Science.gov

Sample records for derived plant sterol

  1. The spectrum of plant and animal sterols in different oil-derived intravenous emulsions.

    PubMed

    Forchielli, Maria Luisa; Bersani, Germana; Tala, Sara; Grossi, Gabriele; Puggioli, Cristina; Masi, Massimo

    2010-01-01

    Intravenous lipid constituents have different effects on various biological processes. Some of these effects are protective, while others are potentially adverse. Phytosterols, in particular, seem to be implicated with parenteral nutrition-associated cholestasis. The aim of this study is to determine the amount of plant and animal sterols present in lipid formulations derived from different oil sources. To this end, animal (cholesterol) and plant (beta-sitosterol, campesterol, and stigmasterol) sterols in seven different commercially available intravenous lipid emulsions (ILEs) were quantified by capillary gas chromatography after performing a lipid extraction procedure. The two major constituents of the lipid emulsions were cholesterol (range 14-57% of total lipids) and beta-sitosterol (range 24-55%), followed by campesterol (range 8-18%) and stigmasterol (range 5-16%). The fish oil-derived formulation was an exception, as it contained only cholesterol. The mean values of the different sterols were statistically different across ILEs (P = 0.0000). A large percentage of pairwise comparisons were also statistically significant (P = 0.000), most notably for cholesterol and stigmasterol (14 out of 21 for both), followed by campesterol (12 out 21) and beta-sitosterol (11 out 21). In conclusion, most ILEs combined significant amounts of phytosterols and cholesterol. However, their phytosterols:cholesterol ratios were reversed compared to the normal human diet. PMID:20049583

  2. Plant Sterols, Stanols, and Sitosterolemia

    PubMed Central

    Ajagbe, Bridget O.; Othman, Rgia A.; Myrie, Semone B.

    2015-01-01

    Phytosterolemia (sitosterolemia) is a rare autosomal recessive sterol storage disease caused by mutations in either of the adenosine triphosphate (ATP) binding cassette transporter genes; (ABC)G5 or ABCG8, leading to impaired elimination of plant sterols and stanols, with their increased accumulation in the blood and tissues. Thus the disease is characterized by substantially elevated serum plant sterols and stanols, with moderate to high plasma cholesterol levels, and increased risk of premature atherosclerosis. Hematologic abnormalities including macrothrombocytopenia, stomatocytosis and hemolysis are frequently observed in sitosterolemia patients. Currently, ezetimibe, a sterol absorption inhibitor, is used as the routine treatment for sitosterolemia, with reported improvement in plant sterol levels and hemolytic parameters. This review summarizes the research related to the health impact of plant sterols and stanols on sitosterolemia. PMID:25941971

  3. Determination of plant sterol oxidation products in plant sterol enriched spreads, fat blends, and plant sterol concentrates.

    PubMed

    Louter, Arjan J H

    2004-01-01

    Plant sterols (PS) are very stable molecules but may undergo oxidation due to the presence of a double bond in the ring structure. In order to assess whether this occurs during heating and storage, an analytical procedure was developed for the determination of concentration levels and identity of PS oxidation products in functional food ingredients and products. The method is based on cold saponification, solvent extraction of unsaponifiables, isolation of sterol oxidation products by means of liquid chromatography, and final analysis by gas chromatography (GC) with flame ionization detection. Identification of the key PS oxidation products was performed by means of GC-mass spectrometry (GC-MS). Isotope dilution MS was used to verify the absence of the formation of potential artifacts by the method. The method described is applicable to spreads (containing 20-65% water), oils, sterol esters, pure sterols, and fat extracts from food. The between-day reproducibility of the total content of sterol oxidation products in control samples sample was 8%, and of individual sterol oxidation products, 6-15%. The recovery of sterol oxidation products was 91%. The limit of detection was 0.1 mg/kg. PMID:15164845

  4. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women

    PubMed Central

    Tanaka, Miyuki; Misawa, Eriko; Yamauchi, Koji; Abe, Fumiaki; Ishizaki, Chiaki

    2015-01-01

    Background Aloe is known for its topical use for treating wounds and burns. Many previous studies reported the healing effects of Aloe vera. However, there are few clinical studies on the effect of orally administered A. vera gel on the skin. Aloe sterols are a type of plant sterols that have the capability to regulate the metabolism of glucose and lipids. In a recent study, we confirmed that ingested Aloe sterols reached the peripheral tissues through the bloodstream. However, their influence on dermal fibroblasts has not been investigated. Methods First, we investigated the capability of Aloe sterols (cycloartenol and lophenol) to stimulate human dermal fibroblasts in vitro. Then, we investigated the effect of intake of Aloe vera gel powder (AVGP) containing 40 ?g Aloe sterols on the skin conditions in Japanese women with dry skin in a randomized, double-blind, placebo-controlled trial. Results After cocultivation with Aloe sterols, the production of collagen and hyaluronic acid increased by approximately two-fold and 1.5-fold, and gene expression levels of these enzymes responsible for their synthesis were also observed in human dermal fibroblasts. An increase in arm skin hydration was observed at 8 weeks in the AVGP group, whereas a slight decrease in arm skin hydration was noted in the placebo group. However, there was no statistical difference between AVGP and placebo groups in skin moisture. In subgroup analysis, the change in the mean wrinkle depth was significantly lower in the AVGP group than in the control group. In addition, percent body fat after 8 weeks was significantly lower in the AVGP group. No AVGP intake-dependent harmful phenomenon was observed during the intake period. Conclusion The present study confirms that daily oral Aloe sterol-containing AVGP significantly reduced facial wrinkles in women aged ?40 years, and Aloe sterols stimulate collagen and hyaluronic acid production by human dermal fibroblasts. PMID:25759593

  5. Determination of sterol lipids in plant tissues by gas chromatography and Q-TOF mass spectrometry.

    PubMed

    Wewer, Vera; Dörmann, Peter

    2014-01-01

    Sterols are an abundant lipid class in the extraplastidic membranes of plant cells. In addition to free sterols, plants contain different conjugated sterols, i.e. sterol esters, sterol glucosides, and acylated sterol glucosides. Sterol lipids can be measured by gas chromatography after separation via thin-layer chromatography. Here, we describe a comprehensive technique based on the quantification of all four sterol classes by direct infusion quadrupole time-of-flight (Q-TOF) mass spectrometry. PMID:24777793

  6. Composition of Plant Sterols and Stanols in Supplemented Food Products.

    PubMed

    Moreau, Robert A

    2015-01-01

    All fruits, vegetables, grains and other plant materials contain small amounts of plant sterols, which are essential for the function of the biological membranes in living cells. The average human consumption of plant sterols has been estimated to be about 150-350 mg/day and trace amounts of stanols (which are defined as saturated sterols such as sitostanol), but this number varies regionally and is higher for vegetarians. When consumed in the diet, plant sterols reduce the levels of serum cholesterol. In 1995 the first functional food product, Benecol spread (enriched in plant stanol fatty acid esters), was developed by Raisio and marketed, first in Finland and then globally. Since then many other functional food products have been developed and are now available globally. In addition to stanol esters, other functional food products contain plant sterol esters and/or free (unesterified) plant sterols and stanols. In essentially all of the current functional foods that are enriched in sterols and stanols, the feedstock from which the sterols and stanols are obtained is either tall oil (a byproduct/coproduct of the pulping of pine wood) or vegetable oil deodorizer distillate (a byproduct/coproduct of the refining of vegetable oils). PMID:25942633

  7. Distribution of free and glycosylated sterols within Cycas micronesica plants

    PubMed Central

    Marler, Thomas E.; Shaw, Christopher A.

    2010-01-01

    Flour derived from Cycas micronesica seeds was once the dominant source of starch for Guam's residents. Cycad consumption has been linked to high incidence of human neurodegenerative diseases. We determined the distribution of the sterols stigmasterol and ?-sitosterol and their derived glucosides stigmasterol ?-d-glucoside and ?-sitosterol ?-d-glucoside among various plant parts because they have been identified in cycad flour and have been shown to elicit neurodegenerative outcomes. All four compounds were common in seeds, sporophylls, pollen, leaves, stems, and roots. Roots contained the greatest concentration of both free sterols, and photosynthetic leaflet tissue contained the greatest concentration of both steryl glucosides. Concentration within the three stem tissue categories was low compared to other organs. Reproductive sporophyll tissue contained free sterols similar to seeds, but greater concentration of steryl glucosides than seeds. One of the glucosides was absent from pollen. Concentration in young seeds was higher than old seeds as reported earlier, but concentration did not differ among age categories of leaf, sporophyll, or vascular tissue. The profile differences among the various tissues within these organs may help clarify the physiological role of these compounds. PMID:20157629

  8. Use of Animal Models in Plant Sterol and Stanol Research.

    PubMed

    Solati, Zahra; Moghadasian, Mohammed H

    2015-01-01

    Cholesterol-lowering properties of plant sterols were reported approximately six decades ago. However, over the past couple of decades we have learnt more about other cardiovascular benefits of regular consumption of plant sterols and/or plant stanols. In particular a series of animal studies has consistently reported that dietary plant sterols and/or plant stanols or their fatty acid esters can reduce atherogenesis to a different extent in different animal models. Such effects may be mediated not only through reductions in LDL cholesterol levels, but also through other mechanisms including anti-inflammatory effects. In this manuscript, various animal models including mice, rabbits, hamsters, and others which have been used to establish cardiovascular benefits of plant sterols are discussed. PMID:25942701

  9. STEROL METHYLTRANSFERASE 1 Controls the Level of Cholesterol in Plants

    PubMed Central

    Diener, Andrew C.; Li, Haoxia; Zhou, Wen-xu; Whoriskey, Wendy J.; Nes, W. David; Fink, Gerald R.

    2000-01-01

    The side chain in plant sterols can have either a methyl or ethyl addition at carbon 24 that is absent in cholesterol. The ethyl addition is the product of two sequential methyl additions. Arabidopsis contains three genes—sterol methyltransferase 1 (SMT1), SMT2, and SMT3—homologous to yeast ERG6, which is known to encode an S-adenosylmethionine–dependent C-24 SMT that catalyzes a single methyl addition. The SMT1 polypeptide is the most similar of these Arabidopsis homologs to yeast Erg6p. Moreover, expression of Arabidopsis SMT1 in erg6 restores SMT activity to the yeast mutant. The smt1 plants have pleiotropic defects: poor growth and fertility, sensitivity of the root to calcium, and a loss of proper embryo morphogenesis. smt1 has an altered sterol content: it accumulates cholesterol and has less C-24 alkylated sterols content. Escherichia coli extracts, obtained from a strain expressing the Arabidopsis SMT1 protein, can perform both the methyl and ethyl additions to appropriate sterol substrates, although with different kinetics. The fact that smt1 null mutants still produce alkylated sterols and that SMT1 can catalyze both alkylation steps shows that there is considerable overlap in the substrate specificity of enzymes in sterol biosynthesis. The availability of the SMT1 gene and mutant should permit the manipulation of phytosterol composition, which will help elucidate the role of sterols in animal nutrition. PMID:10852933

  10. Plant Sterol Metabolism. ?7-Sterol-C5-Desaturase (STE1/DWARF7), ?5,7-Sterol-?7-Reductase (DWARF5) and ?24-Sterol-?24-Reductase (DIMINUTO/DWARF1) Show Multiple Subcellular Localizations in Arabidopsis thaliana (Heynh) L

    PubMed Central

    Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert; Jensen, Poul Erik

    2013-01-01

    Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map of steroidogenic enzymes in cells, the coding regions of ?7-sterol-C5-desaturase (STE1/DWARF7), ?24-sterol-?24-reductase (DIMINUTO/DWARF1) and ?5,7-sterol-?7-reductase (DWARF5) were fused to the yellow fluorescent protein (YFP) and transformed into Arabidopsis thaliana mutant lines deficient in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ?5,7-sterol-?7-reductase and ?24-sterol-?24-reductase are in addition localized to the plasma membrane, whereas ?7-sterol-C5-desaturase was clearly detected in lipid particles. These findings raise new challenging questions about the spatial and dynamic cellular organization of sterol biosynthesis in plants. PMID:23409184

  11. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry

    PubMed Central

    Wewer, Vera; Dombrink, Isabel; vom Dorp, Katharina; Dörmann, Peter

    2011-01-01

    Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers. PMID:21382968

  12. Effect of plant sterols on the lipid profile of patients with hypercholesterolaemia. Randomised, experimental study

    PubMed Central

    2011-01-01

    Background Studies have been conducted on supplementing the daily diet with plant sterol ester-enriched milk derivatives in order to reduce LDL-cholesterol levels and, consequently, cardiovascular risk. However, clinical practice guidelines on hypercholesterolaemia state that there is not sufficient evidence to recommend their use in subjects with hypercholesterolaemia. The main objective of this study is to determine the efficacy of the intake of 2 g of plant sterol esters a day in lowering LDL-cholesterol levels in patients diagnosed with hypercholesterolaemia. The specific objectives are: 1) to quantify the efficacy of the daily intake of plant sterol esters in lowering LDL-cholesterol, total cholesterol and cardiovascular risk in patients with hypercholesterolaemia; 2) to evaluate the occurrence of adverse effects of the daily intake of plant sterol esters; 3) to identify the factors that determine a greater reduction in lipid levels in subjects receiving plant sterol ester supplements. Methods/Design Randomised, double-blind, placebo controlled experimental trial carried out at family doctors' surgeries at three health centres in the Health Area of Albacete (Spain). The study subjects will be adults diagnosed with "limit" or "defined" hypercholesterolaemia and who have LDL cholesterol levels of 130 mg/dl or over. A dairy product in the form of liquid yoghurt containing 2 g of plant sterol ester per container will be administered daily after the main meal, for a period of 24 months. The control group will receive a daily unit of yogurt not supplemented with plant sterol esters that has a similar appearance to the enriched yoghurt. The primary variable is the change in lipid profile at 1, 3, 6, 12, 18 and 24 months. The secondary variables are: change in cardiovascular risk, adherence to the dairy product, adverse effects, adherence to dietary recommendations, frequency of food consumption, basic physical examination data, health problems, lipid-lowering medication, physical activity, smoking habits and socio-demographic variables. Discussion If plant sterol ester supplements were effective a sounder recommendation for the consumption of plant sterols in subjects with hypercholesterolaemia could be made. Trial Registration Current Controlled Trials NCT01406106. PMID:21910898

  13. Plant phloem sterol content: forms, putative functions, and implications for phloem-feeding insects 

    E-print Network

    Behmer, Spencer T.; Olszewski, Nathan; Sebastiani, John; Palka, Sydney; Sparacino, Gina; Sciarrno, Elizabeth; Grebenok, Robert J.

    2013-09-24

    to which phloem sterols occur as free sterols, acylated sterols and/or steryl glycosides in two model plant sys- tems: bean (Phaseolus vulgaris) and tobacco (Nicotiana tabacum). The second objective was to determine, for each sterol class (free...). REFERENCES Aguirre, M. R., Ruiz-Mendez, M. V., Velasco, L., and Dobarganes, M. C. (2012). Free sterols and steryl gly- cosides in sunflower seeds with high phytosterol contents. Eur. J. Lipid Sci. Technol. 114, 1212?1216. doi: 10.1002/ejlt.201200007...

  14. Plant sterols and host plant suitability for a phloem-feeding insect

    E-print Network

    Eubanks, Micky

    by metabolizing plant phytosterols. Currently, little is known about sterols in plant phloem sap of leaves from two plant species, Chinese cabbage and tobacco, were domi- nated by the phytosterols a small amount of cholesterol, but their dominant sterols are phytosterols, which are variants

  15. Plant Oxidosqualene Metabolism: Cycloartenol Synthase–Dependent Sterol Biosynthesis in Nicotiana benthamiana

    PubMed Central

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J.; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9?,19-cyclolanost-24-en-3?-ol) and not lanosterol (lanosta-8,24-dien-3?-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-?5-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis. PMID:25343375

  16. Enzyme catalyzed synthesis of structured phospholipids with conjugated linoleic acid and plant sterols 

    E-print Network

    Hossen, Md Monjur

    2006-08-16

    5.1.3 Cholesterol lowering effect of plant sterols.................................93 5.1.4 Cholesterol metabolism in human body......................................93 5.1.4.1 Intestinal absorption.......................................................94 5.1.4.2 Endogenous synthesis .................................................95 5.1.5 Proposed cholesterol lowering mechanism of plant sterols .........96 5.1.5.1 Mixed crystal formation of beta-sitosterol and cholesterol...

  17. Serum lipid and antioxidant responses in hypercholesterolemic men and women receiving plant sterol esters vary by apolipoprotein E genotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant sterol esters reduce serum total cholesterol (TC) and LDL cholesterol (LDL-C), but with striking inter-individual variability. In this randomized, double-blind, controlled study, serum lipid, plant sterol, fat-soluble vitamin, and carotenoid responses to plant sterols were studied according to...

  18. Unsaturated lipid matrices protect plant sterols from degradation during heating treatment.

    PubMed

    Barriuso, Blanca; Astiasarán, Iciar; Ansorena, Diana

    2016-04-01

    The interest in plant sterols enriched foods has recently enhanced due to their healthy properties. The influence of the unsaturation degree of different fatty acids methyl esters (FAME: stearate, oleate, linoletate and linolenate) on a mixture of three plant sterols (PS: campesterol, stigmasterol and ?-sitosterol) was evaluated at 180°C for up to 180min. Sterols degraded slower in the presence of unsaturated FAME. Both PS and FAME degradation fit a first order kinetic model (R(2)>0.9). Maximum oxysterols concentrations were achieved at 20min in neat PS and 120min in lipid mixtures and this maximum amount decreased with increasing their unsaturation degree. In conclusion, the presence of FAME delayed PS degradation and postponed oxysterols formation. This protective effect was further promoted by increasing the unsaturation degree of FAME. This evidence could help industries to optimize the formulation of sterol-enriched products, so that they could maintain their healthy properties during cooking or processing. PMID:26593514

  19. Plant sterols: factors affecting their efficacy and safety as functional food ingredients

    PubMed Central

    Berger, Alvin; Jones, Peter JH; Abumweis, Suhad S

    2004-01-01

    Plant sterols are naturally occurring molecules that humanity has evolved with. Herein, we have critically evaluated recent literature pertaining to the myriad of factors affecting efficacy and safety of plant sterols in free and esterified forms. We conclude that properly solubilized 4-desmetyl plant sterols, in ester or free form, in reasonable doses (0.8–1.0 g of equivalents per day) and in various vehicles including natural sources, and as part of a healthy diet and lifestyle, are important dietary components for lowering low density lipoprotein (LDL) cholesterol and maintaining good heart health. In addition to their cholesterol lowering properties, plant sterols possess anti-cancer, anti-inflammatory, anti-atherogenicity, and anti-oxidation activities, and should thus be of clinical importance, even for those individuals without elevated LDL cholesterol. The carotenoid lowering effect of plant sterols should be corrected by increasing intake of food that is rich in carotenoids. In pregnant and lactating women and children, further study is needed to verify the dose required to decrease blood cholesterol without affecting fat-soluble vitamins and carotenoid status. PMID:15070410

  20. An Antifungal Benzimidazole Derivative Inhibits Ergosterol Biosynthesis and Reveals Novel Sterols.

    PubMed

    Keller, Petra; Müller, Christoph; Engelhardt, Isabel; Hiller, Ekkehard; Lemuth, Karin; Eickhoff, Holger; Wiesmüller, Karl-Heinz; Burger-Kentischer, Anke; Bracher, Franz; Rupp, Steffen

    2015-10-01

    Fungal infections are a leading cause of morbidity and death for hospitalized patients, mainly because they remain difficult to diagnose and to treat. Diseases range from widespread superficial infections such as vulvovaginal infections to life-threatening systemic candidiasis. For systemic mycoses, only a restricted arsenal of antifungal agents is available. Commonly used classes of antifungal compounds include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapies, significant side effects, and high costs for several antifungals, there is a need for new antifungals in the clinic. In order to expand the arsenal of compounds with antifungal activity, we previously screened a compound library using a cell-based screening assay. A set of novel benzimidazole derivatives, including (S)-2-(1-aminoisobutyl)-1-(3-chlorobenzyl)benzimidazole (EMC120B12), showed high antifungal activity against several species of pathogenic yeasts, including Candida glabrata and Candida krusei (species that are highly resistant to antifungals). In this study, comparative analysis of EMC120B12 versus fluconazole and nocodazole, using transcriptional profiling and sterol analysis, strongly suggested that EMC120B12 targets Erg11p in the ergosterol biosynthesis pathway and not microtubules, like other benzimidazoles. In addition to the marker sterol 14-methylergosta-8,24(28)-dien-3?,6?-diol, indicating Erg11p inhibition, related sterols that were hitherto unknown accumulated in the cells during EMC120B12 treatment. The novel sterols have a 3?,6?-diol structure. In addition to the identification of novel sterols, this is the first time that a benzimidazole structure has been shown to result in a block of the ergosterol pathway. PMID:26248360

  1. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation.

    PubMed

    Stong, Rachel A; Kolodny, Eli; Kelsey, Rick G; González-Hernández, M P; Vivanco, Jorge M; Manter, Daniel K

    2013-06-01

    Elicitin-mediated acquisition of plant sterols is required for growth and sporulation of Phytophthora spp. This study examined the interactions between elicitins, sterols, and tannins. Ground leaf tissue, sterols, and tannin-enriched extracts were obtained from three different plant species (California bay laurel, California black oak, and Oregon white oak) in order to evaluate the effect of differing sterol/tannin contents on Phytophthora ramorum growth. For all three species, high levels of foliage inhibited P. ramorum growth and sporulation, with a steeper concentration dependence for the two oak samples. Phytophthora ramorum growth and sporulation were inhibited by either phytosterols or tannin-enriched extracts. High levels of sterols diminished elicitin gene expression in P. ramorum; whereas the tannin-enriched extract decreased the amount of 'functional' or ELISA-detectable elicitin, but not gene expression. Across all treatment combinations, P. ramorum growth and sporulation correlated strongly with the amount of ELISA-detectable elicitin (R (2)?= 0.791 and 0.961, respectively). PMID:23689874

  2. Plant sterol consumption frequency affects plasma lipid levels and cholesterol kinetics in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Objectives: To compare the efficacy of single versus multiple doses of plant sterols on circulating lipid level and cholesterol trafficking. Subjects/Methods: A randomized, placebo-controlled, three-phase (6 days/phase) crossover, supervised feeding trial was conducted in 19 subjects. Sub...

  3. Cell-free transfer of sterols by plant fractions

    SciTech Connect

    Morre, D.J.; Wilkinson, F.E.; Morre, D.M. ); Moreau, P. ); Sandelius, A.S. ); Penel, C.; Greppin, H. )

    1990-05-01

    Microsomes from etiolated hypocotyls of soybean or leaves of light-grown spinach radiolabeled in vivo with ({sup 3}H)acetate or in vitro with ({sup 3}H)squalene or ({sup 3}H)cholesterol as donor transferred radioactivity to unlabeled acceptor membranes immobilized on nitrocellulose. Most efficient transfer was with plasma membrane or tonoplast as the acceptor. The latter were highly purified by aqueous two-phase partition (plasma membrane) and preparative free-flow electrophoresis (tonoplast and plasma membrane). Plasma membrane- and tonoplast-free microsomes and purified mitochondria were less efficient acceptors. Sterol transfer was verified by thin-layer chromatography of extracted lipids. Transfer was time- and temperature-dependent, required ATP but was not promoted by cytosol. The nature of the donor (endoplasmic reticulum, Golgi apparatus or both) and of the transfer mechanism is under investigation.

  4. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in ?(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by ?(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All ?(7)-sterols identified (?(7)-stigmastenyl, spinasteryl, ?(7)-campesteryl, ?(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized ?(7)-sterols, or ?(5)-sterols if present, and could be identified as ?(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% ?(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of ?(7)-stigmastenol was determined. The artifact of ?(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG. PMID:25757602

  5. Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers.

    PubMed Central

    Schuler, I; Milon, A; Nakatani, Y; Ourisson, G; Albrecht, A M; Benveniste, P; Hartman, M A

    1991-01-01

    To gain some insight into the structural and functional roles of sterols in higher plant cells, various plant sterols have been incorporated into soybean phosphatidylcholine (PtdCho) bilayers and tested for their ability to regulate water permeability and acyl chain ordering. Sitosterol was the most efficient sterol in reducing the water permeability of these vesicles and stigmasterol appeared to have no significant effect. Vesicles containing 24zeta-methylcholesterol exhibited an intermediate behavior, similar to that of vesicles containing cholesterol. Cycloartenol, the first cyclic biosynthetic precursor of plant sterols, reduced the water permeability in a very effective way. Of two unusual plant sterols, 24-methylpollinastanol and 14alpha,24zeta-dimethylcholest-8-en-3beta-ol, the former was found to be functionally equivalent to sitosterol and the latter was found to be relatively inefficient. 2H NMR experiments have been performed with oriented bilayers consisting of soybean PtdCho with sitosterol, stigmasterol, or 24-methylpollinastanol. The results provided clear evidence that sitosterol and 24zeta-methylpollinastanol exhibit a high efficiency to order PtdCho acyl chains that closely parallels their ability to reduce water permeability. By contrast, stigmasterol shows a low efficiency for both functions. These results show that sitosterol and stigmasterol, two major 24-ethylsterols differing only by the absence or presence of the Delta22 double bond in the side chain, probably play different roles in regulating plant membrane properties; they also may explain why 9beta,19-cyclopropylsterols behave as good surrogates of sitosterol. PMID:11607205

  6. SHORT-TERM EFFICACY OF PLANT STEROLS CONSUMED AT BREAKFAST OR AT EACH MEAL IN LOWERING BLOOD CHOLESTEROL LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To compare under controlled conditions the effect of plant sterol consumed as a single morning dose or divided through the day on blood lipid profile. Method: A randomized, placebo-controlled, crossover-feeding, single blind trial was conducted in 19 subjects with LDL- cholesterol level...

  7. Genetic Variation in Plant CYP51s Confers Resistance against Voriconazole, a Novel Inhibitor of Brassinosteroid-Dependent Sterol Biosynthesis

    PubMed Central

    Rozhon, Wilfried; Husar, Sigrid; Kalaivanan, Florian; Khan, Mamoona; Idlhammer, Markus; Shumilina, Daria; Lange, Theo; Hoffmann, Thomas; Schwab, Wilfried; Fujioka, Shozo; Poppenberger, Brigitte

    2013-01-01

    Brassinosteroids (BRs) are plant steroid hormones with structural similarity to mammalian sex steroids and ecdysteroids from insects. The BRs are synthesized from sterols and are essential regulators of cell division, cell elongation and cell differentiation. In this work we show that voriconazole, an antifungal therapeutic drug used in human and veterinary medicine, severely impairs plant growth by inhibiting sterol-14?-demethylation and thereby interfering with BR production. The plant growth regulatory properties of voriconazole and related triazoles were identified in a screen for compounds with the ability to alter BR homeostasis. Voriconazole suppressed growth of the model plant Arabidopsis thaliana and of a wide range of both monocotyledonous and dicotyledonous plants. We uncover that voriconazole toxicity in plants is a result of a deficiency in BRs that stems from an inhibition of the cytochrome P450 CYP51, which catalyzes a step of BR-dependent sterol biosynthesis. Interestingly, we found that the woodland strawberry Fragaria vesca, a member of the Rosaceae, is naturally voriconazole resistant and that this resistance is conferred by the specific CYP51 variant of F. vesca. The potential of voriconazole as a novel tool for plant research is discussed. PMID:23335967

  8. Sterols of the fungi - Distribution and biosynthesis

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1973-01-01

    The importance of sterols in the growth and reproduction in fungi is becoming increasingly apparent. This article concerns the composition and biosynthesis of ergosterol in these organisms. Comparison to plant and animal sterol formation are made.

  9. Sterols of the fungi - Distribution and biosynthesis.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1973-01-01

    The importance of sterols in the growth and reproduction in fungi is becoming increasingly apparent. This article concerns the composition and biosynthesis of ergosterol in these organisms. Comparison to plant and animal sterol formation are made.

  10. Systematic haplotype analysis resolves a complex plasma plant sterol locus on the Micronesian Island of Kosrae

    PubMed Central

    Kenny, Eimear E.; Gusev, Alexander; Riegel, Kaitlin; Lütjohann, Dieter; Lowe, Jennifer K.; Salit, Jacqueline; Maller, Julian B.; Stoffel, Markus; Daly, Mark J.; Altshuler, David M.; Friedman, Jeffrey M.; Breslow, Jan L.; Pe'er, Itsik; Sehayek, Ephraim

    2009-01-01

    Pinpointing culprit causal variants along signal peaks of genome-wide association studies (GWAS) is challenging. To overcome confounding effects of multiple independent variants at such a locus and narrow the interval for causal allele capture, we developed an approach that maps local shared haplotypes harboring a putative causal variant. We demonstrate our method in an extreme isolate founder population, the pacific Island of Kosrae. We analyzed plasma plant sterol (PPS) levels, a surrogate measure of cholesterol absorption from the intestine, where previous studies have implicated 2p21 mutations in the ATP binding cassette subfamily G members 5 or 8 (ABCG5 or ABCG8) genes. We have previously reported that 11.1% of the islanders are carriers of a frameshift ABCG8 mutation increasing PPS levels in carriers by 50%. GWAS adjusted for this mutation revealed genomewide significant signals along 11 Mb around it. To fine-map this signal, we detected pairwise identity-by-descent haplotypes using our tool GERMLINE and implemented a clustering algorithm to identify haplotypes shared across multiple samples with their unique shared boundaries. A single 526-kb haplotype mapped strongly to PPS levels, dramatically refining the mapped interval. This haplotype spans the ABCG5/ABCG8 genes, is carried by 1.8% of the islanders, and results in a striking 100% increase of PPS in carriers. Resequencing of ABCG5 in these carriers found a D450H missense mutation along the associated haplotype. These findings exemplify the power of haplotype analysis for mapping mutations in isolated populations and specifically for dissecting effects of multiple variants of the same locus. PMID:19667188

  11. Effects of Dietary Plant Sterols and Stanol Esters with Low- and High-Fat Diets in Chronic and Acute Models for Experimental Colitis

    PubMed Central

    te Velde, Anje A.; Brüll, Florence; Heinsbroek, Sigrid E. M.; Meijer, Sybren L.; Lütjohann, Dieter; Vreugdenhil, Anita; Plat, Jogchum

    2015-01-01

    In this study, we evaluated the effects of dietary plant sterols and stanols as their fatty acid esters on the development of experimental colitis. The effects were studied both in high- and low-fat diet conditions in two models, one acute and another chronic model of experimental colitis that resembles gene expression in human inflammatory bowel disease (IBD). In the first experiments in the high fat diet (HFD), we did not observe a beneficial effect of the addition of plant sterols and stanols on the development of acute dextran sulphate sodium (DSS) colitis. In the chronic CD4CD45RB T cell transfer colitis model, we mainly observed an effect of the presence of high fat on the development of colitis. In this HFD condition, the presence of plant sterol or stanol did not result in any additional effect. In the second experiments with low fat, we could clearly observe a beneficial effect of the addition of plant sterols on colitis parameters in the T cell transfer model, but not in the DSS model. This positive effect was related to the gender of the mice and on Treg presence in the colon. This suggests that especially dietary plant sterol esters may improve intestinal inflammation in a T cell dependent manner. PMID:26501315

  12. Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.

    PubMed

    Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel

    2015-11-01

    Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:26626241

  13. Determination of plant stanols and plant sterols in phytosterol enriched foods with a gas chromatographic-flame ionization detection method: NMKL collaborative study.

    PubMed

    Laakso, Päivi H

    2014-01-01

    This collaborative study with nine participating laboratories was conducted to determine the total plant sterol and/or plant stanol contents in phytosterol fortified foods with a gas chromatographic method. Four practice and 12 test samples representing mainly commercially available foodstuffs were analyzed as known replicates. Twelve samples were enriched with phytosterols, whereas four samples contained only natural contents of phytosterols. The analytical procedure consisted of two alternative approaches: hot saponification method, and acid hydrolysis treatment prior to hot saponification. As a result, sterol/stanol compositions and contents in the samples were measured. The amounts of total plant sterols and total plant stanols varying from 0.005 to 8.04 g/100 g product were statistically evaluated after outliers were eliminated. The repeatability RSD (RSDr) varied from 1.34 to 17.13%. The reproducibility RSD (RSDR) ranged from 3.03 to 17.70%, with HorRat values ranging from 0.8 to 2.1. When only phytosterol enriched food test samples are considered, the RSDr ranged from 1.48 to 6.13%, the RSD, ranged from 3.03 to 7.74%, and HorRat values ranged from 0.8 to 2.1. Based on the results of this collaborative study, the study coordinator concludes the method is fit for its purpose. PMID:25145144

  14. Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic

    E-print Network

    of these two sterols to terrigenous vascular plants. A good corre- lation was observed between the extent. To explain the specific induction of autoxidation on vascular plant-derived material, a mechanism involving higher plant debris increasing the proportion of highly degraded vascular plant material in the SPM

  15. Brassinolide, a plant sterol from pollen of Brassica napus L., induces apoptosis in human prostate cancer PC-3 cells.

    PubMed

    Wu, Yao-Dong; Lou, Yi-Jia

    2007-05-01

    Brassinolide is a plant sterol first isolated from pollen of rape (Brassica napus L.). The present study was carried out to investigate the effect of brassinolide on androgen-independent human prostate cancer PC-3 cell viability. Results showed that brassinolide could induce a time and concentration-dependent cytotoxicity in PC-3 cells. The mode of cell death appeared to be predominately apoptosis, as shown by flow-cytometric analysis, fluorescence and transmission electron microscopes. Caspase-3 activity was obviously increased after brassinolide treatment. Western blot studies indicated that treatment with brassinolide triggered a time-dependent decrease in the expression of anti-apoptotic protein Bcl-2. We suggest that brassinolide could induce cytotoxicity in PC-3 cells by triggering apoptosis. Brassinolide might therefore be a promising candidate for the treatment of prostate cancer. PMID:17557751

  16. Effects of Sterol Structure on Insect Herbivore Physiology, Biochemistry and Molecular Biology 

    E-print Network

    Jing, Xiangfeng

    2012-02-14

    . Cholesterol is the most common sterol in plant-feeding insects, but because plants contain very little cholesterol, plant-feeding insects must convert plant sterols into cholesterol. In this dissertation I investigate the effect of common and novel plant...

  17. The Effects of Sterols on Drosophila melanogaster: Physiology and Biochemistry 

    E-print Network

    Martin, Angela Michele

    2015-08-08

    from their food. Cholesterol is the typical sterol recovered from animals, including most insects. Plant and fungal sterols differ structurally from cholesterol, mostly in side chain configuration and the number and position of double bonds. In the lab...

  18. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    PubMed

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14?-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species. PMID:25416794

  19. Flaxseed Oil Containing ?-Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice

    PubMed Central

    Han, Hao; Yan, Peipei; Chen, Li; Luo, Cheng; Gao, Hui; Deng, Qianchun; Zheng, Mingming; Shi, Yong; Liu, Liegang

    2015-01-01

    Plant sterols (PS) have potential preventive function in atherosclerosis due to their cholesterol-lowering ability. Dietary ?-linolenic acid in flaxseed oil is associated with a reduction in cardiovascular events through its hypolipidemic and anti-inflammation properties. This study was designed to evaluate the effects of flaxseed oil containing ?-linolenic acid ester of PS (ALA-PS) on atherosclerosis and investigate the underlying mechanisms. C57BL/6 mice were administered a regular diet and apoE knockout (apoE-KO) mice were given a high fat diet alone or supplemented with 5% flaxseed oil with or without 3.3% ALA-PS for 18 weeks. Results demonstrated that flaxseed oil containing ALA-PS was synergistically interaction in ameliorating atherosclerosis as well as optimizing overall lipid levels, inhibiting inflammation and reducing oxidative stress. These data were associated with the modification effects on expression levels of genes involved in lipid metabolism (PPAR?, HMGCR, and SREBPs), inflammation (IL-6, TNF, MCP-1, and VCAM-1), and oxidative stress (NADPH oxidase). PMID:26180602

  20. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters.

    PubMed

    Espinosa, Raquel Rainho; Inchingolo, Raffaella; Alencar, Severino Matias; Rodriguez-Estrada, Maria Teresa; Castro, Inar Alves

    2015-09-01

    The effect of eleven compounds extracted from red propolis on the oxidative stability of a functional emulsion was evaluated. Emulsions prepared with Echium oil as omega 3 (?-3 FA) source, containing 1.63 g/100mL of ?-linolenic acid (ALA), 0.73 g/100 mL of stearidonic acid (SDA) and 0.65 g/100mL of plant sterol esters (PSE) were prepared without or with phenolic compounds (vanillic acid, caffeic acid, trans-cinnamic acid, 2,4-dihydroxycinnamic acid, p-coumaric acid, quercetin, trans-ferulic acid, trans,trans-farnesol, rutin, gallic acid or sinapic acid). tert-Butylhydroquinone and a mixture containing ascorbic acid and FeSO4 were applied as negative and positive controls of the oxidation. Hydroperoxide, thiobarbituric acid reactive substances (TBARS), malondialdehyde and phytosterol oxidation products (POPs) were evaluated as oxidative markers. Based on hydroperoxide and TBARS analysis, sinapic acid and rutin (200 ppm) showed the same antioxidant activity than TBHQ, representing a potential alternative as natural antioxidant to be applied in a functional emulsion containing ?-3 FA and PSE. PMID:25842314

  1. Cholesterol Esters (CE) Derived from Hepatic Sterol O-Acyltransferase 2 (SOAT2) are Associated with More Atherosclerosis than CE from Intestinal SOAT2

    PubMed Central

    Zhang, Jun; Sawyer, Janet K.; Marshall, Stephanie M.; Kelley, Kathryn L.; Davis, Matthew A.; Wilson, Martha D.; Brown, J. Mark; Rudel, Lawrence L.

    2014-01-01

    Rationale Cholesterol esters (CE), especially cholesterol oleate, generated by hepatic and intestinal sterol O-acyltransferase 2 (SOAT2) play a critical role in cholesterol homeostasis. However, it is unknown if the contribution of intestine-derived CE from SOAT2 would have similar effects in promoting atherosclerosis progression as for liver-derived CE. Objective To test whether, in low-density lipoprotein receptor null (LDLr?/?) mice, the conditional knockout of intestinal SOAT2 (SOAT2SI-/SI-) or hepatic SOAT2 (SOAT2L-/L-) would equally limit atherosclerosis development when compared to the global deletion of SOAT2 (SOAT2?/?). Methods and Results SOAT2 conditional knockout mice were bred with LDLr?/? mice creating LDLr?/? mice with each of the specific SOAT2 gene deletions. All mice then were fed an atherogenic diet for 16 weeks. SOAT2SI-/SI-LDLr?/? and SOAT2?/? LDLr?/? mice had significantly lower levels of intestinal cholesterol absorption, more fecal sterol excretion, and lower biliary cholesterol levels. Analysis of plasma LDL showed that all mice with SOAT2 gene deletions had LDL CE with reduced percentages of cholesterol palmitate and cholesterol oleate. Each of the LDLr?/? mice with SOAT2 gene deletions had lower accumulations of total cholesterol and CE in the liver compared with control mice. Finally, aortic atherosclerosis development was significantly lower in all mice with global or tissue-restricted SOAT2 gene deletions. Nevertheless, SOAT2?/? LDLr?/? and SOAT2L-/L-LDLr?/? mice had less aortic CE accumulation and smaller aortic lesions than SOAT2SI-/SI-LDLr?/? mice. Conclusions SOAT2-derived CE from both the intestine and liver significantly contribute to the development of atherosclerosis, although the CE from the hepatic enzyme appeared to promote more atherosclerosis development. PMID:25239141

  2. The effect of a low-fat spread with added plant sterols on vascular function markers: results of the Investigating Vascular Function Effects of Plant Sterols (INVEST) study12345

    PubMed Central

    Ras, Rouyanne T; Fuchs, Dagmar; Koppenol, Wieneke P; Garczarek, Ursula; Greyling, Arno; Keicher, Christian; Verhoeven, Carole; Bouzamondo, Hakim; Wagner, Frank; Trautwein, Elke A

    2015-01-01

    Background: Plant sterols (PSs) lower LDL cholesterol, an established risk factor for coronary artery disease (CAD). No direct evidence is available supporting a reduced risk of CAD for foods with added PSs. Endothelial dysfunction is seen as an early indicator of atherosclerotic damage. Objectives: This study was primarily designed to investigate the effect of a low-fat spread with added PSs on brachial artery endothelial function as measured by flow-mediated dilation (FMD). Second, effects on arterial stiffness, blood pressure, serum lipids, and plasma PS concentrations were investigated. We hypothesized that PSs would not worsen FMD but would rather modestly improve FMD. Design: This study had a double-blind, randomized, placebo-controlled, parallel design. After a 4-wk run-in period, 240 hypercholesterolemic but otherwise healthy men and women consumed 20 g/d of low-fat spread without (control) or with added PSs (3 g/d) during 12 wk. Pre- and postintervention, vascular function measurements and blood sampling were performed. Results: In total, 232 participants completed the study period. For the primary endpoint FMD, 199 participants were included in the statistical analysis. PS intake did not affect FMD (+0.01 percentage points; 95% CI: ?0.73, 0.75) compared with control. Measures of arterial stiffness (pulse wave velocity and augmentation index) and blood pressure were also not significantly changed compared with control. After PS intervention, LDL cholesterol significantly decreased on average by 0.26 mmol/L (95% CI: ?0.40, ?0.12) or 6.7% compared with control. Plasma sitosterol and campesterol concentrations significantly increased in the PS group up to on average 11.5 ?mol/L and 13.9 ?mol/L (expressed as geometric means), respectively. Conclusions: The intake of a low-fat spread with added PSs neither improved nor worsened FMD or other vascular function markers in hypercholesterolemic men and women. As expected, serum LDL cholesterol decreased, whereas plasma PSs increased after PS intake. This study was registered at clinicaltrials.gov as NCT01803178. PMID:25809853

  3. Brassinosteroid/Sterol Synthesis and Plant Growth as Affected by lka and lkb Mutations of Pea1

    PubMed Central

    Nomura, Takahito; Kitasaka, Yukiko; Takatsuto, Suguru; Reid, James B.; Fukami, Motohiro; Yokota, Takao

    1999-01-01

    The dwarf pea (Pisum sativum) mutants lka and lkb are brassinosteroid (BR) insensitive and deficient, respectively. The dwarf phenotype of the lkb mutant was rescued to wild type by exogenous application of brassinolide and its biosynthetic precursors. Gas chromatography-mass spectrometry analysis of the endogenous sterols in this mutant revealed that it accumulates 24-methylenecholesterol and isofucosterol but is deficient in their hydrogenated products, campesterol and sitosterol. Feeding experiments using 2H-labeled 24-methylenecholesterol indicated that the lkb mutant is unable to isomerize and/or reduce the ?24(28) double bond. Dwarfism of the lkb mutant is, therefore, due to BR deficiency caused by blocked synthesis of campesterol from 24-methylenecholesterol. The lkb mutation also disrupted sterol composition of the membranes, which, in contrast to those of the wild type, contained isofucosterol as the major sterol and lacked stigmasterol. The lka mutant was not BR deficient, because it accumulated castasterone. Like some gibberellin-insensitive dwarf mutants, overproduction of castasterone in the lka mutant may be ascribed to the lack of a feedback control mechanism due to impaired perception/signal transduction of BRs. The possibility that castasterone is a biologically active BR is discussed. PMID:10198111

  4. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp. PMID:26168138

  5. Plant-derived nanostructures: types and applications

    EPA Science Inventory

    Plant-derived nanostructures and nanoparticles (NPs) have functional applications in numerous disciplines such as health care, food and feed, cosmetics, biomedical science, energy science, drug-gene delivery, environmental health, and so on. Consequently, it is imperative for res...

  6. A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols ?-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.

    PubMed

    Mannock, David A; Benesch, Matthew G K; Lewis, Ruthven N A H; McElhaney, Ronald N

    2015-08-01

    We performed comparative DSC and FTIR spectroscopic measurements of the effects of ?-sitosterol (Sito) and stigmasterol (Stig) on the thermotropic phase behavior and organization of DPPC bilayers. Sito and Stig are the major sterols in the biological membranes of higher plants, whereas cholesterol (Chol) is the major sterol in mammalian membranes. Sito differs in structure from Chol in having an ethyl group at C24 of the alkyl side-chain, and Stig in having both the C24 ethyl group and trans-double bond at C22. Our DSC studies indicate that the progressive incorporation of Sito and Stig decrease the temperature and cooperativity of the pretransition of DPPC to a slightly lesser and greater extent than Chol, respectively, but the pretransition persists to 10 mol % sterol concentration in all cases. All three sterols produce essentially identical effects on the thermodynamic parameters of the sharp component of the DPPC main phase transition. However, the ability to increase the temperature and decrease the cooperativity and enthalpy of the broad component decreases in the order Chol>Sito>Stig. Nevertheless, at higher Sito/Stig concentrations, there is no evidence of sterol crystallites. Our FTIR spectroscopic studies demonstrate that Sito and especially Stig incorporation produces a smaller ordering of the hydrocarbon chains of fluid DPPC bilayers than does Chol. In general, the presence of a C24 ethyl group in the alkyl side-chain reduces the characteristic effects of Chol on the thermotropic phase behavior and organization of DPPC bilayer membranes, and a trans-double bond at C22 magnifies this effect. PMID:25911208

  7. A Molecular Mechanics Force Field for Biologically Important Sterols

    E-print Network

    Ullmann, G. Matthias

    of the cholesterol crystal structure. The experimental geometry and cell dimensions are well reproduced. The force field derived here is also useful for simulating other sterols such as the phytosterols sigmasterol

  8. Sterol Composition in Infant Formulas and Estimated Intake.

    PubMed

    Claumarchirant, Lorena; Matencio, Esther; Sanchez-Siles, Luis Manuel; Alegría, Amparo; Lagarda, María Jesús

    2015-08-19

    Sterol contents in infant formulas (IFs) from the European market were determined, and their intakes by infants between 0 and 6 months were evaluated. Total animal sterols (mg/100 mL) ranged from 1.71 to 5.46, cholesterol being the main animal sterol (1.46-5.1). In general, cholesterol and desmosterol were lower than the human milk (HM) values indicated by other authors. Total plant sterol (mg/100 mL) ranged from 3.1 to 5.0. ?-Sitosterol, the most abundant phytosterol, ranged from 1.82 to 3.01, followed by campesterol (0.72-1.15), stigmasterol (0.27-0.53), and brassicasterol (0.14-0.28). Cholesterol intake (mg/day) ranged from 9 to 51 and plant sterol intake (mg/day) from 19 to 50. The sterol profile of IFs is highly dependent on the type and quantity of fats used in their formula. The use of bovine milk fat and milk fat globule membrane in the IFs can approximate the profile of animal sterols to those found in HM, though cholesterol intakes in breastfed infants are still higher than in formula-fed infants. PMID:26242905

  9. Phylogenetic Distribution of Fungal Sterols

    PubMed Central

    Weete, John D.; Abril, Maritza; Blackwell, Meredith

    2010-01-01

    Background Ergosterol has been considered the “fungal sterol” for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. Methodology/Principal Findings The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other ?5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -?5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade), and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28)-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. Conclusions/Significance Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol), and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles) target reactions in the synthesis of ergosterol. These findings also invalidate use of ergosterol as an indicator of biomass of certain fungal taxa (e.g., Glomeromycota). Data from this study are available from the Assembling the Fungal Tree of Life (AFTOL) Structural and Biochemical Database: http://aftol.umn.edu. PMID:20526375

  10. Arabidopsis ERG28 Tethers the Sterol C4-Demethylation Complex to Prevent Accumulation of a Biosynthetic Intermediate That Interferes with Polar Auxin Transport[C][W

    PubMed Central

    Mialoundama, Alexis Samba; Jadid, Nurul; Brunel, Julien; Di Pascoli, Thomas; Heintz, Dimitri; Erhardt, Mathieu; Mutterer, Jérôme; Bergdoll, Marc; Ayoub, Daniel; Van Dorsselaer, Alain; Rahier, Alain; Nkeng, Paul; Geoffroy, Philippe; Miesch, Michel; Camara, Bilal; Bouvier, Florence

    2013-01-01

    Sterols are vital for cellular functions and eukaryotic development because of their essential role as membrane constituents. Sterol biosynthetic intermediates (SBIs) represent a potential reservoir of signaling molecules in mammals and fungi, but little is known about their functions in plants. SBIs are derived from the sterol C4-demethylation enzyme complex that is tethered to the membrane by Ergosterol biosynthetic protein28 (ERG28). Here, using nonlethal loss-of-function strategies focused on Arabidopsis thaliana ERG28, we found that the previously undetected SBI 4-carboxy-4-methyl-24-methylenecycloartanol (CMMC) inhibits polar auxin transport (PAT), a key mechanism by which the phytohormone auxin regulates several aspects of plant growth, including development and responses to environmental factors. The induced accumulation of CMMC in Arabidopsis erg28 plants was associated with diagnostic hallmarks of altered PAT, including the differentiation of pin-like inflorescence, loss of apical dominance, leaf fusion, and reduced root growth. PAT inhibition by CMMC occurs in a brassinosteroid-independent manner. The data presented show that ERG28 is required for PAT in plants. Furthermore, it is accumulation of an atypical SBI that may act to negatively regulate PAT in plants. Hence, the sterol pathway offers further prospects for mining new target molecules that could regulate plant development. PMID:24326590

  11. Effect of fermented milk product containing lactotripeptides and plant sterol esters on haemodynamics in subjects with the metabolic syndrome--a randomised, double-blind, placebo-controlled study.

    PubMed

    Hautaniemi, Elina J; Tikkakoski, Antti J; Tahvanainen, Anna; Nordhausen, Klaus; Kähönen, Mika; Mattsson, Tiina; Luhtala, Satu; Turpeinen, Anu M; Niemelä, Onni; Vapaatalo, Heikki; Korpela, Riitta; Pörsti, Ilkka H

    2015-08-14

    We investigated the effects of fermented milk product containing isoleucine-proline-proline, valine-proline-proline and plant sterol esters (Pse) on plasma lipids, blood pressure (BP) and its determinants systemic vascular resistance and cardiac output. In a randomised, double-blind, placebo-controlled study, 104 subjects with the metabolic syndrome (MetS) were allocated to three groups in order to receive fermented milk product containing (1) 5 mg/d lactotripeptides (LTP) and 2 g/d plant sterols; (2) 25 mg/d LTP and 2 g/d plant sterols; (3) placebo for 12 weeks. Plasma lipids and home BP were monitored. Haemodynamics were examined in a laboratory using radial pulse wave analysis and whole-body impedance cardiography in the supine position and during orthostatic challenge. There were no differences between the effects of the two treatments and placebo on the measurements of BP at home or on BP, systemic vascular resistance index and cardiac index in the laboratory, neither in the supine nor in the upright position. The changes in plasma LDL-cholesterol concentration were - 0.1 (95% CI - 0.3, 0.1 and - 0.3, 0.0) mmol/l in the 5 and 25 mg/d LTP groups, respectively, and +0.1 (95% CI - 0.1, 0.3) mmol/l during placebo (P= 0.024). Both at baseline and at week 12, the increase in systemic vascular resistance during head-up tilt was lower in the 25 mg/d LTP group than in the 5 mg/d LTP group (P< 0.01), showing persistent differences in cardiovascular regulation between these groups. In subjects with the MetS, intake of LTP and Pse in fermented milk product showed a lipid-lowering effect of borderline significance, while no antihypertensive effect was observed at home or in the laboratory. PMID:26168857

  12. The Effects of Sterol Structure upon Sterol Esterification

    PubMed Central

    Lin, Don; Steiner, Robert D.; Merkens, Louise S.; Pappu, Anuradha S.; Connor, William E.

    2011-01-01

    Cholesterol is esterified in mammals by two enzymes: LCAT (lecithin cholesterol acyltransferase) in plasma and ACAT1 and ACAT2 (acyl-CoA cholesterol acyltransferases) in the tissues. We hypothesized that the sterol structure may have significant effects on the outcome of esterification by these enzymes. To test this hypothesis, we analyzed sterol esters in plasma and tissues in patients having non-cholesterol sterols (sitosterolemia and Smith-Lemli-Opitz syndrome). The esterification of a given sterol was defined as the sterol ester percentage of total sterols. The esterification of cholesterol in plasma by LCAT was 67 percent and in tissues by ACAT was 64 percent. Esterification of nine sterols, (cholesterol, cholestanol, campesterol, stigmasterol, sitosterol, campestanol, sitostanol, 7-dehydrocholesterol and 8-dehydrocholesterol) was examined.(The relative esterification (cholesterol being 1.0) of these sterols by the plasma LCAT was 1.00, 0.95, 0.89, 0.40, 0.85, 0.82 and 0.80, 0.69 and 0.82 respectively. The esterification by the tissue ACAT was 1.00, 1.29, 0.75, 0.49, 0.45, 1.21 and 0.74 respectively. The predominant fatty acid of the sterol esters was linoleic acid for LCAT and oleic acid for ACAT. We compared the esterification of two sterols differing by only one functional group (a chemical group attached to sterol nucleus) and were able to quantify the effects of individual functional groups on sterol esterification. The saturation of the A ring of cholesterol increased ester formation by ACAT by 29 percent and decreased the esterification by LCAT by 5.9 percent. Esterification by ACAT and LCAT was reduced respectively by 25 percent and 11 percent by the presence of an additional methyl group on the side chain of cholesterol at the C-24 position. This data supports our hypothesis that the structure of the sterol substrate has a significant effect on its esterification by ACAT or LCAT. PMID:19679306

  13. Sterol Biosynthesis Is Required for Heat Resistance but Not Extracellular Survival in Leishmania

    PubMed Central

    Xu, Wei; Hsu, Fong-Fu; Baykal, Eda; Huang, Juyang; Zhang, Kai

    2014-01-01

    Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14?-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm?) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm? mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm? causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance. PMID:25340392

  14. Study of Behavior of Sterols at Interfaces

    NASA Technical Reports Server (NTRS)

    Klein, P. D.; Knight, J. C.; Szczepanik, P. A.

    1968-01-01

    Behavior of sterols and sterol acetates on various types of interfaces indicates that the function of a sterol depends upon a surface orientation and surface energy of the interface. Column-chromatographic techniques determine the retention volume of various sterols under standard conditions.

  15. The physiology of sterol nutrition in the pea aphid Acyrthosiphon pisum Sophie Bouvaine a

    E-print Network

    Eubanks, Micky

    The physiology of sterol nutrition in the pea aphid Acyrthosiphon pisum Sophie Bouvaine a , Spencer Keywords: Acyrthosiphon pisum Aphid Cholesterol Sterol Phloem sap Phytosterol a b s t r a c t The phloem sap of fava bean (Vicia faba) plants utilized by the pea aphid Acyrthosiphon pisum contains three

  16. Microbial Symbionts Shape the Sterol Profile of the Xylem-Feeding Woodwasp, Sirex noctilio

    E-print Network

    Eubanks, Micky

    ). Nutritional mutualisms between insects and bacteria are especially widespread on low quality resources consump- tion (mycetophagy) and/or indirectly through digestion of recalcitrant plant polymers (external foraging using the innate dependency of all insects on dietary sources of sterol and the unique sterols

  17. Fatty AcidDerived Signals in Plant Defense

    E-print Network

    Kachroo, Pradeep

    Fatty Acid­Derived Signals in Plant Defense Aardra Kachroo and Pradeep Kachroo Department of Plant, animals, and plants. For example, 18:1 and linoleic acid (18:2) induce protein kinase C- mediated stress (49, 103). Linolenic acid (18:3) is involved in protein modifications in heat-stressed plants (151

  18. Molecular Pathways: Sterols and receptor signaling in cancer

    PubMed Central

    Gabitova, Linara; Gorin, Andrei; Astsaturov, Igor

    2013-01-01

    Accelerated cholesterol and lipid metabolism are the hallmarks of cancer and contribute to malignant transformation due to the obligatory requirement for cholesterol for the function of eukaryotic membranes. To build new membranes and maintain active signaling, cancer cells depend on high intensity of endogenous cholesterol biosynthesis and uptake of lipid particles. This metabolic dependency of cancer cells on cholesterol and other lipids is tightly regulated by the cholesterol homeostasis network including: 1) sterol response element binding proteins (SREBP), master transcriptional regulators of cholesterol and fatty acid pathway genes; 2) nuclear sterol receptors (liver X receptors, LXR) which coordinate growth with the availability of cholesterol; 3) lipid particle receptors such as LDL receptor providing exogenous sterols and lipids to cancer cells. In addition, activity of oncogenic receptors such as MUC1 or EGFR, accelerates sterols uptake and biosynthesis. Therefore, a general strategy of reducing the cholesterol pool in cancer cell is challenged by the highly efficient feedback loops compensating for a blockade at a single point in the cholesterol homeostatic network. Besides the well-established structural role of cholesterol in membranes, recent studies uncovered potent biological activities of certain cholesterol metabolic precursors and its oxidized derivatives, oxysterols. The former, meiosis activating sterols, exert effects on trafficking and signaling of oncogenic epidermal growth factor receptor (EGFR). Cholesterol epoxides, the highly active products of cholesterol oxidation, are being neutralized by the distal sterol pathway enzymes, EBP and DHCR7. These recently discovered “moonlighting” activities of the cholesterol pathway genes and metabolites expand our understanding of the uniquely conserved roles these sterol molecules play in the regulation of cellular proliferation and in cancer. PMID:24158702

  19. Identifying avian sources of faecal contamination using sterol analysis.

    PubMed

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol?+?24-ethylcoprostanol?+?24-ethylepicoprostanol) is ?0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol?+?coprostanol?+?epicoprostanol) is ?0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed. PMID:26370196

  20. Molecular pathways: sterols and receptor signaling in cancer.

    PubMed

    Gabitova, Linara; Gorin, Andrey; Astsaturov, Igor

    2014-01-01

    Accelerated cholesterol and lipid metabolism are the hallmarks of cancer and contribute to malignant transformation due to the obligatory requirement for cholesterol for the function of eukaryotic membranes. To build new membranes and maintain active signaling, cancer cells depend on high intensity of endogenous cholesterol biosynthesis and uptake of lipid particles. This metabolic dependency of cancer cells on cholesterol and other lipids is tightly regulated by the cholesterol homeostasis network, including (i) sterol response element-binding proteins (SREBP), master transcriptional regulators of cholesterol and fatty acid pathway genes; (ii) nuclear sterol receptors (liver X receptors, LXR), which coordinate growth with the availability of cholesterol; and (iii) lipid particle receptors, such as low-density lipid particle (LDL) receptor, providing exogenous sterol and lipids to cancer cells. In addition, activity of oncogenic receptors, such as MUC1 or EGFR, accelerates sterol uptake and biosynthesis. Therefore, a general strategy of reducing the cholesterol pool in cancer cells is challenged by the highly efficient feedback loops compensating for a blockade at a single point in the cholesterol homeostatic network. Besides the well-established structural role of cholesterol in membranes, recent studies have uncovered potent biologic activities of certain cholesterol metabolic precursors and its oxidized derivatives, oxysterols. The former, meiosis-activating sterols, exert effects on trafficking and signaling of oncogenic EGF receptor (EGFR). Cholesterol epoxides, the highly active products of cholesterol oxidation, are being neutralized by the distal sterol pathway enzymes, emopamyl-binding protein (EBP) and dehydrocholesterol-7 reductase (DHCR7). These recently discovered "moonlighting" activities of the cholesterol pathway genes and metabolites expand our understanding of the uniquely conserved roles these sterol molecules play in the regulation of cellular proliferation and in cancer. PMID:24158702

  1. Insect molting hormone and sterol biosynthesis in spinach

    SciTech Connect

    Grebenok, R.J.; Adler, J.H. )

    1990-05-01

    Insect molting hormones, which are produced by plants and are effective molecules in the control of insect crop pests, are biosynthesized in developing spinach leaves (Spinacia oleracea L.). The major sterols biosynthesized by spinach are avenasterol (24{alpha}-ethyl-5{alpha}-cholesta-7,24(28)-dien-3{beta}-ol), spinasterol (24{alpha}-ethyl-5{alpha}-cholesta-7,22-dien-3{beta}-ol), and 22-dihydrospinasterol (24{alpha}-ethyl-5{alpha}-cholest-7-en-3{beta}-ol). The major ecdysteroids biosynthesized are ecdysterone (2{beta},3{beta},14{alpha},20R,22R,25-hexahydroxy-5{beta}-cholest-7-en-6-one) and polypodine B (2{beta},3{beta},5{beta},14{alpha},20R,22R,25-heptahycroxycholest-7-en-6-one) and polypodine B (2{beta},3{beta},5{beta},14{alpha},20R,22R,25-heptahydroxycholest-7-en-6-one). When labeled 2-{sup 14}C-mevalonic acid was incorporated into young leaves isolated squalene, sterols and ecdysteroids contained the label. During a short (16 h) incorporation period in intact young leaves of 100 day old plants, the avenasterol has the highest specific activity in counts per minute per {mu}g of sterol followed by 22-dihydrospinasterol which is more highly labeled than spinasterol. The ecdysteroids synthesized, on an entire plant basis, account for 20% of the total steroid (sterol and ecdysteroid) isolated from the plant.

