shown that the Sb2Te3 /graphene interface is stable and that coincidence lattices are formed between the epilayers and substrate that depend on the size of the surface unit cell. This demonstrates that there is a significant, although relatively weak, interfacial interaction between the two materials. Lattice matching is thus relevant for vdW epitaxy with two 2D bonded materials and a fundamental design parameter for vdW heterostructures. PMID:26658715

  19. Van der Waals Interactions in Density Functional Theory: Intermolecular Complexes

    NASA Astrophysics Data System (ADS)

    Kannemann, Felix; Becke, Axel

    2010-03-01

    Conventional density functional theory (GGA and hybrid functionals) fails to account for dispersion interactions and is therefore not applicable to systems where van der Waals interactions play a dominant role, such as intermolecular complexes and biomolecules. The exchange-hole dipole moment (XDM) dispersion model of Becke and Johnson [A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)] corrects for this deficiency. We have previously shown that the XDM dispersion model can be combined with standard GGA functionals (PW86 for exchange and PBE for correlation) to give accurate binding energy curves for rare-gas diatomics [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 5, 719 (2009)]. Here we present further tests of the GGA-XDM method using benchmark sets including hydrogen bonding, electrostatic, dispersion and stacking interactions, and systems ranging from rare-gas diatomics to biomolecular complexes.

  20. Van der Waals Density Functional Theory with Applications

    NASA Astrophysics Data System (ADS)

    Langreth, David C.

    2004-03-01

    We discuss the development of electronic density functionals that are applicable for weakly bound systems where the van der Waals interaction and its ramifications become important. Our current functionals approach the correct asymptotic dependence at large distances and are seamless at small distances. The first form of the functional, appropriate for layered systems, has been recently applied to graphite, boron nitride, and molybdenum sulfide [H. Rydberg et al., Phys. Rev. Lett. 91, 126402 (2003) and D. C. Langreth, Int. J. Quant. Chem. (submitted), see http//:www.physics.rutgers.edu/ ˜langreth/preprints/dft2003.pdf]. The second form of the functional [M. Dion it et al. (to be published)] is appropriate for arbitrary geometries. Recent results on rare gas dimers and the benzene dimer suggest promise for this method as well.

  1. Band Gap Engineering of PbI2 by Incommensurate Van der Waals Epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Jian

    Van der Waals epitaxial growth had been thought to have trivial contribution on inducing substantial epitaxial strain in thin films due to its weak nature of Van der Waals interfacial energy. Due to this, electrical and optical structure engineering via Van der Waals epitaxial strain has been rarely studied. However, by appropriate film-substrate selection, we show that significant band structure engineering could be achieved in a soft thin film material PbI2 via Van der Waals epitaxy. The thickness dependent photoluminescence of single crystal PbI2 flakes was studied and attributed to the substrate-film coupling effect via incommensurate Van der Waals epitaxy. It is proposed that the Van der Waals strain is resulted from the soft nature of PbI2 and large Van der Waals interaction due to the involvement of heavy elements. Such strain plays vital roles in modifying the band gap of PbI2. The deformation potential theory is used to quantitatively unveil the correlation between thickness, strain and band gap change. Our hypothesis is confirmed by the subsequent mechanical bending test and Raman characterization.

  2. Tuning the van der Waals Interaction of Graphene with Molecules via Doping.

    PubMed

    Huttmann, Felix; Martínez-Galera, Antonio J; Caciuc, Vasile; Atodiresei, Nicolae; Schumacher, Stefan; Standop, Sebastian; Hamada, Ikutaro; Wehling, Tim O; Blügel, Stefan; Michely, Thomas

    2015-12-01

    We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene, a case of pure van der Waals interaction, strengthens with n and weakens with p doping of graphene. Density-functional theory calculations that include the van der Waals interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the van der Waals interaction is modified by changing the spatial extent of graphene's π orbitals via doping. PMID:26684126

  3. Tuning the van der Waals Interaction of Graphene with Molecules via Doping

    NASA Astrophysics Data System (ADS)

    Huttmann, Felix; Martínez-Galera, Antonio J.; Caciuc, Vasile; Atodiresei, Nicolae; Schumacher, Stefan; Standop, Sebastian; Hamada, Ikutaro; Wehling, Tim O.; Blügel, Stefan; Michely, Thomas

    2015-12-01

    We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene, a case of pure van der Waals interaction, strengthens with n and weakens with p doping of graphene. Density-functional theory calculations that include the van der Waals interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the van der Waals interaction is modified by changing the spatial extent of graphene's π orbitals via doping.

  4. Gate tunable WSe2-BP van der Waals heterojunction devices

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Zhang, Ting Ting; Zhang, Jing; Xiang, Jianyong; Yu, Hua; Wu, Shuang; Lu, Xiaobo; Wang, Guole; Wen, Fusheng; Liu, Zhongyuan; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2016-02-01

    Due to the weak screening effect, the concentration and type of charge carriers in 2D semiconductor heterostructures can be effectively tuned by electrostatic gating, enabling us to realize different types of heterojunctions in a single device. Such `type tunable' properties are useful for designing novel electrical or optoelectrical devices. Here, we demonstrate a `type tunable' heterojunction device construct with two pieces of ambipolar 2D semiconductors: WSe2 and black phosphorus (BP). This heterojunction could be tuned to either the p-p junction or n-n junction by gate modulation. The p-p junction shows a large current rectification ratio while the n-n junction shows a negligible current rectification ratio, indicating a large valence band offset and a small conduction band offset at the WSe2/BP interface. In the optoelectrical measurements, we found the amplitude and even the polarity of photocurrent could be modulated by electrostatic gating. Our study could further enhance the understanding of designing devices based on these `type tunable' van der Waals heterojunctions. Moreover, the properties of the WSe2/BP interface were also experimentally identified through the electrical and optoelectrical measurements in our study.Due to the weak screening effect, the concentration and type of charge carriers in 2D semiconductor heterostructures can be effectively tuned by electrostatic gating, enabling us to realize different types of heterojunctions in a single device. Such `type tunable' properties are useful for designing novel electrical or optoelectrical devices. Here, we demonstrate a `type tunable' heterojunction device construct with two pieces of ambipolar 2D semiconductors: WSe2 and black phosphorus (BP). This heterojunction could be tuned to either the p-p junction or n-n junction by gate modulation. The p-p junction shows a large current rectification ratio while the n-n junction shows a negligible current rectification ratio, indicating a large valence

  5. Surface energy and wettability of van der Waals structures

    NASA Astrophysics Data System (ADS)

    Annamalai, Meenakshi; Gopinadhan, Kalon; Han, Sang A.; Saha, Surajit; Park, Hye Jeong; Cho, Eun Bi; Kumar, Brijesh; Patra, Abhijeet; Kim, Sang-Woo; Venkatesan, T.

    2016-03-01

    The wetting behaviour of surfaces is believed to be affected by van der Waals (vdW) forces; however, there is no clear demonstration of this. With the isolation of two-dimensional vdW layered materials it is possible to test this hypothesis. In this paper, we report the wetting behaviour of vdW heterostructures which include chemical vapor deposition (CVD) grown graphene, molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on few layers of hexagon boron nitride (h-BN) and SiO2/Si. Our study clearly shows that while this class of two-dimensional materials are not completely wetting transparent, there seems to be a significant amount of influence on their wetting properties by the underlying substrate due to dominant vdW forces. Contact angle measurements indicate that graphene and graphene-like layered transitional metal dichalcogenides invariably have intrinsically dispersive surfaces with a dominating London-vdW force-mediated wettability.The wetting behaviour of surfaces is believed to be affected by van der Waals (vdW) forces; however, there is no clear demonstration of this. With the isolation of two-dimensional vdW layered materials it is possible to test this hypothesis. In this paper, we report the wetting behaviour of vdW heterostructures which include chemical vapor deposition (CVD) grown graphene, molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on few layers of hexagon boron nitride (h-BN) and SiO2/Si. Our study clearly shows that while this class of two-dimensional materials are not completely wetting transparent, there seems to be a significant amount of influence on their wetting properties by the underlying substrate due to dominant vdW forces. Contact angle measurements indicate that graphene and graphene-like layered transitional metal dichalcogenides invariably have intrinsically dispersive surfaces with a dominating London-vdW force-mediated wettability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06705

  6. Surface energy and wettability of van der Waals structures.

    PubMed

    Annamalai, Meenakshi; Gopinadhan, Kalon; Han, Sang A; Saha, Surajit; Park, Hye Jeong; Cho, Eun Bi; Kumar, Brijesh; Patra, Abhijeet; Kim, Sang-Woo; Venkatesan, T

    2016-03-14

    The wetting behaviour of surfaces is believed to be affected by van der Waals (vdW) forces; however, there is no clear demonstration of this. With the isolation of two-dimensional vdW layered materials it is possible to test this hypothesis. In this paper, we report the wetting behaviour of vdW heterostructures which include chemical vapor deposition (CVD) grown graphene, molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on few layers of hexagon boron nitride (h-BN) and SiO2/Si. Our study clearly shows that while this class of two-dimensional materials are not completely wetting transparent, there seems to be a significant amount of influence on their wetting properties by the underlying substrate due to dominant vdW forces. Contact angle measurements indicate that graphene and graphene-like layered transitional metal dichalcogenides invariably have intrinsically dispersive surfaces with a dominating London-vdW force-mediated wettability. PMID:26910437

  7. Gate tunable WSe2-BP van der Waals heterojunction devices.

    PubMed

    Chen, Peng; Zhang, Ting Ting; zhang, Jing; Xiang, Jianyong; Yu, Hua; Wu, Shuang; Lu, Xiaobo; Wang, Guole; Wen, Fusheng; Liu, Zhongyuan; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2016-02-14

    Due to the weak screening effect, the concentration and type of charge carriers in 2D semiconductor heterostructures can be effectively tuned by electrostatic gating, enabling us to realize different types of heterojunctions in a single device. Such 'type tunable' properties are useful for designing novel electrical or optoelectrical devices. Here, we demonstrate a 'type tunable' heterojunction device construct with two pieces of ambipolar 2D semiconductors: WSe2 and black phosphorus (BP). This heterojunction could be tuned to either the p-p junction or n-n junction by gate modulation. The p-p junction shows a large current rectification ratio while the n-n junction shows a negligible current rectification ratio, indicating a large valence band offset and a small conduction band offset at the WSe2/BP interface. In the optoelectrical measurements, we found the amplitude and even the polarity of photocurrent could be modulated by electrostatic gating. Our study could further enhance the understanding of designing devices based on these 'type tunable' van der Waals heterojunctions. Moreover, the properties of the WSe2/BP interface were also experimentally identified through the electrical and optoelectrical measurements in our study. PMID:26810387

  8. Effects of van der Waals interaction on nanoparticle adsorption

    NASA Astrophysics Data System (ADS)

    Poddar, Nitun; Amar, Jacques

    2014-03-01

    The results of molecular dynamics (MD) simulations carried out using an all-atom model in order to understand the structure, diffusion, and binding of dodecanethiol (DDT)-coated Au nanoparticles (NPs) at the toluene-air interface are presented. We find that due to the strong attraction between DDT and toluene, the NP lies mainly below the interface. As a result, the coefficient for diffusion along the interface is close to the Stokes-Einstein prediction for 3D bulk diffusion. We also find that, due to the small ratio of ligand length to NP diameter, there is little spontaneous asymmetry in the NP coating. We have also used our MD results along with analytical expressions for the van der Waals (VdW) interactions to estimate corrections to the adsorption energy for DDT-coated Au NPs at the toluene-vapor interface as well as for alkanethiol-coated NPs at the water-vapor interface. In both cases, we find that the core-solvent interaction may significantly reduce the binding energy. We also find that the competition between this interaction and short-range attraction to the interface leads to well-defined activation barriers for interfacial desorption as well as for NP adsorption from the solvent. This work was supported by NSF Grant No. CHE-1012896.

  9. Spatially Correlated Disorder in Epitaxial van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Zhang, Zhan; Schleputz, Christian; Liu, Ying; Wojcik, Michael; Myers-Ward, Rachael; Gaskill, D. Kurt; Fenter, Paul; Li, Lian

    The structural cohesion of van der Waals (vdW) heterostructures relies upon a cooperative balance between strong intra-layer bonded interactions and weak inter-layer coupling. The confinement of extended defects to within a single vdW layer and competing interactions introduced by epitaxial constraints could generate fundamentally new structural disorders. Here we report on the presence of spatially correlated and localized disorder states that coexist with the near perfect crystallographic order along the growth direction of epitaxial vdW heterostructure of Bi2Se3/graphene/SiC grown by molecular beam epitaxy. With the depth penetration of hard X-ray diffraction microscopy and high-resolution surface scattering, we imaged local structural configurations from the atomic to mesoscopic length scales, and found that these disorder states result as a confluence of atomic scale modulations in the strength of vdW layer-layer interactions and nanoscale boundary conditions imposed by the substrate. These findings reveal a vast landscape of novel disorder states that can be manifested in epitaxial vdW heterostructures. Supported by the Wigner Fellowship program at Oak Ridge Nat'l Lab.

  10. Peptide folding driven by Van der Waals interactions.

    PubMed

    Sung, Shen-Shu

    2015-09-01

    Contrary to the widespread view that hydrogen bonding and its entropy effect play a dominant role in protein folding, folding into helical and hairpin-like structures is observed in molecular dynamics (MD) simulations without hydrogen bonding in the peptide-solvent system. In the widely used point charge model, hydrogen bonding is calculated as part of the interaction between atomic partial charges. It is removed from these simulations by setting atomic charges of the peptide and water to zero. Because of the structural difference between the peptide and water, van der Waals (VDW) interactions favor peptide intramolecular interactions and are a major contributing factor to the structural compactness. These compact structures are amino acid sequence dependent and closely resemble standard secondary structures, as a consequence of VDW interactions and covalent bonding constraints. Hydrogen bonding is a short range interaction and it locks the approximate structure into the specific secondary structure when it is included in the simulation. In contrast to standard molecular simulations where the total energy is dominated by charge-charge interactions, these simulation results will give us a new view of the folding mechanism. PMID:26013298

  11. Photocurrent generation with two-dimensional van der Waals semiconductors.

    PubMed

    Buscema, Michele; Island, Joshua O; Groenendijk, Dirk J; Blanter, Sofya I; Steele, Gary A; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2015-06-01

    Two-dimensional (2D) materials have attracted a great deal of interest in recent years. This family of materials allows for the realization of versatile electronic devices and holds promise for next-generation (opto)electronics. Their electronic properties strongly depend on the number of layers, making them interesting from a fundamental standpoint. For electronic applications, semiconducting 2D materials benefit from sizable mobilities and large on/off ratios, due to the large modulation achievable via the gate field-effect. Moreover, being mechanically strong and flexible, these materials can withstand large strain (>10%) before rupture, making them interesting for strain engineering and flexible devices. Even in their single layer form, semiconducting 2D materials have demonstrated efficient light absorption, enabling large responsivity in photodetectors. Therefore, semiconducting layered 2D materials are strong candidates for optoelectronic applications, especially for photodetection. Here, we review the state-of-the-art in photodetectors based on semiconducting 2D materials, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures. PMID:25909688

  12. Van der Waals interactions in density functional theory

    NASA Astrophysics Data System (ADS)

    Langreth, David C.

    2009-03-01

    The van der Waals density functional which we introduced half a decade agoootnotetextM. Dion et al. Phys. Rev. Lett. 92, 246401 (2004). and its self-consistent generalizationootnotetextT. Thonhauser et al., Phys. Rev. B 76, 125112 (2007). will be briefly reviewed. There are many collaborators in the application review that will follow, not only those who worked in the physics department at Rutgers% ootnotetextMaxime Dion, Aaron Puzder, T. Thonhauser, Valentino R. Cooper, Shen Li, Eamonn Murray, Lingzhu Kong, and Kyuho Lee. and at Chalmers,% ootnotetextHenrik Rydberg, Svetla Chakarova-K"ack, Jesper Kleis, Elsebeth Schr"oder, Per Hyldgaard, and Bengt I. Lundqvist. but also at Denmarks Technical University,% ootnotetextAndrei Kelkkanen, Poul G. Moses, Jesper Kleis, and Bengt I. Lundqvist. the chemistry department at Rutgers,% ootnotetextKonhoa Li, Jing Li, Yves Chabal, and Wilma K. Olson. and most recently at the University of Texas at Dallas.% ootnotetextNour Nijem and Yves Chabal. I will expand on our recent review article,ootnotetextD. C. Langreth et al., J. Phys. Cond. Mat. (in press). which hopefully will be published before the present talk, and include applications by other groups not listed below. If possible, I will also review results from a more recent collaboration to study nucleosomal DNA and beyond.

  13. Direct measurement of the van der Waals interaction between two Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Browaeys, A.

    2013-05-01

    This talk will report on the direct measurement of the van der Waals interaction between two isolated, single Rydberg atoms separated by a controlled distance of a few micrometers. By working in a regime where the single-atom Rabi frequency of the laser used for excitation to the Rydberg state is comparable to the interaction energy, we observe a partial Rydberg blockade, whereby the time-dependent populations of the various two-atom states exhibit coherent oscillations with several frequencies. A quantitative comparison of the data with a simple model based on the optical Bloch equations allows us to extract the van der Waals energy, and to observe its characteristic C6 /R6 dependence. The magnitude of the measured C6 coefficient agrees well with ab-initio calculations, and we observe its dramatic increase with the principal quantum number n of the Rydberg state. Our results demonstrate a good degree of experimental control, which opens interesting perspectives in quantum information processing and quantum simulation using long-range interactions between atoms.

  14. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort.

  15. Van der Waals coefficients beyond the classical shell model

    SciTech Connect

    Tao, Jianmin; Fang, Yuan; Hao, Pan; Scuseria, G. E.; Ruzsinszky, Adrienn; Perdew, John P.

    2015-01-14

    Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.

  16. Phase diagram of van der Waals-like phase separation in a driven granular gas.

    PubMed

    Khain, Evgeniy; Meerson, Baruch; Sasorov, Pavel V

    2004-11-01

    Equations of granular hydrostatics are used to compute the phase diagram of the recently discovered van der Waals-like phase separation in a driven granular gas. The model two-dimensional system consists of smooth hard disks in a rectangular box, colliding inelastically with each other and driven by a "thermal" wall at zero gravity. The spinodal line and the critical point of the phase separation are determined. Close to the critical point, the spinodal and binodal (coexistence) lines are determined analytically. Effects of the finite size of the confining box in the direction parallel to the thermal wall are investigated. These include suppression of the phase separation by heat conduction in the lateral direction and a change from supercritical to subcritical bifurcation. PMID:15600606

  17. Microstructure-dependent dynamic stability analysis of torsional NEMS scanner in van der Waals regime

    NASA Astrophysics Data System (ADS)

    Abdi, Javad; Keivani, Maryam; Abadyan, Mohamadreza

    2016-06-01

    The physico-mechanical behavior of nanoscale devices might be microstructure dependent. However, the classical continuum theory cannot correctly predict the microstructure dependency. In this paper, the strain gradient theory is employed to examine the instability characteristics of a nanoscanner with circular geometry. The governing equation of the scanner is derived incorporating the Coulomb and van der Waals (vdW) forces. The influences of applied voltage, squeeze damping and microstructure parameters on the dynamic instability of equilibrium points are studied by plotting the phase portrait and bifurcation diagrams. In the presence of the applied voltage, the phase portrait shows the saddle-node bifurcation while for freestanding scanner a subcritical pitchfork bifurcation is observed. It is concluded that the microstructure parameter enhances the torsional stability.

  18. A self-consistent GW approach to the van der Waals potential for a helium dimer.

    PubMed

    Shoji, Toru; Kuwahara, Riichi; Ono, Shota; Ohno, Kaoru

    2016-09-21

    van der Waals interaction between two helium (He) atoms is studied by calculating the total energy as a function of the He-He distance within the self-consistent GW approximation, which is expected to behave correctly in the long wavelength limit. In the Born-Oppenheimer (BO) approximation, the pair potential curve has its minimum value at 2.87 Å, which is somewhat larger than the local density approximation result, 2.40 Å, and is closer to previous quantum chemistry results. The expectation value for the interatomic distance, calculated by solving the Schrödinger equation for the two nuclei problem using the BO potential energy curve, is 30 Å, which is smaller but of the same order as previous experimental and theoretical results. PMID:27538378

  19. Hidden scale invariance in molecular van der Waals liquids: A simulation study

    NASA Astrophysics Data System (ADS)

    Schrøder, Thomas B.; Pedersen, Ulf R.; Bailey, Nicholas P.; Toxvaerd, Søren; Dyre, Jeppe C.

    2009-10-01

    Results from molecular dynamics simulations of two viscous molecular model liquids—the Lewis-Wahnström model of orthoterphenyl and an asymmetric dumbbell model—are reported. We demonstrate that the liquids have a “hidden” approximate scale invariance: equilibrium potential energy fluctuations are accurately described by inverse power-law (IPL) potentials, the radial distribution functions are accurately reproduced by the IPL’s, and the radial distribution functions obey the IPL predicted scaling properties to a good approximation. IPL scaling of the dynamics also applies—with the scaling exponent predicted by the equilibrium fluctuations. In contrast, the equation of state does not obey the IPL scaling. We argue that our results are general for van der Waals liquids, but do not apply, e.g., for hydrogen-bonded liquids.

  20. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    SciTech Connect

    Zylstra, A. B.; Barnard, J. J.; More, R. M.

    2009-12-23

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  1. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    SciTech Connect

    Zylstra, A; Barnard, J J; More, R M

    2010-03-19

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  2. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    PubMed Central

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  3. Van der Waals interactions and the limits of isolated atom models at interfaces.

    PubMed

    Kawai, Shigeki; Foster, Adam S; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H; Jung, Thomas A; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar-Xe, Kr-Xe and Xe-Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal-organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  4. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions.

    PubMed

    Li, Yupeng; Kim, Hyung-ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-09-14

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. PMID:26242771

  5. Nano-photonic phenomena in van der Waals heterostructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Basov, Dmitri N.

    2015-09-01

    van der Waals (vdW) crystals consist of individual atomic planes coupled by vdW interaction, similar to graphene monolayers in bulk graphite. We investigated van der Waals heterostructures assembled from atomically thin layers of graphene and hexagonal boron nitride (hBN). We launched, detected and imaged plasmonic, phonon polaritonic and hybrid plasmon-phonon polariton waves in a setting of an antenna based nano-infrared apparatus. Hyperbolic phonon polaritons in hBN enabled sub-diffractional focusing in infrared frequencies. Because electronic, plasmonic and phonon polaritonic properties in van der Waals heterstructures are intertwined, gate voltage and/or details of layer assembly enable efficient control of nano-photonic effects.

  6. Quantum vacuum photon modes and repulsive Lifshitz-van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dellieu, Louis; Deparis, Olivier; Muller, Jérôme; Kolaric, Branko; Sarrazin, Michaël

    2015-12-01

    The bridge between quantum vacuum photon modes and properties of patterned surfaces is currently being established on solid theoretical grounds. Based on these foundations, the manipulation of quantum vacuum photon modes in a nanostructured cavity is theoretically shown to be able to change the Lifshitz-van der Waals forces from attractive to repulsive regime. Since this concept relies on surface nanopatterning instead of chemical composition changes, it drastically relaxes the usual conditions for achieving repulsive Lifshitz-van der Waals forces. As a case study, the potential interaction energy between a nanopatterned polyethylene slab and a flat polyethylene slab with water as the intervening medium is calculated. Extremely small corrugation heights (<10 nm) are shown to be able to change the Lifshitz-van der Waals force from attractive to repulsive, the interaction strength being controlled by the corrugation height. This new approach could lead to various applications in surface science.

  7. Van der Waals interactions and the limits of isolated atom models at interfaces

    PubMed Central

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  8. Van der Waals interactions and the limits of isolated atom models at interfaces

    NASA Astrophysics Data System (ADS)

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-05-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar-Xe, Kr-Xe and Xe-Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal-organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems.

  9. Van der Waals interactions among alkali Rydberg atoms with excitonic states

    NASA Astrophysics Data System (ADS)

    Zoubi, Hashem

    2015-09-01

    We investigate the influence of the appearance of excitonic states on van der Waals interactions among two Rydberg atoms. The atoms are assumed to be in different Rydberg states, e.g., in the | {ns}> and | {np}> states. The resonant dipole-dipole interactions yield symmetric and antisymmetric excitons, with energy splitting that give rise to new resonances as the atoms approach each other. Only away from these resonances can the van der Waals coefficients, C6sp, be defined. We calculate the C6 coefficients for alkali atoms and present the results for lithium by applying perturbation theory. At short interatomic distances of several μ {{m}}, we show that the widely used simple model of two-level systems for excitons in Rydberg atoms breaks down, and the correct representation implies multi-level atoms. Even though, at larger distances one can keep the two-level systems but in including van der Waals interactions among the atoms .

  10. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-05-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.

  11. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.

    PubMed

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  12. Measurement of the van der Waals interaction by atom trajectory imaging

    NASA Astrophysics Data System (ADS)

    Thaicharoen, N.; Schwarzkopf, A.; Raithel, G.

    2015-10-01

    We study the repulsive van der Waals interaction of cold rubidium 70 S1 /2 Rydberg atoms by analysis of time-delayed pair-correlation functions. After excitation, Rydberg atoms are allowed to accelerate under the influence of the van der Waals force. Their positions are then measured using a single-atom imaging technique. From the average pair-correlation function of the atom positions we obtain the initial atom-pair separation and the terminal velocity, which yield the van der Waals interaction coefficient C6. The measured C6 value agrees well with calculations. The experimental method has been validated by simulations. The data hint at anisotropy in the overall expansion, caused by the shape of the excitation volume. Our measurement implies that the interacting entities are individual Rydberg atoms, not groups of atoms that coherently share a Rydberg excitation.

  13. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  14. Observation of long-lived van der Waals molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Yamazaki, Rekishu; Shibata, Kosuke; Yamamoto, Ryuta; Yamada, Hirotaka; Takahashi, Yoshiro

    2012-10-01

    We observe long-lived tightly bound van der Waals molecules of ytterbium in a three-dimensional optical lattice with a lifetime of 8.0 s. The molecules, state-selectively produced by a photoassociation technique from a Bose-Einstein condensate or an atomic Mott insulator, are successfully detected with a photodissociation method where the molecules are photodissociated into two atoms and the atoms are captured by a magneto-optical trap or optical molasses, for the fluorescence detection. This work will open up various possibilities of research with van der Waals molecules in an optical lattice.

  15. General theory based on fluctuational electrodynamics for van der Waals interactions in colloidal systems

    SciTech Connect

    Yannopapas, Vassilios

    2007-12-15

    A rigorous theory for the determination of the van der Waals interactions in colloidal systems is presented. The method is based on fluctuational electrodynamics and a multiple-scattering method which provides the electromagnetic Green's tensor. In particular, expressions for the Green's tensor are presented for arbitrary, finite collections of colloidal particles, for infinitely periodic or defected crystals, as well as for finite slabs of crystals. The presented formalism allows for ab initio calculations of the van der Waals interactions in colloidal systems since it takes fully into account retardation, many-body, multipolar, and near-field effects.

  16. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  17. Van der Waals free energy model for solubilization of oil in micelles.

    PubMed

    Troncoso, Americo Boza; Acosta, Edgar

    2015-01-21

    This work introduces the first of a two part thermodynamic framework to estimate the solubilization of nonpolar oils in micelles conformed by nonionic surfactants with linear alkyl tails, considering their configuration and the molecular properties of the constituents. This first part introduces a formal approach to account for the lipophilic (van der Waals) contributions to the free energy of solubilization in spherical micelles. To this end, this work uses two recently developed integration methods for sphere-shell and cone-shell VDW interactions that allow the calculation of surfactant-oil and surfactant-surfactant interactions that take place within the micelles of the solubilization process studied here. The method consists in calculating the free energy of transferring a normal alkane from its continuum, and surfactants monomers from empty micelles to produce an oil swollen micelle. The lipophilic interactions are estimated using the microscopic approach of Hamaker with Lifshitz-based Hamaker constants. The influence of n-alkane and surfactant tail length on the solubilization capacity predicted by the van der Walls free energy model (VDW-FEM) are consistent with experimental trends and it is also consistent with the lipophilic terms included in the semi-empirical Hydrophilic-Lipophilic-Difference + Net-Average-Curvature's (HLD-NAC) equation that predicts the phase behavior of microemulsions. As a result, these lipophilic terms can now be defined in terms of molecular interactions and molecular properties. PMID:25415662

  18. Generalized van der Waals Hamiltonian: periodic orbits and C1 nonintegrability.

    PubMed

    Guirao, Juan L G; Llibre, Jaume; Vera, Juan A

    2012-03-01

    The aim of this paper is to study the periodic orbits of the generalized van der Waals Hamiltonian system. The tool for studying such periodic orbits is the averaging theory. Moreover, for this Hamiltonian system we provide information on its C(1) nonintegrability, i.e., on the existence of a second first integral of class C(1). PMID:22587198

  19. First kind symmetric periodic solutions of the generalized van der Waals Hamiltonian

    NASA Astrophysics Data System (ADS)

    Alberti, Angelo; Vidal, Claudio

    2016-07-01

    The aim of this paper is to prove the existence of a new symmetric family of periodic solutions of the generalized van der Waals Hamiltonian. In fact, we prove the existence of several families of first kind symmetric periodic solutions as continuation of circular orbits of the Kepler problem in the spatial case.

  20. A theoretical study of the rovibrational levels of the bosonic van der Waals neon trimer.

    PubMed

    Salci, Moses; Levin, Sergey B; Elander, Nils; Yarevsky, Evgeny

    2008-10-01

    The eigenenergies and root mean square radii of the rovibrational levels (J = 0-3) of the weakly bound bosonic van der Waals neon trimer were calculated using a full angular momentum three-dimensional finite element method. The differing results of three previous studies for zero angular momentum are discussed, explained, and compared with the results presented here. PMID:19045087

  1. Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures.

    PubMed

    Choi, Yongsuk; Kang, Junmo; Jariwala, Deep; Kang, Moon Sung; Marks, Tobin J; Hersam, Mark C; Cho, Jeong Ho

    2016-05-01

    Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm(-2) ) and on/off current ratios (>10(4) ) in a narrow voltage window (<3 V). PMID:27002478

  2. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-21

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices. PMID:27314610

  3. van der Waals Density Functional Theory vdW-DFq for Semihard Materials

    NASA Astrophysics Data System (ADS)

    Peng, Qing; de, Suvranu

    There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials includes energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability are mainly determined by the interactions between instantaneously induced dipoles, the so called London dispersion force or van der Waals force. It is challenging to accurately model the structural and mechanical properties of these semihard materials in the frame of density functional theory where the non-local correlation functionals are not well known. Here we propose a van der Waals density functional named vdW-DFq to accurately model the density and geometry of semihard materials. Using β-cyclotetramethylene tetranitramine as a prototype, we adjust the enhancement factor of the exchange energy functional with generalized gradient approximations. We find this method to be simple and robust over a wide tuning range when calibrating the functional on-demand with experimental data. With a calibrated value q = 1 . 05 , the proposed vdW-DFq method shows good performance in predicting the geometries of 11 common energetic material molecular crystals and 3 typical layered van der Waals crystals. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-13-1-0025.

  4. Approximating the 3D Character of a Van Der Waals Atom-Solid Potential

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.

    2016-04-01

    A truncated Fourier decomposition of the atom-substrate potential energy is developed for three-dimensional models of van der Waals systems, specifically for adsorption on the basal plane surface of graphite or the (111) face of a face-centered-cubic lattice. This provides a framework for analysis of a priori calculations of physical adsorption energies.

  5. Control of excitons in multi-layer van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Calman, E. V.; Dorow, C. J.; Fogler, M. M.; Butov, L. V.; Hu, S.; Mishchenko, A.; Geim, A. K.

    2016-03-01

    We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS2 and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.

  6. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence. PMID:23032606

  7. Dynamical screening of the van der Waals interaction between graphene layers

    NASA Astrophysics Data System (ADS)

    Dappe, Y. J.; Bolcatto, P. G.; Ortega, J.; Flores, F.

    2012-10-01

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp3d5 basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  8. Dynamics of Gold Nanoparticles on Carbon Nanostructures Driven by van der Waals and Electrostatic Interactions.

    PubMed

    La Torre, Alessandro; Gimenez-Lopez, Maria del Carmen; Fay, Michael W; Lucas, Carlos Herreros; Brown, Paul D; Khlobystov, Andrei N

    2015-06-01

    Transmission electron microscopy studies on the assembly and growth of gold nanoparticles on carbon nanotubes supported on few-layer graphene and amorphous carbon reveal a competition between van der Waals forces and electrostatic interactions, enabling controlled positioning and sizing of adsorbed nanoparticles at the nanochannels formed between the carbon nanotube and the few-layer graph-ene surface. PMID:25689488

  9. Bonded Paths and van der Waals Interactions in Orpiment, As2S3

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Zallen, Richard; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2010-06-17

    Bond critical properties and bond paths have been calculated for the thioarsenide molecular crystal orpiment, As2S3. In addition to the intramolecular As-S bond paths and van der Waals As-S and S-S bond paths within the layers, intermolecular S-S, As-S and As-As van der Waals paths exist between the layers. The S-S bond paths between the layers are identified with the main interlayer restoring forces responsible for the vibrational internal-mode splitting and the low frequency rigid layer modes previously documented in infrared and Raman studies of orpiment. These S-S bond paths are comparable with those calculated for orthorhombic native sulfur and the As4Sn (n = 3,4,5) molecules for several arsenide molecular crystals. The As-S bond paths show that the two nonequivalent arsenic atoms are each coordinated by a highly distorted octahedral array of sulfur atoms. The octahedra consist of three As-S intramolecular bonded interactions and three longer van der Waals interactions (two intramolecular and one intermolecular). One of the arsenic atoms is also coordinated by an arsenic atom in an interlayer As-As bonded interaction. Laplacian isosurface envelopes calculated for the arsenic and sulfur atoms are comparable with those calculated for native arsenic and orthorhombic sulfur. The intermolecular As-S bond paths connect Lewis acid domains on arsenic and an Lewis base domains on sulfur. Van der Waals interactions are traditionally defined as attractive interactions other than those ascribed to bond formation. However, theoretical evidence and arguments, as well as the connection between the bond paths and the vibrational spectra, indicate that the van der Waals interactions in orpiment are directed bonded interactions in the Slater sense. The experimental bond lengths for the As-S and S-S bonded interactions decrease nonlinearly with the increasing value of the electron density at the bond critical point, concomitant with a decrease in the bonded radii of arsenic and

  10. Band gap engineering of a soft inorganic compound PbI2 by incommensurate van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Sun, Yi-Yang; Zhang, Shengbai; Lu, Toh-Ming; Shi, Jian

    2016-01-01

    Van der Waals epitaxial growth had been thought to have trivial contribution on inducing substantial epitaxial strain in thin films due to its weak nature of van der Waals interfacial energy. Due to this, electrical and optical structure engineering via van der Waals epitaxial strain has been rarely studied. In this report, we show that significant band structure engineering could be achieved in a soft thin film material PbI2 via van der Waals epitaxy. The thickness dependent photoluminescence of single crystal PbI2 flakes was studied and attributed to the substrate-film coupling effect via incommensurate van der Waals epitaxy. It is proposed that the van der Waals strain is resulted from the soft nature of PbI2 and large van der Waals interaction due to the involvement of heavy elements. Such strain plays vital roles in modifying the band gap of PbI2. The deformation potential theory is used to quantitatively unveil the correlation between thickness, strain, and band gap change. Our hypothesis is confirmed by the subsequent mechanical bending test and Raman characterization.

  11. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy

    PubMed Central

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-01-01

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°. PMID:26442629

  12. Fluctuations of the van der Waals attraction force between macroscopic bodies

    SciTech Connect

    Kogan, A. S.

    2003-01-01

    The tliccry of the fluctuations of the van der Waals (vdW) attractive force between macroscopic bodies is developed. A general equation for the spectral density of the fluctuating surface Maxwell stress (force per unit mea.) in va,cuurn nea,r the surface of a body is derived under the assumption that, inside the bodies, the random La.ngevin sources of the electric and magnetic fields (charges, polarizations, currents) are Gaussian. This spectral density of stress is an integral over frequencies of a sum of terms each of which is a product of Fourier amplitudes of two field components' correlation functions. For metallic bodies, the contribution of free electrons to the vdW force (at frequencies up to the frequency of electron scattering) is calculated. This contribution to the force and its noise grows with temperature. Application of noiseless voltage to two interacting metals across the vacuum gap between them generates an additional force noise. This additional noise is proportional to the volta.ge squared and to the spectral density of the random electric field at the frequency of noise measurement. The theoretical qualitative conclusions are in good agreement with experirncnts.

  13. Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    NASA Astrophysics Data System (ADS)

    Kähler, G.; Bonelli, F.; Gonnella, G.; Lamura, A.

    2015-12-01

    Cavitation in a liquid moving past a constraint is numerically investigated by means of a free-energy lattice Boltzmann simulation based on the van der Waals equation of state. The fluid is streamed past an obstacle, and depending on the pressure drop between inlet and outlet, vapor formation underneath the corner of the sack-wall is observed. The circumstances of cavitation formation are investigated and it is found that the local bulk pressure and mean stress are insufficient to explain the phenomenon. Results obtained in this study strongly suggest that the viscous stress, interfacial contributions to the local pressure, and the Laplace pressure are relevant to the opening of a vapor cavity. This can be described by a generalization of Joseph's criterion that includes these contributions. A macroscopic investigation measuring mass flow rate behavior and discharge coefficient was also performed. As theoretically predicted, mass flow rate increases linearly with the square root of the pressure drop. However, when cavitation occurs, the mass flow growth rate is reduced and eventually it collapses into a choked flow state. In the cavitating regime, as theoretically predicted and experimentally verified, the discharge coefficient grows with the Nurick cavitation number.

  14. Vertical electron transport in van der Waals heterostructures with graphene layers

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-01

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  15. Vertical electron transport in van der Waals heterostructures with graphene layers

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-21

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  16. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    SciTech Connect

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  17. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.

    PubMed

    Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C

    2014-12-01

    Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches. PMID:26583215

  18. Van der Waals pressure and its effect on trapped interlayer molecules

    NASA Astrophysics Data System (ADS)

    Vasu, K. S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R. J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S. J.; Geim, A. K.; Nair, R. R.

    2016-07-01

    Van der Waals assembly of two-dimensional crystals continue attract intense interest due to the prospect of designing novel materials with on-demand properties. One of the unique features of this technology is the possibility of trapping molecules between two-dimensional crystals. The trapped molecules are predicted to experience pressures as high as 1 GPa. Here we report measurements of this interfacial pressure by capturing pressure-sensitive molecules and studying their structural and conformational changes. Pressures of 1.2+/-0.3 GPa are found using Raman spectrometry for molecular layers of 1-nm in thickness. We further show that this pressure can induce chemical reactions, and several trapped salts are found to react with water at room temperature, leading to two-dimensional crystals of the corresponding oxides. This pressure and its effect should be taken into account in studies of van der Waals heterostructures and can also be exploited to modify materials confined at the atomic interfaces.

  19. The van der Waals interactions in rare-gas dimers: the role of interparticle interactions.

    PubMed

    Chen, Yu-Ting; Hui, Kerwin; Chai, Jeng-Da

    2016-01-28

    We investigate the potential energy curves of rare-gas dimers with various ranges and strengths of interparticle interactions (nuclear-electron, electron-electron, and nuclear-nuclear interactions). Our investigation is based on the highly accurate coupled-cluster theory associated with those interparticle interactions. For comparison, the performances of the corresponding Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and density functional theory are also investigated. Our results reveal that when the interparticle interactions retain the long-range Coulomb tails, the nature of van der Waals interactions in the rare-gas dimers remains similar. By contrast, when the interparticle interactions are sufficiently short-range, the conventional van der Waals interactions in the rare-gas dimers completely disappear, yielding purely repulsive potential energy curves. PMID:26738722

  20. van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects.

    PubMed

    Dryden, Daniel M; Hopkins, Jaime C; Denoyer, Lin K; Poudel, Lokendra; Steinmetz, Nicole F; Ching, Wai-Yim; Podgornik, Rudolf; Parsegian, Adrian; French, Roger H

    2015-09-22

    The self-assembly of heterogeneous mesoscale systems is mediated by long-range interactions, including van der Waals forces. Diverse mesoscale architectures, built of optically and morphologically anisotropic elements such as DNA, collagen, single-walled carbon nanotubes, and inorganic materials, require a tool to calculate the forces, torques, interaction energies, and Hamaker coefficients that govern assembly in such systems. The mesoscale Lifshitz theory of van der Waals interactions can accurately describe solvent and temperature effects, retardation, and optically and morphologically anisotropic materials for cylindrical and planar interaction geometries. The Gecko Hamaker open-science software implementation of this theory enables new and sophisticated insights into the properties of important organic/inorganic systems: interactions show an extended range of magnitudes and retardation rates, DNA interactions show an imprint of base pair composition, certain SWCNT interactions display retardation-dependent nonmonotonicity, and interactions are mapped across a range of material systems in order to facilitate rational mesoscale design. PMID:25815562

  1. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force

    NASA Astrophysics Data System (ADS)

    Jiang, L. Y.; Huang, Y.; Jiang, H.; Ravichandran, G.; Gao, H.; Hwang, K. C.; Liu, B.

    2006-11-01

    We have established the cohesive law for interfaces between a carbon nanotube (CNT) and polymer that are not well bonded and are characterized by the van der Waals force. The tensile cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer surface roughness on the cohesive law is also studied.

  2. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    SciTech Connect

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-07-15

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers.

  3. Microwave spectra of van der Waals complexes of importance in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Suenram, R. D.; Lovas, F. J.

    1990-05-01

    The Fourier-transform Fabry-Perot pulsed-molecular-beam microwave spectrometer at NIST was used to study the microwave spectra of a number of molecular dimers and trimers that may be present in planetary atmospheres. The weak van der Waals bonds associated with these species usually give rise to rotational-tunneling splittings in the microwave spectra. The microwave spectrum of the water dimer species was used to illustrate the complications that can arise in the study of the rotational spectra of these loosely bound species. In addition to the water dimer species, the microwave spectra of the following hydrogen-bonded and van der Waals complexes were studied: (CO2)2-H2O, CO2-(H2O)2, CO2-H2S, N2-H2O, CO-H2O, SO2-H2O, and O3-H2O.

  4. Elution of human granulocytes from nylon fibers by means of repulsive van der Waals forces.

    PubMed

    Absolom, D R; van Oss, C J; Neumann, A W

    1981-01-01

    A novel method for the isolation of granulocytes from nylon fibers is described. It is modification of filtration leukapheresis based on cellular surface thermodynamics. The system takes into account both electrical and van der Waals forces. The elution buffer contains a chelating agent and a surface active agent which lowers the surface tension of the liquid to a value intermediate between that of the surface tensions of the nylon fibers and of the granulocytes. Thus, the attractive van der Waals interaction between the fibers and the granulocytes becomes a repulsion. This results in a two- to threefold increase in cell yield. Phagocytosis, candicidal activity, and oxygen consumption did not appear to be affected through the isolation procedure. By both light and transmission electron microscopy the isolated granulocytes appeared to be morphologically intact. PMID:7314214

  5. Energetics, dynamics, and reactions of rydberg state molecules in van der Waals clusters

    SciTech Connect

    Shang, Q.Y.; Bernstein, E.R.

    1994-12-31

    In the past 10 years the study of van der Waals clusters has grown enormously; perhaps one of the best indications of this growth, in both activity and sophistication, is the advent of this review issue devoted to such research. Van der Waals clusters, synthesized one molecule or atom at a time and accessed according to size and structure, provide a molecule by molecule view of the solvation process, its energetics, solute/solvent dynamics, and eventually even unimolecular and bimolecular chemical reactions. The clusters treated most frequently and discussed in this review are of the form solute or chromophore (solvent)n, with n varying from 1 to more than 100. These clusters are most typically generated in a supersonic beam; both large and small clusters can be synthesized by controlling the expansion conditions.

  6. Diffuse-interface modeling of liquid-vapor phase separation in a van der Waals fluid

    NASA Astrophysics Data System (ADS)

    Lamorgese, A. G.; Mauri, R.

    2009-04-01

    We simulate liquid-vapor phase separation in a van der Waals fluid that is deeply quenched into the unstable range of its phase diagram. Our theoretical approach follows the diffuse-interface model, where convection induced by phase change is accounted for via a nonequilibrium (Korteweg) force expressing the tendency of the liquid-vapor system to minimize its free energy. Spinodal decomposition patterns for critical and off-critical van der Waals fluids are studied numerically, revealing the scaling laws of the characteristic length scale and composition of single-phase microdomains, together with their dependence on the Reynolds number. Unlike phase separation of viscous binary mixtures, here local equilibrium is reached almost immediately after single-phase domains start to form. In addition, as predicted by scaling laws, such domains grow in time like t2/3. Comparison between 2D and 3D results reveals that 2D simulations capture, even quantitatively, the main features of the phenomenon.

  7. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    SciTech Connect

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Chen, Hongsheng; Lin, Shisheng

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.

  8. Microwave spectra of van der Waals complexes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Suenram, R. D.; Lovas, F. J.

    1990-01-01

    The Fourier-transform Fabry-Perot pulsed-molecular-beam microwave spectrometer at NIST was used to study the microwave spectra of a number of molecular dimers and trimers that may be present in planetary atmospheres. The weak van der Waals bonds associated with these species usually give rise to rotational-tunneling splittings in the microwave spectra. The microwave spectrum of the water dimer species was used to illustrate the complications that can arise in the study of the rotational spectra of these loosely bound species. In addition to the water dimer species, the microwave spectra of the following hydrogen-bonded and van der Waals complexes were studied: (CO2)2-H2O, CO2-(H2O)2, CO2-H2S, N2-H2O, CO-H2O, SO2-H2O, and O3-H2O.

  9. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-01

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m-2 K-1 which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the

  10. Spectroscopic measurement of the titanium-helium van der Waals molecule: TiHe

    NASA Astrophysics Data System (ADS)

    Quiros, Nancy; Tariq, Naima; Weinstein, Jonathan

    2016-05-01

    Atoms that are weakly bound by the van der Waals (vdW) interaction are known as van der Waals molecules. The existence and formation of vdW molecules is favorable at low temperatures due to their weak binding energy. We have used laser ablation and helium buffer gas cooling to create the exotic vdW diatomic molecule made of titanium (Ti) and helium (He). TiHe molecules were detected through laser-induced-fluorescence spectroscopy closely blue-detuned from the a3F2 --> y3F3 atomic Ti transition at 25227 cm-1. Measurements of the binding energy of TiHe were obtained by studying its equilibrium thermodynamic properties. It is believed the molecules are formed from the constituent cold atoms through three-body recombination. Progress towards measuring the three-body recombination rate coefficient will be discussed. This material is based upon work supported by National Science Foundation under Grant No. PHY 1265905.

  11. Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling

    NASA Astrophysics Data System (ADS)

    Peng, Zhang; Jing, Wang; Xiang-Mei, Duan

    2016-03-01

    We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure. Projected supported by the National Natural Science Foundation of China (Grant No. 11574167), the New Century 151 Talents Project of Zhejiang Province,China, and the K. C. Wong Magna Foundation in Ningbo University, China.

  12. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  13. Nuclear spin-spin coupling anisotropy in the van der Waals-bonded 129Xe dimer.

    PubMed

    Jokisaari, Jukka; Vaara, Juha

    2013-07-21

    The spin-spin coupling constant, J, in the van der Waals-bonded (129)Xe-(129)Xe dimer cannot be determined experimentally because of the magnetic equivalence of the two nuclei. In contrast, the anisotropy of the coupling tensor, ΔJ, can be obtained from the so called effective dipole-dipole coupling determined in a solid state inclusion compound whose cages accommodate two xenon atoms. For the determination of the experimental ΔJ((129)Xe, (129)Xe) we exploited the data reported earlier in this journal. [D. H. Brouwer et al., Phys. Chem. Chem. Phys., 2007, 9, 1093.] The experimental value and the value obtained from relativistic first-principles computation are in perfect agreement. To the best of our knowledge this is the first investigation of spin-spin coupling anisotropy in a van der Waals-bonded system. PMID:23743998

  14. Electrical and optical properties of SnS2/WSe2 van der Waals Heterojunction FETs

    NASA Astrophysics Data System (ADS)

    Zubair, Ahmad; Nourbakhsh, Amirhasan; Dresselhaus, Mildred; Palacios, Tomas

    Two dimensional crystals based on atomically thin films of transition metal dichalcogenides offer an exciting platform for various optoelectronic applications. Their unique crystal properties make them particularly attractive for van der Waals heterostructures which open up an additional degree of freedom to tailor the material properties into new physics and device applications. In this work, we explore, for the first time, the optoelectronic properties of van der Waals SnS2/WSe2 heterojunction. WSe2 is an ambipolar semiconductor while SnS2 is an n-type wide bandgap semiconductor. We use the pickup and dry transfer methods to fabricate SnS2/WSe2 heterojunction transistors (hetero-FETs). We observe negative differential transconductance in the SnS2/WSe2 hetero-FET. Also, the heterostructure couples strongly to incident light and shows high photovoltaic responsivity which can find applications in nano-devices such as photo-detectors and solar cells.

  15. On the pseudopotential approximation in the van der Waals density functional calculations

    NASA Astrophysics Data System (ADS)

    Hamada, Ikutaro; Callsen, Martin

    The van der Waals density functional (vdW-DF) is a density functional that is able to describe van der Waals and covalent interactions in a seamless fashion, and has been applied to a variety of systems. In practical calculations, the pseudopotential (PP) approximation has been employed, for which the PPs should be generated consistently for the chosen exchange correlation XC functional. However, usually PPs generated with a generalized gradient approximation (GGA) XC functional are used and the effect of the approximation to the XC functional applied in the PP generation is scarcely discussed. In this work, we discuss the appropriate XC functionals in the PP generation for the vdW-DF calculations. Furthermore, we compare the vdW-DF results for several systems using the PP's generated with appropriate XC and those with GGA XC.

  16. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    SciTech Connect

    Coroiu, I.

    2007-04-23

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  17. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates.

    PubMed

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices. PMID:27199079

  18. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGESBeta

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; West, Damien; Meunier, Vincent; Zhang, Shengbai; Liang, Linagbo

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  19. The van der Waals interaction in one, two, and three dimensions

    NASA Astrophysics Data System (ADS)

    Ipsen, A. C.; Splittorff, K.

    2015-02-01

    The van der Waals interaction between two polarizable atoms is considered. In three dimensions, the standard form with an attractive 1/R6 potential is obtained from second-order quantum perturbation theory. When the electron motion is restricted to lower dimensions (but the 1/R Coulomb potential is retained), new terms in the expansion appear and alter both the sign and the R-dependence of the interaction.

  20. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    SciTech Connect

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Chen; Damien, West; Meunier, Vincent; Zhang, Prof. Shengbai

    2016-01-01

    The success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherent charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application

  1. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    NASA Astrophysics Data System (ADS)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  2. EXPERIMENTAL AND THEORETICAL STUDIES OF THE CN-AR VAN DER WAALS COMPLEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CN-Ar van der Waals complex has been observed using B2E+-X2E+ and A2II-X2E+ electronic transitions. The spectra yielded a dissociation energy of D0"=109+2 cm1 and a zero point rational constant of B0"=0.067+0.005 cm-1 for CN(x)-Ar. The dissociation energy for Cn(A)-Ar was found to be D0"=132+2...

  3. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.

    PubMed

    You, Baiqing; Wang, Xiaocha; Zheng, Zhida; Mi, Wenbo

    2016-03-14

    The electronic structure of black phosphorene (BP)/monolayer 1H-XT2 (X = Mo, W; T = S, Se, Te) two dimensional (2D) van der Waals heterostructures have been calculated by the first-principles method. It is found that the electronic band structures of both BP and XT2 are preserved in the combined van der Waals heterostructures. The WSe2/BP van der Waals heterostructure demonstrates a type-I band alignment, but the MoS2/BP, MoSe2/BP, MoTe2/BP, WS2/BP and WTe2/BP van der Waals heterostructures demonstrate a type-II band alignment. In particular, the n-type XT2/p-type BP van der Waals heterostructures can be applied in p-n diode and logical devices. Strong spin splitting appears in all of the heterostructures when considering the spin orbital coupling. Our results play a significant role in the prediction of novel 2D van der Waals heterostructures that have potential applications in spin-filter devices, spin field effect transistors, optoelectronic devices, etc. PMID:26899350

  4. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

    PubMed Central

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H.; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E.; Dappe, Yannick J.; Bertran, François; Fèvre, Patrick Le; Johnson, A. T. Charlie; Ouerghi, Abdelkarim

    2016-01-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design. PMID:27246929

  5. The hot pick-up technique for batch assembly of van der Waals heterostructures

    PubMed Central

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Caridad, José M.; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J.

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures. PMID:27305833

  6. Influence of dielectric properties on van der Waals/Casimir forces in solid-liquid systems

    SciTech Connect

    Zwol, P. J. van; Palasantzas, G.; De Hosson, J. Th. M.

    2009-05-15

    In this paper, we present calculations of van der Waals/Casimir forces, described by Lifshitz theory, for the solid-liquid-solid system using measured dielectric functions of all involved materials for the wavelength range from millimeters down to subnanometers. It is shown that even if the dielectric function is known over all relevant frequency ranges, the scatter in the dielectric data can lead to very large scatter in the calculated van der Waals/Casimir forces. Especially when the liquid dielectric function becomes comparable in magnitude to the dielectric function of one of the interacting solids, the associated variation in the force can be up to a factor of 2 for plate-plate separations 5-500 nm. This corresponds to an uncertainty up to 100% in the theory prediction for a specific system. As a result accuracy testing of the Lifshitz theory under these circumstances is rather questionable. Finally we discuss predictions of Lifshitz theory regarding multiple repulsive-attractive transitions with separation distance, as well as nontrivial scaling of the van der Waals/Casimir force with distance.

  7. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E; Dappe, Yannick J; Bertran, François; Fèvre, Patrick Le; Johnson, A T Charlie; Ouerghi, Abdelkarim

    2016-01-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design. PMID:27246929

  8. Short-range Cut-Off of the Summed-Up van der Waals Series

    NASA Astrophysics Data System (ADS)

    Patra, Abhirup; Perdew, John P.

    2015-03-01

    van der Waals interactions are important in typical van der Waals-bound systems such as noble-gas, hydrocarbon, alkali and alkaline-earth dimers. The summed-up van der Waals series works well and gives an accurate result at large separation between two atoms. But it has a strong singularity at short non-zero separation, where the two atoms touch. In this work we remove that singularity with a reasonable and physical choice of the cut-off distance. Only one fitting parameter has been introduced for the short-range cut off. The parameter in our model has been optimized for each system, and a system-averaged value has been used to get the final binding energy curves. When this correction is added to the binding energy curve from the semilocal density functional meta-GGA-MS2, we get vdW- corrected binding energy curve. These curves are compared with the results of other vdW-corrected methods such as PBE-D2 and vdW-DF2 .Binding energy curves are in reasonable agreement with those from experiment. These curves also predict reasonably good equilibrium bond length. Supported by NSF (DMR).

  9. Physisorption of nucleobases on graphene: a comparative van der Waals study

    NASA Astrophysics Data System (ADS)

    Le, Duy; Kara, Abdelkader; Schröder, Elsebeth; Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The physisorption of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) on graphene is studied using several variants of the density functional theory (DFT): the generalized gradient approximation with the inclusion of van der Waals interaction (vdW) based on the TS approach (Tkatchenko and Scheffer 2009 Phys. Rev. Lett. 102 073005) and our simplified version of this approach (here called sTS), the van der Waals density functional vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401) and vdW-DF2 (Lee et al 2010 Phys. Rev. B 82 081101), and DFT-D2 (Grimme 2006 J. Comput. Chem. 27 1787) and DFT-D3 (Grimme et al 2010 J. Chem. Phys. 132 154104) methods. The binding energies of nucleobases on graphene are found to be in the following order: G > A > T > C > U within TS, sTS, vdW-DF, and DFT-D2, and in the following order: G > A > T ˜ C > U within DFT-D3 and vdW-DF2. The binding separations are found to be different within different methods and in the following order: DFT-D2 < TS < DFT-D3 ˜ vdW-DF2 < vdW-DF. We also comment on the efficiency of combining the DFT-D approach and vdW-DF to study systems with van der Waals interactions.

  10. The effects of van der Waals attractions on cloud droplet growth by coalescence

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Davis, Robert H.

    1990-01-01

    The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.

  11. Study of van der Waals bonding and interactions in metal organic framework materials.

    PubMed

    Zuluaga, Sebastian; Canepa, Pieremanuele; Tan, Kui; Chabal, Yves J; Thonhauser, Timo

    2014-04-01

    Metal organic framework (MOF) materials have attracted a lot of attention due to their numerous applications in fields such as hydrogen storage, carbon capture and gas sequestration. In all these applications, van der Waals forces dominate the interaction between the small guest molecules and the walls of the MOFs. In this review article, we describe how a combined theoretical and experimental approach can successfully be used to study those weak interactions and elucidate the adsorption mechanisms important for various applications. On the theory side, we show that, while standard density functional theory is not capable of correctly describing van der Waals interactions, functionals especially designed to include van der Waals forces exist, yielding results in remarkable agreement with experiment. From the experimental point of view, we show examples in which IR adsorption and Raman spectroscopy are essential to study molecule/MOF interactions. Importantly, we emphasize throughout this review that a combination of theory and experiment is crucial to effectively gain further understanding. In particular, we review such combined studies for the adsorption mechanism of small molecules in MOFs, the chemical stability of MOFs under humid conditions, water cluster formation inside MOFs, and the diffusion of small molecules into MOFs. The understanding of these phenomena is critical for the rational design of new MOFs with desired properties. PMID:24613989

  12. The hot pick-up technique for batch assembly of van der Waals heterostructures.

    PubMed

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S; Caridad, José M; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures. PMID:27305833

  13. Effect of van der Waals interactions on the structural and binding properties of GaSe

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey Y.; Kosobutsky, Alexey V.; Shandakov, Sergey D.

    2015-12-01

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga-Ga, Ga-Se bond lengths and Ga-Ga-Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172-0.197 eV/layer (14.2-16.2 meV/Å2).

  14. The hot pick-up technique for batch assembly of van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Caridad, José M.; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J.

    2016-06-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.

  15. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H.; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E.; Dappe, Yannick J.; Bertran, François; Fèvre, Patrick Le; Johnson, A. T. Charlie; Ouerghi, Abdelkarim

    2016-06-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design.

  16. van der Waals torque and force between dielectrically anisotropic layered media

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-01

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  17. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs. PMID:27475386

  18. Pressure dependent low temperature kinetics for CN + CH3CN: competition between chemical reaction and van der Waals complex formation.

    PubMed

    Sleiman, Chantal; González, Sergio; Klippenstein, Stephen J; Talbi, Dahbia; El Dib, Gisèle; Canosa, André

    2016-06-01

    The gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed. PMID:27199083

  19. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    SciTech Connect

    Battista, F.; Casciola, C. M.; Picano, F.

    2014-05-15

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  20. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Vaitheeswaran, G.

    2014-06-01

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (Rbar{3}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to be the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and Rbar{3} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.

  1. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    NASA Astrophysics Data System (ADS)

    Battista, F.; Picano, F.; Casciola, C. M.

    2014-05-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures - the so-called ligaments - in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  2. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    SciTech Connect

    Yedukondalu, N.; Vaitheeswaran, G.

    2014-06-14

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (R3{sup ¯}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to be the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and R3{sup ¯} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.

  3. van der Waals-like phase-separation instability of a driven granular gas in three dimensions.

    PubMed

    Liu, Rui; Li, Yinchang; Hou, Meiying; Meerson, Baruch

    2007-06-01

    We show that the van der Waals-like phase-separation instability of a driven granular gas at zero gravity, previously investigated in two-dimensional settings, persists in three dimensions. We consider a monodisperse granular gas driven by a thermal wall of a three-dimensional rectangular container at zero gravity. The basic steady state of this system, as described by granular hydrodynamic equations, involves a denser and colder layer of granulate located at the wall opposite to the driving wall. When the inelastic energy loss is sufficiently high, the driven granular gas exhibits, in some range of average densities, negative compressibility in the directions parallel to the driving wall. When the lateral dimensions of the container are sufficiently large, the negative compressibility causes spontaneous symmetry breaking of the basic steady state and a phase separation instability. Event-driven molecular dynamics simulations confirm and complement our theoretical predictions. PMID:17677252

  4. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The past decade has seen a dramatic rise in interest in exploring the role that van der Waals (vdW) or dispersion forces play in materials and in material behavior. Part of this stems from the obvious fact that vdW interactions (and other weak forces, such as Casimir) underpin molecular recognition, i.e., nature's approach to search for a match between genes and anti-genes and hence enable biological function. Less obvious is the recognition that vdW interactions affect a multitude of properties of a vast variety of materials in general, some of which also have strong technological applications. While for two atom- or orbital-sized material fragments the dispersive contributions to binding are small compared to those from the better known forms (ionic, covalent, metallic), those between sparse materials (spread over extended areas) can be of paramount importance. For example, an understanding of binding in graphite cannot arise solely from a study of the graphene layers individually, but also requires insight from inter-sheet graphene vdW bonding. It is the extended-area vdW bonding that provides sufficient cohesion to make graphite a robust, naturally occurring material. In fact, it is the vdW-bonded graphite, and not the all-covalently bonded diamond, that is the preferred form of pure carbon under ambient conditions. Also important is the understanding that vdW attraction can attain a dramatic relevance even if the material fragments, the building blocks, are not necessarily parallel from the outset or smooth when viewed in isolation (such as a graphene sheet or a carbon nanotube). This can happen if the building blocks have some softness and flexibility and allow an internal relative alignment to emerge. The vdW forces can then cause increasingly larger parts of the interacting fragments to line up at sub-nanometer separations and thus beget more areas with a sizable vdW bonding contribution. The gecko can scale a wall because it can bring its flexible hairs

  5. High-Accuracy Potentials for Van Der Waals Systems

    NASA Astrophysics Data System (ADS)

    Dawes, Richard; Wang, Xiao-Gang; Brown, James; Carrington, Tucker; , Jr.

    2012-06-01

    Recent experimental studies of vdWs systems including those by Moazzen-Ahmadi and McKellar,1,2 as well as microwave studies by Minei and Novick3,4 have observed previously unknown stable polar isomers for systems such as (NNO)2 and (OCS)2. The multi-welled floppy nature of the PESs and the small barriers between minima place stringent requirements on the PES for a successful theoretical description of these states. An automated method of generating accurate PESs for vdW systems has been developed and is demonstrated here.5,6 A limited number of ab initio data at the explicitly correlated CCSD(T)-F12b level are interpolated into analytic PESs with negligible fitting error. High-accuracy PESs were developed for a number of systems including (NNO)2, (OCS)2, (CO)2, CO2:CS2 and (NH3)2. Using the PESs, the rovibrational Schrödinger equation is solved with a symmetry-adapted Lanczos algorithm and an uncoupled product basis set. All inter-monomer coordinates are included in the calculations. Calculated transition frequencies are in very close agreement with experiment. References (1) M. Dehghani, M. Afshari, Z. Abusara, N. Moazzen-Ahmadi, A. R. W. McKellar, J. Chem. Phys. 126, 164310 (2007). (2) M. Dehghani, M. Afshari, Z. Abusara, N. Moazzen-Ahmadi, A. R. W. McKellar, J. Chem. Phys. 126, 071102 (2007). (3) N. R. Walker, R. Nicholas, A. J. Minei, S. E. Novick, A. C. Legon, J. Mol. Spec. 251, 153 (2008). (4) A. J. Minei and S. E. Novick, J. Chem. Phys. 126, 101101 (2007). (5) R. Dawes, X.-G. Wang, A. W. Jasper, T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010). (6) X.-G. Wang, T. Carrington Jr., R. Dawes and A. W. Jasper, J. Mol. Spec. 268, 53 (2011).

  6. Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Yankowitz, Matthew Abraham

    A large family of materials, collectively known as "van der Waals materials", have attracted enormous research attention over the past decade following the realization that they could be isolated into individual crystalline monolayers, with charge carriers behaving effectively two-dimensionally. More recently, an even larger class of composite materials has been realized, made possible by combining the isolated atomic layers of different materials into "van der Waals heterostructures", which can exhibit electronic and optical behaviors not observed in the parent materials alone. This thesis describes efforts to characterize the atomic-scale structural and electronic properties of these van der Waals materials and heterostructures through scanning tunneling microscopy measurements. The majority of this work addresses the properties of monolayer and few-layer graphene, whose charge carriers are described by massless and massive chiral Dirac Hamiltonians, respectively. In heterostructures with hexagonal boron nitride, an insulating isomorph of graphene, we observe electronic interference patterns between the two materials which depend on their relative rotation. As a result, replica Dirac cones are formed in the valence and conduction bands of graphene, with their energy tuned by the rotation. Further, we are able to dynamically drag the graphene lattice in these heterostructures, owing to an interaction between the scanning probe tip and the domain walls formed by the electronic interference pattern. Similar dragging is observed in domain walls of trilayer graphene, whose electronic properties are found to depend on the stacking configuration of the three layers. Scanning tunneling spectroscopy provides a direct method for visualizing the scattering pathways of electrons in these materials. By analyzing the scattering, we can directly infer properties of the band structures and local environments of these heterostructures. In bilayer graphene, we map the electrically

  7. The Dielectric Function for Water and Its Application to van der Waals Forces.

    PubMed

    Dagastine; Prieve; White

    2000-11-15

    The dielectric response, varepsilon(ixi), for water (which is required in Lifshitz theory to calculate the van der Waals interactions in aqueous systems) is commonly constructed, in the absence of complete spectral data, by fitting a damped-harmonic-oscillator model to absorption data. Two sets of parameters for the model have been developed corresponding to different constraints: Parsegian and Weiss (J. Colloid Interface Sci., 1981, 81, 285) and Roth and Lenhoff (J. Colloid Interface Sci., 1996, 179, 637). These different representations of the dielectric response lead to significant differences in the van der Waals force calculated from Lifshitz theory. In this work, more recent and complete spectral data for water were compiled from the literature and direct integration of the Kramers-Kronig relations was used to construct a new varepsilon(ixi) for water at 298 degrees K. This approach also allows a number of different types of spectral measurements (such as infrared spectroscopy, microwave resonance techniques, and x-ray inelastic scattering) in the compilation of absorption data over a large frequency range (on the order of 8 to 10 decades in frequency). A Kramers-Kronig integration was employed to construct the real and imaginary parts of varepsilon(omega), varepsilon'(omega), and varepsilon"(omega) for water from the different spectral measurements before calculation of varepsilon(ixi) from its integral definition. The resulting new varepsilon(ixi) is intermediate between the Parsegian-Weiss and Roth-Lenhoff representations of varepsilon(ixi), does not use a model, and treats the conversion of absorption data as rigorously as possible. We believe the varepsilon(ixi) from the present work is the most reliable construction for use in van der Waals force calculations using Lifshitz theory. The extension of the varepsilon(ixi) construction to other temperatures is also discussed. Copyright 2000 Academic Press. PMID:11049685

  8. Microwave and ab initio studies of rare gas-methane van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Liu, Yaqian; Jäger, Wolfgang

    2004-05-01

    Rotational spectra of the weakly bound Kr-methane van der Waals complex were recorded using a pulsed molecular beam Fourier transform microwave spectrometer in the range from 3.5 to 18 GHz. Spectra of 25 isotopomers of Kr-methane were assigned and analyzed. For isotopomers containing CH4, 13CH4, and CD4, two sets of transitions with K=0 and one with K=1 were recorded, correlating to the j=0, 1, and 2 rotational levels of free methane, respectively (j is the rotational angular momentum quantum number of the methane monomer). For isotopomers containing CH3D and CHD3, two K=0 components were recorded, correlating to the jk=00 and 11 rotational levels of free methane (k corresponds to the projection of j onto the C3 axis of CH3D and CHD3). The obtained spectroscopic results were used to derive van der Waals bond distance R, van der Waals stretching frequency νs, and the corresponding stretching force constant ks. Nuclear spin statistical weights of individual states were obtained from molecular symmetry group analyses and were compared with the observed relative transition intensities. The tentatively assigned j=2 transitions were more intense than predicted from symmetry considerations. This is attributed to a relatively large effective dipole moment of this state, supported by ab initio dipole moment calculations. Ab initio potential energy calculations of Kr-CH4 and Ar-CH4 were done at the coupled cluster level of theory, with single and double excitations and perturbative inclusion of triple excitations, using the aug-cc-pVTZ basis set supplemented with bond functions. The theoretical results show that the angular dynamics of the dimer does not change significantly when the binding partner of methane changes from Ar to Kr. The dipole moment of Ar-CH4 was calculated at various configurations, providing a qualitative explanation for the unsuccessful spectral searches for rotational transitions of Ar-CH4.

  9. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide

    SciTech Connect

    Arai, Miho; Moriya, Rai Yabuki, Naoto; Masubuchi, Satoru; Ueno, Keiji; Machida, Tomoki

    2015-09-07

    We investigate the micromechanical exfoliation and van der Waals (vdW) assembly of ferromagnetic layered dichalcogenide Fe{sub 0.25}TaS{sub 2}. The vdW interlayer coupling at the Fe-intercalated plane of Fe{sub 0.25}TaS{sub 2} allows exfoliation of flakes. A vdW junction between the cleaved crystal surfaces is constructed by dry transfer method. We observe tunnel magnetoresistance in the resulting junction under an external magnetic field applied perpendicular to the plane, demonstrating spin-polarized tunneling between the ferromagnetic layered material and the vdW junction.

  10. Stability of an attractive bosonic cloud with van der Waals interaction

    SciTech Connect

    Biswas, Anindya; Das, Tapan Kumar; Salasnich, Luca; Chakrabarti, Barnali

    2010-10-15

    We investigate the structure and stability of Bose-Einstein condensates of {sup 7}Li atoms with realistic van der Waals interactions by using the potential harmonic expansion method. Besides the known low-density metastable solution with a contact {delta}-function interaction, we find a stable branch at a higher density which corresponds to the formation of an atomic cluster. Comparison with the results of a nonlocal effective interaction is also presented. We analyze the effect of trap size on the transition between the two branches of solutions. We also compute the loss rate of a Bose condensate due to two- and three-body collisions.

  11. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-06-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  12. Virtual Resonance and Frequency Difference Generation by van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Tetard, L.; Passian, A.; Eslami, S.; Jalili, N.; Farahi, R. H.; Thundat, T.

    2011-05-01

    The ability to explore the interior of materials for the presence of inhomogeneities was recently demonstrated by mode synthesizing atomic force microscopy [L. Tetard, A. Passian, and T. Thundat, Nature Nanotech. 5, 105 (2009).NNAABX1748-338710.1038/nnano.2009.454]. Proposing a semiempirical nonlinear force, we show that difference frequency ω- generation, regarded as the simplest synthesized mode, occurs optimally when the force is tuned to van der Waals form. From a parametric study of the probe-sample excitation, we show that the predicted ω- oscillation agrees well with experiments. We then introduce the concept of virtual resonance to show that probe oscillations at ω- can efficiently be enhanced.

  13. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.

    PubMed

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J; Li, Lain-Jong; Wallace, Robert M; Datta, Suman; Robinson, Joshua A

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295

  14. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    SciTech Connect

    Xia, Congxin Xue, Bin; Wang, Tianxing; Peng, Yuting; Jia, Yu

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  15. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals

    PubMed Central

    Deckoff-Jones, Skylar; Zhang, Jingjing; Petoukhoff, Christopher E.; Man, Michael K.L.; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Talbayev, Diyar; Madéo, Julien; Dani, Keshav M.

    2016-01-01

    Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures. PMID:26936437

  16. Spectroscopy of DABCO-rare-gas and DABCO-DABCO van der Waals complexes

    NASA Astrophysics Data System (ADS)

    van den Hock, G.; Consalvo, D.; Parker, D. H.; Reuss, J.

    1993-03-01

    The excited electronic origin bands of several DABCO containing van der Waals complexes have been observed via (1+1) resonance enhanced multi-photon ionization. Sharp resonances with widths of about 3 cm-1 are seen for DABCO-Rg n=1,2,3 (Rg is Ar, Kr or Xe), for the DABCO-DABCO dimer and for DABCO-DABCO-Ar. The origins of the rare-gas complexes are blue shifted with respect to the monomer origin. Broad features originating from DABCO-Rg n complexes with high n, appear to higher energies than the complex origins, with widths of 120 cm-1.

  17. Effects of zero van der Waals and zero electrostatic forces on droplet sedimentation

    NASA Technical Reports Server (NTRS)

    Omenyi, S. N.; Snyder, R. S.; Van Oss, C. J.; Absolom, D. R.; Neumann, A. W.

    1981-01-01

    The present investigation provides a confirmation of the dependence of droplet sedimentation on particle concentration. It is shown that it is possible to determine the maximum particle concentration which can remain stable on a given liquid from droplet sedimentation experiments. Droplet sedimentation can be reduced but not totally eliminated by the addition of appropriate amounts of dimethyl sulfoxide (DMSO) to reduce the van der Waals forces to zero. It was found that, at 12% DMSO, a maximum particle concentration of 6.3 x 10 to the 8th cells/ml of glutaraldehyde-fixed human erythrocytes suspended in physiological saline can remain stable on a D2O cushion.

  18. Thermally programmable gas storage and release in single crystals of an organic van der Waals host.

    PubMed

    Enright, Gary D; Udachin, Konstantin A; Moudrakovski, Igor L; Ripmeester, John A

    2003-08-20

    A single crystal of a low density form of guest-free p-tert-butylcalix[4]arene can take up and release small guest molecules by controlling the temperature and pressure without changing the structure. Using NMR spectroscopy with flowing hyperpolarized xenon, we have shown that at room temperature access of xenon to the pore system is difficult, whereas it is relatively easy at 100 degrees C. There are good prospects for simple van der Waals materials such as the title material to be used as programmable zeolite mimics. PMID:12914432

  19. Ground-state van der Waals forces in planar multilayer magnetodielectrics

    SciTech Connect

    Buhmann, Stefan Yoshi; Welsch, Dirk-Gunnar; Kampf, Thomas

    2005-09-15

    Within the frame of lowest-order perturbation theory, the van der Waals potential of a ground-state atom placed within an arbitrary dispersing and absorbing magnetodielectric multilayer system is given. Examples of an atom situated in front of a magnetodielectric plate or between two such plates are studied in detail. Special emphasis is placed on the competing attractive and repulsive force components associated with the electric and magnetic matter properties, respectively, and conditions for the formation of repulsive potential walls are given. Both numerical and analytical results are presented.

  20. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals

    NASA Astrophysics Data System (ADS)

    Deckoff-Jones, Skylar; Zhang, Jingjing; Petoukhoff, Christopher E.; Man, Michael K. L.; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Talbayev, Diyar; Madéo, Julien; Dani, Keshav M.

    2016-03-01

    Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures.

  1. Microwaves Probe Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas.

    PubMed

    Teixeira, R Celistrino; Hermann-Avigliano, C; Nguyen, T L; Cantat-Moltrecht, T; Raimond, J M; Haroche, S; Gleyzes, S; Brune, M

    2015-07-01

    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms. PMID:26182093

  2. Infrared vibrational predissociation of van der Waals clusters: applications to isotope separation

    SciTech Connect

    Philippoz, J.M.; Zellweger, J.M.; van den Bergh, H.; Monot, R.

    1984-08-30

    Isotope separation is demonstrated following the selective infrared laser-induced photodissociation of van der Waals clusters in a free jet. Irradiation of a natural abundance mixture of SF/sub 6/ isotopomers diluted in argon with a 20-W cw CO/sub 2/ laser gives overall enrichment factors in excess of 1.1. By adjusting the wavelength one can either enrich or deplete the center of the free jet in any one of the sulfur isotopes. Furthermore, unselective photodissociation of clusters can be used to enhance the separation of isotopes in a recently reported selective condensation method. 8 references, 3 figures.

  3. 3D van der Waals σ-model and its topological excitations

    NASA Astrophysics Data System (ADS)

    Bulgadaev, S. A.

    2001-09-01

    It is shown that the 3D vector van der Waals nonlinear σ-model (NSM) on a sphere S2 has two types of topological excitations: reminiscent vortices and instantons of 2D NSM. The first ones, the hedgehogs, are described by the homotopic group π2(S2) = Z and have logarithmic energies. They are an analog of 2D vortices. The second ones, corresponding to 2D instantons, are the hopfions. They are described by the homotopic group π3(S2) = Z, or the Hopf invariant HinZ, and have finite energy. The possibility of a topological phase transition in this model and its applications are briefly discussed.

  4. Nonadiabatic alignment of van der Waals--force-bound argon dimers by femtosecond laser pulses

    SciTech Connect

    Wu, J.; Vredenborg, A.; Ulrich, B.; Schmidt, L. Ph. H.; Meckel, M.; Voss, S.; Sann, H.; Kim, H.; Jahnke, T.; Doerner, R.

    2011-06-15

    We demonstrated that the weak van der Waals-force-bound argon dimer can be nonadiabatically aligned by nonresonant femtosecond laser pulses, showing periodic alignment and anti-alignment revivals after the extinction of the laser pulse. Based on the measured nonadiabatic alignment trace, the rotational constant of the argon dimer ground state is determined to be B{sub 0}= 0.05756 {+-} 0.00004 cm{sup -1}. Noticeable alignment dependence of frustrated tunneling ionization and bond-softening induced dissociation of the argon dimer are observed.

  5. Electron transport calculations with Wannier functions in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Wushi; Lopez-Bezanilla, Alejandro; Littlewood, Peter; Andreas Roelofs'group at Argonne National Lab Collaboration

    The vertical stacking of 2D materials forming van der Waals heterostructures (vdWHs) exhibits a wide range of interesting properties. A combined approach based on the Green's function formalism and a mean-field description of the electronic structure is used to calculate vertical electron transport in vdWHs. Tight-binding parameters obtained from Maximally Localized Wannier Functions enable us to model quantum electron transport at low computational costs. Our analysis of electron transport efficiencies provides the foundation and motivation for experimental works.

  6. Nanoscopy of Surface-Induced van der Waals-Zeeman Transitions

    SciTech Connect

    Hamamda, M.; Grucker, J.; Dutier, G.; Perales, F.; Baudon, J.; Ducloy, M.; Bocvarski, V.

    2008-10-22

    van der Waals transitions among magnetic sub-levels of a metastable rare gas atom passing near a surface immersed in a magnetic field, are described. Related transition amplitudes are calculated using both the sudden and the Landau-Zener approximations. Experimental data for Ne*({sup 3}P{sub 2}) atoms traversing a copper grating are presented. For a pair of surfaces (e.g. the opposite edges of a slit) and a sufficiently large coherence width, Fresnel's biprism interference fringes are obtained. From this interference pattern, detailed information about the transition amplitude at a sub-nanometric scale can be derived. The effect of gravity on this pattern is examined.

  7. Evidence for strong van der Waals type Rydberg-Rydberg interaction in a thermal vapor.

    PubMed

    Baluktsian, T; Huber, B; Löw, R; Pfau, T

    2013-03-22

    We present evidence for Rydberg-Rydberg interaction in a gas of rubidium atoms above room temperature. Rabi oscillations on the nanosecond time scale to different Rydberg states are investigated in a vapor cell experiment. Analyzing the atomic time evolution and comparing to a dephasing model, we find a scaling with the Rydberg quantum number n that is consistent with van der Waals interaction. Our results show that the interaction strength can be larger than the kinetic energy scale (Doppler width), which is the requirement for realization of thermal quantum devices in the GHz regime. PMID:25166800

  8. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals.

    PubMed

    Deckoff-Jones, Skylar; Zhang, Jingjing; Petoukhoff, Christopher E; Man, Michael K L; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M; Talbayev, Diyar; Madéo, Julien; Dani, Keshav M

    2016-01-01

    Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures. PMID:26936437

  9. Nonlinear oscillation of nanoelectro-mechanical resonators using energy balance method: considering the size effect and the van der Waals force

    NASA Astrophysics Data System (ADS)

    Ghalambaz, Mohammad; Ghalambaz, Mehdi; Edalatifar, Mohammad

    2016-03-01

    The energy balance method is utilized to analyze the oscillation of a nonlinear nanoelectro-mechanical system resonator. The resonator comprises an electrode, which is embedded between two substrates. Two types of clamped-clamped and cantilever nano-resonators are studied. The effects of the van der Waals attractions, Casimir force, the small size, the fringing field, the mid-plane stretching, and the axial load are taken into account. The governing partial differential equation of the resonator is reduced using the Galerkin method. The energy method is applied to obtain an analytical solution without considering any linearization or small parameter. The results of the present study are compared with the results available in the literature. In addition, the results of the present analytical solution are compared with the Runge-Kutta numerical results. An excellent agreement between the present analytical solution, numerical solution, and the results available in the literature was found. The influences of the van der Waals force, Casimir force, size effect, and fringing field effect on the oscillation frequency of resonators are studied. The results indicate that the presence of the intermolecular forces (van der Waals), Casimir force, and fringing field effect decreases the oscillation frequency of the resonator. In contrast, the presence of the size effect increases the oscillation frequency of the resonator.

  10. Nonlocal van der Waals functionals: the case of rare-gas dimers and solids.

    PubMed

    Tran, Fabien; Hutter, Jürg

    2013-05-28

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations, supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010)]. An analysis of the results in terms of energy decomposition is also provided. PMID:23742450

  11. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Avila, Jose; Balan, Adrian; Naylor, Carl H; Patriarche, Gilles; Dappe, Yannick J; Silly, Mathieu G; Sirotti, Fausto; Johnson, A T Charlie; Asensio, Maria C; Ouerghi, Abdelkarim

    2016-07-13

    Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential. PMID:27281693

  12. The role of van der Waals forces in the performance of molecular diodes

    NASA Astrophysics Data System (ADS)

    Nerngchamnong, Nisachol; Yuan, Li; Qi, Dong-Chen; Li, Jiang; Thompson, Damien; Nijhuis, Christian A.

    2013-02-01

    One of the main goals of organic and molecular electronics is to relate the performance and electronic function of devices to the chemical structure and intermolecular interactions of the organic component inside them, which can take the form of an organic thin film, a self-assembled monolayer or a single molecule. This goal is difficult to achieve because organic and molecular electronic devices are complex physical-organic systems that consist of at least two electrodes, an organic component and two (different) organic/inorganic interfaces. Singling out the contribution of each of these components remains challenging. So far, strong π-π interactions have mainly been considered for the rational design and optimization of the performances of organic electronic devices, and weaker intermolecular interactions have largely been ignored. Here, we show experimentally that subtle changes in the intermolecular van der Waals interactions in the active component of a molecular diode dramatically impact the performance of the device. In particular, we observe an odd-even effect as the number of alkyl units is varied in a ferrocene-alkanethiolate self-assembled monolayer. As a result of a more favourable van der Waals interaction, junctions made from an odd number of alkyl units have a lower packing energy (by ~0.4-0.6 kcal mol-1), rectify currents 10 times more efficiently, give a 10% higher yield in working devices, and can be made two to three times more reproducibly than junctions made from an even number of alkyl units.

  13. Adsorption by design: Tuning atom-graphene van der Waals interactions via mechanical strain

    NASA Astrophysics Data System (ADS)

    Nichols, Nathan S.; Del Maestro, Adrian; Wexler, Carlos; Kotov, Valeri N.

    2016-05-01

    We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain ranging from weak to moderately strong. We show that the van der Waals potential can be significantly enhanced by strain, and present applications of our results to the problem of elastic scattering of atoms from graphene. In particular, we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative inelastic effects near the surface become of increased importance. Furthermore, we introduce a method to independently estimate the Lennard-Jones parameters used in an effective model of He interacting with graphene, and determine how they depend on strain. At short distances, we find that strain tends to reduce the interaction strength by pushing the location of the adsorption potential minima to higher distances above the deformed graphene sheet. This opens up the exciting possibility of mechanically engineering an adsorption potential, with implications for the formation and observation of anisotropic low-dimensional superfluid phases.

  14. Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole.