  2. Sterol metabolism in the oomycete Aphanomyces euteiches, a legume root pathogen.

    PubMed

    Madoui, Mohammed-Amine; Bertrand-Michel, Justine; Gaulin, Elodie; Dumas, Bernard

    2009-01-01

    Sterols are isoprenoid-derived molecules that have essential functions in eukaryotes but whose metabolism remains largely unknown in a large number of organisms. Oomycetes are fungus-like microorganisms that are evolutionarily related to stramenopile algae, a large group of organisms for which no sterol metabolic pathway has been reported. Here, we present data that support a model of sterol biosynthesis in Aphanomyces euteiches, an oomycete species causing devastating diseases in legume crops. In silico analyses were performed to identify genes encoding enzymes involved in the conversion of the isoprenoid precursor 3-hydroxy-3-methylglutaryl coenzyme A to isoprenoids. Several metabolic intermediates and two major sterol end-products were identified by gas chromatography-mass spectroscopy. We show that A. euteiches is able to produce fucosterol (a sterol initially identified in brown algae) and cholesterol (the major animal sterol). Mycelium development is inhibited by two sterol demethylase inhibitors used as fungicides, namely tebuconazole and epoxiconazole. We propose the first sterol biosynthetic pathway identified in a stramenopile species. Phylogenetic analyses revealed close relationships between A. euteiches enzyme sequences and those found in stramenopile algae, suggesting that part of this pathway could be conserved in the Stramenopila kingdom. PMID:19496952

  3. Delivery of plant-derived vaccines.

    PubMed

    Streatfield, Stephen J

    2005-07-01

    Many protein subunit vaccine candidates have been expressed in transgenic plants, and in a few cases the recombinant material has entered early phase clinical or target animal trials. The expressed protein can be purified prior to formulation for any preferred delivery approach. However, there are major cost advantages associated with avoiding protein purification and pursuing the oral delivery of a processed plant product containing the recombinant protein. Grains and dry products that are processed from fresh plant tissues can stably store expressed proteins for extended periods of time at room temperature, making refridgeration unnecessary during storage and distribution. Encapsulation of recombinant proteins in plant tissues guards against their rapid degradation in the gut, therefore facilitating the uptake and induction of appropriate immune responses. Early trial data with plant-based vaccine candidates has shown promising safety and efficacy. PMID:16296796

  4. Cyclopropyl Sterol and Phospholipid Composition of Membrane Fractions from Maize Roots Treated with Fenpropimorph

    PubMed Central

    Grandmougin, Anne; Bouvier-Navé, Pierrette; Ullmann, Pascaline; Benveniste, Pierre; Hartmann, Marie-Andrée

    1989-01-01

    Maize (Zea mays L.) caryopses were grown in the presence of fenpropimorph, a systemic fungicide, for 7 days in the dark. Membrane fractions enriched, respectively, in endoplasmic reticulum, plasma membrane, and mitochondria were isolated from control and treated maize roots and analyzed for their free sterol, phospholipid, and fatty acid composition. In treated plants, the intracellular distribution of free sterols was dramatically modified both qualitatively and quantitatively. The normally occurring ?5-sterols disappeared almost completely and were replaced by 9?, 19-cyclopropyl sterols, mainly cycloeucalenol and 24-methyl pollinastanol. These new compounds were found to accumulate in all the membrane fractions in such a way that the endoplasmic reticulum-rich fraction became the richest one in free sterols instead of the plasma membrane. In contrast, the fenpropimorph treatment of maize roots was shown not to affect either the relative proportions or the amounts of the individual phospholipids, but an increase in the unsaturation index of phospholipid-fatty acyl chains of the endoplasmic reticulum-rich fraction was observed. The present data suggest that, in higher plant membranes, cyclopropyl sterols could play a structural role similar to that of the bulk of ?5-sterols. PMID:16666813

  5. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.

    PubMed

    Singh, Shefali; Pal, Shaifali; Shanker, Karuna; Chanotiya, Chandan Singh; Gupta, Madan Mohan; Dwivedi, Upendra Nath; Shasany, Ajit Kumar

    2014-12-01

    Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta. PMID:24749735

  6. Future for Aero turbine derived cogeneration plants

    SciTech Connect

    Not Available

    1984-06-01

    Cogeneration installations in the Hague and Rotterdam in the Netherlands illustrate the growing emphasis on using highly efficient aero-derived gas turbines in energy conservation schemes such as district heating and power generation.

  7. Potential of the desert locust schistocerca gregaria (Orthoptera: Acrididae) as an unconventional source of dietary and therapeutic sterols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locu...

  8. Plant-derived triterpenoid sweetness inhibitors.

    PubMed

    Suttisri, R; Lee, I S; Kinghorn, A D

    1995-06-23

    Considerable recent attention has been focused on naturally occurring compounds with taste-modifying activity, which are of potential use in both dietary sweetness management and in gaining a better understanding of the sweet taste sensation. This review summarizes information on the phytochemistry and biological activity of more than 40 triterpenoid sweetness inhibitors that have been isolated from the leaves of three medicinal plants, namely, Gymnema sylvestre R.Br. (Asclepiadaceae), Ziziphus jujuba P. Miller (Rhamnaceae), and Hovenia dulcis Thunb. (Rhamnaceae). PMID:7564423

  9. Abnormal sterol metabolism in holoprosencephaly: studies in cultured lymphoblasts

    PubMed Central

    Haas, D; Morgenthaler, J; Lacbawan, F; Long, B; Runz, H; Garbade, S F; Zschocke, J; Kelley, R I; Okun, J G; Hoffmann, G F; Muenke, M

    2007-01-01

    Background Holoprosencephaly (HPE) is the most common structural malformation of the developing forebrain in humans. The aetiology is heterogeneous and remains unexplained in approximately 75% of patients. Objective To examine cholesterol biosynthesis in lymphoblastoid cell lines of 228 patients with HPE, since perturbations of cholesterol homeostasis are an important model system to study HPE pathogenesis in animals. Methods An in vitro loading test that clearly identifies abnormal increase of C27 sterols in lymphoblast?derived cells was developed using [2?14C] acetate as substrate. Results 22 (9.6%) HPE cell lines had abnormal sterol pattern in the in vitro loading test. In one previously reported patient, Smith–Lemli–Opitz syndrome was diagnosed, whereas others also had clearly reduced cholesterol biosynthesis of uncertain cause. The mean (SD) cholesterol levels were 57% (15.3%) and 82% (4.7%) of total sterols in these cell lines and controls, respectively. The pattern of accumulating sterols was different from known defects of cholesterol biosynthesis. In six patients with abnormal lymphoblast cholesterol metabolism, additional mutations in genes known to be associated with HPE or chromosomal abnormalities were observed. Conclusions Impaired cholesterol biosynthesis may be a contributing factor in the cause of HPE and should be considered in the evaluation of causes of HPE, even if mutations in HPE?associated genes have already been found. PMID:17237122

  10. Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles.

    PubMed

    Ohvo-Rekilä, H; Akerlund, B; Slotte, J P

    2000-04-01

    This study examined the kinetics of sterol desorption from monolayer and small unilamellar vesicle membranes to 2-hydroxypropyl-beta-cyclodextrin. The sterols used include cholesterol, dehydroergosterol (ergosta-5,7,9,(11),22-tetraen-3beta-ol) and cholestatrienol (cholesta-5,7,9,(11)-trien-3beta-ol). Desorption rates of dehydroergosterol and cholestatrienol from pure sterol monolayers were faster (3.3-4.6-fold) than the rate measured for cholesterol. In mixed monolayers (sterol: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 30:70 mol%), both dehydroergosterol and cholestatrienol desorbed faster than cholesterol. clearly indicating a difference in interfacial behavior of these sterols. In vesicle membranes desorption of dehydroergosterol was slower than desorption of cholestatrienol, and both rates were markedly affected by the phospholipid composition. Desorption of sterols was slower from sphingomyelin as compared to phosphatidylcholine vesicles. Desorption of fluorescent sterols was also faster from vesicles prepared by ethanol-injection as compared to extruded vesicles. The results of this study suggest that dehydroergosterol and cholestatrienol differ from cholesterol in their membrane behavior, therefore care should be exercised when experimental data derived with these probes are interpreted. PMID:10823464

  11. Sedimentary hydrocarbons and sterols in a South Atlantic estuarine/shallow continental shelf transitional environment under oil terminal and grain port influences.

    PubMed

    Bet, Rafael; Bícego, Marcia C; Martins, César C

    2015-06-15

    Sterols and hydrocarbons were determined in the surface sediments from the transitional environment between Paranaguá Bay and the shallow continental shelf in the South Atlantic to assess the sources of organic matter (OM) and the contamination status of an area exposed to multiple anthropogenic inputs. Total aliphatic hydrocarbon concentrations were less than 10?gg(-1), which is typical of unpolluted sediments, and related to recent inputs from higher terrestrial plants. Total polycyclic aromatic hydrocarbon ranged from

    derived from combustion with non-detectable levels occurring in 65% of the samples. Sterols typically related to marine sources predominated in the analysed sediments. Hence, the study area was protected from human activity. The relative absence of anthropogenic input and OM preservation clearly indicate that the organic markers analysed can be used to investigate the biogenic input of sedimentary OM in the study area. PMID:25935801

  12. Sterol Composition and Ecdysteroid Content of Eggs of the Root-knot Nematodes Meloidogyne incognita and M. arenaria

    PubMed Central

    Chitwood, David J.; McClure, Michael A.; Feldlaufer, Mark F.; Lusby, William R.; Oliver, Tames E.

    1987-01-01

    Free and esterified sterols of eggs of the root-knot nematodes Meloidogyne incognita races 2 and 3 and M. arenaria race 1 were isolated and identified by gas-liquid chromatography-mass spectrometry. The major sterols of eggs of each race were 24-ethylcholesterol (33.4-38.8% of total sterol), 24-ethylcholestanol (18.3-25.3%), 24-methylcholesterol (8.6-11.7%), 24-methylcholestanol (7.7-12.5%), and cholesterol (4.6-11.6%). Consequently, the major metabolic transformation performed by Meloidogyne females or eggs upon host sterols appeared to be saturation of the sterol nucleus. The free and esterified sterols of the same race did not differ appreciably, except for a slight enrichment of the steryl esters in cholesterol. Although the sterol composition of Meloidogyne eggs differed from that of other life stages of other genera of plant-parasitic nematodes, the three Meloidogyne races could not be distinguished from each other by their egg sterols. Ecdysteroids, compounds with hormonal function in insects, were not detected by radioimmunoassay in the Meloidogyne eggs either as free ecdysteroids or as polar conjugates. PMID:19290155

  13. Comparative molecular modelling of biologically active sterols

    NASA Astrophysics Data System (ADS)

    Baran, Mariusz; Mazerski, Jan

    2015-04-01

    Membrane sterols are targets for a clinically important antifungal agent - amphotericin B. The relatively specific antifungal action of the drug is based on a stronger interaction of amphotericin B with fungal ergosterol than with mammalian cholesterol. Conformational space occupied by six sterols has been defined using the molecular dynamics method to establish if the conformational features correspond to the preferential interaction of amphotericin B with ergosterol as compared with cholesterol. The compounds studied were chosen on the basis of structural features characteristic for cholesterol and ergosterol and on available experimental data on the ability to form complexes with the antibiotic. Statistical analysis of the data obtained has been performed. The results show similarity of the conformational spaces occupied by all the sterols tested. This suggests that the conformational differences of sterol molecules are not the major feature responsible for the differential sterol - drug affinity.

  14. Plant-derived virus-like particles as vaccines

    PubMed Central

    Chen, Qiang; Lai, Huafang

    2013-01-01

    Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of “humanized” glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future. PMID:22995837

  15. Plant derived and dietary phenolic antioxidants: anticancer properties.

    PubMed

    Roleira, Fernanda M F; Tavares-da-Silva, Elisiário J; Varela, Carla L; Costa, Saul C; Silva, Tiago; Garrido, Jorge; Borges, Fernanda

    2015-09-15

    In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion. PMID:25863633

  16. The Potential for Plant Derivatives against Acrylamide Neurotoxicity.

    PubMed

    Adewale, O O; Brimson, J M; Odunola, O A; Gbadegesin, M A; Owumi, S E; Isidoro, C; Tencomnao, T

    2015-07-01

    Certain industrial chemicals and food contaminants have been demonstrated to possess neurotoxic activity and have been suspected to cause brain-related disorders in humans. Acrylamide (ACR), a confirmed neurotoxicant, can be found in trace amount in commonly consumed human aliments as a result of food processing or cooking. This discovery aroused a great concern in the public, and increasing efforts are continuously geared towards the resolution of this serious threat. The broad chemical diversity of plants may offer the resources for novel antidotes against neurotoxicants. With the goal of attenuating neurotoxicity of ACR, several plants extracts or derivatives have been employed. This review presents the plants and their derivatives that have been shown most active against ACR-induced neurotoxicity, with a focus on their origin, pharmacological activity, and antidote effects. PMID:25886076

  17. Plant amino acid-derived vitamins: biosynthesis and function.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role. PMID:24368523

  18. Free, esterified and residual bound sterols in Black Sea Unit I sediments

    NASA Astrophysics Data System (ADS)

    de Leeuw, J. W.; Rijpstra, W. Irene C.; Schenck, P. A.; Volkman, J. K.

    1983-03-01

    Detailed compositional data for the sterols isolated from a surface, Unit I, sediment from the Black Sea are reported. A procedure based on digitonin precipitation has been used to separate the more abundant free sterols from those occurring in esterified forms. Saponification of the solvent extracted sediment residue liberated only a small quantity of residual bound sterols in contrast to studies of other sediments. 4-Methylsterols are much more abundant than 4-desmethylsterols in both the free and esterified sterol fractions which we attribute to a major dinoflagellate input, as in deeper Unit II sediment. The desmethylsterol fraction appears to derive from a variety of sources including dinoflagellates, coccolithophores, diatoms, terrigenous detritus and perhaps invertebrates. 5?(H)-Stanols are particularly abundant in the free sterol fraction. An analysis of the stanol/stenol ratios suggests that the 4-desmethyl-5?(H)-stanols are the result of specific microbial reductions of ? 5-sterols and/or the reflection of a contribution of stanol containing source organisms.

  19. Sterol Structure Determines Miscibility versus Melting Transitions in Lipid Vesicles

    E-print Network

    Stottrup, Benjamin L.

    /DPPC/sterol within giant unilamellar vesicles. We show that vesicles containing the ``promoter'' sterols cholesterol phases. Vesicles containing lanosterol, a sterol found in the cholesterol and ergosterol synthesis active'' sterols. INTRODUCTION All vertebrates synthesize cholesterol (1), which is found pre- dominantly

  20. Response of ?? T cells to plant-derived tannins

    PubMed Central

    Holderness, Jeff; Hedges, Jodi F.; Daughenbaugh, Katie; Kimmel, Emily; Graff, Jill; Freedman, Brett; Jutila, Mark A.

    2008-01-01

    Many pharmaceutical drugs are isolated from plants used in traditional medicines. Through screening plant extracts, both traditional medicines and compound libraries, new pharmaceutical drugs continue to be identified. Currently, two plant-derived agonists for ?? T cells are described. These plant-derived agonists impart innate effector functions upon distinct ?? T cell subsets. Plant tannins represent one class of ?? T cell agonist and preferentially activate the mucosal population. Mucosal ?? T cells function to modulate tissue immune responses and induce epithelium repair. Select tannins, isolated from apple peel, rapidly induce immune gene transcription in ?? T cells, leading to cytokine production and increased responsiveness to secondary signals. Activity of these tannin preparations tracks to the procyanidin fraction, with the procyanidin trimer (C1) having the most robust activity defined to date. The response to the procyanidins is evolutionarily conserved in that responses are seen with human, bovine, and murine ?? T cells. Procyanidin-induced responses described in this review likely account for the expansion of mucosal ?? T cells seen in mice and rats fed soluble extracts of tannins. Procyanidins may represent a novel approach for treatment of tissue damage, chronic infection, and autoimmune therpies. PMID:19166386

  1. Sterol Regulation of Metabolism, Homeostasis and Development

    PubMed Central

    Wollam, Joshua; Antebi, Adam

    2014-01-01

    Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids, and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and bile acid homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes. PMID:21495846

  2. Extraction and downstream processing of plant-derived recombinant proteins.

    PubMed

    Buyel, J F; Twyman, R M; Fischer, R

    2015-11-01

    Plants offer the tantalizing prospect of low-cost automated manufacturing processes for biopharmaceutical proteins, but several challenges must be addressed before such goals are realized and the most significant hurdles are found during downstream processing (DSP). In contrast to the standardized microbial and mammalian cell platforms embraced by the biopharmaceutical industry, there are many different plant-based expression systems vying for attention, and those with the greatest potential to provide inexpensive biopharmaceuticals are also the ones with the most significant drawbacks in terms of DSP. This is because the most scalable plant systems are based on the expression of intracellular proteins in whole plants. The plant tissue must therefore be disrupted to extract the product, challenging the initial DSP steps with an unusually high load of both particulate and soluble contaminants. DSP platform technologies can accelerate and simplify process development, including centrifugation, filtration, flocculation, and integrated methods that combine solid-liquid separation, purification and concentration, such as aqueous two-phase separation systems. Protein tags can also facilitate these DSP steps, but they are difficult to transfer to a commercial environment and more generic, flexible and scalable strategies to separate target and host cell proteins are preferable, such as membrane technologies and heat/pH precipitation. In this context, clarified plant extracts behave similarly to the feed stream from microbes or mammalian cells and the corresponding purification methods can be applied, as long as they are adapted for plant-specific soluble contaminants such as the superabundant protein RuBisCO. Plant-derived pharmaceutical proteins cannot yet compete directly with established platforms but they are beginning to penetrate niche markets that allow the beneficial properties of plants to be exploited, such as the ability to produce 'biobetters' with tailored glycans, the ability to scale up production rapidly for emergency responses and the ability to produce commodity recombinant proteins on an agricultural scale. PMID:25922318

  3. Cameroonian Medicinal Plants: Pharmacology and Derived Natural Products

    PubMed Central

    Kuete, Victor; Efferth, Thomas

    2010-01-01

    Many developing countries including Cameroon have mortality patterns that reflect high levels of infectious diseases and the risk of death during pregnancy and childbirth, in addition to cancers, cardiovascular diseases and chronic respiratory diseases that account for most deaths in the developed world. Several medicinal plants are used traditionally for their treatment. In this review, plants used in Cameroonian traditional medicine with evidence for the activities of their crude extracts and/or derived products have been discussed. A considerable number of plant extracts and isolated compounds possess significant antimicrobial, anti-parasitic including antimalarial, anti-proliferative, anti-inflammatory, anti-diabetes, and antioxidant effects. Most of the biologically active compounds belong to terpenoids, phenolics, and alkaloids. Terpenoids from Cameroonian plants showed best activities as anti-parasitic, but rather poor antimicrobial effects. The best antimicrobial, anti-proliferative, and antioxidant compounds were phenolics. In conclusion, many medicinal plants traditionally used in Cameroon to treat various ailments displayed good activities in vitro. This explains the endeavor of Cameroonian research institutes in drug discovery from indigenous medicinal plants. However, much work is still to be done to standardize methodologies and to study the mechanisms of action of isolated natural products. PMID:21833168

  4. Andrographolide: a new plant-derived antineoplastic entity on horizon.

    PubMed

    Varma, Astha; Padh, Harish; Shrivastava, Neeta

    2011-01-01

    Plant-derived natural products occupy an important position in the area of cancer chemotherapy. Molecules such as vincristine, vinblastine, paclitaxel, camptothecin derivatives, epipodophyllotoxin, and so forth, are invaluable contributions of nature to modern medicine. However, the quest to find out novel therapeutic compounds for cancer treatment and management is a never-ending venture; and diverse plant species are persistently being studied for identification of prospective anticancer agents. In this regard, Andrographis paniculata Nees, a well-known plant of Indian and Chinese traditional system of medicines, has drawn attention of researchers in recent times. Andrographolide, the principal bioactive chemical constituent of the plant has shown credible anticancer potential in various investigations around the globe. In vitro studies demonstrate the capability of the compound of inducing cell-cycle arrest and apoptosis in a variety of cancer cells at different concentrations. Andrographolide also shows potent immunomodulatory and anti-angiogenic activities in tumorous tissues. Synthetic analogues of the compound have also been created and analyzed, which have also shown similar activities. Although it is too early to predict its future in cancer chemotherapy, the prologue strongly recommends further research on this molecule to assess its potential as a prospective anticancer agent. PMID:19752167

  5. Andrographolide: A New Plant-Derived Antineoplastic Entity on Horizon

    PubMed Central

    Varma, Astha; Padh, Harish; Shrivastava, Neeta

    2011-01-01

    Plant-derived natural products occupy an important position in the area of cancer chemotherapy. Molecules such as vincristine, vinblastine, paclitaxel, camptothecin derivatives, epipodophyllotoxin, and so forth, are invaluable contributions of nature to modern medicine. However, the quest to find out novel therapeutic compounds for cancer treatment and management is a never-ending venture; and diverse plant species are persistently being studied for identification of prospective anticancer agents. In this regard, Andrographis paniculata Nees, a well-known plant of Indian and Chinese traditional system of medicines, has drawn attention of researchers in recent times. Andrographolide, the principal bioactive chemical constituent of the plant has shown credible anticancer potential in various investigations around the globe. In vitro studies demonstrate the capability of the compound of inducing cell-cycle arrest and apoptosis in a variety of cancer cells at different concentrations. Andrographolide also shows potent immunomodulatory and anti-angiogenic activities in tumorous tissues. Synthetic analogues of the compound have also been created and analyzed, which have also shown similar activities. Although it is too early to predict its future in cancer chemotherapy, the prologue strongly recommends further research on this molecule to assess its potential as a prospective anticancer agent. PMID:19752167

  6. Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans.

    PubMed

    Park, K S; Kang, K C; Kim, J H; Adams, D J; Johng, T N; Paik, Y K

    1999-05-01

    The anti-Candida potentials of 12 Korean medicinal plants were explored: methanol extracts from Coptis rhizoma and Phellodendron amurense caused significant inhibition of growth of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis. The predominant active components of the extracts were the protoberberines berberine and palmatine; the most potent inhibition of growth was exhibited by berberine on C. krusei (MIC <4 mg/L) and palmatine on C. parapsilosis (MIC 16 mg/L). Both berberine and palmatine inhibited the in-vivo rate of incorporation of L-[methyl-14C]methionine into C-24 of ergosterol in C. albicans (50% inhibition concentration (IC50 values), 25 microM and 300 microM, respectively); this result suggests that sterol 24-methyl transferase (24-SMT) is one of the cellular targets for the antifungal activity of the protoberberines. In-vitro 24-SMT activity in microsomes from the yeast growth form of C. albicans was inhibited by both berberine (inhibition constant (Ki) 232 microM) and palmatine (Ki 257 microM) in a non-competitive manner; inhibition of 24-SMT was more marked for the mycelial form than for the yeast growth form of this organism. Palmatine inhibited chitin synthase from both the yeast and mycelial growth phases of C. albicans in a non-competitive manner (Ki 780 microM). The effects of protoberberines, extracted from established medicinal plants, on both sterol and cell wall biosyntheses in pathogenic fungi indicate that the potential of these compounds, or their semi-synthetic derivatives, as a novel class of antifungal agents should be investigated more fully. PMID:10382888

  7. Transient expression systems for plant-derived biopharmaceuticals.

    PubMed

    Komarova, Tatiana V; Baschieri, Selene; Donini, Marcello; Marusic, Carla; Benvenuto, Eugenio; Dorokhov, Yuri L

    2010-08-01

    In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems. PMID:20673010

  8. Tracking plant-derived biomarkers from source to sink in the Miners River, Upper Peninsula of Michigan (USA)

    NASA Astrophysics Data System (ADS)

    Giri, S. J.; Diefendorf, A. F.; Lowell, T. V.

    2012-12-01

    Biogeochemical cycling of terrestrial organic matter and it subsequent burial plays a vital role in the global carbon cycle. Rivers provide a pathway for terrestrial organic carbon dispersal and integration into sediments. Terrestrial plant biomarkers are useful tools for studying carbon cycling because they can provide an indication of the source of organic carbon in both modern and ancient sediments. Biomarkers can also be used as paleovegetation proxies in geologic sediments where fossils are absent. However, limited information is available about the dispersal and deposition of plant biomarkers in modern river systems, especially for compounds that provide taxonomic specificity such as di- and triterpenoids (diagnostic for conifers and angiosperms, respectively). To better resolve the modes of biomarker transport within fluvial and riparian systems, we characterized plant biomarker transport in the Miners River, a small river basin within a mixed angiosperm-conifer forest at Pictured Rocks National Lakeshore (MI, USA). To assess the transport of biomarkers in river systems, we collected plants, soils, river sediments, and filtered particulate and dissolved organic carbon from seven sites from the headwaters to Lake Superior along the Miners River (~20 km pathway). All samples contained long-chain n-alkyl lipids, sterols, diterpenoids (abietane and pimarane classes), and triterpenoids (oleanane, ursane, and lupane classes). With the exception of a soil sample taken at a depth of 30 cm, triterpenoids are found in higher concentrations than diterpenoids in riparian soils and river sediments. Biomarker compositions in riparian soils, point bar, and overbank deposits are similar to the surrounding vegetation, albeit much lower in concentration. The composition of di- and triterpenoids in the river-suspended particulate organic carbon is similar in composition to the surrounding vegetation and soils. We developed a method to isolate biomarkers in the dissolved organic carbon fraction in river waters using solid-phase extraction and the preliminary data suggests that di- and triterpenoids are transported as dissolved organic carbon, however concentrations are lower than in the particulate organic carbon fraction. Results from the Miners River will help to better define terrestrial organic matter cycling in small river catchments. Characterizing how plant biomarkers are transported in river systems will enhance our interpretations of plant biomarkers in the geologic record. This will provide new insights into biomarker transport and potential source/sink biases in fluvial systems and thus identify potential complications for using plant-derived biomarkers as quantitative paleovegetation indicators and will enhance the use of biomarker-specific isotope analyses.

  9. Gas chromatographic analysis of plant sterols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytosterols are well-known for their ability to lower blood cholesterol by competing with absorption of cholesterol from the diet and reabsorption of bile cholesterol. Phytosterols as food ingredients are “Generally Recognized As Safe” (GRAS) by the FDA, and they are increasingly incorporated into ...

  10. Effects of sterols on the development and aging of caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because Caenorhabditis elegans lacks several components of the de novo sterol biosynthesis pathway, it requires sterols as essential nutrients. Supplemented cholesterol undergoes extensive enzymatic modification in C. elegans to form other sterols of unknown function. Because sterol metabolism in ...

  11. Potential of the Desert Locust Schistocerca gregaria (Orthoptera: Acrididae) as an Unconventional Source of Dietary and Therapeutic Sterols

    PubMed Central

    Cheseto, Xavier; Kuate, Serge Philibert; Tchouassi, David P.; Ndung’u, Mary; Teal, Peter E. A.; Torto, Baldwyn

    2015-01-01

    Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locust, Schistocerca gregaria, focusing on those with potential importance as dietary and therapeutic components for humans. Using coupled gas chromatography-mass spectrometry (GC-MS), we analyzed and compared the quantities of sterols in the different sections of the gut and tissues of the locust. In the gut, we identified 34 sterols which showed a patchy distribution, but with the highest composition in the foregut (55%) followed by midgut (31%) and hindgut (14%). Fed ad libitum on wheat seedlings, five sterols unique to the insect were detected. These sterols were identified as 7-dehydrocholesterol, desmosterol, fucosterol, (3?, 5?) cholesta-8, 14, 24-trien-3-ol, 4, 4-dimethyl, and (3?, 20R) cholesta-5, 24-dien-3, 20-diol with the first three having known health benefits in humans. Incubation of the fore-, mid- and hindgut with cholesterol-[4-13C] yielded eight derivatives, three of these were detected in the gut of the desert locust after it had consumed the vegetative diet but were not detected in the diet. Our study shows that the desert locust ingests phytosterols from a vegetative diet and, amplifies and metabolizes them into derivatives with potential salutary benefits and we discuss our findings in this context. PMID:25970517

  12. Natural products--antifungal agents derived from plants.

    PubMed

    Arif, Tasleem; Bhosale, J D; Kumar, Naresh; Mandal, T K; Bendre, R S; Lavekar, G S; Dabur, Rajesh

    2009-07-01

    A new spectrum of human fungal infections is increasing due to increased cancer, AIDS, and immunocompromised patients. The increased use of antifungal agents also resulted in the development of resistance to the present drugs. It makes necessary to discover new classes of antifungal compounds to cure fungal infections. Plants are rich source of bioactive secondary metabolites of wide variety such as tannins, terpenoids, saponins, alkaloids, flavonoids, and other compounds, reported to have in vitro antifungal properties. Since the plant kingdom provides a useful source of lead compounds of novel structure, a wide-scale investigation of species from the tropics has been considered. Therefore, the research on natural products and compounds derived from natural products has accelerated in recent years due to their importance in drug discovery. A series of molecules with antifungal activity against different strains of fungus have been found in plants, which are of great importance to humans. These molecules may be used directly or considered as a precursor for developing better molecules. This review attempts to summarize the current status of important antifungal compounds from plants. PMID:20183299

  13. STARD4 Membrane Interactions and Sterol Binding.

    PubMed

    Iaea, David B; Dikiy, Igor; Kiburu, Irene; Eliezer, David; Maxfield, Frederick R

    2015-08-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an ?/? helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (?1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal ?-helix, and not the ?1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the ?1 loop and membrane insertion of the C-terminal ?-helix. PMID:26168008

  14. How sterol tilt regulates properties and organization of lipid membranes and membrane insertions

    PubMed Central

    Khelashvili, George; Harries, Daniel

    2013-01-01

    Serving as a crucial component of mammalian cells, cholesterol critically regulates the functions of biomembranes. This review focuses on a specific property of cholesterol and other sterols: the tilt modulus ? that quantifies the energetic cost of tilting sterol molecules inside the lipid membrane. We show how ? is involved in determining properties of cholesterol-containing membranes, and detail a novel approach to quantify its value from atomistic molecular dynamics (MD) simulations. Specifically, we link ? with other structural, thermodynamic, and mechanical properties of cholesterol-containing lipid membranes, and delineate how this useful parameter can be obtained from the sterol tilt probability distributions derived from relatively small-scale unbiased MD simulations. We demonstrate how the tilt modulus quantitatively describes the aligning field that sterol molecules create inside the phospholipid bilayers, and we relate ? to the bending rigidity of the lipid bilayer through effective tilt and splay energy contributions to the elastic deformations. Moreover, we show how ? can conveniently characterize the “condensing effect” of cholesterol on phospholipids. Finally, we demonstrate the importance of this cholesterol aligning field to the proper folding and interactions of membrane peptides. Given the relative ease of obtaining the tilt modulus from atomistic simulations, we propose that ? can be routinely used to characterize the mechanical properties of sterol/lipid bilayers, and can also serve as a required fitting parameter in multi-scaled simulations of lipid membrane models to relate the different levels of coarse-grained details. PMID:23291283

  15. Visualization of Sterol-Rich Membrane Domains with Fluorescently-Labeled Theonellamides

    PubMed Central

    Nishimura, Shinichi; Ishii, Kumiko; Iwamoto, Kunihiko; Arita, Yuko; Matsunaga, Shigeki; Ohno-Iwashita, Yoshiko; Sato, Satoshi B.; Kakeya, Hideaki; Kobayashi, Toshihide; Yoshida, Minoru

    2013-01-01

    Cholesterol plays important roles in biological membranes. The cellular location where cholesterol molecules work is prerequisite information for understanding their dynamic action. Bioimaging probes for cholesterol molecules would be the most powerful means for unraveling the complex nature of lipid membranes. However, only a limited number of chemical or protein probes have been developed so far for cytological analysis. Here we show that fluorescently-labeled derivatives of theonellamides act as new sterol probes in mammalian cultured cells. The fluorescent probes recognized cholesterol molecules and bound to liposomes in a cholesterol-concentration dependent manner. The probes showed patchy distribution in the plasma membrane, while they stained specific organelle in the cytoplasm. These data suggest that fTNMs will be valuable sterol probes for studies on the role of sterols in the biological membrane under a variety of experimental conditions. PMID:24386262

  16. Pentacyclic hemiacetal sterol with antifouling and cytotoxic activities from the soft coral Nephthea sp.

    PubMed

    Zhang, Jun; Li, Liang-Chun; Wang, Kai-Ling; Liao, Xiao-Jian; Deng, Zhou; Xu, Shi-Hai

    2013-02-15

    A novel unusual pentacyclic hemiacetal sterol nephthoacetal (1), was isolated from soft coral Nephthea sp. The structure of this sterol was inferred from its two acetyl derivatives (2) and (3), by means of spectroscopic methods, and quantum chemical calculations. Anti-fouling activity of compounds 1-3 against Bugula neritina larvae was evaluated, sterol (1) exhibited significant inhibitory effect with EC(50) value of 2.5 ?g/mL, while having low toxicity with LC(50)>25.0 ?g/mL. The in vitro cytotoxic activity of compounds 1-3 against HeLa cells was also evaluated, all of them exhibited moderate cytotoxicity with IC(50) values of 12.3 (1), 10.1 (2), and 19.6 ?g/mL (3), respectively. PMID:23294699

  17. The biological activity of a-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha-mangostin derived from mangosteen was identified as a mosquito sterol carrier protein-2 inhibitor via high throughput insecticide screening. Alpha-mangostin was tested for its larvicidal activity against 3rd instar larvae of six mosquito species and the LC50 values range from 0.84 to 2.90 ppm....

  18. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Plant extract derived from Opuntia...PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia... The biochemical pesticide plant extract derived from...

  19. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Plant extract derived from Opuntia...PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia... The biochemical pesticide plant extract derived from...

  20. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Plant extract derived from Opuntia...PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia... The biochemical pesticide plant extract derived from...

  1. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Plant extract derived from Opuntia...PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1179 Plant extract derived from Opuntia... The biochemical pesticide plant extract derived from...

  2. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus...180.1179 Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica...biochemical pesticide plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus...

  3. Biofuels. Altered sterol composition renders yeast thermotolerant.

    PubMed

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam; Feizi, Amir; Buskov, Steen; Hallström, Björn M; Petranovic, Dina; Nielsen, Jens

    2014-10-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ?40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ?40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype. PMID:25278608

  4. Serum sterol profiling reveals increased cholesterol biosynthesis in childhood obesity.

    PubMed

    Son, Hyun-Hwa; Kim, Shin Hye; Moon, Ju-Yeon; Chung, Bong Chul; Park, Mi Jung; Choi, Man Ho

    2015-05-01

    Quantitative sterol profiling in obese children and their clinical implications have not been fully investigated. The aim of study was to evaluate the metabolic changes in serum cholesterol and its precursors and metabolites, and their associations with clinical characteristics of childhood obesity. A total of 253 children aged 6-14 years (72 obese, 39 overweight, and 72 normal controls; 147 girls and 106 boys) were recruited. Anthropometric indices, body composition, and fasting total lipid profiles were determined. Serum concentrations of 20 sterols, as their free fraction, were analyzed through gas chromatography-mass spectrometry-based metabolite profiling. There were no significant differences in total- and LDL-cholesterols between groups. Serum levels of the main cholesterol precursors, lanosterol (P<0.02) and lathosterol (P<0.0001), were significantly higher in obese children. In addition, they showed positive correlations with waist to hip ratio, body fat percent, and body fat mass. The metabolic ratios of lanosterol and lathosterol to cholesterol were also elevated (P<0.01 both), indicating the up-regulation of cholesterol biosynthesis with childhood obesity. In contrast, the absorption of plant sterols tended to show a compensatory decrease in obese children. Strong correlations between free cholesterol and total- and LDL-cholesterols were observed (r>0.760, P<0.001), while there was no correlation with HDL-cholesterols. The levels of total cholesteryl ester were closely associated with triglyceride (r=0.763, P<0.001). Quantitative results indicate that childhood obesity may increase cholesterol synthesis while maintaining overall cholesterol homeostasis. PMID:25725317

  5. Plant extracts and plant-derived compounds: promising players in a countermeasure strategy against radiological exposure.

    PubMed

    Kma, Lakhan

    2014-01-01

    Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when administered before or after irradiation, and against low doses (? 5 Gy) to the whole body or high doses (12-13.5 Gy) to the whole thorax. This is particularly relevant since apart from the possibility of using it in pre-conditioning regime in radiotherapy, it could also be used during nuclear plant leakage/accidents and radiological terrorism, which are not pre-determined scenarios. However, considering the infancy of the field of plant-based radioprotectors, all the above-mentioned plant extracts/plant-derived compounds deserves further stringent study in different models of radiation injury. PMID:24761841

  6. Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum.

    PubMed

    Yamauchi, Yoshio; Iwamoto, Noriyuki; Rogers, Maximillian A; Abe-Dohmae, Sumiko; Fujimoto, Toyoshi; Chang, Catherine C Y; Ishigami, Masato; Kishimoto, Takuma; Kobayashi, Toshihide; Ueda, Kazumitsu; Furukawa, Koichi; Chang, Ta-Yuan; Yokoyama, Shinji

    2015-09-25

    Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process. PMID:26198636

  7. High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function

    PubMed Central

    Frescatada-Rosa, Márcia; Stanislas, Thomas; Backues, Steven K; Reichardt, Ilka; Men, Shuzhen; Boutté, Yohann; Jürgens, Gerd; Moritz, Thomas; Bednarek, Sebastian Y; Grebe, Markus

    2014-01-01

    Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain. The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis. PMID:25234576

  8. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    PubMed Central

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  9. Novel sterol glucosyltransferase in the animal tissue and cultured cells: evidence that glucosylceramide as glucose donor.

    PubMed

    Akiyama, Hisako; Sasaki, Narie; Hanazawa, Shuwa; Gotoh, Mari; Kobayashi, Susumu; Hirabayashi, Yoshio; Murakami-Murofushi, Kimiko

    2011-05-01

    Cholesteryl glucoside (CG), a membrane glycolipid, regulates heat shock response. CG is rapidly induced by heat shock before the activation of heat shock transcription factor 1 (HSF1) and production of heat shock protein 70 (HSP70), and the addition of CG in turn induces HSF1 activation and HSP70 production in human fibroblasts; thus, a reasonable correlation is that CG functions as a crucial lipid mediator in stress responses in the animal. In this study, we focused on a CG-synthesizing enzyme, animal sterol glucosyltransferase, which has not yet been identified. In this study, we describe a novel type of animal sterol glucosyltransferase in hog stomach and human fibroblasts (TIG-3) detected by a sensitive assay with a fluorescence-labeled substrate. The cationic requirement, inhibitor resistance, and substrate specificity of animal sterol glucosyltransferase were studied. Interestingly, animal sterol glucosyltransferase did not use uridine diphosphate glucose (UDP-glucose) as an immediate glucose donor, as has been shown in plants and fungi. Among the glycolipids tested in vitro, glucosylceramide (GlcCer) was the most effective substrate for CG formation in animal tissues and cultured cells. Using chemically synthesized [U-((13))C]Glc-?-Cer as a glucose donor, we confirmed by mass spectrometry that [U-((13))C]CG was synthesized in hog stomach homogenate. These results suggest that animal sterol glucosyltransferase transfers glucose moiety from GlcCer to cholesterol. Additionally, using GM-95, a mutant B16 melanoma cell line that does not express ceramide glucosyltransferase, we showed that GlcCer is an essential substrate for animal sterol glucosyltransferase in the cell. PMID:21397038

  10. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V. (Okemos, MI)

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  11. Assessment of plant-derived hydrocarbons. Final report

    SciTech Connect

    McFadden, K.; Nelson, S.H.

    1981-09-30

    A number of hydrocarbon producing plants are evaluated as possible sources of rubber, liquid fuels, and industrial lubricants. The plants considered are Euphorbia lathyris or gopher plant, milkweeds, guayule, rabbit brush, jojoba, and meadow foam. (ACR)

  12. Determining the Origin and Fate of Particulate Plant-Derived Organic Matter in the Rhone River (France) : A Lipid Tracer Review

    NASA Astrophysics Data System (ADS)

    Galeron, M. A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J. F.

    2014-12-01

    A number of lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France), with a main focus on phytosterols, such as sitosterol, desmosterol, brassicasterol and cholesterol. This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant derived particulate organic matter (POM) with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Specific sitosterol and cholesterol degradation products were quantified and used to estimate the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could play a role in the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea. Although sitosterol has been commonly used as a tracer of the terrestrial origin of POM in rivers, we show here that is it also found in phytoplankton, which highlights the need to use different tracers to determine the origin of POM in rivers. As part of the set of tracers we use, we have identified betulin to be an interesting candidate, although limited to a number of angiosperms species. Not only can we trace betulin to an unequivocal terrestrial origin, we also identified its specific degradation products, allowing us to trace the degradation state of angiosperm particulate debris in rivers, as well as the type of degradation undergone.

  13. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk

    PubMed Central

    Calandra, Sebastiano; Tarugi, Patrizia; Speedy, Helen E.; Dean, Andrew F.; Bertolini, Stefano; Shoulders, Carol C.

    2011-01-01

    This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means. PMID:21862702

  14. An Update on Plant Derived Anti-Androgens

    PubMed Central

    Grant, Paul; Ramasamy, Shamin

    2012-01-01

    Anti-androgens are an assorted group of drugs and compounds that reduce the levels or activity of androgen hormones within the human body. Disease states in which this is relevant include polycystic ovarian syndrome, hirsutism, acne, benign prostatic hyperplasia, and endocrine related cancers such as carcinoma of the prostate. We provide an overview and discussion of the use of anti-androgen medications in clinical practice and explore the increasing recognition of the benefits of plant-derived anti-androgens, for example, spearmint tea in the management of PCOS, for which some evidence about efficacy is beginning to emerge. Other agents covered include red reishi, which has been shown to reduce levels 5-alpha reductase, the enzyme that facilitates conversion of testosterone to dihydrotestosterone (DHT); licorice, which has phytoestrogen effects and reduces testosterone levels; Chinese peony, which promotes the aromatization of testosterone into estrogen; green tea, which contains epigallocatechins and also inhibits 5-alpha reductase, thereby reducing the conversion of normal testosterone into the more potent DHT; black cohosh, which has been shown to kill both androgenresponsive and non-responsive human prostate cancer cells; chaste tree, which has a reduces prolactin from the anterior pituitary; and saw palmetto extract, which is used as an anti-androgen although it shown no difference in comparison to placebo in clinical trials. PMID:23843810

  15. An update on plant derived anti-androgens.

    PubMed

    Grant, Paul; Ramasamy, Shamin

    2012-01-01

    Anti-androgens are an assorted group of drugs and compounds that reduce the levels or activity of androgen hormones within the human body. Disease states in which this is relevant include polycystic ovarian syndrome, hirsutism, acne, benign prostatic hyperplasia, and endocrine related cancers such as carcinoma of the prostate. We provide an overview and discussion of the use of anti-androgen medications in clinical practice and explore the increasing recognition of the benefits of plant-derived anti-androgens, for example, spearmint tea in the management of PCOS, for which some evidence about efficacy is beginning to emerge. Other agents covered include red reishi, which has been shown to reduce levels 5-alpha reductase, the enzyme that facilitates conversion of testosterone to dihydrotestosterone (DHT); licorice, which has phytoestrogen effects and reduces testosterone levels; Chinese peony, which promotes the aromatization of testosterone into estrogen; green tea, which contains epigallocatechins and also inhibits 5-alpha reductase, thereby reducing the conversion of normal testosterone into the more potent DHT; black cohosh, which has been shown to kill both androgenresponsive and non-responsive human prostate cancer cells; chaste tree, which has a reduces prolactin from the anterior pituitary; and saw palmetto extract, which is used as an anti-androgen although it shown no difference in comparison to placebo in clinical trials. PMID:23843810

  16. Chemical association in symbiosis sterol donors in planthoppers.

    PubMed

    Eya, B K; Kenny, P T; Tamura, S Y; Ohnishi, M; Naya, Y; Nakanishi, K; Sugiura, M

    1989-01-01

    The role of intracellular symbionts contributing to their host has been investigated in the planthoppers,Nilaparvata lugens Stal andLaodelphax striatellus Fallen. We have found that the isolated yeastlike symbionts, identified as a member of the genusCandida, from the host's egg produce ergosterol when cultured. A comparative study of sterols in the cultured symbionts, the host insects, aposymbiotic host insects, and dietary plants demonstrated that ergosterol produced in the symbiotes is provided to the host insects and possibly transformed in the host insects into cholesterol via 24-methylenecholesterol. The conversion of injected 24-methylenecholesterol-d3 into cholesterol has been shown in the brown planthopper (N. lugens). PMID:24271450

  17. Insights into the mechanisms of sterol transport between organelles.

    PubMed

    Mesmin, Bruno; Antonny, Bruno; Drin, Guillaume

    2013-09-01

    In cells, the levels of sterol vary greatly among organelles. This uneven distribution depends largely on non-vesicular routes of transfer, which are mediated by soluble carriers called lipid-transfer proteins (LTPs). These proteins have a domain with a hydrophobic cavity that accommodates one sterol molecule. However, a demonstration of their role in sterol transport in cells remains difficult. Numerous LTPs also contain membrane-binding elements, but it is not clear how these LTPs couple their ability to target organelles with lipid transport activity. This issue appears critical, since many sterol transporters are thought to act at contact sites between two membrane-bound compartments. Here, we emphasize that biochemical and structural studies provide precious insights into the mode of action of sterol-binding proteins. Recent studies on START, Osh/ORP and NPC proteins suggest models on how these proteins could transport sterol between organelles and, thereby, influence cellular functions. PMID:23283302

  18. Sterols and triterpenes in cell culture of Hyssopus officinalis L.

    PubMed

    Skrzypek, Zuzanna; Wysoki?ska, Halina

    2003-01-01

    Cell suspension cultures from hypocotyl-derived callus of Hyssopus officinalis were found to produce two sterols i. e. beta-sitosterol (1) and stigmasterol (2), as well as several known pentacyclic triterpenes with an oleanene and ursene skeleton. The triterpenes were identified as oleanolic acid (3), ursolic acid (4), 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (5), 2alpha,3beta-dihydroxyurs-12-en-28-oic acid (6), 2alpha,3beta,24-trihydroxyolean-12-en-28-oic acid (7), and 2alpha,3beta,24-trihydroxyurs-12-en-28-oic acid (8). Compounds 5-8 were isolated as their acetates (6, 8) or bromolactone acetates (5, 7). PMID:12872919

  19. Distribution of sterols in the fungi. I - Fungal spores

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Laseter, J. L.

    1974-01-01

    Mass spectrometry was used to examine freely extractable sterols from spores of several species of fungi. Ergosterol was the most common sterol produced by any individual species, but it was completely absent from two species belonging to apparently distantly related groups of fungi: the aquatic Phycomycetes and the rust fungi. This fact could have taxonomic or phylogenetic implications. The use of glass capillary columns in the resolution of the sterols is shown to eliminate some of the difficulty inherent in this process.

  20. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus.

    PubMed

    Koštál, Vladimír; Urban, Tomáš; Rimná?ová, Lucie; Berková, Petra; Simek, Petr

    2013-09-01

    Ectotherm animals including insects are known to undergo seasonal restructuring of the cell membranes in order to keep their functionality and/or protect their structural integrity at low body temperatures. Studies on insects so far focused either on fatty acids or on composition of molecular species in major phospholipid classes. Here we extend the scope of analysis and bring results on seasonal changes in minor phospholipid classes, lysophospholipids (LPLs), free fatty acids, phytosterols and tocopherols in heteropteran insect, Pyrrhocoris apterus. We found that muscle tissue contains unusually high amounts of LPLs. Muscle and fat body tissues also contain high amounts of ?-sitosterol and campesterol, two phytosterols derived from plant food, while only small amounts of cholesterol are present. In addition, two isomers (? and ?) of tocopherol (vitamin E) are present in quantities comparable to, or even higher than phytosterols in both tissues. Distinct seasonal patterns of sterol and tocopherol concentrations were observed showing a minimum in reproductively active bugs in summer and a maximum in diapausing, cold-acclimated bugs in winter. Possible adaptive meanings of such changes are discussed including: preventing the unregulated transition of membrane lipids from functional liquid crystalline phase to non-functional gel phase; decreasing the rates of ion/solute leakage; silencing the activities of membrane bound enzymes and receptors; and counteracting the higher risk of oxidative damage to PUFA in winter membranes. PMID:23845405

  1. Concentration of sterols of Porphyridium cruentum biomass at stationary phase.

    PubMed

    Durmaz, Yasar; Monteiro, Margarida; Koru, Edis; Bandarra, Narcisa

    2007-04-01

    The objective of this study was to investigate sterols content of Porphyridium cruentum batch cultured in laboratory at 18 degrees C and harvested in the stationary. The sterol distribution of this species is characterized by a predominance of cholesterol, with values as 199.0 mg 100 g(-1) freeze dry weight (92.2%). The second most important sterol was stigmasterol (4.9%) followed by beta-sitosterol (2.2%). Studied sterols give to this species a special importance in for being used in food as supplements/nutraceuticals (including aquaculture). PMID:19070069

  2. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

    PubMed

    Rogers, Maximillian A; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form the basis to further pursue ACAT structure-function analysis, and can be explored to develop novel allosteric ACAT inhibitors for therapeutic purposes. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'. PMID:25218443

  3. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V. (Okemos, MI)

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  4. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, N.V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon. .

  5. Function and glycosylation of plant-derived antiviral monoclonal antibody

    E-print Network

    30333 Contributed by Hilary Koprowski, April 24, 2003 Plant genetic engineering led to the production Rupprecht , Bernhard Dietzschold*, Maxim Golovkin*, and Hilary Koprowski*§ *Biotechnology Foundation

  6. The role of sterol-C4-methyl oxidase in epidermal biology

    PubMed Central

    He, Miao; Smith, Laurie D.; Chang, Richard; Li, Xueli; Vockley, Jerry

    2013-01-01

    Deficiency of sterol C4 methyl oxidase, encoded by the SC4MOL gene, has recently been described in four patients from three different families. All of the patients presented with microcephaly, congenital cataracts, and growth delay in infancy. The first patient has suffered since the age of six years from severe, diffuse, psoriasiform dermatitis, sparing only her palms. She is now 20 years old. The second patient is a 5 year old girl who has just started to develop dry skin and hair changes. The third and fourth patients are a pair of affected siblings with a severe skin condition since infancy. Quantitative sterol analysis of plasma and skin scales from all four patients showed marked elevation of 4?-methyl- and 4, 4?-dimethylsterols, consistent with a deficiency in the first step of sterol C4 demethylation in cholesterol biosynthesis. Mutations in the SC4MOL have been identified in all of the patients. SC4MOL deficiency is the first autosomal recessive disorder identified in the sterol demethylation complex. Cellular studies with patient-derived fibroblasts have shown a higher mitotic rate than control cells in cholesterol-depleted medium, with increased de novo cholesterol biosynthesis and accumulation of methylsterols. Immunologic analyses of granulocytes and B cells from patients and obligate carriers in the patients’ families indicated dysregulation of immune-related receptors. Inhibition of sterol C4 methyl oxidase in human transformed lymphoblasts induced activation of the cell cycle. Additional studies also demonstrated diminished EGFR signaling and disrupted vesicular trafficking in cells from the affected patients. These findings suggest that methylsterols play an important role in epidermal biology by their influence on cell proliferation, intracellular signaling, vesicular trafficking and immune response. SC4MOL is situated within the psoriasis susceptibility locus PSORS9, and may be a genetic risk factor for common skin conditions. PMID:24144731

  7. Substrate Preferences and Catalytic Parameters Determined by Structural Characteristics of Sterol 14[alpha]-Demethylase (CYP51) from Leishmania infantum

    SciTech Connect

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Nes, W. David; Waterman, Michael R.; Lepesheva, Galina I.

    2012-05-14

    Leishmaniasis is a major health problem that affects populations of {approx}90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14{alpha}-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14{alpha}-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V{sub max} of {approx}10 and 8 min{sup -1}, respectively), it is also found to 14{alpha}-demethylate C4-dimethylated lanosterol (V{sub max} = 0.9 min{sup -1}) and C4-desmethylated 14{alpha}-methylzymosterol (V{sub max} = 1.9 min{sup -1}). Binding parameters with six sterols were tested, with K{sub d} values ranging from 0.25 to 1.4 {mu}m. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14{alpha}-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.

  8. Plant-derived Compounds for the Treatment of Retroviral Diseases

    Cancer.gov

    NIH Researchers have identified Englerin A and its derivatives as potent and specific activators of viral replication in infected T cells (with a decrease of about 70% of activated T-reg population following ex-vivo PBMCs treatment).

  9. STEROLS AS BIOMARKERS IN GYMNODINIUM BREVE DISTRIBUTION IN DINOFLAGELLATES

    EPA Science Inventory

    The sterol composition of marine microalgae has been shown to be a chemotaxonomic property potentially of value in distinguishing members of different algal classes. For example, members of the class Dinophyceae display sterol compositions ranging from as few as two (cholesterol ...

  10. The sterols of the khapra beetle, Trogoderma granarium Everts.

    PubMed

    Svoboda, J A; Nair, A M; Agarwal, N; Agarwal, H C; Robbins, W E

    1979-11-15

    The khapra beetle, Trogoderma granarium Everts, does not dealkylate and convert dietary C28- or C29-Phytosterols to C27-sterols such as cholesterol. There is, however, an increase in the concentration of cholesterol and campesterol in its tissues relative to the dietary concentrations of these sterols, presumably as a result of selective uptake. PMID:510474

  11. Origin assessment of EV olive oils by esterified sterols analysis.

    PubMed

    Giacalone, Rosa; Giuliano, Salvatore; Gulotta, Eleonora; Monfreda, Maria; Presti, Giovanni

    2015-12-01

    In this study extra virgin olive oils of Italian and non-Italian origin (from Spain, Tunisia and blends of EU origin) were differentiated by GC-FID analysis of sterols and esterified sterols followed by chemometric tools. PCA allowed to highlight the high significance of esterified sterols to characterise extra virgin olive oils in relation to their origin. SIMCA provided a sensitivity and specificity of 94.39% and 91.59% respectively; furthermore, an external set of 54 extra virgin olive oils bearing a designation of Italian origin on the labelling was tested by SIMCA. Prediction results were also compared with organoleptic assessment. Finally, the poor correlation found between ethylesters and esterified sterols allowed to hazard the guess, worthy of further investigations, that esterified sterols may prove to be promising in studies of geographical discrimination: indeed they appear to be independent of those factors causing the formation of ethyl esters and related to olive oil production. PMID:26041193

  12. Author's personal copy Fate of CuO-derived lignin oxidation products during plant combustion

    E-print Network

    Louchouarn, Patrick

    Author's personal copy Fate of CuO-derived lignin oxidation products during plant combustion oxidation products (LOPs), quantified using the alkaline cupric oxide (CuO) oxidation method, were used polymer after cellulose, is a comple

  13. Quinones derived from plant secondary metabolites as anti-cancer agents.

    PubMed

    Lu, Jin-Jian; Bao, Jiao-Lin; Wu, Guo-Sheng; Xu, Wen-Shan; Huang, Ming-Qing; Chen, Xiu-Ping; Wang, Yi-Tao

    2013-03-01

    Quinones are plant-derived secondary metabolites that present some anti-proliferation and anti-metastasis effects in various cancer types both in vitro and in vivo. This review focuses on the anti-cancer prospects of plant-derived quinones, namely, aloe-emodin, juglone, ?-lapachol, plumbagin, shikonin, and thymoquinone. We intend to summarize their anti-cancer effects and investigate the mechanism of actions to promote the research and development of anti-cancer agents from quinones. PMID:22931417

  14. Spectral Characterization of Plant-Derived Dissolved Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) derived from fresh or early-stage decomposing soil amendment materials may play an important role in the process of organic matter accumulation. The DOM can influence many chemical processes, due to its reactivity with both soil solution components and soil surfaces. W...

  15. Immunization against Rabies with Plant-Derived Antigen

    NASA Astrophysics Data System (ADS)

    Modelska, Anna; Dietzschold, Bernard; Sleysh, N.; Fu, Zhen Fang; Steplewski, Klaudia; Hooper, D. Craig; Koprowski, Hilary; Yusibov, Vidadi

    1998-03-01

    We previously demonstrated that recombinant plant virus particles containing a chimeric peptide representing two rabies virus epitopes stimulate virus neutralizing antibody synthesis in immunized mice. We show here that mice immunized intraperitoneally or orally (by gastric intubation or by feeding on virus-infected spinach leaves) with engineered plant virus particles containing rabies antigen mount a local and systemic immune response. After the third dose of antigen, given intraperitoneally, 40% of the mice were protected against challenge infection with a lethal dose of rabies virus. Oral administration of the antigen stimulated serum IgG and IgA synthesis and ameliorated the clinical signs caused by intranasal infection with an attenuated rabies virus strain.

  16. Plants' use of leachate derived from municipal solid waste

    SciTech Connect

    Revel, J.C.; Morard, P.; Bailly, J.R.; Labbe, H.; Berthout, C.; Kaemmerer, M.

    1999-08-01

    Leachate was collected from a watertight pit at a landfill center dealing mainly with household refuse and plant waste. This effluent was characterized by a moderate organic matter content, a pH slightly higher than neutral and strong electrical conductivity. This latter was due to the presence of chlorides, Na, K, and ammonium. The organic content could be divided into two fractions: Fraction A consisting of large molecules and Fraction B of smaller, more acidic molecules. The presence of phenols could be identified in the leachate as a whole. A biological treatment of this leachate, involving methanization followed by aerated lagooning, was set up on the site: this led to a reduction of nearly 60% in the organic content and almost total elimination of the ammonium. This treatment was not however sufficient to allow direct evacuation of the resulting effluent into the surface ground water. As heavy metals were absent from this effluent, the leachates from this landfill site could possibly be envisaged in the fertilization of soil-grown crops or for furrow irrigation-fertilization of tree plantations. The effect of irrigating soil-grown plants with a solution of leachate was examined using pots of ryegrass (Lolium sp.). Application of solutions containing dilutions of 1 to 400 mL L{sup {minus}1} of this effluent had a highly favorable effect on plant growth. Toxicity phenomena were apparent above this concentration. The optimum effect on ryegrass growth, under the conditions of this trial, was obtained by watering each pot with 30 mL of a solution containing 400 mL L{sup {minus}1} of leachate, every 2 d. This solution improved water and N nutrition in these plants.