    PubMed

    Gattinoni, Chiara; Michaelides, Angelos

    2015-01-01

    The corrosion of materials is an undesirable and costly process affecting many areas of technology and everyday life. As such, considerable effort has gone into understanding and preventing it. Organic molecule based coatings can in certain circumstances act as effective corrosion inhibitors. Although they have been used to great effect for more than sixty years, how they function at the atomic-level is still a matter of debate. In this work, computer simulation approaches based on density functional theory are used to investigate benzotriazole (BTAH), one of the most widely used and studied corrosion inhibitors for copper. In particular, the structures formed by protonated and deprotonated BTAH molecules on Cu(111) have been determined and linked to their inhibiting properties. It is found that hydrogen bonding, van der Waals interactions and steric repulsions all contribute in shaping how BTAH molecules adsorb, with flat-lying structures preferred at low coverage and upright configurations preferred at high coverage. The interaction of the dehydrogenated benzotriazole molecule (BTA) with the copper surface is instead dominated by strong chemisorption via the azole moiety with the aid of copper adatoms. Structures of dimers or chains are found to be the most stable structures at all coverages, in good agreement with scanning tunnelling microscopy results. Benzotriazole thus shows a complex phase behaviour in which van der Waals forces play an important role and which depends on coverage and on its protonation state and all of these factors feasibly contribute to its effectiveness as a corrosion inhibitor. PMID:25907526

  15. Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets

    NASA Astrophysics Data System (ADS)

    Guo, Lingling; Yan, Haoming; Moore, Quentarius; Buettner, Michael; Song, Jinhui; Li, Lin; Araujo, Paulo T.; Wang, Hung-Ta

    2015-07-01

    Bismuth telluride (Bi2Te3) two-dimensional (2D) nanosheets prepared by van der Waals epitaxy were successfully detached, transferred, and suspended for nano-indentation measurements to be performed on freestanding circular nanosheets. The Young's modulus acquired by fitting linear elastic behaviors of 26 samples (thickness: 5-14 nm) is only 11.7-25.7 GPa, significantly smaller than the bulk in-plane Young's modulus (50-55 GPa). Compliant and robust Bi2Te3 2D nanosheets suggest the feasibility of the elastic strain engineering of topological surface states.Bismuth telluride (Bi2Te3) two-dimensional (2D) nanosheets prepared by van der Waals epitaxy were successfully detached, transferred, and suspended for nano-indentation measurements to be performed on freestanding circular nanosheets. The Young's modulus acquired by fitting linear elastic behaviors of 26 samples (thickness: 5-14 nm) is only 11.7-25.7 GPa, significantly smaller than the bulk in-plane Young's modulus (50-55 GPa). Compliant and robust Bi2Te3 2D nanosheets suggest the feasibility of the elastic strain engineering of topological surface states. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03282b

  16. Excitons in one-dimensional van der Waals materials: Sb2S3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Filip, Marina R.; Giustino, Feliciano

    2015-09-01

    Antimony sulphide Sb2S3 has emerged as a promising material for a variety of energy applications ranging from solar cells to thermoelectrics and solid-state batteries. The most distinctive feature of Sb2S3 is its crystal structure, which consists of parallel 1-nm-wide ribbons held together by weak van der Waals forces. This structure clearly suggests that it should be possible to isolate individual Sb2S3 ribbons using micromechanical or liquid-phase exfoliation techniques. However, it is not clear yet how to identify the ribbons postexfoliation using standard optical probes. Using state-of-the-art first-principles calculations based on many-body perturbation theory, here we show that individual ribbons of Sb2S3 carry optical signatures clearly distinct from those of bulk Sb2S3 . In particular, we find a large blueshift of the optical absorption edge (from 1.38 to 2.30 eV) resulting from the interplay between a reduced screening and the formation of bound excitons. In addition, we observe a transition from an indirect band gap to a direct gap, suggesting an enhanced photoluminescence in the green. These unique fingerprints will enable extending the research on van der Waals materials to the case of one-dimensional chalchogenides.

  17. Transition metals-graphene interaction: the role of the screened van der Waals energy

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2015-03-01

    The interaction of graphene with transition metals is of particular interest for practical applications, which include for instance the efficient production of high-quality graphene. The accurate theoretical description of transition metals-graphene interfaces, however, is a particularly challenging problem due to the complex interplay between van der Waals (vdW) and hybridization effects. Here we apply the DFT/vdW-WF2s method, which allows to augment semi-local Density Functional Theory through the introduction of screened vdW interactions. Notably, we find that a reliable modeling of the van der Waals interaction should account for complex metal screening effects, that are due to the combined contributions of the p- and s-like quasi-free electrons, and the more localized d-states. The resulting geometry and energetic properties are in good agreement with experimental data and sophisticates theoretical calculations. Moreover, the Maximally Localized Wannier Functions underlying the DFT/vdW-WF2s method allow for an intuitive understanding of the complex binding mechanism.

  18. van der Waals Solids from Self-Assembled Nanoscale Building Blocks.

    PubMed

    Choi, Bonnie; Yu, Jaeeun; Paley, Daniel W; Trinh, M Tuan; Paley, Maria V; Karch, Jessica M; Crowther, Andrew C; Lee, Chul-Ho; Lalancette, Roger A; Zhu, Xiaoyang; Kim, Philip; Steigerwald, Michael L; Nuckolls, Colin; Roy, Xavier

    2016-02-10

    Traditional atomic van der Waals materials such as graphene, hexagonal boron-nitride, and transition metal dichalcogenides have received widespread attention due to the wealth of unusual physical and chemical behaviors that arise when charges, spins, and vibrations are confined to a plane. Though not as widespread as their atomic counterparts, molecule-based two-dimensional (2D) layered solids offer significant benefits; their structural flexibility will enable the development of materials with tunable properties. Here we describe a layered van der Waals solid self-assembled from a structure-directing building block and C60 fullerene. The resulting crystalline solid contains a corrugated monolayer of neutral fullerenes and can be mechanically exfoliated. The absorption spectrum of the bulk solid shows an optical gap of 390 ± 40 meV that is consistent with thermal activation energy obtained from electrical transport measurement. We find that the dimensional confinement of fullerenes significantly modulates the optical and electronic properties compared to the bulk solid. PMID:26829055

  19. Van der Waals pressure and its effect on trapped interlayer molecules

    PubMed Central

    Vasu, K. S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R. J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S. J.; Geim, A. K.; Nair, R. R.

    2016-01-01

    Van der Waals assembly of two-dimensional crystals continue attract intense interest due to the prospect of designing novel materials with on-demand properties. One of the unique features of this technology is the possibility of trapping molecules between two-dimensional crystals. The trapped molecules are predicted to experience pressures as high as 1 GPa. Here we report measurements of this interfacial pressure by capturing pressure-sensitive molecules and studying their structural and conformational changes. Pressures of 1.2±0.3 GPa are found using Raman spectrometry for molecular layers of 1-nm in thickness. We further show that this pressure can induce chemical reactions, and several trapped salts are found to react with water at room temperature, leading to two-dimensional crystals of the corresponding oxides. This pressure and its effect should be taken into account in studies of van der Waals heterostructures and can also be exploited to modify materials confined at the atomic interfaces. PMID:27385262

  20. Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures.

    PubMed

    He, Yongmin; Yang, Yang; Zhang, Zhuhua; Gong, Yongji; Zhou, Wu; Hu, Zhili; Ye, Gonglan; Zhang, Xiang; Bianco, Elisabeth; Lei, Sidong; Jin, Zehua; Zou, Xiaolong; Yang, Yingchao; Zhang, Yuan; Xie, Erqing; Lou, Jun; Yakobson, Boris; Vajtai, Robert; Li, Bo; Ajayan, Pulickel

    2016-05-11

    Vertically stacked van der Waals heterostructures composed of compositionally different two-dimensional atomic layers give rise to interesting properties due to substantial interactions between the layers. However, these interactions can be easily obscured by the twisting of atomic layers or cross-contamination introduced by transfer processes, rendering their experimental demonstration challenging. Here, we explore the electronic structure and its strain dependence of stacked MoSe2/WSe2 heterostructures directly synthesized by chemical vapor deposition, which unambiguously reveal strong electronic coupling between the atomic layers. The direct and indirect band gaps (1.48 and 1.28 eV) of the heterostructures are measured to be lower than the band gaps of individual MoSe2 (1.50 eV) and WSe2 (1.60 eV) layers. Photoluminescence measurements further show that both the direct and indirect band gaps undergo redshifts with applied tensile strain to the heterostructures, with the change of the indirect gap being particularly more sensitive to strain. This demonstration of strain engineering in van der Waals heterostructures opens a new route toward fabricating flexible electronics. PMID:27120401

  1. Van der Waals force: a dominant factor for reactivity of graphene.

    PubMed

    Lee, Jong Hak; Avsar, Ahmet; Jung, Jeil; Tan, Jun You; Watanabe, K; Taniguchi, T; Natarajan, Srinivasan; Eda, Goki; Adam, Shaffique; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2015-01-14

    Reactivity control of graphene is an important issue because chemical functionalization can modulate graphene's unique mechanical, optical, and electronic properties. Using systematic optical studies, we demonstrate that van der Waals interaction is the dominant factor for the chemical reactivity of graphene on two-dimensional (2D) heterostructures. A significant enhancement in the chemical stability of graphene is achieved by replacing the common SiO2 substrate with 2D crystals such as an additional graphene layer, WS2, MoS2, or h-BN. Our theoretical and experimental results show that its origin is a strong van der Waals interaction between the graphene layer and the 2D substrate. This results in a high resistive force on graphene toward geometric lattice deformation. We also demonstrate that the chemical reactivity of graphene can be controlled by the relative lattice orientation with respect to the substrates and thus can be used for a wide range of applications including hydrogen storage. PMID:25493357

  2. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities

    PubMed Central

    Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.

    2015-01-01

    Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783

  3. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation. PMID:23514495

  4. Key concepts from Gibbs that empowered Van der Waals, Korteweg and Kamerlingh Onnes

    NASA Astrophysics Data System (ADS)

    Levelt Sengers, Johanna

    2003-03-01

    Gibbs founded his theory of the equilibrium of heterogeneous systems (1873-1878) on the following pillars: thermodynamic stability; phase equilibrium from tangent planes rolling across thermodynamic energy surfaces; the chemical potential; degrees of freedom; the phase rule; and criticality. These concepts inspired major interdisciplinary research on mixture phase behavior in the Netherlands.(J. Levelt Sengers, How Fluids Unmix, Edita, Amsterdam (2002)) Mathematician Korteweg and physicist Van der Waals, at the University of Amsterdam, used Gibbs's geometric approach to produce the first formulation of the Helmholtz energy of binary fluid mixtures in 1891. Physicist Kamerlingh Onnes and his students at the University of Leiden studied binary mixtures experimentally, confirming Van der Waals's model, and built many 3-D models of thermodynamic surfaces. Misconceptions about criticality abounded in Europe from 1880 to 1908, provoking attacks by Kamerlingh Onnes. Between 1907 and 1913, Amsterdam chemist Bakhuis Roozeboom and his school produced an influential book series on binary and ternary, fluid and solid phase equilibria, including reacting systems.

  5. Density-functional description of polymer crystals: A comparative study of recent van der Waals functionals

    NASA Astrophysics Data System (ADS)

    Pham, Thinh H.; Ramprasad, Rampi; Nguyen, Huy-Viet

    2016-06-01

    Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional — a revised version of vdW-DF functional — to obtain a high-fidelity prediction of structural and other properties of polymeric materials.

  6. Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Brown-Altvater, Florian; Rangel, Tonatiuh; Neaton, Jeffrey B.

    2016-05-01

    Acene molecular crystals are of current interest in organic optoelectronics, both as active materials and for exploring and understanding new phenomena. Phonon scattering can be an important facilitator and dissipation mechanism in charge separation and carrier transport processes. Here, we carry out density functional theory (DFT) calculations of the structure and the full phonon dispersion of crystalline naphthalene, a well-characterized acene crystal for which detailed neutron-diffraction measurements, as well as infrared and Raman spectroscopy, are available. We evaluate the performance, relative to experiments, of DFT within the local density approximation (LDA); the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE); and a recent van der Waals-corrected nonlocal correlation (vdW-DF-cx) functional. We find that the vdW-DF-cx functional accurately predicts lattice parameters of naphthalene within 1%. Intermolecular and intramolecular phonon frequencies across the Brillouin zone are reproduced within 7.8% and 1%, respectively. As expected, LDA (PBE) underestimates (overestimates) the lattice parameters and overestimates (underestimates) phonon frequencies, demonstrating their shortcomings for predictive calculations of weakly bound materials. If the unit cell is fixed to the experimental lattice parameters, PBE is shown to lead to improved phonon frequencies. Our study provides a detailed understanding of the phonon spectrum of naphthalene, and highlights the importance of including van der Waals dispersion interactions in predictive calculations of lattice parameters and phonon frequencies of molecular crystals and related organic materials.

  7. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure

    PubMed Central

    Sediri, Haikel; Pierucci, Debora; Hajlaoui, Mahdi; Henck, Hugo; Patriarche, Gilles; Dappe, Yannick J.; Yuan, Sheng; Toury, Bérangère; Belkhou, Rachid; Silly, Mathieu G.; Sirotti, Fausto; Boutchich, Mohamed; Ouerghi, Abdelkarim

    2015-01-01

    Stacking various two-dimensional atomic crystals is a feasible approach to creating unique multilayered van der Waals heterostructures with tailored properties. Herein for the first time, we present a controlled preparation of large-area h-BN/graphene heterostructures via a simple chemical deposition of h-BN layers on epitaxial graphene/SiC(0001). Van der Waals forces, which are responsible for the cohesion of the multilayer system, give rise to an abrupt interface without interdiffusion between graphene and h-BN, as shown by X-ray Photoemission Spectroscopy (XPS) and direct observation using scanning and High-Resolution Transmission Electron Microscopy (STEM/HRTEM). The electronic properties of graphene, such as the Dirac cone, remain intact and no significant charge transfer i.e. doping, is observed. These results are supported by Density Functional Theory (DFT) calculations. We demonstrate that the h-BN capped graphene allows the fabrication of vdW heterostructures without altering the electronic properties of graphene. PMID:26585245

  8. Theoretical investigation of van der Waals forces between solid surfaces at nanoscales

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Yaroslav V.; Gelinck, Edwin; Fischer, Hartmut R.

    2009-08-01

    A theoretical investigation of van der Waals forces acting between two solid silicon surfaces at separations from zero to approximately 20 nm is presented. We focused our efforts on the analysis of different factors that can cause deviations from the classical pressure-distance dependence p ˜ 1/ D3. It is demonstrated that a layer (oxide or water) at any of the surfaces influences the pressure up to distances, which are an order of magnitude larger than its own thickness. A jump on the p( D) curve is expected at contact of the adsorbed liquid layers. The retardation of van der Waals forces at 5 < D < 20 nm has the similar effect on the pressure as 1 nm oxide layers. At the far end of this range the pressure decreases by 30% due to the retardation. Nanoscale roughness plays a great role when the surfaces are close-to-contact, the crucial factor is the height distribution of asperities. However, their curvature and surface density are also important, as well as the amount of adsorbed water.

  9. Potential-energy surface and van der Waals motions of p-difluorobenzene-argon cation

    NASA Astrophysics Data System (ADS)

    Makarewicz, Jan

    2005-07-01

    The structure and dynamics of the van der Waals complex of argon with the p-difluorobenzene cation are investigated using the ab initio theory. The restricted open-shell Møller-Plesset second-order perturbation method combined with the augmented correlation-consistent polarized valence double-ζ basis set is employed to determine the electronic ground-state potential-energy surface of the cationic complex. This surface is extremely flat in a wide region of the configuration space of the Ar atom which moves almost freely over the monomer ring. However, it is bound to the monomer stronger in the cationic than in the neutral complex. Its binding energy is calculated to be 621cm-1 at a distance of 3.445Å from the monomer center. The calculated dissociation energy of 572cm-1 agrees perfectly with the experimental value of 572±6cm-1 [S. M. Belm, R. J. Moulds, and D. Lawrence, J. Chem. Phys. 115, 10709 (2001)]. The effect of a strong coupling of large-amplitude intermolecular motions on the character of van der Waals vibrational states is investigated. The vibrational structure of the spectrum of the complex is explained and its earlier assignment is partly corrected.

  10. Density-functional description of polymer crystals: A comparative study of recent van der Waals functionals.

    PubMed

    Pham, Thinh H; Ramprasad, Rampi; Nguyen, Huy-Viet

    2016-06-01

    Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional - a revised version of vdW-DF functional - to obtain a high-fidelity prediction of structural and other properties of polymeric materials. PMID:27276968

  11. Microwave and ab initio studies of the Xe-CH4 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Wen, Qing; Jäger, Wolfgang

    2006-01-01

    An ab initio potential-energy surface of the Xe-CH4 van der Waals complex was constructed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations. The recently developed small-core pseudopotential and augmented correlation-consistent polarized valence quadruple-zeta basis set was used for the xenon atom and Dunning's augmented correlation-consistent polarized valence triple-zeta basis set for the other atoms. The basis sets were supplemented with bond functions. Dipole moments were also calculated at various configurations. Rotational spectra of the Xe-CH4 van der Waals complex were recorded using a pulsed-nozzle Fourier transform microwave spectrometer. The isotopomers studied include those of CH4,CH134,CD4,CH3D, and CHD3 with the five most abundant Xe isotopes. Transitions within three internal rotor states, namely, the j =0,K=0;j=1,K=0; and j =2,K=1 states, were observed and assigned. Nuclear quadrupole hyperfine structures due to the presence of Xe131(I=3/2) were detected and analyzed. It was found that the j =1,K=0 state is perturbed by a Coriolis interaction with a nearby j =1,K=1 state. For isotopomers containing CH3D and CHD3, the j =2 states are no longer metastable and could not be observed. The spectroscopic results were used to derive structural and dynamical information of the Xe-CH4 complex.

  12. Mapping van der Waals forces with frequency modulation dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Polesel-Maris, J.; Guo, H.; Zambelli, T.; Gauthier, S.

    2006-08-01

    Nanometre-size gold clusters supported on MoS2(0001) are investigated by means of ultrahigh-vacuum frequency modulation dynamic force microscopy. Topography and frequency shift images are simultaneously obtained using the average tunnelling current to regulate the tip-substrate distance. Two families of clusters are observed, giving different frequency shift images. While the topographic and frequency shift profiles have similar shapes on small clusters (size \\lesssim 1 nm), they are quite different near the top of large clusters (size \\gtrsim 4 nm): the topographic profile is rounded, but the frequency shift profile exhibits rather steep edges and a depression near the centre of the island. It is demonstrated that these differences result from the finite range of van der Waals forces. On small islands, the frequency shift is dominated by the interaction of the tip with the substrate. On large islands, it is dominated by the interaction with the island. The particular observed shape results from the geometry of the island. These interpretations are comforted by analytical and numerical calculations. In particular, the characteristic shape of the frequency shift profiles on large islands can be reproduced by introducing realistic parameters and considering only the contribution of van der Waals forces.

  13. Hydrogenic Rydberg States of Molecular van der Waals Complexes: Resolved Rydberg Spectroscopy of DABCO-N2

    NASA Astrophysics Data System (ADS)

    Cockett, Martin C.; Watkins, Mark J.

    2004-01-01

    The complementary threshold ionization techniques of MATI and ZEKE spectroscopy have been used to reveal well-resolved, long-lived (>10 μs) hydrogenic Rydberg series (50≤n≤98) in a van der Waals complex formed between a polyatomic molecule and a diatomic molecule for the first time. The series are observed within 50 cm-1 of the adiabatic ionization threshold as well as two core-excited thresholds corresponding to excitation of up to two quanta in the van der Waals vibra­tional mode.

  14. The Forced van der Pol Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2009-01-01

    We report on a study of the forced van der Pol equation x + [epsilon](x[superscript 2] - 1)x + x = F cos[omega]t, by solving numerically the differential equation for a variety of values of the parameters [epsilon], F and [omega]. In doing so, many striking and interesting trajectories can be discovered and phenomena such as frequency entrainment,…

  15. Electronic Properties and Device Applications of van-der-Waals Thin Films

    NASA Astrophysics Data System (ADS)

    Renteria, Jacqueline de Dios

    Successful exfoliation of graphene and discoveries of its unique electrical and thermal properties have motivated searches for other quasi two-dimensional (2D) materials with interesting properties. The layered van der Waals materials can be cleaved mechanically or exfoliated chemically by breaking the relatively weak bonding between the layers. In this dissertation research I addressed a special group of inorganic van der Waals materials -- layered transition metal dichalcogenides (MX2, where M=Mo, W, Nb, Ta or Ti and X=S, Se or Te). The focus of the investigation was electronic properties of thin films of TaSe2 and MoS2 and their device applications. In the first part of the dissertation, I describe the fabrication and performance of all-metallic three-terminal devices with the TaSe2 thin-film conducting channel. The layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. It was established that devices with nanometer-scale thickness channels exhibited strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. It was found that the drain-source current in thin-film 2H-TaSe2--Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. In the second part of the dissertation, I describe the fabrication, electrical testing and measurements of the low-frequency 1/f noise in three-terminal devices with the MoS2 thin-film channel (f is the frequency). Analysis of the experimental data allowed us to distinguish channel and contact noise contributions for both as fabricated and aged devices. The noise characteristics of MoS 2--Ti/Au devices are in agreement with the McWhorter model description. The latter is contrary to what is observed in

  16. Vibronic structure of the cyclopentadienyl radical and its nonrigid van der Waals cluster with nitrogen

    NASA Astrophysics Data System (ADS)

    Sun, S.; Bernstein, E. R.

    1995-09-01

    Fluorescence excitation and two color mass resolved excitation spectroscopy are employed to study the D1(2A2″)←D0(2E1″) vibronic transitions of the cyclopentadienyl radical (cpd) and its van der Waals cluster with nitrogen. The radical is created by photolysis of the cyclopentadiene dimer and cooled by expansion from a supersonic nozzle. The cpd(N2)1 cluster is generated in this cooling process. Mass resolved excitation spectra of cpd are obtained for the first 1200 cm-1 of the D1←D0 transition. The excitation spectrum of cpd(N2)1 shows a complicated structure for the origin transition. With the application of hole burning spectroscopy, we are able to assign all the cluster transitions to a single isomer. The features are assigned to a 55 cm-1 out-of-plane van der Waals mode stretch and contortional (rotational) motions of the N2 molecule with respect to the cpd radical. Empirical potential energy calculations are used to predict the properties of this cluster and yield the following results: (1) the N2 molecular axis is perpendicular to the cpd fivefold axis and parallel to the plane of the cpd ring with the two molecular centers of mass lying on the fivefold ring axis; (2) the binding energy of cpd(N2)1 is 434 cm-1; and (3) the rotational motion of the N2 molecule is essentially unhindered about the cpd fivefold axis. The molecular symmetry group D5h(MS) is applied to the nonrigid cluster, and optical selection rules exclude even↔odd transitions (Δn=0, ±2, ±4,... allowed) between the different contortional levels. Tentative assignments are given to the observed contortional features based on these considerations. The barrier to internal rotation is also small in the excited state. The results for the cpd(N2)1 van der Waals cluster are compared to those for the benzene (N2)1 and benzyl radical (N2)1 clusters.

  17. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE PAGESBeta

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  18. A van der Waals density functional investigation of carboranethiol self-assembled monolayers on Au(111).

    PubMed

    Mete, Ersen; Yılmaz, Ayşen; Danışman, Mehmet Fatih

    2016-05-14

    Isolated and full monolayer adsorption of various carboranethiol (C2B10H12S) isomers on the gold(111) surface has been investigated using both the standard and van der Waals density functional theory calculations. The effect of different molecular dipole moment orientations on the low energy adlayer geometries, the binding characteristics and the electronic properties of the self-assembled monolayers of these isomers has been studied. Specifically, the binding energy and work function changes associated with different molecules show a correlation with their dipole moments. The adsorption is favored for the isomers with dipole moments parallel to the surface. Of the two possible unit cell structures, (5 × 5) was found to be more stable than . PMID:27108565

  19. Self-consistent van der Waals density functional study of benzene adsorption on Si(100)

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yuji; Hamada, Ikutaro; Inagaki, Kouji; Morikawa, Yoshitada

    2016-06-01

    The adsorption of benzene on the Si(100) surface is studied theoretically using the self-consistent van der Waals density functional (vdW-DF) method. The adsorption energies of two competing adsorption structures, butterfly (BF) and tight-bridge (TB) structures, are calculated with several vdW-DFs at saturation coverage. Our results show that recently proposed vdW-DFs with high accuracy all prefer TB to BF, in accord with more accurate calculations based on exact exchange and correlation within the random-phase approximation. Detailed analyses reveal the important roles played by the molecule-surface interaction and molecular deformation upon adsorption, and we suggest that their precise description is a prerequisite for accurate prediction of the most stable adsorption structure of organic molecules on semiconductor surfaces.

  20. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale.

    PubMed

    Ambrosetti, Alberto; Ferri, Nicola; DiStasio, Robert A; Tkatchenko, Alexandre

    2016-03-11

    Recent experiments on noncovalent interactions at the nanoscale have challenged the basic assumptions of commonly used particle- or fragment-based models for describing van der Waals (vdW) or dispersion forces. We demonstrate that a qualitatively correct description of the vdW interactions between polarizable nanostructures over a wide range of finite distances can only be attained by accounting for the wavelike nature of charge density fluctuations. By considering a diverse set of materials and biological systems with markedly different dimensionalities, topologies, and polarizabilities, we find a visible enhancement in the nonlocality of the charge density response in the range of 10 to 20 nanometers. These collective wavelike fluctuations are responsible for the emergence of nontrivial modifications of the power laws that govern noncovalent interactions at the nanoscale. PMID:26965622

  1. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure

    PubMed Central

    Huang, Le; Li, Yan; Wei, Zhongming; Li, Jingbo

    2015-01-01

    The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhibits modulation of its carrier effective mass and carrier concentration by the applied compressive strain, suggesting that mobility engineering and good piezoelectric effect can be realized in BP/MoS2 heterostructure. Because the type-II band alignment can facilitate the separation of photo-excited electrons and holes, and it can benefit from the great absorption coefficient in ultra-violet region, the BP/MoS2 shows great potential to be a very efficient ultra-violet photodetector. PMID:26553370

  2. Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts.

    PubMed

    Safronova, M S; Porsev, S G; Clark, Charles W

    2012-12-01

    We evaluated the C(6) coefficients of Yb-Yb, Yb-alkali, and Yb-group II van der Waals interactions with 2% uncertainty. The only existing experimental result for such quantities is for the Yb-Yb dimer. Our value, C(6)=1929(39) a.u., is in excellent agreement with the recent experimental determination of 1932(35) a.u. We have also developed a new approach for the calculation of the dynamic correction to the blackbody radiation shift. We have calculated this quantity for the Yb 6s(2) (1)S(0)-6s6p (3)P(0)(o) clock transition with 3.5% uncertainty. This reduces the fractional uncertainty due to the blackbody radiation shift in the Yb optical clock at 300 K to the 10(-18) level. PMID:23368178

  3. Light-Induced Exciton Spin Hall Effect in van der Waals Heterostructures.

    PubMed

    Li, Yun-Mei; Li, Jian; Shi, Li-Kun; Zhang, Dong; Yang, Wen; Chang, Kai

    2015-10-16

    We propose a light-induced spin Hall effect for interlayer exciton gas in monolayer MoSe2-WSe2 van der Waals heterostructure. By applying two infrared, spatially varying laser beams coupled to the exciton internal states, a spin-dependent gauge potential on the exciton center-of-mass motion is induced. This gauge potential deflects excitons in different spin states towards opposite directions, leading to a finite spin current but vanishing mass current. In the Hall bar geometry, the spin-dependent deflection gives rise to spin-dependent chiral edge states with spin-velocity locking. The spin current and chiral edge states of the excitons can be detected by spatially resolved photoluminescence spectroscopy. PMID:26550894

  4. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy.

    PubMed

    Lin, Min; Wu, Di; Zhou, Yu; Huang, Wei; Jiang, Wei; Zheng, Wenshan; Zhao, Shuli; Jin, Chuanhong; Guo, Yunfan; Peng, Hailin; Liu, Zhongfan

    2013-09-11

    The controlled production of high-quality atomically thin III-VI semiconductors poses a challenge for practical applications in electronics, optoelectronics, and energy science. Here, we exploit a controlled synthesis of single- and few-layer In2Se3 flakes on different substrates, such as graphene and mica, by van der Waals epitaxy. The thickness, orientation, nucleation site, and crystal phase of In2Se3 flakes were well-controlled by tuning the growth condition. The obtained In2Se3 flakes exhibit either semiconducting or metallic behavior depending on the crystal structures. Meanwhile, field-effect transistors based on the semiconducting In2Se3 flakes showed an efficient photoresponse. The controlled growth of atomically thin In2Se3 flakes with diverse conductivity and efficient photoresponsivity could lead to new applications in photodetectors and phase change memory devices. PMID:23978251

  5. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    SciTech Connect

    Perreault, John D.; Cronin, Alexander D.

    2005-09-23

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm.

  6. The development of two dimensional group IV chalcogenides, blocks for van der Waals heterostructures.

    PubMed

    Sa, Baisheng; Sun, Zhimei; Wu, Bo

    2016-01-14

    In this work, we introduce a series of two dimensional (2D) group IV chalcogenides (AX)2 with the building block X-A-A-X (A = Si, Ge, Sn, and Pb, and X = Se and Te) on the basis of ab initio calculations. The analysis of energy evaluation, lattice vibration as well as the chemical bonding demonstrate the good stability of these 2D materials. Furthermore, the pictures for the chemical bonding and electronic features of the 2D (AX)2 are drawn. Their narrow gapped semiconducting nature is unraveled. Especially, strong interactions between the electrons and phonons as well as the topological insulating nature in (SiTe)2 are observed. The present results indicate that such remarkable artificial 2D (AX)2 are building blocks for van der Waals heterostructure engineering, which shows potential applications in nanoscaled electronics and optoelectronics. PMID:26667941

  7. Quantitative bond energetics in atomic-scale junctions with significant van der Waals character

    NASA Astrophysics Data System (ADS)

    Venkataraman, Latha; Aradhya, Sriharsha; Hybertsen, Mark

    2015-03-01

    A direct measurement of the potential energy surface that characterizes individual chemical bonds in complex materials has fundamental significance for many disciplines. Here, we demonstrate that the energy profile for metallic single-atom contacts and single-molecule junctions can be mapped by fitting ambient atomic force microscope measurements carried out in the near-equilibrium regime to a physical, but simple, functional form. In particular we are able to extract bond energies for metal-molecule link bonds in cases where the interaction has significant contribution from nonspecific interactions attributed to van der Waals (vdW) interactions at short length scale in addition to specific donor-acceptor bonds. Our approach significantly expands the quantitative information extracted from these measurements, allowing direct comparisons to density functional theory (DFT) calculations instead of relying on trends in bond rupture forces alone. Currently at Cornell University.

  8. Probing interlayer interactions in WS2 -graphene van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Chung, Ting Fung; Yuan, Long; Huang, Libai; Chen, Yong P.

    Two-dimensional crystals based van der Waals coupled heterostructures are of interest owing to their potential applications for flexible and transparent electronics and optoelectronics. The interaction between the 2D layered crystals at the interfaces of these heterostructures is crucial in determining the overall performance and is strongly affected by contamination and interfacial strain. We have fabricated heterostructures consisting of atomically thin exfoliated WS2 and chemical-vapor-deposited (CVD) graphene, and studied the interaction and coupling between the WS2 and graphene using atomic force microscopy (AFM), Raman spectroscopy and femtosecond transient absorption measurement (TAM). Information from Raman-active phonon modes allows us to estimate charge doping in graphene and interfacial strain on the crystals. Spatial imaging probed by TAM can be correlated to the heterostructure surface morphology measured by AFM and Raman maps of graphene and WS2, showing how the interlayer coupling alters exciton decay dynamics quantitatively.

  9. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections

    SciTech Connect

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μ{sub B} distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of −1.45 and 1.45 eV.

  10. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections.

    PubMed

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-03-28

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μB distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of -1.45 and 1.45 eV. PMID:24697474

  11. Communication: Multiple-property-based diabatization for open-shell van der Waals molecules

    NASA Astrophysics Data System (ADS)

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C.

    2016-03-01

    We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated for O2 - O2 in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.

  12. Quantum defect theory for the van der Waals plus dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Wang, Gao-Ren; Xie, Ting; Huang, Yin; Zhang, Wei; Cong, Shu-Lin

    2012-12-01

    We investigate the scattering dynamics governed by the long-range van der Waals plus dipole-dipole interaction potential, -C6/R6-C3/R3, which describes the long-range interaction between two polar molecules in an electric field. In the spirit of quantum defect theory, a set of parameters which are nearly constants in the threshold regime is defined to characterize the scattering process. Using appropriate boundary conditions for the scattering wave functions and relevant parameters, we explore the quantum reflection by and quantum tunneling through the long-range potential. As a sample application, the reactive collision rates of 40K87Rb + 40K87Rb are calculated.

  13. Causality, universality, and effective field theory for van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; König, Sebastian; Lee, Dean; Hammer, H.-W.

    2013-05-01

    We analyze low-energy scattering for arbitrary short-range interactions plus an attractive 1/r6 tail. We derive the constraints of causality and unitarity and find that the van der Waals length scale dominates over parameters characterizing the short-distance physics of the interaction. This separation of scales suggests a separate universality class for physics characterizing interactions with an attractive 1/r6 tail. We argue that a similar universality class exists for any attractive potential 1/rα for α⩾2. We also discuss the extension to multichannel systems near a magnetic Feshbach resonance. We discuss the implications for effective field theory with attractive singular power-law tails.

  14. An application of the van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases.

    PubMed

    Cooper, Valentino R; Thonhauser, T; Langreth, David C

    2008-05-28

    We apply the van der Waals density functional (vdW-DF) to study hydrogen bonding and stacking interactions between nucleobases. The excellent agreement of our results with high level quantum chemical calculations highlights the value of the vdW-DF for first-principles investigations of biologically important molecules. Our results suggest that, in the case of hydrogen-bonded nucleobase pairs, dispersion interactions reduce the cost of propeller twists while having a negligible effect on buckling. Furthermore, the efficient scaling of DFT methods allowed for the easy optimization of separation distance between nucleobase stacks, indicating enhancements in the interaction energy of up to 3 kcalmol over previous fixed distance calculations. We anticipate that these results are significant for extending the vdW-DF method to model larger vdW complexes and biological molecules. PMID:18513005

  15. The role of van der Waals interactions in surface-supported supramolecular networks.

    PubMed

    Nguyen, Manh-Thuong; Pignedoli, Carlo A; Treier, Matthias; Fasel, Roman; Passerone, Daniele

    2010-01-28

    The development of a detailed theoretical understanding of surface-supported supramolecular networks is important for designing novel organic nanodevices. By comparing with STM experiments, we show that van der Waals corrections to density functional theory (DFT) in the generalized gradient approximation (GGA) are mandatory to correctly reproduce the electronic and geometric structure of a prototypical system of this kind, the self-assembled hydrogen bonded network formed by 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and 4,4''-diamino-p-terphenyl (DATP) deposited on Au(111). Our results reproduce both the network structure and its higher stability with respect to homomolecular networks. By successful comparison with the experiments, we demonstrate that dispersive interactions must be taken into account when rationally designing organic semiconductor nanostructures on a metallic substrate. DFT-GGA alone would fail in predicting geometric and electronic properties for weakly bounded large organic adsorbates on coinage metal surfaces. PMID:20066384

  16. Van der Waals interactions between polymers with sequence-specific polarizabilities: Stiff polymers and Gaussian coils

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    2016-01-01

    We consider the van der Waals interaction between a pair of polymers with quenched heterogeneous sequences of local polarizabilities along their backbones, and study the effective pairwise interaction energy for both stiff polymers and flexible Gaussian coils. In particular, we focus on the cases where the pair of polarizability sequences are (i) distinct and (ii) identical. We find that the pairwise interaction energies of distinct and identical Gaussian coils are both isotropic and exhibit the same decay behavior for separations larger than their gyration radius, in contradistinction to the orientationally anisotropic interaction energies of distinct and identical stiff polymers. For both Gaussian coils and stiff polymers, the attractive interaction between identical polymers is enhanced if the polarizability sequence is more heterogeneous.

  17. Adsorption of polyiodobenzene molecules on the Pt(111) surface using van der Waals density functional theory

    NASA Astrophysics Data System (ADS)

    Johnston, Karen; Pekoz, Rengin; Donadio, Davide

    2016-02-01

    Adsorption of aromatic molecules on surfaces is widely studied due to applications in molecular electronics. In this work, the adsorption of iodobenzene molecules on the Pt(111) surface has been studied using density functional theory. Iodobenzene molecules, with various numbers of iodine atoms, have two non-dissociative adsorption minima. One structure exhibits chemisorption between the ring and the surface (short-range) and the other structure exhibits chemisorption between the iodine ions and the surface (long-range). Both structures have a strong van der Waals interaction with the surface. In general, the adsorption energy increases as the number of iodine atoms increases. The dissociated structure of monoiodobenzene was investigated, and the dissociation barrier and the barrier between the short- and long-range states were compared.

  18. Effect of van der Waals interactions on the stability of SiC polytypes

    NASA Astrophysics Data System (ADS)

    Kawanishi, Sakiko; Mizoguchi, Teruyasu

    2016-05-01

    Density functional theory calculations with a correction of the long-range dispersion force, namely, the van der Waals (vdW) force, are performed for SiC polytypes. The lattice parameters are in good agreement with those obtained from the experiments. Furthermore, the stability of the polytypes in the experiments, which show 3C-SiC as the most stable, is reproduced by the present calculations. The effects of the vdW force on the electronic structure and the stability of polytypes are discussed. We observe that the vdW interaction is more sensitive to the cubic site than the hexagonal site. Thus, the influence of the vdW force increases with decreasing the hexagonality of the polytype, which results in the confirmation that the most stable polytype is 3C-SiC.

  19. Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Hao; Lin, Jheng-Cyuan; Liu, Heng-Jui; Do, Thi Hien; Zhu, Yuan-Min; Ha, Thai Duy; Zhan, Qian; Juang, Jenh-Yih; He, Qing; Arenholz, Elke; Chiu, Po-Wen; Chu, Ying-Hao

    2016-06-01

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO2 films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO2 films are similar to those of the bulk. Flexible or free-standing MoO2 thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.

  20. The influence of van der Waals forces on droplet morphological transitions and solvation forces in nanochannels.

    PubMed

    Dutka, F; Napiórkowski, M

    2014-01-22

    The morphological phase transition between sessile and lenticular shapes of a droplet placed in a nanochannel is observed upon increasing the droplet volume. The phase diagram for this system is discussed within both macroscopic and mesoscopic approaches. On the mesoscopic level, the van der Waals forces are taken into account via the effective interface potential acting between the channel walls and the droplet. We discuss the contact angle dependence on the droplet volume and the distance between the walls; this angle turns out to be smaller than the macroscopic Young's angle. The droplet's presence induces the solvation force acting between the channel walls. It can be either attractive or repulsive, depending on the width of the channel. PMID:24285307

  1. Improving the Description of Nonmagnetic and Magnetic Molecular Crystals via the van der Waals Density Functional

    NASA Astrophysics Data System (ADS)

    Obata, Masao; Nakamura, Makoto; Hamada, Ikutaro; Oda, Tatsuki

    2015-02-01

    We have derived and implemented a stress tensor formulation for the van der Waals density functional (vdW-DF) with spin-polarization-dependent gradient correction (GC) recently proposed by the authors [J. Phys. Soc. Jpn. 82, 093701 (2013)] and applied it to nonmagnetic and magnetic molecular crystals under ambient condition. We found that the cell parameters of the molecular crystals obtained with vdW-DF show an overall improvement compared with those obtained using local density and generalized gradient approximations. In particular, the original vdW-DF with GC gives the equilibrium structural parameters of solid oxygen in the α-phase, which are in good agreement with the experiment.

  2. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    PubMed Central

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295

  3. Phase diagram of Rydberg atoms with repulsive van der Waals interaction

    SciTech Connect

    Osychenko, O. N.; Astrakharchik, G. E.; Boronat, J.; Lutsyshyn, Y.; Lozovik, Yu. E.

    2011-12-15

    We report a quantum Monte Carlo calculation of the phase diagram of bosons interacting with a repulsive inverse sixth power pair potential, a model for assemblies of Rydberg atoms in the local van der Waals blockade regime. The model can be parametrized in terms of just two parameters, the reduced density and temperature. Solidification happens to the fcc phase. At zero temperature, the transition density is found with the diffusion Monte Carlo method at density {rho}=3.9 (({Dirac_h}/2{pi}){sup 2}/mC{sub 6}){sup 3/4}, where C{sub 6} is the strength of the interaction. The solidification curve at nonzero temperature is studied with the path-integral Monte Carlo approach and is compared with transitions in corresponding harmonic and classical crystals. Relaxation mechanisms are considered in relation to present experiments.

  4. Influence of ultrathin water layer on the van der Waals/Casimir force between gold surfaces

    SciTech Connect

    Palasantzas, G.; Zwol, P. J. van; Svetovoy, V. B.

    2009-06-15

    In this paper we investigate the influence of ultrathin water layer ({approx}1-1.5 nm) on the van der Waals/Casimir force between gold surfaces. Adsorbed water is inevitably present on gold surfaces at ambient conditions as jump-up-to contact during adhesion experiments demonstrate. Calculations based on the Lifshitz theory give very good agreement with the experiment in the absence of any water layer for surface separations d > or approx. 10 nm. However, a layer of thickness h < or approx. 1.5 nm is allowed by the error margin in force measurements. At shorter separations, d < or approx. 10 nm, the water layer can have a strong influence as calculations show for flat surfaces. Nonetheless, in reality the influence of surface roughness must also be considered, and it can overshadow any water layer influence at separations comparable to the total sphere-plate rms roughness w{sub shp}+w.

  5. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure.

    PubMed

    Huang, Le; Li, Yan; Wei, Zhongming; Li, Jingbo

    2015-01-01

    The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhibits modulation of its carrier effective mass and carrier concentration by the applied compressive strain, suggesting that mobility engineering and good piezoelectric effect can be realized in BP/MoS2 heterostructure. Because the type-II band alignment can facilitate the separation of photo-excited electrons and holes, and it can benefit from the great absorption coefficient in ultra-violet region, the BP/MoS2 shows great potential to be a very efficient ultra-violet photodetector. PMID:26553370

  6. Formation of van der Waals molecules in buffer-gas-cooled magnetic traps [corrected].

    PubMed

    Brahms, N; Tscherbul, T V; Zhang, P; Kłos, J; Sadeghpour, H R; Dalgarno, A; Doyle, J M; Walker, T G

    2010-07-16

    We predict that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10(12)  cm(-3). We explore the spin relaxation of these molecules in buffer-gas-loaded magnetic traps and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong T(-6) thermal dependence of the spin-change rate of silver (Ag) trapped in dense (3)He is accounted for by the formation and spin change of Ag(3)He van der Waals molecules, thus providing indirect evidence for molecular formation in a buffer-gas trap. PMID:20867761

  7. The effect of nonpolar solvents on Rydberg states: van der Waals complexes of azabicyclooctanes

    NASA Astrophysics Data System (ADS)

    Shang, Q. Y.; Moreno, P. O.; Dion, C.; Bernstein, E. R.