  17. Plant derived substances with anti-cancer activity: from folklore to practice

    PubMed Central

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70–95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  18. Plant derived substances with anti-cancer activity: from folklore to practice.

    PubMed

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  19. Inorganic Nitrogen Derived from Foraging Honey Bees Could Have Adaptive Benefits for the Plants They Visit

    E-print Network

    Delaplane, Keith S.

    Inorganic Nitrogen Derived from Foraging Honey Bees Could Have Adaptive Benefits for the Plants In most terrestrial ecosystems, nitrogen (N) is the most limiting nutrient for plant growth. Honey bees processes associated with bee frass is not available. The objectives of this work were to 1) estimate

  20. Cycads: evolutionary innovations and the role of plant-derived neurotoxins

    E-print Network

    Law, Wayne

    Cycads: evolutionary innovations and the role of plant-derived neurotoxins Eric D. Brenner, Dennis 10458-5126, USA Cycads are an important relic from the past and rep- resent the oldest living seed plants. Cycads have been instrumental in our understanding the evolution of angiosperms and gymnosperms

  1. CLUES TO STEROL FUNCTION IN NEMATODES: RECENT STUDIES WITH CAENORHABDITIS ELEGANS AND THE SOYBEAN CYST NEMATODE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes possess a nutritional requirement for sterol because of their inability to biosynthesize sterols de novo. Consequently, parasitic nematodes must obtain sterols from their hosts and then metabolize them to other sterols and steroids required for nematode growth, development and reproductio...

  2. Sterols: a tracer of organic matter in combined sewers.

    PubMed

    Zgheib, S; Gromaire, M C; Lorgeoux, C; Saad, M; Chebbo, G

    2008-01-01

    The important organic pollution of combined wet weather flows (WWF), its acute impact on receiving waters have been widely demonstrated. The main three possibly origins for this organic pollution are: runoff water (streets and roofs), wastewater and erosion of sewer sediments in combined sewer system. This work, for tracing the origin of organic particles bound in combined sewer system, has been focused on the innovative use of sterols. So, eight sterols have been selected and analysed for each kind of sample. Results are represented in contents of sterols (microg g(-1)) and in sterol profiles (%). The comparison of contents and profiles leads the separation between two groups: runoff water, characterized by the total absence of coprostanol, epicoprostanol and coprostanone, and the group of sewer deposits (gross bed sediment (GBS), organic layer (OL), biofilms) and wastewater. Moreover, sewer deposits and wastewater can be distinguished by their sterol contents and profiles. To evaluate their contribution to WWF a comparison between sterol signatures is done which shows that these effluents have a strong similarity in profiles and in contents of sterols to the organic layer. PMID:18547920

  3. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    PubMed

    Clay, Adam T; Lu, Peihua; Sharom, Frances J

    2015-11-01

    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 ?M. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains. PMID:26484739

  4. Do Plant Cells Secrete Exosomes Derived from Multivesicular Bodies?

    PubMed Central

    An, Qianli; van Bel, Aart JE

    2007-01-01

    Multivesicular bodies (MVBs) are spherical endosomal organelles containing small vesicles formed by inward budding of the limiting membrane into the endosomal lumen. In mammalian red cells and cells of immune system, MVBs fuse with the plasma membrane in an exocytic manner, leading to release their contents including internal vesicles into the extracellular space. These released vesicles are termed exosomes. Transmission electron microscopy studies have shown that paramural vesicles situated between the plasma membrane and the cell wall occur in various cell wall-associated processes and are similar to exosomes both in location and in morphology. Our recent studies have revealed that MVBs and paramural vesicles proliferate when cell wall appositions are rapidly deposited beneath fungal penetration attempts or during plugging of plasmodesmata between hypersensitive cells and their intact neighboring cells. This indicates a potential secretion of exosome-like vesicles into the extracellular space by fusion of MVBs with the plasma membrane. This MVB-mediated secretion pathway was proposed on the basis of pioneer studies of MVBs and paramural vesicles in plants some forty years ago. Here, we recall the attention to the occurrence of MVB-mediated secretion of exosomes in plants. PMID:19704795

  5. Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development

    PubMed Central

    Tian, Li

    2015-01-01

    Carotenoids (C40) are synthesized in plastids and perform numerous important functions in these organelles. In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant’s life cycle. Besides the relatively well-studied phytohormones abscisic acid (ABA) and strigolactones (SLs), additional carotenoid-derived signaling molecules have been discovered and shown to regulate plant growth and development. As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals. Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population. PMID:26442092

  6. Chemometric approach to validating faecal sterols as source tracer for faecal contamination in water.

    PubMed

    Saim, Norashikin; Osman, Rozita; Sari Abg Spian, Dayang Ratena; Jaafar, Mohd Zuli; Juahir, Hafizan; Abdullah, Md Pauzi; Ghani, Fuzziawati Ab

    2009-12-01

    Faecal sterols detection is a promising method for identifying sources of faecal pollution. In this study, faecal contamination in water samples from point source (sewage treatment plants, chicken farms, quail farms and horse stables) was extracted using the solid phase extraction (SPE) technique. Faecal sterols (coprostanol, cholesterol, stigmasterol, beta-sitosterol and stigmastanol) were selected as parameters to differentiate the source of faecal pollution. The results indicated that coprostanol, cholesterol and beta-sitosterol were the most significant parameters that can be used as source tracers for faecal contamination. Chemometric techniques, such as cluster analysis, principal component analysis and discriminant analysis were applied to the data set on faecal contamination in water from various pollution sources in order to validate the faecal sterols' profiles. Cluster analysis generated three clusters: coprostanol was in cluster 1, cholesterol and beta-sitosterol formed cluster 2, while cluster 3 contained stigmasterol and stigmastanol. Discriminant analysis suggested that coprostanol, cholesterol and beta-sitosterol were the most significant parameters to discriminate between the faecal pollution source. The use of chemometric techniques provides useful and promising indicators in tracing the source of faecal contamination. PMID:19896157

  7. Cell Polarity and PIN Protein Positioning in Arabidopsis Require STEROL METHYLTRANSFERASE1 Function

    PubMed Central

    Willemsen, Viola; Friml, Jirí; Grebe, Markus; van den Toorn, Albert; Palme, Klaus; Scheres, Ben

    2003-01-01

    Plants have many polarized cell types, but relatively little is known about the mechanisms that establish polarity. The orc mutant was identified originally by defects in root patterning, and positional cloning revealed that the affected gene encodes STEROL METHYLTRANSFERASE1, which is required for the appropriate synthesis and composition of major membrane sterols. smt1orc mutants displayed several conspicuous cell polarity defects. Columella root cap cells revealed perturbed polar positioning of different organelles, and in the smt1orc root epidermis, polar initiation of root hairs was more randomized. Polar auxin transport and expression of the auxin reporter DR5-?-glucuronidase were aberrant in smt1orc. Patterning defects in smt1orc resembled those observed in mutants of the PIN gene family of putative auxin efflux transporters. Consistently, the membrane localization of the PIN1 and PIN3 proteins was disturbed in smt1orc, whereas polar positioning of the influx carrier AUX1 appeared normal. Our results suggest that balanced sterol composition is a major requirement for cell polarity and auxin efflux in Arabidopsis. PMID:12615936

  8. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    PubMed

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics. PMID:26362468

  9. Terpenoids and sterols from some Japanese mushrooms.

    PubMed

    Yaoita, Yasunori; Kikuchi, Masao; Machida, Koichi

    2014-03-01

    Over the past twenty years, our research group has been studying the chemical constituents of mushrooms. From nineteen species, namely, Amanita virgineoides Bas (Amanitaceae), Daedaleopsis tricolor (Bull.: Fr.) Bond. et Sing. (Polyporaceae), Grifolafrondosa (Fr.) S. F. Gray (Polyporaceae), Hericium erinaceum (Bull.: Fr.) Pers. (Hericiaceae), Hypsizigus marmoreus (Peck) Bigelow (Tricholomataceae), Lactarius piperatus (Scop.: Fr.) S. F. Gray (Russulaceae), Lentinula edodes (Berk.) Sing. (Pleurotaceae), Lyophyllyum connatum (Schum.: Fr.) Sing. (Tricholomataceae), Naematoloma sublateritium (Fr.) Karst. (Strophariaceae), Ompharia lapidescens Schroeter (Polyporaceae), Panellus serotinus (Pers.: Fr.) Kuhn. (Tricholomataceae), Pholiota nameko (T. Ito) S. Ito et Imai in Imai (Strophariaceae), Pleurotus eringii (DC.: Fr.) Quel. (Pleurotaceae), Polyporus umbellatus Fries (Polyporaceae), Russula delica Fr. (Russulaceae), Russula sanguinea (Bull.) Fr. (Russulaceae), Sarcodon aspratus (Berk.) S. Ito (Thelephoraceae), Tricholoma matsutake (S. Ito et Imai) Sing. (Tricholomataceae), and Tricholomaportentosum (Fr.) Quel. (Tricholomataceae), we isolated eight new sesquiterpenoids, six new meroterpenoids, three new triterpenoids, and twenty eight new sterols. In this review, structural features of these new compounds are discussed. PMID:24689228

  10. Plant-derived therapeutics for the treatment of metabolic syndrome

    PubMed Central

    Graf, Brittany L; Raskin, Ilya; Cefalu, William T; Ribnicky, David M

    2011-01-01

    Metabolic syndrome is defined as a set of coexisting metabolic disorders that increase an individual’s likelihood of developing type 2 diabetes, cardiovascular disease and stroke. Medicinal plants, some of which have been used for thousands of years, serve as an excellent source of bioactive compounds for the treatment of metabolic syndrome because they contain a wide range of phytochemicals with diverse metabolic effects. In order for botanicals to be effectively used against metabolic syndrome, however, botanical preparations must be characterized and standardized through the identification of their active compounds and respective modes of action, followed by validation in controlled clinical trials with clearly defined endpoints. This review assesses examples of commonly known and partially characterized botanicals to describe specific considerations for the phytochemical, preclinical and clinical characterization of botanicals associated with metabolic syndrome. PMID:20872313

  11. Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis

    PubMed Central

    Upadhyaya, Indu; Kollanoor-Johny, Anup

    2014-01-01

    The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed. PMID:25298964

  12. Research progress of genome editing and derivative technologies in plants.

    PubMed

    Qiwei, Shan; Caixia, Gao

    2015-10-01

    Genome editing technologies using engineered nucleases have been widely used in many model organisms. Genome editing with sequence-specific nuclease (SSN) creates DNA double-strand breaks (DSBs) in the genomic target sites that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathways, which can be employed to achieve targeted genome modifications such as gene mutations, insertions, replacements or chromosome rearrangements. There are three major SSNs?zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system. In contrast to ZFN and TALEN, which require substantial protein engineering to each DNA target, the CRISPR/Cas9 system requires only a change in the guide RNA. For this reason, the CRISPR/Cas9 system is a simple, inexpensive and versatile tool for genome engineering. Furthermore, a modified version of the CRISPR/Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression, such as activation, depression and epigenetic regulation. In this review, we summarize the development and applications of genome editing technologies for basic research and biotechnology, as well as highlight challenges and future directions, with particular emphasis on plants. PMID:26496748

  13. BYPASS1 negatively regulates a root-derived signal that controls plant architecture.

    PubMed

    Van Norman, Jaimie M; Frederick, Rebecca L; Sieburth, Leslie E

    2004-10-01

    Plant architecture is regulated by endogenous developmental programs, but it can also be strongly influenced by cues derived from the environment. For example, rhizosphere conditions such as water and nutrient availability affect shoot and root architecture; this implicates the root as a source of signals that can override endogenous developmental programs. Cytokinin, abscisic acid, and carotenoid derivatives have all been implicated as long-distance signals that can be derived from the root. However, little is known about how root-derived signaling pathways are regulated. Here, we show that BYPASS1 (BPS1), an Arabidopsis gene of unknown function, is required to prevent constitutive production of a root-derived graft-transmissible signal that is sufficient to inhibit leaf initiation, leaf expansion, and shoot apical meristem activity. We show that this root-derived signal is likely to be a novel carotenoid-derived molecule that can modulate both root and shoot architecture. PMID:15458645

  14. Sterol Profile for Natural Juices Authentification by GC-MS

    SciTech Connect

    Culea, M.

    2007-04-23

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15mx0.25mm, 0.25{mu}m film thickness, in a temperature program from 50 deg. C for 1 min, then ramped at 15 deg. C/min to 300 deg. C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices.

  15. Sterol Profile for Natural Juices Authentification by GC-MS

    NASA Astrophysics Data System (ADS)

    Culea, M.

    2007-04-01

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15m×0.25mm, 0.25?m film thickness, in a temperature program from 50°C for 1 min, then ramped at 15°C/min to 300°C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices.

  16. Inhibition of human polymorphonuclear leukocyte chemotaxis by oxygenated sterol compounds

    SciTech Connect

    Gordon, L.I.; Bass, J.; Yachnin, S.

    1980-07-01

    When preincubated with certain oxygenated sterol compounds in lipoprotein-depleted serum (20% (vol/vol)), human polymorphonuclear leukocytes show inhibition of chemotaxis toward the synthetic dipeptide N-formylmethionylphenylalinine without alteration of random movement or loss of cell viability. These effects can occur at sterol concentrations as low as 6.25 ..mu..M and after as little as 5 min of preincubation, but they are increased at higher concentrations and longer preincubation times. The inhibition can be almost completely reversed by preincubation in lipoprotein-replete serum (human AB serum, 20% (vol/vol)) and may be partially corrected by addition of free cholesterol (0.125 mM) to the medium. These effects are unlikely to be due to inhibition of cellular sterol synthesis, competition for chemotaxin membrane binding sites, or deactivation of the leukocytes but they may be a consequence of insertion of the sterol molecule into the leukocyte plasma membranes.

  17. Mutations in UDP-Glucose:Sterol Glucosyltransferase in Arabidopsis Cause Transparent Testa Phenotype and Suberization Defect in Seeds1[C][W][OA

    PubMed Central

    DeBolt, Seth; Scheible, Wolf-Rüdiger; Schrick, Kathrin; Auer, Manfred; Beisson, Fred; Bischoff, Volker; Bouvier-Navé, Pierrette; Carroll, Andrew; Hematy, Kian; Li, Yonghua; Milne, Jennifer; Nair, Meera; Schaller, Hubert; Zemla, Marcin; Somerville, Chris

    2009-01-01

    In higher plants, the most abundant sterol derivatives are steryl glycosides (SGs) and acyl SGs. Arabidopsis (Arabidopsis thaliana) contains two genes, UGT80A2 and UGT80B1, that encode UDP-Glc:sterol glycosyltransferases, enzymes that catalyze the synthesis of SGs. Lines having mutations in UGT80A2, UGT80B1, or both UGT80A2 and UGT8B1 were identified and characterized. The ugt80A2 lines were viable and exhibited relatively minor effects on plant growth. Conversely, ugt80B1 mutants displayed an array of phenotypes that were pronounced in the embryo and seed. Most notable was the finding that ugt80B1 was allelic to transparent testa15 and displayed a transparent testa phenotype and a reduction in seed size. In addition to the role of UGT80B1 in the deposition of flavanoids, a loss of suberization of the seed was apparent in ugt80B1 by the lack of autofluorescence at the hilum region. Moreover, in ugt80B1, scanning and transmission electron microscopy reveals that the outer integument of the seed coat lost the electron-dense cuticle layer at its surface and displayed altered cell morphology. Gas chromatography coupled with mass spectrometry of lipid polyester monomers confirmed a drastic decrease in aliphatic suberin and cutin-like polymers that was associated with an inability to limit tetrazolium salt uptake. The findings suggest a membrane function for SGs and acyl SGs in trafficking of lipid polyester precursors. An ancillary observation was that cellulose biosynthesis was unaffected in the double mutant, inconsistent with a predicted role for SGs in priming cellulose synthesis. PMID:19641030

  18. Sterol/steroid metabolism and absorption in a generalist and specialist caterpillar: Effects of dietary sterol/steroid structure, mixture and ratio

    E-print Network

    Eubanks, Micky

    Sterol/steroid metabolism and absorption in a generalist and specialist caterpillar: Effects of dietary sterol/steroid structure, mixture and ratio Xiangfeng Jing a,b,*, Robert J. Grebenok c , Spencer T insect herbivore sterol/steroid metabolism and absorption; we use two cat- erpillars species e one

  19. SURVEY OF THE STEROL COMPOSITION OF THE MARINE DINOFLAGELLATES KARENIA BREVIS, KARENIA MIKIMOTOI, AND KARLODINIUM MICRUM: DISTRIBUTION OF STEROLS WITHIN OTHER MEMBERS OF THE CLASS DINOPHYCEAE

    EPA Science Inventory

    The sterol composition of different marine microalgae was examined to determine the utility of sterols as biomarkers to distinguish members of various algal classes. For example, members of the class Dinophyceae possess certain 4-methyl sterols, such as dinosterol, which are rare...

  20. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1998-09-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  1. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

    1997-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  2. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

    1998-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  3. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

    2002-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  4. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1997-09-16

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  5. Evolution of a regulatory framework for pharmaceuticals derived from genetically modified plants.

    PubMed

    Spök, Armin; Twyman, Richard M; Fischer, Rainer; Ma, Julian K C; Sparrow, Penelope A C

    2008-09-01

    The use of genetically modified (GM) plants to synthesize proteins that are subsequently processed, regulated and sold as pharmaceuticals challenges two very different established regulatory frameworks, one concerning GM plants and the other covering the development of biotechnology-derived drugs. Within these regulatory systems, specific regulations and guidelines for plant-made pharmaceuticals (PMPs)--also referred to as plant-derived pharmaceuticals (PDPs)--are still evolving. The products nearing commercial viability will ultimately help to road test and fine-tune these regulations, and might help to reduce regulatory uncertainties. In this review, we summarize the current state of regulations in different countries, discuss recent changes and highlight the need for further regulatory development in this burgeoning, new industry. We also make the case for the harmonization of international regulations. PMID:18676047

  6. Sterol biosynthesis de nova via cycloartenol by the soil amoeba Acanthamoeba polyphaga.

    PubMed Central

    Raederstorff, D; Rohmer, M

    1985-01-01

    The soil amoeba Acanthamoeba polyphaga is capable of synthesizing its sterols de novo from acetate. The major sterols are ergosterol and poriferasta-5,7,22-trienol. Furthermore C28 and C29 sterols of still unknown structure with an aromatic B-ring are also synthesized by the amoeba. The first cyclic sterol precursor is cycloartenol, which is the sterol precursor in all photosynthetic phyla. No trace of lanosterol, which is the sterol precursor in animals and fungi, could be detected. These results show that at least some of the biochemical processes of Acanthamoeba polyphaga might be phylogenetically related to those of unicellular algae. Addition of exogenous sterols to the culture medium does not influence the sterol biosynthesis and the sterol composition of the cells. PMID:4074326

  7. Derivative Analysis of AVIRIS Hyperspectral Data for the Detection of Plant Stress

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Berglund, Judith

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test site at Shelton, Nebraska. The test field was set off in blocks that were differentially treated with nitrogen. Four replicates of 0-kg/ha to 200-kg/ha, in 50-kg/ha increments, were present. Low-altitude AVIRIS hyperspectral data were collected over the site in 224 spectral bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to evaluate published, derivative-based algorithms for the detection of plant stress, different derivative-based approaches were applied to the collected AVIRIS image cube. The results indicate that, given good quality hyperspectral imagery, derivative techniques compare favorably with simple, well known band ratio algorithms for detection of plant stress.

  8. Short communication: an in vitro assessment of the antibacterial activity of plant-derived oils.

    PubMed

    Mullen, K A E; Lee, A R; Lyman, R L; Mason, S E; Washburn, S P; Anderson, K L

    2014-09-01

    Nonantibiotic treatments for mastitis are needed in organic dairy herds. Plant-derived oils may be useful but efficacy and potential mechanisms of action of such oils in mastitis therapy have not been well documented. The objective of the current study was to evaluate the antibacterial activity of the plant-derived oil components of Phyto-Mast (Bovinity Health LLC, Narvon, PA), an herbal intramammary product, against 3 mastitis-causing pathogens: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Plant-derived oils evaluated were Thymus vulgaris (thyme), Gaultheria procumbens (wintergreen), Glycyrrhiza uralensis (Chinese licorice), Angelica sinensis, and Angelica dahurica. Broth dilution testing according to standard protocol was performed using ultrapasteurized whole milk instead of broth. Controls included milk only (negative control), milk + bacteria (positive control), and milk + bacteria + penicillin-streptomycin (antibiotic control, at 1 and 5% concentrations). Essential oil of thyme was tested by itself and not in combination with other oils because of its known antibacterial activity. The other plant-derived oils were tested alone and in combination for a total of 15 treatments, each replicated 3 times and tested at 0.5, 1, 2, and 4% to simulate concentrations potentially achievable in the milk within the pre-dry-off udder quarter. Thyme oil at concentrations ?2% completely inhibited bacterial growth in all replications. Other plant-derived oils tested alone or in various combinations were not consistently antibacterial and did not show typical dose-response effects. Only thyme essential oil had consistent antibacterial activity against the 3 mastitis-causing organisms tested in vitro. Further evaluation of physiological effects of thyme oil in various preparations on mammary tissue is recommended to determine potential suitability for mastitis therapy. PMID:25022682

  9. Validation of a method for the determination of sterols and triterpenes in the aerial part of Justicia anselliana (Nees) T. Anders by capillary gas chromatography.

    PubMed

    Kpoviéssi, Dossou Sika Salomé; Gbaguidi, Fernand; Gbénou, Joachim; Accrombessi, Georges; Moudachirou, Mansourou; Rozet, Eric; Hubert, Philippe; Quetin-Leclercq, Joëlle

    2008-12-01

    An accurate and sensitive method, combining soxhlet extraction, solid phase-extraction and capillary gas chromatography is described for the quantitative determination of one triterpene (lupeol) and three sterols (stigmasterol, campesterol and beta-sitosterol) and the detection of another triterpene (alpha-amyrin) from the aerial part of Justicia anselliana. This is the first method allowing the quantification of sterols and triterpenes in this plant. It has been fully validated in order to be able to compare the sterol and triterpene composition of different samples of J. anselliana and therefore help to explain the allelopathic activity due to these compounds. This method showed that the aerial part of J. anselliana contained (292+/-2)mg/kg of lupeol, (206+/-1)mg/kg of stigmasterol, (266+/-2)mg/kg of campesterol and (184+/-9)mg/kg of beta-sitosterol. PMID:18951746

  10. A dietary test of putative deleterious sterols for the aphid Myzus persicae.

    PubMed

    Bouvaine, Sophie; Faure, Marie-Line; Grebenok, Robert J; Behmer, Spencer T; Douglas, Angela E

    2014-01-01

    The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1-10 µg ml(-1). Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants. PMID:24465993

  11. A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...

  12. Plant-derived sweetening agents: saccharide and polyol constituents of some sweet-tasting plants.

    PubMed

    Hussain, R A; Lin, Y M; Poveda, L J; Bordas, E; Chung, B S; Pezzuto, J M; Soejarto, D D; Kinghorn, A D

    1990-02-01

    Samples of the sweet-tasting species Acanthospermum hispidum DC. (Compositae) (aerial parts), Boscia salicifolia Oliv. (Capparidaceae) (stem bark), Hovenia dulcis Thunb. (Rhamnaceae) (peduncles) and Inga spectabilis Willd. (Leguminosae) (arils) were acquired as part of a continuing search for high-intensity natural sweeteners of plant origin. Following their preliminary safety evaluation, the sweetness of these plants was traced to large amounts of sugars and polyols by taste-guided fractionation, which were identified and quantified using gas chromatography/mass spectrometry. The combined yields of sugars and polyols in the A. hispidum, B. salicifolia, H. dulcis, and I. spectabilis samples investigated were 6.9, 10.1, 18.4 and 12.1% w/w, respectively. These yields are much higher than the total saccharide and polyol content (2.4% w/w) of the sweet dried fruits of Thladiantha grosvenorii (Swingle) C. Jeffrey (Cucurbitaceae), a species which has previously been reported to contain more than 1% w/w of the intensely sweet triterpene, mogroside V. The dried leaves of Symplocos tinctoria (L.) L'Hérit. (Symplocaceae), which were not appreciably sweet, were found to contain only 2.0% w/w of sugars. The results of this investigation, therefore, suggest that unless the saccharide and/or polyol content of a plant part is well over 5% w/w, then it is unlikely to exhibit an overtly sweet taste, unless an intense sweetener is present. PMID:2314108

  13. De novo production of the plant-derived alkaloid strictosidine in yeast

    PubMed Central

    Brown, Stephanie; Clastre, Marc; Courdavault, Vincent; O’Connor, Sarah E.

    2015-01-01

    The monoterpene indole alkaloids are a large group of plant-derived specialized metabolites, many of which have valuable pharmaceutical or biological activity. There are ?3,000 monoterpene indole alkaloids produced by thousands of plant species in numerous families. The diverse chemical structures found in this metabolite class originate from strictosidine, which is the last common biosynthetic intermediate for all monoterpene indole alkaloid enzymatic pathways. Reconstitution of biosynthetic pathways in a heterologous host is a promising strategy for rapid and inexpensive production of complex molecules that are found in plants. Here, we demonstrate how strictosidine can be produced de novo in a Saccharomyces cerevisiae host from 14 known monoterpene indole alkaloid pathway genes, along with an additional seven genes and three gene deletions that enhance secondary metabolism. This system provides an important resource for developing the production of more complex plant-derived alkaloids, engineering of nonnatural derivatives, identification of bottlenecks in monoterpene indole alkaloid biosynthesis, and discovery of new pathway genes in a convenient yeast host. PMID:25675512

  14. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    PubMed Central

    Vera, Jeannette; Castro, Jorge; Gonzalez, Alberto; Moenne, Alejandra

    2011-01-01

    Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants. PMID:22363237

  15. Screening, isolation and optimization of anti–white spot syndrome virus drug derived from marine plants

    PubMed Central

    Chakraborty, Somnath; Ghosh, Upasana; Balasubramanian, Thangavel; Das, Punyabrata

    2014-01-01

    Objective To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various marine floral ecosystems and to evaluate the efficacy of the same in host–pathogen interaction model. Methods Thirty species of marine plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti-WSSV property in Litopenaeus vannamei. By means of chemical processes, the purified anti-WSSV plant isolate, MP07X was derived. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug. Results Nine plant isolates exhibited significant survivability in host. The drug MP07X thus formulated showing 85% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of MP07X required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 1?000 mg/kg body weight/day survived at the rate of 85%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection. Conclusions The drug MP07X derived from Rhizophora mucronata is a potent anti-WSSV drug. PMID:25183065

  16. Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon

    PubMed Central

    Hernández, Marcela; Yuan, Quan; Conrad, Ralf

    2015-01-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with 13CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with 13C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the “Spartobacteria” and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (?20%) than did those in the rhizosphere (?4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  17. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens

    PubMed Central

    Payghami, Nasrin; Jamili, Shahla; Rustaiyan, Abdolhossein; Saeidnia, Soodabeh; Nikan, Marjan; Gohari, Ahmad Reza

    2015-01-01

    Background: Sargassum species (phaeophyceae) are economically important brown algae in southern parts of Iran. Sargassum is mainly harvested as a row material in alginate production industries and is a source of plant foods or plant bio-stimulants even a component of animal foods. Objective: In this study, Sargassum glaucescens, collected from the seashore of Chabahar, was employed for phytochemical and biological evaluations. Materials and Methods: For that purpose, the dried algae was extracted by methanol and subjected to different chromatographic separation methods. Results: Six sterols, fucosterol (1), 24(S)-hydroxy-24-vinylcholesterol (2), 24(R)-hydroxy-24-vinylcholesterol (3), stigmasterol (4), ?-sitosterol (5) and cholesterol (6) were identified by spectroscopic methods including 1H-NMR, 13C-NMR and mass spectroscopy. In vitro alpha-amylase inhibitory test was performed on the methanolic extract and the results revealed a potent inhibition (IC50 = 8.9 ± 2.4 mg/mL) of the enzyme compared to acarbose as a positive control. Conclusion: Various biological activities and distribution of sterols in Sargassum genus have been critically reviewed here. The results concluded that these algae are a good candidate for further anti-diabetic investigations in animals and human.

  18. Lipase-mediated synthesis of water-soluble plant stanol derivatives in tert-butanol.

    PubMed

    He, Wen-Sen; Li, Jing-Jing; Pan, Xiao-Xia; Zhou, Yang; Jia, Cheng-Sheng; Zhang, Xiao-Ming; Feng, Biao

    2012-06-01

    The effects of solvents with different log P values, and of lipases on the synthesis of water-soluble plant stanol derivatives were investigated. Results showed that conversion in solvents with log P<0.37 was mainly controlled by the hydrophobicity of the solvent and subsequent complete or partial deactivation of the enzyme. The solubility of substrate was the leading factor for the conversion in solvents with log P>0.37. Lipozyme RM IM and tert-butanol was the most suitable biocatalyst and solvent, respectively. The highest yield (>51%) of plant stanyl sorbitol succinate was obtained under the selected conditions: 50 ?mol/mL plant stanyl hemisuccinate, 1:3 molar ratio of plant stanyl hemisuccinate to d-sorbitol, 80 mg/mL 3 Ĺ molecular sieves and 100mg/mL Lipozyme RM IM in tert-butanol, 150 r/min and 55 °C. Fourier transform infrared spectroscopy, mass spectroscopy and nuclear magnetic resonance spectroscopy were adopted to determine the structure of product, suggesting that water-soluble plant stanol derivatives were successfully synthesized. PMID:22464062

  19. Screening, isolation and optimization of anti–white spot syndrome virus drug derived from terrestrial plants

    PubMed Central

    Ghosh, Upasana; Chakraborty, Somnath; Balasubramanian, Thangavel; Das, Punyabrata

    2014-01-01

    Objective To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various terrestrial plants and to evaluate the efficacy of the same in host–pathogen interaction model. Methods Thirty plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti–WSSV property in Litopenaeus vannamei. The best anti–WSSV plant isolate, TP22C was isolated and further analyzed. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug. Results Seven plant isolates exhibited significant survivability in host. The drug TP22C thus formulated showed 86% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of TP22C required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 750 mg/kg body weight/day survived at the rate of 86%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection. Conclusions The drug TP22C derived from Momordica charantia is a potent anti-white spot syndrome virus drug. PMID:25183066

  20. An Enzyme-Based Formaldehyde Assay and Its Utility in a Sponge Sterol Biosynthetic Pathway

    E-print Network

    Kerr, Russell G.

    An Enzyme-Based Formaldehyde Assay and Its Utility in a Sponge Sterol Biosynthetic Pathway Russell of sterol side chains in a marine sponge. The enzyme used in the assay, formaldehyde dehydrogenase, is NAD nm. Sponges are responsible for the production of numerous novel sterols and are known to be capable

  1. Annual Variation in the Effect of Red Light on Sterol Biosynthesis in Digitalis purpurea L. 1

    PubMed Central

    Jacobsohn, Myra K.; Orkwiszewski, Joseph A. J.; Jacobsohn, Gert M.

    1978-01-01

    The effect of varying sequences of red and far red light on sterol biosynthesis in etiolated seedlings of Digitalis purpurea L. was examined. Red light caused a marked increase in the amounts of free and glycosidic sterols and a small decrease in esterified sterols during the first 4 hours after illumination. Far red light elicited the same response but to a lesser degree. Exposure to red followed by far red light or the reverse caused little or no increase in the amounts of free and glycosidic sterols. The magnitude of the increase in the amounts of sterols varied, depending upon the season in which the experiments were performed. The largest increments were obtained during the summer and fall, whereas the smallest were observed during the winter and spring. Correlation of these data with previous observations of an annual cycle in the sterol content of Digitalis seedlings showed that the maximum stimulation in sterol biosynthesis occurs when the endogenous level of sterols is minimal. Sterol monoglycosides, acylmonoglycosides, and an unidentified sterol conjugate from the lipid extracts were quantitated. Changes in conjugated sterol content were related to the particular light conditions of each experiment. The results are discussed in terms of physiological cycles and the possible influence of hormones upon the control of sterol biosynthesis in Digitalis. PMID:16660620

  2. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    PubMed

    Sternberg, Eleanore D; Lefčvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. PMID:23106703

  3. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs.

    PubMed

    de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2009-01-01

    Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB) that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a) statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b) bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c) zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS), which catalyzes the first committed step in sterol biosynthesis, (d) allylamines, inhibitors of squalene epoxidase, (e) azoles, which inhibit C14alpha-demethylase, and (f) azasterols, which inhibit Delta(24(25))-sterol methyltransferase (SMT). Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures), and their effects on protozoan structural organization (as evaluted by light and electron microscopy) and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take place in the organization of the kinetoplast DNA network and on the protozoan cell cycle. In addition, apoptosis-like and autophagic processes induced by several of the inhibitors tested led to parasite death. PMID:19680554

  4. Structural and Functional Analyses of a Sterol Carrier Protein in Spodoptera litura

    PubMed Central

    Xu, Rui; Zheng, Sichun; He, Hongwu; Wan, Jian; Feng, Qili

    2014-01-01

    Backgrounds In insects, cholesterol is one of the membrane components in cells and a precursor of ecdysteroid biosynthesis. Because insects lack two key enzymes, squalene synthase and lanosterol synthase, in the cholesterol biosynthesis pathway, they cannot autonomously synthesize cholesterol de novo from simple compounds and therefore have to obtain sterols from their diet. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol absorption and transport. Results In this study, a model of the three-dimensional structure of SlSCPx-2 in Spodoptera litura, a destructive polyphagous agricultural pest insect in tropical and subtropical areas, was constructed. Docking of sterol and fatty acid ligands to SlSCPx-2 and ANS fluorescent replacement assay showed that SlSCPx-2 was able to bind with relatively high affinities to cholesterol, stearic acid, linoleic acid, stigmasterol, oleic acid, palmitic acid and arachidonate, implying that SlSCPx may play an important role in absorption and transport of these cholesterol and fatty acids from host plants. Site-directed mutation assay of SlSCPx-2 suggests that amino acid residues F53, W66, F89, F110, I115, T128 and Q131 are critical for the ligand-binding activity of the SlSCPx-2 protein. Virtual ligand screening resulted in identification of several lead compounds which are potential inhibitors of SlSCPx-2. Bioassay for inhibitory effect of five selected compounds showed that AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 inhibited the growth of S. litura larvae. Conclusions Compounds AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 selected based on structural modeling showed binding affinity to SlSCPx-2 protein and inhibitory effect on the growth of S. litura larvae. PMID:24454688

  5. Plant-Derived Phenolics Inhibit the Accrual of Structurally Characterised Protein and Lipid Oxidative Modifications

    PubMed Central

    Naudí, Alba; Romero, Maria-Paz; Cassanyé, Anna; Serrano, José C. E.; Arola, Lluis; Valls, Josep; Bellmunt, Maria Josep; Prat, Joan; Pamplona, Reinald; Portero-Otin, Manuel; Motilva, Maria-José

    2012-01-01

    Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine- protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters). This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake. PMID:22952663

  6. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars.

    PubMed

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd(2+)/NH4(+) sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500°C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH4(+) and Cd(2+), with a maximum sorption of 13.35 and 125.8mgg(-1), respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3mgg(-1)) for Cd(2+). Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd(2+) sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. PMID:26386447

  7. Molecular docking based screening of GABA (A) receptor inhibitors from plant derivatives

    PubMed Central

    Sahila, Mohammed Marunnan; Babitha, Pallikkara Pulikkal; Bandaru, Srinivas; Nayarisseri, Anuraj; Doss, Victor Arokia

    2015-01-01

    The present antipsychotic drugs have known to show serious concerns like extra pyramidal side effects therefore, pursuit for novel antipsychotic GABAnergic drugs has lately focused on the folkloric medicine from plant derivatives as better treatment option of schizophrenia. The present study centers to identify potential inhibitors of plant origin for GABA receptor through in silico approaches. Three compound datasets were undertaken in the study. The first set consisted of seven compounds which included Magnolol, Honokiol and other plant derivatives. The second set consisted of 16 derivatives of N-diarylalkenyl-piperidinecarboxylic acid synthesized by Zheng et al., 2006. The third dataset had thirty two compounds which were Magnolol and Honokiol analogues synthesized by Fuchs et al., 2014. All the compounds were docked at the allosteric site of the GABA (A) receptor. The compounds were further tested for ADMET and biological activity. We observed Honokiol and its derivatives demonstrated superior druglike properties than any compound undertaken in the study. Further, compound 61 [2-(4-methoxyphenyl)-4-propylphenol] of dataset three - a synthetic derivative of honokiol had better profile than its parent compound. In a possible attempt to identify compound with even better efficacious compound than 61, virtual screening was performed, 135 compounds akin to compound 61 were retrieved. Interestingly none of the 135 compounds showed better druggable properties than compound 61. Our in silico pharmacological profiling of compounds is in coherence and is complemented by the findings of Fuchs et al, which also revealed compound 61 to be the good potentiator of GABA receptor. Abbreviations GABA (A) R - Gamma Amino Butyric Acid Receptor, subtype A, GPCR - G Protein Coupled Receptor, OPLS - Optimized Potentials for Liquid Simulations, PDB - Protein Data Bank, PLP - Piece wise Linear Potential, T.E.S.T - Toxicity Estimation Software Tool, TCM - Traditional Chinese Medicine. PMID:26229288

  8. Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks.

    PubMed

    Sabalza, Maite; Christou, Paul; Capell, Teresa

    2014-12-01

    Molecular pharming is a cost-effective platform for the production of recombinant proteins in plants. Although the biopharmaceutical industry still relies on a small number of standardized fermentation-based technologies for the production of recombinant proteins there is now a greater awareness of the advantages of molecular pharming particularly in niche markets. Here we discuss some of the technical, economic and regulatory barriers that constrain the clinical development and commercialization of plant-derived pharmaceutical proteins. We also discuss strategies to increase productivity and product quality/homogeneity. The advantages of whole plants should be welcomed by the industry because this will help to reduce the cost of goods and therefore expand the biopharmaceutical market into untapped sectors. PMID:25048244

  9. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants*

    PubMed Central

    Zeng, Zheng; Zhang, Song-da; Li, Ting-qiang; Zhao, Feng-liang; He, Zhen-li; Zhao, He-ping; Yang, Xiao-e; Wang, Hai-long; Zhao, Jing; Rafiq, Muhammad Tariq

    2013-01-01

    The study on biochar derived from plant biomass for environmental applications is attracting more and more attention. Twelve sets of biochar were obtained by treating four phytoremediation plants, Salix rosthornii Seemen, Thalia dealbata, Vetiveria zizanioides, and Phragmites sp., sequentially through pyrolysis at 500 °C in a N2 environment, and under different temperatures (500, 600, and 700 °C) in a CO2 environment. The cation exchange capacity and specific surface area of biochar varied with both plant species and pyrolysis temperature. The magnesium (Mg) content of biochar derived from T. dealbata (TC) was obviously higher than that of the other plant biochars. This biochar also had the highest sorption capacity for phosphate and ammonium. In terms of biomass yields, adsorption capacity, and energy cost, T. dealbata biochar produced at 600 °C (TC600) is the most promising sorbent for removing contaminants (N and P) from aqueous solution. Therefore, T. dealbata appears to be the best candidate for phytoremediation application as its biomass can make a good biochar for environmental cleaning. PMID:24302715

  10. Digitonide precipitable sterols: a reevaluation with special attention to lanosterol.

    PubMed

    Cenedella, R J

    1982-06-01

    The ability of digitonin to precipitate lanosterol from prepared mixtures and biological sources was evaluated. Commercially available lanosterol was determined to be composed of about 60% lanosterol and 40% dihydrolanosterol. Both sterols were only partially precipitated by digitonin under all conditions examined. The presence of cholesterol increased the precipitation of lanosterol, but never to completion. About 40% of the lanosterols from saponified sheep's-wool fat was not precipitated by digitonin. Also 14C-labeled lanosterol recovered from rat brain following intracerebral injection of 2-[14C]mevalonate was only 70% precipitated by digitonin. Steric hinderance by the methyl groups at carbon -4 is suggested to explain the poor precipitability of this sterol. In conclusion, lanosterol can not be considered to be a digitonide-precipitable sterol equivalent to cholesterol. Caution should be exercised in situations where digitonin-precipitable sterols are being prepared from sources containing significant concentrations of lanosterol (i.e., mass and/or radiolabel). PMID:7050581

  11. Incorporation of Sterols into Cells Using Cholesterol/Cyclodextrin Complexes

    E-print Network

    Pike, Linda J.

    Incorporation of Sterols into Cells Using Cholesterol/Cyclodextrin Complexes Reagents NeededH 7.2 Cholesterol/Cyclodextrin Complexes (6.8 mM cholesterol in 70 mM cyclodextrin) Phosphate to DME. Warm to 37° in the tissue culture incubator. Use 3 ml DME per 60 mm dish. 2 . Add cholesterol

  12. INHIBITION OF STEROL METABOLISM IN CAENORHABDITIS ELEGANS BY AY-9944

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caenorhabditis elegans and some other nematodes are capable of attaching a methyl group to the nucleus of sterols at the C-4 position. In C. elegans, 4-methylcholest-8(14)-enol is the most abundant 4-methylsterol produced, and smaller quantities of 4-methylcholest-7-enol also occur. The purpose of...

  13. Identification and characterization of an S-adenosyl-L-methionine: delta 24-sterol-C-methyltransferase cDNA from soybean.

    PubMed

    Shi, J; Gonzales, R A; Bhattacharyya, M K

    1996-04-19

    In plants, the dominant sterols are 24-alkyl sterols, which play multiple roles in plant growth and development, i.e. as membrane constituents and as precursors to steroid growth regulators such as brassinosteroids. The initial step in the conversion of the phytosterol intermediate cycloartenol to the 24-alkyl sterols is catalyzed by S-adenosyl-L-methionine: delta 24-sterol-C-methyl-transferase (SMT), a rate-limiting enzyme for phytosterol biosynthesis. A cDNA clone (SMT1) encoding soybean SMT was isolated from an etiolated hypocotyl cDNA library by immunoscreening using an anti-(plasma membrane) serum. The deduced amino acid sequence of the SMT1 cDNA contained three conserved regions found in S-adenosyl-L-methionine-dependent methyltransferases. The overall structure of the polypeptide encoded by the SMT1 cDNA is most similar to the predicted amino acid sequence of the yeast ERG6 gene, the putative SMT structural gene. The polypeptide encoded by the SMT1 cDNA was expressed as a fusion protein in Escherichia coli and shown to possess SMT activity. The growing soybean vegetative tissues had higher levels of SMT transcript than mature vegetative tissues. Young pods and immature seeds had very low levels of the SMT transcript. The SMT transcript was highly expressed in flowers. The expression of SMT transcript was suppressed in soybean cell suspension cultures treated with yeast elicitor. The transcriptional regulation of SMT in phytosterol biosynthesis is discussed. PMID:8621604

  14. Methodological considerations for the harmonization of non-cholesterol sterol bio-analysis.

    PubMed

    Mackay, Dylan S; Jones, Peter J H; Myrie, Semone B; Plat, Jogchum; Lütjohann, Dieter

    2014-04-15

    Non-cholesterol sterols (NCS) are used as surrogate markers of cholesterol metabolism which can be measured from a single blood sample. Cholesterol precursors are used as markers of endogenous cholesterol synthesis and plant sterols are used as markers of cholesterol absorption. However, most aspects of NCS analysis show wide variability among researchers within the area of biomedical research. This variability in methodology is a significant contributor to variation between reported NCS values and hampers the confidence in comparing NCS values across different research groups, as well as the ability to conduct meta-analyses. This paper summarizes the considerations and conclusions of a workshop where academic and industrial experts met to discuss NCS measurement. Highlighted is why each step in the analysis of NCS merits critical consideration, with the hopes of moving toward more standardized and comparable NCS analysis methodologies. Alkaline hydrolysis and liquid-liquid extraction of NCS followed by parallel detection on GC-FID and GC-MS is proposed as an ideal methodology for the bio-analysis of NCS. Furthermore the importance of cross-comparison or round robin testing between various groups who measure NCS is critical to the standardization of NCS measurement. PMID:24674990

  15. Triglyceride-Lowering Response To Plant Sterol and Stanol Consumption

    PubMed Central

    Rideout, Todd C; Marinangeli, Christopher PF; Harding, Scott V

    2015-01-01

    Phytosterols (PS) have long been recognized for their cholesterol-lowering action, however, recent work has highlighted triglyceride (TG)-lowering responses to PS that may have been overlooked in previous human interventions and mechanistic animal model studies. This review assesses the current state of knowledge regarding the effect of dietary PS supplementation on blood TG concentrations by examining the average therapeutic response, potential mechanisms, and metabolic and genetic factors that may contribute to inter-individual variability. Data from human intervention trials demonstrates that, compared to baseline concentrations, PS supplementation results in a variable TG-lowering response ranging from 0.8 to 28%. It is evident that hypertriglyceridemic individuals (>1.7 mmol/L) have a greater TG-lowering response to PS (11–28%) than subjects with normal plasma TG concentrations (0.8–7%). Although a genetic basis for the variable TG-lowering effects of PS is probable, there are only limited studies to draw on. The available data suggest that polymorphisms in the apolipoprotein E (apoE) gene may affect responsiveness, with PS-induced reductions in TG more readily evident in apoE2 than apoE3 or E4 subjects. Although only a minimal number of animal model studies have been conducted to specifically examine the mechanisms whereby PS may reduce blood TG concentrations, it appears that there may be multiple mechanisms involved including interruption of intestinal fatty acid absorption and modulation of hepatic lipogenesis and VLDL packaging and secretion. In summary, the available data suggest that PS may be an effective therapy to lower blood TG, particularly in hypertriglyceridemic individuals. However, before PS can be widely recommended as a TG-lowering therapy, studies that are specifically powered and designed to fully access therapeutic responses and the mechanisms involved are required. PMID:25941890

  16. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis

    PubMed Central

    Colla, Giuseppe; Rouphael, Youssef; Canaguier, Renaud; Svecova, Eva; Cardarelli, Mariateresa

    2014-01-01

    The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances. PMID:25250039

  17. Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome

    PubMed Central

    Tinazzi, Elisa; Merlin, Matilde; Bason, Caterina; Beri, Ruggero; Zampieri, Roberta; Lico, Chiara; Bartoloni, Elena; Puccetti, Antonio; Lunardi, Claudio; Pezzotti, Mario; Avesani, Linda

    2015-01-01

    Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren’s syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases. PMID:26648961

  18. Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome.

    PubMed

    Tinazzi, Elisa; Merlin, Matilde; Bason, Caterina; Beri, Ruggero; Zampieri, Roberta; Lico, Chiara; Bartoloni, Elena; Puccetti, Antonio; Lunardi, Claudio; Pezzotti, Mario; Avesani, Linda

    2015-01-01

    Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases. PMID:26648961

  19. Plant-derived natural medicines for the management of depression: an overview of mechanisms of action.

    PubMed

    Farahani, Marzieh Sarbandi; Bahramsoltani, Roodabeh; Farzaei, Mohammad Hosein; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    Depression is a serious widespread psychiatric disorder that affects approximately 17% of people all over the world. Exploring the neurological mechanisms of the antidepressant activity of plant-derived agents could have a crucial role in developing natural drugs for the management of depression. The aim of the present study is to review the neurological mechanisms of action of antidepressant plants and their constituents. For this purpose, electronic databases, including PubMed, Science Direct, Scopus, and Cochrane Library, were searched from 1966 to October 2013. The results showed that several molecular mechanisms could be proposed for the antidepressant activity of medicinal plants and their constituents. Hypericum species could normalize brain serotonin level. Liquiritin and isoliquiritin from Glycyrrhiza uralensis rhizome act via the noradrenergic system. Rosmarinus officinalis and curcumin from Curcuma longa interact with D1 and D2 receptors as well as elevate the brain dopamine level. Sida tiagii and Aloysia gratissima involve ?-aminobutyric acid and N-methyl-D-aspartate receptors, respectively. Fuzi polysaccharide-1 from Aconitum carmichaeli could affect brain-derived neurotrophic factor signaling pathways. Psoralidin from Psoralea corylifolia seed modulate the hypothalamic-pituitary-adrenal axis. The total glycosides of Paeonia lactiflora demonstrate an inhibitory effect on both subtypes of monoamine oxidase. 3,6'-Di-o-sinapoyl-sucrose and tenuifoliside A from Polygala tenuifolia exhibit cytoprotective effects on neuronal cells. Further preclinical and clinical trials evaluating their safety, bioefficacy, and bioavailability are suggested to prove the valuable role of natural drugs in the management of depressive disorders. PMID:25719303

  20. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    SciTech Connect

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  1. Solar induced terrestrial plant fluorescence derived of ten years of SCIAMACHY data.

    NASA Astrophysics Data System (ADS)

    Vountas, M.; Rozanov, V. V.; Khosravi, N.; Bracher, A.; Burrows, J. P.

    2014-12-01

    Plant fluorescence has a direct link to photosynthetic efficiency. Satelite-based remote sensing has been shown to have the potential to derive it on a global scale- accordingly it became subject of various recently published studies and stimulated an upsurge in this research field. This study presents a novel retrieval method for solar induced terrestrial plant fluorescence (SIF). When used with typical spectrometer data an additive spectral component not induced by fluorescence is often accompanying the actual SIF retrieval and can significantly deteriorate the results. To account for this effect a correction method is combined with the retrieval. The method has been applied to ten years of SCIAMACHY data with promising results. In absence of large area ground based validation data a final judgement of the results presented is not feasible. A direct comparison to data of others was showing promising and in certain regions ambivalent results.

  2. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  3. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subchapter and for plants in part 24 of this subchapter and 7 CFR parts 319, 352, and 355. (1) Appendix-III...) Personal and household effects as provided in § 23.15. (6) Urine, feces, and synthetically derived DNA...

  4. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...covered by the Treaty, all parts, products, or derivatives that are not designated. (2) Plant hybrids . (i) Seeds and pollen (including pollinia), cut flowers, and flasked seedlings or tissue cultures of hybrids that qualify as artificially...

  5. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...covered by the Treaty, all parts, products, or derivatives that are not designated. (2) Plant hybrids . (i) Seeds and pollen (including pollinia), cut flowers, and flasked seedlings or tissue cultures of hybrids that qualify as artificially...

  6. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...covered by the Treaty, all parts, products, or derivatives that are not designated. (2) Plant hybrids . (i) Seeds and pollen (including pollinia), cut flowers, and flasked seedlings or tissue cultures of hybrids that qualify as artificially...

  7. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...covered by the Treaty, all parts, products, or derivatives that are not designated. (2) Plant hybrids . (i) Seeds and pollen (including pollinia), cut flowers, and flasked seedlings or tissue cultures of hybrids that qualify as artificially...

  8. Safety assessment of animal- and plant-derived amino acids as used in cosmetics.

    PubMed

    Burnett, Christina; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of animal- and plant-derived amino acid mixtures, which function as skin and hair conditioning agents. The safety of ?-amino acids as direct food additives has been well established, based on extensive research through acute and chronic dietary exposures and the Panel previously has reviewed the safety of individual ?-amino acids in cosmetics. The Panel focused its review on dermal irritation and sensitization data relevant to the use of these ingredients in topical cosmetics. The Panel concluded that these 21 ingredients are safe in the present practices of use and concentration as used in cosmetics. PMID:25323218

  9. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes

    PubMed Central

    Oh, Yoon Sin

    2015-01-01

    Diabetes is a global health problem and a national economic burden. Although several antidiabetic drugs are available, the need for novel therapeutic agents with improved efficacy and few side effects remains. Drugs derived from natural compounds are more attractive than synthetic drugs because of their diversity and minimal side effects. This review summarizes the most relevant effects of various plant-derived natural compounds on the functionality of pancreatic beta cells. Published data suggest that natural compounds directly enhance insulin secretion, prevent pancreatic beta cell apoptosis, and modulate pancreatic beta cell differentiation and proliferation. It is essential to continuously investigate natural compounds as sources of novel pharmaceuticals. Therefore, more studies into these compounds' mechanisms of action are warranted for their development as potential anti-diabetics. PMID:26587047

  10. Expression of the Hevea brasiliensis (H.B.K.) Mull. Arg. 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase 1 in Tobacco Results in Sterol Overproduction.

    PubMed Central

    Schaller, H.; Grausem, B.; Benveniste, P.; Chye, M. L.; Tan, C. T.; Song, Y. H.; Chua, N. H.

    1995-01-01

    A genomic fragment encoding one (HMGR1) of the three 3-hydroxy-3-methylglutaryl coenzyme A reductases (HMGRs) from Hevea brasiliensis (H.B.K.) Mull. Arg. (M.-L. Chye, C.-T. Tan, N.-H. Chua [1992] Plant Mol Biol 19: 473-484) was introduced into Nicotiana tabacum L. cv xanthi via Agrobacterium transformation to study the influence of the hmg1 gene product on plant isoprenoid biosynthesis. Transgenic plants were morphologically indistinguishable from control wild-type plants and displayed the same developmental pattern. Transgenic lines showed an increase in the level of total sterols up to 6-fold, probably because of an increased expression level of hmg1 mRNA and a corresponding increased enzymatic activity for HMGR, when compared with the level of total sterols from control lines not expressing the hmg1 transgene. In addition to the pathway end products, campesterol, sitosterol, and stigmasterol, some biosynthetic intermediates such as cycloartenol also accumulated in transgenic tissues. Most of the overproduced sterols were detected as steryl-esters and were likely to be stored in cytoplasmic lipid bodies. These data strongly support the conclusion that plant HMGR is a key limiting enzyme in phytosterol biosynthesis. PMID:12228630

  11. Co-opted Oxysterol-Binding ORP and VAP Proteins Channel Sterols to RNA Virus Replication Sites via Membrane Contact Sites

    PubMed Central

    Barajas, Daniel; Xu, Kai; de Castro Martín, Isabel Fernández; Sasvari, Zsuzsanna; Brandizzi, Federica; Risco, Cristina; Nagy, Peter D.

    2014-01-01

    Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication. PMID:25329172

  12. Structural complex of sterol 14[alpha]-demethylase (CYP51) with 14[alpha]-methylenecyclopropyl-[delta]7-24, 25-dihydrolanosterol[S

    SciTech Connect

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Waterman, Michael R.; Nes, W. David; Lepesheva, Galina I.

    2012-06-28

    Sterol 14{alpha}-demethylase (CYP51) that catalyzes the removal of the 14{alpha}-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14{alpha}-methylenecyclopropyl-{Delta}7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and acts as a competitive inhibitor of F105-containing (plant-like) T. brucei and Leishmania (L) infantum orthologs, but it has a much stronger, mechanism-based inhibitory effect on I105-containing (animal/fungi-like) T. cruzi CYP51. Depicting substrate orientation in the conserved CYP51 binding cavity, the complex specifies the roles of the contact amino acid residues and sheds new light on CYP51 substrate specificity. It also provides an explanation for the effect of MCP on T. cruzi CYP51. Comparison with the ligand-free and azole-bound structures supports the notion of structural rigidity as the characteristic feature of the CYP51 substrate binding cavity, confirming the enzyme as an excellent candidate for structure-directed design of new drugs, including mechanism-based substrate analog inhibitors.

  13. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials

    PubMed Central

    Jantan, Ibrahim; Ahmad, Waqas; Bukhari, Syed Nasir Abbas

    2015-01-01

    The phagocyte–microbe interactions in the immune system is a defense mechanism but when excessively or inappropriately deployed can harm host tissues and participate in the development of different non-immune and immune chronic inflammatory diseases such as autoimmune problems, allergies, some rheumatoid disorders, cancers and others. Immunodrugs include organic synthetics, biological agents such as cytokines and antibodies acting on single targets or pathways have been used to treat immune-related diseases but with limited success. Most of immunostimulants and immunosuppressants in clinical use are the cytotoxic drugs which possess serious side effects. There is a growing interest to use herbal medicines as multi-component agents to modulate the complex immune system in the prevention of infections rather than treating the immune-related diseases. Many therapeutic effects of plant extracts have been suggested to be due to their wide array of immunomodulatory effects and influence on the immune system of the human body. Phytochemicals such as flavonoids, polysaccharides, lactones, alkaloids, diterpenoids and glycosides, present in several plants, have been reported to be responsible for the plants immunomodulating properties. Thus the search for natural products of plant origin as new leads for development of potent and safe immunosuppressant and immunostimulant agents is gaining much major research interest. The present review will give an overview of widely investigated plant-derived compounds (curcumin, resveratrol, epigallocatechol-3-gallate, quercetin, colchicine, capsaicin, andrographolide, and genistein) which have exhibited potent effects on cellular and humoral immune functions in pre-clinical investigations and will highlight their clinical potential. PMID:26379683

  14. First Report of Plant Regeneration via Somatic Embryogenesis from Shoot Apex-derived Callus of Hedychium muluense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants were successfully regenerated via somatic embryogenesis from shoot apex-derived callus of Hedychium muluense R.M. Smith, an important monocotyledonous ornamental ginger plant. Callus was induced on a modified Murashige and Skoog (MS) medium supplemented with 9.05 µM 2-4, D and 4.6µM kinetin. ...

  15. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO?) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced. PMID:25947054

  16. The sterols of Cucurbita moschata ("calabacita") seed oil.

    PubMed

    Rodriguez, J B; Gros, E G; Bertoni, M H; Cattaneo, P

    1996-11-01

    From the sterol fraction of seed oil from commercial Cucurbita moschata Dutch ("calabacita") delta 5 and delta 7 sterols having saturated and unsaturated side chain were isolated by chromatographic procedures and characterized by spectroscopic (1H and 13C-nuclear magnetic resonance, mass spectrometry) methods. The main components were identified as 24S-ethyl 5 alpha-cholesta-7,22E-dien-3 beta-ol (alpha-spinasterol); 24S-ethyl 5 alpha-cholesta-7,22E,25-trien-3 beta-ol (25-dehydrochondrillasterol); 24S-ethyl 5 alpha-cholesta-7,25-dien-3 beta-ol; 24R-ethyl-cholesta-7-en-3 beta-ol (delta 7-stigmastenol) and 24-ethyl-cholesta-7, 24(28)-dien-3 beta-ol (delta 7,24(28)-stigmastadienol). PMID:8934454

  17. Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality

    PubMed Central

    Kamthan, Ayushi; Kamthan, Mohan; Azam, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2012-01-01

    Crop genetic engineering mostly aims at improving environmental stress (biotic and abiotic) tolerance as well as nutritional quality. Empowering a single crop with multiple traits is highly demanding and requires manipulation of more than one gene. However, we report improved drought tolerance and fungal resistance along with the increased iron and polyunsaturated fatty acid content in tomato by expressing a single gene encoding C-5 sterol desaturase (FvC5SD) from an edible fungus Flammulina velutipes. FvC5SD is an iron binding protein involved in ergosterol biosynthesis. Morphological and biochemical analyses indicated ?23% more epicuticular wax deposition in leaves of transgenic plants that provides an effective waterproof barrier resulting in improved protection from drought and infection by phytopathogenic fungus Sclerotinia sclerotiorum. Furthermore, the transgenic fruits have improved nutritional value attributed to enhanced level of beneficial PUFA and 2-3 fold increase in total iron content. This strategy can be extended to other economically important crops. PMID:23230516

  18. Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality.

    PubMed

    Kamthan, Ayushi; Kamthan, Mohan; Azam, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2012-01-01

    Crop genetic engineering mostly aims at improving environmental stress (biotic and abiotic) tolerance as well as nutritional quality. Empowering a single crop with multiple traits is highly demanding and requires manipulation of more than one gene. However, we report improved drought tolerance and fungal resistance along with the increased iron and polyunsaturated fatty acid content in tomato by expressing a single gene encoding C-5 sterol desaturase (FvC5SD) from an edible fungus Flammulina velutipes. FvC5SD is an iron binding protein involved in ergosterol biosynthesis. Morphological and biochemical analyses indicated ?23% more epicuticular wax deposition in leaves of transgenic plants that provides an effective waterproof barrier resulting in improved protection from drought and infection by phytopathogenic fungus Sclerotiniasclerotiorum. Furthermore, the transgenic fruits have improved nutritional value attributed to enhanced level of beneficial PUFA and 2-3 fold increase in total iron content. This strategy can be extended to other economically important crops. PMID:23230516

  19. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants

    PubMed Central

    Zhang, Chao; Wu, Zujian; Li, Yi; Wu, Jianguo

    2015-01-01

    RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research. PMID:26617580

  20. Effects of feeding plant-derived agents on the colonization of Campylobacter jejuni in broiler chickens.

    PubMed

    Kurekci, Cemil; Al Jassim, Rafat; Hassan, Errol; Bishop-Hurley, Sharon L; Padmanabha, Jagadish; McSweeney, Christopher S

    2014-09-01

    The aim of this work was to test the potential use of plant-derived extracts and compounds to control Campylobacter jejuni in broiler chickens. Over a 7-wk feeding period, birds were fed a commercial diet with or without plant extracts (Acacia decurrens, Eremophila glabra), essential oil [lemon myrtle oil (LMO)], plant secondary compounds [terpinene-4-ol and ?-tops (including ?-terpineol, cineole, and terpinene-4-ol)], and the antibiotic virginiamycin. Traditional culture and real-time quantitative PCR techniques were used to enumerate the numbers of C. jejuni in chicken fecal and cecal samples. In addition, BW and feed intake were recorded weekly for the calculation of BW gain and feed conversion ratio. The mean log10 counts of C. jejuni were similar (P > 0.05) across treatments. However, significantly lower levels of fecal Campylobacter counts (P < 0.05) were recorded at d 41 for the ?-tops treatment by culture methods. No differences (P > 0.05) in BW gain were obtained for dietary supplementation, except for the E. glabra extract, which had a negative impact (P < 0.001) on BW, resulting in sporadic death. Results from this study suggest that supplemental natural compounds used in the current study did not reduce the shedding of C. jejuni to desired levels. PMID:25002548

  1. Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates).

    PubMed

    Wang, Xiaonan; Liu, Zhengtao; Wang, Wanhua; Zhang, Cong; Chen, Lihong

    2015-03-01

    The 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(?)-2-benzopyrane (HHCB) is a synthetic musk which is used as a fragrance in a variety of personal care products, and due to this it is widely spread in the environment. However, there is no paper dealing with the predicted no effect concentration (PNEC) for HHCB to terrestrial species using the species sensitivity distribution (SSD) method, mainly results from the shortage of species toxicity data of different taxonomic levels. In this study, toxicity data were obtained from 10 chronic toxicity tests using 10 terrestrial species (3 dicotyledonous plants, 5 monocotyledonous plants and 2 terrestrial invertebrates) from 3 Phyla and 9 Families. The PNEC of HHCB was derived using the SSD method. The result of present research showed that the dicotyledonous Solanum lycopersicum was the most sensitive plants to HHCB contamination. The PNEC ranged between 0.70 and 3.52 mg HHCB/kg when using the log-logistic SSD method. It is recommended to use toxicity data of different taxonomic levels for the development of PNEC values in terrestrial environment due to different species sensitivity. PMID:25474169

  2. The use of sterol distributions combined with compound specific isotope analyses as a tool to identify the origin of fecal contamination in rivers.

    PubMed

    Biache, Coralie; Philp, R Paul

    2013-03-01

    The sterol distributions of 9 sediment samples from the Illinois River Basin (OK and AR, USA) were examined in order to identify the source of fecal contamination. The samples were extracted with organic solvent using sonication and the fractions containing the sterols were isolated and analyzed by gas chromatography-mass spectrometry. The sterol distributions of the Illinois River samples were dominated by phytosterols. They were compared to those of different animal feces and manures using a principal component analysis and correspondence appeared between the sediments and one group of chicken feces samples. Gas chromatography-isotope ratio mass spectrometry analyses were also performed to determine the ?(13)C values for the phytosterols and to get an indication of their origin based on the C(3)/C(4) plant signatures. The ?(13)C values obtained ranged from -30.6 ‰ to -17.4 ‰ (VPDB) corresponding to a mixed signature between C(3) and C(4) plants, indicating a C(4) plant contribution to the C(3) plant natural background. These observations indicate that a proportion of the phytosterols originated from chicken feces. PMID:23267530

  3. Building Synthetic Sterols Computationally – Unlocking the Secrets of Evolution?

    PubMed Central

    Róg, Tomasz; Pöyry, Sanja; Vattulainen, Ilpo

    2015-01-01

    Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, its fluorescent analogs in studies of cholesterol transport in cells and tissues, etc. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols non-existent in nature can be used to elucidate the roles of cholesterol’s structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments. PMID:26347865

  4. Conversion of Exogenous Cholesterol into Glycoalkaloids in Potato Shoots, Using Two Methods for Sterol Solubilisation

    PubMed Central

    Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke

    2013-01-01

    Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (?-solanine and ?-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-?-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-?-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406

  5. Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14?-demethylase as anti-Chagas disease agents.

    PubMed

    Suryadevara, Praveen Kumar; Racherla, Kishore Kumar; Olepu, Srinivas; Norcross, Neil R; Tatipaka, Hari Babu; Arif, Jennifer A; Planer, Joseph D; Lepesheva, Galina I; Verlinde, Christophe L M J; Buckner, Frederick S; Gelb, Michael H

    2013-12-01

    New dialkylimidazole based sterol 14?-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 <1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate. PMID:24120539

  6. Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14?-demethylase as anti-Chagas disease agents

    PubMed Central

    Suryadevara, Praveen Kumar; Racherla, Kishore Kumar; Olepu, Srinivas; Norcross, Neil R.; Tatipaka, Hari Babu; Arif, Jennifer A.; Planer, Joseph D.; Lepesheva, Galina; Verlinde, Christophe L. M. J.; Buckner, Frederick S.; Gelb, Michael H.

    2014-01-01

    New dialkylimidazole based sterol 14?-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50<1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T.cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate. PMID:24120539

  7. Inorganic Nitrogen Derived from Foraging Honey Bees Could Have Adaptive Benefits for the Plants They Visit

    PubMed Central

    Mishra, Archana; Afik, Ohad; Cabrera, Miguel L.; Delaplane, Keith S.; Mowrer, Jason E.

    2013-01-01

    In most terrestrial ecosystems, nitrogen (N) is the most limiting nutrient for plant growth. Honey bees may help alleviate this limitation because their feces (frass) have high concentration of organic nitrogen that may decompose in soil and provide inorganic N to plants. However, information on soil N processes associated with bee frass is not available. The objectives of this work were to 1) estimate the amount of bee frass produced by a honey bee colony and 2) evaluate nitrogen mineralization and ammonia volatilization from bee frass when surface applied or incorporated into soil. Two cage studies were conducted to estimate the amount of frass produced by a 5000-bee colony, and three laboratory studies were carried out in which bee frass, surface-applied or incorporated into soil, was incubated at 25oC for 15 to 45 days. The average rate of bee frass production by a 5,000-bee colony was estimated at 2.27 to 2.69 g N month?1. Nitrogen mineralization from bee frass during 30 days released 20% of the organic N when bee frass was surface applied and 34% when frass was incorporated into the soil. Volatilized NH3 corresponded to 1% or less of total N. The potential amount of inorganic N released to the soil by a typical colony of 20,000 bees foraging in an area similar to that of the experimental cages (3.24 m2) was estimated at 0.62 to 0.74 g N m?2 month?1 which may be significant at a community scale in terms of soil microbial activity and plant growth. Thus, the deposition of available N by foraging bees could have adaptive benefits for the plants they visit, a collateral benefit deriving from the primary activity of pollination. PMID:23923006

  8. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica plants on the emission of volatiles that attract Parasitoids of the diamondback moth to cabbage plants.

    PubMed

    Charleston, Deidre S; Gols, Rieta; Hordijk, Kees A; Kfir, Rami; Vet, Louise E M; Dicke, Marcel

    2006-02-01

    Herbivorous and carnivorous arthropods use chemical information from plants during foraging. Aqueous leaf extracts from the syringa tree Melia azedarach and commercial formulations from the neem tree Azadirachta indica, Neemix 4.5, were investigated for their impact on the flight response of two parasitoids, Cotesia plutellae and Diadromus collaris. Cotesia plutellae was attracted only to Plutella xylostella-infested cabbage plants in a wind tunnel after an oviposition experience. Female C. plutellae did not distinguish between P. xylostella-infested cabbage plants treated with neem and control P. xylostella-infested plants. However, females preferred infested cabbage plants that had been treated with syringa extract to control infested plants. Syringa extract on filter paper did not attract C. plutellae. This suggests that an interaction between the plant and the syringa extract enhances parasitoid attraction. Diadromus collaris was not attracted to cabbage plants in a wind tunnel and did not distinguish between caterpillar-damaged and undamaged cabbage plants. Headspace analysis revealed 49 compounds in both control cabbage plants and cabbage plants that had been treated with the syringa extract. Among these are alcohols, aldehydes, ketones, esters, terpenoids, sulfides, and an isothiocyanate. Cabbage plants that had been treated with the syringa extract emitted larger quantities of volatiles, and these increased quantities were not derived from the syringa extract. Therefore, the syringa extract seemed to induce the emission of cabbage volatiles. To our knowledge, this is the first example of a plant extract inducing the emission of plant volatiles in another plant. This interesting phenomenon likely explains the preference of C. plutellae parasitoids for cabbage plants that have been treated with syringa extracts. PMID:16555134

  9. HIV-inhibitory natural products. 11. Comparative studies of sulfated sterols from marine invertebrates.

    PubMed

    McKee, T C; Cardellina, J H; Riccio, R; D'Auria, M V; Iorizzi, M; Minale, L; Moran, R A; Gulakowski, R J; McMahon, J B; Buckheit, R W

    1994-03-18

    A total of 22 sulfated sterols isolated from marine sponges, ophiuroids (brittle stars), and asteroids (sea stars) were comparatively evaluated for their antiviral activity against HIV-1 and HIV-2. In general, sterols with sulfate groups at position 2, 3, or 6 were the most active, with EC50 values of 3-13 microM against HIV-1 (RF) and 2-8 microM against HIV-2 (CBL20). Those compounds which were sulfated on the sterol D ring were completely inactive against both HIV-1 and HIV-2. Overall, sulfated sterols active against HIV-1 were also active against HIV-2. PMID:8145229

  10. Measurement of hepatic sterol synthesis in the Mongolian gerbil in vivo using (/sup 3/H)water: diurnal variation and effect of type of dietary fat

    SciTech Connect

    Mercer, N.J.; Holub, B.J.

    1981-01-01

    The hepatic synthesis of sterol was measured in the male Mongolian gerbil (Meriones unguiculatus) in vivo following the administration of (/sup 3/H)water by monitoring the incorporation of radioactivity into digitonin-precipitable sterol. A diurnal rhythm in cholesterol synthesis was exhibited under conditions of ad libitum feeding with alternating 12-hour periods of light (0200 to 1400 hr) and dark (1400 to 0200 hr). The zenith was reached between 1500 and 2100 hr and the nadir approximately 10-12 hours later between 0200 and 0400 hr, which provided a zenith/nadir ratio of 9.6 to 1.0. The in vivo rates of hepatic sterol synthesis and plasma cholesterol levels were measured in gerbils fed semi-purified diets containing either 19.5% beef tallow + 0.5% safflower, 20% lard, or 20% safflower oil and widely differing ratios of polyunsaturated: saturated fatty acids. All diets were equalized to contain 0.01% cholesterol and 0.05% plant sterol. After 3 days on the experimental diets, the mean rates of cholesterol synthesis (nmol/g liver per hr) were 41.5, 26.6, and 13.8 for animals fed the diets containing beef tallow, lard, and safflower oil, respectively. After 7 and 14 days, synthetic rates were lowest in the gerbils fed safflower oil as were also the plasma cholesterol levels. These results indicate that the type of dietary lipid can significantly influence the in vivo rate of sterol biosynthesis in gerbil liver. This response may contribute, at least in part, to the observed differences in plasma cholesterol levels.

  11. Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae)

    PubMed Central

    Ndjakou Lenta, Bruno; Chouna, Jean Rodolphe; Nkeng-Efouet, Pepin Alango; Sewald, Norbert

    2015-01-01

    Plants of the Lauraceae family are widely used in traditional medicine and are sources of various classes of secondary metabolites. Two genera of this family, Beilschmiedia and Endiandra, have been the subject of numerous investigations over the past decades because of their application in traditional medicine. They are the only source of bioactive endiandric acid derivatives. Noteworthy is that their biosynthesis contains two consecutive non-enzymatic electrocyclic reactions. Several interesting biological activities for this specific class of secondary metabolites and other constituents of the two genera have been reported, including antimicrobial, enzymes inhibitory and cytotoxic properties. This review compiles information on the structures of the compounds described between January 1960 and March 2015, their biological activities and information on endiandric acid biosynthesis, with 104 references being cited. PMID:26111193

  12. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    PubMed Central

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  13. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants.

    PubMed

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-11-01

    In plant-ant-hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  14. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    NASA Astrophysics Data System (ADS)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored and assessed. The leachate from the irrigation of the pots is also monitored and assessed to ensure that if selected for field trials, the mix will not pose a threat to water bodies. The presentation at the conference will aim to report the latest results from the on-going experiment.

  15. Fate of octyl- and nonylphenol ethoxylates and some carboxylated derivatives in three american wastewater treatment plants.

    PubMed

    Loyo-Rosales, Jorge E; Rice, Clifford P; Torrents, Alba

    2007-10-01

    The fate of a comprehensive group of nonylphenol and octylphenol ethoxylates (APEOs) and several of their carboxylated derivatives was studied in three American wastewatertreatment plants (WWTPs), two of which included advanced treatment. Influent and effluent concentrations of the alkylphenolic compounds (APEs) in the three plants were very similar, but effluent concentrations showed a seasonal dependency: both carboxylate and ethoxylate concentrations in the effluents were higher in winter than in summer. Sorption to particulate matter was higher for nonylphenolic compounds than for their octylphenolic counterparts, in agreement with their difference in Kow values. Both effluent concentrations and the removal efficiency of the APEOs were strongly correlated to water temperature, but no correlation was found with suspended solids or organic carbon removal. Although APEO removal from wastewater was high, overall removal from the WWTPs, including APEOs in waste sludge and transformation products, was relatively low and suggested that advanced treatment does not invariably result in better APEO removal. Additionally, a survey of urban sewers suggested that household products still constitute an important source of the APEOs reaching WWTPs. PMID:17969700

  16. The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes.

    PubMed

    Luoga, W; Mansur, F; Buttle, D J; Duce, I R; Garnett, M C; Lowe, A; Behnke, J M

    2015-03-01

    We examined the in vitro and in vivo efficacy of plant cysteine proteinases (CPs) derived from pineapple (Ananas comosus) and kiwi fruit (Actinidia deliciosa), and compared their efficacy as anthelmintics to the known effects of CPs from the latex of papaya (Carica papaya) against the rodent intestinal nematode, Heligmosomoides bakeri. Both fruit bromelain and stem bromelain had significant in vitro detrimental effects on H. bakeri but in comparison, actinidain from kiwi fruit had very little effect. However, in vivo trials indicated far less efficacy of stem bromelain and fruit bromelain than that expected from the in vitro experiments (24.5% and 22.4% reduction in worm burdens, respectively) against H. bakeri. Scanning electron microscopy revealed signs of cuticular damage on worms incubated in fruit bromelain, stem bromelain and actinidain, but this was far less extensive than on those incubated in papaya latex supernatant. We conclude that, on the basis of presently available data, CPs derived from pineapples and kiwi fruits are not suitable for development as novel anthelmintics for intestinal nematode infections. PMID:24176056

  17. Detection of contaminating enzymatic activity in plant-derived recombinant biotechnology products.

    PubMed

    Brinson, Robert G; Giulian, Gary G; Kelman, Zvi; Marino, John P

    2014-12-01

    Residual impurities in recombinantly produced protein biologics, such as host cell proteins (HCP), can potentially cause unwanted toxic or immunogenic responses in patients. Additionally, undetected impurities found in recombinant proteins used in cell culture may adversely impact basic research and biotechnology applications. Currently, the enzyme-linked immunosorbent assay (ELISA) is the standard for detection of residual HCP contamination in recombinantly produced biologics. Alternatively, two-dimensional liquid chromatography coupled to mass spectrometry is being developed as a tool for assessing this critical quality attribute. Both of these methods rely on the direct detection of HCPs and some previous knowledge of the contaminant. For contaminating enzymes, the mass level of the impurity may fall below the threshold of detection of these methods and underestimate the true impact. To address this point, here we demonstrate facile detection and characterization of contaminating phytase activity in rice-derived recombinant human serum albumin (rHSA) using a sensitive, label-free nuclear magnetic resonance (NMR) spectroscopy assay. We observed varying degrees of phytase contamination in biotechnology-grade rHSA from various manufacturers by monitoring the degradation of adenosine-5'-triphosphate and myo-inositol-1,2,3,4,5,6-hexakisphosphate by (31)P NMR. The observed lot-to-lot variability may result in irreproducible cell culture results and should be evaluated as a possible critical quality attribute in plant-derived biotherapeutics. PMID:25393810

  18. The mechanism of radical-trapping antioxidant activity of plant-derived thiosulfinates.

    PubMed

    Lynett, Philip T; Butts, Krista; Vaidya, Vipraja; Garrett, Graham E; Pratt, Derek A

    2011-05-01

    It has long been recognized that garlic and petiveria, two plants of the Allium genus--which also includes onions, leeks and shallots--possess great medicinal value. In recent times, the biological activities of extracts of these plants have been ascribed to the antioxidant properties of the thiosulfinate secondary metabolites allicin and S-benzyl phenylmethanethiosulfinate (BPT), respectively. Herein we describe our efforts to probe the mechanism of the radical-trapping antioxidant activity of these compounds, as well as S-propyl propanethiosulfinate (PPT), a saturated analog representative of the thiosulfinates that predominate in non-medicinal alliums. Our experimental results, which include thiosulfinate-inhibited autoxidations of the polyunsaturated fatty acid (ester) methyl linoleate, investigations of their decomposition kinetics, and radical clock experiments aimed at obtaining some quantitative insights into their reactions with peroxyl radicals, indicate that the radical-trapping activity of thiosulfinates is paralleled by their propensity to undergo Cope elimination to yield a sulfenic acid. Since sulfenic acids are transient species, we complement our experimental studies with the results of theoretical calculations aimed at understanding the radical-trapping behaviour of the sulfenic acids derived from allicin, BPT and PPT, and contrasting the predicted thermodynamics and kinetics of their reactions with those of the parent thiosulfinates. The calculations reveal that sulfenic acids have among the weakest O-H bonds known (ca. 70 kcal mol(-1)), and that their reactions with peroxyl radicals take place by a near diffusion-controlled proton-coupled electron transfer mechanism. As such, it is proposed that the abundance of a thiosulfinate in a given plant species, and the ease with which it undergoes Cope elimination to form a sulfenic acid, accounts for the differences in antioxidant activity, and perhaps medicinal value, of extracts of these plants. Interestingly, while the Cope elimination of 2-propenesulfenic acid from allicin is essentially irreversible, the analogous reaction of BPT is readily reversible. Thus, in the absence of chain-carrying peroxyl radicals (or other appropriately reactive trapping agent), BPT is reformed. PMID:21445384

  19. Purification, characterization and catalytic properties of human sterol 8-isomerase.

    PubMed Central

    Nes, W David; Zhou, Wenxu; Dennis, Allen L; Li, Haoxia; Jia, Zhonghua; Keith, Richard A; Piser, Timothy M; Furlong, Stephen T

    2002-01-01

    CHO 2, encoding human sterol 8-isomerase (hSI), was introduced into plasmids pYX213 or pET23a. The resulting native protein was overexpressed in erg 2 yeast cells and purified to apparent homogeneity. The enzyme exhibited a K (m) of 50 microM and a turnover number of 0.423 s(-1) for zymosterol, an isoelectric point of 7.70, a native molecular mass of 107000 Da and was tetrameric. The structural features of zymosterol provided optimal substrate acceptability. Biomimetic studies of acid-catalysed isomerization of zymosterol resulted in formation of cholest-8(14)-enol, whereas the enzyme-generated product was a Delta(7)-sterol, suggesting absolute stereochemical control of the reaction by hSI. Using (2)H(2)O and either zymosterol or cholesta-7,24-dienol as substrates, the reversibility of the reaction was confirmed by GC-MS of the deuterated products. The positional specific incorporation of deuterium at C-9alpha was established by a combination of (1)H- and (13)C-NMR analyses of the enzyme-generated cholesta-7,24-dienol. Kinetic analyses indicated the reaction equilibrium ( K (eq)=14; DeltaG(o')=-6.5 kJ/mol) for double-bond isomerization favoured the forward direction, Delta(8) to Delta(7). Treatment of hSI with different high-energy intermediate analogues produced the following dissociation constants ( K (i)): emopamil (2 microM)=tamoxifen (1 microM)=tridemorph (1 microM)<25-azacholesterol (21 microM) sterol formation in cholesterol synthesis. PMID:12133002

  20. Respiratory allergenic potential of plant-derived proteins: Understanding the relationship between exposure and potency for risk assessments.

    PubMed

    Blackburn, Karen; N'jai, Alhaji U; Dearman, Rebecca J; Kimber, Ian; Gerberick, G Frank

    2015-10-01

    Botanical ingredients (ingredients derived from plants) are finding increasing application in personal care products and the public perceives these ingredients to be safe. However, some proteins in botanicals have the potential to cause immediate-type (IgE-mediated) respiratory allergic reactions. Although reports of such reactions are uncommon, when they do occur, they can be severe. Experience with soap containing wheat proteins illustrated that under certain specific conditions, consumers may be affected. Establishing safe exposure levels for botanical proteins has been challenging. Industrial enzymes provide a rich reference dataset based on their historical association with allergic reactions among workers, which includes robust dose-response information. In the absence of similar data on the potency of plant proteins, a conservative default approach has historically been applied based on information derived from allergenic enzymes. In this article we review the historical default approach and dataset for setting limits for plant proteins in botanical ingredients based on analogy to industrial enzymes followed by a synthesis of literature data on allergic reactions following inhalation exposure to plant-derived proteins. The aim is to share relevant background information and display the relationship between exposure and potency as a first step in the development of a strategy for the development of an improved approach to support the risk assessment of plant-derived proteins. PMID:26565768

  1. Universal Behavior of Membranes with Sterols J. Henriksen,* A. C. Rowat,* E. Brief,y

    E-print Network

    Rowat, Amy C.

    -phosphatidylcholine lipid bilayers at room temperature. Micropipette aspiration is used to determine membrane material in the plasma membrane of mammalian cells, whereas ergosterol is the major sterol in the membranes of lower short- and long-range membrane order, protein function, and cell growth (1,2). The role of sterols

  2. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the biochemical mechanism for sterol-mediated alteration in aging in Caenorhabditis elegans, we established sterol depletion conditions by treating worms with azacoprostane, which reduced mean lifespan of adult C. elegans by 35%. Proteomic analyses of egg proteins from treated and un...

  3. Intracellular sterol transport and distribution Frederick R Maxfield and Anant K Menon

    E-print Network

    Menon, Anant K.

    on membrane properties. Sterols are transported rapidly between cellular organelles by vesicular large differences in the sterol:phospholipid ratio in different organelles. Recent theoretical:379­385 This review comes from a themed issue on Membranes and organelles Edited by Pietro de Camilli and Antonella de

  4. Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families.

    PubMed

    Kumari, A; Papenfus, H B; Kulkarni, M G; Pošta, M; Van Staden, J

    2015-07-01

    Plant-derived smoke stimulates seed germination in numerous plant species. Smoke also has a positive stimulatory effect on pollen germination and pollen tube growth. The range of plant families affected my smoke still needs to be established since the initial study was restricted to only three species from the Amaryllidaceae. The effects of smoke-water (SW) and the smoke-derived compounds, karrikinolide (KAR1 ) and trimethylbutenolide (TMB) on pollen growth characteristics were evaluated in seven different plant families. Smoke-water (1:1000 and 1:2000 v:v) combined with either Brewbaker and Kwack's (BWK) medium or sucrose and boric acid (SB) medium significantly improved pollen germination and pollen tube growth in Aloe maculata All., Kniphofia uvaria Oken, Lachenalia aloides (L.f.) Engl. var. aloides and Tulbaghia simmleri P. Beauv. Karrikinolide (10(-6) and 10(-7) m) treatment significantly improved pollen tube growth in A. maculata, K. uvaria, L. aloides and Nematanthus crassifolius (Schott) Wiehle compared to the controls. BWK or SB medium containing TMB (10(-3) m) produced significantly longer pollen tubes in A. maculata, K. uvaria and N. crassifolius. These results indicate that plant-derived smoke and the smoke-isolated compounds may stimulate pollen growth in a wide range of plant species. PMID:25545791

  5. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction

    E-print Network

    Eubanks, Micky

    Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development a threshold level. In a recent study we showed that caterpillars reared on tobacco accumulating novel sterols/steroids examined how the dominant sterols (cholesterol and stigmasterol) and steroids (cholestanol and cholestanone

  6. Distribution of carotenoids and sterols in relation to the taxonomy of Taphrina and Protomyces.

    PubMed

    van Eijk, G W; Roeymans, H J

    1982-01-01

    Species of the genera Taphrina Fr. and Protomyces Unger were screened for the presence of carotenoid pigments and the sterols ergosterol and brassicasterol. All strains produced carotenoids in variable amounts: Taphrina: 0.3--39 micrograms/g dry weight; protomyces: 65--99 micrograms/g dry weight. It was concluded that the two genera cannot be separated on the basis of presence or absence of carotenoids. Thirty strains (24 species) of Taphrina produced brassicasterol as the principal sterol; twenty-one strains (17 species) did not form ergosterol. Only four isolates (4 species) produced ergosterol without formation of brassicasterol. Brassicasterol was the major sterol in 3 species of Protomyces, whereas ergosterol was absent. Brassicasterol is a rather unique sterol within the fungal kingdom and has hitherto not been found in the red yeasts. Therefore, this sterol is of taxonomic significance in contrast with ergosterol, which is widespread among fungi. PMID:7125636

  7. Molecular Cloning and Biochemical Characterization of a Recombinant Sterol 3-O-Glucosyltransferase from Gymnema sylvestre R.Br. Catalyzing Biosynthesis of Steryl Glucosides

    PubMed Central

    Sangwan, Rajender Singh; Asha; Mishra, B. N.; Sangwan, Neelam S.

    2014-01-01

    Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572?bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants. PMID:25250339

  8. Analysis of the action of euxanthone, a plant-derived compound that stimulates neurite outgrowth.

    PubMed

    Naidu, M; Kuan, C-Y K; Lo, W-L; Raza, M; Tolkovsky, A; Mak, N-K; Wong, R N-S; Keynes, R

    2007-09-21

    We have investigated the neurite growth-stimulating properties of euxanthone, a xanthone derivative isolated from the Chinese medicinal plant Polygala caudata. Euxanthone was shown to exert a marked stimulatory action on neurite outgrowth from chick embryo dorsal root ganglia explanted in collagen gels, in the absence of added neurotrophins. It was also shown to promote cell survival in explanted chick embryo ganglia, and to stimulate neurite outgrowth from isolated adult rat primary sensory neurons in vitro. The further finding that euxanthone stimulates neurite outgrowth from explants of chick embryo retina and ventral spinal cord suggests an action on signaling pathways downstream of neuronal receptors for specific neurotrophic factors. Consistent with this, euxanthone did not promote neurite outgrowth from non-transfected PC12 cells, or from PC12 cells transfected with TrkB or TrkC, under conditions in which these cells extended neurites in response to, respectively, the neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin 3. Western blot analysis of euxanthone-stimulated dorsal root ganglion explants showed that expression of phospho-mitogen-activated protein (MAP) kinase was up-regulated after 1 h of euxanthone-treatment. Inhibition of the MAP kinase pathway using PD98059, a specific inhibitor of MAP kinase kinase, blocked all euxanthone-stimulated neurite outgrowth. However, analysis of phospho-Akt expression indicated that the phosphatidylinositol-3 kinase-Akt pathway, another major signaling pathway engaged by neurotrophins, is not significantly activated by euxanthone. These results suggest that euxanthone promotes neurite outgrowth by selectively activating the MAP kinase pathway. PMID:17825492

  9. Composition and sources of aliphatic lipids and sterols in sediments of a tropical island, southern South China Sea: preliminary assessment.

    PubMed

    Mohd Tahir, N; Pang, S Y; Abdullah, N A; Suratman, S

    2013-12-01

    Near-shore surface sediment was collected from five stations off Redang Island located on the eastern coast of Peninsular Malaysia. Freeze-dried sediments were Soxhlet extracted and then fractionated using column chromatography into aliphatic and polar fractions. Determination of these fractions was carried out using gas chromatography mass spectrometry. The concentration of total resolved aliphatic hydrocarbons in sediments ranged from 157 to 308 ng/g. The distribution of aliphatic fraction showed the presence of n-alkanes ranging from nC15 to nC33 with a minor odd-to-even predominance exhibiting carbon maximum, depending on station, at nC17, nC26, nC29 or nC31. Calculation of Carbon Preference Index (CPI) for CPI(15-33) gave values ranging from 1.09 to 1.46. n-Alkanol in all sediment exhibits even-to-odd carbon predominance ranging from nC16 to nC28 and maximising at nC22. n-Fatty acids distribution ranged from nC14 to nC24 with a dominant maximum at nC16 and exhibiting high values of short chain fatty acids (?nC20) to long chain fatty acids (>nC20) ratios. Unsaturated fatty acids, particularly nC16:1 and nC18:1 is also ubiquitous in all samples. Cholesterol is the most abundant compound amongst the sterol group ranging from 42.8 to 62.6% of the total sterols. ?-Sitosterol, brassicasterol and stigmasterol, are also present but of relatively lower amount. These observations suggest that the aliphatic lipids and sterols in the study area originate, mainly, from biogenic sources of marine microbial with minor contribution from epiticular waxes of terrestrial plants. PMID:23856812

  10. Evaluation of the anti-Listeria potentials of some plant-derived triterpenes

    PubMed Central

    2014-01-01

    Background Listeriosis is a fatal disease caused by pathogenic Listeria bacteria and it is most prevalent in immune-compromised individuals. The increase in numbers of immune-compromised individuals against a background of Listeria antibiotic resistance, limits listeriosis treatment options. This therefore calls for research into substitute treatments, of which, medicinal plants derived compounds offer a viable alternative. Methods The broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of three plant triterpenes namely 3?-hydroxylanosta-9,24-dien-21-oic acid, methyl-3?-hydroxylanosta-9,24-dien-21-oate and 3?-acetylursolic acid, against Listeria monocytogenes, Listeria ivanovii and Listeria grayi species. The chequerboard method was used to assess the interactions between the triterpenes and conventional antibiotics: ampicillin, neomycin, gentamicin and penicillin G. The lactate dehydrogenase membrane damage method was used to assess the triterpenes’ membrane damaging potentials against the Listeria bacteria. Results The triterpenes’ MIC values were found to range from 0.185 to 1.67 mg/ml while, the MBC determination assay results revealed that the test triterpenes were bacteriostatic against the Listeria bacteria. The interactions involving 3?-hydroxylanosta-9,24-dien-21-oic acid were mainly additive with ampicillin and synergistic with neomycin, gentamicin and penicillin G. The interactions involving methyl-3?-hydroxylanosta-9,24-dien-21-oate were mainly antagonistic with ampicillin, indifferent with neomycin, ranging from synergistic to indifference with gentamicin and synergistic with penicillin G. The interactions involving 3?-acetylursolic acid were mainly indifferent with ampicillin, synergistic with neomycin and gentamicin while ranging between synergistic and additive with penicillin G. The low levels of cytosolic lactate dehydrogenase released from the cells treated with 4× MIC concentration of the triterpenes in comparison to that of cells treated with 3% Triton X-100 proved that membrane damage was not the mode of action of the triterpenes. Conclusion This study therefore shows the potential that these plant triterpenes have in listeriosis chemotherapy especially as shown by the favourable interactions they had with penicillin G, one of the antibiotics of choice in listeriosis treatment. PMID:25056181

  11. Sterol metabolism disorders and neurodevelopment-an update.

    PubMed

    Kanungo, Shibani; Soares, Neelkamal; He, Miao; Steiner, Robert D

    2013-01-01

    Cholesterol has numerous quintessential functions in normal cell physiology, as well as in embryonic and postnatal development. It is a major component of cell membranes and myelin, and is a precursor of steroid hormones and bile acids. The development of the blood brain barrier likely around 12-18 weeks of human gestation makes the developing embryonic/fetal brain dependent on endogenous cholesterol synthesis. Known enzyme defects along the cholesterol biosynthetic pathway result in a host of neurodevelopmental and behavioral findings along with CNS structural anomalies. In this article, we review sterol synthesis disorders in the pre- and post-squalene pathway highlighting neurodevelopmental aspects that underlie the clinical presentations and course of Smith-Lemli-Opitz Syndrome (SLOS), mevalonic aciduria (MVA) or the milder version hyper-immunoglobulinemia D and periodic fever syndrome (HIDS), Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis (ABS1), congenital hemidysplasia with icthyosiform nevus and limb defects (CHILD) syndrome, CK syndrome, sterol C4 methyl oxidase (SC4MOL) deficiency, X-linked dominant chondrodysplasia punctata 2(CDPX2)/ Conradi Hunermann syndrome, lathosterolosis and desmosterolosis, We also discuss current controversies and share thoughts on future directions in the field. PMID:23798009

  12. Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study was conducted to investigate the effects of dietary plant-derived phytonutrients, carvacrol, cinnamaldehyde and Capsicum oleoresin, on the translational regulation of genes associated with immunology, physiology and metabolism using high-throughput microarray analysis and in vivo d...

  13. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria mangle; exemption from the requirement of a... Rhizophoria mangle; exemption from the requirement of a tolerance. The biochemical pesticide plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria mangle is exempted...

  14. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria mangle; exemption from the requirement of a... Rhizophoria mangle; exemption from the requirement of a tolerance. The biochemical pesticide plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria mangle is exempted...

  15. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Are any wildlife or plants, and their parts, products, or derivatives, exempt? 23.92 Section 23.92 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND...

  16. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fra?ková, Adéla; Marounek, Milan; Mozrová, V?ra; Weber, Jaroslav; Klou?ek, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0?mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp. PMID:25062020

  17. Neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides by high performance liquid chromatography.

    PubMed

    Yan, Jun; Shi, Songshan; Wang, Hongwei; Liu, Ruimin; Li, Ning; Chen, Yonglin; Wang, Shunchun

    2016-01-20

    A novel analytical method for neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides was developed using hydrophilic interaction liquid chromatography coupled to a charged aerosol detector. The effects of column type, additives, pH and column temperature on retention and separation were evaluated. Additionally, the method could distinguish potential impurities in samples, including chloride, sulfate and sodium, from sugars. The results of validation demonstrated that this method had good linearity (R(2)?0.9981), high precision (relative standard deviation?4.43%), and adequate accuracy (94.02-103.37% recovery) and sensitivity (detection limit: 15-40ng). Finally, the monosaccharide compositions of the polysaccharide from Eclipta prostrasta L. and stachyose were successfully profiled through this method. This report represents the first time that all of these common monosaccharides could be well-separated and determined simultaneously by high performance liquid chromatography without additional derivatization. This newly developed method is convenient, efficient and reliable for monosaccharide analysis. PMID:26572471

  18. A review of plant-derived and herbal approaches to the treatment of sexual dysfunctions.

    PubMed

    Rowland, David L; Tai, Wendi

    2003-01-01

    Despite the increasing availability of effective conventional medical treatments, plant-derived and herbal remedies continue to provide a popular alternative for men and women seeking to improve their sex life. Nevertheless, the efficacy of most herbal agents in treating sexual problems remains uncertain. Therapists and consumers alike would benefit from an increased understanding of commonly used herbal agents on the market, their purported or supported effects, and their potential side effects. To this end, we cataloged the major prosexual herbal agents currently sold in several representative health food stores. We also specify the sexual problem purportedly ameliorated by each herbal agent. Finally, we evaluate eight herbal agents commonly promoted for the treatment of sexual problems. This evaluation includes a review of the research supporting the use, efficacy, dose, adverse effects, contraindications, and possible mechanism of action of each. We conclude by commenting on the quality of current research, pointing out gaps in our knowledge, and noting the need for rigorous research and product control to adequately address questions regarding the efficacy of these agents. PMID:12851124

  19. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    PubMed

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), ?(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment. PMID:25916739

  20. Human pharmacokinetic study of tutin in honey; a plant-derived neurotoxin.

    PubMed

    Fields, Barry A; Reeve, John; Bartholomaeus, Andrew; Mueller, Utz

    2014-10-01

    Over the last 150 years a number of people in New Zealand have been incapacitated, hospitalised, or died from eating honey contaminated with tutin, a plant-derived neurotoxin. A feature of the most recent poisoning incident in 2008 was the large variability in the onset time of clinical signs and symptoms of toxicity (0.5-17 h). To investigate the basis of this variability a pharmacokinetic study was undertaken in which 6 healthy males received a single oral dose of tutin-containing honey giving a tutin dose of 1.8 ?g/kg body weight. The serum concentration-time curve for all volunteers exhibited two discrete peaks with the second and higher level occurring at approximately 15 h post-dose. Two subjects reported mild, transient headache at a time post-dose corresponding to maximum tutin concentrations. There were no other signs or symptoms typical of tutin intoxication such as nausea, vomiting, dizziness or seizures. Pharmacokinetic analysis using a two-site absorption model resulted in a good fit to the observed concentration data. A novel analytical method subsequently revealed the presence of glycoside conjugates of tutin in addition to unconjugated tutin in honey. These pharmacokinetic data will be important to better define a safe maximum tutin concentration in honey. PMID:25084484

  1. In silico approach for the discovery of new PPAR? modulators among plant-derived polyphenols

    PubMed Central

    Encinar, José Antonio; Fernández-Ballester, Gregorio; Galiano-Ibarra, Vicente; Micol, Vicente

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPAR?) is a well-characterized member of the PPAR family that is predominantly expressed in adipose tissue and plays a significant role in lipid metabolism, adipogenesis, glucose homeostasis, and insulin sensitization. Full agonists of synthetic thiazolidinediones (TZDs) have been therapeutically used in clinical practice to treat type 2 diabetes for many years. Although it can effectively lower blood glucose levels and improve insulin sensitivity, the administration of TZDs has been associated with severe side effects. Based on recent evidence obtained with plant-derived polyphenols, the present in silico study aimed at finding new selective human PPAR? (hPPAR?) modulators that are able to improve glucose homeostasis with reduced side effects compared with TZDs. Docking experiments have been used to select compounds with strong binding affinity (?G values ranging from ?10.0±0.9 to ?11.4±0.9 kcal/mol) by docking against the binding site of several X-ray structures of hPPAR?. These putative modulators present several molecular interactions with the binding site of the protein. Additionally, most of the selected compounds have favorable druggability and good ADMET properties. These results aim to pave the way for further bench-scale analysis for the discovery of new modulators of hPPAR? that do not induce any side effects. PMID:26604687

  2. The Promise of Plant-Derived Substances as Inhibitors of Arginase.

    PubMed

    Girard-Thernier, C; Pham, T-N; Demougeot, C

    2015-01-01

    The enzyme arginase catalyses the divalent cation dependent hydrolysis of L-arginine to produce L-ornithine and urea. Two isoforms of arginases have been identified in mammalian (including human) cells. Moreover, some infectious pathogens (e.g. Leishmania) synthesize their own arginase. Work over the last decades has revealed that elevated arginase activity both decreases cellular availability in nitric oxide (NO) by competing with NO synthases (NOS) and increases concentration in L-ornithine, a precursor in the biosynthesis of polyamines which are important for cell differentiation and proliferation. From these data emerged the concept that selective arginase inhibitors might be a valuable strategy for treatment of various diseases associated with decreased NO and/or increased polyamines production. Consistent with this, recent research provides compelling evidence supporting the beneficial effects of arginase inhibitors in cardiovascular diseases (hypertension, ischemia reperfusion injury, atherosclerosis, diabetes mellitus), asthma, cancer, immunologically-mediated diseases or leishmaniasis. Despite active programs to identify potent arginase inhibitors, effective chemical compounds with reliable pharmacokinetics and toxicological properties are rare. The present review summarizes available data on the discovery of new arginase inhibitors from natural origin. Current knowledge on plant-derived compounds or extracts with arginase inhibitory properties as well as available data on structure-activity relationship (SAR) will be presented. Lastly, the present review will open up new prospects in order to improve the discovery of novel arginase inhibitors from natural sources. PMID:25963565

  3. Larvicidal and antifeedant activity of some plant-derived compounds to Lymantria dispar L. (Lepidoptera: Limantriidae).

    PubMed

    Kosti?, Miroslav; Popovi?, Zorica; Brki?, Dejan; Milanovi?, Slobodan; Sivcev, Ivan; Stankovi?, Sladjan

    2008-11-01

    Ethanol solutions of essential oil of Ocimum basilicum and its main component, linalool (both isomer forms), all in three concentrations, as well as botanical standard Bioneem (0.5%), were tested for their toxicity and antifeedant activity against the second instar gypsy moth larvae in the laboratory bioassay. The essential oil of O. basilicum was subjected to gas chromatography analysis, and totally 37 compounds were detected, of which linalool was predominantly present. All tested solutions showed low to moderate larvicidal effect in both residual toxicity test and in chronic larval mortality bioassay. Chronic mortality tests showed that obtained mortality was a consequence of starving rather than ingestion of treated leaves. However, antifeedant index achieved by application of tested solutions in feeding choice assay was remarkable. Foliar application of all tested compounds deterred feeding by L2 in the same percent as Bioneem. Antifeedant index was relatively high at all tested treatments (85-94%); moreover, the larval desensitization to repelling volatiles has not occurred after five days of observation. Low toxic and high antifeedant properties make these plant-derived compounds suitable for incorporation in integrated pest management programs, especially in urban environments. PMID:18364253

  4. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    SciTech Connect

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

  5. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.

    PubMed

    2008-03-01

    In this report the various elements of the safety and nutritional assessment procedure for genetically modified (GM) plant derived food and feed are discussed, in particular the potential and limitations of animal feeding trials for the safety and nutritional testing of whole GM food and feed. The general principles for the risk assessment of GM plants and derived food and feed are followed, as described in the EFSA guidance document of the EFSA Scientific Panel on Genetically Modified Organisms. In Section 1 the mandate, scope and general principles for risk assessment of GM plant derived food and feed are discussed. Products under consideration are food and feed derived from GM plants, such as maize, soybeans, oilseed rape and cotton, modified through the introduction of one or more genes coding for agronomic input traits like herbicide tolerance and/or insect resistance. Furthermore GM plant derived food and feed, which have been obtained through extensive genetic modifications targeted at specific alterations of metabolic pathways leading to improved nutritional and/or health characteristics, such as rice containing beta-carotene, soybeans with enhanced oleic acid content, or tomato with increased concentration of flavonoids, are considered. The safety assessment of GM plants and derived food and feed follows a comparative approach, i.e. the food and feed are compared with their non-GM counterparts in order to identify intended and unintended (unexpected) differences which subsequently are assessed with respect to their potential impact on the environment, safety for humans and animals, and nutritional quality. Key elements of the assessment procedure are the molecular, compositional, phenotypic and agronomic analysis in order to identify similarities and differences between the GM plant and its near isogenic counterpart. The safety assessment is focussed on (i) the presence and characteristics of newly expressed proteins and other new constituents and possible changes in the level of natural constituents beyond normal variation, and on the characteristics of the GM food and feed, and (ii) the possible occurrence of unintended (unexpected) effects in GM plants due to genetic modification. In order to identify these effects a comparative phenotypic and molecular analysis of the GM plant and its near isogenic counterpart is carried out, in parallel with a targeted analysis of single specific compounds, which represent important metabolic pathways in the plant like macro and micro nutrients, known anti-nutrients and toxins. Significant differences may be indicative of the occurrence of unintended effects, which require further investigation. Section 2 provides an overview of studies performed for the safety and nutritional assessment of whole food and feed. Extensive experience has been built up in recent decades from the safety and nutritional testing in animals of irradiated foods, novel foods and fruit and vegetables. These approaches are also relevant for the safety and nutritional testing of whole GM food and feed. Many feeding trials have been reported in which GM foods like maize, potatoes, rice, soybeans and tomatoes have been fed to rats or mice for prolonged periods, and parameters such as body weight, feed consumption, blood chemistry, organ weights, histopathology etc have been measured. The food and feed under investigation were derived from GM plants with improved agronomic characteristics like herbicide tolerance and/or insect resistance. The majority of these experiments did not indicate clinical effects or histopathological abnormalities in organs or tissues of exposed animals. In some cases adverse effects were noted, which were difficult to interpret due to shortcomings in the studies. Many studies have also been carried out with feed derived from GM plants with agronomic input traits in target animal species to assess the nutritive value of the feed and their performance potential. Studies in sheep, pigs, broilers, lactating dairy cows, and fish, comparing the in vivo bioavailability of nutrients fro

  6. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Arcega-Cabrera, F.; Velázquez-Tavera, N.; Fargher, L.; Derrien, M.; Noreńa-Barroso, E.

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 ?g g- 1) and fecal sterols (0.3-1690.18 ?g g- 1). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings indicate that defining a relationship among sources and fecal sterols levels is highly difficult and this could be the result of the absorption or migration through an intricate conduit, crack, or fracture karst system. Nevertheless, the “source-levels approach”, used in this study, was consistent for the northeast edge and the middle western part of the RC. New and more extensive research should be done to assess the environmental fate of fecal sterols, especially considering the intricate karstic system and its compound retention capacity.

  7. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico.

    PubMed

    Arcega-Cabrera, F; Velázquez-Tavera, N; Fargher, L; Derrien, M; Noreńa-Barroso, E

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 ?g g(-1)) and fecal sterols (0.3-1690.18 ?g g(-1)). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings indicate that defining a relationship among sources and fecal sterols levels is highly difficult and this could be the result of the absorption or migration through an intricate conduit, crack, or fracture karst system. Nevertheless, the "source-levels approach", used in this study, was consistent for the northeast edge and the middle western part of the RC. New and more extensive research should be done to assess the environmental fate of fecal sterols, especially considering the intricate karstic system and its compound retention capacity. PMID:25282019

  8. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness

    PubMed Central

    2012-01-01

    Background The Biopeptide BP100 is a synthetic and strongly cationic ?-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions Constitutive expression of transgenes encoding short cationic ?-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted repeats, have adequate agronomic performance and resistant phenotypes as a result of a complex equilibrium between bp100der toxicity to plant cells, antimicrobial activity and transgene-derived plant stress response. It is likely that these results can be extended to other peptides with similar characteristics. PMID:22947243

  9. New phenyl derivatives from endophytic fungus Botryosphaeria sp. SCSIO KcF6 derived of mangrove plant Kandelia candel.

    PubMed

    Ju, Zhi-Ran; Qin, Xiaochu; Lin, Xiu-Ping; Wang, Jun-Feng; Kaliyaperumal, Kumaravel; Tian, Yong-Qi; Liu, Juan; Liu, Fen; Tu, Zhengchao; Xu, Shi-Hai; Liu, Yonghong

    2016-01-01

    Two new phenyl derivatives (1 and 3), along with two new natural products (4 and 5), and three known compounds (2, 6 and 7), were isolated from an endophytic fungus Botryosphaeria sp. SCSIO KcF6. The structures of these compounds 1-7 were elucidated by the extensive 1D and 2D-NMR and HRESIMS Data analysis, and compared with those of reported data. The absolute configuration of the compounds 1 and 3 were assigned by optical rotation and CD data. The isolated compounds were evaluated for their cytotoxic, anti-inflammatory (COX-2) and antimicrobial activities. Compound 3 exhibited a specific COX-2 inhibitory activity with the IC50 value of 1.12 ?M. PMID:26156623

  10. Availability Of Deep Groundwater-Derived CO2 For Plant Uptake In A Costa Rican Rainforest

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Genereux, D. P.; Osburn, C. L.; Dierick, D.; Oviedo Vargas, D.

    2014-12-01

    The role of export of carbon via surface waters has been increasingly appreciated as an important component of ecosystem carbon budgets. However the role of deep regional groundwater as a source of carbon to ecosystems is relatively poorly known. In a lowland rainforest in Costa Rica, inputs of elevated dissolved inorganic C (DIC) in regional groundwater greatly increase stream water C concentrations. Whether that groundwater-derived carbon represents a significant source of elevated CO2 for photosynthesis of riparian plants is unknown. We compared the concentration and ?13C of CO2 in the air above two weir-equipped streams with different inputs of high-DIC regional groundwater. The Taconazo has no inputs, whereas about 40% of stream discharge of the Arboleda is a result of regional groundwater. DIC from regional groundwater experiences little to no within-watershed sequestration and thus augments the C flux out of the watershed with stream flow and possibly the degassing flux from the stream. CO2 concentrations were recorded by Vaisala GMP343 gas analyzer over 24 hr periods above the weirs and in the splash zone below the weirs as well as at a small waterfall on the Sura, the higher order stream that the Arboleda joins, approximately 250 m downstream of the junction. Samples of air ?13C-CO2 taken from unmixed (early morning) and mixed (afternoon) canopy air were measured by mass spectrometer. Concentrations of CO2 at both sites on the Taconozo remained in the normal range of canopy storage of respiratory CO2 (< 600 ppm). In contrast, [CO2] above the Arboleda weir occasionally exceeded 1000 ppm and were generally above normal values of respiratory CO2. Values below the weir by the splash zone were often higher than 1500 ppm and occasionally exceeded 2000 ppm. At the Sura waterfall pulses of high CO2 > 1000 ppm occurred regularly throughout the day. We found higher ?13C-CO2 above the Arboleda compared to the Taconazo, consistent with an enhanced flux of isotopically-heavy CO2 from the Arboleda stream. Keeling plots of samples taken at the Arboleda and Sura deviated from those over the Taconazo and indicated a source of 13C other than atmospheric air and respired CO2. Our data suggest that CO2 from regional groundwater has the potential to be available to riparian plants, but primarily at areas of turbulent water flow.

  11. Cholesterol biosynthesis by the cornea. Comparison of rates of sterol synthesis with accumulation during early development

    SciTech Connect

    Cenedella, R.J.; Fleschner, C.R. )

    1989-07-01

    The origin of the cholesterol needed by the cornea for growth and cell turnover was addressed by comparing absolute rates of sterol synthesis with rates of sterol accumulation during early development of the rabbit. Linearity of incorporation of {sup 3}H{sub 2}O and ({sup 14}C)mevalonate into digitonin-precipitable sterols with time of incubation in vitro and a lack of accumulation of {sup 14}C in intermediates of sterol biosynthesis indicated that tritiated water can validly be used to measure rates of sterol synthesis by the cornea. The rate of sterol synthesis per unit weight of rabbit cornea was constant between 14 and 60 days of age at an average 1.03 nmol of {sup 3}H of {sup 3}H{sub 2}O incorporated/mg dry cornea per 8 h. Essentially all of the synthesized cholesterol and most of the cholesterol mass was present in corneal epithelium. The cumulative sterol synthesized over the 46-day period studied exceeded the observed rate of cholesterol accumulation by sixfold. Cholesterol synthesized in excess of the growth requirement was likely used to support turnover of the epithelium which was estimated at 9 days. Removal of cholesterol from the cornea by excretion into tear fluid and clearance by high density lipoproteins are also considered.

  12. 1504 VOLUME 24 NUMBER 12 DECEMBER 2006 NATURE BIOTECHNOLOGY Prospects for plant-derived antibacterials

    E-print Network

    Ausubel, Frederick M.

    by the Chinese medicinal plant Polyalthea nemora- lis2 and is active against bacteria and fungi. Coincidentally responses of pathogens. Yet, looking at a ran- dom sampling of plant antimicrobials, one finds many of plant defense mechanisms in combating pathogen infection rivals that of mammalian immune systems

  13. Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis

    PubMed Central

    Kim, David M.; Zhang, Hairong; Zhou, Haiying; Du, Tommy; Wu, Qian; Mockler, Todd C.; Berezin, Mikhail Y.

    2015-01-01

    The optical signature of leaves is an important monitoring and predictive parameter for a variety of biotic and abiotic stresses, including drought. Such signatures derived from spectroscopic measurements provide vegetation indices – a quantitative method for assessing plant health. However, the commonly used metrics suffer from low sensitivity. Relatively small changes in water content in moderately stressed plants demand high-contrast imaging to distinguish affected plants. We present a new approach in deriving sensitive indices using hyperspectral imaging in a short-wave infrared range from 800?nm to 1600?nm. Our method, based on high spectral resolution (1.56?nm) instrumentation and image processing algorithms (quantitative histogram analysis), enables us to distinguish a moderate water stress equivalent of 20% relative water content (RWC). The identified image-derived indices 15XX?nm/14XX nm (i.e. 1529?nm/1416?nm) were superior to common vegetation indices, such as WBI, MSI, and NDWI, with significantly better sensitivity, enabling early diagnostics of plant health. PMID:26531782

  14. Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis

    NASA Astrophysics Data System (ADS)

    Kim, David M.; Zhang, Hairong; Zhou, Haiying; Du, Tommy; Wu, Qian; Mockler, Todd C.; Berezin, Mikhail Y.

    2015-11-01

    The optical signature of leaves is an important monitoring and predictive parameter for a variety of biotic and abiotic stresses, including drought. Such signatures derived from spectroscopic measurements provide vegetation indices – a quantitative method for assessing plant health. However, the commonly used metrics suffer from low sensitivity. Relatively small changes in water content in moderately stressed plants demand high-contrast imaging to distinguish affected plants. We present a new approach in deriving sensitive indices using hyperspectral imaging in a short-wave infrared range from 800?nm to 1600?nm. Our method, based on high spectral resolution (1.56?nm) instrumentation and image processing algorithms (quantitative histogram analysis), enables us to distinguish a moderate water stress equivalent of 20% relative water content (RWC). The identified image-derived indices 15XX?nm/14XX nm (i.e. 1529?nm/1416?nm) were superior to common vegetation indices, such as WBI, MSI, and NDWI, with significantly better sensitivity, enabling early diagnostics of plant health.

  15. Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis.

    PubMed

    Kim, David M; Zhang, Hairong; Zhou, Haiying; Du, Tommy; Wu, Qian; Mockler, Todd C; Berezin, Mikhail Y

    2015-01-01

    The optical signature of leaves is an important monitoring and predictive parameter for a variety of biotic and abiotic stresses, including drought. Such signatures derived from spectroscopic measurements provide vegetation indices - a quantitative method for assessing plant health. However, the commonly used metrics suffer from low sensitivity. Relatively small changes in water content in moderately stressed plants demand high-contrast imaging to distinguish affected plants. We present a new approach in deriving sensitive indices using hyperspectral imaging in a short-wave infrared range from 800?nm to 1600?nm. Our method, based on high spectral resolution (1.56?nm) instrumentation and image processing algorithms (quantitative histogram analysis), enables us to distinguish a moderate water stress equivalent of 20% relative water content (RWC). The identified image-derived indices 15XX?nm/14XX nm (i.e. 1529?nm/1416?nm) were superior to common vegetation indices, such as WBI, MSI, and NDWI, with significantly better sensitivity, enabling early diagnostics of plant health. PMID:26531782

  16. Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits.

    PubMed

    Mitoshi, Mai; Kuriyama, Isoko; Nakayama, Hiroto; Miyazato, Hironari; Sugimoto, Keiichiro; Kobayashi, Yuko; Jippo, Tomoko; Kuramochi, Kouji; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-06-01

    The aim of the present study was to investigate the biological activity of 20 essential oils (EOs) derived from herbal plants and citrus fruits. The in vitro anti-allergic and anti-inflammatory activities of these oils were investigated, and the EO which was found to have the strongest activity of the 20 EOs examined, was investigated further to identify its components and bioactive compounds. The in vitro anti-allergic activity was determined by measuring the release of ?-hexosaminidase from rat basophilic leukemia (RBL-2H3) cells treated with the calcium ionophore, A23187. The in vitro anti-inflammatory activity was determined by measuring the production of tumor necrosis factor-? (TNF-?) in RAW264.7 murine macrophages treated with lipopolysaccharide. Among the EOs examined, lemongrass [Cymbopogon citratus (DC.) Stapf] elicited the strongest anti-allergic and anti-inflammatory effects. A principal component of this EO is citral (3,7-dimethyl-2,6-octadien-1-al) (74.5%), a mixture of the stereoisomers, geranial (trans-citral, 40.16%) and neral (cis-citral, 34.24%), as determined by chromatography-mass spectrometry analysis. The activities of citral and geranial are similar to those of lemongrass EO. These compounds elicited significant in vivo anti-allergic and anti-inflammatory effects, suppressing an immunoglobulin E (IgE)-induced passive cutaneous anaphylactic reaction in mice and a 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory mouse ear edema, respectively. Our data demonstrate that lemongrass EO and its constituents, citral and geranial, may be a therapeutic candidate for allergic and inflammatory diseases. PMID:24682420

  17. Reduction of Salmonella on turkey breast cutlets by plant-derived compounds.

    PubMed

    Nair, Divek V T; Nannapaneni, Rama; Kiess, Aaron; Schilling, Wes; Sharma, Chander Shekhar

    2014-12-01

    The foodborne illnesses associated with poultry meat due to Salmonella are a major concern in the United States. In this study, the antimicrobial efficacy of carvacrol, eugenol, thyme essential oil, and trans-cinnamaldehyde was determined against different Salmonella serotypes in vitro and on turkey breast cutlets. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of antimicrobial agents were determined using a microdilution colorimetric assay. Carvacrol was the most effective antimicrobial agent since it exhibited the lowest MIC and MBC (0.313??L/mL, respectively) in culture media against Salmonella. Turkey breast cutlets inoculated with Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella Typhimurium were dip treated with different concentrations (0.5, 1, 2, and 5% vol/vol) of carvacrol, eugenol, thyme essential oil, and trans-cinnamaldehyde for 2?min. Samples were analyzed after 24-h storage at 4°C for recovery of Salmonella. Significant reductions of Salmonella (p?0.05) on turkey breast cutlets were obtained with 1, 2, and 5% treatments. These compounds exhibited a concentration-dependent response on turkey breast cutlets against Salmonella. For example, 1% carvacrol resulted in 1.0 log colony-forming units (CFU)/g reduction of Salmonella whereas 5% carvacrol caused 2.6 log CFU/g reduction. Based on its efficacy in the 2-min dip study, carvacrol was selected for 30-s and 60-s dip treatments of Salmonella-inoculated turkey breast cutlets. Dipping turkey breast cutlets in 5% carvacrol for 30?s and 60?s resulted in 1.0 and 1.8 log reductions of Salmonella (p?0.05), respectively. None of the antimicrobial agents caused any changes in the meat pH (p>0.05). In conclusion, this study revealed that plant-derived compounds such as carvacrol can reduce Salmonella on turkey breast cutlets without changing the pH of meat. PMID:25405806

  18. Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications.