    1993-05-01

    The effect of solvation by nonpolar solvents on the (n,3s) Rydberg states of 1,4-diazabicyclo[2.2.2]octane (DABCO) and azabicyclo[2.2.2]octane (ABCO) is investigated through mass resolved excitation spectroscopy of their van der Waals complexes. The solute/solvent clusters formed in a supersonic expansion include DABCO and ABCO with Ar, n-CmH2m+2 (m=1-7), and CF4 and C2F6. The resulting spectra are analyzed with the help of empirical potential energy calculations of the cluster binding energies, minimum energy structures, van der Waals modes, and potential barriers between the various cluster minimum energy structures. Good agreement is found between the calculated and experimental results for DABCO and ABCO clustered with argon and methane. The spectra of clusters with all other hydrocarbons can be ascribed to only one major geometry for each cluster stoichiometry, despite the fact that calculations yield many stable geometries for each cluster. This apparent lack of agreement between calculations and experiments can be rationalized based on cluster binding energy, zero point energy, and the potential energy barriers between the cluster minima. The observed blue shift of the cluster 000 transition energy as a function of the n-alkane chain length can be qualitatively modeled by a Lennard-Jones potential for the solute-solvent interaction for both the ground and excited states. The model reveals a strong repulsive interaction between the Rydberg state electronic distribution and the solvent molecule. This repulsion depends on the distance between the solvent molecule and the solute molecule nitrogen atom.

  8. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.

    PubMed

    Azizi, Amin; Eichfeld, Sarah; Geschwind, Gayle; Zhang, Kehao; Jiang, Bin; Mukherjee, Debangshu; Hossain, Lorraine; Piasecki, Aleksander F; Kabius, Bernd; Robinson, Joshua A; Alem, Nasim

    2015-05-26

    Vertical stacking of two-dimensional (2D) crystals has recently attracted substantial interest due to unique properties and potential applications they can introduce. However, little is known about their microstructure because fabrication of the 2D heterostructures on a rigid substrate limits one's ability to directly study their atomic and chemical structures using electron microscopy. This study demonstrates a unique approach to create atomically thin freestanding van der Waals heterostructures-WSe2/graphene and MoS2/graphene-as ideal model systems to investigate the nucleation and growth mechanisms in heterostructures. In this study, we use transmission electron microscopy (TEM) imaging and diffraction to show epitaxial growth of the freestanding WSe2/graphene heterostructure, while no epitaxy is maintained in the MoS2/graphene heterostructure. Ultra-high-resolution aberration-corrected scanning transmission electron microscopy (STEM) shows growth of monolayer WSe2 and MoS2 triangles on graphene membranes and reveals their edge morphology and crystallinity. Photoluminescence measurements indicate a significant quenching of the photoluminescence response for the transition metal dichalcogenides on freestanding graphene, compared to those on a rigid substrate, such as sapphire and epitaxial graphene. Using a combination of (S)TEM imaging and electron diffraction analysis, this study also reveals the significant role of defects on the heterostructure growth. The direct growth technique applied here enables us to investigate the heterostructure nucleation and growth mechanisms at the atomic level without sample handling and transfer. Importantly, this approach can be utilized to study a wide spectrum of van der Waals heterostructures. PMID:25885122

  9. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for several other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.

  10. Excitons in van der Waals heterostructures: The important role of dielectric screening

    NASA Astrophysics Data System (ADS)

    Latini, S.; Olsen, T.; Thygesen, K. S.

    2015-12-01

    The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin semiconductors. While it is understood that the large binding energy is mainly due to the weak dielectric screening in two dimensions, a systematic investigation of the role of screening on two-dimensional (2D) excitons is still lacking. Here we provide a critical assessment of a widely used 2D hydrogenic exciton model, which assumes a dielectric function of the form ɛ (q )=1 +2 π α q , and we develop a quasi-2D model with a much broader applicability. Within the quasi-2D picture, electrons and holes are described as in-plane point charges with a finite extension in the perpendicular direction, and their interaction is screened by a dielectric function with a nonlinear q dependence which is computed ab initio. The screened interaction is used in a generalized Mott-Wannier model to calculate exciton binding energies in both isolated and supported 2D materials. For isolated 2D materials, the quasi-2D treatment yields results almost identical to those of the strict 2D model, and both are in good agreement with ab initio many-body calculations. On the other hand, for more complex structures such as supported layers or layers embedded in a van der Waals heterostructure, the size of the exciton in reciprocal space extends well beyond the linear regime of the dielectric function, and a quasi-2D description has to replace the 2D one. Our methodology has the merit of providing a seamless connection between the strict 2D limit of isolated monolayer materials and the more bulk-like screening characteristics of supported 2D materials or van der Waals heterostructures.

  11. Nonlocal van der Waals functionals: The case of rare-gas dimers and solids

    NASA Astrophysics Data System (ADS)

    Tran, Fabien; Hutter, Jürg

    2013-05-01

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004), 10.1103/PhysRevLett.92.246401] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations, supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010), 10.1063/1.3382344]. An analysis of the results in terms of energy decomposition is also provided.

  12. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

    NASA Astrophysics Data System (ADS)

    Ramezani, Asghar; Alasty, Aria; Akbari, Javad

    2008-01-01

    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for obtaining the solution of the BVP. The large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of cantilevers. The centerline of the beam under the effect of electrostatic and van der Waals forces at small deflections and at the point of instability is obtained numerically. In computing the centerline of the beam, the axial displacement due to the transverse deformation of the beam is taken into account, using the inextensibility condition. The pull-in parameters of the beam are computed analytically and numerically under the effects of electrostatic and/or van der Waals forces. The detachment length and the minimum initial gap of freestanding cantilevers, which are the basic design parameters, are determined. The results of the analytical study are compared with the numerical solutions of the BVP. The proposed methods are validated by the results published in the literature.

  13. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations.

    PubMed

    Ramezani, Asghar; Alasty, Aria; Akbari, Javad

    2008-01-01

    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for obtaining the solution of the BVP. The large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of cantilevers. The centerline of the beam under the effect of electrostatic and van der Waals forces at small deflections and at the point of instability is obtained numerically. In computing the centerline of the beam, the axial displacement due to the transverse deformation of the beam is taken into account, using the inextensibility condition. The pull-in parameters of the beam are computed analytically and numerically under the effects of electrostatic and/or van der Waals forces. The detachment length and the minimum initial gap of freestanding cantilevers, which are the basic design parameters, are determined. The results of the analytical study are compared with the numerical solutions of the BVP. The proposed methods are validated by the results published in the literature. PMID:21730532

  14. Nuclear liquid-gas phase transition at large N{sub c} in the van der Waals approximation

    SciTech Connect

    Torrieri, Giorgio; Mishustin, Igor

    2010-11-15

    We examine the nuclear liquid-gas phase transition at a large number of colors (N{sub c}) within the framework of the van der Waals (VdW) We argue that the VdW equation is appropriate for describing internucleon forces, and discuss how each parameter scales with N{sub c}. We demonstrate that N{sub c}=3 (our world) is not large with respect to the other dimensionless scale relevant to baryonic matter, the number of neighbors in a dense system N{sub N}. Consequently, we show that the liquid-gas phase transition looks dramatically different at N{sub c{yields}{infinity}} with respect to our world: The critical-point temperature becomes of the order of {Lambda}{sub QCD} rather than below it. The critical-point density becomes of the order of the baryonic density, rather than an order of magnitude below it. These are precisely the characteristics usually associated with the ''quarkyonic phase.'' We therefore conjecture that quarkyonic matter is simply the large-N{sub c} limit of the nuclear liquid, and the interplay between N{sub c} and N{sub N} is the reason that the nuclear liquid in our world is so different from quarkyonic matter. We conclude by suggesting ways in which our conjecture can be tested in future lattice measurements.

  15. Development of Polarizable Models for Molecular Mechanical Calculations IV: van der Waals parameterization

    PubMed Central

    Wang, Junmei; Cieplak, Piotr; Li, Jie; Cai, Qin; Hsieh, MengJuei; Luo, Ray; Duan, Yong

    2012-01-01

    In the previous publications of this series, we presented a set of Thole induced dipole interaction models using four types of screening functions. In this work, we document our effort to refine the van der Waals parameters for the Thole polarizable models. Following the philosophy of AMBER force field development, the van der Waals (vdW) parameters were tuned for the Thole model with linear screening function to reproduce both the ab initio interaction energies and the experimental densities of pure liquids. An in-house genetic algorithm was applied to maximize the fitness of “chromosomes” which is a function of the root-mean-square errors (RMSE) of interaction energy and liquid density. To efficiently explore the vdW parameter space, a novel approach was developed to estimate the liquid densities for a given vdW parameter set using the mean residue-residue interaction energies through interpolation/extrapolation. This approach allowed the costly molecular dynamics simulations be performed at the end of each optimization cycle only and eliminated the simulations during the cycle. Test results show notable improvements over the original AMBER FF99 vdW parameter set as indicated by the reduction in errors of the calculated pure liquid density (d), heat of vaporization (Hvap) and hydration energy. The average percent error (APE) of the densities of 59 pure liquids was reduced from 5.33% to 2.97%; the RMSE of Hvap was reduced from 1.98 kcal/mol to 1.38 kcal/mol; the RMSE of solvation free energies of 15 compounds was reduced from 1.56 kcal/mol to 1.38 kcal/mol. For the interaction energies of 1639 dimers, the overall performance of the optimized vdW set is slightly better than the original FF99 vdW set (RMSE of 1.56 versus 1.63 kcal/mol). The optimized vdW parameter set was also evaluated for the exponential screening function used in the Amoeba force field to assess its applicability for different types of screening functions. Encouragingly, comparable

  16. Development of polarizable models for molecular mechanical calculations. 4. van der Waals parametrization.

    PubMed

    Wang, Junmei; Cieplak, Piotr; Li, Jie; Cai, Qin; Hsieh, Meng-Juei; Luo, Ray; Duan, Yong

    2012-06-21

    In the previous publications of this series, we presented a set of Thole induced dipole interaction models using four types of screening functions. In this work, we document our effort to refine the van der Waals parameters for the Thole polarizable models. Following the philosophy of AMBER force field development, the van der Waals (vdW) parameters were tuned for the Thole model with linear screening function to reproduce both the ab initio interaction energies and the experimental densities of pure liquids. An in-house genetic algorithm was applied to maximize the fitness of "chromosomes" which is a function of the root-mean-square errors (RMSE) of interaction energy and liquid density. To efficiently explore the vdW parameter space, a novel approach was developed to estimate the liquid densities for a given vdW parameter set using the mean residue-residue interaction energies through interpolation/extrapolation. This approach allowed the costly molecular dynamics simulations be performed at the end of each optimization cycle only and eliminated the simulations during the cycle. Test results show notable improvements over the original AMBER FF99 vdW parameter set, as indicated by the reduction in errors of the calculated pure liquid densities (d), heats of vaporization (H(vap)), and hydration energies. The average percent error (APE) of the densities of 59 pure liquids was reduced from 5.33 to 2.97%; the RMSE of H(vap) was reduced from 1.98 to 1.38 kcal/mol; the RMSE of solvation free energies of 15 compounds was reduced from 1.56 to 1.38 kcal/mol. For the interaction energies of 1639 dimers, the overall performance of the optimized vdW set is slightly better than the original FF99 vdW set (RMSE of 1.56 versus 1.63 kcal/mol). The optimized vdW parameter set was also evaluated for the exponential screening function used in the Amoeba force field to assess its applicability for different types of screening functions. Encouragingly, comparable performance was

  17. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  18. van der Waals forces in density functional theory: a review of the vdW-DF method

    SciTech Connect

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T.; Hyldgaard, Per; Lundqvist, Bengt I.

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  19. van der Waals forces in density functional theory: a review of the vdW-DF method

    DOE PAGESBeta

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T.; Hyldgaard, Per; Lundqvist, Bengt I.

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only formore » dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.« less

  20. Quantum Transport Detected by Strong Proximity Interaction at a Graphene-WS2 van der Waals Interface.

    PubMed

    O'Farrell, E C T; Avsar, A; Tan, J Y; Eda, G; Özyilmaz, B

    2015-09-01

    Magnetotransport measurements demonstrate that graphene in a van der Waals heterostructure is a sensitive probe of quantum transport in an adjacent WS2 layer via strong Coulomb interactions. We observe a large low-field magnetoresistance (≫ e(2)/h) and a -ln T temperature dependence of the resistance. In-plane magnetic field resistance indicates the origin is orbital and nonclassical. We demonstrate a strong electron-hole asymmetry in the mobility and coherence length of graphene demonstrating the presence of localized Coulomb interactions with ionized donors in the WS2 substrate, which ultimately leads to screening as the Fermi level of graphene is tuned toward the conduction band of WS2. This leads us to conclude that graphene couples to quantum localization processes in WS2 via the Coulomb interaction and results in the observed signatures of quantum transport. Our results show that theoretical descriptions of the van der Waals interface should not ignore localized strong correlations. PMID:26258760

  1. Revealing the Buried Metal-Organic Interface: Restructuring of the First Layer by van der Waals Forces.

    PubMed

    Wagner, Margareta; Berkebile, Stephen; Netzer, Falko P; Ramsey, Michael G

    2015-12-22

    With the use of molecular manipulation in a cryogenic scanning tunneling microscope, the structure and rearrangement of sexiphenyl molecules at the buried interface of the organic film with the Cu(110) substrate surface have been revealed. It is shown that a reconstruction of the first monolayer of flat lying molecules occurs due to the van der Waals pressure from subsequent layers. In this rearrangement, additional sexiphenyl molecules are forced into the established complete monolayer and adopt an edge-on configuration. Incorporation of second layer molecules into the first layer is also demonstrated by purposely pushing sexiphenyl molecules with the STM tip. The results indicate that even chemisorbed organic layers at interfaces can be significantly influenced by external stress from van der Waals forces of subsequent layers. PMID:26505912

  2. Assessing the accuracy of the van der Waals density functionals for rare-gas and small molecular systems

    NASA Astrophysics Data System (ADS)

    Callsen, Martin; Hamada, Ikutaro

    2015-05-01

    The precise description of chemical bonds with different natures is a prerequisite for an accurate electronic structure method. The van der Waals density functional is a promising approach that meets such a requirement. Nevertheless, the accuracy should be assessed for a variety of materials to test the robustness of the method. We present benchmark calculations for weakly interacting molecular complexes and rare-gas systems as well as covalently bound molecular systems, in order to assess the accuracy and applicability of rev-vdW-DF2, a recently proposed variant [I. Hamada, Phys. Rev. B 89, 121103 (2014), 10.1103/PhysRevB.89.121103] of the van der Waals density functional. It is shown that although the calculated atomization energies for small molecules are less accurate rev-vdW-DF2 describes the interaction energy curves for the weakly interacting molecules and rare-gas complexes, as well as the bond lengths of diatomic molecules, reasonably well.

  3. Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures.

    PubMed

    Cosma, Diana A; Wallbank, John R; Cheianov, Vadim; Fal'ko, Vladimir I

    2014-01-01

    We consider the role of deformations in graphene heterostructures with hexagonal crystals (including strain, wrinkles and dislocations) on the geometrical properties of moiré patterns characteristic for a pair of two incommensurate misaligned isostructural crystals. By employing a phenomenological theory to describe generic moiré perturbations in van der Waals heterostructures of graphene and hexagonal crystals we investigate the electronic properties of such heterostructures. PMID:25465904

  4. Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2

    NASA Astrophysics Data System (ADS)

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan-Sheng; Kang, Junmo; Sangwan, Vinod K.; Filippone, Stephen A.; Turrisi, Riccardo; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.

    2016-01-01

    The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semi-metallic graphene and insulating boron nitride, has enabled the fabrication of all 2D van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integration with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS2. The resulting p-n heterojunction is gate-tunable and shows asymmetric control over the anti-ambipolar transfer characteristic. In addition, the pentacene-MoS2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS2 can function as an acceptor in hybrid solar cells.

  5. Microwave spectra and structure of the argon-cyclopentanone and neon-cyclopentanone van der Waals complexes.

    PubMed

    Lin, Wei; Brooks, Andrew H; Minei, Andrea J; Novick, Stewart E; Pringle, Wallace C

    2014-02-01

    The rotational spectra of cyclopentanone and its van der Waals complexes with argon and neon have been observed with a Balle-Flygare type pulsed jet Fourier transform microwave spectrometer in the 6 to 20 GHz region. This work improves the rotational constants and quartic centrifugal distortion constants for cyclopentanone and its five (13)C and the (18)O isotopologues. The argon-(12)C5H8(16)O van der Waals complex has rotational constants of A = 2611.6688, B = 1112.30298, and C = 971.31969 MHz. The (20)Ne-(12)C5H8(16)O complex has rotational constants of A = 2728.8120, B = 1736.5882, and C = 1440.4681 MHz. In addition, the five unique, singly substituted (13)C and (18)O isotopologues of the argon complex are reported. The five single-substituted (13)C of the (20)Ne complex and the (22)Ne-(12)C5H8(16)O complex are reported. The rare gases are in van der Waals contact with the carbonyl α carbon and nearly in contact with the hydrogen on β and γ carbons toward the back of the ring. PMID:24428820

  6. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures.

    PubMed

    Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Addou, Rafik; Asensio, Maria C; Batzill, Matthias

    2015-02-11

    Artificial heterostructures assembled from van der Waals materials promise to combine materials without the traditional restrictions in heterostructure-growth such as lattice matching conditions and atom interdiffusion. Simple stacking of van der Waals materials with diverse properties would thus enable the fabrication of novel materials or device structures with atomically precise interfaces. Because covalent bonding in these layered materials is limited to molecular planes and the interaction between planes are very weak, only small changes in the electronic structure are expected by stacking these materials on top of each other. Here we prepare interfaces between CVD-grown graphene and MoS2 and report the direct measurement of the electronic structure of such a van der Waals heterostructure by angle-resolved photoemission spectroscopy. While the Dirac cone of graphene remains intact and no significant charge transfer doping is detected, we observe formation of band gaps in the π-band of graphene, away from the Fermi-level, due to hybridization with states from the MoS2 substrate. PMID:25629211

  7. Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2.

    PubMed

    Jariwala, Deep; Howell, Sarah L; Chen, Kan-Sheng; Kang, Junmo; Sangwan, Vinod K; Filippone, Stephen A; Turrisi, Riccardo; Marks, Tobin J; Lauhon, Lincoln J; Hersam, Mark C

    2016-01-13

    The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of "all 2D" van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integration with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS2. The resulting p-n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS2 can function as an acceptor in hybrid solar cells. PMID:26651229

  8. Zener Tunneling and Photoresponse of a WS2/Si van der Waals Heterojunction.

    PubMed

    Lan, Changyong; Li, Chun; Wang, Shuai; He, Tianying; Jiao, Tianpeng; Wei, Dapeng; Jing, Wenkui; Li, Luying; Liu, Yong

    2016-07-20

    Van der Waals heterostructures built from two-dimensional materials on a conventional semiconductor offer novel electronic and optoelectronic properties for next-generation information devices. Here we report that by simply stacking a vapor-phase-synthesized multilayer n-type WS2 film onto a p-type Si substrate, a high-responsivity Zener photodiode can be achieved. We find that above a small reverse threshold voltage of 0.5 V, the fabricated heterojunction exhibits Zener tunneling behavior which was confirmed by its negative temperature coefficient of the breakdown voltage. The WS2/Si heterojunction working in the Zener breakdown regime shows a stable and linear photoresponse, a broadband photoresponse ranging from 340 to 1100 nm with a maximum photoresponsivity of 5.7 A/W at 660 nm and a fast response speed of 670 μs. Such high performance can be attributed to the ultrathin depletion layer involved in the WS2/Si p-n junction, on which a strong electric field can be created even with a small reverse voltage and thereby enabling an efficient separation of the photogenerated electron-hole pairs. PMID:27351271

  9. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    SciTech Connect

    Chen, De-Li; Al-Saidi, W A; Johnson, J Karl

    2012-10-03

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  10. Phonon dispersion in acene molecular crystals using van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Brown-Altvater, Florian; Rangel, Tonatiuh; Neaton, Jeffrey B.

    Much progress has been made of late in understanding the fundamental processes in optoelectronic materials. An ongoing challenge is the accurate inclusion of nuclear motion and to go beyond the Born-Oppenheimer approximation. Especially in materials like molecular crystals, where van der Waals (vdW) forces dominate the cohesive energy and the electronic structure is very sensitive to intermolecular geometry, phonons can be an important facilitator and dissipation mechanism. Thus there is a need to assess and understand the efficacy of existing approaches for phonon dispersions in vdW-bound solids. In this work we use a vdW density functional to calculate the phonon dispersion of members of the acene family. We establish the accuracy of the method using naphthalene, obtaining excellent agreement with experimental results, and in a further step, we explore the strength of the electron-phonon coupling across the Brillouin zone. Taken all together, our calculations illustrate the potential for quantitative prediction of vibrational properties of weakly-bound organic crystals over the entire Brillouin zone from first principles.

  11. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    PubMed

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. PMID:19687952

  12. SCAN+rVV10: A promising van der Waals density functional

    NASA Astrophysics Data System (ADS)

    Peng, Haowei; Yang, Zeng-Hui; Sun, Jianwei; Perdew, John

    The newly developed ``strongly constrained and appropriately normed'' (SCAN) meta-generalized-gradient approximation (meta-GGA) can generally improve over the non-empirical Perdew-Burke-Ernzerhof (PBE) GGA not only for strong chemical bonding, but also for the intermediate-range van der Waals (vdW) interaction. However, the long-range vdW interaction is still missing. To remedy this, we propose here pairing SCAN with the non-local correlation part from the rVV10 vdW density functional, with only two empirical parameters. The resulting SCAN+rVV10 yields excellent geometric and energetic results not only for molecular systems, but also for solids and layered-structure materials, as well as the adsorption of benzene on coinage metal surfaces. Especially, SCAN+rVV10 outperforms all current methods with comparable computational efficiencies, accurately reproducing the three most fundamental parameters--the inter-layer binding energies, inter-, and intra-layer lattice constants--for 28 layered-structure materials. Hence, we have achieved with SCAN+rVV10 a promising vdW density functional for general geometries, with minimal empiricism. This work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #.DE-SC0012575.

  13. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Ma, Qiong; Andersen, Trond I.; Nair, Nityan L.; Gabor, Nathaniel M.; Massicotte, Mathieu; Lui, Chun Hung; Young, Andrea F.; Fang, Wenjing; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Gedik, Nuh; Koppens, Frank H. L.; Jarillo-Herrero, Pablo

    2016-05-01

    Ultrafast electron thermalization--the process leading to carrier multiplication via impact ionization, and hot-carrier luminescence--occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Owing to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a means to probe and directly modulate electron energy transport in nanoscale materials, represent a step towards designing and implementing optoelectronic and energy-harvesting devices with tailored microscopic properties.

  14. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets.

    PubMed

    Liao, Yunlong; Cao, Wei; Connell, John W; Chen, Zhongfang; Lin, Yi

    2016-01-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm(2)) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images. PMID:27188697

  15. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  16. Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials.

    PubMed

    Kim, Chan Kyung; Lee, Kyung A; Hyun, Kwan Hoon; Park, Heung Jin; Kwack, In Young; Kim, Chang Kon; Lee, Hai Whang; Lee, Bon-Su

    2004-12-01

    The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent beta (and gamma) values are dependent on the surface models but the surface-independent alpha and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables. PMID:15484184

  17. Nano-photonic phenomena in van der Waals atomic layered materials

    NASA Astrophysics Data System (ADS)

    Basov, Dmitri

    Layered van der Waals (vdW) crystals reveal diverse classes of light-matter modes (polaritons) including: surface plasmon polaritons in graphene, hyperbolic phonon polaritons in boron nitride, exciton polaritons in MoS2, Cooper pair plasmon polaritons in high-Tc cuprates, topological plasmon polaritons and many others. Polaritons in vdW materials are of considerable technological interest. For example, polaritonic modes enable sub diffractional focusing and imaging in infrared frequencies. Applications apart, infrared nano-imaging of propagating polaritons facilitates experimental access to new physics of vdW materials not attainable with conventional spectroscopic methods. I will discuss two recent experiments performed in our group that utilize unique virtues of polaritons. Nano-imaging of plasmon polaritons in moire superlattices formed in graphene on boron nitride has allowed us to establish the important features of the electronic structure of this interesting from of graphene. Pump-probe hyper-spectral images of non-equilibrium plasmon polaritons in graphene revealed novel aspects of carrier relaxation.

  18. A van der Waals density functional theory study of poly(vinylidene difluoride) crystalline phases

    NASA Astrophysics Data System (ADS)

    Pelizza, F.; Smith, B. R.; Johnston, K.

    2016-07-01

    Ferroelectric polymers, such as poly(vinylidene difluoride) (PVDF), have many potential applications in flexible electronic devices. PVDF has six experimentally observed polymorphs, three of which are ferroelectric. In this work we use density functional theory to investigate the structural properties, energetics and polarisation of the stable α-phase, its ferroelectric analogue, the δ-phase, and the β-phase, which has the best ferroelectric properties. The results from a variety of exchange and correlation functionals were compared and it was found that van der Waals (vdW) interactions have an important effect on the calculated crystal structures and energetics, with the vdW-DF functional giving the best agreement with experimental lattice parameters. The spontaneous polarisation was found to strongly correlate with the unit cell volumes, which depend on the functional used. While the relative phase energies were not strongly dependent on the functional, the cohesive energies were significantly underestimated using the PBE functional. The inclusion of vdW interactions is, therefore, important to obtain the correct lattice structures, polarisation and energetics of PVDF polymorphs.

  19. Non-additivity of molecule-surface van der Waals potentials from force measurements

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-11-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  20. Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy

    PubMed Central

    Liu, Lei; Siegel, David A.; Chen, Wei; Liu, Peizhi; Guo, Junjie; Duscher, Gerd; Zhao, Chong; Wang, Hao; Wang, Wenlong; Bai, Xuedong; McCarty, Kevin F.; Zhang, Zhenyu; Gu, Gong

    2014-01-01

    Using selected-area low-energy electron diffraction analysis, we showed strict orientational alignment of monolayer hexagonal boron nitride (h-BN) crystallites with Cu(100) surface lattices of Cu foil substrates during atmospheric pressure chemical vapor deposition. In sharp contrast, the graphene–Cu(100) system is well-known to assume a wide range of rotations despite graphene’s crystallographic similarity to h-BN. Our density functional theory calculations uncovered the origin of this surprising difference: The crystallite orientation is determined during nucleation by interactions between the cluster’s edges and the substrate. Unlike the weaker B– and N–Cu interactions, strong C–Cu interactions rearrange surface Cu atoms, resulting in the aligned geometry not being a distinct minimum in total energy. The discovery made in this specific case runs counter to the conventional wisdom that strong epilayer–substrate interactions enhance orientational alignment in epitaxy and sheds light on the factors that determine orientational relation in van der Waals epitaxy of 2D materials. PMID:25385622

  1. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    The success of van der Waals (vdW) heterostructures made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of these heterostructures. Using time-dependent density functional theory molecular dynamics, we find that the collective motion of excitons at the interface lead to plasma oscillations associated with optical excitation. Furthermore, instability of these oscillations explain the rapid charge transfer across the interface and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to the MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.

  2. Stability of Complex Biomolecular Structures: van der Waals, Hydrogen Bond Cooperativity, and Nuclear Quantum Effects.

    PubMed

    Rossi, Mariana; Fang, Wei; Michaelides, Angelos

    2015-11-01

    Biomolecules are complex systems stabilized by a delicate balance of weak interactions, making it important to assess all energetic contributions in an accurate manner. However, it is a priori unclear which contributions make more of an impact. Here, we examine stacked polyglutamine (polyQ) strands, a peptide repeat often found in amyloid aggregates. We investigate the role of hydrogen bond (HB) cooperativity, van der Waals (vdW) dispersion interactions, and quantum contributions to free energies, including anharmonicities through density functional theory and ab initio path integral simulations. Of these various factors, we find that the largest impact on structural stabilization comes from vdW interactions. HB cooperativity is the second largest contribution as the size of the stacked chain grows. Competing nuclear quantum effects make the net quantum contribution small but very sensitive to anharmonicities, vdW, and the number of HBs. Our results suggest that a reliable treatment of these systems can only be attained by considering all of these components. PMID:26722963

  3. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.

    PubMed

    Deng, Yexin; Luo, Zhe; Conrad, Nathan J; Liu, Han; Gong, Yongji; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Xu, Xianfan; Ye, Peide D

    2014-08-26

    Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black phosphorus, showing its promise for electronics and optoelectronics applications due to its high hole mobility and thickness-dependent direct band gap. However, p–n junctions, the basic building blocks of modern electronic and optoelectronic devices, have not yet been realized based on black phosphorus. In this paper, we demonstrate a gate-tunable p–n diode based on a p-type black phosphorus/n-type monolayer MoS2 van der Waals p–n heterojunction. Upon illumination, these ultrathin p–n diodes show a maximum photodetection responsivity of 418 mA/W at the wavelength of 633 nm and photovoltaic energy conversion with an external quantum efficiency of 0.3%. These p–n diodes show promise for broad-band photodetection and solar energy harvesting. PMID:25019534

  4. Enhanced Li capacity in functionalized graphene: A first principle study with van der Waals correction

    NASA Astrophysics Data System (ADS)

    Chouhan, Rajiv K.; Raghani, Pushpa

    2015-09-01

    We have investigated the adsorption of Li on graphene oxide using density functional theory. We show a novel and simple approach to achieve a positive lithiation potential on epoxy and hydroxyl functionalized graphene, compared to the negative lithiation potential that has been found on prestine graphene. We included the van der Waals correction into the calculation so as to get a better picture of weak interactions. A positive lithiation potential suggests a favorable adsorption of Li on graphene oxide sheets that can lead to an increase in the specific capacity, which in turn can be used as an anode material in Li-batteries. We find a high specific capacity of ˜860 mAhg-1 by functionalizing the graphene sheet. This capacity is higher than the previously reported capacities that were achieved on graphene with high concentration of Stone-Wales (75%) and divacancy (16%) defects. Creating such high density of defects can make the entire system energetically unstable, whereas graphene oxide is a naturally occurring substance.

  5. Structure and magnetism of the van der Waals bonded ferromagnet CrI3

    NASA Astrophysics Data System (ADS)

    McGuire, Michael; Dixit, Hemant; Cooper, Valentino; Sales, Brian

    2015-03-01

    Chromium triiodide is an easily cleavable, semiconducting ferromagnet which has received relatively little attention to date. Here we report results of our experimental investigations of the crystallographic and magnetic properties of CrI3 single crystals. We find a first order structural phase transition at TS = 210 K and strong magnetic anisotropy below the Curie temperature TC = 61 K. Our findings demonstrate the interaction between structure and magnetism manifested as a magnetic anomaly at TS and structural anomaly at TC. Our first principles calculations incorporating the van der Waals interactions reproduce the high and low temperature structures accurately, and indicate cleavage energies comparable to materials of interest for post-silicon electronics like graphite and molybdenum dichalcogenides. Theoretical investigations of the magnetic ordering suggest ferromagnetism may persist in monolayer structures. Overall our results motivate further study of CrI3 in few- or single-layer-thick samples. Research supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  6. Potential energy surface of the CO2-N2 van der Waals complex.

    PubMed

    Nasri, Sameh; Ajili, Yosra; Jaidane, Nejm-Eddine; Kalugina, Yulia N; Halvick, Philippe; Stoecklin, Thierry; Hochlaf, Majdi

    2015-05-01

    Four-dimensional potential energy surface (4D-PES) of the atmospherically relevant CO2-N2 van der Waals complex is generated using the explicitly correlated coupled cluster with single, double, and perturbative triple excitation (CCSD(T)-F12) method in conjunction with the augmented correlation consistent triple zeta (aug-cc-pVTZ) basis set. This 4D-PES is mapped along the intermonomer coordinates. An analytic fit of this 4D-PES is performed. Our extensive computations confirm that the most stable form corresponds to a T-shape structure where the nitrogen molecule points towards the carbon atom of CO2. In addition, we located a second isomer and two transition states in the ground state PES of CO2-N2. All of them lay below the CO2 + N2 dissociation limit. This 4D-PES is flat and strongly anisotropic along the intermonomer coordinates. This results in the possibility of the occurrence of large amplitude motions within the complex, such as the inversion of N2, as suggested in the recent spectroscopic experiments. Finally, we show that the experimentally established deviations from the C2v structure at equilibrium for the most stable isomer are due to the zero-point out-of-plane vibration correction. PMID:25956094

  7. Potential energy surface of the CO2-N2 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Nasri, Sameh; Ajili, Yosra; Jaidane, Nejm-Eddine; Kalugina, Yulia N.; Halvick, Philippe; Stoecklin, Thierry; Hochlaf, Majdi

    2015-05-01

    Four-dimensional potential energy surface (4D-PES) of the atmospherically relevant CO2-N2 van der Waals complex is generated using the explicitly correlated coupled cluster with single, double, and perturbative triple excitation (CCSD(T)-F12) method in conjunction with the augmented correlation consistent triple zeta (aug-cc-pVTZ) basis set. This 4D-PES is mapped along the intermonomer coordinates. An analytic fit of this 4D-PES is performed. Our extensive computations confirm that the most stable form corresponds to a T-shape structure where the nitrogen molecule points towards the carbon atom of CO2. In addition, we located a second isomer and two transition states in the ground state PES of CO2-N2. All of them lay below the CO2 + N2 dissociation limit. This 4D-PES is flat and strongly anisotropic along the intermonomer coordinates. This results in the possibility of the occurrence of large amplitude motions within the complex, such as the inversion of N2, as suggested in the recent spectroscopic experiments. Finally, we show that the experimentally established deviations from the C2v structure at equilibrium for the most stable isomer are due to the zero-point out-of-plane vibration correction.

  8. Low-energy universality and scaling of van der Waals forces

    SciTech Connect

    Calle Cordon, A.; Ruiz Arriola, E.

    2010-04-15

    At long distances, interactions between neutral ground-state atoms can be described by the van der Waals potential. In the ultracold regime, atom-atom scattering is dominated by s-waves phase shifts given by an effective range expansion in terms of the scattering length {alpha}{sub 0} and the effective range r{sub 0}. We show that while the scattering length cannot be predicted for these potentials, the effective range is given by the universal low-energy theorem r{sub 0}=A+B/{alpha}{sub 0}+C/{alpha}{sub 0}{sup 2}, where A, B, and C depend on the dispersion coefficients C{sub n} and the reduced diatom mass. We confront this formula to about 100 determinations of r{sub 0} and {alpha}{sub 0} and show why the result is dominated by the leading dispersion coefficient C{sub 6}. Universality and scaling extend much beyond naive dimensional analysis estimates.

  9. van't Hoff-van der Waals osmotic pressure and energy transformers.

    PubMed

    Zener, C; Levenson, W

    1983-07-01

    We find the van't Hoff relations between osmotic pressure, freezing point depression, and boiling point elevation provide a clue on how, by using salt solutions, one may lower the cost of extracting power from low-grade heat sources. In particular, the ratio of 7 between the heat of evaporation and the heat of freezing of pure water suggests a chemical system that raises 7-fold the temperature difference between heat source and heat sink, while decreasing by the same factor the heat flux. Heat exchangers dominate the cost of heat engines operating upon low-grade heat. Their area for a fixed power output is inversely proportional to the available temperature differential. Herein lies the potential for a great cost reduction. We show that the simple van der Waals concept of a gas of hard elastic spheres suffices to understand the colligative properties of salt solutions, at least up to the concentration of the eutectic composition. This concept enables us to physically interpret the thermodynamic processes during the concentration of salt solutions by evaporation and during the mixing of ice and solid salt hydrates at their eutectic temperature. These are identical to the thermodynamic processes taking place during the isothermal compression and expansion of gases in pumps and in turbines. PMID:16593343

  10. van't Hoff-van der Waals osmotic pressure and energy transformers

    PubMed Central

    Zener, Clarence; Levenson, William

    1983-01-01

    We find the van't Hoff relations between osmotic pressure, freezing point depression, and boiling point elevation provide a clue on how, by using salt solutions, one may lower the cost of extracting power from low-grade heat sources. In particular, the ratio of 7 between the heat of evaporation and the heat of freezing of pure water suggests a chemical system that raises 7-fold the temperature difference between heat source and heat sink, while decreasing by the same factor the heat flux. Heat exchangers dominate the cost of heat engines operating upon low-grade heat. Their area for a fixed power output is inversely proportional to the available temperature differential. Herein lies the potential for a great cost reduction. We show that the simple van der Waals concept of a gas of hard elastic spheres suffices to understand the colligative properties of salt solutions, at least up to the concentration of the eutectic composition. This concept enables us to physically interpret the thermodynamic processes during the concentration of salt solutions by evaporation and during the mixing of ice and solid salt hydrates at their eutectic temperature. These are identical to the thermodynamic processes taking place during the isothermal compression and expansion of gases in pumps and in turbines. PMID:16593343

  11. Free-standing electronic character of monolayer MoS2 in van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, HoKwon; Dumcenco, Dumitru; Frégnaux, Mathieu; Benayad, Anass; Chen, Ming-Wei; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier

    2016-08-01

    We have evaluated as-grown Mo S2 crystals, epitaxially grown on a monocrystalline sapphire by chemical vapor deposition (CVD), with direct electronic band-structure measurements by energy-filtered k -space photoelectron emission microscopy performed with a conventional laboratory vacuum ultraviolet He I light source under off-normal illumination. The valence states of the epitaxial Mo S2 were mapped in momentum space down to 7 eV below the Fermi level. Despite the high nucleation density within the imaged area, the CVD Mo S2 possesses an electronic structure similar to the free-standing monolayer Mo S2 single crystal, and it exhibits hole effective masses of 2.41 ±0.05 m0 , and 0.81 ±0.05 m0 , respectively, at Γ and K high-symmetry points that are consistent with the van der Waals epitaxial growth mechanism. This demonstrates the excellent ability of the Mo S2 CVD on sapphire to yield a highly aligned growth of well-stitched grains through epitaxial registry with a strongly preferred crystallographic orientation.

  12. Single Defect Light-Emitting Diode in a van der Waals Heterostructure.

    PubMed

    Clark, Genevieve; Schaibley, John R; Ross, Jason; Taniguchi, Takashi; Watanabe, Kenji; Hendrickson, Joshua R; Mou, Shin; Yao, Wang; Xu, Xiaodong

    2016-06-01

    Single defects in monolayer WSe2 have been shown to be a new class of single photon emitters and have potential applications in quantum technologies. Whereas previous work relied on optical excitation of single defects in isolated WSe2 monolayers, in this work we demonstrate electrically driven single defect light emission by using both vertical and lateral van der Waals heterostructure devices. In both device geometries, we use few layer graphene as the source and drain and hexagonal boron nitride as the dielectric spacer layers for engineered tunneling contacts. In addition, the lateral devices utilize a split back gate design to realize an electrostatically defined p-i-n junction. At low current densities and low temperatures (∼5 K), we observe narrow spectral lines in the electroluminescence (EL) whose properties are consistent with optically excited defect bound excitons. We show that the emission originates from spatially localized regions of the sample, and the EL spectrum from single defects has a doublet with the characteristic exchange splitting and linearly polarized selection rules. All are consistent with previously reported single photon-emitters in optical measurements. Our results pave the way for on-chip and electrically driven single photon sources in two-dimensional semiconductors for quantum technology applications. PMID:27213921

  13. Elastic behavior of Bi2Se3 2D nanosheets grown by van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Yan, Haoming; Vajner, Cooper; Kuhlman, Michael; Guo, Lingling; Li, Lin; Araujo, Paulo T.; Wang, Hung-Ta

    2016-07-01

    Elastic properties of bismuth selenite (Bi2Se3) two-dimensional (2D) nanosheets were investigated using atomic force microscope (AFM) nanoindentations. Bi2Se3 2D nanosheets were synthesized by van der Waals epitaxy and subsequently transferred on SiO2/Si substrates containing pre-fabricated hole arrays. The suspension of 2D nanosheets was confirmed via the distinct optical contrast characteristics and AFM. In nanoindentations, the correlation between a point force load and the elastic response in the deformation depth was found being thickness-dependent, between 7 and 12 quintuple layers. The Young's modulus, E = 17.86-25.45 GPa (fitted value = 20.67 GPa), and the pretension, T = 0.0218-0.0417 N/m, acquired according to the bending plate regime are consistent with ones from the stretching membrane regime. Furthermore, these Bi2Se3 2D nanosheets could elastically endure a 4.0%-8.3% strain before being ruptured with AFM tips. Compliant and robust elastic properties of Bi2Se3 2D nanosheets, as observed, provide a feasible way for exploring the topological phase transition.

  14. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures

    PubMed Central

    Khestanova, E.; Guinea, F.; Fumagalli, L.; Geim, A. K.; Grigorieva, I. V.

    2016-01-01

    Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2. Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material. PMID:27557732

  15. A van der Waals pn heterojunction with organic/inorganic semiconductors

    NASA Astrophysics Data System (ADS)

    He, Daowei; Pan, Yiming; Nan, Haiyan; Gu, Shuai; Yang, Ziyi; Wu, Bing; Luo, Xiaoguang; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Ni, Zhenhua; Wang, Baigeng; Zhu, Jia; Chai, Yang; Shi, Yi; Wang, Xinran

    2015-11-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C8-BTBT) and n-type MoS2. We find that few-layer C8-BTBT molecular crystals can be grown on monolayer MoS2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C8-BTBT/MoS2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 105 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  16. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene.

    PubMed

    Ago, Hiroki; Endo, Hiroko; Solís-Fernández, Pablo; Takizawa, Rina; Ohta, Yujiro; Fujita, Yusuke; Yamamoto, Kazuhiro; Tsuji, Masaharu

    2015-03-11

    Multilayered heterostructures of two-dimensional materials have recently attracted increased interest because of their unique electronic and optical properties. Here, we present chemical vapor deposition (CVD) growth of triangular crystals of monolayer MoS2 on single-crystalline hexagonal graphene domains which are also grown by CVD. We found that MoS2 grows selectively on the graphene domains rather than on the bare supporting SiO2 surface. Reflecting the heteroepitaxy of the growth process, the MoS2 domains grown on graphene present two preferred equivalent orientations. The interaction between the MoS2 and the graphene induced an upshift of the Raman G and 2D bands of the graphene, while significant photoluminescence quenching was observed for the monolayer MoS2. Furthermore, photoinduced current modulation along with an optical memory effect was demonstrated for the MoS2-graphene heterostructure. Our work highlights that heterostructures synthesized by CVD offer an effective interlayer van der Waals interaction which can be developed for large-area multilayer electronic and photonic devices. PMID:25695865

  17. Finite-size effects and nonadditivity in the van der Waals interaction

    SciTech Connect

    Melo e Souza, Reinaldo de; Kort-Kamp, W. J. M.; Sigaud, C.; Farina, C.