    PubMed

    Du, Qingshan; Zhu, Weiping; Zhao, Zhenjiang; Qian, Xuhong; Xu, Yufang

    2012-01-11

    Plant activators are a novel kind of agrochemicals that could induce resistance in many plants against a broad spectrum of diseases. To date, only few plant activators have been commercialized. In order to develop novel plant activators, a series of benzo-1,2,3-thiadiazole-7-carboxylate derivatives were synthesized, and the structures were characterized by (1)H NMR, IR, elemental analyses, and HRMS or MS. Their potential systemic acquired resistance as plant activators was evaluated as well. Most of them showed good activity, especially, fluoro-containing compounds 3d and 3e, which displayed excellent SAR-inducing activity against cucumber Erysiphe cichoracearum and Colletotrichum lagenarium in assay screening. Field test results illustrated that compounds 3d and 3e were more potent than the commercial plant activator, S-methyl benzo[1,2,3]thiadiazole-7-carbothioate (BTH) toward these pathogens. Further, the preparation of compound 3d is more facile than BTH with lower cost, which will be helpful for further applications in agricultural plant protection. PMID:22142181

  19. Gas chromatography-mass spectrometry study of sterols from Pinus elliotti tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Evans, R.; Weete, J. D.; Walkinshaw, C. H.

    1973-01-01

    A comparative study of the sterol components of slash pine (Pinus elliotti) callus tissue cultures, seeds, and seedlings was carried out using GC-MS techniques. Cholesterol, desmosterol, campesterol, stigmasterol, sitosterol and cycloeucalenol were identified in all tissues while lophenol and 24-methylenelophenol were identified in only the seed and seedlings. 24-Ethylidenelophenol was detected in trace concentrations in only the seedlings. Sitosterol was the predominant sterol component, i.e., 80.8, 38.1 and 47.8% of the tissue culture, seed and seedling sterols, respectively.

  20. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  1. Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants

    SciTech Connect

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

    2003-12-31

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

  2. A Rapid Analytical Method for Determination of Aflatoxins in Plant-Derived Dietary Supplement and Cosmetic Oils

    PubMed Central

    Mahoney, Noreen; Molyneux, Russell J.

    2010-01-01

    Consumption of edible oils derived from conventional crop plants is increasing because they are generally regarded as more healthy alternatives to animal based fats and oils. More recently there has been increased interest in the use of alternative specialty plant-derived oils, including those from tree nuts (almonds, pistachios and walnuts) and botanicals (borage, evening primrose and perilla) both for direct human consumption (e.g. as salad dressings) but also for preparation of cosmetics, soaps, and fragrance oils. This has raised the issue as to whether or not exposure to aflatoxins can result from such oils. Although most crops are subject to analysis and control, it has generally been assumed that plant oils do not retain aflatoxins due to their high polarity and lipophobicity of these compounds. There is virtually no scientific evidence to support this supposition and available information is conflicting. To improve the safety and consistency of botanicals and dietary supplements, research is needed to establish whether or not oils used directly, or in the formulation of products, contain aflatoxins. A validated analytical method for the analysis of aflatoxins in plant-derived oils is essential, in order to establish the safety of dietary supplements for consumption or cosmetic use that contain such oils. The aim of this research was therefore to develop an HPLC method applicable to a wide variety of oils from different plant sources spiked with aflatoxins, thereby providing a basis for a comprehensive project to establish an intra- and inter-laboratory validated analytical method for analysis of aflatoxins in dietary supplements and cosmetics formulated with plant oils. PMID:20235534

  3. Derivatives of diterpen labdane-8?,15-diol as photosynthetic inhibitors in spinach chloroplasts and growth plant inhibitors.

    PubMed

    Morales-Flores, Félix; Aguilar, María Isabel; King-Díaz, Beatriz; Lotina-Hennsen, Blas

    2013-08-01

    In a search of new efficient herbicides of natural origin, four derivatives were prepared from labdane-8?,15-diol (1) and 15-O-acetyl-8?-hydroxy labdane (2) isolated from Croton ciliatoglanduliferus. Their inhibitory activity on photosynthetic electron transport on fresh, broken spinach chloroplasts and on the growth of plants were determined. Derivative 15-O-benzoyl-8?-hydroxy labdane (5) was seven times more active than 2 as reaction Hill inhibitor. Complex of 5 with the adjuvant 2-hydroxypropyl-?-cyclodextrin (5:HPB) (200 ?M) was sprayed on Physalys ixocarpa (green tomato) plants; 48 h later the complex inhibited PS II by transforming the active reaction centers to silent reaction centers or "heat sinks". After 72 h this effect disappeared, probably 5:HPB was metabolized by the plant. Chlorophyll a fluorescence of Trifolium alexandrinum (clover) leaves was affected with 5:HPB at the level of PQ pool reduction. 5:HPB decreases the tomato and clover dry-biomass, without affecting Lolium perenne (grass) plants, suggesting that complex 5 acts as selective herbicide for dicotyledonous plants. PMID:23733160

  4. Development of a novel method for quantification of sterols and oxysterols by UPLC-ESI-HRMS: application to a neuroinflammation rat model.

    PubMed

    Ayciriex, Sophie; Regazzetti, Anne; Gaudin, Mathieu; Prost, Elise; Dargčre, Delphine; Massicot, France; Auzeil, Nicolas; Laprévote, Olivier

    2012-12-01

    Cholesterol and oxysterols are involved as key compounds in the development of severe neurodegenerative diseases and in neuroinflammation processes. Monitoring their concentration changes under pathological conditions is of interest to get insights into the role of lipids in diseases. For numerous years, liquid chromatography coupled to mass spectrometry has been the method of choice for metabolites identification and quantification in biological samples. However, sterols and oxysterols are relatively apolar molecules poorly adapted to electrospray ionization (ESI). To circumvent this drawback, we developed a novel and robust analytical method involving derivatization of these analytes in cholesteryl N-4-(N,N-dimethylamino)phenyl carbamates under alkaline conditions followed by ultra-performance liquid chromatography-high resolution mass spectrometry analysis (UPLC-HRMS). Optimized UPLC conditions led to the separation of a mixture of 11 derivatized sterols and oxysterols especially side chain substituted derivatives after 6 min of chromatographic run. High sensitivity time-of-flight mass analysis allowed analytes to be detected in the nanomolar range. The method was validated for the analysis of oxysterols and sterols in mice brain in respect of linearity, limits of quantification, accuracy, precision, analyte stability, and recovery according to the Food and Drug Administration (FDA) guidelines. The developed method was successfully applied to investigate the impact of lipopolysaccharide (LPS) treatment on the rat cerebral steroidome. PMID:23010846

  5. Unraveling sterol-dependent membrane phenotypes by analysis of protein abundance-ratio distributions in different membrane fractions under biochemical and endogenous sterol depletion.

    PubMed

    Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X

    2013-12-01

    During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-?-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions. PMID:24030099

  6. New Meroterpenoids from the Endophytic Fungus Aspergillus flavipes AIL8 Derived from the Mangrove Plant Acanthus ilicifolius

    PubMed Central

    Bai, Zhi-Qiang; Lin, Xiuping; Wang, Junfeng; Zhou, Xuefeng; Liu, Juan; Yang, Bin; Yang, Xianwen; Liao, Shengrong; Wang, Lishu; Liu, Yonghong

    2015-01-01

    Four new meroterpenoids (2–5), along with three known analogues (1, 6, and 7) were isolated from mangrove plant Acanthus ilicifolius derived endophytic fungus Aspergillus flavipes. The structures of these compounds were elucidated by NMR and MS analysis, the configurations were assigned by CD data, and the stereochemistry of 1 was confirmed by X-ray crystallography analysis. A possible biogenetic pathway of compounds 1–7 was also proposed. All compounds were evaluated for antibacterial and cytotoxic activities. PMID:25574738

  7. Rapid inactivation of Salmonella Enteritidis on shell eggs by plant-derived antimicrobials.

    PubMed

    Upadhyaya, Indu; Upadhyay, Abhinav; Kollanoor-Johny, Anup; Baskaran, Sangeetha Ananda; Mooyottu, Shankumar; Darre, Michael J; Venkitanarayanan, Kumar

    2013-12-01

    Salmonella Enteritidis is a common foodborne pathogen transmitted to humans largely by consumption of contaminated eggs. The external surface of eggs becomes contaminated with Salmonella Enteritidis from various sources on farms, the main sources being hens' droppings and contaminated litter. Therefore, effective egg surface disinfection is critical to reduce pathogens on eggs and potentially control egg-borne disease outbreaks. This study investigated the efficacy of GRAS (generally recognized as safe) status, plant-derived antimicrobials (PDA), namely trans-cinnamaldehyde (TC), carvacrol (CR), and eugenol (EUG), as an antimicrobial wash for rapidly killing Salmonella Enteritidis on shell eggs in the presence or absence of chicken droppings. White-shelled eggs inoculated with a 5-strain mixture of nalidixic acid (NA) resistant Salmonella Enteritidis (8.0 log cfu/mL) were washed in sterile deionized water containing each PDA (0.0, 0.25, 0.5, or 0.75%) or chlorine (200 mg/kg) at 32 or 42°C for 30 s, 3 min, or 5 min. Approximately 6.0 log cfu/mL of Salmonella Enteritidis was recovered from inoculated and unwashed eggs. The wash water control and chlorine control decreased Salmonella Enteritidis on eggs by only 2.0 log cfu/mL even after washing for 5 min. The PDA were highly effective in killing Salmonella Enteritidis on eggs compared with controls (P < 0.05). All treatments containing CR and EUG reduced Salmonella Enteritidis to undetectable levels as rapidly as within 30 s of washing, whereas TC (0.75%) completely inactivated Salmonella Enteritidis on eggs washed at 42°C for 30 s (P < 0.05). No Salmonella Enteritidis was detected in any PDA or chlorine wash solution; however, substantial pathogen populations (~4.0 log cfu/mL) survived in the antibacterial-free control wash water (P < 0.05). The CR and EUG were also able to eliminate Salmonella Enteritidis on eggs to undetectable levels in the presence of 3% chicken droppings at 32°C (P < 0.05). This study demonstrates that PDA could effectively be used as a wash treatment to reduce Salmonella Enteritidis on shell eggs. Sensory and quality studies of PDA-washed eggs need to be conducted before recommending their use. PMID:24235233

  8. Effect of Sterols on the Permeability of Alcohol-Treated Red Beet Tissue 12

    PubMed Central

    Grunwald, C.

    1968-01-01

    Alcohols and hydrogen peroxide altered the permeability of membranes of Beta vulgaris root cells. Generally alcohols increased the permeability of membranes without going through an induction period except methanol which required a 10- to 15-hour induction period. The membrane effect of methanol could be inhibited with CaCl2, cholesterol, ?-sitosterol, and stigmasterol. Cholesterol was the most effective inhibitor, followed by ?-sitosterol and stigmasterol; and at the same concentration, the sterols were more effective than CaCl2, the classic membrane stabilizer. Ergosterol increased the methanol-initiated betacyanin leakage. Since none of the tested sterols reversed the betacyanin efflux induced by hydrogen peroxide, the sterols do not apparently act as antioxidants. The results are explained in terms of sterol-phospholipid interaction, based on stereochemistry and charge distribution. PMID:16656796

  9. The mannoprotein TIR3 (CAGL0C03872g) is required for sterol uptake in Candida glabrata.

    PubMed

    Inukai, Tatsuya; Nagi, Minoru; Morita, Akihiro; Tanabe, Koichi; Aoyama, Toshihiro; Miyazaki, Yoshitsugu; Bard, Martin; Nakayama, Hironobu

    2015-02-01

    Sterol uptake in the pathogenic fungus, Candida glabrata, occurs via the sterol transporter, CgAus1p. Azole inhibition of sterol biosynthesis can under certain circumstances be reversed by adding exogenously sterol. Here we demonstrate that the CgTIR3 (CAGL0C03872g) gene product is also required for sterol uptake, since Cgtir3? strains fail to take up sterol both aerobically and under hypoxic conditions. Western analysis using an HA-tagged TIR3 strain showed that CgTir3p localizes to the cell wall, and its expression is induced by serum. Semi-quantitative reverse transcriptase-PCR also showed that two transcription regulatory genes, CgUPC2A and CgUPC2B, control CgTIR3 as well as CgAUS1 gene expression. Interestingly, complementation studies using Cgtir3? showed that ScDAN1, a mannoprotein required for sterol uptake in Saccharomyces cerevisiae, could not complement the C. glabrata TIR3 function. Furthermore, sterol analyses, in which both the CgAUS1 and CgTIR3 genes were constitutively expressed, resulted in aerobic sterol uptake although the amount of uptake was considerably less than that of cells cultured aerobically with serum. These results suggest that additional factors other than CgAUS1 and CgTIR3 are required for sterol uptake in C. glabrata. PMID:25463012

  10. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase.

    PubMed Central

    Zarn, Jürg A; Brüschweiler, Beat J; Schlatter, Josef R

    2003-01-01

    Azole compounds play a key role as antifungals in agriculture and in human mycoses and as non-steroidal antiestrogens in the treatment of estrogen-responsive breast tumors in postmenopausal women. This broad use of azoles is based on their inhibition of certain pathways of steroidogenesis by high-affinity binding to the enzymes sterol 14-alpha-demethylase and aromatase. Sterol 14-alpha-demethylase is crucial for the production of meiosis-activating sterols, which recently were shown to modulate germ cell development in both sexes of mammals. Aromatase is responsible for the physiologic balance of androgens and estrogens. At high doses, azole fungicides and other azole compounds affect reproductive organs, fertility, and development in several species. These effects may be explained by inhibition of sterol 14-alpha-demethylase and/or aromatase. In fact, several azole compounds were shown to inhibit these enzymes in vitro, and there is also strong evidence for inhibiting activity in vivo. Furthermore, the specificity of the enzyme inhibition of several of these compounds is poor, both with respect to fungal versus nonfungal sterol 14-alpha-demethylases and versus other P450 enzymes including aromatase. To our knowledge, this is the first review on sterol 14-alpha-demethylase and aromatase as common targets of azole compounds and the consequence for steroidogenesis. We conclude that many azole compounds developed as inhibitors of fungal sterol 14-alpha-demethylase are inhibitors also of mammalian sterol 14-alpha-demethylase and mammalian aromatase with unknown potencies. For human health risk assessment, data on comparative potencies of azole fungicides to fungal and human enzymes are needed. PMID:12611652

  11. Mode of uptake of insoluble solid substrates by microorganisms. I: Sterol uptake by an arthrobacter species.

    PubMed

    Goswami, P C; Singh, H D; Bhagat, S D; Baruah, J N

    1983-12-01

    The mode of uptake of sterols, which are nearly insoluble in water by an Arthrobacter species, was studied on the basis of substrate transfer via the aqueous phase (solubilization/pseudosolubilization) and through direct contact with sterol particles. Growth of the organism, on stero powder was predominantly in nonlogarithmic in character, indicating a possible limitation of substrate transfer. Soluble sterol was shown to be the preferential form of the substrate for assimilation by the organism. Evidence was obtained for increased solubilizition of beta-sitosterol and cholesterol during microbial growth on these substrates. But the rate of solubilization of beta-sitosterol (3.06 mg L(-1) h(-1)) was too inadequate to account for the observed substrate uptake rare (107 mg L(-1) h(-1)) during growth. A cholesterol solubilization rate of 44 mg L(-1) h(-1) could, however, account to an appreciable extent for the observed cholesterol uptake rate of 140 mg L(-1) h(-1) during growth. Increasing attachement of cells to sterol particles during growth was observed by microscopic examination, indicating that growth may take place over the surface of sterol particles. By using the synthetic surfactant HYOXYD AAO (alkyl aryl polyglycol ether), which prevented attachment of cells to sterol particles without affecting the metabolic integrity of the cells, it was shown that growth indeed took place predominantly on the surface of the sterol particles. Increased generation of finer particles of sterol, which provides increased substrate surface area during growth, was demonstrated. It was concluded that with beta-sitosterol, growth takes place almost entirely by attachement, whereas with cholesterol, about 30% of the growth take place on solubilized substrate and the rest through attachament. PMID:18548628

  12. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    SciTech Connect

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} for fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.

  13. Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures.

    PubMed

    Moyo, Mack; Amoo, Stephen O; Aremu, Adeyemi O; Gruz, Ji?í; Subrtová, Michaela; Doležal, Karel; Van Staden, Johannes

    2014-10-01

    Micropropagation of Hypoxis hemerocallidea Fisch. and C.A. Mey was used as a model system to study the influence of cytokinins (CKs) on plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in organ and callus cultures and their antioxidant activity. Fourteen free phenolic acids were detected using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) while antioxidant activity was evaluated using oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Cytokinins had a significant effect on the biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in H. hemerocallidea organ cultures. In particular, meta-topolin-treated organ cultures produced high concentrations of gallic, protocatechuic, gentisic, p-hydroxybenzoic, m-hydroxybenzoic, salicylic, chlorogenic and trans-cinnamic acids. The isoprenoid CK, N(6)-(2-isopentenyl)-adenine significantly increased the accumulation of hydroxycinnamic acid derivatives, namely, caffeic, p-coumaric, sinapic and ferulic acids. Cytokinin-treated organ cultures exhibited a significant increase in antioxidant activity, particularly in the ORAC model. In callus cultures, CKs decreased the concentrations of hydroxycinnamic acid derivatives and antioxidant activity when compared to the control. Overall, both CK type and concentration had a significant effect on plant regeneration, callus proliferation, biochemical accumulation of free phenolic acids and antioxidant activity of the resultant extracts. PMID:25219317

  14. Sterol superlattice affects antioxidant potency and can be used to assess adverse effects of antioxidants.

    PubMed

    Olsher, Michelle; Chong, Parkson Lee-Gau

    2008-11-01

    We have developed a fluorescence method to examine how membrane sterol lateral organization affects the potency of antioxidants, and used this information to evaluate possible adverse effects of lipid-soluble antioxidants seen in recent clinical studies. In the presence of an antioxidant, the lag time (tau) produced during free radical-induced sterol oxidation in lipid vesicles reflects the potency of the antioxidant. The ascorbic acid-induced tau value varies with sterol mol% in a biphasic manner, showing a minimum at the critical sterol mole fraction for maximal superlattice formation (C r), in ascorbic acid concentrations sterol superlattice affects antioxidant potency. In contrast, the biphasic change in tau at C r was observed only at doses of ascorbyl palmitate <15 microM, above which the biphasic change at Cr is abolished. Our data suggest that while ascorbyl palmitate is a more efficient antioxidant than its water-soluble counterpart as judged by the tau value, it can easily perturb sterol lateral organization by insertion into membrane bilayers, which could impose detrimental effects on cells. The threshold antioxidant concentration (C th) to abolish biphasic change in tau at C r may vary with antioxidant and could be used to assess potential adverse effects of other lipid-soluble antioxidants. PMID:18694720

  15. Synthesis of Plant Auxin Derivatives and Their Effects on Ceratopteris Richardii

    ERIC Educational Resources Information Center

    Stilts, Corey E.; Fisher, Roxanne

    2007-01-01

    Bioassays are commonly used to test the biological activity of chemicals and other exercises are presented in which students synthesize plant hormones. Lab exercise is conducted using commercially available auxins and auxin regulating compounds.

  16. Characterization of plant-derived lactococci on the basis of their volatile compounds profile when grown in milk.

    PubMed

    Alemayehu, Debebe; Hannon, John A; McAuliffe, Olivia; Ross, R Paul

    2014-02-17

    A total of twelve strains of lactococci were isolated from grass and vegetables (baby corn and fresh green peas). Ten of the isolates were classified as Lactococcus lactis subsp. lactis and two as Lactococcus lactis subsp. cremoris based on 16S rDNA sequencing. Most of the plant-derived strains were capable of metabolising a wide range of carbohydrates in that they fermented D-mannitol, amygdalin, potassium gluconate, l-arabinose, d-xylose, sucrose and gentibiose. None of the dairy control strains (i.e. L. lactis subsp. cremoris HP, L. lactis subsp. lactis IL1403 and Lactococcus lactis 303) were able to utilize any of these carbohydrates. The technological potential of the isolates as flavour-producing lactococci was evaluated by analysing their growth in milk and their ability to produce volatile compounds using solid phase micro-extraction of the headspace coupled to gas chromatography-mass spectrometry (SPME GC-MS). Principal component analysis (PCA) of the volatile compounds clearly separated the dairy strains from the plant derived strains, with higher levels of most flavour rich compounds. The flavour compounds produced by the plant isolates among others included; fatty acids such as 2- and 3-methylbutanoic acids, and hexanoic acid, several esters (e.g. butyl acetate and ethyl butanoate) and ketones (e.g. acetoin, diacetyl and 2-heptanone), all of which have been associated with desirable and more mature flavours in cheese. As such the production of a larger number of volatile compounds is a distinguishing feature of plant-derived lactococci and might be a desirable trait for the production of dairy products with enhanced flavour and/or aroma. PMID:24361833

  17. Lipid Signaling in Plants. Cloning and Expression Analysis of the Obtusifoliol 14a-Demethylase

    E-print Network

    RNA, suggesting a possible role of this transient biosynthetic intermediate as a bioactive signaling lipid step and its substrate in plant development. Sterols are ubiquitous components of the plasma membrane

  18. XAFS studies of cobalt(II) binding by solid peat and soil-derived humic acids and plant-derived humic acid-like substances.

    PubMed

    Ghabbour, Elham A; Scheinost, Andreas C; Davies, Geoffrey

    2007-02-01

    This work has examined cobalt(II) binding by a variety of solid humic acids (HAs) isolated from peat, plant and soil sources at temperatures down to 60K. The results confirm that X-ray absorption near-edge spectroscopy (XANES) measurements cannot distinguish between aquo and carboxylato ligands in the inner coordination sphere of Co(II). However, between 1 and 2 inner-sphere carboxylato ligands can be detected in all the peat, plant and soil-derived HA samples by extended X-ray absorption fine structure (EXAFS) measurements, indicating inner-sphere coordination of HA-bound Co(II). The precision of C(carboxylate) detection is limited by the extent and quality of the data and the contribution from inner-sphere O to the Fourier transformed peaks used to detect carbon. Putative chelate ring formation is consistent with a relatively negative entropy change in step A, the stronger Co(II) binding step by HA functional groups, and could relate to 'non-exchangeable' metal binding by HSs. PMID:17140631

  19. Comparison of Sterol Import under Aerobic and Anaerobic Conditions in Three Fungal Species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae

    PubMed Central

    Zavrel, Martin; Hoot, Sam J.

    2013-01-01

    Sterol import has been characterized under various conditions in three distinct fungal species, the model organism Saccharomyces cerevisiae and two human fungal pathogens Candida glabrata and Candida albicans, employing cholesterol, the sterol of higher eukaryotes, as well as its fungal equivalent, ergosterol. Import was confirmed by the detection of esterified cholesterol within the cells. Comparing the three fungal species, we observe sterol import under three different conditions. First, as previously well characterized, we observe sterol import under low oxygen levels in S. cerevisiae and C. glabrata, which is dependent on the transcription factor Upc2 and/or its orthologs or paralogs. Second, we observe sterol import under aerobic conditions exclusively in the two pathogenic fungi C. glabrata and C. albicans. Uptake emerges during post-exponential-growth phases, is independent of the characterized Upc2-pathway and is slower compared to the anaerobic uptake in S. cerevisiae and C. glabrata. Third, we observe under normoxic conditions in C. glabrata that Upc2-dependent sterol import can be induced in the presence of fetal bovine serum together with fluconazole. In summary, C. glabrata imports sterols both in aerobic and anaerobic conditions, and the limited aerobic uptake can be further stimulated by the presence of serum together with fluconazole. S. cerevisiae imports sterols only in anaerobic conditions, demonstrating aerobic sterol exclusion. Finally, C. albicans imports sterols exclusively aerobically in post-exponential-growth phases, independent of Upc2. For the first time, we provide direct evidence of sterol import into the human fungal pathogen C. albicans, which until now was believed to be incapable of active sterol import. PMID:23475705

  20. Plant-Derived Anti-Inflammatory Compounds: Hopes and Disappointments regarding the Translation of Preclinical Knowledge into Clinical Progress

    PubMed Central

    Fürst, Robert; Zündorf, Ilse

    2014-01-01

    Many diseases have been described to be associated with inflammatory processes. The currently available anti-inflammatory drug therapy is often not successful or causes intolerable side effects. Thus, new anti-inflammatory substances are still urgently needed. Plants were the first source of remedies in the history of mankind. Since their chemical characterization in the 19th century, herbal bioactive compounds have fueled drug development. Also, nowadays, new plant-derived agents continuously enrich our drug arsenal (e.g., vincristine, galantamine, and artemisinin). The number of new, pharmacologically active herbal ingredients, in particular that of anti-inflammatory compounds, rises continuously. The major obstacle in this field is the translation of preclinical knowledge into evidence-based clinical progress. Human trials of good quality are often missing or, when available, are frequently not suitable to really prove a therapeutical value. This minireview will summarize the current situation of 6 very prominent plant-derived anti-inflammatory compounds: curcumin, colchicine, resveratrol, capsaicin, epigallocatechin-3-gallate (EGCG), and quercetin. We will highlight their clinical potential and/or pinpoint an overestimation. Moreover, we will sum up the planned trials in order to provide insights into the inflammatory disorders that are hypothesized to be beneficially influenced by the compound. PMID:24987194

  1. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    PubMed Central

    Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

    2013-01-01

    Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms. PMID:23669710

  2. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues

    NASA Astrophysics Data System (ADS)

    Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.

    1997-01-01

    Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.

  3. DEVELOPING SITE-SPECIFIC DERIVED CONCENTRATION GUIDELINE LEVELS FOR MULTIPLE MEDIA AT THE CONNECTICUT YANKEE HADDAM NECK PLANT

    SciTech Connect

    Taylor, S.W.; Smith, L.C.; Carr, R.K.; Carson, A.; Darois, E.

    2003-02-27

    As part of the license termination process, site-specific Derived Concentration Guideline Levels for the Haddam Neck Plant site are developed for soil, groundwater, concrete left standing, and concrete demolished that satisfy the radiological criteria for unrestricted use as defined in 10 CFR 20.1402. Background information on the license termination process and characteristics of the Haddam Neck Plant site are presented. The dose models and associated resident farmer and building occupancy scenarios, applicable pathways, and critical groups developed to establish the Derived Concentration Guideline Levels are described. A parameter assignment process is introduced wherein general population values are used to establish behavioral and metabolic parameters representative of an average member of the critical group, while the uncertainty associated with important physical parameters is considered. A key element of the parameter assignment process is the use of sensitivity analysis to identify the dose sensitive physical parameters and to ensure that such parameters are assigned conservative values. Structuring the parameter assignment process, completing the formal sensitivity analyses, and assigning conservative values to the sensitive physical parameters in a consistent way establishes a calculation framework that lead to Derived Concentration Guideline Levels with a uniform level of conservatism across all media and all radionuclides.

  4. Virus-Derived Vectors for the Expression of Multiple Proteins in Plants.

    PubMed

    Saxena, Pooja; Thuenemann, Eva C; Sainsbury, Frank; Lomonossoff, George P

    2016-01-01

    This chapter constitutes a practical guide to using the "pEAQ" vector series for transient or stable expression of one or more protein(s) in Nicotiana benthamiana plants. The pEAQ vectors are a series of small binary vectors designed for controlled expression of multiple proteins in plants. To achieve high levels of expression, an expression system based on translational enhancement by the untranslated regions of RNA-2 from cowpea mosaic virus (CPMV), named CPMV-HT, is used. The expression vector pEAQ-HT combines the user-friendly pEAQ plasmid with CPMV-HT to provide a system for high-level expression of proteins in plants. PMID:26614280

  5. Plant Sunscreens in Nature: UV and IR Spectroscopy of Sinapate Derivatives

    NASA Astrophysics Data System (ADS)

    Dean, Jacob C.; Walsh, Patrick S.; Zwier, Timothy S.; Allais, Florent

    2013-06-01

    Plants are exposed to prolonged amounts of UV radiation, with elevated levels of UV-B (280-320 nm) as the ozone layer is depleted. When UV-B radiation penetrates the leaf epidermis, substantial oxidative damage can occur to plant tissues and plant growth can be inhibited. Sinapate esters, particularly sinapoyl malate, have been shown to efficiently prevent such damaging effects. By studying a series of molecules in this unique class under the isolated, cold conditions of a supersonic expansion, the fundamental UV-spectroscopic properties and photophysical aspects following UV absorption can be interrogated in detail. Sinapic acid and neutral sinapoyl malate were brought into the gas phase by laser desorption and detected via resonant two-photon ionization (R2PI). IR-UV double resonance methods were employed to obtain single-conformation UV and IR spectra. As the UV chromophore of interest is the sinapoyl moiety, sinapic acid served as the simplest model to compare directly to the more functionalized sinapoyl malate. It has a spectrum much like most aromatics, with a strong {??}^* origin, and well-resolved vibronic structure. By contrast, the spectrum for sinapoyl malate displays a large, broad absorption with little resolved vibronic structure, reflecting its role in nature as a pivotal and efficient UV protectant for plants, serving as the plant's sunscreen. Using conformer-specific IR spectroscopy, the individual conformations of both species were assigned and used as the basis for further ab initio calculations of the excited states that give rise to the observed behavior. Landry, L.G.; Chapple, C.S.; Last, R.L. Plant Physiol. {1995}, 109, 1159-1166.

  6. How to eliminate the formation of chlorogenic acids artefacts during plants analysis? Sea sand disruption method (SSDM) in the HPLC analysis of chlorogenic acids and their native derivatives in plants.

    PubMed

    Wianowska, Dorota; Typek, Rafa?; Dawidowicz, Andrzej L

    2015-09-01

    The analytical procedures for determining plant constituents involve the application of sample preparation methods to fully isolate and/or pre-concentrate the analyzed substances. High-temperature liquid extraction is still applied most frequently for this purpose. The present paper shows that high-temperature extraction cannot be applied for the analysis of chlorogenic acids (CQAs) and their derivatives in plants as it causes the CQAs transformation leading to erroneous quantitative estimations of these compounds. Experiments performed on different plants (black elder, hawthorn, nettle, yerba maté, St John's wort and green coffee) demonstrate that the most appropriate method for the estimation of CQAs/CQAs derivatives is sea sand disruption method (SSDM) because it does not induce any transformation and/or degradation processes in the analyzed substances. Owing to the SSDM method application we found that the investigated plants, besides four main CQAs, contain sixteen CQAs derivatives, among them three quinic acids. The application of SSDM in plant analysis not only allows to establish a true concentration of individual CQAs in the examined plants but also to determine which chlorogenic acids derivatives are native plant components and what is their concentration level. What is even more important, the application of SSDM in plant analysis allows to eliminate errors that may arise or might have arisen in the study of chlorogenic acids and their derivatives in plant metabolism. PMID:26231294

  7. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the scenarios utilizing secondary particles (oxidized emissions) ranged from 70-256 {micro}g/m{sup 3}, and some of the atmospheres contained high acidity levels (up to 49 {micro}g/m{sup 3} equivalent of sulfuric acid). However, caution must be used in generalizing these results to other power plants utilizing different coal types and with different plant configurations, as the emissions may vary based on these factors.

  8. BIOPHYSICAL PROPERTIES OF CAY-1, A FUNGICIDAL PLANT-DERIVED SAPONIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: CAY-1, a plant saponin, is lethal to several medically and agriculturally important fungi. CAY-1 displays synergy with amphotericin B and itraconzaole against fungi. To further elucidate its properties, we studied pH effect on CAY-1 activity and possible fungal wall and membrane binding ...

  9. Establishment of a genetically marked insect-derived symbiont in multiple host plants.

    PubMed

    Bextine, Blake; Lampe, David; Lauzon, Carol; Jackson, Brian; Miller, Thomas A

    2005-01-01

    Alcaligenes xylosoxidans subsp. denitrificans, originally isolated from the cibarial region of the foregut of the glassy-winged sharpshooter (Homalodisca coagulata), was transformed using the Himar1 transposition system to express EGFP. Seedlings of six potential host plants were inoculated with transformed bacteria and 2 weeks later samples were taken 5 cm away and analyzed by quantitative real-time PCR using primers designed to amplify the gene insert. The largest colony of 3,591,427 cells/2 cm of A. xylosoxidans subsp. denitrificans was found in Citrus limon, with almost all plants testing positive in both trials. The amount of colonization decreased in the other plants tested in the following order: orange (Citrus sinensis "sweet orange") > chrysanthemum (Chrysanthemum grandiflora cv. "White Diamond") > periwinkle (Vinca rosea) > crepe myrtle (Lagerstroemia indica) > grapevine (Vitis vinifera cv. Chardonnay). The bacterium's preference for citrus paralleled the host insect's preference for this same plant. Additional tests determined that A. xylosoxidans subsp. denitrificans thrives as a nonpathogenic, xylem-associated endophyte. PMID:15723145

  10. Female attractiveness modulated by a male-derived antiaphrodisiac pheromone in a plant bug

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Males of the plant bug Lygus hesperus, a major crop pest, prefer to court virgins over recently mated females. Because males deliver a large spermatophore mass to the females during copulation that contains more than just sperm, we investigated whether they transferred an odorant molecule rendering ...

  11. Using vegetative index and modified derivative for early detection of soybean plant injury from glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is a non-selective, systemic herbicide highly toxic to sensitive plant species, and its use has seen a significant increase due to the increased adoption of genetically modified glyphosate-resistant crops since the mid-1990s. Glyphosate application for weed control in glyphosate-resistant...

  12. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage (BAL) fluid cytology and biochemistry; (3) blood cytology; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. In addition, at one plant, cardiac arrhythmias and heart rate variability (HRV) were evaluated in a rat model of myocardial infarction. Statistical analyses included analyses of variance (ANOVA) to determine differences between exposed and control animals in response to different scenario/plant combinations; univariate analyses to link individual scenario components to responses; and multivariate analyses (Random Forest analyses) to evaluate component effects in a multipollutant setting. Results from the power plant studies indicated some biological responses to some plant/scenario combinations. A number of significant breathing pattern changes were observed; however, significant clinical changes such as specific irritant effects were not readily apparent, and effects tended to be isolated changes in certain respiratory parameters. Some individual exposure scenario components appeared to be more strongly and consistently related to respiratory parameter changes; however, the specific scenario investigated remained a better predictor of response than individual components of that scenario. Bronchoalveolar lavage indicated some changes in cellularity of BAL fluid in response to the POS and PONS scenarios; these responses were considered toxicologically mild in magnitude. No changes in blood cytology were observed at any plant or scenario. Lung oxidative stress was increased with the POS scenario at one plant, and cardiac oxidative stress was increased with the PONS scenario also at one plant, suggesting limited oxidative stress in response to power plant emissions with added atmospheric constituents. There were some mild histological findings in lung tissue in response to the P and PONS scenarios. Finally, the MI model experiments indicated that premature ventricular beat frequency was increased at the plant studied, while no changes in heart rate, HRV, or electrocardiographic intervals were observed. Overall, the

  13. Field determination of optimal dates for the discrimination of invasive wetland plant species using derivative spectral analysis

    USGS Publications Warehouse

    Laba, M.; Tsai, F.; Ogurcak, D.; Smith, S.; Richmond, M.E.

    2005-01-01

    Mapping invasive plant species in aquatic and terrestrial ecosystems helps to understand the causes of their progression, manage some of their negative consequences, and control them. In recent years, a variety of new remote-sensing techniques, like Derivative Spectral Analysis (DSA) of hyperspectral data, have been developed to facilitate this mapping. A number of questions related to these techniques remain to be addressed. This article attempts to answer one of these questions: Is the application of DSA optimal at certain times of the year? Field radiometric data gathered weekly during the summer of 1999 at selected field sites in upstate New York, populated with purple loosestrife (Lythrum salicaria L.), common reed (Phragmites australis (Cav.)) and cattail (Typha L.) are analyzed using DSA to differentiate among plant community types. First, second and higher-order derivatives of the reflectance spectra of nine field plots, varying in plant composition, are calculated and analyzed in detail to identify spectral ranges in which one or more community types have distinguishing features. On the basis of the occurrence and extent of these spectral ranges, experimental observations suggest that a satisfactory differentiation among community types was feasible on 30 August, when plants experienced characteristic phenological changes (transition from flowers to seed heads). Generally, dates in August appear optimal from the point of view of species differentiability and could be selected for image acquisitions. This observation, as well as the methodology adopted in this article, should provide a firm basis for the acquisition of hyperspectral imagery and for mapping the targeted species over a broad range of spatial scales. ?? 2005 American Society for Photogrammetry and Remote Sensing.

  14. Evidence for lateral gene transfer (LGT) in the evolution of eubacteria-derived small GTPases in plant organelles.

    PubMed

    Suwastika, I Nengah; Denawa, Masatsugu; Yomogihara, Saki; Im, Chak Han; Bang, Woo Young; Ohniwa, Ryosuke L; Bahk, Jeong Dong; Takeyasu, Kunio; Shiina, Takashi

    2014-01-01

    The genomes of free-living bacteria frequently exchange genes via lateral gene transfer (LGT), which has played a major role in bacterial evolution. LGT also played a significant role in the acquisition of genes from non-cyanobacterial bacteria to the lineage of "primary" algae and land plants. Small GTPases are widely distributed among prokaryotes and eukaryotes. In this study, we inferred the evolutionary history of organelle-targeted small GTPases in plants. Arabidopsis thaliana contains at least one ortholog in seven subfamilies of OBG-HflX-like and TrmE-Era-EngA-YihA-Septin-like GTPase superfamilies (together referred to as Era-like GTPases). Subcellular localization analysis of all Era-like GTPases in Arabidopsis revealed that all 30 eubacteria-related GTPases are localized to chloroplasts and/or mitochondria, whereas archaea-related DRG and NOG1 are localized to the cytoplasm and nucleus, respectively, suggesting that chloroplast- and mitochondrion-localized GTPases are derived from the ancestral cyanobacterium and ?-proteobacterium, respectively, through endosymbiotic gene transfer (EGT). However, phylogenetic analyses revealed that plant organelle GTPase evolution is rather complex. Among the eubacterium-related GTPases, only four localized to chloroplasts (including one dual targeting GTPase) and two localized to mitochondria were derived from cyanobacteria and ?-proteobacteria, respectively. Three other chloroplast-targeted GTPases were related to ?-proteobacterial proteins, rather than to cyanobacterial GTPases. Furthermore, we found that four other GTPases showed neither cyanobacterial nor ?-proteobacterial affiliation. Instead, these GTPases were closely related to clades from other eubacteria, such as Bacteroides (Era1, EngB-1, and EngB-2) and green non-sulfur bacteria (HflX). This study thus provides novel evidence that LGT significantly contributed to the evolution of organelle-targeted Era-like GTPases in plants. PMID:25566271

  15. Characterization of Plant-derived Dissolved Organic Matter by Multiple Spectroscopic Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) derived from fresh or early-stage decomposing soil amendment materials may play an important role in the process of organic matter accumulation. In this study, eight DOM samples from alfalfa, corn, crimson clover, hairy vetch, lupin, soybean, wheat and dairy manure wer...

  16. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily fluctuations in water content changes, with both root water uptake and root water excretion. The magnitude of the water content change was in the same order for all treatments, thus suggesting compensatory uptake. References Bakker G, Van der Ploeg MJ, de Rooij GH, Hoogendam CW, Gooren HPA, Huiskes C, Koopal LK and Kruidhof H. New polymer tensiometers: Measuring matric pressures down to the wilting point. Vadose Zone J. 6: 196-202, 2007. Blackman PG and Davies WJ. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39-48, 1985. Davies WJ and Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76, 1991. Gollan T, Passioura JB and Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leafs. Aust. J. Plant Physiol. 13: 459-464, 1986. Gowing DJG, Davies WJ and Jones HG. A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh. J. Exp. Bot. 41: 1535-1540, 1990. Grace J. Environmental controls of gas exchange in tropical rain forests. In: Press, M.C, J.D. Scholes and M.G. Barker (ed.). Physiological plant ecology: the 39th Symposium of the British Ecological Society. Blackwell Science, United Kingdom, 1999. Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A. A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology 184: 56- 70, 2014. Mansfield TA and De Silva DLR. Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves. Physiol. Chem. Phys. & Med. 26: 89-99, 1994. Sadras VO and Milroy SP. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crops Res. 47: 253-266, 1996. Schröder N, Lazarovitch N, Vanderborcht J, Vereecken H, Javaux M. Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant Soil 2013, doi: 10.1007/s11104-013-1990-8 Van der Ploeg MJ, Gooren HPA, Bakker G and de Rooij GH.

  17. Cancer prevention and treatment using combination therapy with plant- and animal-derived compounds.

    PubMed

    Uzoigwe, Jacinta; Sauter, Edward R

    2012-11-01

    Compounds naturally occurring in plants and animals play an essential role in the prevention and treatment of various cancers. There are more than 100 plant- and animal-based natural compounds currently in clinical use. Similar to synthetic compounds, these natural compounds are associated with dose-related toxicity that limits efficacy. Scientists have investigated combination therapy with compounds that have different toxicities in order to optimize efficacy. These combination therapies may work additively or synergistically, there may be no effect or they may promote tumor formation. Combination therapy with agents that have similar mechanisms of action may increase toxicity. In this article, combination therapies that have been investigated, their rationale, mechanism of action and findings are reviewed. When the data warrant it, combined (pharmacologic and natural; two or more natural) interventions that appear to increase efficacy (compared with monotherapy) while minimizing toxicity have been highlighted. PMID:23234327

  18. Gravity perception and asymmetric growth in plants - A model derived from the grass pulvinus

    NASA Technical Reports Server (NTRS)

    Dayanandan, P.; Franklin, C. I.; Kaufman, P. B.

    1982-01-01

    It is pointed out that gravitropic responses in plants involve asymmetric growth. On the basis of the geometry of growth response in grass leaf sheath pulvinus, a general model is proposed for gravitropism in multicellular plant organs. The negative gravitropic response of a pulvinus is a result of cell elongation involving all but the uppermost region of a horizontally placed organ. Whereas the uppermost region does not grow, the lowermost region elongates maximally. The regions between elongate to intermediate extents. An expression is given relating the angle of curvature of the organ to the diameter and initial and final lengths of the organ. It is shown that the response of the individual cells can be expressed as inherent sensitivity to gravitational stimulus according to a particular equation.

  19. Steroidogenesis in plants - Biosynthesis and conversions of progesterone and other pregnane derivatives.

    PubMed

    Lindemann, Peter

    2015-11-01

    In plants androstanes, estranes, pregnanes and corticoids have been described. Sometimes 17?-estradiol, androsterone, testosterone or progesterone were summarized as sex hormones. These steroids influence plant development: cell divisions, root and shoot growth, embryo growth, flowering, pollen tube growth and callus proliferation. First reports on the effect of applicated substances and of their endogenous occurrence date from the early twenties of the last century. This caused later on doubts on the identity of the compounds. Best investigated is the effect of progesterone. Main steps of the progesterone biosynthetic pathway have been analyzed in Digitalis. Cholesterol-side-chain-cleavage, pregnenolone and progesterone formation as well as the stereospecific reduction of progesterone are described and the corresponding enzymes are presented. Biosynthesis of androstanes, estranes and corticoids is discussed. Possible progesterone receptors and physiological reactions on progesterone application are reviewed. PMID:26282543

  20. Plant Regeneration and Somatic Embryogenesis from Immature Embryos Derived through Interspecific Hybridization among Different Carica Species

    PubMed Central

    Azad, Md. Abul Kalam; Rabbani, Md. Golam; Amin, Latifah

    2012-01-01

    Plant regeneration and somatic embryogenesis through interspecific hybridization among different Carica species were studied for the development of a papaya ringspot virus-resistant variety. The maximum fruit sets were recorded from the cross of the native variety C. papaya cv. Shahi with the wild species C. cauliflora. The highest hybrid embryos were recorded at 90 days after pollination and the embryos were aborted at 150 days after pollination. The immature hybrid embryos were used for plant regeneration and somatic embryogenesis. The 90-day-old hybrid embryos from the cross of C. papaya cv. Shahi × C. cauliflora showed the highest percentage of germination, as well as plant regeneration on growth regulators free culture medium after 7 days pre-incubation on half-strength MS medium supplemented with 0.2 mg/L BAP, 0.5 mg/L NAA and 60 g/L sucrose. The 90-day-old hybrid embryos from the cross of C. papaya cv. Shahi × C. cauliflora produced maximum callus, as well as somatic embryos when cultured on half-strength MS medium containing 5 mg/L 2,4-D, 100 mg/L glutamine, 100 mg/L casein hydrolysate and 60 g/L sucrose. The somatic embryos were transferred into half-strength MS medium containing 0.5 mg/L BAP and 0.2 mg/L NAA and 60 g/L sucrose for maturation. The highest number of regenerated plants per hybrid embryo (10.33) was recorded from the cross of C. papaya cv. Shahi × C. cauliflora. Isoenzyme and dendrogram cluster analysis using UPGMA of the regenerated F1 plantlets confirmed the presence of the hybrid plantlets. PMID:23235330

  1. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers.

    PubMed

    de Saint-Jean, Maud; Delfosse, Vanessa; Douguet, Dominique; Chicanne, Gaëtan; Payrastre, Bernard; Bourguet, William; Antonny, Bruno; Drin, Guillaume

    2011-12-12

    Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Osh4p-PI(4)P complex and reveal how Osh4p selectively substitutes PI(4)P for sterol. Last, we show that Osh4p quickly exchanges DHE for PI(4)P and, thereby, can transport these two lipids between membranes along opposite routes. These results suggest a model in which Osh4p transports sterol from the ER to late compartments pinpointed by PI(4)P and, in turn, transports PI(4)P backward. Coupled to PI(4)P metabolism, this transport cycle would create sterol gradients. Because the residues that recognize PI(4)P are conserved in Osh4p homologues, other Osh/Orp are potential sterol/phosphoinositol phosphate exchangers. PMID:22162133

  2. Colimitation of a freshwater herbivore by sterols and polyunsaturated fatty acids.

    PubMed

    Martin-Creuzburg, Dominik; Sperfeld, Erik; Wacker, Alexander

    2009-05-22

    Empirical data providing evidence for a colimitation of an herbivore by two or more essential nutrients are scarce, particularly in regard to biochemical resources. Here, a graphical model is presented, which describes the growth of an herbivore in a system with two potentially limiting resources. To verify this model, life-history experiments were conducted with the herbivore Daphnia magna feeding on the picocyanobacterium Synechococcus elongatus, which was supplemented with increasing amounts of cholesterol either in the presence or the absence of saturating amounts of eicosapentaenoic acid (EPA). For comparison, D. magna was raised on diets containing different proportions of S. elongatus and the cholesterol- and EPA-rich eukaryotic alga Nannochloropsis limnetica. Somatic and population growth of D. magna on a sterol- and EPA-deficient diet was initially constrained by the absence of sterols. With increased sterol availability, a colimitation by EPA became apparent and when the sterol requirements were met, the growth-limiting factor was shifted from a limitation by sterols to a limitation by EPA. These data imply that herbivores are frequently limited by two or more essential nutrients simultaneously. Hence, the concept of colimitation has to be incorporated into models assessing nutrient-limited growth kinetics of herbivores to accurately predict demographic changes and population dynamics. PMID:19324803

  3. A Novel Sterol Desaturase-Like Protein Promoting Dealkylation of Phytosterols in Tetrahymena thermophila?

    PubMed Central

    Tomazic, Mariela L.; Najle, Sebastián R.; Nusblat, Alejandro D.; Uttaro, Antonio D.; Nudel, Clara B.

    2011-01-01

    The gene TTHERM_00438800 (DES24) from the ciliate Tetrahymena thermophila encodes a protein with three conserved histidine clusters, typical of the fatty acid hydroxylase superfamily. Despite its high similarity to sterol desaturase-like enzymes, the phylogenetic analysis groups Des24p in a separate cluster more related to bacterial than to eukaryotic proteins, suggesting a possible horizontal gene transfer event. A somatic knockout of DES24 revealed that the gene encodes a protein, Des24p, which is involved in the dealkylation of phytosterols. Knocked-out mutants were unable to eliminate the C-24 ethyl group from C29 sterols, whereas the ability to introduce other modifications, such as desaturations at positions C-5(6), C-7(8), and C-22(23), were not altered. Although C-24 dealkylations have been described in other organisms, such as insects, neither the enzymes nor the corresponding genes have been identified to date. Therefore, this is the first identification of a gene involved in sterol dealkylation. Moreover, the knockout mutant and wild-type strain differed significantly in growth and morphology only when cultivated with C29 sterols; under this culture condition, a change from the typical pear-like shape to a round shape and an alteration in the regulation of tetrahymanol biosynthesis were observed. Sterol analysis upon culture with various substrates and inhibitors indicate that the removal of the C-24 ethyl group in Tetrahymena may proceed by a mechanism different from the one currently known. PMID:21257793

  4. Incompatibility between plant-derived defensive chemistry and immune response of two sphingid herbivores.

    PubMed

    Lampert, Evan C; Bowers, M Deane

    2015-01-01

    Herbivorous insects use several different defenses against predators and parasites, and tradeoffs among defensive traits may occur if these traits are energetically demanding. Chemical defense and immune response potentially can interact, and both can be influenced by host plant chemistry. Two closely related caterpillars in the lepidopteran family Sphingidae are both attacked by the same specialist endoparasitoid species but have mostly non-overlapping host plant ranges that differ in secondary chemistry. Ceratomia catalpae is a specialist on Catalpa and also will feed on Chilopsis, which both produce iridoid glycosides. Ceratomia undulosa consumes members of the Oleaceae, which produce seco-iridoid glycosides. Immune response of the two species on a typical host plant species (Catalpa bignonioides for C. catalpa; Fraxinus americana for C. undulosa) was compared using a melanization assay, and did not differ. In a second experiment, the iridoid glycoside catalpol was added to the diets of both insects, and growth rate, mass, chemical defense, and immune response were evaluated. Increased dietary catalpol weakened the immune response of C. undulosa and altered the development rate of C. catalpae by prolonging the third instar and accelerating the fourth instar. Catalpol sequestration was negatively correlated with immune response of C. catalpae, while C. undulosa was unable to sequester catalpol. These results show that immune response can be negatively influenced by increasing concentrations of sequestered defensive compounds. PMID:25516226

  5. Highlight on the studies of anticancer drugs derived from plants in China.

    PubMed

    Han, R

    1994-01-01

    Recent progress on the study of anticancer drugs originating from plants in China is reviewed in this paper. Guided by the experience of traditional Chinese medicine, several new drugs have been found. Indirubin from Indigofera tinctoria is useful for the treatment of chronic myelocytic leukemia. Irisquinone from Iris latea pallasii and 10-hydroxy camptothecin from Camptotheca accuminata have exhibited definite activity on rodent tumors. Recent studies indicate that ginsenoside Rh2 is an inducer of cell differentiation in melanoma B-16 cells in vitro. Pharmacological studies have demonstrated that curcumin from Curcuma longa is an antimutagen as well as an antipromotor for cancer. Daidzein and acetyl boswellic acid have been shown to be effective inducers of cell differentiation in HL-60 cells. Guided by the chemotaxonomic principle of plants, harringtonine and homoharringtonine isolated from Cephalotaxus hainanesis have exhibited significant antileukemia activity and are widely used in clinics in China. Taxol from Taxus chinensis has been shown to be an important new anticancer drug with unique chemical structure and mechanism of action. The continuous search for new anticancer drugs from plants will be a fruitful frontier in cancer treatment and chemoprevention. PMID:8142920

  6. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger

    PubMed Central

    van Munster, Jolanda M.; Daly, Paul; Delmas, Stéphane; Pullan, Steven T.; Blythe, Martin J.; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C.M.; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B.

    2014-01-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6 h of exposure to wheat straw was very different from the response at 24 h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24 h of exposure to wheat straw, were also induced after 6 h exposure. Importantly, over a third of the genes induced after 6 h of exposure to wheat straw were also induced during 6 h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. PMID:24792495

  7. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.

    PubMed

    van Munster, Jolanda M; Daly, Paul; Delmas, Stéphane; Pullan, Steven T; Blythe, Martin J; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C M; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B

    2014-11-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. PMID:24792495

  8. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2004-12-02

    This report documents progress made on the subject project during the period of March 1, 2004 through August 31, 2004. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the analysis and interpretation of the field data collected at the first power plant (henceforth referred to as Plant 0, and located in the Upper Midwest), followed by the performance and analysis of similar field experiments at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. Significant progress was made on the Project during this reporting period, with field work being initiated at Plant 0. Initial testing of the stack sampling system and reaction apparatus revealed that primary particle concentrations were lower than expected in the emissions entering the mobile chemical laboratory. Initial animal exposures to primary emissions were carried out (Scenario 1) to ensure successful implementation of all study methodologies and toxicological assessments. Results indicated no significant toxicological effects in response to primary emissions exposures. Exposures were then carried out to diluted, oxidized, neutralized emissions with the addition of secondary organic aerosol (Scenario 5), both during the day and also at night when primary particle concentrations in the sampled stack emissions tended to be slightly higher. Exposure concentrations were about 249 {micro}g/m{sup 3} PM, of which 87 {micro}g/m{sup 3} was sulfate and approximately 110 {micro}g/m{sup 3} was secondary organic material ({approx}44%). Results indicated subtle differences in breathing pattern between exposed and control (sham) animals, but no differences in other endpoints (in vivo chemiluminescence, blood cytology, bronchoalveolar lavage fluid analysis). It was suspected that primary particle losses may have been occurring in the venturi aspirator/orifice sampler; therefore, the stack sampling system was redesigned. The modified system resulted in no substantial increase in particle concentration in the emissions, leading us to conclude that the electrostatic precipitator at the power plant has high efficiency, and that the sampled emissions are representative of those exiting the stack into the atmosphere. This is important, since the objective of the Project is to carry out exposures to realistic coal combustion-derived secondary PM arising from power plants. During the next reporting period, we will document and describe the remainder of the fieldwork at Plant 0, which we expect to be complete by mid-November 2004. This report will include detailed Phase I toxicological findings for all scenarios run, and Phase II toxicological findings for one selected scenario. Depending upon the outcome of the ongoing fieldwork at Plant 0 (i.e. the biological effects observed), not all the proposed scenarios may be evaluated. The next report is also expected to include preliminary field data for Plant 1, located in the Southeast.

  9. Plant sterols and host plant suitability for generalist and specialist caterpillars Xiangfeng Jing a,

    E-print Network

    Eubanks, Micky

    ; Grieneisen, 1994). First they provide a structural role in cellular membrane, stabilizing the phospholipid bilayer. Second, they are essential precursors for several physiologically ac- tive metabolites, i

  10. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment.

    PubMed

    Pistollato, Francesca; Giampieri, Francesca; Battino, Maurizio

    2015-01-01

    In the last decades cancer has been considered as an epigenetic dysfunction, given the profound role of diet and lifestyle in cancer prevention and the determination of cancer risk. A plethora of recent publications have addressed the specific role of several environmental factors, such as nutritional habits, behavior, stress and toxins in the regulation of the physiological and cancer epigenome. In particular, plant-derived bioactive nutrients have been seen to positively affect normal cell growth, proliferation and differentiation and also to revert cancer related epigenetic dysfunctions, reducing tumorigenesis, preventing metastasis and/or increasing chemo and radiotherapy efficacy. Moreover, virtually all cancer types are characterized by the presence of cancer stem cell (CSC) subpopulations, residing in specific hypoxic and acidic microenvironments, or niches, and these cells are currently considered responsible for tumor resistance to therapy and tumor relapse. Modern anti-cancer strategies should be designed to selectively target CSCs and modulate the hypoxic and acidic tumor microenvironment, and, to this end, natural bioactive components seem to play a role. This review aims to discuss the effects elicited by plant-derived bioactive nutrients in the regulation of CSC self-renewal, cancer metabolism and tumor microenvironment. PMID:25445513

  11. Sterol Carrier Protein-2: Binding Protein for Endocannabinoids

    PubMed Central

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D.; Sem, Daniel S.; Cunningham, Christopher W.

    2015-01-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ?G values of ?3.6 and ?4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (?6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. PMID:24510313

  12. Complexes of Trypanosoma cruzi Sterol 14?-Demethylase (CYP51) with Two Pyridine-based Drug Candidates for Chagas Disease

    PubMed Central

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Alexander, Paul W.; Chaplin, Jason H.; Keenan, Martine; Charman, Susan A.; Perez, Catherine J.; Waterman, Michael R.; Chatelain, Eric; Lepesheva, Galina I.

    2013-01-01

    Chagas disease, caused by the eukaryotic (protozoan) parasite Trypanosoma cruzi, is an alarming emerging global health problem with no clinical drugs available to treat the chronic stage. Azole inhibitors of sterol 14?-demethylase (CYP51) were proven effective against Chagas, and antifungal drugs posaconazole and ravuconazole have entered clinical trials in Spain, Bolivia, and Argentina. Here we present the x-ray structures of T. cruzi CYP51 in complexes with two alternative drug candidates, pyridine derivatives (S)-(4-chlorophenyl)-1-(4-(4-(trifluoromethyl)phenyl)-piperazin-1-yl)-2-(pyridin-3-yl)ethanone (UDO; Protein Data Bank code 3ZG2) and N-[4-(trifluoromethyl)phenyl]-N-[1-[5-(trifluoromethyl)-2-pyridyl]-4-piperi-dyl]pyridin-3-amine (UDD; Protein Data Bank code 3ZG3). These compounds have been developed by the Drugs for Neglected Diseases initiative (DNDi) and are highly promising antichagasic agents in both cellular and in vivo experiments. The binding parameters and inhibitory effects on sterol 14?-demethylase activity in reconstituted enzyme reactions confirmed UDO and UDD as potent and selective T. cruzi CYP51 inhibitors. Comparative analysis of the pyridine- and azole-bound CYP51 structures uncovered the features that make UDO and UDD T. cruzi CYP51-specific. The structures suggest that although a precise fit between the shape of the inhibitor molecules and T. cruzi CYP51 active site topology underlies their high inhibitory potency, a longer coordination bond between the catalytic heme iron and the pyridine nitrogen implies a weaker influence of pyridines on the iron reduction potential, which may be the basis for the observed selectivity of these compounds toward the target enzyme versus other cytochrome P450s, including human drug-metabolizing P450s. These findings may pave the way for the development of novel CYP51-targeted drugs with optimized metabolic properties that are very much needed for the treatment of human infections caused by eukaryotic microbial pathogens. PMID:24047900

  13. Aged particles derived from emissions of coal-fired power plants: The TERESA field results

    PubMed Central

    Kang, Choong-Min; Gupta, Tarun; Ruiz, Pablo A.; Wolfson, Jack M.; Ferguson, Stephen T.; Lawrence, Joy E.; Rohr, Annette C.; Godleski, John; Koutrakis, Petros

    2013-01-01

    The Toxicological Evaluation of Realistic Emissions Source Aerosols (TERESA) study was carried out at three US coal-fired power plants to investigate the potential toxicological effects of primary and photochemically aged (secondary) particles using in situ stack emissions. The exposure system designed successfully simulated chemical reactions that power plant emissions undergo in a plume during transport from the stack to receptor areas (e.g., urban areas). Test atmospheres developed for toxicological experiments included scenarios to simulate a sequence of atmospheric reactions that can occur in a plume: (1) primary emissions only; (2) H2SO4 aerosol from oxidation of SO2; (3) H2SO4 aerosol neutralized by gas-phase NH3; (4) neutralized H2SO4 with secondary organic aerosol (SOA) formed by the reaction of ?-pinene with O3; and (5) three control scenarios excluding primary particles. The aged particle mass concentrations varied significantly from 43.8 to 257.1 ?g/m3 with respect to scenario and power plant. The highest was found when oxidized aerosols were neutralized by gas-phase NH3 with added SOA. The mass concentration depended primarily on the ratio of SO2 to NOx (particularly NO) emissions, which was determined mainly by coal composition and emissions controls. Particulate sulfate (H2SO4 + neutralized sulfate) and organic carbon (OC) were major components of the aged particles with added SOA, whereas trace elements were present at very low concentrations. Physical and chemical properties of aged particles appear to be influenced by coal type, emissions controls and the particular atmospheric scenarios employed. PMID:20462390

  14. High-Throughput Screening to Identify Plant Derived Human LDH-A Inhibitors

    PubMed Central

    Deiab, S.; Mazzio, E.; Messeha, S.; Mack, N.; Soliman, K. F. A.