    2011-11-15

    We obtain analytically the exact nonretarded dispersive interaction energy between an atom and a perfectly conducting disk. We consider the atom in the symmetry axis of the disk and assume that the atom is predominantly polarizable in the direction of this axis. For this situation we discuss the finite-size effects on the corresponding interaction energy. We follow the recent procedure introduced by Eberlein and Zietal together with the old and powerful Sommerfeld's image method for nontrivial geometries. For the sake of clarity we present a detailed discussion of Sommerfeld's image method. Comparing our results for the atom-disk system with those recently obtained for an atom near a conducting plane with a circular aperture, we discuss the nonadditivity of the van der Waals interactions involving an atom and two complementary surfaces. We show that there is a given ratio z/a between the distance z from the atom to the center of the disk (aperture) and the radius of the disk a (aperture) for which nonadditivity effects vanish. Qualitative arguments suggest that this quite unexpected result will occur not only for a circular hole, but for any other symmetric hole.

  18. Van der Waals Dispersion Interactions and Excited States of Oligoacene Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Rangel Gordillo, Tonatiuh; Sharifzadeh, Sahar; Berland, Kristian; Altvater, Florian; Lee, Kyuho; Hyldgaard, Per; Kronik, Leeor; Neaton, Jeffrey B.

    2015-03-01

    Molecular crystals are a prototypical class of van der Waals (vdWs)-bound organic materials with novel excited state properties relevant for photovoltaics applications. Predicting the structure and excited state properties of oligoacene crystals presents a challenge for standard density functional theory (DFT), as standard functionals do not have long-range dispersion, and DFT does not yield excited-state properties. In this work, we use a combination of vdW-corrected DFT - both pair-wise correction methods and correlation functionals - and many-body perturbation theory to study the geometry and excited states of oligoacene crystals. We find that vdWs methods can predict lattice constants up to 1% of the experimental measurements. Low lying excited states computed with MBPT compare well with experiments, and are found to be quite sensitive to geometry. Our study reveals the importance of vdWs dispersion interactions to the determination of excited states; moreover, our work suggests routes for predictive calculations, in which both structures and excited states are calculated entirely from first-principles. We thank DOE for external funds, and NERSC for computational resources.

  19. Non-additivity of molecule-surface van der Waals potentials from force measurements

    PubMed Central

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-01-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction. PMID:25424490

  20. Corresponding states principle and van der Waals potentials of Zn2, Cd2, and Hg2.

    PubMed

    Wei, L M; Li, P; Qiao, L W; Tang, K T

    2013-10-21

    Based on the assumptions that the corresponding states principle is valid for the group 12 dimers and that the interaction potentials of these dimers can be described by the Tang-Toennies potential model, a set of correlation relations between the spectroscopic constants of these dimers are derived. Some recently measured spectroscopic constants satisfy these relations quite well, but older experimental data do not. These recent spectroscopic constants and the newly available dispersion coefficients are used to construct the entire van der Waals potentials of Zn2, Cd2, and Hg2. There are indications that the ground state Hg2 potential predicted by the present study is possibly the most accurate to date. No unequivocal conclusion can be made for Zn2 and Cd2 potentials. Compared with the recent experiments, the present Zn2 bond length is eight percent too small, and the present Cd2 bond length is eight percent too large. However, both Zn2 and Cd2 bond lengths predicted by the present study are in good agreement with the quantum Monte Carlo results. PMID:24160512

  1. Electronic Properties of Polarizable Systems with Self-Consistent Interatomic van der Waals Density Functional

    NASA Astrophysics Data System (ADS)

    Ferri, Nicola; Distasio, Robert A., Jr.; Ambrosetti, Alberto; Car, Roberto; Scheffler, Matthias; Tkatchenko, Alexandre

    2015-03-01

    Ubiquitous long-range van der Waals (vdW) interactions play a fundamental role in the structure and stability of a wide range of systems. Within the DFT framework, the vdW energy represents a crucial, but tiny part of the total energy, hence its influence on the electronic density, n (r) , and electronic properties is typically assumed to be rather small. Here, we address this question via a fully self-consistent (SC) implementation of the interatomic Tkatchenko-Scheffler vdW functional and its extension to surfaces. Self-consistency leads to large changes in the binding energies and electrostatic moments of highly polarizable alkali metal dimers. For some metal surfaces, vdW interactions increase dipole moments and induce non-trivial charge rearrangements, leading to visible changes in the metal workfunctions. Similar behavior is observed for molecules adsorbed on metals. Our study reveals a non-trivial connection between electrostatics and long-range electron correlation effects.

  2. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    PubMed

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-01

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials. PMID:26226296

  3. How van der Waals Interactions Influence Cohesive Properties of Non-Metallic Solids

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Xu; Reilly, Anthony M.; Tkatchenko, Alexandre; Scheffler, Matthias

    2013-03-01

    Standard semilocal and hybrid density functionals are widely used for studying cohesive properties of covalent, metallic, and ionic materials. Only recently it has been recognized that long-range van der Waals (vdW) interactions, that are missing in all semilocal and hybrid functionals, are important for an accurate description of cohesion in solids. Here we construct a database of 64 solids where reference cohesive properties are obtained from a critical revision of the available experimental data. All-electron DFT calculations with explicit treatment of zero-point vibrations for all cohesive properties are performed using the LDA, PBE, and the empirical meta-GGA M06-L functionals. For 23 semiconductors, we carry out PBE and M06-L calculations with the inclusion of screened long-range vdW energy. We find that PBE is the most systematic from the three employed functionals, and its accuracy is improved by a factor of two after the inclusion of vdW interactions. The LDA functional considerably overbinds for all the studied solids. The M06-L functional describes middle-range correlation better for certain semiconductors and ionic crystals, but fails for heavier semiconductors and metals.

  4. Benchmark data base for accurate van der Waals interaction in inorganic fragments

    NASA Astrophysics Data System (ADS)

    Brndiar, Jan; Stich, Ivan

    2012-02-01

    A range of inorganic materials, such as Sb, As, P, S, Se are built from van der Waals (vdW) interacting units forming the crystals, which neither the standard DFT GGA description as well as cheap quantum chemistry methods, such as MP2, do not describe correctly. We use this data base, for which have performed ultra accurate CCSD(T) calculations in complete basis set limit, to test the alternative approximate theories, such as Grimme [1], Langreth-Lundqvist [2], and Tkachenko-Scheffler [3]. While none of these theories gives entirely correct description, Grimme consistently provides more accurate results than Langreth-Lundqvist, which tend to overestimate the distances and underestimate the interaction energies for this set of systems. Contrary Tkachenko-Scheffler appear to yield surprisingly accurate and computationally cheap and convenient description applicable also for systems with appreciable charge transfer. [4pt] [1] S. Grimme, J. Comp. Chem. 27, 1787 (2006) [0pt] [2] K. Lee, et al., Phys. Rev. B 82 081101 (R) (2010) [0pt] [3] Tkachenko and M. Scheffler Phys. Rev. Lett. 102 073005 (2009).

  5. A van der Waals pn heterojunction with organic/inorganic semiconductors

    SciTech Connect

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi E-mail: xrwang@nju.edu.cn; Wang, Xinran E-mail: xrwang@nju.edu.cn; Pan, Yiming; Wang, Baigeng; Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua; Gu, Shuai; Zhu, Jia; Chai, Yang

    2015-11-02

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C{sub 8}-BTBT) and n-type MoS{sub 2}. We find that few-layer C{sub 8}-BTBT molecular crystals can be grown on monolayer MoS{sub 2} by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C{sub 8}-BTBT/MoS{sub 2} vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10{sup 5} at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  6. Driving select architectures of nanoparticles: the role of the van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Almora-Barrios, Neyvis; López, Nuria; Theoretical Heterogeneous Catalysis Team

    2014-03-01

    The simulations with dispersion corrections provide a detailed atomistic model for understand of structure-function relations in the study of materials. Two scenarios that require this level of theoretical approximation are the study of the different architectures of Au nanoparticles and the stability, activity and selectivity properties of c-Pd nanocatalysts. We have investigated a model based on DFT-D2 surface energy calculations to identify key of the leading interactions that drive the formation of Au nanorods. The complexity of the procedure can be analyzed in detail and the information provided by the calculations paves the way to a better compression of synthetic-structure relationships. In the field of catalytic activity, we have simulated surfactant on Pd surface and our results contribute to a better understanding of activity of the catalyst, modeling for the first time the structure of this novel family of material. The resulting insights significantly advance the state-of-the-art to improve our knowledge of the roles and effects of electrostatic and van der Waals interactions, opening a complete new perspective in the control of new architectures to design of the nanoparticles. The authors thank the ERC-2010-StG-258406 Bio2chem-d project, MINECO (CTQ2012-33826) and BSC-RES for supporting this work.

  7. Neutron Reflectivity Study of Interdiffusion of Ionomers into Van der Waals Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Etampawala, Thusitha; Ratnaweera, Dilru; Wijesinghe, Sidath; Perahia, Dvora; Majewski, Jaroslaw

    2012-02-01

    The slow dynamic processes in amorphous ionic polymers are affected by physical cross-links resulting from clustering of the ionic groups. Therefore in addition to entanglement barriers, the motion of the polymers is coupled to the dynamics of the ionic clusters where the resulting dynamics is an interplay between the effects of the two types of barriers. Using neutron reflectometry we have probed a model system where interfacial diffusion of a Van der Waals polymer, polystyrene, into its sulfonated analogs. Results controlling the molecular weights that determine the overall number of entanglements as well as the degree of sulfonation which affects the strength and number of the ionic clusters will be presented. Comparison to the diffusion of polystyrene into polystyrene will resolve the effects of the ionic clusters from those of entanglements. The presence of the physical cross-links slows down the dynamics significantly with respect to that of polystyrene and an asymmetric process where the non-ionic blocks migrate into the ionic one is observed. Further rearrangements take place at a later stage.

  8. Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure

    NASA Astrophysics Data System (ADS)

    Huang, Le; Li, Jingbo

    2016-02-01

    First principles calculations are used to explore the structural and electronic properties of black phosphorus/blue phosphorus (black-p/blue-p) van der Waals (vdW) p-n heterostructure. An intrinsic type-II band alignment with a direct band gap at Γ point is demonstrated. The spatial separation of the lowest energy electron-hole pairs can be realized and make black-p/blue-p heterostructure a good candidate for applications in optoelectronics. Black-p/blue-p heterostructure exhibits modulation of its band gap and band edges by applied perpendicular electric field ( E⊥ ). This system undergoes a transition from semiconductor to metal when subjected to a strong external E⊥ . The variation of band edges and quasi-Fermi level as a function of E⊥ provides further insight to the linear variation of the band gap. Our calculation results pave the way for experimental research and indicate the great application potential of black-p/blue-p vdW heterostructure in future optoelectronics.

  9. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets

    NASA Astrophysics Data System (ADS)

    Liao, Yunlong; Cao, Wei; Connell, John W.; Chen, Zhongfang; Lin, Yi

    2016-05-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm2) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images.

  10. The ArI2(ion-pair states) van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.

    2016-03-01

    The ArI2 (E0g+) van der Waals complexes have been observed and studied for the first time. Analysis of the luminescence excitation spectra as well as luminescence spectra themselves in the spectral ranges, where the I2 (E0g+→ B0u+, D0u+ → X0g+, β1g → A1u and D‧2g → A‧2u) transitions can occur, has been carried out. It has been shown that the I2(D → X, β → A and D‧ → A‧) luminescence is due to ArI2(E ← B) transitions with subsequent predissociation. We have determined the spectroscopic parameters of the ArI2(E,νE = 0-3) complexes. It has been shown that rate of vibrational predissociation is ∼10 times less than total rate of the ArI2(E,νE = 0-3) → Ar + I2(D, β, D‧) electronic predissociation.

  11. Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2

    NASA Astrophysics Data System (ADS)

    Efetov, D. K.; Wang, L.; Handschin, C.; Efetov, K. B.; Shuang, J.; Cava, R.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C. R.; Kim, P.

    2016-04-01

    Electrons incident from a normal metal onto a superconductor are reflected back as holes--a process called Andreev reflection. In a normal metal where the Fermi energy is much larger than a typical superconducting gap, the reflected hole retraces the path taken by the incident electron. In graphene with low disorder, however, the Fermi energy can be tuned to be smaller than the superconducting gap. In this unusual limit, the holes are expected to be reflected specularly at the superconductor-graphene interface owing to the onset of interband Andreev processes, where the effective mass of the reflected holes changes sign. Here we present measurements of gate-modulated Andreev reflections across the low-disorder van der Waals interface formed between graphene and the superconducting NbSe2. We find that the conductance across the graphene-superconductor interface exhibits a characteristic suppression when the Fermi energy is tuned to values smaller than the superconducting gap, a hallmark for the transition between intraband retro Andreev reflections and interband specular Andreev reflections.

  12. Van der Waals Interactions and Dipole Blockade in a Cold Rydberg Gas Probed by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Long; Celistrino Teixeira, Raul; Hermann Avigliano, Carla; Cantat Moltrecht, Tigrane; Raimond, Jean Michel; Haroche, Serge; Gleyzes, Sebastiens; Brune, Michel

    2016-05-01

    Dipole-dipole interactions between Rydberg atoms are a flourishing tool for quantum information processing and for quantum simulation of complex many-body problems. Microwave spectroscopy of a dense Rydberg gas trapped close to a superconducting atom chip in the strong dipole blockade regime reveals directly the many-body atomic interaction spectrum. We present here a direct measurement of the interaction energy distribution in the strong dipole blockade regime, based on microwave spectroscopy. We first apply this method to the observation of the excitation dynamics of the Rydberg gas, conditioned by dipole-dipole interactions, in either the strong blockade regime or the so-called facilitation regime. We also observe with this method the atomic cloud expansion driven by the repulsive Van der Waals interaction after excitation. This measurement, in good agreement with Monte Carlo simulations of the excitation process and of the cloud dynamics, reveals the limits of the frozen gas approximation. This method can help investigate self-organization and dynamical phase transitions in Rydberg-atom based quantum simulators. This study thus opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atom.

  13. Role of van der Waals forces in the diffraction of noble gases from metal surfaces

    NASA Astrophysics Data System (ADS)

    del Cueto, M.; Muzas, A. S.; Füchsel, G.; Gatti, F.; Martín, F.; Díaz, C.

    2016-02-01

    The role of van der Waals (vdW) forces in the description of scattering processes of noble gases from metal surfaces is currently under debate. Although features of the potential energy surface such as anticorrugation or adsorption energies are sometimes found to be well described by standard density functional theory (DFT), the performance of DFT to describe diffraction spectra may rely on the accuracy of the vdW functionals used. To analyze the precise role of these vdW forces in noble gas diffraction by metal surfaces, we have thoroughly studied the case of Ne/Ru(0001), for which accurate experimental results are available. We have carried out classical and quantum dynamics calculations by using DFT-based potentials that account for the effect of vdW interactions at different levels of accuracy. From the comparison of our results with experimental data, we conclude that the inclusion of vdW effects is crucial to properly describe diffraction of noble gases from metal surfaces. We show that among the vdW-DFT functionals available in the literature, not all of them can be used to accurately describe this process.

  14. Non-additivity of molecule-surface van der Waals potentials from force measurements

    NASA Astrophysics Data System (ADS)

    Tautz, Stefan

    2014-03-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Their description as an inherently quantum mechanical phenomenon was developed for single atoms and homogeneous macroscopic bodies by London, Casimir, and Lifshitz. For intermediate-sized objects like organic molecules an atomistic description is required, but explicit first principles calculations are very difficult since correlations between many interacting electrons have to be considered. Hence, semi-empirical correction schemes are often used that simplify the vdW interaction to a sum over atom-pair potentials. A similar gap exists between successful measurements of vdW and Casimir forces for single atoms on the one hand and macroscopic bodies on the other, as comparable experiments for molecules are absent. I will present experiments in which long-range vdW potentials between a series of related molecules and a metal surface have been determined experimentally. The experiments rely on the extremely sensitive force detection of an atomic force microscope in combination with its molecular manipulation capabilities. The results allow us to confirm the asymptotic force law and to quantify the non-additive part of the vdW interaction which is particularly challenging for theory. In the present case, cooperative effects account for 10% of the total interaction. This effect is of general validity in molecules and thus relevant at the intersection of chemistry, physics, biology, and materials science.

  15. A simplified Van der Waals-Platteeuw model of clathrate hydrates with multiple occupancy of cavities.

    PubMed

    Martín, Angel

    2010-07-29

    In clathrate hydrates formed by small guest molecules such as H(2) or He, hydrate cavities may be occupied by clusters of several guest molecules. Multiple occupancy of cavities is important for applications of clathrate hydrates as gas storage and transportation media due to the increase of storage capacity of the material associated with multiple occupancy. Computational approaches for clathrate hydrates with multiple occupancy such as Grand Canonical Monte Carlo (GCMC) simulations or van der Waals-Platteeuw (vdW-P) models with rigorous calculations of Langmuir adsorption constants are complex and require considerable computational effort. In this work, a simplified vdW-P model for clathrate hydrates with multiple occupancy is presented. In this model, it is assumed that guest molecules inside cavities form clusters in which molecules occupy fixed positions with respect to each other. For validation of this supposition, results obtained with this model have been compared with GCMC simulations of sII He and H(2) hydrates with multiple occupancy. Results of the simplified procedure presented in this work regarding the fractional occupancy of cavities by molecular clusters agree well with GCMC simulations. The simplified vdW-P model presented in this work requires a small computational effort, equivalent to calculations with the standard vdW-P model for hydrates with single occupancy. PMID:20614878

  16. van der Waals interaction between an atom and a spherical plasma shell

    SciTech Connect

    Khusnutdinov, Nail R.

    2011-03-15

    The van der Waals interaction energy of an atom with an infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach. Thin sphere models the fullerene. We put the sphere into a spherical cavity inside the infinite dielectric media then calculate the energy of vacuum fluctuations in the context of the {zeta}-function approach. The interaction energy for a single atom is obtained from this expression in the limit of the rare media. The Casimir-Polder expression for an atom and plate is recovered in the limit of the infinite radius of the sphere. Assuming a finite radius of the sphere, the interaction energy of an atom falls down to a third power of distance between the atom and sphere for short distances and to a seventh power for large distances from the sphere. Numerically the interaction energy is 3.8 eV for the hydrogen atom placed on the surface of the sphere with parameters of fullerene C{sub 60}. We also show that the polarizability of fullerene is merely a cube of its radius.

  17. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    PubMed Central

    Noda, Yuki; Noro, Shin-ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros–Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours. PMID:24441566

  18. How van der Waals interactions determine the unique properties of water.

    PubMed

    Morawietz, Tobias; Singraber, Andreas; Dellago, Christoph; Behler, Jörg

    2016-07-26

    Whereas the interactions between water molecules are dominated by strongly directional hydrogen bonds (HBs), it was recently proposed that relatively weak, isotropic van der Waals (vdW) forces are essential for understanding the properties of liquid water and ice. This insight was derived from ab initio computer simulations, which provide an unbiased description of water at the atomic level and yield information on the underlying molecular forces. However, the high computational cost of such simulations prevents the systematic investigation of the influence of vdW forces on the thermodynamic anomalies of water. Here, we develop efficient ab initio-quality neural network potentials and use them to demonstrate that vdW interactions are crucial for the formation of water's density maximum and its negative volume of melting. Both phenomena can be explained by the flexibility of the HB network, which is the result of a delicate balance of weak vdW forces, causing, e.g., a pronounced expansion of the second solvation shell upon cooling that induces the density maximum. PMID:27402761

  19. Transformation of the Strongly Hydrogen Bonded System into van der Waals one Reflected in Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Kamiński, K.; Kamińska, E.; Grzybowska, K.; Włodarczyk, P.; Pawlus, S.; Paluch, M.; Zioło, J.; Rzoska, S. J.; Pilch, J.; Kasprzycka, A.; Szeja, W.

    Dielectric relaxation studies on disaccharides lactose and octa-O-acetyl-lactose are reported. The latter is a hydrogen bonded system while the former is a van der Waals glass former. The transformation between them was arranged by substituting hydrogen atoms in lactose by acetyl groups. Hereby the influence of differences in bounding on dynamics of both systems is discussed. We showed that the faster secondary relaxation (labeled γ) in octa-O-acetyl-lactose has much lower amplitude than that of lactose. The relaxation time and activation energy remain unchanged in comparison to the γ- relaxation of lactose. We did not observe the slow secondary relaxation (labeled β), clearly visible in lactose, in its acethyl derivative. Detailed analysis of the dielectric spectra measured for octa-O-acetyl-lactose in its glassy state (not standard change in the shape of the γ- peak with lowering temperature) enabled us to provide probable explanation of our finding. No credible comparative analysis of the α- relaxation process of the lactose and octa-O-acetyl-lactose are presented, because loss spectra of the former carbohydrate were affected by the huge contribution of the dc conductivity. Notwithstanding, one can expect that octa-O-acetyl-lactose has lower glass transition temperature and steepness index than lactose.

  20. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures.

    PubMed

    Khestanova, E; Guinea, F; Fumagalli, L; Geim, A K; Grigorieva, I V

    2016-01-01

    Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2. Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material. PMID:27557732

  1. Alternating-gradient focusing of the benzonitrile-argon van der Waals complex.

    PubMed

    Putzke, Stephan; Filsinger, Frank; Küpper, Jochen; Meijer, Gerard

    2012-09-14

    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C(6)H(5)CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within ±5%. By exploiting the different dipole-moment-to-mass ([micro sign]/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex. PMID:22979862

  2. Effect of van der Waals corrections on DFT-computed metallic surface properties

    NASA Astrophysics Data System (ADS)

    Chiter, Fatah; Bac Nguyen, Van; Tarrat, Nathalie; Benoit, Magali; Tang, Hao; Lacaze-Dufaure, Corinne

    2016-04-01

    State-of-the-art van der Waals (vdW) corrected density functional theory (DFT) is routinely used to overcome the failure of standard DFT in the description of molecule/surface long range interactions. However, the systematic use of dispersion forces to model metallic surfaces could lead to less accurate results than the standard DFT and the effect of these corrections on the metal properties should be properly evaluated. In this framework, the behavior of two widely used vdW corrected DFT methods (DFT-D2 and vdW–DF/optB86b) has been evaluated on six metals, i.e. Al, Cu, Au, Ni, Co and Fe, with respect to standard GGA–DFT and experiments. Regarding bulk properties, general trends are found for the lattice parameter, cohesive energy and magnetic moment variations when the vdW correction is introduced. Surface energies, work functions and interlayer distances of closed packed surfaces, Al(111), Cu(111), Au(111) and magnetic Ni(111), Co(0001) and Fe(110), are also strongly affected by the dispersion forces. These modifications suggest a systematic verification of the surface properties when a dispersion correction is included.

  3. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures.

    PubMed

    Lin, Yu-Chuan; Li, Jun; de la Barrera, Sergio C; Eichfeld, Sarah M; Nie, Yifan; Addou, Rafik; Mende, Patrick C; Wallace, Robert M; Cho, Kyeongjae; Feenstra, Randall M; Robinson, Joshua A

    2016-04-21

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction. PMID:27073972

  4. Collective many-body van der Waals interactions in molecular systems

    PubMed Central

    DiStasio, Robert A.; von Lilienfeld, O. Anatole; Tkatchenko, Alexandre

    2012-01-01

    Van der Waals (vdW) interactions are ubiquitous in molecules and condensed matter, and play a crucial role in determining the structure, stability, and function for a wide variety of systems. The accurate prediction of these interactions from first principles is a substantial challenge because they are inherently quantum mechanical phenomena that arise from correlations between many electrons within a given molecular system. We introduce an efficient method that accurately describes the nonadditive many-body vdW energy contributions arising from interactions that cannot be modeled by an effective pairwise approach, and demonstrate that such contributions can significantly exceed the energy of thermal fluctuations—a critical accuracy threshold highly coveted during molecular simulations—in the prediction of several relevant properties. Cases studied include the binding affinity of ellipticine, a DNA-intercalating anticancer agent, the relative energetics between the A- and B-conformations of DNA, and the thermodynamic stability among competing paracetamol molecular crystal polymorphs. Our findings suggest that inclusion of the many-body vdW energy is essential for achieving chemical accuracy and therefore must be accounted for in molecular simulations. PMID:22923693

  5. Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy.

    PubMed

    Zhang, Xingwang; Meng, Fei; Christianson, Jeffrey R; Arroyo-Torres, Christian; Lukowski, Mark A; Liang, Dong; Schmidt, J R; Jin, Song

    2014-06-11

    We report a facile chemical vapor deposition (CVD) growth of vertical heterostructures of layered metal dichalcogenides (MX2) enabled by van der Waals epitaxy. Few layers of MoS2, WS2, and WSe2 were grown uniformly onto microplates of SnS2 under mild CVD reaction conditions (<500 °C) and the heteroepitaxy between them was confirmed using cross-sectional transmission electron microscopy (TEM) and unequivocally characterized by resolving the large-area Moiré patterns that appeared on the basal planes of microplates in conventional TEM (nonsectioned). Additional photoluminescence peaks were observed in heterostructures of MoS2-SnS2, which can be understood with electronic structure calculations to likely result from electronic coupling and charge separation between MoS2 and SnS2 layers. This work opens up the exploration of large-area heterostructures of diverse MX2 nanomaterials as the material platform for electronic structure engineering of atomically thin two-dimensional (2D) semiconducting heterostructures and device applications. PMID:24798138

  6. Towards Efficient and General Method for Many-Body van-der-Waals Interactions

    NASA Astrophysics Data System (ADS)

    Tkatchenko, Alexandre

    2012-02-01

    Van der Waals interactions are intrinsically many-body phenomena, arising from collective electron fluctuations in a given material. Adiabatic connection fluctuation-dissipation theorem (ACFDT) allows to compute the many-body vdW interactions accurately. However, the ACFDT computational cost is prohibitive for real materials, even when the random-phase approximation is employed for the response function. We show how the problem of computing the long-range many-body vdW energy for real systems can be solved efficiently by mapping the system (molecule or condensed matter) onto a collection of quantum harmonic oscillators. Currently, our method, which couples density-functional theory with the many-body dispersion energy (DFT+MBD), is developed for non-metallic system [A. Tkatchenko, R. A. DiStasio Jr., R. Car, M. Scheffler, submitted]. The DFT+MBD method includes the hybridization effects by using the Tkatchenko-Scheffler approach [PRL 102, 073005 (2009)], the long-range Coulomb screening through classical electrodynamics [B. U. Felderhof, Physica 29, 1569 (1974)], and the many-body vdW energy from the coupled-fluctuating dipole model [M. W. Cole et al., Mol. Simul. 35, 849 (2009)]. The successes of the DFT+MBD approach and the many challenges that lie ahead will be discussed.

  7. van der Waals force-induced crack healing in dry rough interfaces

    NASA Astrophysics Data System (ADS)

    Soylemez, Emrecan; de Boer, Maarten P.

    2016-02-01

    Spontaneous crack healing due to van der Waals forces is an important phenomenon in diverse areas such as precision assembly, locomotion, soft robotics, and micro- and nanomachines. For rough surfaces that can be described as a collection of asperities, parallel plate models are used to gain insight into the adhesion values. A single adhesion value is then found for a given surface description. However, experiments reveal a range of values. Here, implementing a simple beam model to gain physical insight, we show that an important contribution to the range can be due to the placement of asperities relative to the crack tip. For example, tall asperities far from the crack tip resist crack healing if they contact the substrate, but promote healing if not in contact with it. Due to this effect, the beam model predicts a range of values that is significant compared with the observed experiment variation. Furthermore, as the crack approaches mechanical equilibrium, the resisting action tends to dominate over the healing action, and the beam model predicts a lower adhesion value than the parallel plate model. These effects will be greatest in the case where the elasticity (Tabor) parameter is small.

  8. Communication: Non-additivity of van der Waals interactions between nanostructures

    SciTech Connect

    Tao, Jianmin; Perdew, John P.

    2014-10-14

    Due to size-dependent non-additivity, the van der Waals interaction (vdW) between nanostructures remains elusive. Here we first develop a model dynamic multipole polarizability for an inhomogeneous system that allows for a cavity. The model recovers the exact zero- and high-frequency limits and respects the paradigms of condensed matter physics (slowly varying density) and quantum chemistry (one- and two-electron densities). We find that the model can generate accurate vdW coefficients for both spherical and non-spherical clusters, with an overall mean absolute relative error of 4%, without any fitting. Based on this model, we study the non-additivity of vdW interactions. We find that there is strong non-additivity of vdW interactions between nanostructures, arising from electron delocalization, inequivalent contributions of atoms, and non-additive many-body interactions. Furthermore, we find that the non-additivity can have increasing size dependence as well as decreasing size dependence with cluster size.

  9. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    SciTech Connect

    Kevorkyants, Ruslan; Pavanello, Michele; Eshuis, Henk

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  10. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets

    PubMed Central

    Liao, Yunlong; Cao, Wei; Connell, John W.; Chen, Zhongfang; Lin, Yi

    2016-01-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm2) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images. PMID:27188697

  11. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.

    PubMed

    Corminboeuf, Clemence

    2014-11-18

    computationally demanding self-consistent implementation. The proposed correction is then exploited to identify the key factors at the origin of the errors in thermochemistry beyond van der Waals complexes. Particular focus is placed on charge-transfer and mixed-valence complexes, which are relevant to the field of organic electronics. These types of complexes represent insightful examples for which the delocalization error may partially counterbalance the missing dispersion. Our devised methodology reveals the true performance of standard density functional approximations and the subtle interplay between the two types of errors. The analysis presented provides guidance for future functional development that could further improve the modeling of the structures and properties of molecular materials. Overall, the proposed state-of-the-art approaches have contributed to stress the crucial role of dispersion and improve their description in both straightforward van der Waals complexes and more challenging chemical situations. For the treatment of the latter, we have also provided relevant insights into which type of density functionals to favor. PMID:24655016

  12. Nano-scale displacement sensing based on van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Zhao, Jin; Yang, Jinlong

    2015-05-01

    We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical displacement. For lateral displacement, the change of dz is induced by atomic layer corrugation. Despite the different stacking configurations of BLBP, we find that the change of the indirect band gap is proportional to dz-2. Furthermore, this dz-2 dependence is found to be applicable to other graphene-like corrugated bi-layer materials such as MoS2. BLBP represents a large family of bi-layer 2D atomic corrugated materials for which the electronic structure is sensitive to the interlayer vertical and lateral displacement, and thus could be used for a nano-scale displacement sensor. This can be done by monitoring the tunable electronic structure using absorption spectroscopy. Because this type of sensor is established on atomic layers coupled through vdW interactions, it provides unique applications in the measurements of nano-scale displacement induced by tiny external forces.We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical

  13. Interaction of boron with graphite: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-08-01

    Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less ability to offer electrons to oxygen, ultimately resulted in the inhibition of carbon oxidation. For interstitial doping, vdW-DFs show more accurate formation energy than LDA. PBE functional cannot describe the interstitial boron in graphite reasonably because of the ignoring binding of graphite sheets. The investigation of electron structures of boron doped graphite will play an important role in understanding the oxidation mechanism in further study.

  14. Effects of truncating van der Waals interactions in lipid bilayer simulations

    SciTech Connect

    Huang, Kun; García, Angel E.

    2014-09-14

    In membrane simulations, it is known that truncating electrostatic interactions results in artificial ordering of lipids at the truncation distance. However, less attention has been paid to the effect of truncating van der Waals (VDW) interactions. Since the VDW potential decays as r{sup −6}, it is frequently neglected beyond a cutoff of around 1 nm. In some cases, analytical dispersion corrections appropriate for isotropic systems are applied to the pressure and the potential energy. In this work, we systematically study the effect of truncating VDW interactions at different cutoffs in 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine bilayers with the Berger force field. We show that the area per lipid decreases systematically when the VDW cutoff (r{sub c}) increases. This dependence persists even when dispersion corrections are applied. Since the analytical form of the dispersion correction is only appropriate for isotropic systems, we suggest that a long VDW cutoff should be used in preference over a short VDW cutoff. To determine the appropriate cutoff, we simulate liquid pentadecane with the Berger parameters and find that r{sub c} ≥ 1.4 nm is sufficient to reproduce the density and the heat of vaporization of pentadecane. Bilayers simulated with r{sub c} ≥ 1.4 nm show an improved agreement with experiments in both the form factors and the deuterium order parameters. Finally, we report that the VDW cutoff has a significant impact on the lipid flip-flop energetics and an inappropriate short VDW cutoff results in a bilayer that is prone to form water defects across the bilayer.

  15. Comparative study of van der Waals corrections to the bulk properties of graphite

    NASA Astrophysics Data System (ADS)

    Rêgo, Celso R. C.; Oliveira, Luiz N.; Tereshchuk, Polina; Da Silva, Juarez L. F.

    2015-10-01

    Graphite is a stack of honeycomb (graphene) layers bound together by nonlocal, long-range van der Waals (vdW) forces, which are poorly described by density functional theory (DFT) within local or semilocal exchange-correlation functionals. Several approximations have been proposed to add a vdW correction to the DFT total energies (Stefan Grimme (D2 and D3) with different damping functions (D3-BJ), Tkatchenko-Scheffler (TS) without and with self-consistent screening (TS  +  SCS) effects). Those corrections have remarkly improved the agreement between our results and experiment for the interlayer distance (from 3.8 to 0.1%) and high-level random-phase approximation (RPA) calculations for interlayer binding energy (from 56.2 to 0.6%). We report a systematic investigation of various structural, energetic and electron properties with the aforementioned vdW corrections followed by comparison with experimental and theoretical RPA data. Comparison between the resulting relative errors shows that the TS  +  SCS correction provides the best results; the other corrections yield significantly larger errors for at least one of the studied properties. If considerations of computational costs or convergence problems rule out the TS  +  SCS approach, we recommend the D3-BJ correction. Comparison between the computed {πz}Γ\\text{ } -splitting and experimental results shows disagreements of 10% or more with all vdW corrections. Even the computationally more expensive hybrid PBE0 has proved unable to improve the agreement with the measured splitting. Our results indicate that improvements of the exchange-correlation functionals beyond the vdW corrections are necessary to accurately describe the band structure of graphite.

  16. Effects of truncating van der Waals interactions in lipid bilayer simulations

    PubMed Central

    Huang, Kun; García, Angel E.

    2014-01-01

    In membrane simulations, it is known that truncating electrostatic interactions results in artificial ordering of lipids at the truncation distance. However, less attention has been paid to the effect of truncating van der Waals (VDW) interactions. Since the VDW potential decays as r−6, it is frequently neglected beyond a cutoff of around 1 nm. In some cases, analytical dispersion corrections appropriate for isotropic systems are applied to the pressure and the potential energy. In this work, we systematically study the effect of truncating VDW interactions at different cutoffs in 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine bilayers with the Berger force field. We show that the area per lipid decreases systematically when the VDW cutoff (rc) increases. This dependence persists even when dispersion corrections are applied. Since the analytical form of the dispersion correction is only appropriate for isotropic systems, we suggest that a long VDW cutoff should be used in preference over a short VDW cutoff. To determine the appropriate cutoff, we simulate liquid pentadecane with the Berger parameters and find that rc ≥ 1.4 nm is sufficient to reproduce the density and the heat of vaporization of pentadecane. Bilayers simulated with rc ≥ 1.4 nm show an improved agreement with experiments in both the form factors and the deuterium order parameters. Finally, we report that the VDW cutoff has a significant impact on the lipid flip-flop energetics and an inappropriate short VDW cutoff results in a bilayer that is prone to form water defects across the bilayer. PMID:25217953

  17. Thioarsenides: a case for long-range Lewis acid-base-directed van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Wallace, A. F.; Downs, R. T.; Ross, N. L.; Cox, D. F.; Rosso, K. M.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local-energy density properties have been calculated for a number of As4S n ( n = 3, 4 and 5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions, and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals (vdW) bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis-base regions) with aligned regions of locally depleted electron density (Lewis-acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for several other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long-range Lewis acid-base-directed vdW interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long-range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.

  18. Controlling Electronic Transitions in Fullerene van der Waals Aggregates via Supramolecular Assembly.

    PubMed

    Das, Saunak; Herrmann-Westendorf, Felix; Schacher, Felix H; Täuscher, Eric; Ritter, Uwe; Dietzek, Benjamin; Presselt, Martin

    2016-08-24

    Morphologies crucially determine the optoelectronic properties of organic semiconductors. Therefore, hierarchical and supramolecular approaches have been developed for targeted design of supramolecular ensembles of organic semiconducting molecules and performance improvement of, e.g., organic solar cells (OSCs), organic light emitting diodes (OLEDs), and organic field-effect transistors (OFETs). We demonstrate how the photonic properties of fullerenes change with the formation of van der Waals aggregates. We identified supramolecular structures with broadly tunable absorption in the visible spectral range and demonstrated how to form aggregates with targeted visible (vis) absorption. To control supramolecular structure formation, we functionalized the C60-backbone with polar (bis-polyethylene glycol malonate-MPEG) tails, thus yielding an amphiphilic fullerene derivative that self-assembles at interfaces. Aggregates of systematically tuned size were obtained from concentrating MPEGC60 in stearic acid matrices, while different supramolecular geometries were provoked via different thin film preparation methods, namely spin-casting and Langmuir-Blodgett (LB) deposition from an air-water interface. We demonstrated that differences in molecular orientation in LB films (C2v type point group aggregates) and spin-casting (stochastic aggregates) lead to huge changes in electronic absorption spectra due to symmetry and orientation reasons. These differences in the supramolecular structures, causing the different photonic properties of spin-cast and LB films, could be identified by means of quantum chemical calculations. Employing supramolecular assembly, we propounded that molecular symmetry in fullerene aggregates is extremely important in controlling vis absorption to harvest photons efficiently, when mixed with a donor molecule, thus improving active layer design and performance of OSCs. PMID:27482718

  19. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M.

    2015-04-01

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C60). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  20. Adsorption characteristics of Thiophene on Cu and Ni(100): role of van der Waals

    NASA Astrophysics Data System (ADS)

    Rojas, Tomas; Matos, Jeronimo; Kara, Abdelkader

    2014-03-01

    We apply density functional theory, with and without the inclusion of self-consistent van der Waals (vdWs) interactions (optB86, optB88, optPBE, revPBE, rPW86), to study the adsorption of thiophene (C4H4S) on Cu(100) and Ni(100). Our calculations reveal that the C4H4S molecule adsorbs, on either substrate, with its molecular plane parallel to the surface with the sulfur close to the bridge site. The inclusion of vdWs interactions results in a significant increase in the binding energy of thiophene on Cu(100) (from 0.12 eV to up to 0.77 eV), while the adsorption height is also modified from 3.2 A down to, at most, 2.38 A, depending on the functional used. The Ni(100) case presents a similar behavior for the binding energy (enhancement from 1.56 eV to up to 2.34 eV), but the adsorption heights increase from 2.12 Å up to 2.32 Å. In addition to adsorption geometry and energetics, we present the results and analysis of the electronic properties (charge transfer, changes in the d-band of the substrate, and change in the work function) of these two systems to complement our understanding of the molecule-substrate bonding. Our results suggest that the adsorption characteristics are dependent on the type of functional used; opt-type functionals (optB86, optB88, optPBE) are found to produce stronger bonding as compared to PBE, revPBE and rPW86. This work is funded by the U.S. Department of Energy Basic Energy Science under Contract No DE-FG02-11ER16243.

  1. Probing Dynamics from Within in Negative Ions, Neutral Molecules and van der Waals Clusters

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2006-05-01

    We have investigated with unprecedented levels of detail, processes and phenomena involving photodetachment of negative ions and photoionization of molecules and van der Waals clusters using the brightness, spectral resolution, tunability and polarization of the Advanced Light Source at Lawrence Berkeley National Laboratory. Photodetachment of negative ions exhibit structure and processes differing substantially from corresponding processes in neutral and positive ions, owing to the dominance of correlation in both the initial and final states. We will report on investigations carried out in inner-valence CN^- molecules giving rise to absolute double photodetachment cross sections as well as on fragmentation of negative ions clusters. We will also present absolute inner-shell photodetachment of atoms leading to multi-Auger decay [1] and discuss threshold laws [2] and PCI effects [3]. The measurements were conducted using collinear photon-ion spectroscopy. The evolution of inner-shell photoionization of clusters, as a function of photon energy, will be presented and compared to analogous measurements in atoms. The measurements were conducted using angle resolved two-dimensional photoelectron spectroscopy. Molecular fragmentation results using an ion imaging detector will briefly be presented. [1] R. C. Bilodeau, J. D. Bozek, G. D. Ackerman, N. D. Gibson, C. W.Walter, A. Aguilar, G. Turri, I. Dumitriu and N. Berrah, PRA 72, 050701(R), 2005. [2] R. C. Bilodeau, J. D. Bozek, N. D. Gibson, C. W. Walter, G. D. Ackerman, I. Dumitriu, and N. Berrah, Phys. Rev. Lett. 95, 083001 (2005). [3] R. C. Bilodeau, J. D. Bozek, A. Agular, G. D. Ackerman, and N. Berrah, (in press PRA brief report).

  2. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes

    SciTech Connect

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M.

    2015-04-28

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C{sub 60}). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  3. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The past decade has seen a dramatic rise in interest in exploring the role that van der Waals (vdW) or dispersion forces play in materials and in material behavior. Part of this stems from the obvious fact that vdW interactions (and other weak forces, such as Casimir) underpin molecular recognition, i.e., nature's approach to search for a match between genes and anti-genes and hence enable biological function. Less obvious is the recognition that vdW interactions affect a multitude of properties of a vast variety of materials in general, some of which also have strong technological applications. While for two atom- or orbital-sized material fragments the dispersive contributions to binding are small compared to those from the better known forms (ionic, covalent, metallic), those between sparse materials (spread over extended areas) can be of paramount importance. For example, an understanding of binding in graphite cannot arise solely from a study of the graphene layers individually, but also requires insight from inter-sheet graphene vdW bonding. It is the extended-area vdW bonding that provides sufficient cohesion to make graphite a robust, naturally occurring material. In fact, it is the vdW-bonded graphite, and not the all-covalently bonded diamond, that is the preferred form of pure carbon under ambient conditions. Also important is the understanding that vdW attraction can attain a dramatic relevance even if the material fragments, the building blocks, are not necessarily parallel from the outset or smooth when viewed in isolation (such as a graphene sheet or a carbon nanotube). This can happen if the building blocks have some softness and flexibility and allow an internal relative alignment to emerge. The vdW forces can then cause increasingly larger parts of the interacting fragments to line up at sub-nanometer separations and thus beget more areas with a sizable vdW bonding contribution. The gecko can scale a wall because it can bring its flexible hairs

  4. Two-atom interaction energies with one atom in an excited state: van der Waals potentials versus level shifts

    NASA Astrophysics Data System (ADS)

    Donaire, M.