    2014-01-01

    Aims Lactate dehydrogenase (LDH)-A is highly expressed in diverse human malignant tumors, parallel to aggressive metastatic disease, resistance to radiation/chemotherapy and clinically poor outcome. Although this enzyme constitutes a plausible target in treatment of advanced cancer, there are few known LDH-A inhibitors. Study Design In this work, we utilized a high-throughput enzyme micro-array format to screen and evaluate > 900 commonly used medicinal plant extracts (0.00001-.5 mg/ml) for capacity to inhibit activity of recombinant full length human LDHA; EC .1.1.1.27. Methodology The protein sequence of purified enzyme was confirmed using 1D gel electrophoresis- MALDI-TOF-MS/MS, enzyme activity was validated by oxidation of NADH (500?M) and kinetic inhibition established in the presence of a known inhibitor (Oxalic Acid). Results Of the natural extracts tested, the lowest IC50s [<0.001 mg/ml] were obtained by: Chinese Gallnut (Melaphis chinensis gallnut), Bladderwrack (Fucus vesiculosus), Kelp (Laminaria Japonica) and Babul (Acacia Arabica). Forty-six additional herbs contained significant LDH-A inhibitory properties with IC50s [<0.07 mg/ml], some of which have common names of Arjun, Pipsissewa, Cinnamon, Pink Rose Buds/Petals, Wintergreen, Cat’s Claw, Witch Hazel Root and Rhodiola Root. Conclusion These findings reflect relative potency by rank of commonly used herbs and plants that contain human LDH-A inhibitory properties. Future research will be required to isolate chemical constituents within these plants responsible for LDH-A inhibition and investigate potential therapeutic application. PMID:24478981

  15. Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells.

    PubMed

    Sarkar, Shayan; Jain, Sumeet; Rai, Vineeta; Sahoo, Dipak K; Raha, Sumita; Suklabaidya, Sujit; Senapati, Shantibhusan; Rangnekar, Vivek M; Maiti, Indu B; Dey, Nrisingha

    2015-01-01

    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5' AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-?B suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era. PMID:26500666

  16. Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells

    PubMed Central

    Sarkar, Shayan; Jain, Sumeet; Rai, Vineeta; Sahoo, Dipak K.; Raha, Sumita; Suklabaidya, Sujit; Senapati, Shantibhusan; Rangnekar, Vivek M.; Maiti, Indu B.; Dey, Nrisingha

    2015-01-01

    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5? AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-?B suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era. PMID:26500666

  17. The major cellular sterol regulatory pathway is required for Andes virus infection.

    PubMed

    Petersen, Josiah; Drake, Mary Jane; Bruce, Emily A; Riblett, Amber M; Didigu, Chukwuka A; Wilen, Craig B; Malani, Nirav; Male, Frances; Lee, Fang-Hua; Bushman, Frederic D; Cherry, Sara; Doms, Robert W; Bates, Paul; Briley, Kenneth

    2014-02-01

    The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection. PMID:24516383

  18. Sterol patterns of cultured zooxanthellae isolated from marine invertebrates: Synthesis of gorgosterol and 23-desmethylgorgosterol by aposymbiotic algae

    PubMed Central

    Withers, Nancy W.; Kokke, W. C. M. C.; Fenical, William; Djerassi, Carl

    1982-01-01

    Quantitative sterol compositions of cultured zooxanthellae isolated from various Pacific and Atlantic invertebrate hosts: Zoanthus sociatus (a zoanthid), Oculina diffusa (a scleractian coral), Tridacna gigas (a giant clam), Melibe pilosa (a nudibranch), and Aiptasia pulchella (a sea anemone) are reported. The results clearly demonstrate large differences in sterol patterns of zooxanthellae and that there is no obvious relationship between the taxonomic affiliation of the host and the sterol pattern of its isolated symbiont. The sterols of the zooxanthellae of O. diffusa (Cnidaria) and T. gigas (Mollusca) are qualitatively equivalent. Based on the structures of the two major free sterols synthesized by each alga, the zooxanthellae from different hosts were separated into three distinct groups. It was also found that an aposymbiotic alga can synthesize the unique marine sterols gorgosterol and 23-desmethylgorgosterol. Most of the sterols were identified by using mass spectroscopy and 360-MHz proton magnetic resonance. Spectroscopic data are reported for four novel sterols—(23,24R)-dimethyl-5?-cholest-(22E)-en-3?-o l, 23-methyl-5?-cholest-22E-en-3?-ol, cholesta-5,14-dien-3?-ol, and 4?-methyl-5?-cholesta-8(14)-24-dien-3?-ol. PMID:16593195

  19. Sterol patterns of cultured zooxanthellae isolated from marine invertebrates: Synthesis of gorgosterol and 23-desmethylgorgosterol by aposymbiotic algae.

    PubMed

    Withers, N W; Kokke, W C; Fenical, W; Djerassi, C

    1982-06-01

    QUANTITATIVE STEROL COMPOSITIONS OF CULTURED ZOOXANTHELLAE ISOLATED FROM VARIOUS PACIFIC AND ATLANTIC INVERTEBRATE HOSTS: Zoanthus sociatus (a zoanthid), Oculina diffusa (a scleractian coral), Tridacna gigas (a giant clam), Melibe pilosa (a nudibranch), and Aiptasia pulchella (a sea anemone) are reported. The results clearly demonstrate large differences in sterol patterns of zooxanthellae and that there is no obvious relationship between the taxonomic affiliation of the host and the sterol pattern of its isolated symbiont. The sterols of the zooxanthellae of O. diffusa (Cnidaria) and T. gigas (Mollusca) are qualitatively equivalent. Based on the structures of the two major free sterols synthesized by each alga, the zooxanthellae from different hosts were separated into three distinct groups. It was also found that an aposymbiotic alga can synthesize the unique marine sterols gorgosterol and 23-desmethylgorgosterol. Most of the sterols were identified by using mass spectroscopy and 360-MHz proton magnetic resonance. Spectroscopic data are reported for four novel sterols-(23,24R)-dimethyl-5alpha-cholest-(22E)-en-3beta-o l, 23-methyl-5alpha-cholest-22E-en-3beta-ol, cholesta-5,14-dien-3beta-ol, and 4alpha-methyl-5alpha-cholesta-8(14)-24-dien-3beta-ol. PMID:16593195

  20. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity.

    PubMed

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-01

    Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance. PMID:22658869

  1. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.

    PubMed

    Kolbusz, Magdalena Anna; Di Falco, Marcos; Ishmael, Nadeeza; Marqueteau, Sandrine; Moisan, Marie-Claude; Baptista, Cassio da Silva; Powlowski, Justin; Tsang, Adrian

    2014-11-01

    Myceliophthora thermophila is a thermophilic fungus whose genome encodes a wide range of carbohydrate-active enzymes (CAZymes) involved in plant biomass degradation. Such enzymes have potential applications in turning different kinds of lignocellulosic feedstock into sugar precursors for biofuels and chemicals. The present study examined and compared the transcriptomes and exoproteomes of M. thermophila during cultivation on different types of complex biomass to gain insight into how its secreted enzymatic machinery varies with different sources of lignocellulose. In the transcriptome analysis three monocot (barley, oat, triticale) and three dicot (alfalfa, canola, flax) plants were used whereas in the proteome analysis additional substrates, i.e. wood and corn stover pulps, were included. A core set of 59 genes encoding CAZymes was up-regulated in response to both monocot and dicot straws, including nine polysaccharide monooxygenases and GH10, but not GH11, xylanases. Genes encoding additional xylanolytic enzymes were up-regulated during growth on monocot straws, while genes encoding additional pectinolytic enzymes were up-regulated in response to dicot biomass. Exoproteome analysis was generally consistent with the conclusions drawn from transcriptome analysis, but additional CAZymes that accumulated to high levels were identified. Despite the wide variety of biomass sources tested some CAZy family members were not expressed under any condition. The results of this study provide a comprehensive view from both transcriptome and exoproteome levels, of how M. thermophila responds to a wide range of biomass sources using its genomic resources. PMID:24881579

  2. Black Nitrogen or Plant-Derived Organic Nitrogen - which Form is More Efficiently Sequestered in Soils?

    NASA Astrophysics Data System (ADS)

    López-Martín, María; Velasco-Molina, Marta; Knicker, Heike

    2014-05-01

    Input of charcoal after forest fires can lead to considerable changes of the quality and quantity of organic matter in soils (SOM). This affects not only its organic C pool but also shifts its organic N composition from peptideous to N-heterocyclic structures (Knicker et al., 1996). In the present study we sought to understand how this alteration is affecting the N availability in fire affected soils. Therefore, we performed a medium-term pot experiment in which grass material (Lolium perenne) was grown on soil material (Cambisols) of a fire-affected and a fire-unaffected forest. The soils were topped with mixtures of ground fresh grass residues and KNO3 or charred grass material (pyrogenic organic matter; PyOM) with KNO3. Here, either the organic N or the inorganic N was isotopically enriched with 15N. Following the 15N concentration in the soil matrix and the growing plants as a function of incubation time (up to 16 months) by isotopic ratio mass spectrometry allowed us to indentify which N-source is most efficiently stabilized and how PyOM is affecting this process. Preliminary data indicated that only after the germination of the seeds, the concentration of the added inorganic 15N in the soil decreased considerably most likely due to its uptake by the growing plants but also due to N-losses by leaching and volatilization. Additional addition of plant residues or PyOM had no major effect on this behavior. Covering the soil with 15N-grass residues which simulates a litter layer led to a slow increase of the 15N concentration in the mineral soil during the first month. This is best explained by the ongoing incorporation of the litter into the soil matrix. After that a small decrease was observed, showing that the organic N was only slowly mobilized. Addition of 15N-PyOM showed a comparable behavior but with 15N concentration in the soil corresponding to twice of those of the pots amended with 15N-grass residues. After that the 15N concentrations decrease quickly and approached those of the pots with fresh grass litter supporting the mobilization of black nitrogen and its uptake by plants. Our results point to the suggestion that N in PyOM and humified SOM have comparable biochemical stability. In order to test this hypothesis, a further experiment was set up mixtures of soil and humified 15N grass residues or aged 15N grass char to which fresh PyOM or fresh grass residues, respectively, were added. In addition solid-state 15N NMR spectroscopy was applied to disclose the nature of the sequestered N. REFERENCES Knicker, H., Almendros, G., González-Vila, F.J., Martín, F., Lüdemann, H.-D., 1996. 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biology and Biochemistry, 28, 1053-1060.

  3. An acidified thermostabilizing mini-peptide derived from the carboxyl extension of the larger isoform of the plant Rubisco activase.

    PubMed

    Zhang, Mengru; Li, Xujuan; Yang, Yumei; Luo, Zhu; Liu, Chang; Gong, Ming; Zou, Zhurong

    2015-10-20

    Thermostable fusion peptide partners are valuable in engineering thermostability in proteins. We evaluated the Arabidopsis counterpart (AtRAce) and an acidified derivative (mRAce) of the conserved carboxyl extension (RAce) of plant Rubisco activase (RCA) for their thermostabilizing properties in Escherichia coli and Saccharomyces cerevisiae using a protein fusion strategy. We used AtRAce and mRAce as fusion tails for the thermolabile protein RCA2 from Arabidopsis thaliana and Nicotiana tabacum. The homologous fusion of AtRAce with Arabidopsis RCA2 and the heterologous fusion of AtRAce with tobacco RCA2 increased the thermostability of both proteins. The acidified derivative mRAce conferred greater thermostability upon both proteins as compared with AtRAce. Moreover, mRAce enhanced the thermostability of other two thermolabile proteins from Jatropha curcas: the cytosolic ascorbate peroxidase 1 (JcAPX1) and the TATA-box binding protein isoform 1 (JcTBP1). We further report - for the first time - that JcTBP1 mediates heat tolerance in vivo in yeast. Thus, our study identifies a C-terminal acidic mini-peptide - the acidified derivative mRAce - with potential uses in improving the thermostability of heat-labile proteins and their associated heat tolerance in host organisms. PMID:26321073

  4. Matrix-derived combination effect and risk assessment for estragole from basil-containing plant food supplements (PFS).

    PubMed

    van den Berg, Suzanne J P L; Klaus, Verena; Alhusainy, Wasma; Rietjens, Ivonne M C M

    2013-12-01

    Basil-containing plant food supplements (PFS) can contain estragole which can be metabolised into a genotoxic and carcinogenic 1'-sulfoxymetabolite. This study describes the inhibition of sulfotransferase (SULT)-mediated bioactivation of estragole by compounds present in basil-containing PFS. Results reveal that PFS consisting of powdered basil material contain other compounds with considerable in vitro SULT-inhibiting activity, whereas the presence of such compounds in PFS consisting of basil essential oil was limited. The inhibitor in powdered basil PFS was identified as nevadensin. Physiologically based kinetic (PBK) modeling was performed to elucidate if the observed inhibitory effects can occur in vivo. Subsequently, risk assessment was performed using the Margin of Exposure (MOE) approach. Results suggest that the consequences of the in vivo matrix-derived combination effect are significant when estragole would be tested in rodent bioassays with nevadensin at ratios detected in PFS, thereby increasing MOE values. However, matrix-derived combination effects may be limited at lower dose levels, indicating that the importance of matrix-derived combination effects for risk assessment of individual compounds should be done on a case-by-case basis considering dose-dependent effects. Furthermore, this study illustrates how PBK modeling can be used in risk assessment of PFS, contributing to further reduction in the use of experimental animals. PMID:23959103

  5. Sterol-Dependent Nuclear Import of ORP1S Promotes LXR Regulated Trans-Activation of APOE

    PubMed Central

    Lee, Sungsoo; Wang, Ping-Yuan; Jeong, Yangsik; Mangelsdorf, David J.; Anderson, Richard G. W.; Michaely, Peter

    2013-01-01

    Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements. PMID:22728266

  6. Priming in permafrost soils: High vulnerability of arctic soil organic carbon to increased input of plant-derived compounds

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Gentsch, Norman; Capek, Petr; Diakova, Katerina; Alves, Ricardo; Barta, Jiri; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Knoltsch, Anna; Mikutta, Robert; Santruckova, Hana; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Watzka, Margarete; Richter, Andreas

    2015-04-01

    Arctic ecosystems are warming rapidly, resulting in a stimulation of both plant primary production and soil organic matter (SOM) decomposition. In addition to this direct stimulation, SOM decomposition might also be indirectly affected by rising temperatures mediated by the increase in plant productivity. Higher root litter production for instance might decrease SOM decomposition by providing soil microorganisms with alternative C and N sources ("negative priming"), or might increase SOM decomposition by facilitating microbial growth and enzyme production ("positive priming"). With about 1,700 Pg of organic C stored in arctic soils, and 88% of that in horizons deeper than 30 cm, it is crucial to understand the controls on SOM decomposition in different horizons of arctic permafrost soils, and thus the vulnerability of SOM to changes in C and N availability in a future climate. We here report on the vulnerability of SOM in arctic permafrost soils to an increased input of plant-derived organic compounds, and on its variability across soil horizons and sites. We simulated an increased input of plant-derived compounds by amending soil samples with 13C-labelled cellulose or protein, and compared the mineralization of native, unlabelled soil organic C (SOC) to unamended control samples. Our experiment included 119 individual samples of arctic permafrost soils, covering four sites across the Siberian Arctic, and five soil horizons, i.e., organic topsoil, mineral topsoil, mineral subsoil and cryoturbated material (topsoil material buried in the subsoil by freeze-thaw processes) from the active layer, as well as thawed material from the upper permafrost. Our findings suggest that changes in C and N availability in Arctic soils, such as mediated by plants, have a high potential to alter the decomposition of SOM, but also point at fundamental differences between soil horizons. In the organic topsoil, SOC mineralization increased by 51% after addition of protein, but was not affected by cellulose, suggesting predominant N limitation of the microbial decomposer community, and a high vulnerability of SOM to increases in N availability. In contrast, in mineral subsoil and thawed permafrost, SOC mineralization was stimulated by both cellulose and protein (between 23 and 120%), cellulose- and protein-derived C was efficiently incorporated into the microbial biomass, and effects of both cellulose and protein were significantly correlated. These findings suggest predominant C limitation of the microbial decomposer community in deeper, mineral horizons of arctic permafrost soils, and point at a high vulnerability of SOM to increased C availability, e.g., due to higher root litter production. We estimate that on a circum-arctic scale, increases in C and N availability have the potential to stimulate SOC mineralization in the order of several Tg C per day. Together with the direct stimulation of SOC mineralization by rising temperatures, this indirect stimulation can counteract the increased CO2 fixation by plants, and thus reduce the C sink strength of arctic ecosystems or even provoke net ecosystem C losses that might induce a positive feedback to global warming.

  7. Plant-Derived Decapeptide OSIP108 Interferes with Candida albicans Biofilm Formation without Affecting Cell Viability

    PubMed Central

    Delattin, Nicolas; De Brucker, Katrijn; Craik, David J.; Cheneval, Olivier; Fröhlich, Mirjam; Veber, Matija; Girandon, Lenart; Davis, Talya R.; Weeks, Anne E.; Kumamoto, Carol A.; Cos, Paul; Coenye, Tom; De Coninck, Barbara; Thevissen, Karin

    2014-01-01

    We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation. PMID:24566179

  8. A Plant-Derived Recombinant Human Glucocerebrosidase Enzyme—A Preclinical and Phase I Investigation

    PubMed Central

    Aviezer, David; Brill-Almon, Einat; Shaaltiel, Yoseph; Hashmueli, Sharon; Bartfeld, Daniel; Mizrachi, Sarah; Liberman, Yael; Freeman, Arnold; Zimran, Ari; Galun, Eithan

    2009-01-01

    Gaucher disease is a progressive lysosomal storage disorder caused by the deficiency of glucocerebrosidase leading to the dysfunction in multiple organ systems. Intravenous enzyme replacement is the accepted standard of treatment. In the current report, we evaluate the safety and pharmacokinetics of a novel human recombinant glucocerebrosidase enzyme expressed in transformed plant cells (prGCD), administered to primates and human subjects. Short term (28 days) and long term (9 months) repeated injections with a standard dose of 60 Units/kg and a high dose of 300 Units/kg were administered to monkeys (n?=?4/sex/dose). Neither clinical drug-related adverse effects nor neutralizing antibodies were detected in the animals. In a phase I clinical trial, six healthy volunteers were treated by intravenous infusions with escalating single doses of prGCD. Doses of up to 60 Units/kg were administered at weekly intervals. prGCD infusions were very well tolerated. Anti-prGCD antibodies were not detected. The pharmacokinetic profile of the prGCD revealed a prolonged half-life compared to imiglucerase, the commercial enzyme that is manufactured in a costly mammalian cell system. These studies demonstrate the safety and lack of immunogenicity of prGCD. Following these encouraging results, a pivotal phase III clinical trial for prGCD was FDA approved and is currently ongoing. Trial Registration ClinicalTrials.gov NCT00258778 PMID:19277123

  9. Selective determination of mimosine and its dihydroxypyridinyl derivative in plant systems.

    PubMed

    Lalitha, K; Rajendra Kulothungan, S

    2006-10-01

    Our observations on the growth stimulatory nature of mimosine, (beta-(3-hydroxy-4-pyridon-1-yl)-L-alanine), the toxic non-protein plant amino acid, in some model experimental systems, warranted sensitive and selective routine estimations. For the determination of both mimosine and DHP, an indirect spectrophotometric method was developed based on their individual reaction with known excess of DZSAM and by estimating the remaining DZSAM with N-(1-naphthyl)ethylene-diamine (NEDA). The resultant decrease in the secondary coupled product was measured at 540 nm. On equimolar basis, DHP had 40% of the reactivity of mimosine while interference from other relevant compounds was 15-35%. The determination of mimosine and DHP in tissue samples under different physiological conditions was effected after paper chromatographic separation of mimosine and DHP with distinctly differing Rf, from other compounds. The indirect method is superior in terms of absolute selectivity, sensitivity and ease of applicability with linear decreases in absorbance, proportional to increasing concentrations of mimosine from 0.1 to 0.75 microM or DHP from 0.2 to 1.5 microM and with recoveries of 99.2 to 100.5%. PMID:16988910

  10. Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities.

    PubMed

    Suarez, M; Entenza, J M; Doerries, C; Meyer, E; Bourquin, L; Sutherland, J; Marison, I; Moreillon, P; Mermod, N

    2003-01-01

    Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment-friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components of the extract and whether they may be produced in recombinant form are unknown. Here we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Staphylococcus, Streptococcus, and Legionella species. Thus, this polypeptide displays the unprecedented feature of combining water purification and disinfectant properties. Identification of an active principle derived from the seed extracts points to a range of potential for drinking water treatment or skin and mucosal disinfection in clinical settings. PMID:12432576

  11. Structure-function characterization and optimization of a plant-derived antibacterial peptide.

    PubMed

    Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas

    2005-09-01

    Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop. PMID:16127062

  12. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption.

    PubMed

    Weinborn, Valerie; Pizarro, Fernando; Olivares, Manuel; Brito, Alex; Arredondo, Miguel; Flores, Sebastián; Valenzuela, Carolina

    2015-01-01

    The aim of this study is to determine the effect of proteins from cereals and legumes on heme iron (Fe) absorption. The absorption of heme Fe without its native globin was measured. Thirty adult females participated in two experimental studies (15 per study). Study I focused on the effects of cereal proteins (zein, gliadin and glutelin) and study II on the effects of legume proteins (soy, pea and lentil) on heme Fe absorption. When heme was given alone (as a control), study I and II yielded 6.2% and 11.0% heme absorption (p > 0.05). In study I, heme Fe absorption was 7.2%, 7.5% and 5.9% when zein, gliadin and glutelin were added, respectively. From this, it was concluded that cereal proteins did not affect heme Fe absorption. In study II, heme Fe absorption was 7.3%, 8.1% and 9.1% with the addition of soy, pea and lentil proteins, respectively. Only soy proteins decreased heme Fe absorption (p < 0.05). These results suggest that with the exception of soy proteins, which decreased absorption, proteins derived from cereals and legumes do not affect heme Fe absorption. PMID:26529009

  13. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption

    PubMed Central

    Weinborn, Valerie; Pizarro, Fernando; Olivares, Manuel; Brito, Alex; Arredondo, Miguel; Flores, Sebastián; Valenzuela, Carolina

    2015-01-01

    The aim of this study is to determine the effect of proteins from cereals and legumes on heme iron (Fe) absorption. The absorption of heme Fe without its native globin was measured. Thirty adult females participated in two experimental studies (15 per study). Study I focused on the effects of cereal proteins (zein, gliadin and glutelin) and study II on the effects of legume proteins (soy, pea and lentil) on heme Fe absorption. When heme was given alone (as a control), study I and II yielded 6.2% and 11.0% heme absorption (p > 0.05). In study I, heme Fe absorption was 7.2%, 7.5% and 5.9% when zein, gliadin and glutelin were added, respectively. From this, it was concluded that cereal proteins did not affect heme Fe absorption. In study II, heme Fe absorption was 7.3%, 8.1% and 9.1% with the addition of soy, pea and lentil proteins, respectively. Only soy proteins decreased heme Fe absorption (p < 0.05). These results suggest that with the exception of soy proteins, which decreased absorption, proteins derived from cereals and legumes do not affect heme Fe absorption. PMID:26529009

  14. Bidirectional plant canopy reflection models derived from the radiation transfer equation

    NASA Technical Reports Server (NTRS)

    Beeth, D. R.

    1975-01-01

    A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.

  15. Models of Experimentally Derived Competitive Effects Predict Biogeographical Differences in the Abundance of Invasive and Native Plant Species

    PubMed Central

    Xiao, Sa; Ni, Guangyan; Callaway, Ragan M.

    2013-01-01

    Mono-dominance by invasive species provides opportunities to explore determinants of plant distributions and abundance; however, linking mechanistic results from small scale experiments to patterns in nature is difficult. We used experimentally derived competitive effects of an invader in North America, Acroptilon repens, on species with which it co-occurs in its native range of Uzbekistan and on species with which it occurs in its non-native ranges in North America, in individual-based models. We found that competitive effects yielded relative abundances of Acroptilon and other species in models that were qualitatively similar to those observed in the field in the two ranges. In its non-native range, Acroptilon can occur in nearly pure monocultures at local scales, whereas such nearly pure stands of Acroptilon appear to be much less common in its native range. Experimentally derived competitive effects of Acroptilon on other species predicted Acroptilon to be 4–9 times more proportionally abundant than natives in the North American models, but proportionally equal to or less than the abundance of natives in the Eurasian models. Our results suggest a novel way to integrate complex combinations of interactions simultaneously, and that biogeographical differences in the competitive effects of an invader correspond well with biogeographical differences in abundance and impact. PMID:24265701

  16. The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes.

    PubMed

    Takagi, Daisuke; Inoue, Hironori; Odawara, Mizue; Shimakawa, Ginga; Miyake, Chikahiro

    2014-02-01

    Sugar-derived reactive carbonyls (RCs), including methylglyoxal (MG), are aggressive by-products of oxidative stress known to impair the functions of multiple proteins. These advanced glycation end-products accumulate in patients with diabetes mellitus and cause major complications, including arteriosclerosis and cardiac insufficiency. In the glycolytic pathway, the equilibration reactions between dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (GAP) have recently been shown to generate MG as a by-product. Because plants produce vast amounts of sugars and support the same reaction in the Calvin cycle, we hypothesized that MG also accumulates in chloroplasts. Incubating isolated chloroplasts with excess 3-phosphoglycerate (3-PGA) as the GAP precursor drove the equilibration reaction toward MG production. The rate of oxygen (O2) evolution was used as an index of 3-PGA-mediated photosynthesis. The 3-PGA- and time-dependent accumulation of MG in chloroplasts was confirmed by HPLC. In addition, MG production increased with an increase in light intensity. We also observed a positive linear relationship between the rates of MG production and O2 evolution (R = 0.88; P < 0.0001). These data provide evidence that MG is produced by the Calvin cycle and that sugar-derived RC production is inevitable during photosynthesis. Furthermore, we found that MG production is enhanced under high-CO2 conditions in illuminated wheat leaves. PMID:24406631

  17. Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene

    PubMed Central

    Qiu, Mengyi; Sun, Ke; Jin, Jie; Gao, Bo; Yan, Yu; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2014-01-01

    The properties of plant residue-derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at low and high heating treatment temperatures (300 and 450°C) as well as their sorption of dibutyl phthalate (DBP) and phenanthrene (PHE) were investigated in this study. The higher C content of PLABs could explain that CO2-surface area (CO2-SA) of PLABs was remarkably high relative to ANIBs. OC and aromatic C were two key factors influencing the CO2-SA of the biochars. Much higher surface C content of the ANIBs than bulk C likely explained that the ANIBs exhibited higher sorption of DBP and PHE compared to the PLABs. H-bonding should govern the adsorption of DBP by most of the tested biochars and ?-? interaction play an important role in the adsorption of PHE by biochars. High CO2-SA (>200?m2 g?1) demonstrated that abundant nanopores of OC existed within the biochars obtained 450°C (HTBs), which likely result in high and nonlinear sorption of PHE by HTBs. PMID:24924925

  18. Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene

    NASA Astrophysics Data System (ADS)

    Qiu, Mengyi; Sun, Ke; Jin, Jie; Gao, Bo; Yan, Yu; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2014-06-01

    The properties of plant residue-derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at low and high heating treatment temperatures (300 and 450°C) as well as their sorption of dibutyl phthalate (DBP) and phenanthrene (PHE) were investigated in this study. The higher C content of PLABs could explain that CO2-surface area (CO2-SA) of PLABs was remarkably high relative to ANIBs. OC and aromatic C were two key factors influencing the CO2-SA of the biochars. Much higher surface C content of the ANIBs than bulk C likely explained that the ANIBs exhibited higher sorption of DBP and PHE compared to the PLABs. H-bonding should govern the adsorption of DBP by most of the tested biochars and ?-? interaction play an important role in the adsorption of PHE by biochars. High CO2-SA (>200 m2 g-1) demonstrated that abundant nanopores of OC existed within the biochars obtained 450°C (HTBs), which likely result in high and nonlinear sorption of PHE by HTBs.

  19. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant.

    PubMed

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2015-12-30

    In the present study, parabens, p-hydroxybenzoic acid (PHBA) and chlorinated derivatives, were simultaneously determined in wastewater and sludge samples along the whole process in an advanced wastewater treatment plant (WWTP). Nine target compounds were detected in this WWTP, and methylparaben and PHBA were the dominant compounds in these samples. It is noteworthy that octylparaben with longer chain was firstly detected in this work. Mass balance results showed that 91.8% of the initial parabens mass loading was lost mainly due to degradation, while the contribution of sorption and output of primary and excess sludge was much less (7.5%), indicating that biodegradation played a significant role in the removal of parabens during the conventional treatment process. Specifically, parabens were mainly degraded in the anaerobic tank, and PHBA could be effectively removed at high rates after the advanced treatment. However, both biodegradation and adsorption accounted for minor contribution to the removal of chlorinated parabens during conventional treatment process, and they were only scantly removed by conventional treatment (33.9-40.7%) and partially removed by advanced treatment (59.2-82.8%). Risk assessment indicated that parabens and their chlorinated derivatives in second and tertiary effluent are not likely to produce biological effects on aquatic ecosystems. PMID:26151382

  20. Selective delipidation of the plasma membrane by surfactants: Enrichment of sterols and activation of ATPase

    SciTech Connect

    Sandstrom, R.P.; Cleland, R. Univ. of Washington, Seattle )

    1989-08-01

    The influence of plasma membrane lipid components on the activity of the H{sup +}-ATPase has been studied by determining the effect of surfactants on membrane lipids and ATPase activity of oat (Avena sativa L.) root plasma membrane vesicles purified by a two-phase partitioning procedure. Triton X-100, at 25 to 1 (weight/weight) Triton to plasma membrane protein, an amount that causes maximal activation of the ATPase in the ATPase assay, extracted 59% of the membrane protein but did not solubilize the bulk of the ATPase. The Triton-insoluble proteins had associated with them, on a micromole per milligram protein basis, only 14% as much phospholipid, but 38% of the glycolipids and sterols, as compared with the native membranes. The Triton insoluble ATPase could still be activated by Triton X-100. When solubilized by lysolecithin, there were still sterols associated with the ATPase fraction. Free sterols were found associated with the ATPase in the same relative proportions, whether treated with surfactants or not. We suggest that surfactants activate the ATPase by altering the hydrophobic environment around the enzyme. We propose that sterols, through their interaction with the ATPase, may be essential for ATPase activity.

  1. Role of fission yeast myosin I in organization of sterol-rich membrane domains.

    PubMed

    Takeda, Tetsuya; Chang, Fred

    2005-07-26

    Specialized membrane domains containing lipid rafts are thought to be important for membrane processes such as signaling and trafficking. An unconventional type I myosin has been shown to reside in lipid rafts and function to target a disaccharidase to rafts in brush borders of intestinal mammalian cells. In the fission yeast Schizosaccharomyces pombe, distinct sterol-rich membrane domains are formed at the cell division site and sites of polarized cell growth at cell tips. Here, we show that the sole S. pombe myosin I, myo1p, is required for proper organization of these membrane domains. myo1 mutants lacking the TH1 domain exhibit a uniform distribution of sterol-rich membranes all over the plasma membrane throughout the cell cycle. These effects are independent of endocytosis because myo1 mutants exhibit no endocytic defects. Conversely, overexpression of myo1p induces ectopic sterol-rich membrane domains. Myo1p localizes to nonmotile foci that cluster in sterol-rich plasma membrane domains and fractionates with detergent-resistant membranes. Because the myo1p TH1 domain may bind directly to acidic phospholipids, these findings suggest a model for how type I myosin contributes to the organization of specialized membrane domains. PMID:16051179

  2. ORIGINAL PAPER The sterol modifying enzyme LET-767 is essential for growth,

    E-print Network

    Baillie, David

    ORIGINAL PAPER The sterol modifying enzyme LET-767 is essential for growth, reproduction August 2003 Ó Springer-Verlag 2003 Abstract The let-767 gene encodes a protein that is similar, and is therefore sensitive to cholesterol limitation. We show that a mutation in let-767 results

  3. Crystal Structures of Trypanosoma brucei Sterol 14-Demethylase and Implications for Selective Treatment of Human Infections

    E-print Network

    Huang, Ching-Tsan

    Trypanosoma cruzi Trypanosoma brucei brucei Ĺ 2 #12; T. brucei T. brucei ® T. brucei T. bruceiCrystal Structures of Trypanosoma brucei Sterol 14-Demethylase and Implications for Selective-Shen Yang, Ph.D. May 25th, 2010 The 6th classroom Trypanosoma brucei Ĺ 1 #12; Trypanosoma brucei

  4. 356 Biochemical Society Transactions (2006) Volume 34, part 3 Sterol trafficking between the endoplasmic

    E-print Network

    Menon, Anant K.

    2006-01-01

    that transport of ergosterol from the ER (endoplasmic reticulum) to the sterol-enriched PM (plasma membrane the endoplasmic reticulum and plasma membrane in yeast D.P. Sullivan*, H. Ohvo-Rekil¨a, N.A. Baumann, C.T. Beh-flop rapidly across bilayers without protein mediation. In contrast with vesicle-mediated lipid transport

  5. A Dietary Test of Putative Deleterious Sterols for the Aphid Myzus persicae

    E-print Network

    Eubanks, Micky

    A Dietary Test of Putative Deleterious Sterols for the Aphid Myzus persicae Sophie Bouvaine1, College Station, Texas, United States of America Abstract The aphid Myzus persicae displays high mortality resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents

  6. Preservation of Genes Involved in Sterol Metabolism in Cholesterol Auxotrophs: Facts and Hypotheses

    E-print Network

    Xia, Xuhua

    Preservation of Genes Involved in Sterol Metabolism in Cholesterol Auxotrophs: Facts and Hypotheses to synthesize cholesterol (auxotrophs): Drosophila melanogaster and Caenorhabditis elegans. Principal Findings are still under selective pressure. It is possible that these genes, which are not involved in cholesterol

  7. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE

    SciTech Connect

    Lee, Sungsoo; Wang, Ping-Yuan; Jeong, Yangsik; Mangelsdorf, David J.; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041 ; Anderson, Richard G.W.; Michaely, Peter

    2012-10-01

    Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements. -- Highlights: Black-Right-Pointing-Pointer ORP1S translocates to the nucleus in response to sterol binding. Black-Right-Pointing-Pointer The sterols that best promote nuclear import of ORP1S are LXR agonists. Black-Right-Pointing-Pointer ORP1S binds to LXRs, enhances binding of LXRs to LXREs and promotes LXR-dependent transcription of apoE.

  8. Inhibition of cholesterol biosynthesis by Delta22-unsaturated phytosterols via competitive inhibition of sterol Delta24-reductase in mammalian cells.

    PubMed Central

    Fernández, Carlos; Suárez, Yajaira; Ferruelo, Antonio J; Gómez-Coronado, Diego; Lasunción, Miguel A

    2002-01-01

    Dietary phytosterols are cholesterol-lowering agents that interfere with the intestinal absorption of cholesterol. In the present study, we have studied their effects on cholesterol biosynthesis in human cells, particularly in the sterol-conversion pathway. For this, both Caco-2 (intestinal mucosa) and HL-60 (promyelocytic) human cell lines were incubated with [(14)C]acetate, and the incorporation of radioactivity into sterols was determined using HPLC and radioactivity detection online. Sterols containing a double bond at C-22 in the side chain (stigmasterol, brassicasterol and ergosterol) dramatically inhibited the activity of sterol Delta(24)-reductase, as indicated by the decrease in radioactivity incorporation into cholesterol and the accumulation of its precursors (mainly desmosterol). Phytosterols with the saturated side chain (beta-sitosterol and campesterol) were inactive in this regard. The inhibition of sterol (24)-reductase was confirmed in rat liver microsomes by using (14)C-labelled desmosterol as the substrate. The (22)-unsaturated phytosterols acted as competitive inhibitors of sterol (24)-reductase, with K(i) values (41.1, 42.7 and 36.8 microM for stigmasterol, brassicasterol and ergosterol respectively) similar to the estimated K(m) for desmosterol (26.3 microM). The sterol 5,22-cholestedien-3beta-ol, an unusual desmosterol isomer that lacks the alkyl groups characteristic of phytosterols, acted as a much stronger inhibitor of (24)-reductase (K(i)=3.34 microM). The usually low intracellular concentrations of the physiological substrates of (24)-reductase explains the strong inhibition of cholesterol biosynthesis that these compounds exert in cells. Given that inhibition of sterol (24)-reductase was achieved at physiologically relevant concentrations, it may represent an additional mechanism for the cholesterol-lowering action of phytosterols, and opens up the possibility of using certain (22)-unsaturated sterols as effective hypocholesterolaemic agents. PMID:12162789

  9. Global Analyses of Small Interfering RNAs Derived from Bamboo mosaic virus and Its Associated Satellite RNAs in Different Plants

    PubMed Central

    Lin, Kuan-Yu; Cheng, Chi-Ping; Chang, Bill Chia-Han; Wang, Wei-Chi; Huang, Ying-Wen; Lee, Yun-Shien; Huang, Hsien-Da; Hsu, Yau-Heiu; Lin, Na-Sheng

    2010-01-01

    Background Satellite RNAs (satRNAs), virus parasites, are exclusively associated with plant virus infection and have attracted much interest over the last 3 decades. Upon virus infection, virus-specific small interfering RNAs (vsiRNAs) are produced by dicer-like (DCL) endoribonucleases for anti-viral defense. The composition of vsiRNAs has been studied extensively; however, studies of satRNA-derived siRNAs (satsiRNAs) or siRNA profiles after satRNA co-infection are limited. Here, we report on the small RNA profiles associated with infection with Bamboo mosaic virus (BaMV) and its two satellite RNAs (satBaMVs) in Nicotiana benthamiana and Arabidopsis thaliana. Methodology/Principal Findings Leaves of N. benthamiana or A. thaliana inoculated with water, BaMV alone or co-inoculated with interfering or noninterfering satBaMV were collected for RNA extraction, then large-scale Solexa sequencing. Up to about 20% of total siRNAs as BaMV-specific siRNAs were accumulated in highly susceptible N. benthamiana leaves inoculated with BaMV alone or co-inoculated with noninterfering satBaMV; however, only about 0.1% of vsiRNAs were produced in plants co-infected with interfering satBaMV. The abundant region of siRNA distribution along BaMV and satBaMV genomes differed by host but not by co-infection with satBaMV. Most of the BaMV and satBaMV siRNAs were 21 or 22 nt, of both (+) and (?) polarities; however, a higher proportion of 22-nt BaMV and satBaMV siRNAs were generated in N. benthamiana than in A. thaliana. Furthermore, the proportion of non-viral 24-nt siRNAs was greatly increased in N. benthamiana after virus infection. Conclusions/Significance The overall composition of vsiRNAs and satsiRNAs in the infected plants reflect the combined action of virus, satRNA and different DCLs in host plants. Our findings suggest that the structure and/or sequence demands of various DCLs in different hosts may result in differential susceptibility to the same virus. DCL2 producing 24-nt siRNAs under biotic stresses may play a vital role in the antiviral mechanism in N. benthamiana. PMID:20689857

  10. Tribological properties of PTFE filled plants-derived semi-aromatic polyamide (PA10T) and GF reinforced PTFE/PA10T composites

    NASA Astrophysics Data System (ADS)

    Takenaka, Yuki; Nishitani, Yosuke; Kitano, Takeshi

    2015-05-01

    For the purpose of developing the new engineering materials such as structural materials and tribomaterials based on plants-derived polymers, the tribological properties of polytetrafluoroethylene (PTFE) filled plants-derived semi-aromatic polyamide 10T (PA10T) composites and glass fiber (GF) reinforced PTFE/PA10T composites were investigated. PA10T is a kind of polyphthalamide (PPA, semi-aromatic polyamide) and biomass polymer made from plants-derived decamethylenediamine and coal-derived terephthalic acid. PTFE/PA10T and GF/PA10T/PTFE composites were melt-mixed by a twin screw extruder and injection-molded. Their mechanical properties such as tensile, Izod impact, and tribological properties were evaluated. Tribological properties were measured by a ring-on-plate type sliding wear tester under dry condition. Tribological properties of PA10T such as frictional coefficient, specific wear rate and limiting pv value improved with the addition of PTFE, although the mechanical properties such as tensile strength and tensile modulus decreased with PTFE. On the other hand, the frictional coefficient and specific wear rate of GF/PA10T/PTFE composites were higher than those of PTFE/PA10T composites, however limiting pv value and mechanical properties improved significantly with the filling of GF. It follows from these results that it may be possible to develop the new tribomaterials based on plants-derived polymer composites with sufficient balances between mechanical and tribological properties.

  11. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance

    PubMed Central

    2014-01-01

    The use of synthetic pesticides and repellents to target pests of veterinary and medical significance is becoming increasingly problematic. One alternative approach employs the bioactive attributes of plant-derived products (PDPs). These are particularly attractive on the grounds of low mammalian toxicity, short environmental persistence and complex chemistries that should limit development of pest resistance against them. Several pesticides and repellents based on PDPs are already available, and in some cases widely utilised, in modern pest management. Many more have a long history of traditional use in poorer areas of the globe where access to synthetic pesticides is often limited. Preliminary studies support that PDPs could be more widely used to target numerous medical and veterinary pests, with modes of action often specific to invertebrates. Though their current and future potential appears significant, development and deployment of PDPs to target veterinary and medical pests is not without issue. Variable efficacy is widely recognised as a restraint to PDPs for pest control. Identifying and developing natural bioactive PDP components in place of chemically less-stable raw or 'whole’ products seems to be the most popular solution to this problem. A limited residual activity, often due to photosensitivity or high volatility, is a further drawback in some cases (though potentially advantageous in others). Nevertheless, encapsulation technologies and other slow-release mechanisms offer strong potential to improve residual activity where needed. The current review provides a summary of existing use and future potential of PDPs against ectoparasites of veterinary and medical significance. Four main types of PDP are considered (pyrethrum, neem, essential oils and plant extracts) for their pesticidal, growth regulating and repellent or deterrent properties. An overview of existing use and research for each is provided, with direction to more extensive reviews given in many sections. Sections to highlight potential issues, modes of action and emerging and future potential are also included. PMID:24428899

  12. Chromosome Doubling of Microspore-Derived Plants from Cabbage (Brassica oleracea var. capitata L.) and Broccoli (Brassica oleracea var. italica L.)

    PubMed Central

    Yuan, Suxia; Su, Yanbin; Liu, Yumei; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian

    2015-01-01

    Chromosome doubling of microspore-derived plants is an important factor in the practical application of microspore culture technology because breeding programs require a large number of genetically stable, homozygous doubled haploid plants with a high level of fertility. In the present paper, 29 populations of microspore-derived plantlets from cabbage (Brassica oleracea var. capitata) and broccoli (Brassica oleracea var. italica) were used to study the ploidy level and spontaneous chromosome doubling of these populations, the artificial chromosome doubling induced by colchicine, and the influence of tissue culture duration on the chromosomal ploidy of the microspore-derived regenerants. Spontaneous chromosome doubling occurred randomly and was genotype dependent. In the plant populations derived from microspores, there were haploids, diploids, and even a low frequency of polyploids and mixed-ploidy plantlets. The total spontaneous doubling in the 14 cabbage populations ranged from 0 to 76.9%, compared with 52.2 to 100% in the 15 broccoli populations. To improve the rate of chromosome doubling, an efficient and reliable artificial chromosome doubling protocol (i.e., the immersion of haploid plantlet roots in a colchicine solution) was developed for cabbage and broccoli microspore-derived haploids. The optimal chromosome doubling of the haploids was obtained with a solution of 0.2% colchicine for 9–12 h or 0.4% colchicine for 3–9 h for cabbage and 0.05% colchicine for 6–12 h for broccoli. This protocol produced chromosome doubling in over 50% of the haploid genotypes for most of the populations derived from cabbage and broccoli. Notably, after 1 or more years in tissue culture, the chromosomes of the haploids were doubled, and most of the haploids turned into doubled haploid or mixed-ploidy plants. This is the first report indicating that tissue culture duration can change the chromosomal ploidy of microspore-derived regenerants.

  13. Yeast surface display is a novel tool for the rapid immunological characterization of plant-derived food allergens.

    PubMed

    Popovic, Milica; Prodanovic, Radivoje; Ostafe, Raluca; Schillberg, Stefan; Fischer, Rainer; Gavrovic-Jankulovic, Marija

    2015-03-01

    High-throughput characterization of allergens relies often on phage display technique which is subject to the limitations of a prokaryotic expression system. Substituting the phage display platform with a yeast surface display could lead to fast immunological characterization of allergens with complex structures. Our objective was to evaluate the potential of yeast surface display for characterization of plant-derived food allergens. The coding sequence of mature actinidin (Act d 1) was cloned into pCTCON2 surface display vector. Flow cytometry was used to confirm localization of recombinant Act d 1 on the surface of yeast cells using rabbit polyclonal antisera IgG and IgE from sera of kiwifruit-allergic individuals. Immunological (dot blot, immunoblot ELISA and ELISA inhibition), biochemical (enzymatic activity in gel) and biological (basophil activation) characterization of Act d 1 after solubilization from the yeast cell confirmed that recombinant Act d 1 produced on the surface of yeast cell is similar to its natural counterpart isolated from green kiwifruit. Yeast surface display is a potent technique that enables fast immunochemical characterization of allergens in situ without the need for protein purification and offers an alternative that could lead to improvement of standard immunodiagnostic and immunotherapeutic approaches. PMID:25537533

  14. Radiocesium derived from the Fukushima Daiichi Nuclear Power Plant accident in seabed sediments: initial deposition and inventories.

    PubMed

    Otosaka, Shigeyoshi; Kato, Yoshihisa

    2014-05-01

    Since the accident at Fukushima Daiichi Nuclear Power Plant (1FNPP), significant levels of anthropogenic radionuclides have been detected in seabed sediments off the east coast of Japan. In this paper, the approximate amount of accident-derived radiocesium in seabed sediments off Fukushima, Miyagi and Ibaraki prefectures was estimated from a sediment integration algorithm. As of October 2011, about half a year after the accident, the total amount of sedimentary 134Cs was 0.20±0.06 PBq (decay corrected to March 11, 2011) and more than 90% of the radiocesium was accumulated in the regions shallower than 200 m depth. The large inventory in the coastal sediments was attributed to effective adsorption of dissolved radiocesium onto suspended particles and directly to sediments in the early post-accident stage. Although rivers are also an important source to supply radiocesium to the coastal regions, this flux was much lower than that of the above-mentioned process within half a year after the accident. PMID:24743987

  15. Effects of plant-derived polyphenols on TNF-alpha and nitric oxide production induced by advanced glycation endproducts.

    PubMed

    Chandler, Dave; Woldu, Ameha; Rahmadi, Anton; Shanmugam, Kirubakaran; Steiner, Nicole; Wright, Elise; Benavente-García, Obdulio; Schulz, Oliver; Castillo, Julián; Münch, Gerald

    2010-07-01

    Advanced glycation endproducts (AGEs) accumulate on protein deposits including the beta-amyloid plaques in Alzheimer's disease. AGEs interact with the "receptor for advanced glycation endproducts", and transmit their signals using intracellular reactive oxygen species as second messengers. Ultimately, AGEs induce the expression of a variety of pro-inflammatory markers including the tumor necrosis factor (TNF-alpha) and inducible nitric oxide (NO) synthase. Antioxidants that act intracellularly, including polyphenols, have been shown to scavenge these "signaling" reactive oxygen species, and thus perform in an anti-inflammatory capacity. This study tested the pure compounds apigenin and diosmetin as well as extracts from silymarin, uva ursi (bearberry) and green olive leaf for their ability to attenuate AGE-induced NO and TNF-alpha production. All five tested samples inhibited BSA-AGE-induced NO production in a dose-dependent manner. Apigenin and diosmetin were most potent, and exhibited EC(50) values approximately 10 microM. In contrast, TNF-alpha expression was only reduced by apigenin, diosmetin and silymarin; not by the bearberry and green olive leaf extracts. In addition, the silymarin and bearberry extracts caused significant cell death at concentrations >or=10 microg/mL and >or=50 microg/mL, respectively. In conclusion, we suggest that plant-derived polyphenols might offer therapeutic opportunities to delay the progression of AGE-mediated and receptor for advanced glycation endproducts-mediated neuro-inflammatory diseases including Alzheimer's disease. PMID:20540146

  16. [Effects of plant-derived smoke water on accumulation of biomass and active substance of Salvia miltiorrhiza f. alba].

    PubMed

    Zhou, Jie; Zou, Lin; Li, Jia; Wang, Xiao; Liu, Wei; Fang, Lei; Li, Qiang; Zhang, Fang; Zhang, Yong-Qing

    2014-07-01

    To study the effect of plant-derived smoke water on the accumulation of biomass and active substance of Salvia miltiorrhiza f. alba, seedlings of S. miltiorrhiza were treated with different concentrations of smoke water (1:500, 1: 1 000, 1: 2 000). The fresh weight and dry weight of underground part, the number of split-root, maximum root diameter, average root diameter, average root length, the content of lipophilic components and water-soluble components were measured. Results showed that fresh weight and dry weight of underground part were respectively improved by 98.01%, 44.32% and 85.71%, 28.57% with significant difference by smoke water treatment with concentration of 1: 500 and 1: 1 000. Maximum root diameter and dry weight of underground part were respectively enhanced by 58.44% and 85.71% by smoke water with concentration of 1:500. The content of tanshinone I and tanshinone II(A) were improved by smoke water treatment, however there were no significantly difference on the content of cryptotanshinone and dihydrotan shinone. This study indicates that smoke water treatment could be used to improve the accumulation of biomass and active substance content of S. miltiorrhiza f. alba, which could provide new ideas for its green cultivating. PMID:25276963

  17. Inhibition of Bacterial Pathogens in Medium and on Spinach Leaf Surfaces using Plant-Derived Antimicrobials Loaded in Surfactant Micelles.

    PubMed

    Ruengvisesh, Songsirin; Loquercio, Andre; Castell-Perez, Elena; Taylor, T Matthew

    2015-11-01

    Encapsulation of hydrophobic plant essential oil components (EOC) into surfactant micelles can assist the decontamination of fresh produce surfaces from bacterial pathogens during postharvest washing. Loading of eugenol and carvacrol into surfactant micelles of polysorbate 20 (Tween 20), Surfynol® 485W, sodium dodecyl sulfate (SDS), and CytoGuard® LA 20 (CG20) was determined by identification of the EOC/surfactant-specific maximum additive concentration (MAC). Rheological behavior of dilute EOC-containing micelles was then tested to determine micelle tolerance to shearing. Antimicrobial efficacy of EOC micelles against Escherichia coli O157:H7 and Salmonella enterica serotype Saintpaul was first evaluated by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Pathogen-inoculated spinach was treated with eugenol-containing micelles applied via spraying or immersion methods. SDS micelles produced the highest MACs for EOCs, while Tween 20 loaded the lowest amount of EOCs. Micelles demonstrated Newtonian behavior in response to shearing. SDS and CG20-derived micelles containing EOCs produced the lowest MICs and MBCs for pathogens. E. coli O157:H7 and S. Saintpaul were reduced on spinach surfaces by application of eugenol micelles, though no differences in numbers of surviving pathogens were observed when methods of antimicrobial micelle application (spraying, immersion) was compared (P ? 0.05). Data suggest eugenol in SDS and CG20 micelles may be useful for produce surface decontamination from bacterial pathogens during postharvest washing. PMID:26444985

  18. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath)

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.

    1992-01-01

    Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 degrees C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the delta 9, delta 10 and delta 11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 degrees C cells and the lowest in 50 degrees C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.

  19. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath)

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1992-01-01

    Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the Delta9, Delta10, and Delta11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 C cells and the lowest in 50 C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.

  20. Are elicitins cryptograms in plant-Oomycete communications?

    PubMed

    Ponchet, M; Panabičres, F; Milat M-L; Mikes, V; Montillet, J L; Suty, L; Triantaphylides, C; Tirilly, Y; Blein, J P

    1999-12-01

    Stimulation of plant natural defenses is an important challenge in phytoprotection prospects. In that context, elicitins, which are small proteins secreted by Phytophthora and Pythium species, have been shown to induce a hypersensitive-like reaction in tobacco plants. Moreover, these plants become resistant to their pathogens, and thus this interaction constitutes an excellent model to investigate the signaling pathways leading to plant resistance. However, most plants are not reactive to elicitins, although they possess the functional signaling pathways involved in tobacco responses to elicitin. The understanding of factors involved in this reactivity is needed to develop agronomic applications. In this review, it is proposed that elicitins could interact with regulating cell wall proteins before they reach the plasma membrane. Consequently, the plant reactivity or nonreactivity status could result from the equilibrium reached during this interaction. The possibility of overexpressing the elicitins directly from genomic DNA in Pichia pastoris allows site-directed mutagenesis experiments and structure/function studies. The recent discovery of the sterol carrier activity of elicitins brings a new insight on their molecular activity. This constitutes a crucial property, since the formation of a sterol-elicitin complex is required to trigger the biological responses of tobacco cells and plants. Only the elicitins loaded with a sterol are able to bind to their plasmalemma receptor, which is assumed to be an allosteric calcium channel. Moreover, Phytophthora and Pythium do not synthesize the sterols required for their growth and their fructification, and elicitins may act as shuttles trapping the sterols from the host plants. Sequence analysis of elicitin genes from several Phytophthora species sheds unexpected light on the phylogenetic relationships among the genus, and suggests that the expression of elicitins is under tight regulatory control. Finally, general involvement of these lipid transfer proteins in the biology of Pythiaceae, and in plant defense responses, is discussed. A possible scheme for the coevolution between Phytophthora and tobacco plants is approached. PMID:11212320

  1. New polyhydroxylated sterols from Palythoa tuberculosa and their apoptotic activity in cancer cells.

    PubMed

    Elbagory, Abdulrahman M; Meyer, Mervin; Ali, Abdel-Hamid A M; Ameer, Farouk; Parker-Nance, Shirley; Benito, Maria Teresa; Doyagüez, Elisa Garcia; Jimeno, Maria Luisa; Hussein, Ahmed A

    2015-09-01

    The chemical study on the total extract of the zoanthid Palythoa tuberculosa, collected from the Red Sea, resulted in the isolation of seven polyhydroxylated sterols (1-7), six of which, palysterols A-F (2-7), are new. Their chemical structures were elucidated on the basis of extensive analysis of their 1-, 2D NMR and MS spectroscopic data. This is the first chemical investigation on the species collected from Red Sea. We studied the cytotoxic effects of the total extract and some of the new polyhydroxylated sterols in three human cancer cell lines (MCF-7, HeLa, and HT-29) and one non-cancerous human cell line (KMST-6). Palysterol F (7), in particular, was able to selectively induce high levels of apoptosis (>75%) in breast adenocarcinoma (MCF-7) cells but not HeLa, HT-29 and KMST-6 cells. PMID:26095205

  2. Introduction of ?-3 Desaturase Obviously Changed the Fatty Acid Profile and Sterol Content of Schizochytrium sp.

    PubMed

    Ren, Lu-Jing; Zhuang, Xiao-Yan; Chen, Sheng-Lan; Ji, Xiao-Jun; Huang, He

    2015-11-11

    ?-3 fatty acids play significant roles in brain development and cardiovascular disease prevention and have been widely used in food additives and the pharmaceutical industry. The aim of this study was to assess the feasibility of ?-3 desaturase for regulating fatty acid composition and sterol content in Schizochytrium sp. The exogenous ?-3 desaturase gene driven by ubiqutin promoter was introduced by 18S homologous sequence to the genome of Schizochytrium sp. Genetically modified strains had greater size and lower polar lipids than wild type strains. In addition, the introduction of ?-3 desaturase improved the ?-3/?-6 ratio from 2.1 to 2.58 and converted 3% docosapentaenoic acid (DPA) to docosahexaenoic acid (DHA). Furthermore, squalene and sterol contents in lipid of the genetically modified strain reduced by 37.19 and 22.31%, respectively. The present study provided an advantageous genetically engineered Schizochytrium sp. for DHA production and effective metabolic engineering strategy for fatty acid producing microbes. PMID:26494394

  3. Microbial water quality and sedimentary faecal sterols as markers of sewage contamination in Kuwait.

    PubMed

    Lyons, B P; Devlin, M J; Abdul Hamid, S A; Al-Otiabi, A F; Al-Enezi, M; Massoud, M S; Al-Zaidan, A S; Smith, A J; Morris, S; Bersuder, P; Barber, J L; Papachlimitzou, A; Al-Sarawi, H A

    2015-11-30

    Microbial water quality and concentrations of faecal sterols in sediment have been used to assess the degree of sewage contamination in Kuwait's marine environment. A review of microbial (faecal coliform, faecal streptococci and Escherichia coli) water quality data identified temporal and spatial sources of pollution around the coastline. Results indicated that bacterial counts regularly breach regional water quality guidelines. Sediments collected from a total of 29 sites contained detectable levels of coprostanol with values ranging from 29 to 2420ngg(-1) (dry weight). Hot spots based on faecal sterol sediment contamination were identified in Doha Bay and Sulaibikhat Bay, which are both smaller embayments of Kuwait Bay. The ratio of epicoprostanol/coprostanol indicates that a proportion of the contamination was from raw or partially treated sewage. Sewage pollution in these areas are thought to result from illegal connections and discharges from storm drains, such as that sited at Al-Ghazali. PMID:26228071

  4. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Nichols, P. D.

    1986-01-01

    The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.

  5. Parameters for Martini sterols and hopanoids based on a virtual-site description.

    PubMed

    Melo, M N; Ingólfsson, H I; Marrink, S J

    2015-12-28

    Sterols play an essential role in modulating bilayer structure and dynamics. Coarse-grained molecular dynamics parameters for cholesterol and related molecules are available for the Martini force field and have been successfully used in multiple lipid bilayer studies. In this work, we focus on the use of virtual sites as a means of increasing the stability of cholesterol and cholesterol-like structures. We improve and extend the Martini parameterization of sterols in four different ways: 1-the cholesterol parameters were adapted to make use of virtual interaction sites, which markedly improves numerical stability; 2-cholesterol parameters were also modified to address reported shortcomings in reproducing correct lipid phase behavior in mixed membranes; 3-parameters for ergosterol were created and adapted from cholesterols; and 4-parameters for the hopanoid class of bacterial polycyclic molecules were created, namely, for hopane, diploptene, bacteriohopanetetrol, and for their polycyclic base structure. PMID:26723637

  6. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    SciTech Connect

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  7. Treatment of Smith-Lemli-Opitz Syndrome and Other Sterol Disorders

    PubMed Central

    Svoboda, Melissa D.; Christie, Jill M.; Eroglu, Yasemen; Freeman, Kurt A.; Steiner, Robert D.