    2016-05-01

    I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently addressed by Berman [Phys. Rev. A 91, 042127 (2015), 10.1103/PhysRevA.91.042127], Donaire et al. [Phys. Rev. Lett. 115, 033201 (2015), 10.1103/PhysRevLett.115.033201], and Milonni and Rafsanjani [Phys. Rev. A 92, 062711 (2015), 10.1103/PhysRevA.92.062711], for which precedent approaches have given conflicting results. In the first place, I discuss to what extent these works provide equivalent results. I show that the phase-shift rate of the two-atom wave function computed by Berman, the van der Waals potential of the excited atom by Donaire et al., and the level shift of the excited atom by Milonni and Rafsanjani possess equivalent expressions in the quasistationary approximation. In addition, I show that the level shift of the ground-state atom computed by Milonni and Rafsanjani is equivalent to its van der Waals potential. A diagrammatic representation of all those quantities is provided. The equivalences among them are, however, not generic. In particular, it is found that for the case of the interaction between two identical atoms excited, the phase-shift rate and the van der Waals potentials differ. Concerning the conflicting results of previous approaches in regards to the spatial oscillation of the interactions, I conclude, in agreement with Berman and with Milonni and Rafsanjani, that they refer to different physical quantities. The impacts of free-space dissipation and finite excitation rates on the dynamics of the potentials are analyzed. In contrast with Milonni and Rafsanjani, the oscillatory versus monotonic spatial forms of the potentials of each atom are found not to be related to the reversible versus irreversible nature of the excitation transfer involved.

  5. Role of directed van der Waals bonded interactions in the determination of the structures of molecular arsenate solids.

    PubMed

    Gibbs, G V; Wallace, A F; Cox, D F; Dove, P M; Downs, R T; Ross, N L; Rosso, K M

    2009-01-29

    Bond paths, local energy density properties, and Laplacian, L(r) = -wedge(2)rho(r), composite isosurfaces of the electron density distributions were calculated for the intramolecular and intermolecular bonded interactions for molecular solids of As(2)O(3) and AsO(2) composition, an As(2)O(5) crystal, a number of arsenate molecules, and the arsenic metalloid, arsenolamprite. The directed intermolecular van der Waals As-O, O-O, and As-As bonded interactions are believed to serve as mainstays between the individual molecules in each of the molecular solids. As-O bond paths between the bonded atoms connect Lewis base charge concentrations and Lewis acid charge depletion domains, whereas the O-O and As-As paths connect Lewis base pair and Lewis acid pair domains, respectively, giving rise to sets of intermolecular directed bond paths. The alignment of the directed bond paths results in the periodic structures adopted by the arsenates. The arrangements of the As atoms in the claudetite polymorphs of As(2)O(3) and the As atoms in arsenolamprite are similar. Like the As(2)O(3) polymorphs, arsenolamprite is a molecular solid connected by relatively weak As-As intermolecular directed van der Waals bond paths between the layers of stronger As-As intramolecular bonded interactions. The bond critical point and local energy density properties of the intermolecular As-As bonded interactions in arsenolamprite are comparable with the As-As interactions in claudetite I. As such, the structure of claudetite I can be viewed as a stuffed derivative of the arsenolamprite structure with O atoms between pairs of As atoms comprising the layers of the structure. The cubic structure adopted by the arsenolite polymorph can be understood in terms of sets of directed acid-base As-O and base-base O-O pair domains and bond paths that radiate from the tetrahedral faces of its constituent molecules, serving as face-to-face key-lock mainstays in forming a periodic tetrahedral array of molecules

  6. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    PubMed

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-01

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions. PMID:27183049

  7. Van der Waals corrected DFT study of adsorption of groups VA and VIA hydrides on graphene monoxide

    NASA Astrophysics Data System (ADS)

    Notash, M. Yaghoobi; Ebrahimzadeh, A. Rastkar

    2016-06-01

    Adsorption properties of H2O, H2S, NH3 and PH3 on graphene monoxide (GMO) nano flack are investigated using density functional theory (DFT). Calculations were carried out by van der Waals correction and general gradient approximation. The adsorption energies and charge transfer between species are obtained and discussed for the considered positions of adsorbate molecules. Charge transfer analysis show that the gas molecules act as an electron acceptor in all cases. The analysis of the adsorption energies suggest GMO can be a good candidate for the adsorption of these molecules.

  8. How Van der Waals Interactions Influence the Absorption Spectra of Pheophorbide a Complexes: A Mixed Quantum-Classical Study.

    PubMed

    Megow, Jörg

    2015-10-01

    The computation of dispersive site energy shifts due to van der Waals interaction (London dispersion forces) was combined with mixed quantum-classical methodology to calculate the linear optical absorption spectra of large pheophorbide a (Pheo) dendrimers. The computed spectra agreed very well with the measurements considering three characteristic optical features occurring with increasing aggregate size: a strong line broadening, a redshift, and a low-energy shoulder. The improved mixed quantum-classical methodology is considered a powerful tool in investigating molecular aggregates. PMID:26275373

  9. Measurement of radial deformation of single-wall carbon nanotubes induced by intertube van der Waals forces

    SciTech Connect

    Jiang, Y. Y.; Kim, T.; Zuo, J. M.; Zhou, W.; Huang, Y.

    2008-04-15

    A cylindrical single-wall carbon nanotube (SWCNT) deforms in a nanotube bundle by van der Waals forces. The deformation is hard to measure, but is required in order to understand the properties of bundles. Here, we show that such deformations can be measured from changes in electron diffraction intensities. We demonstrate this for a bundle of two SWCNTs (d=2.05 and 1.56 nm). Deformation model predicted by atomistic simulations is scaled to fit the experiment. We show that the best fit gives flattening values of 0.7 and 0.35 A at the middle of the binding surface for the two SWCNTs.

  10. Ionic pathways following UV photoexcitation of the (HI)2 van der Waals dimer.

    PubMed

    Vidma, Konstantin V; Parker, David H; Bogdanchikov, Georgii A; Baklanov, Alexey V; Kochubei, Sergei A

    2010-03-11

    Photodissociation of the (HI)(2) van der Waals dimers at 248 nm and nearby wavelengths has been studied using time-of-flight mass spectrometry and velocity map imaging. I(2)(+) product ions with a translational temperature of 130 K and "translationally hot" I(+) ions with an average kinetic energy of E(t) = 1.24 +/- 0.03 eV and angular anisotropy beta = 1.92 +/- 0.11 were detected as dimer-specific ionic photofragments. Velocity map images of the I(2)(+) and I(+) species were found to be qualitatively similar to those observed in the case of photoexcitation of the (CH(3)I)(2) dimer (J. Chem. Phys. 2005, 122, 204301). As in the case of the (CH(3)I)(2) dimer, the absence of neutral I(2)-specific features in the ionic species images from (HI)(2) allows us to eliminate neutral molecular I(2) as a precursor of I(+) and I(2)(+). Similar to the case of (CH(3)I)(2), we deduce that the observed I(2)(+) ions are produced in their (2)Pi(3/2,g) ground electronic state as a result of photodissociation of the ionized dimer (HI)(2)(+) + h nu --> I(2)(+) + .... The formation of "translationally hot" I(+) ions is attributed to photodissociation of nascent vibrationally excited I(2)(+) with an average vibrational energy of 1.05 +/- 0.10 eV. This vibrational excitation is explained by the nonequilibrium initial I-I distance in I(2)(+) arising in photodissociation of (HI)(2)(+) after prompt release of the light H atoms. On the basis of our ab initio calculated value for the I-I distance of (3.17 A) in the (HI)(2)(+) precursor dimer, the vibrational excitation of I(2)(+) is expected to be 1.02 eV, which is in quantitative agreement with our experimentally deduced value. The interpretation of our results was supported by ab initio calculations of the structure and energy of neutral and ionized dimers of HI at the MP4(SDTQ)//MP2 level. PMID:19827807

  11. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    SciTech Connect

    Ambrosio, Francesco Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H{sup +}/H{sub 2} level defining the standard hydrogen electrode, the OH{sup −}/OH{sup ∗} level corresponding to the oxidation of the hydroxyl ion, and the H{sub 2}O/OH{sup ∗} level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band

  12. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-01

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall

  13. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.

    PubMed

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H(+)/H2 level defining the standard hydrogen electrode, the OH(-)/OH(∗) level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH(∗) level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in

  14. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals.

    PubMed

    Kuo, Cheng-Tai; Neumann, Michael; Balamurugan, Karuppannan; Park, Hyun Ju; Kang, Soonmin; Shiu, Hung Wei; Kang, Jin Hyoun; Hong, Byung Hee; Han, Moonsup; Noh, Tae Won; Park, Je-Geun

    2016-01-01

    The range of mechanically cleavable Van der Waals crystals covers materials with diverse physical and chemical properties. However, very few of these materials exhibit magnetism or magnetic order, and thus the provision of cleavable magnetic compounds would supply invaluable building blocks for the design of heterostructures assembled from Van der Waals crystals. Here we report the first successful isolation of monolayer and few-layer samples of the compound nickel phosphorus trisulfide (NiPS3) by mechanical exfoliation. This material belongs to the class of transition metal phosphorus trisulfides (MPS3), several of which exhibit antiferromagnetic order at low temperature, and which have not been reported in the form of ultrathin sheets so far. We establish layer numbers by optical bright field microscopy and atomic force microscopy, and perform a detailed Raman spectroscopic characterization of bilayer and thicker NiPS3 flakes. Raman spectral features are strong functions of excitation wavelength and sample thickness, highlighting the important role of interlayer coupling. Furthermore, our observations provide a spectral fingerprint for distinct layer numbers, allowing us to establish a sensitive and convenient means for layer number determination. PMID:26875451

  15. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.

    PubMed

    Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S

    2014-01-14

    The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development. PMID:26579910

  16. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals

    NASA Astrophysics Data System (ADS)

    Kuo, Cheng-Tai; Neumann, Michael; Balamurugan, Karuppannan; Park, Hyun Ju; Kang, Soonmin; Shiu, Hung Wei; Kang, Jin Hyoun; Hong, Byung Hee; Han, Moonsup; Noh, Tae Won; Park, Je-Geun

    2016-02-01

    The range of mechanically cleavable Van der Waals crystals covers materials with diverse physical and chemical properties. However, very few of these materials exhibit magnetism or magnetic order, and thus the provision of cleavable magnetic compounds would supply invaluable building blocks for the design of heterostructures assembled from Van der Waals crystals. Here we report the first successful isolation of monolayer and few-layer samples of the compound nickel phosphorus trisulfide (NiPS3) by mechanical exfoliation. This material belongs to the class of transition metal phosphorus trisulfides (MPS3), several of which exhibit antiferromagnetic order at low temperature, and which have not been reported in the form of ultrathin sheets so far. We establish layer numbers by optical bright field microscopy and atomic force microscopy, and perform a detailed Raman spectroscopic characterization of bilayer and thicker NiPS3 flakes. Raman spectral features are strong functions of excitation wavelength and sample thickness, highlighting the important role of interlayer coupling. Furthermore, our observations provide a spectral fingerprint for distinct layer numbers, allowing us to establish a sensitive and convenient means for layer number determination.

  17. Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections.

    PubMed

    Calbo, Joaquín; Ortí, Enrique; Sancho-García, Juan C; Aragó, Juan

    2015-03-10

    In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems. PMID:26579747

  18. X and Rb Atoms on Helium Nanodroplets: is the Van Der Waals Attraction Strong Enough to Form a Molecule?

    NASA Astrophysics Data System (ADS)

    Poms, Johannes; Hauser, Andreas W.; Ernst, Wolfgang E.

    2013-06-01

    Chemical reactions in the cold environment of a helium nanodroplet currently attract high interest and can be spectroscopically observed with typical molecular beam techniques. In order to estimate the influence of surrounding helium on the van der Waals interaction between heliophilic and heliophobic dopants that could be investigated in our lab with ESR spectroscopy, we apply density-functional theory to simulate a double-dotation of He-clusters with Rb and Xe atoms. Simulations of a double-doped He_{N} droplet with N = 500 show that the alkali metal atom stays on the surface, whereas the Xe atom sits in the middle of the droplet. The van der Waals attraction between Rb and Xe is not strong enough to compensate the separation of the heliophilic Xe and the heliophobic Rb caused by the helium droplet: a potential barrier of 23.4 K has to be overcome, which is to be compared with the 0.4 K internal temperature of the droplet. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester (2011) M. Koch, C. Callegari, and W. E. Ernst, Mol. Phys. 108 (7), 1005-1011 (2010) J. Poms, A. W. Hauser, and W. E. Ernst, Phys. Chem. Chem. Phys. 14, 15158-15165 (2012)

  19. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals

    PubMed Central

    Kuo, Cheng-Tai; Neumann, Michael; Balamurugan, Karuppannan; Park, Hyun Ju; Kang, Soonmin; Shiu, Hung Wei; Kang, Jin Hyoun; Hong, Byung Hee; Han, Moonsup; Noh, Tae Won; Park, Je-Geun

    2016-01-01

    The range of mechanically cleavable Van der Waals crystals covers materials with diverse physical and chemical properties. However, very few of these materials exhibit magnetism or magnetic order, and thus the provision of cleavable magnetic compounds would supply invaluable building blocks for the design of heterostructures assembled from Van der Waals crystals. Here we report the first successful isolation of monolayer and few-layer samples of the compound nickel phosphorus trisulfide (NiPS3) by mechanical exfoliation. This material belongs to the class of transition metal phosphorus trisulfides (MPS3), several of which exhibit antiferromagnetic order at low temperature, and which have not been reported in the form of ultrathin sheets so far. We establish layer numbers by optical bright field microscopy and atomic force microscopy, and perform a detailed Raman spectroscopic characterization of bilayer and thicker NiPS3 flakes. Raman spectral features are strong functions of excitation wavelength and sample thickness, highlighting the important role of interlayer coupling. Furthermore, our observations provide a spectral fingerprint for distinct layer numbers, allowing us to establish a sensitive and convenient means for layer number determination. PMID:26875451

  20. Band gap and effective mass of multilayer BN/graphene/BN: van der Waals density functional approach

    NASA Astrophysics Data System (ADS)

    Hashmi, Arqum; Hong, Jisang

    2014-05-01

    Using the van der Waals density functional theory method (DFT-D2), we have investigated thickness dependent energy band gaps and effective masses of multilayer BN/graphene/BN structures by changing the stacking order. The band gap is substantially dependent on the stacking order. For instance, the calculated band gap in ABA stacking is about 150 meV, whereas it becomes 31 meV in ABC stacking. No significant thickness dependent band gap is observed in both ABA and ABC stackings although the band gap is gradually increasing with the BN thickness in ABA stacking. In addition, the effective mass is found to be strongly dependent on the stacking order. The effective mass in ABA stacking is much larger than that found in ABC stacking. On the other hand, the effective mass along K-M direction is smaller than that along K-Γ direction in ABA stacking. However, it is independent on the band direction in ABC stacking. We have found that the inclusion of van der Waals interaction alters thickness dependent band gap and effective mass of BN/graphene/BN multilayer systems compared with those found with standard density functional theory.

  1. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    PubMed Central

    Cho, Sung Beom; Chung, Yong-Chae

    2016-01-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer. PMID:27301777

  2. Rotational analysis of bands of the A ˜ - X ˜ transition of the C3Ar van der Waals complex

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.; Hsu, Yen-Chu; Chen, Yi-Ren; Wang, Yi-Jen

    2015-11-01

    Rotational analyses have been carried out for four of the strongest bands of the A ˜ - X ˜ transition of the C3Ar van der Waals complex, at 393 and 399 nm. These bands lie near the 02-0-000 and 04-0-000 bands of the A ˜ 1 Π u - X ˜ 1 Σ + g transition of C3 and form two close pairs, each consisting of a type A and a type C band of an asymmetric top, about 4 cm-1 apart. Only K″ = even lines are found, showing that the complex has two equivalent carbon atoms (I = 0), and must be T-shaped, or nearly so. Strong a- and b-axis electronic-rotational (Coriolis) coupling occurs between the upper states of a pair, since they correlate with a 1Πu vibronic state of C3, where the degeneracy is lifted in the lower symmetry of the complex. Least squares rotational fits, including the coupling, have given the rotational constants for both electronic states: the van der Waals bond lengths are 3.81 and 3.755 Å, respectively, in the ground and excited electronic states. For the ground state our new quantum chemical calculations, using the Multi-Channel Time-Dependent Hartree method, indicate that the C3 unit is non-linear, and that the complex does not have a rigid-molecule structure, existing instead as a superposition of arrowhead (↑) and distorted Y-shaped (Y) structures.

  3. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.

    PubMed

    Samad, Leith; Bladow, Sage M; Ding, Qi; Zhuo, Junqiao; Jacobberger, Robert M; Arnold, Michael S; Jin, Song

    2016-07-26

    The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications. PMID:27373305

  4. Phase change memory devices formed by using 2 dimensional layered Graphene-In2 Se3 van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Choi, Min Sup; Yang, Chenxi; Ra, Chang Ho; Yoo, Won Jong

    Indium selenide (In2Se3) is one of the unique materials which have both a layered structure and phase change property. One of the advantages of using 2 dimensional (2D) materials is their potential to form van der Waals heterostructures which enable unique physical properties and novel quantum device functions, which cannot be achieved in 2D material alone. In this study, we fabricated vertically stacked graphene-In2Se3 heterostructured memory devices. The fabricated devices showed a rapid increase of current conduction, which is attributed to the phase transition of In2Se3. The TEM images demonstrated that In2Se3 transformed from polycrystalline to layered structure thanks to the effective thermal confinement effect between graphene and In2Se3, attributed to the low thermal conductivity of layered materials in vertical direction. In addition, the current conduction could be controlled effectively by applying different pulse voltages, showing stable retention and endurance characteristics. It is thought that the differently bonded states contribute to this control process. This study demonstrates the possibility of Graphene-In2Se3 van der Waals heterostructure as 2D based future memory electronics. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MEST) (No. 2013R1A2A2A01015516).

  5. van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, Songsong; Han, Jian; Dai, Shuyang; Sun, Jianwei; Srolovitz, David J.

    2015-10-01

    The structure, thermodynamics, and band gaps in graphene/graphene, boron nitride/boron nitride, and graphene/boron nitride bilayers are determined using several different corrections to first-principles approaches to account for the dispersion interactions. While the density functional dispersion correction, van der Waals density functional, meta-generalized gradient approximation, and adiabatic fluctuation-dissipation theorem methods (ACFDT-RPA) all lead to qualitatively similar predictions, the best accuracy is obtained through the application of the computationally expensive ACFDT-RPA method. We present an accurate ACFDT-RPA-based method to determine bilayer structure, generalized stacking-fault energy (GSFE), and band gaps as a function of the relative translation states of the two layers. The GSFE data clearly identify all of the stable and metastable bilayer translations as well as the barriers between them. This is key for predicting the sliding, formation, and adhesion energies for homo- and hetero-bilayers, as well as for the determination of defects in such multilayer van der Waals systems. These, in turn, provide an accurate approach for determining and manipulating the spatial variation of electronic structure.

  6. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    NASA Astrophysics Data System (ADS)

    Cho, Sung Beom; Chung, Yong-Chae

    2016-06-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer.

  7. First principles predictions of van der Waals bonded inorganic crystal structures: Test case, HgCl2

    SciTech Connect

    Cooper, Valentino R; Donald, Kelling J

    2015-01-01

    We study the crystals structure and stability of four possible polymorphs of HgCl2 using first principles density functional theory. Mercury (II) halides are a unique class of materials which, depending on the halide species, form in a wide range of crystal structures, ranging from densely packed solids to layered materials and molecular solids. Predicting the groundstate structure of any member of this group from first principles, therefore, requires a general purpose functional that treats van der Waals bonding and covalent/ionic bonding adequately. Here, we demonstrate that the non-local van der Waals density functional paired with the C09 exchange functional meets this bar for HgCl2. In particular, this functional is able to predict the correct groundstate among the structures tested as well as having extremely good agreement with the experimentally known crystal structure. These results highlight the maturity of this functional and open the door to using this method for truly first principles crystal structure predictions.

  8. Quantitative Understanding of van der Waals Interactions by Analyzing the Adsorption Structure and Low-Frequency Vibrational Modes of Single Benzene Molecules on Silver.

    PubMed

    Yuan, Dingwang; Han, Zhumin; Czap, Gregory; Chiang, Chi-Lun; Xu, Chen; Ho, W; Wu, Ruqian

    2016-06-16

    The combination of a sub-Kelvin scanning tunneling microscope and density functional calculations incorporating van der Waals (vdW) corrections has been used successfully to probe the adsorption structure and low-frequency vibrational modes of single benzene molecules on Ag(110). The inclusion of optimized vdW functionals and improved C6-based vdW dispersion schemes in density functional theory is crucial for obtaining the correct adsorption structure and low-energy vibrational modes. These results demonstrate the emerging capability to quantitatively probe the van der Waals interactions between a physisorbed molecule and an inert substrate. PMID:27232051

  9. A Initio Study of Triatomic Open Shell Van Der Waals Complexes

    NASA Astrophysics Data System (ADS)

    Schnupf, Udo

    Three sets of new ab initio potential energy surfaces (PES's) are reported for the interaction of a rare gas atom with an open-shell diatomic. The first set of new ab initio PES's are given for the interaction of Ne with the CH radical in its ground state (X ^2 Pi) and first three excited doublet states (A ^2Delta, B ^2 Sigma{-}, C ^2Sigma +). These PES's are based on Davidson corrected multi-configuration interaction calculations. The second set of PES's reported are for the interaction of He, Ne and Kr with OH radical in its ground (X, ^2 Pi) and first excited state (A, ^2 Sigma^+). The OH(X, A)-Rg (Rg = He, Ne, Kr) have been calculated using the coupled electron pair approximation (CEPA). In the case of the OH(X, A) -Kr complex, results of calculations with an all-electron basis set and core-potential for Kr are presented. Calculated vibrational energy intervals for OH(D) -Ar and OH(D)-Kr (^2Sigma^+ , nu = 0 and 1) based on exact vibrational calculations for zero total angular momentum, and a centrifugal sudden approximation for J = 1 are presented. A modification of a previous potential surface for the OH(A) -Ar nu = 0 complex (J. M. Bowman et al., J. Phys. Chem., 94, 2226 (1990)) is made to include explicit OH(D) vibrational dependence. By a trial-and -error procedure the potential parameters, for both potential energy surfaces, are optimized to give good agreement with the experiment for the vibrational energy intervals. Rotation constants are also calculated and are in good agreement with the experiment. Vibrational wavefunctions are presented which serve to explain an interesting inverse isotope effect in the van der Waals stretching intervals. For the OH(D) -Kr A-state complex isotope shifts have also been calculated and found to be in good agreement with the experiment. The calculated vibrational intervals, isotope shifts and rotational constants for the OH-Kr (A, v = 0) are also compared to those calculated from previously reported OH-Kr (A ^2Sigma^+) ab

  10. Direct observation of adsorption geometry for the van der Waals adsorption of a single π-conjugated hydrocarbon molecule on Au(111)

    SciTech Connect

    Kim, Ju-Hyung; Jung, Jaehoon; Kim, Yousoo E-mail: ykim@riken.jp; Tahara, Kazukuni; Tobe, Yoshito E-mail: ykim@riken.jp; Kawai, Maki E-mail: ykim@riken.jp

    2014-02-21

    Weak van der Waals adsorption of π-conjugated hydrocarbon molecules onto the gold surface, Au(111), is one of the essential processes in constructing organic-metal interfaces in organic electronics. Here we provide a first direct observation of adsorption geometry of a single π-conjugated hydrocarbon molecule on Au(111) using an atomically resolved scanning tunneling microscopy study combined with van der Waals density functional methodology. For the purpose, we utilized a highly symmetric π-conjugated hydrocarbon molecule, dehydrobenzo[12]annulene (DBA), which has a definite three-fold symmetry, the same as the Au(111) surface. Interestingly, our observations on an atomically resolved scale clearly indicate that the DBA molecule has only one adsorption configuration on Au(111) in spite of the weak van der Waals adsorption system. Based on the precisely determined adsorption geometry of DBA/Au(111), our calculation results imply that even a very small contribution of the interfacial orbital interaction at the organic-metal interface can play a decisive role in constraining the adsorption geometry even in the van der Waals adsorption system of a π-conjugated hydrocarbon molecule on the noblest Au(111) surface. Our observations provide not only deeper insight into the weak adsorption process, but also new perspectives to organic electronics using π-conjugated hydrocarbon molecules on the Au surface.

  11. Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures

    PubMed Central

    Kamalakar, M. Venkata; Dankert, André; Kelly, Paul J.; Dash, Saroj P.

    2016-01-01

    Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications. PMID:26883717

  12. Imaginary-frequency polarizability and van der Waals force constants of two-electron atoms, with rigorous bounds

    NASA Technical Reports Server (NTRS)

    Glover, R. M.; Weinhold, F.

    1977-01-01

    Variational functionals of Braunn and Rebane (1972) for the imagery-frequency polarizability (IFP) have been generalized by the method of Gramian inequalities to give rigorous upper and lower bounds, valid even when the true (but unknown) unperturbed wavefunction must be represented by a variational approximation. Using these formulas in conjunction with flexible variational trial functions, tight error bounds are computed for the IFP and the associated two- and three-body van der Waals interaction constants of the ground 1(1S) and metastable 2(1,3S) states of He and Li(+). These bounds generally establish the ground-state properties to within a fraction of a per cent and metastable properties to within a few per cent, permitting a comparative assessment of competing theoretical methods at this level of accuracy. Unlike previous 'error bounds' for these properties, the present results have a completely a priori theoretical character, with no empirical input data.

  13. On the performance of van der Waals corrected-density functional theory in describing the atomic hydrogen physisorption on graphite

    NASA Astrophysics Data System (ADS)

    Ferullo, Ricardo M.; Domancich, Nicolás F.; Castellani, Norberto J.

    2010-11-01

    The atomic hydrogen physisorption on graphite was studied using the hydrogen-coronene model system and the van der Waals corrected-density functional theory (DFT + vdW). The results show that H preferentially occupies the hollow site. The adsorption energy at this site is calculated as 38.1 meV, in very good agreement with the available experimental measurements on a single graphite layer (39.2 ± 0.5 meV) and with reported MP2/aug-cc-pVDZ calculations (39.7 meV). The results suggest that, in DFT simulations, dispersion corrections should be considered in order to obtain accurate distances, adsorption energies and diffusion barriers in physisorption processes such as those occurring in the cold interstellar medium.

  14. Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions

    SciTech Connect

    Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2006-11-15

    Lifshitz-type formulas are obtained for the van der Waals and Casimir interaction between graphene and a material plate, graphene and an atom or a molecule, and between a single-wall carbon nanotube and a plate. The reflection properties of electromagnetic oscillations on graphene are governed by the specific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying a continuous fluid with some mass and charge density. The obtained formulas are applied to graphene interacting with Au and Si plates, to hydrogen atoms and molecules interacting with graphene, and to single-wall carbon nanotubes interacting with Au and Si plates. The generalizations to more complicated carbon nanostructures are discussed.

  15. Photocurrent measurements in Coupled Quantum Well van der Waals Heterostructures made of 2D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Joe, Andrew; Jauregui, Luis; High, Alex; Dibos, Alan; Gulpinar, Elgin; Pistunova, Kateryna; Park, Hongkun; Kim, Philip

    , Luis A. Jauregui, Alex A. High, Alan Dibos, Elgin Gulpinar, Kateryna Pistunova, Hongkun Park, Philip Kim Harvard University, Physics Department -abstract- Single layer transition metal dichalcogenides (TMDC) are 2-dimensional (2D) semiconductors van der Waals (vdW) characterized by a direct optical bandgap in the visible wavelength (~2 eV). Characterization of the band alignment between TMDC and the barrier is important for the fabrication of tunneling devices. Here, we fabricate coupled quantum well (CQW) heterostructures made of 2D TMDCs with hexagonal Boron nitride (hBN) as an atomically thin barrier and gate dielectric and with top and bottom metal (or graphite) as gate electrodes. We observe a clear dependence of the photo-generated current with varying hBN thickness, electrode workfunctions, electric field, laser excitation power, excitation wavelength, and temperature. We will discuss the implication of photocurrent in relation to quantum transport process across the vdW interfaces.

  16. Role of Directed van der Waals Bonded Interactions in the Determination of the Structures of Molecular Arsenate Solids

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Cox, David F.; Dove, Patricia M; Downs, R. T.; Ross, Nancy L.; Rosso, Kevin M.

    2009-01-05

    Bond paths, local energy density properties, and Laplacian, L(r) = -2ρ(r), composite isosurfaces of the electron density distributions were calculated for the intramolecular and intermolecular bonded interactions for molecular solids of As2O3 and AsO2 composition, an As2O5 crystal, a number of arsenate molecules, and the arsenic metalloid, arsenolamprite. The directed intermolecular van der Waals As-O, O-O, and As-As bonded interactions are believed to serve as mainstays between the individual molecules in each of the molecular solids. As-O bond paths between the bonded atoms connect Lewis base charge concentrations and Lewis acid charge depletion domains, whereas the O-O and As-As paths connect Lewis base pair and Lewis acid pair domains, respectively, giving rise to sets of intermolecular directed bond paths. The alignment of the directed bond paths results in the periodic structures adopted by the arsenates. The arrangements of the As atoms in the claudetite polymorphs of As2O3 and the As atoms in arsenolamprite are similar. Like the As2O3 polymorphs, arsenolamprite is a molecular solid connected by relatively weak As-As intermolecular directed van der Waals bond paths between the layers of stronger As-As intramolecular bonded interactions. The bond critical point and local energy density properties of the intermolecular As-As bonded interactions in arsenolamprite are comparable with the As-As interactions in claudetite I. As such, the structure of claudetite I can be viewed as a stuffed derivative of the arsenolamprite structure with O atoms between pairs of As atoms comprising the layers of the structure. The cubic structure adopted by the arsenolite polymorph can be understood in terms of sets of directed acid-base As-O and base-base O-O pair domains and bond paths that radiate from the tetrahedral faces of its constituent molecules, serving as face-to-face key

  17. Asymmetric van der Waals Forces Drive Orientation of Compositionally Anisotropic Nanocylinders within Smectic Arrays: Experiment and Simulation

    PubMed Central

    Smith, Benjamin D.; Fichthorn, Kristen A.; Kirby, David J.; Quimby, Lisa M.; Triplett, Derek A.; González, Pedro; Hernández, Darimar; Keating, Christine D.

    2014-01-01

    Understanding how micro- and nanoparticles interact is important for achieving bottom-up assembly of desired structures. Here, we examine the self-assembly of two-component, compositionally asymmetric nanocylinders that sediment from solution onto a solid surface. These particles spontaneously formed smectic arrays. Within the rows of an array, nanocylinders tended to assemble such that neighboring particles had the same orientation of their segments. As a probe of interparticle interactions, we classified nanocylinder alignments by measuring the segment orientations of many sets of neighboring particles. Monte Carlo simulations incorporating an exact expression for the van der Waals (vdW) energy indicate that differences in the vdW interactions, even when small, are the key factor in producing observed segment alignment. These results point to asymmetrical vdW interactions as a potentially powerful means of controlling orientation in multicomponent cylinder arrays, and suggest that designing for these interactions could yield new ways to control self-assembly. PMID:24308771

  18. Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by inter-wall van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Zhou, Wu-Xing; Chen, Xue-Kun; Liu, Yue-Yang; Chen, Ke-Qiu

    2016-05-01

    The thermal transport properties of multi-walled carbon nanotubes (MWCNTs) were investigated by using non-equilibrium molecular dynamics simulation. The results show that the thermal conductivity of MWCNTs decreases significantly comparing to that of single-walled carbon nanotubes (SWCNTs) due to the inter-wall van der Waals interactions. The more interesting is a fact that the thermal conductance of MWCNTs is significantly greater than the thermal conductance summation of each SWCNTs. This is because the thermal conductance of a carbon nanotube protected by an outer tube is much larger than that of one that is not protected. Moreover, we also studied the thermal flux distribution of MWCNTs, and found that the outer tube plays a dominant role in heat energy transfer.

  19. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems.

    PubMed

    Ruiz, Victor G; Liu, Wei; Zojer, Egbert; Scheffler, Matthias; Tkatchenko, Alexandre

    2012-04-01

    The electronic properties and the function of hybrid inorganic-organic systems (HIOS) are intimately linked to their interface geometry. Here we show that the inclusion of the many-body collective response of the substrate electrons inside the inorganic bulk enables us to reliably predict the HIOS geometries and energies. This is achieved by the combination of dispersion-corrected density-functional theory (the DFT+ van der Waals approach) [Phys. Rev. Lett. 102, 073005 (2009)], with the Lifshitz-Zaremba-Kohn theory for the nonlocal Coulomb screening within the bulk. Our method yields geometries in remarkable agreement (≈0.1 Å) with normal incidence x-ray standing wave measurements for the 3, 4, 9, 10-perylene-tetracarboxylic acid dianhydride (C(24)O(6)H(8), PTCDA) molecule on Cu(111), Ag(111), and Au(111) surfaces. Similarly accurate results are obtained for xenon and benzene adsorbed on metal surfaces. PMID:22540809

  20. Electronic Properties of Molecules and Surfaces with a Self-Consistent Interatomic van der Waals Density Functional

    NASA Astrophysics Data System (ADS)

    Ferri, Nicola; DiStasio, Robert A.; Ambrosetti, Alberto; Car, Roberto; Tkatchenko, Alexandre

    2015-05-01

    How strong is the effect of van der Waals (vdW) interactions on the electronic properties of molecules and extended systems? To answer this question, we derived a fully self-consistent implementation of the density-dependent interatomic vdW functional of Tkatchenko and Scheffler [Phys. Rev. Lett. 102, 073005 (2009)]. Not surprisingly, vdW self-consistency leads to tiny modifications of the structure, stability, and electronic properties of molecular dimers and crystals. However, unexpectedly large effects were found in the binding energies, distances, and electrostatic moments of highly polarizable alkali-metal dimers. Most importantly, vdW interactions induced complex and sizable electronic charge redistribution in the vicinity of metallic surfaces and at organic-metal interfaces. As a result, a substantial influence on the computed work functions was found, revealing a nontrivial connection between electrostatics and long-range electron correlation effects.

  1. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGESBeta

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  2. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  3. Structural and vibrational properties of α-MoO3 from van der Waals corrected density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Ray, Keith G.; Ozolins, Vidvuds; Asta, Mark

    2012-01-01

    Structural and vibrational properties of α-MoO3 are studied employing two recently proposed methodologies for incorporating van der Waals (vdW) contributions in density functional theory (DFT) based calculations. The DFT-D2 [S. Grimme, J. Comput. Chem.JCCHDD0192-865110.1002/jcc.20495 27, 1787 (2006)] and optB88 vdW-DFT [J. Klimeš , J. Phys.: Condens. MatterPRBMDO0953-898410.1088/0953-8984/22/2/022201 22, 022201 (2010)] methods are shown to give rise to increased accuracy in predicted lattice parameters, relative to conventional DFT methods. Calculated vibrational frequencies agree with measurements to within 5% and 10% for modes involving bonded and nonbonded interactions in this compound, respectively.

  4. van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls

    NASA Astrophysics Data System (ADS)

    Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui

    2016-04-01

    We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.

  5. Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures.

    PubMed

    Kamalakar, M Venkata; Dankert, André; Kelly, Paul J; Dash, Saroj P

    2016-01-01

    Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications. PMID:26883717

  6. Chemical free device fabrication of two dimensional van der Waals materials based transistors by using one-off stamping

    NASA Astrophysics Data System (ADS)

    Lee, Young Tack; Choi, Won Kook; Hwang, Do Kyung

    2016-06-01

    We report on a chemical free one-off imprinting method to fabricate two dimensional (2D) van der Waals (vdWs) materials based transistors. Such one-off imprinting technique is the simplest and effective way to prevent unintentional chemical reaction or damage of 2D vdWs active channel during device fabrication process. 2D MoS2 nanosheets based transistors with a hexagonal-boron-nitride (h-BN) passivation layer, prepared by one-off imprinting, show negligible variations of transfer characteristics after chemical vapor deposition process. In addition, this method enables the fabrication of all 2D MoS2 transistors consisting of h-BN gate insulator, and graphene source/drain and gate electrodes without any chemical damage.

  7. Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Kamalakar, M. Venkata; Dankert, André; Kelly, Paul J.; Dash, Saroj P.

    2016-02-01

    Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications.

  8. A canonical approach to multi-dimensional van der Waals, hydrogen-bonded, and halogen-bonded potentials

    NASA Astrophysics Data System (ADS)

    Walton, Jay R.; Rivera-Rivera, Luis A.; Lucchese, Robert R.; Bevan, John W.

    2016-05-01

    A canonical approach is used to investigate prototypical multi-dimensional intermolecular interaction potentials characteristic of categories in van der Waals, hydrogen-bonded, and halogen-bonded intermolecular interactions. It is demonstrated that well-characterized potentials in Ar·HI, OC·HI, OC·HF, and OC·BrCl, can be canonically transformed to a common dimensionless potential with relative error less than 0.010. The results indicate common intrinsic bonding properties despite other varied characteristics in the systems investigated. The results of these studies are discussed in the context of the previous statement made by Slater (1972) concerning fundamental bonding properties in the categories of interatomic interactions analyzed.

  9. Electric field modulation of Schottky barrier height in graphene/MoSe{sub 2} van der Waals heterointerface

    SciTech Connect

    Sata, Yohta; Moriya, Rai E-mail: tmachida@iis.u-tokyo.ac.jp; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki E-mail: tmachida@iis.u-tokyo.ac.jp

    2015-07-13

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe{sub 2} van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe{sub 2} exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe{sub 2} vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10{sup 5}. These results point to the potential high performance of the graphene/MoSe{sub 2} vdW heterostructure for electronics applications.

  10. Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates.

    PubMed

    Megow, Jörg; Röhr, Merle I S; Schmidt am Busch, Marcel; Renger, Thomas; Mitrić, Roland; Kirstein, Stefan; Rabe, Jürgen P; May, Volkhard

    2015-03-14

    The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory. PMID:25620460

  11. Van der Waals density functional study of the structural and electronic properties of La-doped phenanthrene

    SciTech Connect

    Yan, Xun-Wang; Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190, China and School of Physics and Electrical Engineering, Anyang Normal University, Henan 455000 ; Huang, Zhongbing; Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 ; Lin, Hai-Qing

    2013-11-28

    By the first principle calculations based on the van der Waals density functional theory, we study the crystal structures and electronic properties of La-doped phenanthrene. Two stable atomic geometries of La{sub 1}phenanthrene are obtained by relaxation of atomic positions from various initial structures. The structure-I is a metal with two energy bands crossing the Fermi level, while the structure-II displays a semiconducting state with an energy gap of 0.15 eV, which has an energy gain of 0.42 eV per unit cell compared to the structure-I. The most striking feature of La{sub 1}phenanthrene is that La 5d electrons make a significant contribution to the total density of state around the Fermi level, which is distinct from potassium doped phenanthrene and picene. Our findings provide an important foundation for the understanding of superconductivity in La-doped phenanthrene.

  12. Exploration of the NH 3-H 2 van der Waals interaction by high level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mladenović, Mirjana; Lewerenz, Marius; Cilpa, Geraldine; Rosmus, Pavel; Chambaud, Gilberte

    2008-05-01

    The intermolecular potential energy for the van der Waals complex between ammonia and the hydrogen molecule has been studied by means of the coupled cluster CCSD(T) method and aug-cc-pVXZ (X = D, T, Q, 5) basis sets and with inclusion of the Boys and Bernardi counterpoise correction. For sufficiently large basis sets the only true electronic minimum energy structure of NH 3-H 2 is found to possess C3 v point group symmetry. Various minimum energy paths for the relative motion of NH 3 and H 2 are analysed in order to understand the topography of the intermolecular potential. The complete basis set limit for the electronic dissociation energy is estimated to be about 253 cm -1 at the CCSD(T) level.

  13. Van der Waals interaction between a molecule and a spherical cavity in a metal: Nonlocality and anisotropy effects

    SciTech Connect

    Labani, B.; Boustimi, M.; Baudon, J.

    1997-02-01

    The electric response field of a small spherical metallic cavity to a molecule characterized by fluctuating dipolar and quadrupolar moments is built from spherical tensor theory. The electric susceptibility of the field gradient between the two points inside the metallic cavity is formulated by a general expression of the van der Waals energy between the two partners. The induction contribution is introduced by using the field gradient susceptibilities of the cavity at zero frequency. In order to illustrate the nonlocal effects as well as the importance of the curvature of the metallic cavity on the magnitude of the physisorption energy, we present numerical results for typical systems (HF, HCl on Ag, Al, and Cu). {copyright} {ital 1997} {ital The American Physical Society}

  14. Application of Solution-blown 20-50 nm Nanofibers in Filtration of Nanoparticles: The Efficient van der Waals Collectors

    NASA Astrophysics Data System (ADS)

    Sinha-Ray, Sumit; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2015-11-01

    Filtration efficiency of commercially available filter media with fiber/pore sizes on the scale of 10 μm can be dramatically increased by adding a layer of ultrafine supersonically-blown 20-50 nm nanofibers. Different commercial filters were modified with (i) electrospun nanofibers alone, (ii) solution-blown 20-50 nm alone, and (iii) the dual coating with electrospun nanofibers deposited first and the solution-blown 20-50 nm nanofibers deposited on top of them. Detailed observations of nanoparticle removal revealed that the above-mentioned modified filters, especially those with the dual nanofiber coating with the 20-50 nm nanofibers deposited on top, are the most effective in removing the below-200 nm Cu nanoparticles/clusters from aqueous suspensions, in particular at the lowest concentrations of 0.2-0.5 ppm. The theory developed in the present work dealing with convective transport of nanoparticles in the fluid flow along with diffusion of nanoparticles and the van der Waals attraction explains and describes how the smallest solution-blown nanofibers introduce a novel physical mechanism of nanoparticle interception (the attractive van der Waals forces) and become significantly more efficient collectors compared to the larger electrospun nanofibers. The theory also elucidates the morphology of the nanoparticle clusters being accumulated at the smallest nanofiber surfaces, including the clusters growing at the windward side, or in some cases also on the leeward side of a nanofiber. This work is supported by the Nonwovens Cooperative Research Center (NCRC), grant No. 12-144SB.