    2013-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive genetic condition with a broad phenotype that results from deficiency of the final enzyme of the cholesterol synthesis pathway. This defect causes low or low-normal plasma cholesterol levels and increased 7- and 8-dehydrocholesterol (DHC) levels. Many therapies for SLOS and other disorders of sterol metabolism have been proposed, and a few of them have been undertaken in selected patients, but robust prospective clinical trials with validated outcome measures are lacking. We review the current literature and expert opinion on treatments for SLOS and other selected sterol disorders, including dietary cholesterol therapy, statin treatment, bile acid supplementation, medical therapies and surgical interventions, as well as directions for future therapies and treatment research. PMID:23042642

  8. MECHANISMS UNDERLYING THE MICRON-SCALE SEGREGATION OF STEROLS AND GM1 IN LIVE MAMMALIAN SPERM

    PubMed Central

    Selvaraj, Vimal; Asano, Atsushi; Buttke, Danielle E.; Sengupta, Prabuddha; Weiss, Robert S.; Travis, Alexander J.

    2009-01-01

    We demonstrate for the first time that a stable, micron-scale segregation of focal enrichments of sterols exists at physiological temperature in the plasma membrane of live murine and human sperm. These enrichments of sterols represent microheterogeneities within this membrane domain overlying the acrosome. Previously, we showed that cholera toxin subunit B (CTB), which binds the glycosphingolipid, GM1, localizes to this same domain in live sperm. Interestingly, the GM1 undergoes an unexplained redistribution upon cell death. We now demonstrate that GM1 is also enriched in the acrosome, an exocytotic vesicle. Transfer of lipids between this and the plasma membrane occurs at cell death, increasing GM1 in the plasma membrane without apparent release of acrosomal contents. This finding provides corroborative support for an emerging model of regulated exocytosis in which membrane communications might occur without triggering the “acrosome reaction.” Comparison of the dynamics of CTB-bound endogenous GM1 and exogenous BODIPY-GM1 in live murine sperm demonstrate that the sub-acrosomal ring functions as a specialized diffusion barrier segregating specific lipids within the sperm head plasma membrane. Our data show significant differences between endogenous lipids and exogenous lipid probes in terms of lateral diffusion. Based on these studies, we propose a hierarchical model to explain the segregation of this sterol- and GM1-enriched domain in live sperm, which is positioned to regulate sperm fertilization competence and mediate interactions with the oocyte. Moreover, our data suggest potential origins of sub-types of membrane raft microdomains enriched in sterols and/or GM1 that can be separated biochemically. PMID:19012288

  9. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism.

    PubMed

    Olkkonen, Vesa M; Li, Shiqian

    2013-10-01

    Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a family of sterol and phosphoinositide binding proteins conserved in eukaryotes. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and control the activity of enzymatic effectors or assembly of protein complexes, with impacts on signaling, vesicle transport, and lipid metabolism. An increasing number of protein interaction partners of ORPs have been identified, providing clues of their involvement in multiple aspects of cell regulation. The functions assigned for mammalian ORPs include coordination of sterol and sphingolipid metabolism and mitogenic signaling (OSBP), control of ER-late endosome (LE) contacts and LE motility (ORP1L), neutral lipid metabolism (ORP2), cell adhesion (ORP3), cholesterol eggress from LE (ORP5), macrophage lipid homeostasis, migration and high-density lipoprotein metabolism (ORP8), apolipoprotein B-100 secretion (ORP10), and adipogenesis (ORP11). The anti-proliferative ORPphilin compounds target OSBP and ORP4, revealing a function of ORPs in cell proliferation and survival. The Saccharomyces cerevisiae OSBP homologue (Osh) proteins execute multifaceted functions in sterol and sphingolipid homeostasis, post-Golgi vesicle transport, as well as phosphatidylinositol-4-phosphate and target of rapamycin complex 1 (TORC1) signaling. These observations identify ORPs as coordinators of lipid signals with an unforeseen variety of cellular processes. PMID:23830809

  10. Modulation of Retinoic Acid Receptor-related Orphan Receptor ? and ? Activity by 7-Oxygenated Sterol Ligands*

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Solt, Laura A.; Richardson, Timothy I.; Helvering, Leah M.; Crumbley, Christine; Garcia-Ordonez, Ruben D.; Stayrook, Keith R.; Zhang, Xi; Novick, Scott; Chalmers, Michael J.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related orphan receptors ? and ? (ROR? (NR1F1) and ROR? (NR1F3)) are orphan nuclear receptors and perform critical roles in regulation of development, metabolism, and immune function. Cholesterol and cholesterol sulfate have been suggested to be ROR? ligands, but the physiological significance is unclear. To date, no endogenous ROR? ligands have been described. Here, we demonstrate that 7-oxygenated sterols function as high affinity ligands for both ROR? and ROR? by directly binding to their ligand-binding domains (Ki ?20 nm), modulating coactivator binding, and suppressing the transcriptional activity of the receptors. One of the 7-oxygenated sterols, 7?-hydroxycholesterol (7?-OHC), serves as a key intermediate in bile acid metabolism, and we show that 7?-OHC modulates the expression of ROR target genes, including Glc-6-Pase and phosphoenolpyruvate carboxykinase, in an ROR-dependent manner. Furthermore, glucose output from hepatocytes is suppressed by 7?-OHC functioning as an ROR?/? ligand. Thus, ROR? and ROR? are ligand-regulated members of the NR superfamily and may serve as sensors for 7-oxygenated sterols. PMID:19965867

  11. Sterol oxidation in ready-to-eat infant foods during storage.

    PubMed

    García-Llatas, Guadalupe; Cercaci, Luisito; Rodriguez-Estrada, Maria Teresa; Lagarda, M Jesús; Farré, Rosaura; Lercker, Giovanni

    2008-01-23

    The effect of storage on sterol oxidation of ready-to-eat infant foods was evaluated. Two different liquid infant foods (honey or fruits flavors), prepared with milk and cereals, were stored for 0, 2, 4, 7 and 9 months at 25 degrees C. Sterol oxidation products (SOP) were isolated by cold saponification, purified by silica solid-phase extraction, and analyzed by gas chromatography (GC) and GC-mass spectrometry. beta-Sitosterol was the most representative sterol, followed by cholesterol and campesterol. No significant differences in the total and single SOP content (0.8-1 mg/kg of product) were observed with respect to storage time and type of sample; the main SOP found was 7-ketositosterol (<0.2 mg/kg of product). The extent of stigmasterol oxidation (2.9%) was higher than that of cholesterol (1.9%) and beta-sitosterol (1.4%). The type and quality of raw materials, as well as the processing conditions, seem to greatly influence SOP formation and accumulation in infant foods. PMID:18167071

  12. [Determination of ?-sitosterol and total sterols content and antioxidant activity of oil in acai (Euterpe oleracea)].

    PubMed

    He, Cheng; Li, Wei; Zhang, Jian-Jun; Qu, Sheng-Sheng; Li, Jia-Jing; Wang, Lin-Yuan

    2014-12-01

    In order to establish a method for the determination of the sterols of the oil in the freeze-dried acai (Euterpe oleracea Mart.) and to evaluate its antioxidant activities, a saponification/extraction procedure and high performance liquid chromatography (HPLC) analysis method were developed and validated for the analysis of phytosterols in PEE (Petroleum ether extract). Separation was achieved on a Purosper STAR LP C18 column with a binary, gradient solvent system of acetonitrile and isopropanol. Evaporative light scattering detection (ELSD) was used to quantify ?-sitosterol and the total sterols. Peak identification was verified by retention times and spikes with external standards. Standard curves were constructed (r = 0.999 2) to allow for sample quantification. Recovery of the saponification and extraction was demonstrated via analysis of spiked samples. The highest content of total sterols is ?-sitosterol. The antioxidant activities of the extracts were evaluated using the total oxyradical scavenging capacity assay (TOSC assay). The result showed that the PEE exhibited significant antioxidant properties, sample concentration and the antioxidant capacity had a certain relevance. PMID:25911812

  13. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.

    PubMed

    Gutiérrez-Fernández, Javier; Vaquero, María Eugenia; Prieto, Alicia; Barriuso, Jorge; Martínez, María Jesús; Hermoso, Juan A

    2014-09-01

    Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop ?16-?17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Ĺ far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications. PMID:25108239

  14. Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma.

    PubMed

    Varshosaz, Jaleh; Jafarian, Abbas; Salehi, Golnaz; Zolfaghari, Behzad

    2014-09-01

    Quercetin (QT) is a potential chemotherapeutic drug with low solubility that seriously limits its clinical use. The aim of this study was enhancing cellular penetration of QT by sterol containing solid lipid nanoparticles (SLNs) which make bilayers fluent for targeting hepatocellular carcinoma cells. Three variables including sterol type (cholesterol, stigmasterol and stigmastanol), drug and sterol content were studied in a surface response D-optimal design for preparation of QT-SLNs by emulsification solvent evaporation method. The studied responses included particle size, zeta potential, drug loading capacity and 24?h release efficiency (RE24%). Scanning electron and atomic force microscopy were used to study the morphology of QT-SLNs and their thermal behavior was studied by DSC analysis. Cytotoxicity of QT-SLNs was determined by MTT assay on HepG-2 cells and cellular uptake by fluorescence microscopy method. Optimized QT-SLNs obtained from cholesterol and QT with the ratio of 2:1 that showed particle size of 78.0?±?7.0?nm, zeta potential of?-22.7?±?1.3?mV, drug loading efficiency of 99.9?±?0.5% and RE24 of 56.3?±?3.4%. IC50 of QT in cholesterol SLNs was about six and two times less than free QT and phytosterol SLNs, respectively, and caused more accumulation of QT in HepG2 cells. Blank phytosterol SLNs were toxic on cells. PMID:24354715

  15. Brewer's spent grain, serum lipids and fecal sterol excretion in human subjects with ileostomies.

    PubMed

    Zhang, J X; Lundin, E; Andersson, H; Bosaeus, I; Dahlgren, S; Hallmans, G; Stenling, R; Aman, P

    1991-06-01

    A crossover design studying lipid and apoprotein levels in serum and excretion of sterol, nitrogen and fat in ileostomy effluent was performed in 10 subjects fed diets with or without supplementation with brewer's spent grain, which is the residue of barley after the brewing of beer. More cholesterol, nitrogen, fat and energy were excreted in the ileostomy effluents when the subjects consumed a brewer's spent grain supplemented, high fiber diet than when they consumed a low fiber diet. No significant change was found in the daily net sterol excretion. The six subjects with low daily excretion of bile acids (less than 1000 mg/24 h) had increased cholesterol and net cholesterol and decreased bile acid excretion per day, and lowered serum LDL-cholesterol and apoprotein B levels after supplementation with brewer's spent grain. We propose that subjects with low daily bile acid excretion are suitable models for studying the effect of dietary changes on sterol excretion and serum lipid levels. Increased fecal cholesterol excretion is suggested to be the primary mechanism for the serum LDL-cholesterol lowering effect of brewer's spent grain. PMID:1851823

  16. VS-501: a novel, nonabsorbed, calcium- and aluminum-free, highly effective phosphate binder derived from natural plant polymer

    PubMed Central

    Wu-Wong, J Ruth; Chen, Yung-wu; Gaffin, Robert; Hall, Andy; Wong, Jonathan T; Xiong, Joseph; Wessale, Jerry L

    2014-01-01

    Inadequate control of serum phosphate in chronic kidney disease can lead to pathologies of clinical importance. Effectiveness of on-market phosphate binders is limited by safety concerns and low compliance due to high pill size/burden and gastrointestinal (GI) discomfort. VS-501 is a nonabsorbed, calcium- and aluminum-free, chemically modified, plant-derived polymer. In vitro studies show that VS-501 has a high density and a low swell volume when exposed to simulated gastric fluid (vs. sevelamer). When male Sprague–Dawley (SD) rats on normal diet were treated with VS-501 or sevelamer, serum phosphate was not significantly altered, but urinary phosphate levels decreased by >90%. VS-501 had no effect on serum calcium (Ca) or urinary Ca, while 3% sevelamer significantly increased serum and urine Ca. In 5/6 nephrectomized (NX) uremic SD rats on high-phosphate diet, increasing dietary phosphate led to an increase in serum and urine phosphate, which was prevented in rats treated with VS-501 or sevelamer (0.2–5% in food). High-phosphate diet also increased serum fibroblast growth factor-23 and parathyroid hormone in 5/6 NX rats that was prevented by VS-501 or sevelamer. VS-501 or sevelamer increased fecal phosphate in a dose-dependent manner. More aortic calcification was observed in 5/6 NX rats treated with 5% sevelamer, while VS-501 and sevelamer did not show significant effects on cardiac parameters, fibrosis, intestine histology, and intestinal sodium-dependent phosphate cotransporter gene expression. These results suggest that VS-501 is effective in binding phosphate with no effects on calcium homeostasis, and may have improved pill burden and GI side effects. PMID:25197556

  17. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R.

    PubMed

    Atsmon, Jacob; Brill-Almon, Einat; Nadri-Shay, Carmit; Chertkoff, Raul; Alon, Sari; Shaikevich, Dimitri; Volokhov, Inna; Haim, Kirsten Y; Bartfeld, Daniel; Shulman, Avidor; Ruderfer, Ilya; Ben-Moshe, Tehila; Shilovitzky, Orit; Soreq, Hermona; Shaaltiel, Yoseph

    2015-09-15

    PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t˝) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t˝ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. PMID:26051873

  18. A novel substitution I381V in the sterol 14alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides.

    PubMed

    Fraaije, B A; Cools, H J; Kim, S-H; Motteram, J; Clark, W S; Lucas, J A

    2007-05-01

    SUMMARY The recent reduction in the efficacy of azole fungicides in controlling Septoria leaf blotch of wheat, caused by Mycosphaerella graminicola, has prompted concerns over possible development of resistance, particularly in light of the recent emergence of widespread resistance to quinone outside inhibitors (QoIs). We have recently implicated alterations in the target-encoding sterol 14alpha-demethylase protein (CYP51), and over-expression of genes encoding efflux pumps, in reducing sensitivity to the azole class of sterol demethylation inhibitors (DMIs) in M. graminicola. Here we report on the prevalence and selection of two CYP51 alterations, substitution I381V and deletion of codons 459 and 460 (DeltaY459/G460), in populations of M. graminicola. Neither alteration has previously been identified in human or plant pathogenic fungi resistant to azoles. The presence of DeltaY459/G460 showed a continuous distribution of EC(50) values across isolates with either I381 or V381, and had no measurable effect on azole sensitivity. Data linking fungicide sensitivity with the presence of I381V in M. graminicola show for the first time that a particular CYP51 alteration is differentially selected by different azoles in field populations of a plant pathogen. Substitution I381V although not an absolute requirement for reduced azole sensitivity, is selected by tebuconazole and difenoconazole treatment, suggesting an adaptive advantage in the presence of these two compounds. Prochloraz treatments appeared to select negatively for I381V, whereas other azole treatments did not or only weakly impacted on the prevalence of this substitution. These findings suggest treatments with different members of the azole class of fungicides could offer a resistance management strategy. PMID:20507496

  19. Amphotericin forms an extramembranous and fungicidal sterol sponge

    PubMed Central

    Anderson, Thomas M.; Clay, Mary C.; Cioffi, Alexander G.; Diaz, Katrina A.; Hisao, Grant S.; Tuttle, Marcus D.; Nieuwkoop, Andrew J.; Comellas, Gemma; Maryum, Nashrah; Wang, Shu; Uno, Brice E.; Wildeman, Erin L.; Gonen, Tamir; Rienstra, Chad M.; Burke, Martin D.

    2014-01-01

    Amphotericin has remained the powerful but highly toxic last line of defense in treating life-threatening fungal infections in humans for over 50 years with minimal development of microbial resistance. Understanding how this small molecule kills yeast is thus critical for guiding development of derivatives with an improved therapeutic index and other resistance-refractory antimicrobial agents. In the widely accepted ion channel model for its mechanism of cytocidal action, amphotericin forms aggregates inside lipid bilayers that permeabilize and kill cells. In contrast, we report that amphotericin exists primarily in the form of large, extramembranous aggregates that kill yeast by extracting ergosterol from lipid bilayers. These findings reveal that extraction of a polyfunctional lipid underlies the resistance-refractory antimicrobial action of amphotericin and suggests a roadmap for separating its cytocidal and membrane-permeabilizing activities. This new mechanistic understanding is also guiding development of the first derivatives of amphotericin that kill yeast but not human cells. PMID:24681535

  20. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    PubMed Central

    2012-01-01

    Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D?~?1.3 ?m2/s. Number and brightness (N&B) analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent ??~?0.63 and an anomalous diffusion constant of D??=?1.95 x 10-3 ?m2/s?. On a longer time scale (t?>?~5 s), a transition to superdiffusion consistent with slow directed transport with an average velocity of v?~?6 x 10-3 ?m/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted microtubule or actin filaments. Both treatments reduced the anomalous diffusion constant and the velocity by ~40-50%. Conclusions The mobility of sterol-containing vesicles on the short time scale could reflect dynamic rearrangements of the cytoskeleton, while directed transport of sterol vesicles occurs likely along both, microtubules and actin filaments. Spatially varying anomalous diffusion could contribute to fine-tuning and local regulation of intracellular sterol transport. PMID:23078907

  1. Tracing the Temporal and Spatial Variations in the Origin of Fecal Material in Three Oklahoma Watersheds Using Sterol Fingerprints

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Philp, P. R.

    2014-12-01

    Organic wastes, in particular fecal material, are qualified as one of the major causes of water quality deterioration. Their accumulation in water bodies may increase algal proliferation and eutrophication and the number of pathogenic organisms, which are responsible for many intestinal diseases especially when the water is used for recreational activities and/or as a supply for drinking water. In order to estimate the risk level associated with primary body contact in recreational water bodies, enumeration of some specific micro-organisms, such as Enterococci and Escherichia coli, are commonly used. Sterol distributions can provide some relevant information on the origin of fecal material in water system, since they are ubiquitous organic compounds and their distributions in many warm-blooded animal feces can be used as evidence for their source. In this study, we monitored fecal material contamination in three Oklahoma watersheds based on sterol fingerprints over a one-year period (2012 ~ 2013). The sterols from sediments and water samples (sterols associated to suspended particles as well as free sterols in water) were recovered using sonication and solid phase extraction (SPE), respectively, using different organic solvents. They were then identified and quantified by gas chromatography - mass spectrometry (GC-MS) using an internal standard. The GC-MS was previously calibrated with a sterol mixture injected at different concentrations. Our primary results show that the concentration of total sterols generally increases from the Upper Canadian < Neosho Grand < Cimarron - Upper Arkansas Basins in Oklahoma. The fecal sterols commonly represent a small proportion (<15%) within the total sterols quantified in these three basins. Their distributions show a significant contribution from herbivore feces. By means of this monitoring, we are able to determine the presence of fecal contamination and provide a better understanding on the ability of using sterol fingerprints to determine the origin of the fecal contamination. Additionally, such a sampling strategy, over a one-year period at regular intervals, enable us to track the water contamination by feces according to the seasonal climatic variations such as drought or heavy rainfall events.

  2. PHOTOREACTIVITY OF CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...

  3. High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate.

    PubMed

    Bobadilla Landey, Roberto; Cenci, Alberto; Georget, Frédéric; Bertrand, Benoît; Camayo, Gloria; Dechamp, Eveline; Herrera, Juan Carlos; Santoni, Sylvain; Lashermes, Philippe; Simpson, June; Etienne, Hervé

    2013-01-01

    Embryogenic suspensions that involve extensive cell division are risky in respect to genome and epigenome instability. Elevated frequencies of somaclonal variation in embryogenic suspension-derived plants were reported in many species, including coffee. This problem could be overcome by using culture conditions that allow moderate cell proliferation. In view of true-to-type large-scale propagation of C. arabica hybrids, suspension protocols based on low 2,4-D concentrations and short proliferation periods were developed. As mechanisms leading to somaclonal variation are often complex, the phenotypic, genetic and epigenetic changes were jointly assessed so as to accurately evaluate the conformity of suspension-derived plants. The effects of embryogenic suspensions and secondary embryogenesis, used as proliferation systems, on the genetic conformity of somatic embryogenesis-derived plants (emblings) were assessed in two hybrids. When applied over a 6 month period, both systems ensured very low somaclonal variation rates, as observed through massive phenotypic observations in field plots (0.74% from 200,000 plant). Molecular AFLP and MSAP analyses performed on 145 three year-old emblings showed that polymorphism between mother plants and emblings was extremely low, i.e. ranges of 0-0.003% and 0.07-0.18% respectively, with no significant difference between the proliferation systems for the two hybrids. No embling was found to cumulate more than three methylation polymorphisms. No relation was established between the variant phenotype (27 variants studied) and a particular MSAP pattern. Chromosome counting showed that 7 of the 11 variant emblings analyzed were characterized by the loss of 1-3 chromosomes. This work showed that both embryogenic suspensions and secondary embryogenesis are reliable for true-to-type propagation of elite material. Molecular analyses revealed that genetic and epigenetic alterations are particularly limited during coffee somatic embryogenesis. The main change in most of the rare phenotypic variants was aneuploidy, indicating that mitotic aberrations play a major role in somaclonal variation in coffee. PMID:23418563

  4. Effect of addition of plants-derived polyamide 11 elastomer on the mechanical and tribological properties of hemp fiber reinforced polyamide 1010 composites

    NASA Astrophysics Data System (ADS)

    Mukaida, Jun; Nishitani, Yosuke; Kitano, Takeshi

    2015-05-01

    For the purpose of developing the new engineering materials such as structural materials and tribomaterials based on all plants-derived materials, the effect of the addition of plant-derived polyamide 11 Elastomer (PA11E) on the mechanical and tribological properties of hemp fiber(HF) reinforced polyamide 1010 (HF/PA1010) composites was investigated. PA1010 and PA11E (except the polyether groups used as soft segment) were made from plant-derived castor oil. Hemp fiber was surface-treated by two types of treatment: alkali treatment by NaOH solution and surface treatment by ureido silane coupling agent. HF/PA1010/PA11E ternary composites were extruded by a twin screw extruder and injection-molded. Their mechanical properties such as tensile, bending, Izod impact and tribological properties by ring-on-plate type sliding wear testing were evaluated. The effect of the addition of PA11E on the mechanical and tribological properties of HF/PA1010 composite differed for each property. Izod impact strength and specific wear rate improved with the addition of PA11E although tensile strength, modulus, and friction coefficient decreased with PA11E. It follows from these results that it may be possible to develop the new engineering materials with sufficient balance between mechanical and tribological properties.

  5. Waste materials derived bio-effectors used as growth promoters for strawberry plants. An agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and ?-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.

  6. Effect of aluminum treatment on proteomes of radicles of seeds derived from Al-treated tomato plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive A1 3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 uM AlK(SO4)2. Seeds harv...

  7. High-throughput sequencing as an effective approach in profiling small RNAs derived from a hairpin RNA expression vector in woody plants.

    PubMed

    Zhao, Dongyan; Song, Guo-Qing

    2014-11-01

    Hairpin RNA (hpRNA)-mediated gene silencing has proved to be an efficient approach to develop virus-resistant transgenic plants. To characterize small RNA molecules (sRNAs) derived from an hpRNA expression vector in transgenic cherry rootstock plants, we conducted small RNA sequencing of (1) a transgenic rootstock containing an inverted repeat of the partial coat protein of Prunus necrotic ring spot virus (PNRSV-hpRNA); (2) a nontransgenic rootstock; and (3) a PNRSV-infected sweet cherry plant. Analysis of the PNRSV sRNA pools indicated that 24-nt (nucleotide) small interfering RNAs (siRNAs) were the most prevalent sRNAs in the transgenic rootstock whereas the most abundant sRNAs in the PNRSV-infected nontransgenic rootstock were 21-nt siRNAs. In addition, the 24-nt siRNAs of the PNRSV-hpRNA were more abundant on the sense strand than those on the antisense strand in the transgenic rootstock. In contrast, preference in generating PNRSV sRNAs, ranging from 19-nt to 30-nt for sense and antisense strands, was not distinct in the PNRSV-infected nontransgenic sweet cherry. Taken together, this is the first report on profiling hpRNA-derived sRNAs in woody plants using high-throughput sequencing technology, which is an efficient way to verify the presence/absence, the abundance, and the sequence features of certain sRNAs. PMID:25438784

  8. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

    PubMed

    Ruedell, Carolina Michels; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano

    2015-12-01

    Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. PMID:26397200

  9. Genotoxicity testing of 3,4,5-trimethylfuran-2(5H)-one, a compound from plant-derived smoke with germination inhibitory activity.

    PubMed

    Light, Marnie E; Anthonissen, Roel; Maes, Annemarie; Verschaeve, Luc; Pošta, Martin; Van Staden, Johannes

    2015-01-15

    Plant-derived smoke and certain smoke compounds improve seed germination and enhance seedling growth of many species. Thus, smoke-infused water and the active smoke-derived compounds have the potential to be used in different agricultural and horticultural applications. However, despite these interesting and potentially practical properties, it should also be ascertained whether such compounds may pose a health risk, particularly if they are to be used in the production of food or fodder crops. Amongst some of the aspects that would be important to understand are any possible genotoxic properties that the compounds may possess due to potential carry-over effects. Here, we report on a genotoxicity study of 3,4,5-trimethylfuran-2(5H)-one, a compound from plant-derived smoke previously shown to have germination inhibitory activity. Using two in vitro tests, namely the bacterial VITOTOX® test (with/without S9 metabolic activation) and the cytome assay on human C3A cells, no genotoxicity or toxicity was found. Furthermore, these results support a previous study where a related smoke-derived compound with germination promoting properties was investigated. PMID:25726142

  10. Plant-derived terpenoids as paleovegetation proxies: evaluation of the proxy with Paleocene and Eocene megafloras and plant biomarkers in the Bighorn Basin, USA

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.

    2012-12-01

    Plant terpenoids (defense compounds synthesized from the 5-carbon building block isoprene) have a long history of use as geochemical plant biomarkers, and potentially can be used to reconstruct changes in the abundances of major land plant groups in rocks and sediments that do not preserve plant megafossils or pollen. Pentacyclic triterpenoids are synthesized almost exclusively by angiosperms whereas conifers produce the tricyclic diterpenoids. Many previous studies have focused on the use of di- to triterpenoid ratios to reconstruct floral changes in the geologic past, however few studies have compared terpenoid-based paleoflora proxies to pollen or megafossils. Prior reconstructions also did not take into account differences in biomarker production between plant functional types, such as deciduous and evergreen plants, which can be quite large. To investigate the use of terpenoids as paleoflora proxies, we examined sediments from the Bighorn Basin (Wyoming, USA) where ancient megafloras have been studied in detail. We analyzed di- and triterpenoid abundances as well as plant leaf waxes (n-alkanes) and other biomarkers in a total of 75 samples from 15 stratigraphic horizons from the late Paleocene (62 Ma) to early Eocene (52.5 Ma). By comparing terpenoid ratios with abundances estimated from plant megafossils, we can evaluate the utility of terpenoids as paleovegetation proxies. In nearly all samples, angiosperm triterpenoids are significantly lower in abundance than conifer diterpenoids. This contrasts with leaf fossil data that indicate paleofloras were dominated by angiosperms in both abundance and diversity. Traditional use of terpenoid paleovegetation proxies would therefore significantly overestimate the abundance of conifers, even when accounting for plant production differences. To determine if this overestimate is related to the loss of angiosperm triterpenoids (rather than enhanced production of diterpenoids in the geologic past), we compared angiosperm triterpenoids to the n-alkane leaf waxes, which are produced primarily by angiosperms. After accounting for concentration differences between these two biomarker groups in modern plants, it is apparent that triterpenoid amounts are still significantly lower than expected in nearly all of our samples. We suggest a loss of triterpenoids might be related to enhanced diagenesis of triterpenoids in oxidizing terrestrial sediments. In order to reconstruct paleovegetation we propose a new method that employs a ratio of diterpenoids (conifers) to n-alkanes (angiosperms) and accounts for biomarker biomass abundance differences. Using this approach, we estimate paleovegetation communities similar to those predicted from megafossils. Although this new biomarker-based paleovegetation proxy works for sites within the Bighorn Basin, we stress this approach will need to be evaluated for other depositional environments using pollen or megafossil data.

  11. Analysis of chemical components from plant tissue samples

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.

    1972-01-01

    Information is given on the type and concentration of sterols, free fatty acids, and total fatty acids in plant tissue samples. All samples were analyzed by gas chromatography and then by gas chromatography-mass spectrometry combination. In each case the mass spectral data was accumulated as a computer printout and plot. Typical gas chromatograms are included as well as tables describing test results.

  12. Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments

    NASA Astrophysics Data System (ADS)

    Gońi, Miguel A.; Hedges, John I.

    1990-11-01

    An extensive suite of C 14-C 18 hydroxylated fatty acids of cutin origin was identified among the nonlignin CuO reaction products from tissues of 67 different plant species. These mid-chain and ?-hydroxylated cutin acids together accounted for 0.5 to 4% of the organic carbon (OC) in these nonwoody vascular plant tissues and were produced in characteristically different yields by the various plant types. Nonvascular plants, including bulk phytoplankton, kelps, mosses, and liverworts, did not yield measurable amounts of cutin acids, except for trace levels of ?-hydroxytetradecanoic acid detected in kelps. Most of the "lower" vascular plants, such as clubmosses and ferns, produced simple cutin acid suites composed mainly of ?-hydroxy C 14 and C 16 acids. Gymnosperm needles yielded cutin acid suites dominated by C 16 acids, in which 9,16- and 10,16-dihydroxyhexadecanoic acids were characteristically abundant. Relatively high yields of C 18 acids were obtained from angiosperm tissues, among which dicotyledons exhibited a predominance of 9,10,18-trihydroxyoctadecanoic acid over all the other C 18 acids. The Chromatographie peak corresponding to dihydroxyhexadecanoic acid was a mixture of the positional isomers 8,16-, 9, 16-, and 10,16-dihydroxyhexadecanoic acids, whose relative abundances uniquely characterized monocotyledon tissues and distinguished among different types of gymnosperm tissues. Based on the cutin acid yields obtained from the different plant types, several geochemical parameters were developed to distinguish up to six different cutin-bearing plant groups as possible components of sedimentary mixtures.

  13. Did debris-covered glaciers serve as pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on glacier surfaces

    USGS Publications Warehouse

    Fickert, T.; Friend, D.; Gruninger, F.; Molnia, B.; Richter, M.

    2007-01-01

    This study proposes a new hypothesis: Debris-covered glaciers served as Pleistocene biological refugia. This is based on detailed studies of vascular plant growth on six debris-mantled glaciers, literally around the world, as well as many casual observations also across the globe. We find that such glaciers are quite common and are distributed globally. Using Carbon Glacier, Mount Rainier, U.S.A., as a type locality and case study, we show aspects of the floristic and structural diversity as well as spatial patterns of plant growth on the glacier surface. Migration strategies, root characteristics, and origin and dispersal strategies for vascular plant species are documented. Also reported are special microclimatic conditions in these areas allowing for this remarkable plant ecology. We find that alpine taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures found on glacial debris with ice underneath, and that may have significantly altered the spatial distribution of such flora during full glacial conditions. This in turn creates previously undocumented areas from which alpine, and perhaps arctic, plant species reestablished in post-glacial time. This hypothesis is complementary to both the nunatak hypothesis and tabula rasa theory and possibly helps solve the ongoing controversy between them. ?? 2007 Regents of the University of Colorado.

  14. Impact of Fukushima-derived radiocesium in the western North Pacific Ocean about ten months after the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Kumamoto, Yuichiro; Aoyama, Michio; Hamajima, Yasunori; Murata, Akihiko; Kawano, Takeshi

    2015-02-01

    We measured vertical distributions of radiocesium ((134)Cs and (137)Cs) at stations along the 149°E meridian in the western North Pacific during winter 2012, about ten months after the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident. The Fukushima-derived (134)Cs activity concentration and water-column inventory were largest in the transition region between 35 and 40°N approximately due to the directed discharge of the contaminated water from the FNPP1. The bomb-derived (137)Cs activity concentration just before the FNPP1 accident was derived from the excess (137)Cs activity concentration relative to the (134)Cs activity concentration. The water-column inventory of the bomb-derived (137)Cs was largest in the subtropical region south of 35°N, which implies that the Fukushima-derived (134)Cs will also be transported from the transition region to the subtropical region in the coming decades. Mean values of the water-column inventories decay-corrected for the Fukushima-derived (134)Cs and the bomb-derived (137)Cs were estimated to be 1020 ± 80 and 820 ± 120 Bq m(-2), respectively, suggesting that in winter 2012 the impact of the FNPP1 accident in the western North Pacific Ocean was nearly the same as that of nuclear weapons testing. Relationship between the water-column inventory and the activity concentration in surface water for the radiocesium is essential information for future evaluation of the total amount of Fukushima-derived radiocesium released into the North Pacific Ocean. PMID:25461523

  15. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...The following are exempt from CITES document requirements when certain criteria are met. (1) Plant hybrids. Seeds and pollen (including pollinia), cut flowers, and flasked seedlings or tissue cultures of hybrids that qualify as artificially...

  16. Genetic Profiling of the Isoprenoid and Sterol Biosynthesis Pathway Genes of Trypanosoma cruzi

    PubMed Central

    Cosentino, Raúl O.; Agüero, Fernán

    2014-01-01

    In Trypanosoma cruzi the isoprenoid and sterol biosynthesis pathways are validated targets for chemotherapeutic intervention. In this work we present a study of the genetic diversity observed in genes from these pathways. Using a number of bioinformatic strategies, we first identified genes that were missing and/or were truncated in the T. cruzi genome. Based on this analysis we obtained the complete sequence of the ortholog of the yeast ERG26 gene and identified a non-orthologous homolog of the yeast ERG25 gene (sterol methyl oxidase, SMO), and we propose that the orthologs of ERG25 have been lost in trypanosomes (but not in Leishmanias). Next, starting from a set of 16 T. cruzi strains representative of all extant evolutionary lineages, we amplified and sequenced ?24 Kbp from 22 genes, identifying a total of 975 SNPs or fixed differences, of which 28% represent non-synonymous changes. We observed genes with a density of substitutions ranging from those close to the average (?2.5/100 bp) to some showing a high number of changes (11.4/100 bp, for the putative lathosterol oxidase gene). All the genes of the pathway are under apparent purifying selection, but genes coding for the sterol C14-demethylase, the HMG-CoA synthase, and the HMG-CoA reductase have the lowest density of missense SNPs in the panel. Other genes (TcPMK, TcSMO-like) have a relatively high density of non-synonymous SNPs (2.5 and 1.9 every 100 bp, respectively). However, none of the non-synonymous changes identified affect a catalytic or ligand binding site residue. A comparative analysis of the corresponding genes from African trypanosomes and Leishmania shows similar levels of apparent selection for each gene. This information will be essential for future drug development studies focused on this pathway. PMID:24828104

  17. Development of novel cosmetic base using sterol surfactant. II. Solubilizing of sparingly soluble ultraviolet ray absorbers.

    PubMed

    Teshigawara, Takashi; Miyahara, Reiji; Fukuhara, Tadao; Oka, Takashi

    2009-01-01

    Previous studies have reported that O/W emulsion prepared using a surfactant with phytosterol as the hydrophobic moiety exhibited unique morphology; a lamellar structure was present on the surface of the emulsified particles. It is suggested that such a unique self-organized structure was due to the large and bulky planar structure of the sterol. On the other hand, sparingly soluble compounds including ultraviolet ray absorbers and medicines (e.g., indomethacine and finasteride) have been used after they are dissolved mainly in polar oils. However, it is very difficult to dissolve them in bases that contain small amounts of oil components such as lotions. Moreover, many of these sparingly soluble compounds have planar structures such as aromatic rings and are easy to crystallize in polar oil. In this study, sterol surfactants were considered suitable for solubilizing sparingly soluble compounds, since they have a bulky planar structure in their molecules. On this basis, the solubilization of ultraviolet ray absorbers using sterol surfactants was investigated. Methods to solubilize ultraviolet ray absorbers stably and effectively by using a surfactant that had a phytosterol structure have been clarified. Further, the following features were also suggested: (1) the microemulsion of phytosterol surfactant is different from that of other surfactants and (2) a rigid core that has solubilized compounds between the hydrophobic moieties was considered; further, the core was surrounded by a polyoxyethylene chain that prevented the self-aggregation. Analysis using NMR measurements suggested that (1) the polyoxyethylene/polyoxypropylene random copolymer dimethyl ether squeezed in a narrow gap between the hydrophobic moieties of the surfactant, and (2) this eventually increased the solubilized amount of an ultraviolet ray absorber. PMID:19075505

  18. Clonoamide, a new inhibitor of sterol O-acyltransferase, produced by Clonostachys sp. BF-0131.

    PubMed

    Kobayashi, Keisuke; Tsukasaki, Nobuaki; Uchida, Ryuji; Yamaguchi, Yuichi; Tomoda, Hiroshi

    2015-10-01

    A new compound designated as clonoamide was isolated from a culture broth of the fungus Clonostachys sp. BF-0131 by solvent extraction, Diaion HP20 column chromatography, octadecylsilyl column chromatography and preparative HPLC as an inhibitor of sterol O-acyltransferase (SOAT). The structure of clonoamide was elucidated as 2-oxo-9E,11E-tridecandienyl acetamide by various spectral analyses including NMR. The compound inhibited SOAT1 and SOAT2 isozymes with IC50 values of 39 and 110??m, respectively, in a cell-based assay using SOAT1- and SOAT2-expressing Chinese hamster ovary cells. PMID:25899123

  19. Identification of hopanoid, sterol, and tetrahymanol production in the aerobic methanotroph Methylomicrobium alcaliphilum 20Z

    NASA Astrophysics Data System (ADS)

    Welander, P. V.; Summons, R. E.

    2013-12-01

    Correlating the occurrence of molecular biosignatures preserved in the rock record with specific microbial taxa is a compelling strategy for studying microbial life in the context of the Earth's distant past. Polycyclic triterpenoids, including the hopanes and steranes, comprise classes of biomarkers that are readily detected in a variety of ancient sediments and are clearly recognized as the diagenetic products of modern day bacterial hopanoids and eukaryotic sterols. Thus, based on the distribution of these lipids in extant microbes, the occurrence of their diagenetic products in the rock record is often utilized as evidence for the existence of specific bacterial and eukaryotic taxa in ancient ecosystems. However, questions have arisen about our understanding of the taxonomic distribution of many of these molecular biomarkers in extant microbes. This is prompting reassessments of the use of polycyclic triterpenoids as geological proxies for microbial taxa, especially in the light of the poorly defined issue of microbial diversity. Recently, significant effort has been put forth to better understand the biosynthesis, function, and regulation of these lipid molecules in a variety of modern organisms so that a more informed interpretation of their occurrence in the rock record can be reached. Here we report the unprecedented production of three different classes of polycyclic triterpenoid biomarker lipids in one bacterium. Methylomicrobium alcaliphilum 20Z, a member of the Gammaproteobacteria, is a halotolerant alkaliphilic aerobic methanotroph previously isolated from a moderately saline soda lake in Tuva (Central Asia). In this study, M. alcaliphilum is shown to produce C-3 methylated and unmethylated aminohopanoids commonly associated with other mesophilic aerobic methanotrophs. In addition, this organism is also able to produce 4,4-dimethyl sterols and surprisingly, the gammacerane triterpenoid tetrahymanol. Previously, tetrahymanol production has only been observed in freshwater and marine ciliates (such as Tetrahymena thermophila) and two bacteria unrelated to aerobic methanotrophs, Rhodopseudomonas and Bradyrhizobium. Utilizing comparative genomics we identified the oxidosqualene cyclase gene required for sterol biosynthesis as well as two copies of the squalene hopene cyclase gene necessary for hopanoid biosynthesis in the M. alcaliphilum genome. To determine if one or both copies of the squalene hopene cyclase gene were necessary for aminohopanoid or tetrahymanol production, shc gene deletions were constructed and the subsequent mutants were analyzed for impaired hopanoid production. The occurrence of sterols, hopanoids and gammacerane lipids in one bacterium not only provides a unique system in which to study the biosynthesis and function of each lipid class but also to investigate any potential functional and evolutionary relationship these three lipid classes may share. In turn, these studies provide information necessary to properly interpret the occurrence of these molecules in the rock record.

  20. PROTEIN STRUCTURE. Crystal structure of a mycobacterial Insig homolog provides insight into how these sensors monitor sterol levels.

    PubMed

    Ren, Ruobing; Zhou, Xinhui; He, Yuan; Ke, Meng; Wu, Jianping; Liu, Xiaohui; Yan, Chuangye; Wu, Yixuan; Gong, Xin; Lei, Xiaoguang; Yan, S Frank; Radhakrishnan, Arun; Yan, Nieng

    2015-07-10

    Insulin-induced gene 1 (Insig-1) and Insig-2 are endoplasmic reticulum membrane-embedded sterol sensors that regulate the cellular accumulation of sterols. Despite their physiological importance, the structural information on Insigs remains limited. Here we report the high-resolution structures of MvINS, an Insig homolog from Mycobacterium vanbaalenii. MvINS exists as a homotrimer. Each protomer comprises six transmembrane segments (TMs), with TM3 and TM4 contributing to homotrimerization. The six TMs enclose a V-shaped cavity that can accommodate a diacylglycerol molecule. A homology-based structural model of human Insig-2, together with biochemical characterizations, suggest that the central cavity of Insig-2 accommodates 25-hydroxycholesterol, whereas TM3 and TM4 engage in Scap binding. These analyses provide an important framework for further functional and mechanistic understanding of Insig proteins and the sterol regulatory element-binding protein pathway. PMID:26160948

  1. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2005-03-31

    This report documents progress made on the subject project during the period of September 1, 2004 through February 28, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, all fieldwork at Plant 0 was completed. Stack sampling was conducted in October to determine if there were significant differences between the in-stack PM concentrations and the diluted concentrations used for the animal exposures. Results indicated no significant differences and therefore confidence that the revised stack sampling methodology described in the previous semiannual report is appropriate for use in the Project. Animal exposures to three atmospheric scenarios were carried out. From October 4-7, we conducted exposures to oxidized emissions with the addition of secondary organic aerosol (SOA). Later in October, exposures to the most complex scenario (oxidized, neutralized emissions plus SOA) were repeated to ensure comparability with the results of the June/July exposures where a different stack sampling setup was employed. In November, exposures to oxidized emissions were performed. Stage I toxicological assessments were carried out in Sprague-Dawley rats. Biological endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. No significant differences between exposed animals and sham animals (exposed to filtered air) were observed for any of the endpoints; histopathological results are pending and will be reported in the next semiannual report. The scenarios evaluated during this reporting period were slightly modified from those originally proposed. We substituted a new scenario, secondary aerosol + SOA, to investigate the effects of a strongly acidic aerosol with a biogenic component. Since we did not observe any biological response to this scenario, the neutralized secondary aerosol scenario (i.e., oxidized emissions + ammonia) was deemed unnecessary. Moreover, in light of the lack of response observed in the Stage I assessment, it was decided that a Stage II assessment (evaluation of cardiac function in a compromised rat model) was unlikely to provide useful information. However, this model will be employed at Plant 1 and/or 2. During this reporting period, significant progress was made in planning for fieldwork at Plant 1. Stack sampling was carried out at the plant in mid-December to determine the concentration of primary particles. It was found that PM{sub 2.5} mass concentrations were approximately three times higher than those observed at Plant 0. In mid-February, installation and setup for the mobile laboratories began. Animal exposures are scheduled to begin at this plant on March 21, 2005. During the next reporting period, we will initiate fieldwork at Plant 1. At either or both Plants 1 and 2, a detailed Stage II assessment will be performed, even if no significant findings are observed in Stage I. The next semiannual report is expected to include a detailed description of the fieldwork at Plant 1, including toxicological findings and interpretation.

  2. Persistence and translocation of a benzothiadiazole derivative in tomato plants in relation to systemic acquired resistance against Pseudomonas syringae pv tomato.

    PubMed

    Scarponi, L; Buonaurio, R; Martinetti, L

    2001-03-01

    A reproducible and accurate procedure, based on HPLC analysis, has been developed to determine simultaneously acibenzolar-S-methyl (CGA 245 704) and its acid derivative (CGA 210 007) in tomato leaves. The limit of detection and quantification of the method are 0.015 and 0.15 mg litre-1 for CGA 245 704 and 0.030 and 0.30 mg litre-1 for CGA 210 007. In tomato plants treated with 250 microM CGA 245 704, it was found that the inducer rapidly translocates from treated leaves (cotyledons, 1st and 2nd) to untreated leaves (3rd to 5th), with the maximum translocation (40% of the total quantity found) occurring 8 h after the treatment. CGA 245 704 residues decreased as time elapsed in both treated and untreated tomato leaves, reaching negligible values 72 h after treatment. The acid derivative, CGA 210 007, was formed in tomato plants as early as 2 h after CGA 245 704 treatment, albeit only in the treated leaves. CGA 210 007 residues decreased in treated tomato leaves with a trend similar to that observed for CGA 245 704. Treatment of tomato plants with CGA 245 704 or CGA 210 007 at 250 microM systemically protected the plants against Pseudomonas syringae pv tomato attacks, the causal agent of bacterial speak disease. Evidence of this were reductions in the degree of infection, the bacterial lesion diameter and the bacterial growth in planta. Since neither CGA 245 704 nor CGA 210 007 inhibited bacterial growth in vitro and the protection against bacterial speak of tomato was observed when the two compounds were completely degraded, the protection must be due to the activation of the plant's defence mechanisms. PMID:11455656

  3. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2006-03-31

    This report documents progress made on the subject project during the period of September 1, 2005 through February 28, 2006. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, data processing and analyses were completed for exposure and toxicological data collected during the field campaign at Plant 1, located in the Southeast. To recap from the previous progress report, Stage I toxicological assessments were carried out in normal Sprague-Dawley rats, and Stage II assessments were carried out in a compromised model (myocardial infarction-MI-model). Normal rats were exposed to the following atmospheric scenarios: (1) primary particles; (2) oxidized emissions; (3) oxidized emissions + SOA--this scenario was repeated; and (4) oxidized emissions + ammonia + SOA. Compromised animals were exposed to oxidized emissions + SOA (this scenario was also conducted in replicate). Mass concentrations in exposure atmospheres ranged from 13.9 {micro}g/m{sup 3} for the primary particle scenario (P) to 385 {micro}g/m{sup 3} for one of the oxidized emissions + SOA scenarios (POS). There was a fair amount of day-to-day variation in mass concentration, even within a given exposure round; this is likely due to the inherent variation in the power plant operation. Concentrations of ozone, NO{sub x} and SO{sub 2}, and carbonyls were below 50 ppb. Total sulfate concentration ranged from 82 to 175 {micro}g/m{sup 3}. Elemental data suggest substantial day-to-day variations which again provide insight about the inherent variations attributed to plant operation. All elements were present at low concentrations except for sulfur. Other prominent elements were: Si, Br, Ca, K, La and Cu. SOA was speciated using GC-MS, with typical {alpha}-pinene oxidation products being observed. Toxicological results obtained to date from Plant 1 indicate some biological responses to some exposure scenarios. We observed pulmonary function changes, increased oxidative stress, and increases in cardiac arrhythmias in response to certain scenarios. For the oxidative stress endpoint, an increase in chemiluminescence occurred only in those scenarios including SOA. More detailed statistical modeling also points to the importance of organic material in these scenarios; additional analyses are currently underway to better understand this finding. Fieldwork for Plant 2, located in the Midwest, is scheduled for June-September 2006, and logistical planning is now underway. During the next reporting period, we will complete fieldwork at Plant 2. A draft topical report for Plant 0 was submitted to DOE-NETL in December 2005, with the final report to be submitted in April, 2006. We will also complete a topical report for Plant 1 by June 30, 2006.

  4. GC-MS method for determining faecal sterols as biomarkers of human and pastoral animal presence in freshwater sediments.

    PubMed

    Battistel, Dario; Piazza, Rossano; Argiriadis, Elena; Marchiori, Enrico; Radaelli, Marta; Barbante, Carlo

    2015-11-01

    In order to determine sterols and stanols in freshwater sediments to reconstruct the past presence of humans and pastoral animals, we developed an analytical method based on pressurised liquid extraction (PLE), clean-up performed using solid phase extraction (SPE) and sterol determination using gas chromatography-mass spectrometry (GC-MS) analysis. PLE extraction conditions were optimised using dichloromethane (DCM) and DCM/methanol mixtures. Clean-up was performed with 2 g silica SPE cartridges, and the concentrated extracts were eluted with 70 mL DCM. Extraction yield was evaluated using an in-house reference material spiked with (13)C-labelled cholesterol and aged for 10 days. In comparison with pre-extraction, where the sediment is extracted and then spiked with a known analyte concentration, this approach preserves the original composition of the sediment. DCM and DCM/methanol mixtures resulted in high extraction yields ranging from 86 to 92 % with good reproducibility (relative standard deviation (RSD) 5-8 %). PLE extraction yields obtained with DCM as the extracting solvent were about 1.5 times higher than extractions using an ultrasonic bath. The solvent extraction mixture and matrix composition strongly affected the solvent extraction composition where higher overall recoveries (70-80 %) for each compound were obtained with DCM. The extraction mixture and matrix composition also affected the analyte concentrations, resulting in a method precision ranging from 1 to 18 %. Diatomaceous earth spiked with 10 to 100 ng of sterols, and environmental samples fortified with suitable amounts of sterols provided apparent recovery values ranging from 90 to 110 %. We applied the method to environmental samples both close to and upstream from sewage discharge zones, resulting in substantially higher faecal sterol (FeSt) concentrations near the sewage. In addition, we also applied the method to a 37-cm freshwater sediment core in order to evaluate its applicability for obtaining vertical sterol profiles. PMID:26342314

  5. Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments

    SciTech Connect

    Goni, M.A.; Hedges, J.I. )

    1990-11-01

    An extensive suite of C{sub 14}-C{sub 18} hydroxylated fatty acids of cutin origin was identified among the nonlignin CuO reaction products from tissues of 67 different plant species. These mid-chain and {omega}-hydroxylated cutin acids together accounted for 0.5 to 4% of the organic carbon (OC) in these nonwoody vascular plant tissues and were produced in characteristically different yields by the various plant types. Nonvascular plants, including bulk phytoplankton, kelps, mosses, and liverworts, did not yield measurable amounts of cutin acids, except for trace levels of {omega}-hydroxytetradecanoic acid detected in kelps. Most of the lower vascular plants, such as clubmosses and ferns, produced simple cutin acid suites composed mainly of {omega}-hydroxy C{sub 14} and C{sub 16} acids. Gymnosperm needles yielded cutin acid suites dominated by C{sub 16} acids, in which 9,16- and 10,16-dihydroxyhexadecanoic acids were characteristically abundant. Relatively high yields of C{sub 18} acids were obtained from angiosperm tissues, among which dicotyledons exhibited a predominance of 9,10,18-trihydroxyoctadecanoic acid over all the other C{sub 18} acids. The chromatographic peak corresponding to dihydroxyhexadecanoic acid was a mixture of the positional isomers 8,16-, 9,16-, and 10,16-dihydroxyhexadecanoic acids, whose relative abundances uniquely characterized monocotyledon tissues and distinguished among different types of gymnosperm tissues. Based on the cutin acid yields obtained from the different plant types, several geochemical parameters were developed to distinguish up to six different cutin-bearing plant groups as possible components of sedimentary mixtures.

  6. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium

    PubMed Central

    Rudolph, Michael C.; Monks, Jenifer; Burns, Valerie; Phistry, Meridee; Marians, Russell; Foote, Monica R.; Bauman, Dale E.; Anderson, Steven M.

    2010-01-01

    The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ?2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase (Fasn), insulin-induced gene 1 (Insig1), mitochondrial citrate transporter (Slc25a1), and stearoyl-CoA desaturase 2 (Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1? (Acaca) and ATP citrate lyase (Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein. PMID:20739508

  7. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWDER PLANT-DERIVED PM 2.5

    SciTech Connect

    Annette Rohr

    2006-08-31

    This report documents progress made on the subject project during the period of March 1, 2006 through August 31, 2006. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, data processing and analyses were completed for exposure and toxicological data collected during the field campaign at Plant 1, located in the Southeast. Toxicological results indicate some pulmonary, oxidative stress, and cardiovascular responses to certain exposure scenarios. Fieldwork at Plant 2, located in the Midwest, began on July 19, 2006. The following scenarios were completed: July 19-22: POS (oxidized + SOA); July 25-28: PONS (oxidized + neutralized + SOA); August 8-13: P (primary); August 14-15: POS; August 16-17: POS (MI rats); August 28-31: OS (oxidized + SOA, without primary particles); September 1-4: O (oxidized, no primary particles); and September 6-9: S (SOA, no primary particles). During the next reporting period, we will report complete exposure and toxicological results for Plant 2. Planning will begin for the mobile source component of the research (funded through the Harvard-EPA Center for PM Health Effects), scheduled to take place in 2008. We will also hold our annual meeting of the TERESA Technical Advisory Committee, planned for early in 2007.

  8. Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA): Application to Power Plant-Derived PM2.5

    SciTech Connect

    Annette Rohr

    2007-02-28

    This report documents progress made on the subject project during the period of September 1, 2007 through February 28, 2007. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 2, located in the Midwest. The following scenarios were completed: (1) July 19-22: POS (oxidized + SOA); (2) July 25-28: PONS (oxidized + neutralized + SOA); (3) August 8-13: P (primary); (4) August 14-15: POS; (5) August 16-17: POS (MI rats); (6) August 28-31: OS (oxidized + SOA, without primary particles); (7) September 1-4: O (oxidized, no primary particles); (8) September 6-9: S (SOA, no primary particles); and (9) September 19-22: PO (oxidized). Results indicated some biological effects with some scenarios. Also during this reporting period, the annual meeting of the TERESA Technical Advisory Committee was held at the Harvard School of Public Health in Boston. During the next reporting period, data analyses will continue for Plant 2 as well as for pooled data from all three plants. Manuscripts documenting the overall project findings will be prepared for submission to the peer literature. Preliminary planning will begin for the mobile source component of the research (funded through the Harvard-EPA Center for PM Health Effects), scheduled to take place in 2008.

  9. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect

    Annette Rohr

    2005-09-30

    This report documents progress made on the subject project during the period of March 1, 2005 through August 31, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 1, located in the Southeast. Stage I toxicological assessments were carried out in normal Sprague-Dawley rats, and Stage II assessments were carried out in a compromised model (myocardial infarction-MI-model). Normal rats were exposed to the following atmospheric scenarios: (1) primary particles; (2) oxidized emissions; (3) oxidized emissions + secondary organic aerosol (SOA)--this scenario was repeated; and (4) oxidized emissions + ammonia + SOA. Compromised animals were exposed to oxidized emissions + SOA (this scenario was also conducted in replicate). Stage I assessment endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. Stage II assessments included continuous ECG monitoring via implanted telemeters and blood chemistry (complete blood count, circulating cytokines (interleukins-1 and -6), C-reactive protein (CRP), tumor necrosis factor alpha (TNF-{alpha}), and endothelin-1). Only a subset of exposure data was available at the time of preparation of this report. Continuous PM{sub 2.5} mass (TEOM) results indicate a mass concentration of 14 {micro}g/m{sup 3} for the primary particle scenario, and a range of 151 to 385 {micro}g/m{sup 3} for the oxidized emissions scenarios. Toxicological results obtained to date from Plant 1 indicate subtle biological responses to some of the exposure scenarios. We observed statistically significant changes in several breathing pattern parameters, including tidal volume and frequency. For one scenario (oxidized emissions + SOA), we observed a significant increase in Enhanced Pause (Penh), a parameter that may reflect airflow restriction. However, the respiratory changes are very subtle and do not present a clear picture of a particular respiratory effect (e.g., airway restriction, sensory irritation, or pulmonary irritation). A significant increase in lung chemiluminescence (a marker of oxidative stress in lung tissue) in exposed animals (vs. air-exposed controls) was observed in animals exposed to oxidized emissions + SOA. No changes were observed in heart tissue, nor in any other scenario. Stage II assessments were conducted to the secondary + SOA scenario; ECG and blood analysis data are pending. Planning was initiated for Plant 2, located in the Midwest. Because of the requirement for both the FGD and the SCR to be concurrently operational for appropriate reaction conditions, fieldwork at Plant 2 is scheduled for Summer 2006. During the next reporting period, we will complete all remaining exposure and toxicological analyses for Plant 1, and the next semiannual report will include a detailed description of these data and their interpretation. We are also in the process of preparing a topical report for Plant 0.

  10. Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Sandeep, K P; Simunovic, Josip; Harris, Keith; Osborne, Jason A; Hassan, Hosni M

    2015-08-01

    Cycle threshold (Ct) increase, quantifying plant-derived DNA fragmentation, was evaluated for its utility as a time-temperature integrator. This novel approach to monitoring thermal processing of fresh, plant-based foods represents a paradigm shift. Instead of using quantitative polymerase chain reaction (qPCR) to detect pathogens, identify adulterants, or authenticate ingredients, this rapid technique was used to quantify the fragmentation of an intrinsic plant mitochondrial DNA (mtDNA) gene over time-temperature treatments. Universal primers were developed which amplified a mitochondrial gene common to plants (atp1). These consensus primers produced a robust qPCR signal in 10 vegetables, 6 fruits, 3 types of nuts, and a biofuel precursor. Using sweet potato (Ipomoea batatas) puree as a model low-acid product and simple linear regression, Ct value was highly correlated to time-temperature treatment (R(2) = 0.87); the logarithmic reduction (log CFU/mL) of the spore-forming Clostridium botulinum surrogate, Geobacillus stearothermophilus (R(2) = 0.87); and cumulative F-value (min) in a canned retort process (R(2) = 0.88), all comparisons conducted at 121 °C. D121 and z-values were determined for G. stearothermophilus ATCC 7953 and were 2.71 min and 11.0 °C, respectively. D121 and z-values for a 174-bp universal plant amplicon were 11.3 min and 9.17 °C, respectively, for mtDNA from sweet potato puree. We present these data as proof-of-concept for a molecular tool that can be used as a rapid, presumptive method for monitoring thermal processing in low-acid plant products. PMID:26235411

  11. Targeting Ergosterol Biosynthesis in Leishmania donovani: Essentiality of Sterol 14alpha-demethylase

    PubMed Central

    McCall, Laura-Isobel; El Aroussi, Amale; Choi, Jun Yong; Vieira, Debora F.; De Muylder, Geraldine; Johnston, Jonathan B.; Chen, Steven; Kellar, Danielle; Siqueira-Neto, Jair L.; Roush, William R.; Podust, Larissa M.; McKerrow, James H.

    2015-01-01

    Leishmania protozoan parasites (Trypanosomatidae family) are the causative agents of cutaneous, mucocutaneous and visceral leishmaniasis worldwide. While these diseases are associated with significant morbidity and mortality, there are few adequate treatments available. Sterol 14alpha-demethylase (CYP51) in the parasite sterol biosynthesis pathway has been the focus of considerable interest as a novel drug target in Leishmania. However, its essentiality in Leishmania donovani has yet to be determined. Here, we use a dual biological and pharmacological approach to demonstrate that CYP51 is indispensable in L. donovani. We show via a facilitated knockout approach that chromosomal CYP51 genes can only be knocked out in the presence of episomal complementation and that this episome cannot be lost from the parasite even under negative selection. In addition, we treated wild-type L. donovani and CYP51-deficient strains with 4-aminopyridyl-based inhibitors designed specifically for Trypanosoma cruzi CYP51. While potency was lower than in T. cruzi, these inhibitors had increased efficacy in parasites lacking a CYP51 allele compared to complemented parasites, indicating inhibition of parasite growth via a CYP51-specific mechanism and confirming essentiality of CYP51 in L. donovani. Overall, these results provide support for further development of CYP51 inhibitors for the treatment of visceral leishmaniasis. PMID:25768284

  12. Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans.