  15. Fabrication and characterization of PbSe nanostructures on van der Waals surfaces of GaSe layered semiconductor crystals

    NASA Astrophysics Data System (ADS)

    Kudrynskyi, Z. R.; Bakhtinov, A. P.; Vodopyanov, V. N.; Kovalyuk, Z. D.; Tovarnitskii, M. V.; Lytvyn, O. S.

    2015-11-01

    The growth morphology, composition and structure of PbSe nanostructures grown on the atomically smooth, clean, nanoporous and oxidized van der Waals (0001) surfaces of GaSe layered crystals were studied by means of atomic force microscopy, x-ray diffractometry, photoelectron spectroscopy and Raman spectroscopy. Semiconductor heterostructures were grown by the hot-wall technique in vacuum. Nanoporous GaSe substrates were fabricated by the thermal annealing of layered crystals in a molecular hydrogen atmosphere. The irradiation of the GaSe(0001) surface by UV radiation was used to fabricate thin Ga2O3 layers with thickness < 2 nm. It was found that the narrow gap semiconductor PbSe shows a tendency to form clusters with a square or rectangular symmetry on the clean low-energy (0001) GaSe surface, and (001)-oriented growth of PbSe thin films takes place on this surface. Using this growth technique it is possible to grow PbSe nanostructures with different morphologies: continuous epitaxial layers with thickness < 10 nm on the uncontaminated p-GaSe(0001) surfaces, homogeneous arrays of quantum dots with a high lateral density (more than 1011 cm-2) on the oxidized van der Waals (0001) surfaces and faceted square pillar-like nanostructures with a low lateral density (˜108 cm-2) on the nanoporous GaSe substrates. We exploit the ‘vapor-liquid-solid’ growth with low-melting metal (Ga) catalyst of PbSe crystalline branched nanostructures via a surface-defect-assisted mechanism.

  16. Compact two-electron wave function for bond dissociation and Van der Waals interactions: A natural amplitude assessment

    SciTech Connect

    Giesbertz, Klaas J. H.; Leeuwen, Robert van

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r{sub 12}) depending on the interelectronic distance r{sub 12}. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r{sub 12}) needs to diverge for large r{sub 12} at large internuclear distances while for shorter bond distances it increases as a function of r{sub 12} to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  17. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  18. Stability analysis of electrostatically actuated nano/micro-beams under the effect of van der Waals force, a semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Askari, Amir R.; Tahani, Masoud

    2016-05-01

    The objective of the present paper is to determine pull-in parameters (pull-in voltage and its corresponding displacement) of nano/micro-beams with clamped-clamped, clamped-free, clamped-hinged and hinged-hinged boundary conditions, when they are subjected to the electrostatics and van der Waals (vdW) attractions. The governing non-linear boundary value equation of equilibrium is derived, non-dimensionalized and reduced to an algebraic equation, which describes the position of the maximum deflection of the beam, utilizing the Galerkin decomposition method. The equation which governs on the stability condition of the system is also obtained by differentiating the reduced equilibrium equation with respect to the maximum deflection of the beam. These two equations are solved simultaneously to determine pull-in parameters. Closed-form solutions are provided for cases under electrical loading and vdW attraction alone. The combined effect of both electrostatic and vdW loadings are also investigated using the homotopy perturbation method (HPM). It is found that the present semi-analytical findings are in excellent agreement with those obtained numerically. In addition, it is observed that the present semi-analytical approach can provide results which agree better with available three-dimensional finite element simulations as well as those obtained by nonlinear finite element method than other available analytical or semi-analytical findings in the literature. Non-dimensional electrostatic and vdW parameters, which are defined in the text, are plotted versus each other at pull-in condition. It is found that there exists a linear relationship between these two parameters at pull-in condition. Using this fact, pull-in voltage, detachment length and minimum allowable gap of electrostatically actuated nano/micro-beams are determined explicitly through some closed-form expressions.

  19. Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi{sub 2}Te{sub 3} thin films

    SciTech Connect

    Park, Kyeong Hyun Mohamed, Mohamed; Ravaioli, Umberto; Aksamija, Zlatan

    2015-01-07

    In this work, we calculate the thermal conductivity of layered bismuth telluride (Bi{sub 2}Te{sub 3}) thin films by solving the Boltzmann transport equation in the relaxation-time approximation using full phonon dispersion and compare our results with recently published experimental data and molecular dynamics simulation. The group velocity of each phonon mode is readily extracted from the full phonon dispersion obtained from first-principle density-functional theory calculation and is used along with the phonon frequency to compute the various scattering terms. Our model incorporates the typical interactions impeding thermal transport (e.g., umklapp, isotope, and boundary scatterings) and introduces a new interaction capturing the reduction of phonon transmission through van der Waals interfaces of adjacent Bi{sub 2}Te{sub 3} quintuple layers forming the virtual superlattice thin film. We find that this novel approach extends the empirical Klemens-Callaway relaxation model in such anisotropic materials and recovers the experimental anisotropy while using a minimal set of parameters.

  20. Lithium ions in the van der Waals gap of Bi{sub 2}Se{sub 3} single crystals

    SciTech Connect

    Bludska, J.; Jakubec, I.; Karamazov, S.; Horak, J.; Uher, C.

    2010-12-15

    Insertion/extraction of lithium ions into/from Bi{sub 2}Se{sub 3} crystals was investigated by means of cyclic voltammetry. The process of insertion is reflected in the appearance of two bands on voltammograms at {approx}1.7 and {approx}1.5 V, corresponding to the insertion of Li{sup +} ions into octahedral and tetrahedral sites of the van der Waals gap of these layered crystals. The process of extraction of Li{sup +} ions from the gap results in the appearance of four bands on the voltammograms. The bands 1 and 2 at {approx}2.1 and {approx}2.3 V correspond to the extraction of a part of Li{sup +} guest ions from the octahedral and tetrahedrals sites and this extraction has a character of a reversible intercalation/deintercalation process. A part of Li{sup +} ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe{sub 2}.Bi{sub 3}Se{sub 4}{sup -}) type. A further extraction of Li{sup +} ions from the van der Waals gap is associated with the presence of bands 3 and 4 placed at {approx}2.5 and {approx}2.7 V on the voltammograms as their extraction needs higher voltage due to the influence of negative charges localized on these clusters. -- Graphical abstract: Insertion/extraction of lithium ions into/from Bi{sub 2}Se{sub 3} layered crystals was investigated by cyclic voltammetry. The extraction of Li{sup +} results in the appearance of four bands on the voltammograms. The first two bands have a character of a reversible process. A part of Li{sup +} ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe{sub 2}.Bi{sub 3}Se{sub 4}{sup -}) type. Their extraction needs higher voltage due to the negative charge. Display Omitted

  1. An investigation of the growth of Au and Cu on the van der waals surfaces of MoTe 2 and WTe 2

    NASA Astrophysics Data System (ADS)

    Bortz, M. L.; Ohuchi, F. S.; Parkinson, B. A.

    1989-12-01

    We have used XPS, LEED, STM, and SEM to investigate the growth of Au and Cu on the van der Waals surfaces of MoTe 2 and WTe 2. XPS shows that while Au deposited onto these surfaces results in an abrupt, nonreactive interface, Cu deposited onto these surfaces exhibits an interfacial reaction accompanied by Te outdiffusion. LEED and STM show that on either surface Au forms a (111) oriented overlayer while Cu forms an amorphous overlayer, but at low coverages Au exhibits different nucleation behavior on MoTe 2 versus WTe 2. On the planar MoTe 2 surface Au displays isotropic nucleation behavior while on the buckled WTe 2 surface the nuclei are elongated parallel to the surface troughs. The different nucleation behavior results in different film morphologies at higer coverages, as seen by SEM. This is the first study investigating the diferent nucleation behavior caused by structural differences between chemically similar van der Waals surfaces.

  2. Communication: THz absorption spectrum of the CO{sub 2}–H{sub 2}O complex: Observation and assignment of intermolecular van der Waals vibrations

    SciTech Connect

    Andersen, J.; Mahler, D. W.; Larsen, R. Wugt; Heimdal, J.; Nelander, B.

    2014-03-07

    Terahertz absorption spectra have been recorded for the weakly bound CO{sub 2}–H{sub 2}O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H{sub 2}O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm{sup −1} from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm{sup −1} for the dissociation energy D{sub 0}.

  3. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  4. Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: performance of density functionals with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Hanke, Felix; Dyer, Matthew S.; Björk, Jonas; Persson, Mats

    2012-10-01

    We have investigated the performance of popular density functionals that include van der Waals interactions for the experimentally well-characterized problem of ethene (C2H4) adsorbed on the low-index surfaces of copper. This set of functionals does not only include three van der Waals density functionals—vdwDF-PBE, vdwDF-revPBE and optB86b-vdwDF—and two dispersion-corrected functionals—Grimme and TS-but also local and semi-local functionals such as LDA and PBE. The adsorption system of ethene on copper was chosen because it is a weakly chemisorbed system for which the vdW interactions are expected to give a significant contribution to the adsorption energy. Overall the density functionals that include vdW interactions increased substantially the adsorption energies compared to the PBE density functional but predicted the same adsorption sites and very similar C-C bonding distances except for two of the van der Waals functionals. The top adsorption site was predicted almost exclusively for all functionals on the (110), (100) and (111) surfaces, which is in agreement with experiment for the (110) surface but not for the (100) surface. On the (100) surface, all functionals except two van der Waals density functionals singled out the observed cross-hollow site from the calculated C-C bonding distances and adsorption heights. On the top sites on the (110) surface and the cross-hollow site on the Cu(100) surface, the ethene molecule was found to form a weak chemisorption bond. On the (111) surface, all functionals gave a C-C bonding distance and an adsorption height more typical for physisorption, in agreement with experiments.

  5. Effect of van der Waals interaction on the geometric and electronic properties of DNA nucleosides adsorbed on Cu(111) surface: a DFT study.

    PubMed

    Bogdan, Diana; Morari, Cristian

    2013-06-01

    The geometrical properties and electronic structure of DNA nucleosides (deoxyadenosine, thymidine, deoxyguanosine, deoxycytidine) adsorbed on a metallic surface of Cu(111) are determined using density functional theory computations. In order to assess the effect of the long-range interaction upon the results of the DFT simulations, we compare the results of a standard GGA exchange-correlation functional with those produced by the newly developed van der Waals exchange-correlation functional. The most striking difference between the two sets of results occurs for the adsorption energies: standard functional predicts values representing about 30% of those obtained when van der Waals interaction is taken into account. The standard GGA functional favors slightly tilted orientation of the DNA bases with respect to the surface, while the inclusion of the van der Waals effect leads to an almost parallel orientation of the bases with the surface. On the other hand, the position of the sugar pucker is less influenced by the type of the exchange-correlation used. According to our studies, in the presence of long-range interactions, the molecule-surface charge transfer is qualitatively affected. Standard functional predicts a decrease of the electronic population of the adsorbate, while the presence of long-range interaction leads to an opposite effect. PMID:23647023

  6. Cohesive properties of noble metals by van der Waals-corrected density functional theory: Au, Ag, and Cu as case studies

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2016-07-01

    The cohesive energy, equilibrium lattice constant, and bulk modulus of Au, Ag, and Cu noble metals are computed by different van der Waals (vdW)-corrected density functional theory (DFT) methods, including vdW-DF, vdW-DF2, vdW-DF-cx, rVV10, and PBE-D. Two specifically designed methods are also developed in order to effectively include dynamical screening effects: the DFT/vdW-WF2p method, based on the generation of maximally localized Wannier functions, and the RPAp scheme (in two variants), based on a single-oscillator model of the localized electron response. Comparison with results obtained without explicit inclusion of van der Waals effects, such as with the local density approximation (LDA), PBE, PBEsol, or the hybrid PBE0 functional, elucidates the importance of a suitable description of screened van der Waals interactions even in the case of strong metal bonding. Many-body effects are also quantitatively evaluated within the RPAp approach.

  7. Role of Lewis basicity and van der Waals forces in adhesion of silica MFI zeolites (010) with polyimides.

    PubMed

    Lee, Jung-Hyun; Thio, Beng Joo Reginald; Bae, Tae-Hyun; Meredith, J Carson

    2009-08-18

    Adhesion between zeolites and polymers is a central factor in achieving defect-free mixed-matrix membranes for energy-efficient gas separations. In this work, atomic force microscopy (AFM) was used to measure adhesion forces between a pure silica MFI (ZSM-5: Zeolite Socony Mobil-Five) (010) zeolite probe and a series of polyimide (Matrimid 5218, 6FDA-DAM, 6FDA-6FpDA, and 6FDA-DAM:DABA (3:2)) and polyetherimide (Ultem 1000) polymers in air. Combined with measurements of surface energy of the polymer surfaces, the dependence of adhesion on polymer structure was determined. Adhesion force was strongly dependent on the Lewis basicity component of polymer surface energy and was less dependent on van der Waals (VDW) components, by a factor of about 6. Hydrogen bonding likely occurs between the acidic (electron acceptor) component of the zeolite surface (silanols or adsorbed water) and the basic (electron donor) component of the polymer surface. Adhesion force was strongly correlated with the mole fraction of carbonyls per monomer. We conclude that differences in adhesion as a function of polymer structure were primarily controlled by the polymer's Lewis basicity, contributed primarily by carbonyl groups. PMID:19432396

  8. Detachment of compliant films adhered to stiff substrates via van der Waals interactions: role of frictional sliding during peeling.

    PubMed

    Collino, Rachel R; Philips, Noah R; Rossol, Michael N; McMeeking, Robert M; Begley, Matthew R

    2014-08-01

    The remarkable ability of some plants and animals to cling strongly to substrates despite relatively weak interfacial bonds has important implications for the development of synthetic adhesives. Here, we examine the origins of large detachment forces using a thin elastomer tape adhered to a glass slide via van der Waals interactions, which serves as a model system for geckos, mussels and ivy. The forces required for peeling of the tape are shown to be a strong function of the angle of peeling, which is a consequence of frictional sliding at the edge of attachment that serves to dissipate energy that would otherwise drive detachment. Experiments and theory demonstrate that proper accounting for frictional sliding leads to an inferred work of adhesion of only approximately 0.5 J m(-2) (defined for purely normal separations) for all load orientations. This starkly contrasts with the interface energies inferred using conventional interface fracture models that assume pure sticking behaviour, which are considerably larger and shown to depend not only on the mode-mixity, but also on the magnitude of the mode-I stress intensity factor. The implications for developing frameworks to predict detachment forces in the presence of interface sliding are briefly discussed. PMID:24920120

  9. A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Santra, Biswajit; DiStasio, Robert A., Jr.; Swartz, Charles W.; Klein, Michael L.; Wu, Xifan

    2015-09-01

    In this work, the solvation and electronic structure of the aqueous chloride ion solution was investigated using density functional theory (DFT) based ab initio molecular dynamics (AIMD). From an analysis of radial distribution functions, coordination numbers, and solvation structures, we found that exact exchange (Exx) and non-local van der Waals (vdW) interactions effectively weaken the interactions between the Cl- ion and the first solvation shell. With a Cl-O coordination number in excellent agreement with experiment, we found that most configurations generated with vdW-inclusive hybrid DFT exhibit sixfold coordinated distorted trigonal prism structures, which is indicative of a significantly disordered first solvation shell. By performing a series of band structure calculations on configurations generated from AIMD simulations with varying DFT potentials, we found that the solvated ion orbital energy levels (unlike the band structure of liquid water) strongly depend on the underlying molecular structures. In addition, these orbital energy levels were also significantly affected by the DFT functional employed for the electronic structure; as the fraction of Exx was increased, the gap between the highest occupied molecular orbital of Cl- and the valence band maximum of liquid water steadily increased towards the experimental value.

  10. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    PubMed Central

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  11. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Luo, Jikui; Yu, Bin

    2014-09-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics.

  12. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.

    PubMed

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Luo, Jikui; Yu, Bin

    2014-09-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics. PMID:25116064

  13. van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    SciTech Connect

    Berland, Kristian; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ; Arter, Calvin A.; Thonhauser, T.; Cooper, Valentino R.; Lee, Kyuho; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 ; Lundqvist, Bengt I.; Schröder, Elsebeth; Hyldgaard, Per

    2014-05-14

    The theoretical description of sparse matter attracts much interest, in particular for those ground-state properties that can be described by density functional theory. One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO{sub 3}, the adsorption of small molecules within metal-organic frameworks, the graphite/diamond phase transition, and the adsorption of an aromatic-molecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general-purpose functional that could be applied to a range of materials problems with a variety of competing interactions.

  14. Structure and properties of surface and subsurface defects in graphite accounting for van der Waals and spin-polarization effects

    NASA Astrophysics Data System (ADS)

    Teobaldi, G.; Tanimura, K.; Shluger, A. L.

    2010-11-01

    The geometries, formation energies, and diffusion barriers of surface and subsurface intrinsic defects in graphite are calculated using spin-polarized density-functional theory and the generalized gradient approximation with a semiempirical van der Waals (vdW) correction for dispersion interactions. The calculated formation energies and diffusion barriers of subsurface interstitial (I) atoms deviate qualitatively and quantitatively from those of surface adatoms. The same trend is found also for subsurface and adatom clusters (I2,I3) . In spite of the semiquantitative agreement on the optimized geometries, the formation energies and diffusion barriers of surface and subsurface vacancies (V), divacancies (VV), and intimate (I-V) Frenkel pairs differ significantly from the values for the analogous defects in the bulk of graphite. This suggests limited transferability of the bulk and subsurface defect models to the surface of graphite. These findings are rationalized in terms of the balance between the covalent and vdW interaction terms at the surface, subsurface, and bulk of graphite. Finally, pairing of individual defects (adatoms, I and V) is calculated to be energetically advantageous both on the surface and in the subsurface regions. This process is shown to either saturate residual dangling bonds or produce singlet spin states, thus contributing to the quenching of residual spin polarization from damaged graphite surfaces.

  15. Nonadditive intermolecular forces from the spectroscopy of van der Waals trimers: A theoretical study of Ar[sub 2]-HF

    SciTech Connect

    Ernesti, A.; Hutson, J.M. )

    1995-01-01

    Calculations of vibrational energies and rotational constants are carried out for the van der Waals trimer Ar[sub 2]-HF. The calculations include all five intermolecular degrees of freedom. The different intramolecular vibrational states [ital v] of the HF molecule are separated out adiabatically, so that the calculations are carried out on effective intermolecular potentials for each HF vibrational state separately. Calculations are performed both on pairwise-additive potentials, derived from the well-known Ar-Ar and Ar-HF potentials, and on nonadditive potentials, incorporating various different contributions to the three-body forces. The results are compared with experimental results from high-resolution spectroscopy, and provide detailed information on the anisotropy of the nonadditive intermolecular forces. As in previous work on Ar[sub 2]-HCl, it is found that a very important nonadditive term arises from the interaction between the permanent multipoles of the HF molecule and the exchange quadrupole caused by distortion of the two Ar atoms as they overlap. An improved model of this term is described.

  16. Magic ratio of window width to grating period for van der Waals potential measurements using material gratings

    SciTech Connect

    Lonij, Vincent P. A.; Holmgren, William F.; Cronin, Alexander D.

    2009-12-15

    We report improved precision measurements of the van der Waals potential strength (C{sub 3}) for Na atoms and a silicon-nitride (SiN{sub x}) surface. We studied diffraction from nanofabricated gratings with a particular 'magic' open fraction that allows us to determine C{sub 3} without the need for separate measurements of the width of the grating openings. Therefore, finding the magic open fraction improves the precision of C{sub 3} measurements. The same effect is demonstrated for a grating with an arbitrary open fraction by rotating it to a particular 'magic' angle, yielding C{sub 3}=3.42+-0.19 eV A{sup 3} for Na and a SiN{sub x} surface. This precision is sufficient to detect a change in C{sub 3} due to a thin metal coating on the grating surface. We discuss the contribution to C{sub 3} of core electrons and edge effects.

  17. Test of a nonempirical density functional for short-range van der Waals interaction in rare-gas dimers

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin

    2005-03-01

    It is known that the nonempirical generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) provides a much more realistic description of the short-range part of the van der Waals (vdW) interaction than does the local spin density (LSD) approximation. In the present work, the ability of the higher-level nonempirical meta-GGA of Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)] to describe vdW interaction is tested self-consistently in rare-gas dimers with Z <=36. The one-parameter hybrid version (TPSSh) of the TPSS exchange-correlation functional is also included in this test. Calculations show that both TPSS and TPSSh functionals correctly yield vdW bonds in these dimers and significantly improve the prediction of bond lengths and binding energies over LSD. The rather close agreement of TPSS with PBE for these dimers confirms a principle of the TPSS construction: preservation of the PBE large-gradient behavior. Compared with the PBE GGA, TPSS and TPSSh yield a slightly weaker binding. The typically too-long bond lengths and too-small binding energies of TPSS meta-GGA suggest the need for some long-range vdW interaction correction which is discussed.

  18. Photoionisation study of Xe.CF4 and Kr.CF4 van-der-Waals molecules

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Garcia, G. A.; Kevorkyants, R.; Nahon, L.

    2016-05-01

    We report on photoionization studies of Xe.CF4 and Kr.CF4 van-der-Waals complexes produced in a supersonic expansion and detected using synchrotron radiation and photoelectron-photoion coincidence techniques. The ionization potential of CF4 is larger than those of the Xe and Kr atoms and the ground state of the Rg.CF4+ ion correlates with Rg+ (2P3/2) + CF4. The onset of the Rg.CF4+ signals was found to be only ˜0.2 eV below the Rg ionization potential. In agreement with experiment, complementary ab initio calculations show that vertical transitions originating from the potential minimum of the ground state of Rg.CF4 terminate at a part of the potential energy surfaces of Rg.CF4+, which are approximately 0.05 eV below the Rg+ (2P3/2) + CF4 dissociation limit. In contrast to the neutral complexes, which are most stable in the face geometry, for the Rg.CF4+ ions, the calculations show that the minimum of the potential energy surface is in the vertex geometry. Experiments which have been performed only with Xe.CF4 revealed no Xe.CF4+ signal above the first ionization threshold of Xe, suggesting that the Rg.CF4+ ions are not stable above the first dissociation limit.

  19. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  20. Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance.

    PubMed

    Wang, Feng; Wang, Zhenxing; Xu, Kai; Wang, Fengmei; Wang, Qisheng; Huang, Yun; Yin, Lei; He, Jun

    2015-11-11

    P-n junctions based on vertically stacked van der Waals (vdW) materials have attracted a great deal of attention and may open up unforeseen opportunities in electronics and optoelectronics. However, due to the lack of intrinsic p-type vdW materials, most previous studies generally adopted electrical gating, special electrode contacts, or chemical doping methods to realize p-n vdW junctions. GaTe is an intrinsic p-type vdW material with a relatively high charge density, and it has a direct band gap that is independent of thickness. Here, we report the construction of ultrathin and tunable p-GaTe/n-MoS2 vdW heterostructure with high photovoltaic and photodetecting performance. The rectification ratio, external quantum efficiency, and photoresponsivity are as high as 4 × 10(5), 61.68%, and 21.83 AW(-1), respectively. In particular, the detectivity is up to 8.4 × 10(13) Jones, which is even higher than commercial Si, InGaAs photodetectors. This study demonstrates the promising potential of p-GaTe/n-MoS2 heterostructures for next-generation electronic and optoelectronic devices. PMID:26469092

  1. All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures.

    PubMed

    Wang, Shanshan; Wang, Xiaochen; Warner, Jamie H

    2015-05-26

    Vertical van der Waals heterostructures are formed when different 2D crystals are stacked on top of each other. Improved optical properties arise in semiconducting transition metal dichalcogenide (TMD) 2D materials, such as MoS2, when they are stacked onto the insulating 2D hexagonal boron nitride (h-BN). Most work to date has required mechanical exfoliation of at least one of the TMDs or h-BN materials to form these semiconductor:insulator structures. Here, we report a direct all-CVD process for the fabrication of high-quality monolayer MoS2:h-BN vertical heterostructured films with isolated MoS2 domains distributed across 1 cm. This is enabled by the use of few-layer h-BN films that are more robust against decomposition than monolayer h-BN during the MoS2 growth process. The MoS2 domains exhibit different growth dynamics on the h-BN surfaces compared to bare SiO2, confirming that there is strong interaction between the MoS2 and underlying h-BN. Raman and photoluminescence spectroscopies of CVD-grown MoS2 are compared to transferred MoS2 on both types of substrates, and our results show directly grown MoS2 on h-BN films have smaller lattice strain, lower doping level, cleaner and sharper interfaces, and high-quality interlayer contact. PMID:25895108

  2. van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions

    SciTech Connect

    Berland, Kristian; Arter, Calvin A; Cooper, Valentino R; Lee, Dr. Kyuho; Lundqvist, Prof. Bengt I.; Schroder, Prof. Elsebeth; Thonhauser, Prof. Timo; Hyldgaard, Per

    2014-01-01

    The theoretical description of sparse matter attracts much interest, in particular for those groundstate properties that can be described by density functional theory (DFT). One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B, in print] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO3, the adsorption of small molecules within metal-organic frameworks (MOFs), the graphite/diamond phase transition, and the adsorption of an aromaticmolecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general purpose functional that could be applied to a range of materials problems with a variety of competing interactions.

  3. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-01

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C8 and C10 between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C8 and 7% for C10. Inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.

  4. A van der Waals DFT study of PtH2 systems absorbed on pristine and defective graphene

    NASA Astrophysics Data System (ADS)

    López-Corral, Ignacio; Piriz, Sebastián; Faccio, Ricardo; Juan, Alfredo; Avena, Marcelo

    2016-09-01

    We used a density functional that incorporates van der Waals interactions to study hydrogen adsorption onto Pt atoms attached to carbon-vacancies on graphene layers, considering molecular and dissociated hydrogen-platinum coordination structures. PtH2 complexes adsorbed on several sites of pristine graphene were also studied for comparison. Our results indicate that both a Kubas-type dihydrogen complex and a classic hydride without Hsbnd H bond are the preferential PtH2 systems on the vacancy site of graphene. In contrast, the Kubas complex is unstable onto pristine graphene and the hydride is obtained at all adsorption sites. Our simulations suggest that the C-vacancy decreases the reactivity of the metal decoration, allowing a non-dissociative hydrogen adsorption. The H2 molecule is oriented almost perpendicular to the outermost Csbnd Pt bond, interacting also with the graphene surface through σ-H and π-C states. This stabilization of the Kubas-type complex could play a very important role for hydrogen storage in Pt-decorated carbon adsorbents with vacancies.

  5. Density-Functional Theory with Screened van der Waals Interactions for the Modeling of Hybrid Inorganic/Organic Systems

    NASA Astrophysics Data System (ADS)

    Ruiz, Victor G.; Liu, Wei; Zojer, Egbert; Scheffler, Matthias; Tkatchenko, Alexandre

    2012-02-01

    The electronic properties and the function of hybrid inorganic/organic systems (HIOS) are intimately linked to their geometry, with van der Waals (vdW) interactions playing an essential role for the latter. Here we show that the inclusion of the many--body collective response of the substrate electrons inside the inorganic bulk enables us to reliably predict the HIOS geometries and energies. Specifically, dispersion-corrected density-functional theory (the DFT+vdW approach) [PRL 102, 073005 (2009)], is combined with the Lifshitz-Zaremba-Kohn theory [PRB 13, 2270 (1976)] for the non--local Coulomb screening within the bulk. Our method (DFT+vdW^surf ) includes both image-plane and interface polarization effects. We show that DFT+vdW^surf yields geometries in remarkable agreement ( 0.1 å) with normal incidence x-ray standing wave measurements for the 3,4,9,10--perylene--tetracarboxylic acid dianhydride (C24H8O6, PTCDA) molecule on Cu(111), Ag(111), and Au(111). Similarly accurate results are obtained for xenon and benzene adsorbed on metal surfaces.

  6. Density-Functional Theory with Screened van der Waals Interactions for the Modeling of Hybrid Inorganic-Organic Systems

    NASA Astrophysics Data System (ADS)

    Ruiz, Victor G.; Liu, Wei; Zojer, Egbert; Scheffler, Matthias; Tkatchenko, Alexandre

    2012-04-01

    The electronic properties and the function of hybrid inorganic-organic systems (HIOS) are intimately linked to their interface geometry. Here we show that the inclusion of the many-body collective response of the substrate electrons inside the inorganic bulk enables us to reliably predict the HIOS geometries and energies. This is achieved by the combination of dispersion-corrected density-functional theory (the DFT+ van der Waals approach) [Phys. Rev. Lett. 102, 073005 (2009)PRLTAO0031-900710.1103/PhysRevLett.102.073005], with the Lifshitz-Zaremba-Kohn theory for the nonlocal Coulomb screening within the bulk. Our method yields geometries in remarkable agreement (≈0.1Å) with normal incidence x-ray standing wave measurements for the 3, 4, 9, 10-perylene-tetracarboxylic acid dianhydride (C24O6H8, PTCDA) molecule on Cu(111), Ag(111), and Au(111) surfaces. Similarly accurate results are obtained for xenon and benzene adsorbed on metal surfaces.

  7. One-electron pseudopotential investigation of the RbAr and FrAr van der Waals systems

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, J.; Berriche, H.

    2012-12-01

    The potential energy curves of the ground state and many excited states of RbAr and FrAr van der Waals systems have been determined using a one-electron pseudopotential approach. The pseudopotential technique is used to replace the effect of the Rb+ and Fr+ cores and the electron-Ar interaction. In addition a core-core interaction is included. This has permitted to reduce the number of active electrons of the RbAr and FrAr systems to only one electron, the valence electron. This has led to use very large basis sets for Rb, Fr and Ar atoms. In this context, the potential energy curves of the ground and many excited states are performed at the SCF level. The core-core interactions for Rb+Ar and Fr+Ar are included using the CCSD(T) accurate potentials of Hickling et al. [H. Hickling, L. Viehland, D. Shepherd, P. Soldan, E. Lee and T. Wright, Phys. Chem. Chem. Phys. 6 (2004) 4233]. In addition, the spectroscopic constants of these states are derived and compared with the available theoretical works. Such comparison for RbAr has shown a very good agreement for the ground and the first excited states. However, the FrAr system was not studied previously and its spectroscopic constants are presented here for the first time.

  8. van der Waals corrected DFT simulation of adsorption processes on transition-metal surfaces: Xe and graphene on Ni(111)

    NASA Astrophysics Data System (ADS)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2015-05-01

    The DFT/vdW-WF2s1 method, recently developed to include the van der Waals interactions in the density functional theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe and graphene with a transition-metal surface, namely, Ni(111). In general, the adsorption of rare-gas atoms on metal surfaces is important because it is prototypical for physisorption processes. Moreover, the interaction of graphene with Ni(111) is of great interest for practical applications, for instance concerning the efficient and large-scale production of high-quality graphene; from a theoretical point of view, it is particularly challenging, since it can be described by a delicate interplay between chemisorption and physisorption processes. The first-principles simulation of transition metals requires particular care also because they can be viewed as intermediate systems between simple metals and insulating crystals. Even in these cases the method performs well as demonstrated by comparing our results with available experimental data and other theoretical investigations. We confirm that the rare-gas Xe atom is preferentially adsorbed on the top-site configuration on the Ni(111) surface too. Our approach, based on the use of the maximally localized Wannier functions, also allow us to well characterize the bonds between graphene and Ni(111).

  9. van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil: growth, crystallography and electronic band structure

    NASA Astrophysics Data System (ADS)

    Wood, Grace E.; Marsden, Alexander J.; Mudd, James J.; Walker, Marc; Asensio, Maria; Avila, Jose; Chen, Kai; Bell, Gavin R.; Wilson, Neil R.

    2015-06-01

    We investigate the growth of hexagonal boron nitride (h-BN) on copper foil by low pressure chemical vapour deposition (LP-CVD). At low pressure, h-BN growth proceeds through the nucleation and growth of triangular islands. Comparison between the orientation of the islands and the local crystallographic orientation of the polycrystalline copper foil reveals an epitaxial relation between the copper and h-BN, even on Cu(100) and Cu(110) regions whose symmetry is not matched to the h-BN. However, the growth rate is faster and the islands more uniformly oriented on Cu(111) grains. Angle resolved photoemission spectroscopy measurements reveal a well-defined band structure for the h-BN, consistent with a band gap of 6 eV, that is decoupled from the copper surface beneath. These results indicate that, despite a weak interaction between h-BN and copper, van der Waals epitaxy defines the long range ordering of h-BN even on polycrystalline copper foils and suggest that large area, single crystal, monolayer h-BN could be readily and cheaply produced.

  10. van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst.

    PubMed

    Hwang, Jeonghyun; Kim, Moonkyung; Campbell, Dorr; Alsalman, Hussain A; Kwak, Joon Young; Shivaraman, Shriram; Woll, Arthur R; Singh, Arunima K; Hennig, Richard G; Gorantla, Sandeep; Rümmeli, Mark H; Spencer, Michael G

    2013-01-22

    van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure, growth temperature, and H(2)/CH(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm(2)/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10-10] || sapphire [11-20]) for about 80-90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ~24 μm(-2), and a lateral growth rate of ~82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation. PMID:23244231

  11. Assessing the influence of van der Waals corrected exchange-correlation functionals on the anisotropic mechanical properties of coinage metals

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hwan; Park, Jong-Hun; Soon, Aloysius

    2016-07-01

    Current materials-related calculations employ density-functional theory (DFT), commonly using the (semi-)local-density approximations for the exchange-correlation (xc) functional. The difficulties in arriving at a reasonable description of van der Waals (vdW) interactions by DFT-based models is to date a big challenge. In this work, we use various flavors of vdW-corrected DFT xc functionals—ranging from the quasiempirical force-field add-on vdW corrections to self-consistent nonlocal correlation functionals—to study the bulk lattice and mechanical properties (including the elastic constants and anisotropic indices) of the coinage metals (copper, silver, and gold). We critically assess the reliability of the different vdW-corrected DFT methods in describing their anisotropic mechanical properties which have been less reported in the literature. In the context of this work, we regard that our results reiterate the fact that advocating a so-called perfect vdW-inclusive xc functional for describing the general physics and chemistry of these coinage metals could be a little premature. These challenges to modern-day functionals for anisotropically strained coinage metals (e.g., at the faceted surfaces of nanostructures) may well be relevant to other strained material systems.

  12. Adsorption of thiophene on Pt, Pd, Au, and Rh(100) surfaces with the role of the van der Waals' interaction

    NASA Astrophysics Data System (ADS)

    Malone, Walter; Matos, Jeronimo; Kara, Abdelkader

    We explore the adsorption of thiophene (C4H4S) on Pt(100), Au(100), Pd(100), and Rh(100) surfaces using density functional theory with and without self-consistent van der Waals interactions (vdWs). The six functionals we use are PBE, optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, and rPW86-vdW2. We examine a variety of adsorption sites with the molecule's plane both parallel and perpendicular to the surface. In the case of parallel adsorption the highest binding energy occurs when the molecule is centered over a hollow site with the sulfur atom near an atop site. The highest adsorption energy for perpendicular configurations is achieved when the sulfur atom lies over a bridge site and the carbon atoms near hollow sites. We find that for thiophene on the coinage metals the vdW functionals predict higher adsorption energies than those predicted by the PBE functional. On the other hand, for thiophene on the reactive transition metal substrates only optB86b-vdW, optB88-vdW, and optPBE-vdW result in an enhancement in the adsorption energy over the PBE value. We also explore some of the electronic properties of the system including charge transfer and change in the work function. Our results indicate that adsorption characteristics depends heavily on the functional used and geometry.

  13. Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang; Tian, Guocai; Ruzsinszky, Adrienn

    2016-08-01

    Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean absolute relative error of only 3 % , without suffering size-dependent error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing the development of better vdW corrections to conventional density functional theory.

  14. Accurate and Efficient Calculation of van der Waals Interactions Within Density Functional Theory by Local Atomic Potential Approach

    SciTech Connect

    Sun, Y. Y.; Kim, Y. H.; Lee, K.; Zhang, S. B.

    2008-01-01

    Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.

  15. van der Waals density functionals built upon the electron-gas tradition: facing the challenge of competing interactions.

    PubMed

    Berland, Kristian; Arter, Calvin A; Cooper, Valentino R; Lee, Kyuho; Lundqvist, Bengt I; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per

    2014-05-14

    The theoretical description of sparse matter attracts much interest, in particular for those ground-state properties that can be described by density functional theory. One proposed approach, the van der Waals density functional (vdW-DF) method, rests on strong physical foundations and offers simple yet accurate and robust functionals. A very recent functional within this method called vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)] stands out in its attempt to use an exchange energy derived from the same plasmon-based theory from which the nonlocal correlation energy was derived. Encouraged by its good performance for solids, layered materials, and aromatic molecules, we apply it to several systems that are characterized by competing interactions. These include the ferroelectric response in PbTiO3, the adsorption of small molecules within metal-organic frameworks, the graphite/diamond phase transition, and the adsorption of an aromatic-molecule on the Ag(111) surface. Our results indicate that vdW-DF-cx is overall well suited to tackle these challenging systems. In addition to being a competitive density functional for sparse matter, the vdW-DF-cx construction presents a more robust general-purpose functional that could be applied to a range of materials problems with a variety of competing interactions. PMID:24832347

  16. Impact of long-range van der Waals forces on chiral recognition in a Cinchona alkaloid chiral selector system.

    PubMed

    Milko, Petr; Roithová, Jana; Schug, Kevin A; Lemr, Karel

    2013-04-28

    Singly-charged complexes of (8S,9R)-tert-butylcarbamoylquinine (tBuCQN), N-3,5-dinitrobenzoyl-(S,R)-leucine (DNB-S/R-leucine), and alkali metal counter ions (Li(+), Na(+), K(+)) were investigated by density-functional theory. It is shown that the cations prefer formation of an ionic pair with the carboxylate group of DNB-Leu over the formation of a cation-π interaction. The [tBuCQN·DNB-S/R-Leu·Na](+) complex is bound by a coulombic attraction, a hydrogen bond, a π-π interaction and van der Waals forces. The tBuCQN chiral selector preferentially complexes with the DNB-S-Leu enantiomer, because the favourable stereochemistry allows the stabilization of the complex by at least one binding mode more compared to the complex containing the DNB-R-Leu molecule. Weakening of the binding modes is observed using the lithium counter ion compared to the sodium one. The weakening is more pronounced in [tBuCQN·DNB-R-Leu·Li](+) than in [tBuCQN·DNB-S-Leu·Li](+). The exact opposite effect is observed using the potassium counter ion. Hence, the lithium counter ion enhances the enantioselectivity of tBuCQN while the potassium counter ion reduces the enantioselectivity of tBuCQN. PMID:23503927

  17. Entropic effects of thermal rippling on van der Waals interactions between monolayer graphene and a rigid substrate

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Wei; Huang, Rui

    2016-02-01

    Graphene monolayer, with extremely low flexural stiffness, displays spontaneous rippling due to thermal fluctuations at a finite temperature. When a graphene membrane is placed on a solid substrate, the adhesive interactions between graphene and the substrate could considerably suppress thermal rippling. On the other hand, the statistical nature of thermal rippling adds an entropic contribution to the graphene-substrate interactions. In this paper, we present a statistical mechanics analysis on thermal rippling of monolayer graphene supported on a rigid substrate, assuming a generic form of van der Waals interactions between graphene and substrate at T = 0 K. The rippling amplitude, the equilibrium average separation, and the average interaction energy are predicted simultaneously and compared with molecular dynamics (MD) simulations. While the amplitude of thermal rippling is reduced by adhesive interactions, the entropic contribution leads to an effective repulsion. As a result, the equilibrium average separation increases and the effective adhesion energy decreases with increasing temperature. Moreover, the effect of a biaxial pre-strain in graphene is considered, and a buckling instability is predicted at a critical compressive strain that depends on both the temperature and the adhesive interactions. Limited by the harmonic approximations, the theoretical predictions agree with MD simulations only for relatively small rippling amplitudes but can be extended to account for the anharmonic effects.

  18. First-principles study of van der Waals interactions and lattice mismatch at MoS2/metal interfaces

    NASA Astrophysics Data System (ADS)

    Farmanbar, Mojtaba; Brocks, Geert

    2016-02-01

    We explore the adsorption of MoS2 on a range of metal substrates by means of first-principles density functional theory calculations. Including van der Waals forces in the density functional is essential to capture the interaction between MoS2 and a metal surface, and obtain reliable interface potential steps and Schottky barriers. Special care is taken to construct interface structures that have a mismatch between the MoS2 and the metal lattices of <1 % . MoS2 is chemisorbed on the early transition metal Ti, which leads to a strong perturbation of its (electronic) structure and a pinning of the Fermi level 0.54 eV below the MoS2 conduction band due to interface states. MoS2 is physisorbed on Au, where the bonding hardly perturbs the electronic structure. The bonding of MoS2 on other metals lies between these two extreme cases, with interface interactions for the late 3 d transition metals Co, Ni, Cu and the simple metal Mg that are somewhat stronger than for the late 4 d /5 d transition metals Pd, Ag, Pt and the simple metal Al. Even a weak interaction, such as in the case of Al, gives interface states, however, with energies inside the MoS2 band gap, which pin the Fermi level below the conduction band.

  19. Detachment of compliant films adhered to stiff substrates via van der Waals interactions: role of frictional sliding during peeling

    PubMed Central

    Collino, Rachel R.; Philips, Noah R.; Rossol, Michael N.; McMeeking, Robert M.; Begley, Matthew R.

    2014-01-01

    The remarkable ability of some plants and animals to cling strongly to substrates despite relatively weak interfacial bonds has important implications for the development of synthetic adhesives. Here, we examine the origins of large detachment forces using a thin elastomer tape adhered to a glass slide via van der Waals interactions, which serves as a model system for geckos, mussels and ivy. The forces required for peeling of the tape are shown to be a strong function of the angle of peeling, which is a consequence of frictional sliding at the edge of attachment that serves to dissipate energy that would otherwise drive detachment. Experiments and theory demonstrate that proper accounting for frictional sliding leads to an inferred work of adhesion of only approximately 0.5 J m−2 (defined for purely normal separations) for all load orientations. This starkly contrasts with the interface energies inferred using conventional interface fracture models that assume pure sticking behaviour, which are considerably larger and shown to depend not only on the mode-mixity, but also on the magnitude of the mode-I stress intensity factor. The implications for developing frameworks to predict detachment forces in the presence of interface sliding are briefly discussed. PMID:24920120

  20. On the anisotropy of van der Waals atomic radii of O, S, Se, F, Cl, Br, and I.

    PubMed

    Eramian, Hamed; Tian, Yong-Hui; Fox, Zach; Beneberu, Habtamu Z; Kertesz, Miklos

    2013-12-27

    The Cambridge Structural Database (CSD) was used to obtain flattening factors to describe the overall anisotropy of nonbonding van der Waals (vdW) contacts between several main group elements. The method for obtaining the flattening factors is based on a novel minimization process. Results show that the vdW contact distances are significantly dependent on the environment and the orientations of the surrounding covalently bonded atoms: head-on vdW contacts are generally shorter than sideways contacts in overall agreement with earlier results by Nyburg and Faerman (Acta Crystallogr., Sect. B: Struct. Sci. 1985, 41, 274-279). With the exception of Se, we find flattening factors that are somewhat smaller than those found earlier. High-level ab initio quantum chemical calculations using Ar and Ne as a probe also confirm the flattening effect and its dependency on the environment. A dozen popular long-range corrected and dispersion supplemented density functionals are compared with the CCSD(T) data. While several of them perform quite poorly, four DFT-D methods, especially B3LYP-GD3BJ, provided vdW flattening similar to those found by the CCSD(T) theory and experiment. PMID:24283380

  1. Assessment of the PW86+PBE+XDM density functional on van der Waals complexes at non-equilibrium geometries

    NASA Astrophysics Data System (ADS)

    Arabi, Alya A.; Becke, Axel D.

    2012-07-01

    The deficiency of conventional density-functional theory (DFT) in properly describing van der Waals (vdW) (especially dispersion-bound) complexes has been extensively addressed in the past decade. There are now several new methods published in the literature that are capable of accurately capturing weak dispersion interactions in complexes at equilibrium geometries. However, the performance of these new methods at non-equilibrium geometries remains to be assessed. We have previously published [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 6, 1081 (2010), 10.1021/ct900699r; A. D. Becke, A. A. Arabi, and F. O. Kannemann, Can. J. Chem. 88, 1057 (2010), 10.1139/V10-073] that the functional PW86+PBE+XDM for exchange + correlation + dispersion, respectively, is a highly accurate functional for general thermochemistry and vdW complexes at equilibrium geometries. Here, we show that this nonempirical, except for two parameters in the dispersion damping part, functional also performs well for vdW complexes at compressed and stretched intermonomer separations. The mean absolute relative error (MARE) is 9.4% overall for vdW complexes in the "S22×5" database incorporating compressed and stretched geometries [J. Rezac, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011), 10.1021/ct2002946]. Our largest MARE on the S22×5 database is 13.3% on the compressed geometry set.

  2. Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions.

    PubMed

    Zhang, Kenan; Hu, Shuhong; Zhang, Yun; Zhang, Tianning; Zhou, Xiaohao; Sun, Yan; Li, Tian-Xin; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Dai, Ning

    2015-03-24

    Strain engineering is an effective method to tune the properties of electrons and phonons in semiconductor materials, including two-dimensional (2D) layered materials (e.g., MoS2 or graphene). External artificial stress (ExAS) or heterostructure stacking is generally required to induce strains for modulating semiconductor bandgaps and optoelectronic functions. For layered materials, the van der Waals-stacked interlayer interaction (vdW-SI) has been considered to dominate the interlayer stacking and intralayer bonding. Here, we demonstrate self-induced uniaxial strain in the MoS2 monolayer without the assistance of ExAS or heterostructure stacking processes. The uniaxial strain occurring in local monolayer regions is manifested by the Raman split of the in-plane vibration modes E2g(1) and is essentially caused by local vdW-SI within the single layer MoS2 due to a unique symmetric bilayer stacking. The local stacked configuration and the self-induced uniaxial strain may provide improved understanding of the fundamental interlayer interactions and alternative routes for strain engineering of layered structures. PMID:25716291

  3. Deterministic Assembly of Flexible Si/Ge Nanoribbons via Edge-Cutting Transfer and Printing for van der Waals Heterojunctions.

    PubMed

    Guo, Qinglei; Zhang, Miao; Xue, Zhongying; Wang, Gang; Chen, Da; Cao, Ronggen; Huang, Gaoshan; Mei, Yongfeng; Di, Zengfeng; Wang, Xi

    2015-09-01

    As the promising building blocks for flexible electronics and photonics, inorganic semiconductor nanomembranes have attracted considerable attention owing to their excellent mechanical flexibility and electrical/optical properties. To functionalize these building blocks with complex components, transfer and printing methods in a convenient and precise way are urgently demanded. A combined and controllable approach called edge-cutting transfer method to assemble semiconductor nanoribbons with defined width (down to submicrometer) and length (up to millimeter) is proposed. The transfer efficiency can be comprehended by a classical cantilever model, in which the difference of stress distributions between forth and back edges is investigated using finite element method. In addition, the vertical van der Waals PN (p-Si/n-Ge) junction constructed by a two-round process presents a typical rectifying behavior. The proposed technology may provide a practical, reliable, and cost-efficient strategy for transfer and printing routines, and thus expediting its potential applications for roll-to-roll productions for flexible devices. PMID:25966037

  4. Effects of van der Waals Interactions in the Adsorption of Isooctane and Ethanol on Fe(100) Surfaces

    PubMed Central

    2014-01-01

    van der Waals (vdW) forces play a fundamental role in the structure and behavior of diverse systems. Because of development of functionals that include nonlocal correlation, it is possible to study the effects of vdW interactions in systems of industrial and tribological interest. Here we simulated within the framework of density functional theory (DFT) the adsorption of isooctane (2,2,4-trimethylpentane) and ethanol on an Fe(100) surface, employing various exchange–correlation functionals to take vdW forces into account. In particular, this paper discusses the effect of vdW forces on the magnitude of adsorption energies, equilibrium geometries, and their role in the binding mechanism. According to our calculations, vdW interactions increase the adsorption energies and reduce the equilibrium distances. Nevertheless, they do not influence the spatial configuration of the adsorbed molecules. Their effect on the electronic density is a nonisotropic, delocalized accumulation of charge between the molecule and the slab. In conclusion, vdW forces are essential for the adsorption of isooctane and ethanol on a bcc Fe(100) surface. PMID:25126156

  5. Potential energy surface of the CO{sub 2}–N{sub 2} van der Waals complex

    SciTech Connect

    Nasri, Sameh; Ajili, Yosra; Jaidane, Nejm-Eddine; Kalugina, Yulia N.; Halvick, Philippe; Stoecklin, Thierry; Hochlaf, Majdi

    2015-05-07

    Four-dimensional potential energy surface (4D-PES) of the atmospherically relevant CO{sub 2}–N{sub 2} van der Waals complex is generated using the explicitly correlated coupled cluster with single, double, and perturbative triple excitation (CCSD(T)-F12) method in conjunction with the augmented correlation consistent triple zeta (aug-cc-pVTZ) basis set. This 4D-PES is mapped along the intermonomer coordinates. An analytic fit of this 4D-PES is performed. Our extensive computations confirm that the most stable form corresponds to a T-shape structure where the nitrogen molecule points towards the carbon atom of CO{sub 2}. In addition, we located a second isomer and two transition states in the ground state PES of CO{sub 2}–N{sub 2}. All of them lay below the CO{sub 2} + N{sub 2} dissociation limit. This 4D-PES is flat and strongly anisotropic along the intermonomer coordinates. This results in the possibility of the occurrence of large amplitude motions within the complex, such as the inversion of N{sub 2}, as suggested in the recent spectroscopic experiments. Finally, we show that the experimentally established deviations from the C{sub 2v} structure at equilibrium for the most stable isomer are due to the zero-point out-of-plane vibration correction.

  6. Theoretical Foundation of Zisman's Empirical Equation for Wetting of Liquids on Solid Surfaces

    ERIC Educational Resources Information Center

    Zhu, Ruzeng; Cui, Shuwen; Wang, Xiaosong

    2010-01-01

    Theories of wetting of liquids on solid surfaces under the condition that van der Waals force is dominant are briefly reviewed. We show theoretically that Zisman's empirical equation for wetting of liquids on solid surfaces is a linear approximation of the Young-van der Waals equation in the wetting region, and we express the two parameters in…

  7. Improved finite-difference computation of the van der Waals force: One-dimensional case

    SciTech Connect

    Pinto, Fabrizio

    2009-10-15

    We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate the difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.

  8. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy

    DOE PAGESBeta

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T.; Chi, Miaofang; et al

    2016-04-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between themore » two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less

  9. Electronic states and optical properties of porphyrins in van der Waals contact: Th{sup IV} sandwich complexes

    SciTech Connect

    Bilsel, O.; Rodriguez, J.; Holten, D.

    1992-07-29

    Ground-state and time-resolved excited-state absorption spectra and fluorescence and phosphorescence spectra of three Th{sup IV} sandwich complexes, Th{sup IV}(TPP){sub 2}, Th{sup IV}(OEP){sub 2}, and Th{sup IV}(OEP)(TPP), are reported (OEP = 2,3,7,8,12,13,17,18-octaethylporphyrinate, TPP = 5,10,15,20-tetraphenylporphyrinate). These complexes, in which the nitrogen planes of the two porphyrin macrocycles are {approximately}2.9 {Angstrom} apart, exhibit a number of prominent optical characteristics: (1) monoporphyrin-like Q and B absorption bands, (2) a new absorption between the Q and B bands, (3) a weak, low-energy absorption that is substantially red-shifted relative to the Q bands of analogous monoporphyrin complexes, (4) fluorescence and phosphorescence emission bands that are even further red-shifted relative to typical emission bands from porphyrin monomers, and (5) a moderately intense near-infrared {sup 3}({pi},{pi}*) excited-state absorption not observed in monomeric porphyrins. These characteristic optical properties of the sandwich complexes are all accounted for by a relatively simple molecular orbital configuration-interaction model. Additionally, the spectral data and molecular orbital model identify the energies of charge-transfer configurations and delineate their contribution to the electronic states of these strongly-coupled {pi} systems. These results provide insights into the interactions that can take place between other pairs of chromophores brought within van der Waals contact, such as the bacteriochlorophyll dimer of the photosynthetic reaction center. 49 refs., 9 figs., 1 tab.

  10. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy

    PubMed Central

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T.; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-01-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells. PMID:27152356

  11. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform.

    PubMed

    Cui, Xu; Lee, Gwan-Hyoung; Kim, Young Duck; Arefe, Ghidewon; Huang, Pinshane Y; Lee, Chul-Ho; Chenet, Daniel A; Zhang, Xian; Wang, Lei; Ye, Fan; Pizzocchero, Filippo; Jessen, Bjarke S; Watanabe, Kenji; Taniguchi, Takashi; Muller, David A; Low, Tony; Kim, Philip; Hone, James

    2015-06-01

    Atomically thin two-dimensional semiconductors such as MoS2 hold great promise for electrical, optical and mechanical devices and display novel physical phenomena. However, the electron mobility of mono- and few-layer MoS2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include defects such as sulphur vacancies in the MoS2 itself as well as extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics. To reduce extrinsic scattering, we have developed here a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within hexagonal boron nitride and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. Magneto-transport measurements show dramatic improvements in performance, including a record-high Hall mobility reaching 34,000 cm(2) V(-1) s(-1) for six-layer MoS2 at low temperature, confirming that low-temperature performance in previous studies was limited by extrinsic interfacial impurities rather than bulk defects in the MoS2. We also observed Shubnikov-de Haas oscillations in high-mobility monolayer and few-layer MoS2. Modelling of potential scattering sources and quantum lifetime analysis indicate that a combination of short-range and long-range interfacial scattering limits the low-temperature mobility of MoS2. PMID:25915194

  12. Theoretical study of the electronic excitations of free-base porphyrin-Ar2 van der Waals complexes.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro

    2013-08-21

    The intermolecular interaction of free-base porphine (FBP)-Ar2 and free-base tetraazaporphyrin (FBPz)-Ar2 van der Waals (vdW) complexes was calculated in the ground state and vertical excitations that correspond to the Q- and B-bands using the many-body wavefunction theory of the symmetry-adapted cluster-configuration interaction (SAC-CI) method and time-dependent density functional theory (TDDFT). For the 1(1)B3u state of FBP-Ar2 a blueshift (high-energy shift) of excitation energy was calculated using the SAC-CI method; such a blueshift was not obtained by TDDFT calculations. This calculated blueshift corresponds to the experimentally observed blueshift in the Qx-band of FBP for FBP-Arn complexes. For FBPz-Ar2, blueshifts of the Q-band were not obtained using SAC-CI and TDDFT. These behaviors of the energy shift of the Q-bands could not be explained by the point dipole-point dipole interaction model. Large redshifts (low-energy shift) were obtained for the B-band states (2(1)B3u and 2(1)B2u) of FBP and FBPz. The energy shift showed the inverse sixth-power dependence on the intermolecular distance. The point dipole-point dipole interaction model can describe the redshift of the B-band. For the excited states that exhibit large redshifts, the TDDFT can qualitatively describe the vdW interaction in the excited states by supermolecular calculations. The solvatochromic shifts for FBP and FBPz in an Ar matrix were examined by the linear-response polarizable continuum model and TDDFT. The magnitude of calculated solvatochromic redshifts is proportional to the square of the transition dipole moment. PMID:23968088

  13. Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.

    PubMed

    Kumar, Sandeep; Parks, David; Kamrin, Ken

    2016-07-26

    The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2. PMID:27347793

  14. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene

    DOE PAGESBeta

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V.; Puretzky, Alexander A.; Lin, Ming -Wei; Chi, Miaofang; Idrobo Tapia, Juan Carlos; et al

    2015-07-22

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigationsmore » of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9 interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E21g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.« less

  15. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene.

    PubMed

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V; Puretzky, Alexander A; Lin, Ming-Wei; Yoon, Mina; Chi, Miaofang; Idrobo, Juan C; Rouleau, Christopher M; Sumpter, Bobby G; Geohegan, David B; Xiao, Kai

    2015-08-25

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to transferring, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here we report the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. GaSe crystals are found to nucleate predominantly on random wrinkles or grain boundaries of graphene, share a preferred lattice orientation with underlying graphene, and grow into large (tens of micrometers) irregularly shaped, single-crystalline domains. The domains are found to propagate with triangular edges that merge into the large single crystals during growth. Electron diffraction reveals that approximately 50% of the GaSe domains are oriented with a 10.5 ± 0.3° interlayer rotation with respect to the underlying graphene. Theoretical investigations of interlayer energetics reveal that a 10.9° interlayer rotation is the most energetically preferred vdW heterostructure. In addition, strong charge transfer in these GaSe/Gr vdW heterostructures is predicted, which agrees with the observed enhancement in the Raman E(2)1g band of monolayer GaSe and highly quenched photoluminescence compared to GaSe/SiO2. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices. PMID:26202730

  16. An extensive computational study of the adsorption of thiophene on transition metal surfaces: role of van der Waals

    NASA Astrophysics Data System (ADS)

    Rojas, Tomas; Kara, Abdelkader

    2014-03-01

    Van der Waals (vdWs) interactions play a significant role in the determination of the adsorption characteristics at the interface between a molecule and a substrate. In this study, self-consistent inclusion of vdW interactions in density functional theory provides a good perspective to understand the interaction between organic adsorbates and inorganic interfaces. We present the results of adsorption of thiophene (C4H4S) on various transition metal surfaces with the goal of comparing the performance of five different vdW functionals (optB86, optB88, optPBE, revPBE, rPW86). Seven metallic substrates (100) are used for our study; three coinage metals (Au, Ag, Cu) and four reactive metals (Pt, Pd, Rh, Ni). The results show that vdWs inclusion enhances the interaction for Ag (0.08 to 0.73 eV), Au (0.14 to 0.86 eV), Cu (0.12 eV to 0.77 eV), Ni(1.56 to 2.34 eV), Pt (1.6 to 2.51 eV), Pd (1.67 to 2.54), Rh (1.74 to 2.96 eV). In addition, we performed calculations for adsorption heights along with analysis of the electronic changes (charge transfer, changes in the d-band of the substrate, and change in the work function) to complement our understanding of these systems. This work is funded by the U.S. Department of Energy Basic Energy Science under Contract No DE-FG02-11ER16243.

  17. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene

    SciTech Connect

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V.; Puretzky, Alexander A.; Lin, Ming -Wei; Chi, Miaofang; Idrobo Tapia, Juan Carlos; Rouleau, Christopher M.; Sumpter, Bobby G.; Yoon, Mina; Geohegan, David B.; Xiao, Kai

    2015-07-22

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigations of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9 interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E21g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.

  18. Hydrogen storage on metal oxide model clusters using density-functional methods and reliable van der Waals corrections.

    PubMed

    Gebhardt, Julian; Viñes, Francesc; Bleiziffer, Patrick; Hieringer, Wolfgang; Görling, Andreas

    2014-03-21

    We investigate the capability of low-coordinated sites on small model clusters to act as active centers for hydrogen storage. A set of small magic clusters with the formula (XY)6 (X = Mg, Ba, Be, Zn, Cd, Na, Li, B and Y = O, Se, S, F, I, N) and a "drumlike" hexagonal shape showing a low coordination number of three was screened. Oxide clusters turned out to be the most promising candidates for hydrogen storage. For these ionic compounds we explored the suitability of different van der Waals (vdW) corrections to density-functional calculations by comparing the respective H2 physisorption profile to highly accurate CCSD(T) (Coupled Cluster Singles Doubles with perturbative Triples) calculations. The Grimme D3 vdW correction in combination with the Perdew-Burke-Ernzerhof exchange-correlation functional was found to be the best approach compared to CCSD(T) hydrogen physisorption profiles and is, therefore, suited to study these and other light metal oxide systems. H2 adsorption on sites of oxide model clusters is found to meet the adsorption energy criteria for H2 storage, with bond strengths ranging from 0.15 to 0.21 eV. Energy profiles and estimates of kinetic constants for the H2 splitting reaction reveal that H2 is likely to be adsorbed molecularly on sites of (MgO)6, (BaO)6, and (BeO)6 clusters, suggesting a rapid H2 uptake/release at operating temperatures and moderate pressures. The small mass of beryllium and magnesium makes such systems appealing for meeting the gravimetric criterion for H2 storage. PMID:24499810

  19. Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces.

    PubMed

    Carrasco, Javier; Liu, Wei; Michaelides, Angelos; Tkatchenko, Alexandre

    2014-02-28

    Exploring the role of van der Waals (vdW) forces on the adsorption of molecules on extended metal surfaces has become possible in recent years thanks to exciting developments in density functional theory (DFT). Among these newly developed vdW-inclusive methods, interatomic vdW approaches that account for the nonlocal screening within the bulk [V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, and A. Tkatchenko, Phys. Rev. Lett. 108, 146103 (2012)] and improved nonlocal functionals [J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010)] have emerged as promising candidates to account efficiently and accurately for the lack of long-range vdW forces in most popular DFT exchange-correlation functionals. Here we have used these two approaches to compute benzene adsorption on a range of close-packed (111) surfaces upon which it either physisorbs (Cu, Ag, and Au) or chemisorbs (Rh, Pd, Ir, and Pt). We have thoroughly compared the performance between the two classes of vdW-inclusive methods and when available compared the results obtained with experimental data. By examining the computed adsorption energies, equilibrium distances, and binding curves we conclude that both methods allow for an accurate treatment of adsorption at equilibrium adsorbate-substrate distances. To this end, explicit inclusion of electrodynamic screening in the interatomic vdW scheme and optimized exchange functionals in the case of nonlocal vdW density functionals is mandatory. Nevertheless, some discrepancies are found between these two classes of methods at large adsorbate-substrate separations. PMID:24588188

  20. Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces

    NASA Astrophysics Data System (ADS)

    Carrasco, Javier; Liu, Wei; Michaelides, Angelos; Tkatchenko, Alexandre

    2014-02-01

    Exploring the role of van der Waals (vdW) forces on the adsorption of molecules on extended metal surfaces has become possible in recent years thanks to exciting developments in density functional theory (DFT). Among these newly developed vdW-inclusive methods, interatomic vdW approaches that account for the nonlocal screening within the bulk [V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, and A. Tkatchenko, Phys. Rev. Lett. 108, 146103 (2012)] and improved nonlocal functionals [J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010)] have emerged as promising candidates to account efficiently and accurately for the lack of long-range vdW forces in most popular DFT exchange-correlation functionals. Here we have used these two approaches to compute benzene adsorption on a range of close-packed (111) surfaces upon which it either physisorbs (Cu, Ag, and Au) or chemisorbs (Rh, Pd, Ir, and Pt). We have thoroughly compared the performance between the two classes of vdW-inclusive methods and when available compared the results obtained with experimental data. By examining the computed adsorption energies, equilibrium distances, and binding curves we conclude that both methods allow for an accurate treatment of adsorption at equilibrium adsorbate-substrate distances. To this end, explicit inclusion of electrodynamic screening in the interatomic vdW scheme and optimized exchange functionals in the case of nonlocal vdW density functionals is mandatory. Nevertheless, some discrepancies are found between these two classes of methods at large adsorbate-substrate separations.

  1. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy.

    PubMed

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells. PMID:27152356

  2. A molecular H2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions.

    PubMed

    McLaughlin, Keith; Cioce, Christian R; Belof, Jonathan L; Space, Brian; Space, Brian B

    2012-05-21

    A highly accurate aniostropic intermolecular potential for diatomic hydrogen has been developed that is transferable for molecular modeling in heterogeneous systems. The potential surface is designed to be efficacious in modeling mixed sorbates in metal-organic materials that include sorption interactions with charged interfaces and open metal sites. The potential parameters are compatible for mixed simulations but still maintain high accuracy while deriving dispersion parameters from a proven polarizability model. The potential includes essential physical interactions including: short-range repulsions, dispersion, and permanent and induced electrostatics. Many-body polarization is introduced via a point-atomic polarizability model that is also extended to account for many-body van der Waals interactions in a consistent fashion. Permanent electrostatics are incorporated using point partial charges on atomic sites. However, contrary to expectation, the best potentials are obtained by permitting the charges to take on values that do not reproduce the first non-vanishing moment of the electrostatic potential surface, i.e., the quadrupole moment. Potential parameters are fit to match ab initio energies for a representative range of dimer geometries. The resulting potential is shown to be highly effective by comparing to electronic structure calculations for a thermal distribution of trimer geometries, and by reproducing experimental bulk pressure-density isotherms. The surface is shown to be superior to other similarly portable potential choices even in tests on homogeneous systems without strong polarizing fields. The present streamlined approach to developing such potentials allows for a simple adaptation to other molecules amenable to investigation by high-level electronic structure methods. PMID:22612090

  3. Adsorption of organic molecules at the TiO2(110) surface: The effect of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Tillotson, Marcus J.; Brett, Peter M.; Bennett, Roger A.; Grau-Crespo, Ricardo

    2015-02-01

    Understanding the interaction of organic molecules with TiO2 surfaces is important for a wide range of technological applications. While density functional theory (DFT) calculations can provide valuable insight about these interactions, traditional DFT approaches with local exchange-correlation functionals suffer from a poor description of non-bonding van der Waals (vdW) forces. We examine here the vdW contribution to the interaction of small organic molecules (methane, methanol, formic acid and glycine) with the TiO2(110) surface, based on DFT calculations with the optB88-vdW functional, which incorporate non-local correlation. The adsorption geometries and energies at different configurations were also obtained in the standard generalized gradient approximation (GGA-PBE) for comparison. We find that the optB88-vdW consistently gives shorter surface adsorbate-to-surface distances and slightly stronger interactions than PBE for the weak (physisorbed) modes of adsorption. In the case of strongly adsorbed (chemisorbed) molecules both functionals give similar results for the adsorption geometries, and also similar values of the relative energies between different chemisorption modes for each molecule. In particular both functionals predict that dissociative adsorption is more favorable than molecular adsorption for methanol, formic acid and glycine, in general agreement with experiment. The dissociation energies obtained from both functionals are also very similar, indicating that vdW interactions do not affect the thermodynamics of surface deprotonation. However, the optB88-vdW always predicts stronger adsorption than PBE. The comparison of the methanol adsorption energies with values obtained from a Redhead analysis of temperature programmed desorption data suggests that optB88-vdW significantly overestimates the adsorption strength, although we warn about the uncertainties involved in such comparisons.

  4. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory

    NASA Astrophysics Data System (ADS)

    Baidakov, Vladimir G.

    2016-02-01

    The process of bubble nucleation in a Lennard-Jones (LJ) liquid is studied by molecular dynamics (MD) simulation. The bubble nucleation rate J is determined by the mean life-time method at temperatures above that of the triple point in the region of negative pressures. The results of simulation are compared with classical nucleation theory (CNT) and modified classical nucleation theory (MCNT), in which the work of formation of a critical bubble is determined in the framework of the van der Waals-Cahn-Hilliard gradient theory (GT). It has been found that the values of J obtained in MD simulation systematically exceed the data of CNT, and this excess in the nucleation rate reaches 8-10 orders of magnitude close to the triple point temperature. The results of MCNT are in satisfactory agreement with the data of MD simulation. To describe the properties of vapor-phase nuclei in the framework of GT, an equation of state has been built up which describes stable, metastable and labile regions of LJ fluids. The surface tension of critical bubbles γ has been found from CNT and data of MD simulation as a function of the radius of curvature of the surface of tension R*. The dependence γ(R*) has also been calculated from GT. The Tolman length has been determined, which is negative and in modulus equal to ≈(0.1 - 0.2) σ. The paper discusses the applicability of the Tolman formula to the description of the properties of critical nuclei in nucleation.

  5. A natural orbital analysis of the long range behavior of chemical bonding and van der Waals interaction in singlet H2: the issue of zero natural orbital occupation numbers.

    PubMed

    Sheng, X W; Mentel, Ł M; Gritsenko, O V; Baerends, E J

    2013-04-28

    This paper gives a natural orbital (NO) based analysis of the van der Waals interaction in (singlet) H2 at long distance. The van der Waals interaction, even if not leading to a distinct van der Waals well, affects the shape of the interaction potential in the van der Waals distance range of 5-9 bohrs and can be clearly distinguished from chemical bonding effects. In the NO basis the van der Waals interaction can be quantitatively covered with, apart from the ground state configurations (1σ(g))(2) and (1σ(u))(2), just the 4 configurations (2σ(g))(2) and (2σ(u))(2), and (1π(u))(2) and (1π(g))(2). The physics of the dispersion interaction requires and explains the peculiar relatively large positive CI coefficients of the doubly excited electron configurations (2σ(u))(2) and (1π(g))(2) (the occupancy amplitudes of the 2σ(u) and 1π(gx, y) NOs) in the distance range 5-9 bohrs, which have been observed before by Cioslowski and Pernal [Chem. Phys. Lett. 430, 188 (2006)]. We show that such positive occupancy amplitudes do not necessarily lead to the existence of zero occupation numbers at some H-H distances. PMID:23635109

  6. C{sub 6}H{sub 6}/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction

    SciTech Connect

    Abad, E.; Martinez, J. I.; Flores, F.; Ortega, J.; Dappe, Y. J.

    2011-01-28

    We analyze the benzene/Au(111) interface taking into account charging energy effects to properly describe the electronic structure of the interface and van der Waals interactions to obtain the adsorption energy and geometry. We also analyze the interface dipoles and discuss the barrier formation as a function of the metal work-function. We interpret our DFT calculations within the induced density of interface states (IDIS) model. Our results compare well with experimental and other theoretical results, showing that the dipole formation of these interfaces is due to the charge transfer between the metal and benzene, as described in the IDIS model.

  7. Far-Field Spectroscopy and Near-Field Optical Imaging of Coupled Plasmon-Phonon Polaritons in 2D van der Waals Heterostructures.

    PubMed

    Yang, Xiaoxia; Zhai, Feng; Hu, Hai; Hu, Debo; Liu, Ruina; Zhang, Shunping; Sun, Mengtao; Sun, Zhipei; Chen, Jianing; Dai, Qing

    2016-04-01

    A new hybridized plasmon-phonon polariton mode in graphene/h-BN van der Waals heterostructures is presented, featuring the ultrahigh field confinement characteristic of the graphene plasmon and the long lifetime property of the h-BN transverse optical phonon. This enables an ultralong hybrid plasmon lifetime of up to 1.6 ps (with ultrahigh mode confinement up to >l0 (2) /7000 and ultrasmall group velocity down to 0.001c, where c is the speed of light in vacuum), superior to any localized plasmon ever demonstrated. PMID:26889663

  8. Analysis of Van der Waals interactions between nanoparticles with different geometries, with accounting for three-particle contributions to the total energy

    NASA Astrophysics Data System (ADS)

    Emelyanenko, K. A.

    2016-05-01

    The Axilrod-Teller-Muto method with corrections for triple interactions is used to calculate the energies of Van der Waals interaction for nanosystems containing particles with different geometries. Results are presented for symmetric systems with identical cubic particles of different sizes, for film and cubic particle systems, and for the systems with differently oriented nanorods. Boundary and particle arrangement effects are studied. The fundamental importance of allowing for nonadditive contributions to obtain a reliable quantitative description of interaction processes inside nanosystems is demonstrated. The results are compared to ones obtained using analytical macroscopic methods and the limits of the applicability of macroscopic approximations are estimated.

  9. Interatomic potentials of the heavy van der Waals dimer Hg2: A "test-bed" for theory-to-experiment agreement

    NASA Astrophysics Data System (ADS)

    Krośnicki, M.; Strojecki, M.; Urbańczyk, T.; Pashov, A.; Koperski, J.

    2015-08-01

    New ab initio and revisited experimental studies of the interatomic potentials of ungerade excited and ground electronic energy states of the heavy van der Waals (vdW) dimer Hg2 were used as a "test-bed" for theory-to-experiment comparisons. Representations of the lowest excited- and ground-state Hg2 interatomic potentials were proposed, by using a new analytical approach as well as by using an inverted perturbation approach (IPA). The comparison of the new ab-initio calculated potentials with the results of the analyses illustrates an improved theory-to-experiment agreement for demanding heavy systems such as Hg2.

  10. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    SciTech Connect

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A.; Yates, John T.; Cole, Milton W.; Johnson, J. Karl

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  11. Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles.

    PubMed

    Martin-Gondre, L; Juaristi, J I; Blanco-Rey, M; Díez Muiño, R; Alducin, M

    2015-02-21

    Using ab initio molecular dynamics (AIMD) calculations, we investigate the role of the van der Waals (vdW) interaction in the dissociative adsorption of N2 on W(110). Hitherto, existing classical dynamics calculations performed on six-dimensional potential energy surfaces based on density functional theory (DFT), and the semi-local PW91 and RPBE [Hammer et al. Phys. Rev. B 59, 7413 (1999)] exchange-correlation functionals were unable to fully describe the dependence of the initial sticking coefficient on the molecular beam incidence conditions as found in experiments. N2 dissociation on W(110) was shown to be very sensitive not only to short molecule-surface distances but also to large distances where the vdW interaction, not included in semilocal-DFT, should dominate. In this work, we perform a systematic study on the dissociative adsorption using a selection of existing non-local functionals that include the vdW interaction (vdW-functionals). Clearly, the inclusion of the non-local correlation term contributes in all cases to correct the unrealistic energy barriers that were identified in the RPBE at large molecule-surface distances. Among the tested vdW-functionals, the original vdW-DF by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and the ulterior vdW-DF2 give also an adequate description of the N2 adsorption energy and energy barrier at the transition state, i.e., of the properties that are commonly used to verify the quality of any exchange-correlation functional. However, the results of our AIMD calculations, which are performed at different incidence conditions and hence extensively probe the multi-configurational potential energy surface of the system, do not seem as satisfactory as the preliminary static analysis suggested. When comparing the obtained dissociation probabilities with existing experimental data, none of the used vdW-functionals seems to provide altogether an adequate description of the N2/W(110) interaction at short and large distances

  12. Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles

    NASA Astrophysics Data System (ADS)

    Martin-Gondre, L.; Juaristi, J. I.; Blanco-Rey, M.; Díez Muiño, R.; Alducin, M.

    2015-02-01

    Using ab initio molecular dynamics (AIMD) calculations, we investigate the role of the van der Waals (vdW) interaction in the dissociative adsorption of N2 on W(110). Hitherto, existing classical dynamics calculations performed on six-dimensional potential energy surfaces based on density functional theory (DFT), and the semi-local PW91 and RPBE [Hammer et al. Phys. Rev. B 59, 7413 (1999)] exchange-correlation functionals were unable to fully describe the dependence of the initial sticking coefficient on the molecular beam incidence conditions as found in experiments. N2 dissociation on W(110) was shown to be very sensitive not only to short molecule-surface distances but also to large distances where the vdW interaction, not included in semilocal-DFT, should dominate. In this work, we perform a systematic study on the dissociative adsorption using a selection of existing non-local functionals that include the vdW interaction (vdW-functionals). Clearly, the inclusion of the non-local correlation term contributes in all cases to correct the unrealistic energy barriers that were identified in the RPBE at large molecule-surface distances. Among the tested vdW-functionals, the original vdW-DF by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and the ulterior vdW-DF2 give also an adequate description of the N2 adsorption energy and energy barrier at the transition state, i.e., of the properties that are commonly used to verify the quality of any exchange-correlation functional. However, the results of our AIMD calculations, which are performed at different incidence conditions and hence extensively probe the multi-configurational potential energy surface of the system, do not seem as satisfactory as the preliminary static analysis suggested. When comparing the obtained dissociation probabilities with existing experimental data, none of the used vdW-functionals seems to provide altogether an adequate description of the N2/W(110) interaction at short and large distances.

  13. Spectroscopic properties of Arx-Zn and Arx-Ag+ (x = 1,2) van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Oyedepo, Gbenga A.; Peterson, Charles; Schoendorff, George; Wilson, Angela K.

    2013-03-01

    Potential energy curves have been constructed using coupled cluster with singles, doubles, and perturbative triple excitations (CCSD(T)) in combination with all-electron and pseudopotential-based multiply augmented correlation consistent basis sets [m-aug-cc-pV(n + d)Z; m = singly, doubly, triply, n = D,T,Q,5]. The effect of basis set superposition error on the spectroscopic properties of Ar-Zn, Ar2-Zn, Ar-Ag+, and Ar2-Ag+ van der Waals complexes was examined. The diffuse functions of the doubly and triply augmented basis sets have been constructed using the even-tempered expansion. The a posteriori counterpoise scheme of Boys and Bernardi and its generalized variant by Valiron and Mayer has been utilized to correct for basis set superposition error (BSSE) in the calculated spectroscopic properties for diatomic and triatomic species. It is found that even at the extrapolated complete basis set limit for the energetic properties, the pseudopotential-based calculations still suffer from significant BSSE effects unlike the all-electron basis sets. This indicates that the quality of the approximations used in the design of pseudopotentials could have major impact on a seemingly valence-exclusive effect like BSSE. We confirm the experimentally determined equilibrium internuclear distance (re), binding energy (De), harmonic vibrational frequency (ωe), and C1Π ← X1Σ transition energy for ArZn and also predict the spectroscopic properties for the low-lying excited states of linear Ar2-Zn (X1Σg, 3Πg, 1Πg), Ar-Ag+ (X1Σ, 3Σ, 3Π, 3Δ, 1Σ, 1Π, 1Δ), and Ar2-Ag+ (X1Σg, 3Σg, 3Πg, 3Δg, 1Σg, 1Πg, 1Δg) complexes, using the CCSD(T) and MR-CISD + Q methods, to aid in their experimental characterizations.

  14. Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between Mo S2 and W S2 monolayers

    NASA Astrophysics Data System (ADS)

    Fan, Wen; Zhu, Xi; Ke, Feng; Chen, Yabin; Dong, Kaichen; Ji, Jie; Chen, Bin; Tongay, Sefaattin; Ager, Joel W.; Liu, Kai; Su, Haibin; Wu, Junqiao

    2015-12-01

    At the few or monolayer limit, layered materials define an interesting two-dimensional system with unique electronic and phonon properties. The electron band structure of monolayers can be drastically different from multilayers despite the weak van der Waals interaction between neighboring layers. In this Rapid Communication, we demonstrate that vibrational spectra of a Mo S2 monolayer and a W S2 monolayer are also renormalized when the interaction between them is artificially modulated. This is achieved by using a diamond-anvil cell to apply high pressures, up to 39 GPa onto W S2/Mo S2 heterobilayers. With increasing pressure, the out-of-plane Raman frequencies of the two individual monolayers repel each other, exhibiting coherent vibrations across the van der Waals gap with an optical-like and an acousticlike interlayer vibration mode. The discovery shows a crossover in lattice vibration from a two-dimensional system toward a three-dimensional system driven by enforced interlayer coupling.

  15. Ab initio and semi-empirical van der Waals study of graphene-boron nitride interaction from a molecular point of view.

    PubMed

    Caciuc, Vasile; Atodiresei, Nicolae; Callsen, Martin; Lazić, Predrag; Blügel, Stefan

    2012-10-24

    We have performed a systematic semi-empirical and ab initio van der Waals study to investigate the bonding mechanism of benzene (C(6)H(6)), triazine (C(3)N(3)H(3)) and borazine (B(3)N(3)H(6)) adsorbed on graphene and a single boron nitride (BN) sheet. The two semi-empirical approaches used to include the van der Waals (vdW) interactions in our density functional theory (DFT) calculations suggest that the strength of the molecule-surface interaction corresponds to a strong physisorption with no net charge transfer between the molecules and the corresponding substrates. This observation is strengthened by the use of first-principles non-local correlation vdW-DF functionals which provide a sound physical basis to include vdW interactions in DFT calculations. In particular we have employed two flavors of vdW-DF functionals which enabled us to determine the role of the non-local correlation effects in the molecule-surface bonding mechanism which cannot be assessed by using only semi-empirical vdW methods. Our study also reveals that the strength of the molecule-surface interaction can be influenced by the electronegativity of the B, C and N atoms. PMID:23032913

  16. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    SciTech Connect

    Lara-Castells, María Pilar de; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.

  17. Rotational analysis of bands of the Ã - X̃ transition of the C3Ar van der Waals complex.

    PubMed

    Merer, Anthony J; Hsu, Yen-Chu; Chen, Yi-Ren; Wang, Yi-Jen

    2015-11-21

    Rotational analyses have been carried out for four of the strongest bands of the Ã-X̃ transition of the C3Ar van der Waals complex, at 393 and 399 nm. These bands lie near the 02(-)0-000 and 04(-)0-000 bands of the Ã(1)Πu-X̃(1)Σ(+) g transition of C3 and form two close pairs, each consisting of a type A and a type C band of an asymmetric top, about 4 cm(-1) apart. Only K″ = even lines are found, showing that the complex has two equivalent carbon atoms (I = 0), and must be T-shaped, or nearly so. Strong a- and b-axis electronic-rotational (Coriolis) coupling occurs between the upper states of a pair, since they correlate with a (1)Πu vibronic state of C3, where the degeneracy is lifted in the lower symmetry of the complex. Least squares rotational fits, including the coupling, have given the rotational constants for both electronic states: the van der Waals bond lengths are 3.81 and 3.755 Å, respectively, in the ground and excited electronic states. For the ground state our new quantum chemical calculations, using the Multi-Channel Time-Dependent Hartree method, indicate that the C3 unit is non-linear, and that the complex does not have a rigid-molecule structure, existing instead as a superposition of arrowhead (↑) and distorted Y-shaped (Y) structures. PMID:26590534

  18. Lithium ions in the van der Waals gap of Bi2Se3 single crystals

    SciTech Connect

    Bludska, J.; Jakubec, I.; Karamazov, S.; Horak, J.; Uher, Ctirad

    2010-09-24

    Insertion/extraction of lithium ions into/from Bi2Se3 crystals was investigated by means of cyclic voltammetry. The process of insertion is reflected in the appearance of two bands on voltammograms at ~1.7 and ~1.5 V, corresponding to the insertion of Li+ ions into octahedral and tetrahedral sites of the van der Waals gap of these layered crystals. The process of extraction of Li+ ions from the gap results in the appearance of four bands on the voltammograms. The bands 1 and 2 at ~2.1 and ~2.3 V correspond to the extraction of a part of Li+ guest ions from the octahedral and tetrahedrals sites and this extraction has a character of a reversible intercalation/deintercalation process. A part of Li+ ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe2.Bi3Se4-) type. A further extraction of Li+ ions from the van der Waals gap is associated with the presence of bands 3 and 4 placed at ~2.5 and ~2.7 V on the voltammograms as their extraction needs higher voltage due to the influence of negative charges localized on these clusters.

  19. The ArNe-N2O van der Waals trimer: a high resolution spectroscopic study of its rotational spectrum, structure and dynamics

    NASA Astrophysics Data System (ADS)

    Ngari, Mwaniki S.; Xu, Yunjie; Jäger, Wolfgang

    A new ternary van der Waals complex of the type rare gas-rare gas-linear molecule, ArNeN2O, was investigated using a pulsed molecular beam cavity Fourier transform microwave spectrometer. The rotational spectra of six isotopomers of the trimer were studied in detail. These include Ar20Ne- 14N14NO, Ar22Ne- 14N14NO, Ar20Ne-15N14NO, Ar22Ne- 15N14NO, Ar20Ne- 14N15NO and Ar22Ne- 14N15NO. Nuclear quadrupole hyperfine structures of the rotational transitions that are due to the one or two 14N nuclei were resolved and analysed. The resulting spectroscopic constants were used to provide structural and dynamical information about the trimer. Based on the quartic centrifugal distortion constants, a harmonic force field analysis was performed to estimate the frequencies of the van der Waals vibrational modes. A perturbation of the electronic charge distribution at the site of the central 14N nucleus of N2O upon complex formation was detected and discussed. Differences of structural parameters of the trimer as compared to those of the respective dimer units are indicative of the presence of significant three-body non-additive contributions to the interaction energy.

  20. Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness

    NASA Astrophysics Data System (ADS)

    Wang, Di; Li, Jing-Ning; Zhou, Yu; Xu, Di-Hu; Xiong, Xiang; Peng, Ru-Wen; Wang, Mu

    2016-02-01

    We report on van der Waals epitaxy of single-crystalline α-MoO3 sheets with single-unit-cell thickness on the mica substrate. The crystalline lattice structure, growth habits, and Raman spectra of the grown α-MoO3 sheets are analyzed. The anisotropic growth of α-MoO3 sheets can be understood by period bond chains theory. Unlike monolayer MoS2 or graphene, Raman spectra of α-MoO3 do not possess frequency shift from bulk crystal to single-unit-cell layer. The relative intensities of two Raman modes (Ag) at 159 and 818 cm-1 are sensitive to the polarization of incident light. This scenario provides a quick approach to determine the lattice orientation of α-MoO3 crystals. Our studies indicate that van der Waals epitaxial growth is a simple and effective way to fabricate high-quality ultrathin α-MoO3 sheets for physical property investigations and potential applications.