    PubMed

    Bühler, Nicole; Hagiwara, Daisuke; Takeshita, Norio

    2015-09-01

    Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth. PMID:26116213

  13. Endogenous Sterol Metabolites Regulate Growth of EGFR/KRAS-Dependent Tumors via LXR.

    PubMed

    Gabitova, Linara; Restifo, Diana; Gorin, Andrey; Manocha, Kunal; Handorf, Elizabeth; Yang, Dong-Hua; Cai, Kathy Q; Klein-Szanto, Andres J; Cunningham, David; Kratz, Lisa E; Herman, Gail E; Golemis, Erica A; Astsaturov, Igor

    2015-09-22

    Meiosis-activating sterols (MAS) are substrates of SC4MOL and NSDHL in the cholesterol pathway and are important for normal organismal development. Oncogenic transformation by epidermal growth factor receptor (EGFR) or RAS increases the demand for cholesterol, suggesting a possibility for metabolic interference. To test this idea in vivo, we ablated Nsdhl in adult keratinocytes expressing KRAS(G12D). Strikingly, Nsdhl inactivation antagonized the growth of skin tumors while having little effect on normal skin. Loss of Nsdhl induced the expression of ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, reduced the expression of low-density lipoprotein receptor (LDLR), decreased intracellular cholesterol, and was dependent on the liver X receptor (LXR) ?. Importantly, EGFR signaling opposed LXR? effects on cholesterol homeostasis, whereas an EGFR inhibitor synergized with LXR? agonists in killing cancer cells. Inhibition of SC4MOL or NSDHL, or activation of LXR? by sterol metabolites, can be an effective strategy against carcinomas with activated EGFR-KRAS signaling. PMID:26344763

  14. Neutron diffraction studies of the interaction between amphotericin B and lipid-sterol model membranes

    NASA Astrophysics Data System (ADS)

    Foglia, Fabrizia; Lawrence, M. Jayne; Deme?, Bruno; Fragneto, Giovanna; Barlow, David

    2012-10-01

    Over the last 50 years or so, amphotericin has been widely employed in treating life-threatening systemic fungal infections. Its usefulness in the clinic, however, has always been circumscribed by its dose-limiting side-effects, and it is also now compromised by an increasing incidence of pathogen resistance. Combating these problems through development of new anti-fungal agents requires detailed knowledge of the drug's molecular mechanism, but unfortunately this is far from clear. Neutron diffraction studies of the drug's incorporation within lipid-sterol membranes have here been performed to shed light on this problem. The drug is shown to disturb the structures of both fungal and mammalian membranes, and co-localises with the membrane sterols in a manner consistent with trans-membrane pore formation. The differences seen in the membrane lipid ordering and in the distributions of the drug-ergosterol and drug-cholesterol complexes within the membranes are consistent with the drug's selectivity for fungal vs. human cells.

  15. Structural Insights into Inhibition of Sterol 14[alpha]-Demethylase in the Human Pathogen Trypanosoma cruzi

    SciTech Connect

    Lepesheva, Galina I.; Hargrove, Tatiana Y.; Anderson, Spencer; Kleshchenko, Yuliya; Furtak, Vyacheslav; Wawrzak, Zdzislaw; Villalta, Fernando; Waterman, Michael R.

    2010-09-02

    Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14{alpha}-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4{prime}-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzyme and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.

  16. Antileishmanial activity of compounds produced by endophytic fungi derived from medicinal plant Vernonia polyanthes and their potential as source of bioactive substances.

    PubMed

    do Nascimento, Adriana M; Soares, Mateus Gonçalves; da Silva Torchelsen, Fernanda K V; de Araujo, Jorge A Viana; Lage, Paula S; Duarte, Mariana C; Andrade, Pedro H R; Ribeiro, Tatiana G; Coelho, Eduardo A F; do Nascimento, Andréa M

    2015-11-01

    The purpose of this work was to evaluate the antileishmanial activity of endophytic fungi isolated from leaves of Vernonia polyanthes plant and their prospective use in the discovery of bioactive compounds. Sixteen endophytes were isolated by using potato dextrose agar medium and submitted to cultivation in rice medium. The fungal cultures were extracted with ethanol and used as crude extracts for testing their antileishmanial activity. The most active ethanol extract was obtained from P2-F3 strain, which was identified as Cochliobolus sativus by ITS rRNA gene sequence data. Followed by a bioassay-guided fractionation, the cochlioquinone A, isocochlioquinone A and anhydrocochlioquinone A compounds were isolated from the crude extracts and demonstrated to inhibit the parasites. From the present work, it is possible to conclude that endophytic fungi derived from medicinal plant V. polyanthes may be considered promising source for the discovery of bioactive compounds. PMID:26318306

  17. DNA-Based Authentication of Botanicals and Plant-Derived Dietary Supplements: Where Have We Been and Where Are We Going?

    PubMed

    Coutinho Moraes, Denise F; Still, David W; Lum, Michelle R; Hirsch, Ann M

    2015-06-01

    Herbal medicines and botanicals have long been used as sole or additional medical aids worldwide. Currently, billions of dollars are spent on botanicals and related products, but minimal regulation exists regarding their purity, integrity, and efficacy. Cases of adulteration and contamination have led to severe illness and even death in some cases. Identifying the plant material in botanicals and phytomedicines using organoleptic means or through microscopic observation of plant parts is not trivial, and plants are often misidentified. Recently, DNA-based methods have been applied to these products because DNA is not changed by growth conditions unlike the chemical constituents of many active pharmaceutical agents. In recent years, DNA barcoding methods, which are used to identify species diversity in the Tree of Life, have been also applied to botanicals and plant-derived dietary supplements. In this review, we recount the history of DNA-based methods for identification of botanicals and discuss some of the difficulties in defining a specific bar code or codes to use. In addition, we describe how next generation sequencing technologies have enabled new techniques that can be applied to identifying these products with greater authority and resolution. Lastly, we present case histories where dietary supplements, decoctions, and other products have been shown to contain materials other than the main ingredient stipulated on the label. We conclude that there is a fundamental need for greater quality control in this industry, which if not self-imposed, that may result from legislation. PMID:25856442

  18. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens.

    PubMed

    Badawy, Mohamed E I; Rabea, Entsar I; Taktak, Nehad E M

    2014-10-13

    Chemical modification of a biopolymer chitosan by introducing quaternary ammonium moieties into the polymer backbone enhances its antimicrobial activity. In the present study, a series of quaternary N-(benzyl) chitosan derivatives were synthesized and characterized by (1)H-NMR, FT-IR and UV spectroscopic techniques. The antimicrobial activity against crop-threatening bacteria Agrobacterium tumefaciens and Erwinia carotovora and fungi Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum and Phytophthora infestans were evaluated. The results proved that the grafting of benzyl moiety or quaternization of the derivatives onto chitosan molecule was successful in inhibiting the microbial growth. Moreover, increase water-solubility of the compounds by quaternization significantly increased the activity against bacteria and fungi. Exocellular enzymes including polygalacturonase (PGase), pectin-lyase (PLase), polyphenol oxidase (PPOase) and cellulase were also affected at 1000 mg/L. These compounds especially quaternary-based chitosan derivatives that have good inhibitory effect should be potentially used as antimicrobial agents in crop protection. PMID:25037402

  19. Plant pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) is a potent intercellular signal for defense, development and metabolism in animals and plants. In mammals, highly regulated nitric oxide synthases (NOSs) generate NO. NOS homologs exist in some prokaryotes, but direct evidence for NO production by these proteins has been lacking...

  20. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA (CITES) Lists of Species § 23.92 Are any... in part 14 of this subchapter and for plants in part 24 of this subchapter and 7 CFR parts 319, 352....64) and that were produced from one or more Appendix-I species or taxa that are not annotated...

  1. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA (CITES) Lists of Species § 23.92 Are any... in part 14 of this subchapter and for plants in part 24 of this subchapter and 7 CFR parts 319, 352....64) and that were produced from one or more Appendix-I species or taxa that are not annotated...

  2. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA (CITES) Lists of Species § 23.92 Are any... in part 14 of this subchapter and for plants in part 24 of this subchapter and 7 CFR parts 319, 352....64) and that were produced from one or more Appendix-I species or taxa that are not annotated...

  3. Modern plant-derived terpenoids in an upper Michigan river basin and implications for interpreting the geologic record

    NASA Astrophysics Data System (ADS)

    Giri, S.; Diefendorf, A. F.; Lowell, T. V.

    2013-12-01

    Di- and triterpenoids are taxonomically specific plant biomarkers, which are produced by conifers and angiosperms, respectively. Because of this source specificity, terpenoids are often used for paleovegetation reconstruction. However, few studies have evaluated weather terpenoid ratios in modern river systems reflect the surrounding plant community. It is likely that various processes that bias terpenoid ratios as they are transported from plants to sediments. To learn more about these important geologic biomarkers, we used a modern fluvial system as an ancient river analog to provide information on the utility of terpenoids as quantitative paleovegetation proxies. Di- and triterpenoid concentrations were quantified in plants, sediments, and particulate and dissolved organic matter in a small river in the Upper Peninsula of Michigan to (1) determine if the contribution of terpenoids from source vegetation is reflected in forested soil and river sediments, and (2) constrain the dispersal of these compounds in fluvial systems. In Miners River drainage basin, evergreen needleleaf conifers are six times less abundant than deciduous broadleaf angiosperms, yet contribute five times more terpenoids to the sediments, when scaled for leaf litter production and present vegetation cover. Thus, using sediment terpenoid ratios alone (ie. no corrections for production differences between major taxonomic groups) to reconstruct vegetation will drastically over represent evergreen conifer populations. Sediment di-/triterpenoid ratios are considerably lower than the expected terpenoid flux from vegetation, suggesting these compounds are preferentially lost between source and sink. In Miners River, terpenoids are transported in the particulate and dissolved organic matter (POM and DOM) fractions of river water. Fluvial transport of terpenoids does not appear to influence river sediment terpenoid concentrations in fresh water systems, like Miners River, however, transport by POM and DOM may affect terpenoid concentrations in estuarine and marine sediments. Despite the challenges of using terpenoids as paleovegetation proxies, when corrected for plant production, basin-wide terpenoid concentrations are useful in predicting the present plant community composition (based on plant census data) within 10-15%. This study suggests that the sedimentary record of terpenoids can broadly reconstruct paleovegetation, when corrected for differential terpenoid production and transport.

  4. pMAA-Red: a new pPZP-derived vector for fast visual screening of transgenic Arabidopsis plants at the seed stage

    PubMed Central

    2012-01-01

    Background The production of transgenic plants, either for the overproduction of the protein of interest, for promoter: reporter lines, or for the downregulation of genes is an important prerequisite in modern plant research but is also very time-consuming. Results We have produced additions to the pPZP family of vectors. Vector pPZP500 (derived from pPZP200) is devoid of NotI sites and vector pPZP600 (derived from pPZP500) contains a bacterial kanamycin resistance gene. Vector pMAA-Red contains a Pdf2.1: DsRed marker and a CaMV:: GUS cassette within the T-DNA and is useful for the production of promoter: GUS lines and overexpression lines. The Pdf2.1 promoter is expressed in seeds and syncytia induced by the beet cyst nematode Heterodera schachti in Arabidopsis roots. Transgenic seeds show red fluorescence which can be used for selection and the fluorescence level is indicative of the expression level of the transgene. The advantage is that plants can be grown on soil and that expression of the marker can be directly screened at the seed stage which saves time and resources. Due to the expression of the Pdf2.1: DsRed marker in syncytia, the vector is especially useful for the expression of a gene of interest in syncytia. Conclusions The vector pMAA-Red allows for fast and easy production of transgenic Arabidopsis plants with a strong expression level of the gene of interest. PMID:22747516

  5. Occurrence and prevalence of Cronobacter spp. in plant and animal derived food sources: a systematic review and meta-analysis.

    PubMed

    Sani, Norrakiah Abdullah; Odeyemi, Olumide A

    2015-01-01

    Cronobacter species are motile, non-spore forming, Gram negative emerging opportunistic pathogens mostly associated with bacteremia, meningitis, septicemia, brain abscesses and necrotizing enterocolitis in infected neonates, infants and immunocompromised adults. Members of the genus Cronobacter are previously associated with powdered infant formula although the main reservoir and routes of contamination are yet to be ascertained. This study therefore aim to summarize occurrence and prevalence of Cronobacter spp. from different food related sources. A retrospective systematic review and meta-analysis of peer reviewed primary studies reported between 2008 and 2014 for the occurrence and prevalence of Cronobacter spp. in animal and plant related sources was conducted using "Cronobacter isolation", "Cronobacter detection" and "Cronobacter enumeration" as search terms in the following databases: Web of Science (Science Direct) and ProQuest. Data extracted from the primary studies were then analyzed with meta-analysis techniques for effect rate and fixed effects was used to explore heterogeneity between the sources. Publication bias was evaluated using funnel plot. A total of 916 articles were retrieved from the data bases of which 28 articles met inclusion criteria. Cronobacter spp. could only be isolated from 103 (5.7 %) samples of animal related food while 123 (19 %) samples of plant related food samples harbors the bacteria. The result of this study shows that occurrence of Cronobacter was more prevalent in plant related sources with overall prevalence rate of 20.1 % (95 % CI 0.168-0.238) than animal originated sources with overall prevalence rate of 8 % (95 % CI 0.066-0.096). High heterogeneity (I (2) = 84) was observed mostly in plant related sources such as herbs, spices and vegetables compared to animal related sources (I (2) = 82). It could be observed from this study that plant related sources serve as reservoir and contamination routes of Cronobacter spp. PMID:26435891

  6. Southwest intrusion of 134Cs and 137Cs derived from the Fukushima Dai-ichi nuclear power plant accident in the Western North Pacific.

    PubMed

    Kaeriyama, Hideki; Shimizu, Yugo; Ambe, Daisuke; Masujima, Masachika; Shigenobu, Yuya; Fujimoto, Ken; Ono, Tsuneo; Nishiuchi, Kou; Taneda, Takeshi; Kurogi, Hiroaki; Setou, Takashi; Sugisaki, Hiroya; Ichikawa, Tadafumi; Hidaka, Kiyotaka; Hiroe, Yutaka; Kusaka, Akira; Kodama, Taketoshi; Kuriyama, Mikiko; Morita, Hiroshi; Nakata, Kaoru; Morinaga, Kenji; Morita, Takami; Watanabe, Tomowo

    2014-03-18

    Enormous quantities of radionuclides were released into the ocean via both atmospheric deposition and direct release as a result of the Fukushima Dai-ichi Nuclear Power Plant (FNPP) accident. This study discusses the southward dispersion of FNPP-derived radioactive cesium (Cs) in subsurface waters. The southernmost point where we found the FNPP-derived (134)Cs (1.5-6.8 Bq m(-3)) was 18 °N, 135 °E, in September 2012. The potential density at the subsurface peaks of (134)Cs (100-500 m) and the increased water column inventories of (137)Cs between 0 and 500 m after the winter of 2011-2012 suggested that the main water mass containing FNPP-derived radioactive Cs was the North Pacific Subtropical Mode Water (NPSTMW), formed as a result of winter convection. We estimated the amount of (134)Cs in core waters of the western part of the NPSTMW to be 0.99 PBq (decay-corrected on 11 March 2011). This accounts for 9.0% of the (134)Cs released from the FNPP, with our estimation revealing that a considerable amount of FNPP-derived radioactive Cs has been transported to the subtropical region by the formation and circulation of the mode water. PMID:24576062

  7. Use of spectral distance, spectral angle, and plant abundance derived from hyperspectral imagery to characterize crop growth variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation indices (VIs) derived from remote sensing imagery are commonly used to quantify crop growth and yield variations. As hyperspectral imagery is becoming more available, the number of possible VIs that can be calculated is overwhelmingly large. The objectives of this study were to examine sp...

  8. Genome and metagenome sequencing: Using the human methyl-binding domain to partition genomic DNA derived from plant tissues1

    PubMed Central

    Yigit, Erbay; Hernandez, David I.; Trujillo, Joshua T.; Dimalanta, Eileen; Bailey, C. Donovan

    2014-01-01

    • Premise of the study: Variation in the distribution of methylated CpG (methyl-CpG) in genomic DNA (gDNA) across the tree of life is biologically interesting and useful in genomic studies. We illustrate the use of human methyl-CpG-binding domain (MBD2) to fractionate angiosperm DNA into eukaryotic nuclear (methyl-CpG-rich) vs. organellar and prokaryotic (methyl-CpG-poor) elements for genomic and metagenomic sequencing projects. • Methods: MBD2 has been used to enrich prokaryotic DNA in animal systems. Using gDNA from five model angiosperm species, we apply a similar approach to identify whether MBD2 can fractionate plant gDNA into methyl-CpG-depleted vs. enriched methyl-CpG elements. For each sample, three gDNA libraries were sequenced: (1) untreated gDNA, (2) a methyl-CpG-depleted fraction, and (3) a methyl-CpG-enriched fraction. • Results: Relative to untreated gDNA, the methyl-depleted libraries showed a 3.2–11.2-fold and 3.4–11.3-fold increase in chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA), respectively. Methyl-enriched fractions showed a 1.8–31.3-fold and 1.3–29.0-fold decrease in cpDNA and mtDNA, respectively. • Discussion: The application of MBD2 enabled fractionation of plant gDNA. The effectiveness was particularly striking for monocot gDNA (Poaceae). When sufficiently effective on a sample, this approach can increase the cost efficiency of sequencing plant genomes as well as prokaryotes living in or on plant tissues. PMID:25383266

  9. Vitamin D and sterol composition of ten types of mushrooms from retail suppliers in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin D, ergosterol, ergosterol metabolites, and phytosterols were analyzed in ten mushroom types sampled nationwide in the U.S. to update the USDA Nutrient Database for Standard Reference. Sterols were analyzed by GC-FID with mass spectrometric confirmation of components. Vitamin D was assayed ...

  10. Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free Fatty acids, monoacylglycerides, squalene, and sterols.

    PubMed

    Pannkuk, Evan L; Gilmore, David F; Fuller, Nathan W; Savary, Brett J; Risch, Thomas S

    2013-12-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS. PMID:24327437

  11. Use of Enterococcus, BST and sterols as indicators for poultry pollution source tracking in surface and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study has applied Enterococcus, Bacterial Source Tracking (BST) and sterol analysis for pollution source identification from poultry sources. Fecal contamination was detected in 100% of surface water and 15% of groundwater sites tested. E. faecium was the dominant species in aged litter sampl...

  12. Hair sterol signatures coupled to multivariate data analysis reveal an increased 7?-hydroxycholesterol production in cognitive impairment.

    PubMed

    Son, Hyun-Hwa; Lee, Do-Yup; Seo, Hong Seog; Jeong, Jihyeon; Moon, Ju-Yeon; Lee, Jung-Eun; Chung, Bong Chul; Kim, Eosu; Choi, Man Ho

    2016-01-01

    Altered cholesterol metabolism could be associated with cognitive impairment. The quantitative profiling of 19 hair sterols was developed using gas chromatography-mass spectrometry coupled to multivariate data analysis. The limit of quantification of all sterols ranged from 5 to 20ng/g, while the calibration linearity was higher than 0.98. The precision (% CV) and accuracy (% bias) ranged from 3.2% to 9.8% and from 83.2% to 119.4%, respectively. Among the sterols examined, 8 were quantitatively detected from two strands of 3-cm-long scalp hair samples of female participants, including mild cognitive impairment (MCI, n=15), Alzheimer's disease (AD, n=31), and healthy controls (HC, n=36). The cognitive impairment (MCI or AD) was correlated with a higher metabolic rate than that of HCs based on 7?-hydroxycholesterol (P<0.005). Significant negative correlations (r=-0.822) were detected between Mini-Mental State Examination (MMSE) scores and hair sample metabolic ratios of 7?-hydroxycholesterol to cholesterol, which is an accepted, sensitive, and specific tool for discriminating HCs from individuals with MCI or AD. In conclusion, improved diagnostic values can be obtained using hair sterol signatures coupled with MMSE scores. This method may prove useful for predictive diagnosis in population screening of cognitive impairment. PMID:26385606

  13. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    EPA Science Inventory

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160).

    The harmful marine dinoflagella...

  14. Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato[W][OPEN

    PubMed Central

    Sawai, Satoru; Ohyama, Kiyoshi; Yasumoto, Shuhei; Seki, Hikaru; Sakuma, Tetsushi; Yamamoto, Takashi; Takebayashi, Yumiko; Kojima, Mikiko; Sakakibara, Hitoshi; Aoki, Toshio; Muranaka, Toshiya; Saito, Kazuki; Umemoto, Naoyuki

    2014-01-01

    Potatoes (Solanum tuberosum) contain ?-solanine and ?-chaconine, two well-known toxic steroidal glycoalkaloids (SGAs). Sprouts and green tubers accumulate especially high levels of SGAs. Although SGAs were proposed to be biosynthesized from cholesterol, the biosynthetic pathway for plant cholesterol is poorly understood. Here, we identify sterol side chain reductase 2 (SSR2) from potato as a key enzyme in the biosynthesis of cholesterol and related SGAs. Using in vitro enzyme activity assays, we determined that potato SSR2 (St SSR2) reduces desmosterol and cycloartenol to cholesterol and cycloartanol, respectively. These reduction steps are branch points in the biosynthetic pathways between C-24 alkylsterols and cholesterol in potato. Similar enzymatic results were also obtained from tomato SSR2. St SSR2-silenced potatoes or St SSR2-disrupted potato generated by targeted genome editing had significantly lower levels of cholesterol and SGAs without affecting plant growth. Our results suggest that St SSR2 is a promising target gene for breeding potatoes with low SGA levels. PMID:25217510

  15. Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA): Application to Power Plant-Derived PM2.5

    SciTech Connect

    Annette Rohr

    2004-02-29

    This report documents progress made on the subject project during the period of September 1, 2003 through February 28, 2004. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the analysis and interpretation of the field data collected at the first power plant (located in the Upper Midwest), followed by the performance and analysis of similar field experiments at two additional coal-fired power plants utilizing different coal types and with different plant configurations. Modifications to the original study design, which will improve the atmospheric aging component of the project and ensure that emissions are as realistic as possible, have resulted in project delays, and, at the time of report preparation, fieldwork at the Upper Midwest plant had not begun. However, such activities are imminent. This report therefore does not present data for activities covered by the Agreement, but does present results for the laboratory methods development work. This work is critical for the future success of the project. In particular, the atmospheric reaction simulation system is of paramount importance to the TERESA study design, since the basis for the toxicity assessment lies in the generation of realistic exposure atmospheres. The formation, composition, and toxicity of particles will be related to different atmospheric conditions and plume dilution scenarios through variations in reaction conditions. Because of the critical role played by this component in ensuring the overall success of the project, more time was required to develop and optimize the system, and the one-chamber simulation system outlined in the original Scope of Work for the Agreement was modified to comprise a more realistic dual chamber system. We are confident that the additional time required to optimize these methodologies will result in a significant improvement in the study. We fully expect that results for tasks covered under the Agreement, and a complete discussion of their relevance and value, will be included in the next semiannual progress report.

  16. Quantification of free and esterified sterols in Portuguese olive oils by solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Cunha, Sara S; Fernandes, José O; Oliveira, M Beatriz P P

    2006-09-22

    A simple and accurate method based on solid-phase extraction (SPE), transesterification and gas chromatography-mass spectrometry (GC-MS) was developed for the quantitative analysis of free and esterified sterols of olive oil. In order to achieve better separation of esterified and free sterols, silica and alumina SPE adsorbents were tested. Separations by silica provided more reproducible results. The transesterification of both sterol fractions was found to be more user friendly than saponification as a method to liberate the sterols from the respective esters. The free sterols were then silylated with N,O-bis-trimethylsilyltrifluoroacetamide (BSTFA) with 1% of trimethylchlorosilane (TMCS). The most favourable conditions for exploitation of this reagent were established. The optimized methodology was suitable for evaluation of free and esterified sterols in Protected Designation of Origin (PDO) olive oils and monovarietal olive oils with different maturation indices. The prevailing phytosterols in all olive oils were beta-sitosterol and campesterol. The free sterols predominated, although they seemed to decrease with the maturation of the olive fruits. PMID:16860809

  17. Plant Lipid Rafts

    PubMed Central

    Furt, Fabienne; Lefebvre, Benoit; Cullimore, Julie; Bessoule, Jean-Jacques

    2007-01-01

    Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b561 not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions. PMID:19704542

  18. Determination of sterols using liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Vrbková, Blanka; Roblová, Vendula; Yeung, Edward S; Preisler, Jan

    2014-09-01

    A new method, reversed phase liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry (RPLC-SALDI MS) for the determination of brassicasterol (BR), cholesterol (CH), stigmasterol (ST), campesterol (CA) and ?-sitosterol (SI) in oil samples has been developed. The sample preparation consisted of alkaline saponification followed by extraction of the unsaponificable fraction with diethyl ether. The recovery of the sterols ranged from 91 to 95% with RSD less than 4%. Separation of the five major sterols on a C18 column using methanol-water gradient was achieved in about 10min. An on-line UV detector was employed for the initial sterol detection prior to effluent deposition using a laboratory-built spotter with 1:73 splitter. Off-line SALDI MS was then applied for mass determination/identification and quantification of the separated sterols. Ionization of the nonpolar analytes was achieved by silver ion cationization with silver nanoparticles used as the SALDI matrix providing limits of detection 12, 6 and 11fmol for CH, ST and SI, respectively. Because of the incorporated splitter, the effective limits of detection of the RPLC-SALDI MS analysis were 4, 3 and 4pmol (or 0.08, 0.06 and 0.08?g/mL) for CH, ST and SI, respectively. For quantification, 6-ketocholestanol (KE) was used as the internal standard. The method has been applied for the identification and quantification of sterols in olive, linseed and sunflower oil samples. The described off-line coupling of RPLC to SALDI MS represents an alternative to GC-MS for analysis of nonpolar compounds. PMID:25022478

  19. Structural Basis of Sterol Binding by NPC2, a Lysosomal Protein Deficient in Niemann-Pick Type C2 Disease

    SciTech Connect

    Xu,S.; Benoff, B.; Liou, H.; Lobel, P.; Stock, A.

    2007-01-01

    NPC2 is a small lysosomal glycoprotein that binds cholesterol with submicromolar affinity. Deficiency in NPC2 is the cause of Niemann-Pick type C2 disease, a fatal neurovisceral disorder characterized by accumulation of cholesterol in lysosomes. Here we report the crystal structure of bovine NPC2 bound to cholesterol-3-O-sulfate, an analog that binds with greater apparent affinity than cholesterol. Structures of both apo-bound and sterol-bound NPC2 were observed within the same crystal lattice, with an asymmetric unit containing one molecule of apoNPC2 and two molecules of sterol-bound NPC2. As predicted from a previously determined structure of apoNPC2, the sterol binds in a deep hydrophobic pocket sandwiched between the two {beta}-sheets of NPC2, with only the sulfate substituent of the ligand exposed to solvent. In the two available structures of apoNPC2, the incipient ligand-binding pocket, which ranges from a loosely packed hydrophobic core to a small tunnel, is too small to accommodate cholesterol. In the presence of sterol, the pocket expands, facilitated by a slight separation of the {beta}-strands and substantial reorientation of some side chains, resulting in a perfect molding of the pocket around the hydrocarbon portion of cholesterol. A notable feature is the repositioning of two aromatic residues at the tunnel entrance that are essential for NPC2 function. The NPC2 structures provide evidence of a malleable binding site, consistent with the previously documented broad range of sterol ligand specificity.

  20. Inspired by Nature: The Use of Plant-derived Substrate/Enzyme Combinations to Generate Antimicrobial Activity in situ.

    PubMed

    Estevam, Ethiene Castellucci; Griffin, Sharoon; Nasim, Muhammad Jawad; Zieli?ski, Dariusz; Aszyk, Justyna; Osowicka, Magdalena; Dawidowska, Natalia; Idroes, Rinaldi; Bartoszek, Agnieszka; Jacob, Claus

    2015-10-01

    The last decade has witnessed a renewed interest in antimicrobial agents. Plants have received particular attention and frequently rely on the spontaneous enzymatic conversion of an inactive precursor to an active agent. Such two-component substrate/enzyme defence systems can be reconstituted ex vivo. Here, the alliin/alliinase system from garlic seems to be rather effective against Saccharomyces cerevisiae, whilst the glucosinolate/myrosinase system from mustard appears to be more active against certain bacteria. Studies with myrosinase also confirm that enzyme and substrate can be added sequentially. Ultimately, such binary systems hold considerable promise and may be employed in a medical or agricultural context. PMID:26669114

  1. Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris.

    PubMed

    Rufyikiri, Gervais; Wannijn, Jean; Wang, Lian; Thiry, Yves

    2006-06-01

    Subterranean clover and barley were grown on a soil derived from uranium mining debris and fertilized with phosphate as a U immobilizing additive for in situ remediation. We investigated the beneficial effect of P fertilization in the range 0-500 mg P kg(-1) soil in terms of U extractability, plant biomass production and U uptake. Increasing P in the mining debris caused a significant decrease of the water-soluble U and NH(4)-Ac extractable U at pH 7 and 5. For both plant species, P fertilization considerably increased root and shoot dry matter up to a maximum observed for soil receiving 100 mg P kg(-1) while the soil-to-plant transfer of U was regularly decreased by increasing P content in soil. These observations show that P fertilization represents an in situ practical option to facilitate the revegetation of U-mining heaps and to reduce the risks of biota exposure to U contamination. PMID:16271279

  2. Biogeochemical cycling in an organic-rich coastal marine basin. 9. Sources and accumulation rates of vascular plant-derived organic material

    SciTech Connect

    Haddad, R.I.; Martens, C.S. )

    1987-11-01

    The sources, degradation and burial of vascular plant debris deposited over the past several decades in the lagoonal sediments of Cape Lookout Bight, North Carolina, are quantified using alkaline cupric oxide lignin oxidation product (LOP) analysis. Non-woody angiosperms, accounting for 92 {plus minus} 32% of the recognizable sedimentary vascular plant debris, are calculated to contribute 23 {plus minus} 17% of the total organic carbon buried over the past decade. When combined with a previously established sedimentary organic carbon budget for this site a vascular plant derived carbon burial rate of 26 {plus minus}20 mole C m{sup {minus}2} yr{sup {minus}1} is calculated for this same time interval. The refractory nature and invariant depth distributions of the lignin oxidation products (LOP), when coupled with evidence for constant degradation rates of metabolizable materials, indicate that sediment accumulation at this site has been a steady state process with respect to source and burial of organic carbon since its conversion from an inner-continental shelf to a lagoonal environment during the late 1960's. Thus systematic down-core decreases in labile organic matter result from early diagenetic processes rather than input rate variations.

  3. Tumours induced by a plant virus are derived from vascular tissue and have multiple intercellular gateways that facilitate virus movement.

    PubMed

    Xie, Li; Lv, Ming-Fang; Zhang, Heng-Mu; Yang, Jian; Li, Jun-Min; Chen, Jian-Ping

    2014-09-01

    Structural studies showed that tumours induced by Southern rice black-streaked dwarf virus (SRBSDV; genus Fijivirus, family Reoviridae) were highly organized, modified phloem, composed of sclerenchyma, vessels, hyperplastic phloem parenchyma and sieve elements (SEs). Only parenchyma and SEs were invaded by the virus. There was a special region that consisted exclusively of SEs without the usual companion cells and a new flexible type of intercellular gateway was observed on all SE-SE interfaces in this region. These flexible gateways significantly increased the intercellular contacts and thus enhanced potential symplastic transport in the tumour. Flexible gateways were structurally similar to compressed plasmodesmata but were able to accommodate complete SRBSDV virions (~80 nm diameter). Virions were also found in sieve-pore gateways, providing strong evidence for the movement of a virus with large virions within phloem tissue and suggesting that the unusual neovascularization of plant virus-induced tumours facilitated virus spread. A working model for the spread of tumour-inducing reoviruses in plants is presented. PMID:24987015

  4. A highly stable minimally processed plant-derived recombinant acetylcholinesterase for nerve agent detection in adverse conditions.

    PubMed

    Rosenberg, Yvonne J; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori

    2015-01-01

    Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1-2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70?°C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0?°C to 50?°C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product. PMID:26268538

  5. A highly stable minimally processed plant-derived recombinant acetylcholinesterase for nerve agent detection in adverse conditions

    PubMed Central

    Rosenberg, Yvonne J.; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori

    2015-01-01

    Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1–2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70?°C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0?°C to 50?°C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product. PMID:26268538

  6. Demonstration of the use of ADAPT to derive predictive maintenance algorithms for the KSC central heat plant

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.

    1972-01-01

    The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.

  7. Bar-HRM for Authentication of Plant-Based Medicines: Evaluation of Three Medicinal Products Derived from Acanthaceae Species

    PubMed Central

    Osathanunkul, Maslin; Madesis, Panagiotis; de Boer, Hugo

    2015-01-01

    Medicinal plants are used as a popular alternative to synthetic drugs, both in developed and developing countries. The economic importance of the herbal and natural supplement industry is increasing every year. As the herbal industry grows, consumer safety is one issue that cannot be overlooked. Herbal products in Thai local markets are commonly sold without packaging or labels. Plant powders are stored in large bags or boxes, and therefore buying local herbal products poses a high risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. Here DNA barcoding was used in combination with High Resolution Melting analysis (Bar-HRM) to authenticate three medicinal Acanthaceae species (Acanthus ebracteatus, Andrographis paniculata and Rhinacanthus nasutus) commonly used in Thailand. The rbcL barcode was selected for use in primers design for HRM analysis to produce standard melting profiles of the selected species. Melting data from the HRM assay using the designed rbcL primers showed that the three chosen species could be distinguished from each other. HRM curves of all fifteen test samples indicated that three of tested products did not contain the indicated species. Two closely related species (A. paniculata and R. nasutus), which have a high level of morphological similarity, were interchanged with one another in three tested products. Incorrect information on packaging and labels of the tested herbal products was the cause of the results shown here. Morphological similarity among the species of interest also hindered the collection process. The Bar-HRM method developed here proved useful in aiding in the identification and authentication of herbal species in processed samples. In the future, species authentication through Bar-HRM could be used to promote consumer trust, as well as raising the quality of herbal products. PMID:26011474

  8. Bar-HRM for Authentication of Plant-Based Medicines: Evaluation of Three Medicinal Products Derived from Acanthaceae Species.

    PubMed

    Osathanunkul, Maslin; Madesis, Panagiotis; de Boer, Hugo

    2015-01-01

    Medicinal plants are used as a popular alternative to synthetic drugs, both in developed and developing countries. The economic importance of the herbal and natural supplement industry is increasing every year. As the herbal industry grows, consumer safety is one issue that cannot be overlooked. Herbal products in Thai local markets are commonly sold without packaging or labels. Plant powders are stored in large bags or boxes, and therefore buying local herbal products poses a high risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. Here DNA barcoding was used in combination with High Resolution Melting analysis (Bar-HRM) to authenticate three medicinal Acanthaceae species (Acanthus ebracteatus, Andrographis paniculata and Rhinacanthus nasutus) commonly used in Thailand. The rbcL barcode was selected for use in primers design for HRM analysis to produce standard melting profiles of the selected species. Melting data from the HRM assay using the designed rbcL primers showed that the three chosen species could be distinguished from each other. HRM curves of all fifteen test samples indicated that three of tested products did not contain the indicated species. Two closely related species (A. paniculata and R. nasutus), which have a high level of morphological similarity, were interchanged with one another in three tested products. Incorrect information on packaging and labels of the tested herbal products was the cause of the results shown here. Morphological similarity among the species of interest also hindered the collection process. The Bar-HRM method developed here proved useful in aiding in the identification and authentication of herbal species in processed samples. In the future, species authentication through Bar-HRM could be used to promote consumer trust, as well as raising the quality of herbal products. PMID:26011474

  9. Quantification of transgene-derived double-stranded RNA in plants using the QuantiGene nucleic acid detection platform.

    PubMed

    Armstrong, Toni A; Chen, Hao; Ziegler, Todd E; Iyadurai, Kelly R; Gao, Ai-Guo; Wang, Yongcheng; Song, Zihong; Tian, Qing; Zhang, Qiang; Ward, Jason M; Segers, Gerrit C; Heck, Gregory R; Staub, Jeffrey M

    2013-12-26

    The expanding use of RNA interference (RNAi) in agricultural biotechnology necessitates tools for characterizing and quantifying double-stranded RNA (dsRNA)-containing transcripts that are expressed in transgenic plants. We sought to detect and quantify such transcripts in transgenic maize lines engineered to control western corn rootworm (Diabrotica virgifera virgifera LeConte) via overexpression of an inverted repeat sequence bearing a portion of the putative corn rootworm orthologue of yeast Snf7 (DvSnf7), an essential component of insect cell receptor sorting. A quantitative assay was developed to detect DvSnf7 sense strand-containing dsRNA transcripts that is based on the QuantiGene Plex 2.0 RNA assay platform from Affymetrix. The QuantiGene assay utilizes cooperative binding of multiple oligonucleotide probes with specificity for the target sequence resulting in exceptionally high assay specificity. Successful implementation of this assay required heat denaturation in the presence of the oligonucleotide probes prior to hybridization, presumably to dissociate primary transcripts carrying the duplex dsRNA structure. The dsRNA assay was validated using a strategy analogous to the rigorous enzyme-linked immunosorbent assay evaluations that are typically performed for foreign proteins expressed in transgenic plants. Validation studies indicated that the assay is sensitive (to 10 pg of dsRNA/g of fresh tissue), highly reproducible, and linear over ?2.5 logs. The assay was validated using purified RNA from multiple maize tissue types, and studies indicate that the assay is also quantitative in crude tissue lysates. To the best of our knowledge, this is the first report of a non-polymerase chain reaction-based quantitative assay for dsRNA-containing transcripts, based on the use of the QuantiGene technology platform, and will broadly facilitate characterization of dsRNA in biological and environmental samples. PMID:24328125

  10. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber experiment

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Mayr, Christoph; Tuthorn, Mario; Leiber-Sauheitl, Katharina; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of cellulose is a valuable proxy in paleoclimate research. However, its application to sedimentary archives is challenging due to extraction and purification of cellulose. Here we present compound-specific ?18O results of hemicellulose-derived sugar biomarkers determined using gas chromatography-pyrolysis-isotope ratio mass spectrometry, which is a method that overcomes the above-mentioned analytical challenges. The biomarkers were extracted from stem material of different plants (Eucalyptus globulus, Vicia faba and Brassica oleracea) grown in climate chamber experiments under different climatic conditions. The ?18O values of arabinose and xylose range from 31.4‰ to 45.9‰ and from 28.7‰ to 40.8‰, respectively, and correlate highly significantly with each other (R = 0.91, p < 0.001). Furthermore, ?18Ohemicellulose (mean of arabinose and xylose) correlate highly significantly with ?18Oleaf water (R = 0.66, p < 0.001) and significantly with modeled ?18Ocellulose (R = 0.42, p < 0.038), as well as with relative air humidity (R = -0.79, p < 0.001) and temperature (R = -0.66, p < 0.001). These findings confirm that the hemicellulose-derived sugar biomarkers, like cellulose, reflect the oxygen isotopic composition of plant source water altered by climatically controlled evapotranspirative 18O enrichment of leaf water. While relative air humidity controls most rigorously the evapotranspirative 18O enrichment, the direct temperature effect is less important. However, temperature can indirectly exert influence via plant physiological reactions, namely by influencing the transpiration rate which affects ?18Oleaf water due to the Péclet effect. In a companion paper (Tuthorn et al., this issue) we demonstrate the applicability of the hemicellulose-derived sugar biomarker ?18O method to soils and provide evidence from a climate transect study confirming that relative air humidity exerts the dominant control on evapotranspirative 18O enrichment of leaf water. Finally, we present a conceptual model for the interpretation of ?18Ohemicellulose records and propose that a combined ?18Ohemicellulose and ?2Hn-alkane biomarker approach is promising for disentangling ?18Oprecipitation variability from evapotranspirative 18O enrichment variability in future paleoclimate studies. One major factor influencing ?18Ohemicellulose is the oxygen isotopic composition of the plant source water (Fig. 4). Basically, it depends on ?18Oprecipitation which can vary over time due to temperature, amount and/or source effects (Dansgaard, 1964; Rozanski et al., 1993; Araguas-Araguas et al., 2000). While it is generally accepted that the uptake of water by roots is not associated with a 18O fractionation (Wershaw et al., 1966; Dawson et al., 2002), other factors may need careful consideration. For instance, the uptake of ground water depleted in 18O by deep rooting plants versus uptake of soil water enriched in 18O by evaporation (Fig. 4), seasonality of ?18Oprecipitation (growing season) (see also our companion study presented by Tuthorn et al., 2014) or uptake of permafrost meltwater (Sugimoto et al., 2002). A second major influencing factor is evapotranspirative 18O enrichment of leaf water (Fig. 4). It is most rigorously controlled by relative air humidity (Fig. 3A), whereas the direct physical effect of temperature on evapotranspirative 18O enrichment is much smaller (Fig. 3B). However, temperature can indirectly exert influence via plant physiological reactions, namely by affecting the transpiration rate which strongly controls ?18Oleaf water due to the Péclet effect at least under very arid climatic conditions (Fig. 3C). While this effect is highlighted in the here presented climate chamber study with an automatic irrigation system, the relevance of the temperature and the Péclet effect in paleoclimate studies where water supply is actually often limited is presumably considerably lower than the relevance of relative air humidity. This assumption is confirmed by a climate transect

  11. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter ?. We have investigated the ? parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the ? parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The ? parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the ? parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between polystyrene and short-chain polyacrylates (n ? 10). To our knowledge, this is the first study to explore the thermodynamic interactions between polystyrene and long-chain poly(n-alkyl acrylates) with n > 10. This work lays the groundwork for the development of multicomponent structured systems (i.e., blends and copolymers) in this class of sustainable materials. PMID:26020581

  12. Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp. YXf3

    PubMed Central

    Guo, Zhi Kai; Wang, Rong; Huang, Wei; Li, Xiao Nian; Jiang, Rong

    2014-01-01

    Summary An unusual C18 norditerpenoid, aspergiloid I (1), was isolated from the culture broth of Aspergillus sp. YXf3, an endophytic fungus derived from Ginkgo biloba. Its structure was unambiguously established by analysis of HRMS–ESI and spectroscopic data, and the absolute configuration was determined by low-temperature (100 K) single crystal X-ray diffraction with Cu K? radiation. This compound is structurally characterized by a new carbon skeleton with an unprecedented 6/5/6 tricyclic ring system bearing an ?,?-unsaturated spirolactone moiety in ring B, and represents a new subclass of norditerpenoid, the skeleton of which is named aspergilane. The hypothetical biosynthetic pathway for 1 was also proposed. The cytotoxic, antimicrobial, anti-oxidant and enzyme inhibitory activities of 1 were evaluated. PMID:25550731

  13. Isolation of an alpha-methylene-gamma-butyrolactone derivative, a toxin from the plant pathogen Lasiodiplodia theobromae.

    PubMed

    He, Guochun; Matsuura, Hideyuki; Yoshihara, Teruhiko

    2004-10-01

    Lasiodiplodia theobromae is known as a multi-infectious microorganism that causes considerable crop damage, particularly to tropical fruits. When the fruits are infected by L. theobromae, the typical symptom is the appearance of black spots on the surface of the infected fruit. When injected in to the peel of banana, the culture filtrate of L. theobromae induced formation of black spots. The structure of the isolated compound responsible for this effect was determined to be (3S,4R)-3-carboxy-2-methylene-heptan-4-olide on the basis of analysis of MS, IR, and 1H and 13C NMR spectroscopic data, including HMQC, HMBC, and 1H-1H COSY experiments. The active compound was not only isolated from the culture filtrate derived from potato dextrose medium, but also from the extract of infected peels of bananas. PMID:15474567

  14. The reactivity of plant-derived organic matter in the Amazon River and implications on aquatic carbon fluxes to the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Sawakuchi, H. O.; Keil, R. G.; da Silva, R.; Brito, D. C.; Cunha, A. C.; Gagne-Maynard, W.; de Matos, A.; Neu, V.; Bianchi, T. S.; Krusche, A. V.; Richey, J. E.

    2014-12-01

    The remineralization of terrestrially-derived organic carbon (OC), along with direct CO2 inputs from autochthonous plant respiration in floodplains, results in an evasive CO2 gas flux from inland waters that is an order of magnitude greater than the flux of OC to the ocean. This phenomenon is enhanced in tropical systems as a result of elevated temperatures and productivity relative to temperate and high-latitude counterparts. Likewise, this balance is suspected to be influenced by increasing global temperatures and alterations to hydrologic and land use regimes. Here, we assess the reactivity of terrestrial and aquatic plant-derived OM near the mouth of the Amazon River. The stable isotopic signature of CO2 (?13CO2) was monitored in real-time during incubation experiments performed in a closed system gas phase equilibration chamber connected to a Picarro Cavity Ring-Down Spectrometer. Incubations were performed under natural conditions and with the injection of isotopically labeled terrestrial macromolecules (e.g. lignin) and algal fatty acids. Under natural conditions, ?13CO2 became more depleted, shifting from roughly -23‰ to -27‰ on average, suggesting that C3 terrestrial vegetation was the primary fuel for CO2 production. Upon separate injections of 13C-labeled lignin and algal fatty acids, ?13CO2 increased near instantaneously and peaked in under 12 hours. Roughly 75% of the labeled lignin was converted to CO2 at the peak in ?13CO2, whereas less than 20% of the algal fatty acids were converted to CO2 (preliminary data subject to change). The rate of labeled-OC remineralization was enhanced by the addition of a highly labile substrate (e.g. ethyl acetate). Likewise, constant measurements of O2/pCO2 along the lower river revealed anomalously high CO2 and low O2 levels near the confluence of the mainstem and large tributaries with high algal productivity. These collective results suggest that the remineralization of complex terrestrial macromolecules is a significant source of CO2 to tropical rivers, whereas algal-derived OC is primarily incorporated into the microbial loop/higher trophic levels and enhances the breakdown of more complex terrestrially-derived molecules (e.g. the "priming effect").

  15. Mixing Construction, Demolition and Excavation Waste and Solid Waste Compost for the Derivation of a Planting Medium for Use in the Rehabilitation of Quarries

    NASA Astrophysics Data System (ADS)

    Assaf, Eleni

    2015-04-01

    Lebanon's very high population density has been increasing since the end of the civil war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which are locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been interrupted by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. Excavation and construction debris were ground to several sizes and mixed with compost and soil at different ratios. Replicates of these mixes and a set of control (regular soil) were used. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Mathiolla crassifolia, a native Lebanese plant and Zea mays (Corn), which is commonly used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored and assessed. Preliminary results have shown successful growth of both corn and Mathiolla seedlings in the mixes with higher amounts of construction rubble and compost i.e. Rubble: Soil: Compost Ratio of 2:1:1 and 1:0:1. However treatments with no compost and with less quantities of rubble demonstrated the inability of the soil used to sustain plant growth alone (1:1:1 and 1:1:0). Last but not least, the control consisting of soil only ended up being the weakest mix with yellow corn leaves and small Mathiolla seedlings fifty days after planting and fertilizing. Additionally, soil analysis, rubble and compost analysis will be conducted. The samples will be tested for heavy metals, nutrient availability and values of pH and EC. Accordingly, success and failure to sustain plant growth will be justified and the most adequate mix for planting will be selected for conducting a field experiment to test the viability of the developed mix.

  16. RNAi mediated inhibition of viroid infection in transgenic plants expressing viroid-specific small RNAs derived from various functional domains

    PubMed Central

    Adkar-Purushothama, Charith Raj; Kasai, Atsushi; Sugawara, Kohei; Yamamoto, Hideki; Yamazaki, Yuto; He, Ying-Hong; Takada, Nobuyuki; Goto, Hideki; Shindo, Sahori; Harada, Takeo; Sano, Teruo

    2015-01-01

    Previous attempts to develop RNAi-mediated viroid-resistant transgenic plants using nearly full-length Potato spindle tuber viroid (PSTVd) hairpin RNA (hpRNA) were successful; however unusual phenotypes resembling viroid infection occurred. Therefore, in the present work, transgenic Nicotiana benthamiana lines expressing both partial and truncated versions of PSTVd hpRNA were developed. Specifically, seven partial or truncated versions of PSTVd sequences were selected according to the hotspots of both PSTVd-sRNAs and functional domains of the PSTVd. A total of 21 transgenic lines Nicotiana benthamiana were developed under the control of either the CaMV-35S or the CoYMV promoters. All of the transgenic lines established here were monitored for the induction of phenotypic changes, for PSTVd-sRNA expression and for the resistance against PSTVd infection. Additionally, this study demonstrates the use of inverted repeat construct sequences as short as 26- to -49 nucleotides for both the efficient expression of the PSTVd-sRNA and the inhibition of PSTVd infection. PMID:26656294

  17. [Pharmacognostical studies on the folk medicine in Sichuan Prov. in China. II. On tu-er-feng derived from Gerbera plants].

    PubMed

    Ye, J N; Wang, T Z; Cai, S Q; Komatsu, K; Mikage, M; Namba, T

    1990-06-01

    Tu-er-feng is one of famous Chinese folk medicines in Sichuan prov. for common cold with cough, rheumatism, etc. Its sources are said to be either whole plants of some Gerbera or Ainsliaea species of family Compositae. In the recent markets, two types of Tu-er-feng are surely available. In this paper, Tu-er-feng derived from Gerbera species are studied to clarify the botanical origin; comparing mainly with the internal morphologies of the leaves and roots of G. piloselloides, G. delavayi, G. nivea, G. anandria (= Leibnitzia anandria) and G. jamesonii. As the result, G. piloselloides is determined as the botanical origin of Tu-er-feng obtained from the recent 16 markets. PMID:2213525

  18. Capillary electrophoresis fingerprinting, quantification and mass-identification of various 9-aminopyrene-1,4,6-trisulfonate-derivatized oligomers derived from plant polysaccharides.

    PubMed

    Kabel, Mirjam A; Heijnis, Walter H; Bakx, Edwin J; Kuijpers, René; Voragen, Alphons G J; Schols, Henk A

    2006-12-22

    Various plant polysaccharide derived mono- and oligosaccharides were derivatized with the fluorescent 9-aminopyrene-1,4,6-trisulfonate (APTS) and subjected to capillary electrophoresis (CE) in combination with laser induced fluorescence (LIF) detection. CE-LIF was suitable for mol-based quantification of various APTS-monosaccharides. CE-LIF of APTS-oligosaccharides showed high resolutions, while analysis times were at maximum 15 min. The coupling of CE to electrospray-iontrap mass spectrometery (MS) with online UV detection showed to be a powerful technique in the identification of APTS-oligosaccharides. For the first time, various APTS-xylo-oligosaccharides, having either no, O-acetyl, arabinosyl or xylosyl substitutions at varying positions, were identified by using CE-LIF and CE-MS(n). PMID:17092512

  19. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids

    PubMed Central

    2014-01-01

    Malaria is currently a public health concern in many countries in the world due to various factors which are not yet under check. Drug discovery projects targeting malaria often resort to natural sources in the search for lead compounds. A survey of the literature has led to a summary of the major findings regarding plant-derived compounds from African flora, which have shown anti-malarial/antiplasmodial activities, tested by in vitro and in vivo assays. Considerations have been given to compounds with activities ranging from “very active” to “weakly active”, leading to >500 chemical structures, mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylenes, xanthones, quinones, steroids and lignans. However, only the compounds that showed anti-malarial activity, from “very active” to “moderately active”, are discussed in this review. PMID:24602358

  20. Health-hazard evaluation report HETA 85-041-1709, City of Columbus Refuse-derived Fuel Power Plant, Columbus, Ohio

    SciTech Connect

    Ahrenholz, S.H.

    1986-07-01

    Potential for heat stress along with exposure to chemical contaminants and airborne microbial pollutants was investigated at the City refuse-derived-fuel powerplant. Health hazards existed to lead and silica exposures for workers involved in handling ash. Low levels of exposure to chromium, chromium-VI, cadmium, and nickel were noted. Excessive heat stress occurred during the maintenance activities in hot areas of the facility. Airborne microbial contamination levels in the refuse-handling areas indicate that exposure hazards exist by both the inhalation and ingestion routes. Human pathogens may be present in the microbial pollutants. The author recommends that employee exposure to lead be reduced through the use of engineering controls. Eating, drinking, and carrying or use of tobacco products or cosmetics in the power plant and refuse handling areas should be prohibited. Recommended methods for controlling heat stress were given.

  1. Study of the SRF-derived ashes melting behavior and the effects generated by the optimization of their composition on the furnaces energy efficiency in the incineration plants.

    PubMed

    Mercurio, Vittorio; Venturelli, Chiara; Paganelli, Daniele

    2014-12-01

    As regards the incineration process of the urban solid waste, the composition correct management allows not only the valorization of precise civil and industrial groups of waste as alternative fuels but also a considerable increase of the furnace work temperature leading to a remarkable improvement of the related energy efficiency. In this sense, the study of the melting behavior of ashes deriving from several kinds of fuels that have to be processed to heat treatment is really important. This approach, indeed, ensures to know in depth the features defining the melting behavior of these analyzed samples, and as a consequence, gives us the necessary data in order to identify the best mixture of components to be incinerated as a function of the specific working temperatures of the power plant. Firstly, this study aims to find a way to establish the softening and melting temperatures of the ashes because they are those parameters that strongly influence the use of fuels. For this reason, in this work, the fusibility of waste-derived ashes with different composition has been investigated by means of the heating microscope. This instrument is fundamental to prove the strict dependence of the ashes fusion temperature on the heating rate that the samples experienced during the thermal cycle. In addition, in this work, another technological feature of the instrument has been used allowing to set an instantaneous heating directly on the sample in order to accurately reproduce the industrial conditions which characterize the incineration plants. The comparison between the final results shows that, in effect, the achievement of the best performances of the furnace is due to the a priori study of the melting behavior of the single available components. PMID:24081923

  2. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records

    NASA Astrophysics Data System (ADS)

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine ( Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine.

  3. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records.

    PubMed

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine (Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine. PMID:25281029

  4. A study on the selection of chemiluminescence system for the flow injection determination of the total polyphenol index of plant-derived foods.

    PubMed

    Nalewajko-Sieliwoniuk, Edyta; Malejko, Julita; ?wi?czkowska, Marta; Kowalewska, Agata

    2015-06-01

    Different chemiluminescence systems based on luminol, permanganate, manganese(IV) and cerium(IV) reagents were compared regarding their sensitivity and selectivity to determine plant polyphenols. Among the seventeen systems tested, Mn(IV)-formaldehyde-hexametaphosphate was considered to be the most suitable for polyphenols detection. The developed flow injection method (FI-CL) based on enhancing effect of polyphenols on Mn(IV) chemiluminescence is characterised by low detection limit of gallic acid (0.02?gL(-1)) and high precision (RSD=1.7%). The calibration graph was linear from 0.1 to 100?gL(-1). The selectivity studies revealed that the FI-CL method ensures accurate determination of the total polyphenols content in food samples. The method was successfully applied to analysis of a variety of plant-derived foods (wine, tea, cereal coffee, fruit and vegetable juices, herbs and spices). The proposed method is superior to conventional spectrophotometric assays due to its higher sample throughput (195samplesh(-1)), simplicity, sensitivity and, above all, higher selectivity. PMID:25624221

  5. Activation of AMP-activated protein kinase by a plant-derived dihydroisosteviol in human intestinal epithelial cell.

    PubMed

    Muanprasat, Chatchai; Sirianant, Lalida; Sawasvirojwong, Sutthipong; Homvisasevongsa, Sureeporn; Suksamrarn, Apichart; Chatsudthipong, Varanuj

    2013-01-01

    Our previous study has shown that dihydroisosteviol (DHIS), a derivative of stevioside isolated from Stevia rebaudiana (Bertoni), inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial chloride secretion across monolayers of human intestinal epithelial (T84) cells and prevents cholera toxin-induced intestinal fluid secretion in mouse closed loop models. In this study, we aimed to investigate a mechanism by which DHIS inhibits CFTR activity. Apical chloride current measurements in Fisher rat thyroid cells stably transfected with wild-type human CFTR (FRT-CFTR cells) and T84 cells were used to investigate mechanism of CFTR inhibition by DHIS. In addition, effect of DHIS on AMP-activated protein kinase (AMPK) activation was investigated using Western blot analysis. Surprisingly, it was found that DHIS failed to inhibit CFTR-mediated apical chloride current in FRT-CFTR cells. In contrast, DHIS effectively inhibited CFTR-mediated apical chloride current induced by a cell permeable cAMP analog CPT-cAMP and a direct CFTR activator genistein in T84 cell monolayers. Interestingly, this inhibitory effect of DHIS on CFTR was significantly (p<0.05) reduced by pretreatment with compound C, an AMPK inhibitor. AICAR, a known AMPK activator, was able to inhibit CFTR activity in both FRT-CFTR and T84 cells. Western blot analysis showed that DHIS induced AMPK activation in T84 cells, but not in FRT-CFTR cells. Our results indicate that DHIS inhibits CFTR-mediated chloride secretion in T84 cells, in part, by activation of AMPK activity. DHIS therefore represents a novel candidate of AMPK activators. PMID:23343619

  6. Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants[OPEN

    PubMed Central

    Adkar-Purushothama, Charith Raj; Brosseau, Chantal; Gigučre, Tamara; Sano, Teruo; Moffett, Peter; Perreault, Jean-Pierre

    2015-01-01

    The tomato (Solanum lycopersicum) callose synthase genes CalS11-like and CalS12-like encode proteins that are essential for the formation of callose, a major component of pollen mother cell walls; these enzymes also function in callose formation during pathogen infection. This article describes the targeting of these callose synthase mRNAs by a small RNA derived from the virulence modulating region of two Potato spindle tuber viroid variants. More specifically, viroid infection of tomato plants resulted in the suppression of the target mRNAs up to 1.5-fold, depending on the viroid variant used and the gene targeted. The targeting of these mRNAs by RNA silencing was validated by artificial microRNA experiments in a transient expression system and by RNA ligase-mediated rapid amplification of cDNA ends. Viroid mutants incapable of targeting callose synthase mRNAs failed to induce typical infection phenotypes, whereas a chimeric viroid obtained by swapping the virulence modulating regions of a mild and a severe variant of Potato spindle tuber viroid greatly affected the accumulation of viroids and the severity of disease symptoms. These data provide evidence of the silencing of multiple genes by a single small RNA derived from a viroid. PMID:26290537

  7. Development of a fast sample treatment for the analysis of free and bonded sterols in human serum by LC-MS.

    PubMed

    Mendiara, Isabel; Domeńo, Celia; Nerín, Cristina

    2012-12-01

    The analysis of sterols in biological fluids allows the clinical study of cholesterol related diseases. This research is focused on reducing the sample processing time of the determination of free and bonded sterols in human serum. Ten sterols were studied: cholesterol precursors (desmosterol, lanosterol, and cholestanol); phytosterols (stigmasterol, campesterol, sitosterol, and sitostanol) and oxysterols (7-?-hydroxy-4-cholesten-3-one, 24-hydroxycholesterol, and 27-hydroxycholesterol). Ultrasound assistance was used to diminish the reaction time during the alkaline hydrolysis for determining total sterols. Different retention mechanisms of solid-phase extraction were compared, two reversed-phase sorbents DSC-18 and polymeric Oasis-HLB and a novel zirconia-coated silica phase. DSC-18 and zirconia-coated silica were the most suitable sorbents to analyze these metabolites. The resulting extracts were analyzed by liquid chromatography coupled to mass spectrometry. The analytical parameters were determined and better values were observed with DSC-18 cartridges for most sterols. LOQ were in the low ng/mL level. Recoveries were in the range 85-99%. Average intermediate precision was 15%. Accuracy for both cartridges was more than 92%. Zirconia-coated silica showed better performance for the oxysterols, with recoveries around 90%. The procedure allows the determination of free and bonded sterol precursors, phytosterols, and oxysterols in human serum. PMID:23109473

  8. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    PubMed

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy