Sample records for derived vessel wall

  1. Proteomic Profiling of Tissue-Engineered Blood Vessel Walls Constructed by Adipose-Derived Stem Cells

    PubMed Central

    Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang

    2013-01-01

    Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels. PMID:22963350

  2. Proteomic profiling of tissue-engineered blood vessel walls constructed by adipose-derived stem cells.

    PubMed

    Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang; Cui, Lei

    2013-02-01

    Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.

  3. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis.

    PubMed

    Wang, Di; Wang, Zhiyan; Zhang, Lili; Wang, Yi

    2017-01-01

    Atherosclerosis has been identified as a chronic inflammatory disease of the arterial vessel wall. Accumulating evidence indicates that different cells from the tunica intima, media, adventitia, and perivascular adipose tissue not only comprise the intact and normal arterial vessel wall but also participate all in the inflammatory response of atherosclerosis via multiple intricate pathways. For instance, endothelial dysfunction has historically been considered to be the initiator of the development of atherosclerosis. The migration and proliferation of smooth muscle cells also play a pivotal role in the progression of atherosclerosis. Additionally, the fibroblasts from the adventitia and adipocytes from perivascular adipose tissue have received considerable attention given their special functions that contribute to atherosclerosis. In addition, numerous types of cytokines produced by different cells from the arterial vessel wall, including endothelium-derived relaxing factors, endothelium-derived contracting factors, tumor necrosis factors, interleukin, adhesion molecules, interferon, and adventitium-derived relaxing factors, have been implicated in atherosclerosis. Herein, we summarize the possible roles of different cells from the entire arterial vessel wall in the pathogenesis of atherosclerosis.

  4. 2D Fast Vessel Visualization Using a Vessel Wall Mask Guiding Fine Vessel Detection

    PubMed Central

    Raptis, Sotirios; Koutsouris, Dimitris

    2010-01-01

    The paper addresses the fine retinal-vessel's detection issue that is faced in diagnostic applications and aims at assisting in better recognizing fine vessel anomalies in 2D. Our innovation relies in separating key visual features vessels exhibit in order to make the diagnosis of eventual retinopathologies easier to detect. This allows focusing on vessel segments which present fine changes detectable at different sampling scales. We advocate that these changes can be addressed as subsequent stages of the same vessel detection procedure. We first carry out an initial estimate of the basic vessel-wall's network, define the main wall-body, and then try to approach the ridges and branches of the vasculature's using fine detection. Fine vessel screening looks into local structural inconsistencies in vessels properties, into noise, or into not expected intensity variations observed inside pre-known vessel-body areas. The vessels are first modelled sufficiently but not precisely by their walls with a tubular model-structure that is the result of an initial segmentation. This provides a chart of likely Vessel Wall Pixels (VWPs) yielding a form of a likelihood vessel map mainly based on gradient filter's intensity and spatial arrangement parameters (e.g., linear consistency). Specific vessel parameters (centerline, width, location, fall-away rate, main orientation) are post-computed by convolving the image with a set of pre-tuned spatial filters called Matched Filters (MFs). These are easily computed as Gaussian-like 2D forms that use a limited range sub-optimal parameters adjusted to the dominant vessel characteristics obtained by Spatial Grey Level Difference statistics limiting the range of search into vessel widths of 16, 32, and 64 pixels. Sparse pixels are effectively eliminated by applying a limited range Hough Transform (HT) or region growing. Major benefits are limiting the range of parameters, reducing the search-space for post-convolution to only masked regions

  5. Vessel wall characterization using quantitative MRI: what's in a number?

    PubMed

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J

    2018-02-01

    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  6. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.

    PubMed

    Ziegler, Magnus; Lantz, Jonas; Ebbers, Tino; Dyverfeldt, Petter

    2017-06-01

    To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R 2  = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R 2  = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall

    PubMed Central

    Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377

  8. Regulation of cellular communication by signaling microdomains in the blood vessel wall.

    PubMed

    Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.

  9. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully

  10. Analysis of the effects of gravity and wall thickness in a model of blood flow through axisymmetric vessels.

    PubMed

    Payne, S J

    2004-11-01

    The effects of gravitational forces and wall thickness on the behaviour of a model of blood flow through axisymmetric vessels were studied. The governing fluid dynamic equations were derived from the Navier-Stokes equations for an incompressible fluid and linked to a simple model of the vessel wall. A closed form of the hyperbolic partial differential equations was found, including a significant source term from the gravitational forces. The inclination of the vessel is modelled using a slope parameter that varied between -1 and 1. The wave speed was shown to be related to the wall thickness, and the time to first shock formation was shown to be directly proportional to this thickness. Two non-dimensional parameters were derived for the ratio of gravitational forces to viscous and momentum forces, respectively, and their values were calculated for the different types of vessel found in the human vasculature, showing that gravitational forces were significant in comparison with either viscous or momentum forces for every type of vessel. The steady-state solution of the governing equations showed that gravitational forces cause an increase in area of approximately 5% per metre per unit slope. Numerical simulations of the flow field in the aorta showed that a positive slope causes a velocity pulse to change in amplitude approximately linearly with distance: -4% per metre and +5% per metre for vessels inclined vertically upwards and downwards, respectively, in comparison with only +0.5% for a horizontal vessel. These simulations also showed that the change relative to the zero slope condition in the maximum rate of change of area with distance, which was taken to be a measure of the rate of shock formation, is proportional to both the slope and the wall thickness-to-inner radius ratio, with a constant of proportionality of 1.2. At a ratio of 0.25, typical of that found in human arteries, the distance to shock formation is thus decreased and increased by 30% for vessels

  11. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent.

    PubMed

    Makowski, Marcus R; Preissel, Anne; von Bary, Christian; Warley, Alice; Schachoff, Sylvia; Keithan, Alexandra; Cesati, Richard R; Onthank, David C; Schwaiger, Markus; Robinson, Simon P; Botnar, René M

    2012-07-01

    The aim of this study was to demonstrate the feasibility of high-resolution 3-dimensional aortic vessel wall imaging using a novel elastin-specific magnetic resonance contrast agent (ESMA) in a large animal model. The thoracic aortic vessel wall of 6 Landrace pigs was imaged using a novel ESMA and a nonspecific control agent. On day 1, imaging was performed before and after the administration of a nonspecific control agent, gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA; Bayer Schering AG, Berlin, Germany). On day 3, identical scans were repeated before and after the administration of a novel ESMA (Lantheus Medical Imaging, North Billerica, Massachusetts). Three-dimensional inversion recovery gradient echo delayed-enhancement imaging and magnetic resonance (MR) angiography of the thoracic aortic vessel wall were performed on a 1.5-T MR scanner (Achieva; Philips Medical Systems, the Netherlands). The signal-to-noise ratio and the contrast-to-noise ratio of arterial wall enhancement, including the time course of enhancement, were assessed for ESMA and Gd-DTPA. After the completion of imaging sessions, histology, electron microscopy, and inductively coupled plasma mass spectroscopy were performed to localize and quantify the gadolinium bound to the arterial vessel wall. Administration of ESMA resulted in a strong enhancement of the aortic vessel wall on delayed-enhancement imaging, whereas no significant enhancement could be measured with Gd-DTPA. Ninety to 100 minutes after the administration of ESMA, significantly higher signal-to-noise ratio and contrast-to-noise ratio could be measured compared with the administration of Gd-DTPA (45.7 ± 9.6 vs 13.2 ± 3.5, P < 0.05 and 41.9 ± 9.1 vs 5.2 ± 2.0, P < 0.05). A significant correlation (0.96; P < 0.01) between area measurements derived from ESMA scans and aortic MR angiography scans could be found. Electron microscopy and inductively coupled plasma mass spectroscopy confirmed the colocalization of ESMA with

  12. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images.

    PubMed

    van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J

    2012-01-01

    To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.

  13. [Stem and progenitor cells in biostructure of blood vessel walls].

    PubMed

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  14. Method and apparatus for detecting irregularities on or in the wall of a vessel

    DOEpatents

    Bowling, Michael Keith

    2000-09-12

    A method of detecting irregularities on or in the wall of a vessel by detecting localized spatial temperature differentials on the wall surface, comprising scanning the vessel surface with a thermal imaging camera and recording the position of the or each region for which the thermal image from the camera is indicative of such a temperature differential across the region. The spatial temperature differential may be formed by bacterial growth on the vessel surface; alternatively, it may be the result of defects in the vessel wall such as thin regions or pin holes or cracks. The detection of leaks through the vessel wall may be enhanced by applying a pressure differential or a temperature differential across the vessel wall; the testing for leaks may be performed with the vessel full or empty, and from the inside or the outside.

  15. Optimized suspension culture: the rotating-wall vessel

    NASA Technical Reports Server (NTRS)

    Hammond, T. G.; Hammond, J. M.

    2001-01-01

    Suspension culture remains a popular modality, which manipulates mechanical culture conditions to maintain the specialized features of cultured cells. The rotating-wall vessel is a suspension culture vessel optimized to produce laminar flow and minimize the mechanical stresses on cell aggregates in culture. This review summarizes the engineering principles, which allow optimal suspension culture conditions to be established, and the boundary conditions, which limit this process. We suggest that to minimize mechanical damage and optimize differentiation of cultured cells, suspension culture should be performed in a solid-body rotation Couette-flow, zero-headspace culture vessel such as the rotating-wall vessel. This provides fluid dynamic operating principles characterized by 1) solid body rotation about a horizontal axis, characterized by colocalization of cells and aggregates of different sedimentation rates, optimally reduced fluid shear and turbulence, and three-dimensional spatial freedom; and 2) oxygenation by diffusion. Optimization of suspension culture is achieved by applying three tradeoffs. First, terminal velocity should be minimized by choosing microcarrier beads and culture media as close in density as possible. Next, rotation in the rotating-wall vessel induces both Coriolis and centrifugal forces, directly dependent on terminal velocity and minimized as terminal velocity is minimized. Last, mass transport of nutrients to a cell in suspension culture depends on both terminal velocity and diffusion of nutrients. In the transduction of mechanical culture conditions into cellular effects, several lines of evidence support a role for multiple molecular mechanisms. These include effects of shear stress, changes in cell cycle and cell death pathways, and upstream regulation of secondary messengers such as protein kinase C. The discipline of suspension culture needs a systematic analysis of the relationship between mechanical culture conditions and

  16. Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.

    PubMed

    Ju, Zhi-Hao; Liu, Tian-Qing; Ma, Xue-Hu; Cui, Zhan-Feng

    2006-06-01

    To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  17. Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development.

    PubMed

    Schneider, Rene; Tang, Lu; Lampugnani, Edwin R; Barkwill, Sarah; Lathe, Rahul; Zhang, Yi; McFarlane, Heather E; Pesquet, Edouard; Niittyla, Totte; Mansfield, Shawn D; Zhou, Yihua; Persson, Staffan

    2017-10-01

    The evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown. Cellulose is the major secondary wall constituent and is synthesized by plasma membrane-localized cellulose synthases (CesAs) whose catalytic activity propels them through the membrane. We show that the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1)/POM2 is necessary to align the secondary wall CesAs and MTs during the initial phase of xylem vessel development in Arabidopsis thaliana and rice ( Oryza sativa ). Surprisingly, these MT-driven patterns successively become imprinted and sufficient to sustain the continued progression of wall thickening in the absence of MTs and CSI1/POM2 function. Hence, two complementary principles underpin wall patterning during xylem vessel development. © 2017 American Society of Plant Biologists. All rights reserved.

  18. Imaging the Vessel Wall in Major Peripheral Arteries using Susceptibility Weighted Imaging

    PubMed Central

    Yang, Qi; Liu, Jiantao; Barnes, Samuel R.S.; Wu, Zhen; Li, Kuncheng; Neelavalli, Jaladhar; Hu, Jiani; Haacke, E. Mark

    2009-01-01

    Purpose To demonstrate a novel contrast mechanism for imaging the vessel wall and vessel wall calcification using susceptibility weighted imaging (SWI). Materials and Methods 18 subjects were imaged with multi-detector computed tomography (MDCT) and high resolution SWI at 3T. The SWI imaging parameters were optimized to allow for the best visualization of the femoral artery lumen and the arterial wall in magnitude and phase images, respectively. SWI filtered phase data were used to evaluate the diamagnetic susceptibility of vessel wall and of putative vessel wall calcification. Imaging was performed using TE = 15.6 ms (in-phase for fat); TR = 25 ms, FA = 10°, BW = 80 Hz/pixel, resolution = 0.5mm ×0.5mm in-plane and 1.0mm through-plane, an acquisition matrix of 512 × 384 × 64 (for read, phase and slice-select directions) and a total scan time of 8 minutes. Results Nineteen calcifications were identified in CT and SWI and they correlated well in both size and position. The contrast-to-noise ratio between the blood signal in the lumen of the artery and arterial wall was 11.7:1 and 7.4:1 in magnitude and in phase images, respectively. Conclusion SWI provides a novel means to visualize vessel wall and recognize the presence of calcification. PMID:19629989

  19. Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.

    PubMed

    Bonanno, Gabriele; Brotman, David; Stuber, Matthias

    2015-03-01

    Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.

  20. Highly efficient nonrigid motion‐corrected 3D whole‐heart coronary vessel wall imaging

    PubMed Central

    Atkinson, David; Henningsson, Markus; Botnar, Rene M.; Prieto, Claudia

    2016-01-01

    Purpose To develop a respiratory motion correction framework to accelerate free‐breathing three‐dimensional (3D) whole‐heart coronary lumen and coronary vessel wall MRI. Methods We developed a 3D flow‐independent approach for vessel wall imaging based on the subtraction of data with and without T2‐preparation prepulses acquired interleaved with image navigators. The proposed method corrects both datasets to the same respiratory position using beat‐to‐beat translation and bin‐to‐bin nonrigid corrections, producing coregistered, motion‐corrected coronary lumen and coronary vessel wall images. The proposed method was studied in 10 healthy subjects and was compared with beat‐to‐beat translational correction (TC) and no motion correction for the left and right coronary arteries. Additionally, the coronary lumen images were compared with a 6‐mm diaphragmatic navigator gated and tracked scan. Results No significant differences (P > 0.01) were found between the proposed method and the gated and tracked scan for coronary lumen, despite an average improvement in scan efficiency to 96% from 59%. Significant differences (P < 0.01) were found in right coronary artery vessel wall thickness, right coronary artery vessel wall sharpness, and vessel wall visual score between the proposed method and TC. Conclusion The feasibility of a highly efficient motion correction framework for simultaneous whole‐heart coronary lumen and vessel wall has been demonstrated. Magn Reson Med 77:1894–1908, 2017. © 2016 International Society for Magnetic Resonance in Medicine PMID:27221073

  1. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions

    PubMed Central

    Gardner, Jameson K.; Herbst-Kralovetz, Melissa M.

    2016-01-01

    The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D) human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV) bioreactor was designed by the National Aeronautics and Space Administration (NASA) to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue) have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies. PMID:27834891

  2. Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development[OPEN

    PubMed Central

    Tang, Lu; Barkwill, Sarah; Lathe, Rahul; McFarlane, Heather E.

    2017-01-01

    The evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown. Cellulose is the major secondary wall constituent and is synthesized by plasma membrane-localized cellulose synthases (CesAs) whose catalytic activity propels them through the membrane. We show that the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1)/POM2 is necessary to align the secondary wall CesAs and MTs during the initial phase of xylem vessel development in Arabidopsis thaliana and rice (Oryza sativa). Surprisingly, these MT-driven patterns successively become imprinted and sufficient to sustain the continued progression of wall thickening in the absence of MTs and CSI1/POM2 function. Hence, two complementary principles underpin wall patterning during xylem vessel development. PMID:28947492

  3. Numerical investigation of hyperelastic wall deformation characteristics in a micro-scale stenotic blood vessel

    NASA Astrophysics Data System (ADS)

    Cheema, Taqi Ahmad; Park, Cheol Woo

    2013-08-01

    Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.

  4. Comparative characterization of stromal vascular cells derived from three types of vascular wall and adipose tissue.

    PubMed

    Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro

    2013-12-01

    Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, <100 μm in diameter). These were examined for functionality and compared with adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as

  5. Quantification and Statistical Analysis Methods for Vessel Wall Components from Stained Images with Masson's Trichrome

    PubMed Central

    Hernández-Morera, Pablo; Castaño-González, Irene; Travieso-González, Carlos M.; Mompeó-Corredera, Blanca; Ortega-Santana, Francisco

    2016-01-01

    Purpose To develop a digital image processing method to quantify structural components (smooth muscle fibers and extracellular matrix) in the vessel wall stained with Masson’s trichrome, and a statistical method suitable for small sample sizes to analyze the results previously obtained. Methods The quantification method comprises two stages. The pre-processing stage improves tissue image appearance and the vessel wall area is delimited. In the feature extraction stage, the vessel wall components are segmented by grouping pixels with a similar color. The area of each component is calculated by normalizing the number of pixels of each group by the vessel wall area. Statistical analyses are implemented by permutation tests, based on resampling without replacement from the set of the observed data to obtain a sampling distribution of an estimator. The implementation can be parallelized on a multicore machine to reduce execution time. Results The methods have been tested on 48 vessel wall samples of the internal saphenous vein stained with Masson’s trichrome. The results show that the segmented areas are consistent with the perception of a team of doctors and demonstrate good correlation between the expert judgments and the measured parameters for evaluating vessel wall changes. Conclusion The proposed methodology offers a powerful tool to quantify some components of the vessel wall. It is more objective, sensitive and accurate than the biochemical and qualitative methods traditionally used. The permutation tests are suitable statistical techniques to analyze the numerical measurements obtained when the underlying assumptions of the other statistical techniques are not met. PMID:26761643

  6. Estrogen receptor expression and vessel density in the vagina wall in postmenopausal women with prolapse.

    PubMed

    Lara, Lúcia Alves da Silva; Ribeiro da Silva, Alfredo; Rosa-e-Silva, Julio Cesar; Silva-de-Sá, Marcos Felipe; Rosa-e-Silva, Ana Carolina Japur de Sá

    2014-04-01

    After menopause, critically estrogen low levels result in modifications in vaginal wall. This cross-sectional study aims to determine whether there is a change in the number of vessels in the lamina propria of the vagina after menopause in parallel to the ER-alpha expression on the vaginal wall. Twelve women who underwent a genital surgery for genital prolapse up to grade II were selected. They were divided into two groups: a premenopausal group (PG) consisting of six women who were 18-40 years old with FSH levels =12 mIU/ml and regular cycles, and a menopausal group (MG) consisting of six women at least one year after menopause who were <65 years old with FSH levels =40 mIU/ml. Slides were stained for ER-alpha immunohistochemistry, and an endothelial cell marker CD3 was used to label vessels which were identified by using a system for morphometry. The number of vessels was significantly higher in the PG than in the MG both on the anterior wall (PG: 1.055 ± 145.8 vessels/mm(2), MG: 346.6 ± 209.9 vessels/mm(2), p<0.0001) and on the posterior wall (PG: 1064 ± 303.3 vessels/mm(2), MG: 348.6 ± 167.3 vessels/mm(2), p=0.0005). The ER-alpha score was significantly higher in the PG than the score for the MG on both the anterior and posterior walls (PG: 6.0 ± 0.52, MG: 2.5 ± 0.89, p=0.007; PG: 5.8 ± 0.79, MG: 2.7 ± 0.95, p=0.03, respectively). There was a positive correlation between the ER-alpha score and the vessel concentration on the anterior (r=0.6656, p=0.018) and posterior (r=0.6738, p=0.016) vaginal walls. Age was strongly negatively correlated with vessel concentration on the vaginal walls (respectively r=-0.9033, p<0.0001, r=-0.7440, p=0.0055). Therefore, postmenopausal women with genital prolapse have a smaller number of vessels on the vaginal wall compared to normoestrogenic controls with the same pathological condition. Hypoestrogenism and advancing age are factors that are associated to these changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?

    PubMed

    González-Suárez, Ana; Trujillo, Macarena; Burdío, Fernando; Andaluz, Anna; Berjano, Enrique

    2014-08-01

    To assess by means of computer simulations whether the heat sink effect inside a large vessel (portal vein) could protect the vessel wall from thermal damage close to an internally cooled electrode during radiofrequency (RF)-assisted resection. First,in vivo experiments were conducted to validate the computational model by comparing the experimental and computational thermal lesion shapes created around the vessels. Computer simulations were then carried out to study the effect of different factors such as device-tissue contact, vessel position, and vessel-device distance on temperature distributions and thermal lesion shapes near a large vessel, specifically the portal vein. The geometries of thermal lesions around the vessels in the in vivo experiments were in agreement with the computer results. The thermal lesion shape created around the portal vein was significantly modified by the heat sink effect in all the cases considered. Thermal damage to the portal vein wall was inversely related to the vessel-device distance. It was also more pronounced when the device-tissue contact surface was reduced or when the vessel was parallel to the device or perpendicular to its distal end (blade zone), the vessel wall being damaged at distances less than 4.25 mm. The computational findings suggest that the heat sink effect could protect the portal vein wall for distances equal to or greater than 5 mm, regardless of its position and distance with respect to the RF-based device.

  8. Optical coherence tomography assessment of vessel wall degradation in aneurysmatic thoracic aortas

    NASA Astrophysics Data System (ADS)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Val-Bernal, J. Fernando; Mayorga, Marta; Revuelta, José M.; López-Higuera, José; Conde, Olga M.

    2013-06-01

    Optical coherence tomographic images of ascending thoracic human aortas from aneurysms exhibit disorders on the smooth muscle cell structure of the media layer of the aortic vessel as well as elastin degradation. Ex-vivo measurements of human samples provide results that correlate with pathologist diagnosis in aneurysmatic and control aortas. The observed disorders are studied as possible hallmarks for aneurysm diagnosis. To this end, the backscattering profile along the vessel thickness has been evaluated by fitting its decay against two different models, a third order polynomial fitting and an exponential fitting. The discontinuities present on the vessel wall on aneurysmatic aortas are slightly better identified with the exponential approach. Aneurysmatic aortic walls present uneven reflectivity decay when compared with healthy vessels. The fitting error has revealed as the most favorable indicator for aneurysm diagnosis as it provides a measure of how uniform is the decay along the vessel thickness.

  9. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease.

    PubMed

    Nörenberg, Dominik; Ebersberger, Hans U; Diederichs, Gerd; Hamm, Bernd; Botnar, René M; Makowski, Marcus R

    2016-03-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. Targeted MR-probes allow the characterization of atherosclerosis on a molecular level. Molecular MRI can identify in vivo markers for the differentiation of stable and unstable plaques. Visualization of early molecular changes has the potential to improve patient-individualized risk-assessment.

  10. The Study of Leukocyte Functions in a Rotating Wall Vessel

    NASA Technical Reports Server (NTRS)

    Trial, JoAnn

    1998-01-01

    The objective of this study was to investigate the behavior of leukocytes under free-fall conditions in a rotating wall vessel. In such a vessel, the tendency of a cell to fall in response to gravity is opposed by the rotation of the vessel and the culture medium within, keeping the cells in suspension without fluid shear. Previous reports indicated that such functions as lymphocyte migration through collagen matrix or monocyte cytokine secretion are altered under these conditions, and these changes correlate with similar functional defects of cultured cells seen during spaceflight.

  11. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla.

    PubMed

    Kelle, Sebastian; Schlendorf, Kelly; Hirsch, Glenn A; Gerstenblith, Gary; Fleck, Eckart; Weiss, Robert G; Stuber, Matthias

    2010-10-11

    Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd) contrast administration and coronary vessel wall enhancement (LGE) detected by 3T magnetic resonance imaging (MRI) in healthy subjects and patients with coronary artery disease (CAD). Materials and Methods. Four healthy subjects (4 men, mean age 29 ± 3 years and eleven CAD patients (6 women, mean age 61 ± 10 years) were studied on a commercial 3.0 Tesla (T) whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands). T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI) was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd) (0.1 mmol/kg Gd-DTPA). Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3%) segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0%) and at time-interval 3, 29 of 39 evaluable segments (74.4%) were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30-45 minutes after administration of the contrast agent.

  12. Intracranial Vascular Disease Evaluation With Combined Vessel Wall Imaging And Patient Specific Hemodynamics

    NASA Astrophysics Data System (ADS)

    Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto

    2017-11-01

    Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.

  13. In vitro experiments of vessel wall apposition between the Enterprise and Enterprise 2 stents for treatment of cerebral aneurysms.

    PubMed

    Kono, Kenichi; Terada, Tomoaki

    2016-02-01

    A closed-cell stent called Enterprise has been used for stent-assisted coil embolization of cerebral aneurysms. The Enterprise stent tends to cause kinks and vessel wall malposition in curved vessels and may cause thromboembolic complications. We evaluated vessel wall apposition of a new closed-cell stent, Enterprise 2, compared with a previous Enterprise stent, using curved vascular silicone models. The Enterprise or Enterprise 2 stent was deployed in curved vascular models with various radii of approximately 5 to 10 mm. Stent deployment was performed 25 times in each stent. A push-pull technique was used to minimize incomplete wall apposition. To evaluate conformity of stents, gaps between a stent and a vessel wall were measured. The gap ratio (gap / a wall diameter) was 15 % ± 17 % (mean ± standard deviation) and 41 % ± 15 % with the Enterprise 2 stent and the Enterprise stent, respectively. Taking gap ratios and radii of vessel curvature into consideration, the Enterprise 2 stent had significantly better wall apposition than the Enterprise stent (p = 0.005). In the same radius of vessel curvature, the Enterprise 2 stent had approximately half of the gap compared with the Enterprise stent. There were no significant differences in vessel straightening effects between the two stents. The Enterprise 2 stent has better wall apposition in curved vessels than the Enterprise stent. The gap between a vessel wall and the Enterprise 2 stent is approximately half that of the Enterprise stent. However, gaps and kinks are still present in curved vessels with a small radius. Caution should be taken for kinks and malposition in acutely curved vessels, such as the siphon of the internal carotid artery.

  14. Cardiovascular magnetic resonance profiling of coronary atherosclerosis: vessel wall remodelling and related myocardial blood flow alterations.

    PubMed

    Jahnke, Cosima; Manka, Robert; Kozerke, Sebastian; Schnackenburg, Bernhard; Gebker, Rolf; Marx, Nikolaus; Paetsch, Ingo

    2014-12-01

    To determine the association between coronary vessel wall morphology and haemodynamic consequences to the myocardium using a combined cardiovascular magnetic resonance (CMR) imaging protocol. Non-invasive CMR profiling of coronary atherosclerotic wall changes and related myocardial blood flow impairment has not been established yet. Sixty-three patients (45 men, 61.5 ± 10.7 years) with suspected or known coronary artery disease underwent 3.0 Tesla CMR imaging. The combined CMR protocol consisted of the following imaging modules at rest: 3D vessel wall imaging and flow measurement of the proximal right coronary artery (RCA), myocardial T2*, and first-pass perfusion imaging. During adenosine stress coronary flow, T2* and first-pass perfusion imaging were repeated. Coronary X-ray angiography classified patient groups: (i) all-smooth (n = 19); (ii) luminal irregular (diameter reduction < 30%; n = 35); and (iii) stenosed RCA (diameter reduction ≥ 50%; n = 9). The ratio of CMR-derived vessel wall area-to-lumen area significantly increased stepwise for the comparison of all-smooth vs. luminal irregular vs. stenosed RCA (1.9 ± 0.6 vs. 2.6 ± 0.6 vs. 3.6 ± 0.9, P < 0.01). Epicardial coronary flow reserve exhibited a stepwise significant decrease (3.4 ± 0.5 vs. 2.9 ± 0.7 vs. 1.7 ± 0.3, P < 0.01). On the myocardial level, stress-induced percentage gain of T2* values (ΔT2*) was significantly decreased between groups (29.2 ± 10.6 vs. 9.0 ± 9.8 vs. 2.2 ± 11.8%, P < 0.01) while perfusion reserve index decreased in the presence of stenosed RCA only (2.2 ± 0.6 vs. 2.0 ± 0.4 vs. 1.3 ± 0.3, P = ns and P < 0.01, respectively). The proposed comprehensive CMR imaging protocol provided a non-invasive approach for direct assessment of coronary vessel wall remodelling and resultant pathophysiological consequences on the level of epicardial coronary and myocardial blood flow in patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The

  15. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation

    PubMed Central

    Xie, Yibin; Yang, Qi; Xie, Guoxi; Pang, Jianing; Fan, Zhaoyang; Li, Debiao

    2015-01-01

    Purpose The purpose of this work is to develop a 3D black-blood imaging method for simultaneously evaluating carotid and intracranial arterial vessel wall with high spatial resolution and excellent blood suppression with and without contrast enhancement. Methods DANTE preparation module was incorporated into SPACE sequence to improve blood signal suppression. Simulations and phantom studies were performed to quantify image contrast variations induced by DANTE. DANTE-SPACE, SPACE and 2D TSE were compared for apparent SNR, CNR and morphometric measurements in fourteen healthy subjects. Preliminary clinical validation was performed in six symptomatic patients. Results Apparent residual luminal blood was observed in 5 (pre-CE) and 9 (post-CE) subjects with SPACE, and only 2 (post-CE) subjects with DANTE-SPACE. DANTE-SPACE showed 31% (pre-CE) and 100% (post-CE) improvement in wall-to-blood CNR over SPACE. Vessel wall area measured from SPACE was significantly larger than that from DANTE-SPACE due to possible residual blood signal contamination. In patients DANTE-SPACE showed the potential to detect vessel wall dissection and identify plaque components. Conclusion DANTE-SPACE significantly improved arterial and venous blood suppression compared with SPACE. Simultaneous high-resolution carotid and intracranial vessel wall imaging to potentially identify plaque components was feasible with scan time under 6 minutes. PMID:26152900

  16. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    PubMed

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-04-03

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  17. Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND).

    PubMed

    Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi

    2017-11-01

    To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Fracture resistance of welded thick-walled high-pressure vessels in power plants. Report No. 2. Approach to evaluating static strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorynin, I.V.; Filatov, V.M.; Ignatov, V.A.

    1986-07-01

    The authors examine data on the effect of defects on the fracture resistance of high-pressure vessels and their models obtained within the framework of the HSST program. Results of internal-pressure tests of two types of vessels with a wall thickness of 152 mm made from forgings of steels SA508 and SA533, as well as small vessels with a wall thickness of 11.5 and 23mm made of steel SA533 are shown. The authors state that testing thick-walled welded high-pressure vessels and thin-walled vessels with surface defects of different sizes has demonstrated that there are substantial static-strength reserves in structures designed bymore » existing domestic and foreign standards on the strength of power-plant equipment. A correction was proposed for the presently used method of calculating the resistance of highpressure vessels to brittle fracture that allows for the dimensions of the defects in relation to the type of vessel, the manufacturing technology, and the method of inspection.« less

  19. Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements.

    PubMed

    Cogswell, Petrice M; Siero, Jeroen C W; Lants, Sarah K; Waddle, Spencer; Davis, L Taylor; Gilbert, Guillaume; Hendrikse, Jeroen; Donahue, Manus J

    2018-03-31

    Flow suppression techniques have been developed for intracranial (IC) vessel wall imaging (VWI) and optimized using simulations; however, simulation results may not translate in vivo. To evaluate experimentally how IC vessel wall and lumen measurements change in identical subjects when evaluated using the most commonly available blood and cerebrospinal fluid (CSF) flow suppression modules and VWI sequences. Prospective. Healthy adults (n = 13; age = 37 ± 15 years) were enrolled. A 3.0T 3D T 1 /proton density (PD)-weighted turbo-spin-echo (TSE) acquisition with post-readout anti-driven equilibrium module, with and without Delay-Alternating-with-Nutation-for-Tailored-Excitation (DANTE) was applied. DANTE flip angle (8-12°) and TSE refocusing angle (sweep = 40-120° or 50-120°) were varied. Basilar artery and internal carotid artery (ICA) wall thicknesses, CSF signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio (SR) were assessed. Measurements were made by two readers (radiology resident and board-certified neuroradiologist). A Wilcoxon signed-rank test was applied with corrected two-sided P < 0.05 required for significance (critical P = 0.008, 0.005, and 0.05 for SNR/CNR, SR, and wall thickness, respectively). A TSE pulse sweep = 40-120° and sweep = 50-120° provided similar (P = 0.55) CSF suppression. Addition of the DANTE preparation reduced CSF SNR from 17.4 to 6.7, thereby providing significant (P < 0.008) improvement in CSF suppression. The DANTE preparation also resulted in a significant (P < 0.008) reduction in vessel wall SNR, but variable vessel wall to CSF CNR improvement (P = 0.87). There was a trend for a difference in blood SNR with vs. without DANTE (P = 0.05). The outer vessel wall diameter and wall thickness values were lower (P < 0.05) with (basilar artery 4.45 mm, 0.81 mm, respectively) vs. without (basilar artery 4.88 mm, 0.97 mm, respectively) DANTE 8

  20. Thermo-physics technical note No. 37: SNAP- 10A, Stainless Steel-316 vessel wall ablation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, L.D.

    1964-12-07

    The altitudes and times of ablation have been determined for the SNAP-10A, SS-316 vessel wall reentering under various conditions. The results are confined to one typical location on the reactor and to one typical reentry trajectory. The location is the side wall of the vessel and the trajectory is the one used in NAA-SR-8303.

  1. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation.

    PubMed

    Xie, Yibin; Yang, Qi; Xie, Guoxi; Pang, Jianing; Fan, Zhaoyang; Li, Debiao

    2016-06-01

    The purpose of this study was to develop a three-dimensional black blood imaging method for simultaneously evaluating the carotid and intracranial arterial vessel walls with high spatial resolution and excellent blood suppression with and without contrast enhancement. The delay alternating with nutation for tailored excitation (DANTE) preparation module was incorporated into three-dimensional variable flip angle turbo spin echo (SPACE) sequence to improve blood signal suppression. Simulations and phantom studies were performed to quantify image contrast variations induced by DANTE. DANTE-SPACE, SPACE, and two-dimensional turbo spin echo were compared for apparent signal-to-noise ratio, contrast-to-noise ratio, and morphometric measurements in 14 healthy subjects. Preliminary clinical validation was performed in six symptomatic patients. Apparent residual luminal blood was observed in five (pre-contrast) and nine (post-contrast) subjects with SPACE and only two (post-contrast) subjects with DANTE-SPACE. DANTE-SPACE showed 31% (pre-contrast) and 100% (post-contrast) improvement in wall-to-blood contrast-to-noise ratio over SPACE. Vessel wall area measured from SPACE was significantly larger than that from DANTE-SPACE due to possible residual blood signal contamination. DANTE-SPACE showed the potential to detect vessel wall dissection and identify plaque components in patients. DANTE-SPACE significantly improved arterial and venous blood suppression compared with SPACE. Simultaneous high-resolution carotid and intracranial vessel wall imaging to potentially identify plaque components was feasible with a scan time under 6 min. Magn Reson Med 75:2286-2294, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Vascular Cells in Blood Vessel Wall Development and Disease.

    PubMed

    Mazurek, R; Dave, J M; Chandran, R R; Misra, A; Sheikh, A Q; Greif, D M

    2017-01-01

    The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature. © 2017 Elsevier Inc. All rights reserved.

  3. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis.

    PubMed

    Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E

    2014-08-01

    High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.

  4. An intravascular loopless monopole antenna for vessel wall MR imaging at 3.0 T.

    PubMed

    Yuan, Hongyang; Lv, Xing; Ma, Xiaohai; Zhang, Rui; Fu, Youyi; Yang, Xuedong; Wang, Xiaoying; Zhang, Zhaoqi; Zhang, Jue; Fang, Jing

    2013-01-01

    The purpose of this study was to develop a novel intravascular loopless monopole antenna (ILMA) design specifically for imaging of small vessel walls. The ILMA consisted of an unshielded, low-friction guide wire and a tuning/matching box. The material of the guide wire was nitinol and it was coated with polyurethane. Because the guide wire was unshielded, it could be made thinner than the coaxial cable-based loopless intravascular antenna design. The material of the box was aluminum. In this study, the diameter of the guide wire was 0.5 mm and the length was 58.7 mm. The ILMA was used as a receiving antenna and body coil for transmission. To verify the feasibility of the ILMA, in vitro and in vivo experiments were performed on a 3.0-T magnetic resonance (MR) scanner. In vitro tests using the ILMA indicated that the proposed design could be used to image target vessel walls with a spatial resolution of 313 μm at the frequency coding direction and more than 100 mm of longitudinal coverage. In vivo tests demonstrated that the images showed the vessel walls clearly by using the ILMA and also indicated that the ILMA could be used for small vessels. The proposed antenna may therefore be utilized to promote MR-based diagnoses and therapeutic solutions for cardiovascular atherosclerotic diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo.

    PubMed

    Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2013-10-30

    To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient pulse along the flow direction. Bloch equation simulations were performed over a wide range of velocities to evaluate the flow sensitivity of the SSFP-echo signal. Vessel walls of carotid and femoral and popliteal arteries were imaged at 3 T. In two patients with peripheral artery disease the femoral arteries were imaged bilaterally to demonstrate method's potential to visualize atherosclerotic plaques. The method was also evaluated as a means to measure femoral artery flow-mediated dilation (FMD) in response to cuff-induced ischemia in four subjects. The SSFP-echo pulse sequence, which does not have a dedicated blood signal suppression preparation, achieved low blood signal permitting discrimination of the carotid and peripheral arterial walls with in-plane spatial resolution ranging from 0.5 to 0.69 mm and slice thickness of 2 to 3 mm, i.e. comparable to conventional 2D vessel-wall imaging techniques. The results of the simulations were in good agreement with analytical solution and observations for both vascular territories examined. Scan time ranged from 2.5 to 5 s per slice yielding a contrast-to-noise ratio between the vessel wall and lumen from 3.5 to 17. Mean femoral FMD in the four subjects was 9%, in good qualitative agreement with literature values. Water-selective 3D SSFP-echo pulse sequence is a potential alternative to 2D vessel-wall imaging. The proposed method is fast, robust, applicable to a wide range of flow velocities, and straightforward to implement.

  6. Role of Outgassing of ITER Vacuum Vessel In-Wall Shielding Materials in Leak Detection of ITER Vacuum Vessel

    NASA Astrophysics Data System (ADS)

    Maheshwari, A.; Pathak, H. A.; Mehta, B. K.; Phull, G. S.; Laad, R.; Shaikh, M. S.; George, S.; Joshi, K.; Khan, Z.

    2017-04-01

    ITER Vacuum Vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with In-Wall Shielding Blocks (IWS) and Water. The main purpose of IWS is to provide neutron shielding during ITER plasma operation and to reduce ripple of Toroidal Magnetic Field (TF). Although In-Wall Shield Blocks (IWS) will be submerged in water in between the walls of the ITER Vacuum Vessel (VV), Outgassing Rate (OGR) of IWS materials plays a significant role in leak detection of Vacuum Vessel of ITER. Thermal Outgassing Rate of a material critically depends on the Surface Roughness of material. During leak detection process using RGA equipped Leak detector and tracer gas Helium, there will be a spill over of mass 3 and mass 2 to mass 4 which creates a background reading. Helium background will have contribution of Hydrogen too. So it is necessary to ensure the low OGR of Hydrogen. To achieve an effective leak test it is required to obtain a background below 1 × 10-8 mbar 1 s-1 and hence the maximum Outgassing rate of IWS Materials should comply with the maximum Outgassing rate required for hydrogen i.e. 1 x 10-10 mbar 1 s-1 cm-2 at room temperature. As IWS Materials are special materials developed for ITER project, it is necessary to ensure the compliance of Outgassing rate with the requirement. There is a possibility of diffusing the gasses in material at the time of production. So, to validate the production process of materials as well as manufacturing of final product from this material, three coupons of each IWS material have been manufactured with the same technique which is being used in manufacturing of IWS blocks. Manufacturing records of these coupons have been approved by ITER-IO (International Organization). Outgassing rates of these coupons have been measured at room temperature and found in acceptable limit to obtain the required Helium Background. On the basis of these measurements, test reports have been generated and got

  7. Intracranial vessel wall imaging for evaluation of steno-occlusive diseases and intracranial aneurysms.

    PubMed

    Brinjikji, Waleed; Mossa-Basha, Mahmud; Huston, John; Rabinstein, Alejandro A; Lanzino, Giuseppe; Lehman, Vance T

    2017-03-01

    Cerebrovascular diseases have traditionally been classified, diagnosed and managed based on their luminal characteristics. However, over the past several years, several advancements in MRI techniques have ushered in high-resolution vessel wall imaging (HR-VWI), enabling evaluation of intracranial vessel wall pathology. These advancements now allow us to differentiate diseases which have a common angiographic appearance but vastly different natural histories (i.e. moyamoya versus atherosclerosis, reversible cerebral vasoconstriction syndrome versus vasculitis, stable versus unstable intracranial aneurysms). In this review, we detail the anatomical, histopathological and imaging characteristics of various intracranial steno-occlusive diseases and types of intracranial aneurysms and describe the role that HR-VWI can play in diagnosis, risk stratification and treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Some properties of the walls of metaxylem vessels of maize roots, including tests of the wettability of their lumenal wall surfaces

    PubMed Central

    McCully, Margaret; Canny, Martin; Baker, Adam; Miller, Celia

    2014-01-01

    Background and Aims Since the proposal of the cohesion theory there has been a paradox that the lumenal surface of vessels is rich in hydrophobic lignin, while tension in the rising sap requires adhesion to a hydrophilic surface. This study sought to characterize the strength of that adhesion in maize (Zea mays), the wettability of the vessel surface, and to reconcile this with its histochemical and physical nature. Methods Wettability was assessed by emptying the maize root vessels of sap, perfusing them with either water or oil, and examining the adhesion (as revealed by contact angles) of the two liquids to vessel walls by cryo-scanning electron microscopy. The phobicity of the lumenal surface was also assessed histochemically with hydrophilic and hydrophobic probes. Key Results Pit borders in the lumen-facing vessel wall surface were wetted by both sap/water and oil. The attraction for oil was weaker: water could replace oil but not vice versa. Pit apertures repelled oil and were strongly stained by hydrophilic probes. Pit chambers were probably hydrophilic. Oil never entered the pits. When vessels were emptied and cryo-fixed immediately, pit chambers facing away from the vessels were always sap-filled. Pit chambers facing vessel lumens were either sap- or gas-filled. Sap from adjoining tracheary elements entering empty vessels accumulated on the lumenal surface in hemispherical drops, which spread out with decreasing contact angles to fill the lumen. Conclusions The vessel lumenal surface has a dual nature, namely a mosaic of hydrophilic and hydrophobic patches at the micrometre scale, with hydrophilic predominating. A key role is shown, for the first time, of overarching borders of pits in determining the dual nature of the surface. In gas-filled (embolized) vessels they are hydrophobic. When wetted by sap (vessels refilling or full) they are hydrophilic. A hypothesis is proposed to explain the switch between the two states. PMID:24709790

  9. Radio-frequency coil selection for MR imaging of the carotid vessel wall

    NASA Astrophysics Data System (ADS)

    Mat Isa, S.; Shuaib, I. L.; Bauk, S.

    2014-11-01

    This aim of this study was to identify the radiofrequency coil that will produce optimum image quality for scanning the carotid vessel wall using magnetic resonance imaging. A comparative cross-sectional study was conducted using 10 volunteers. Each volunteer was scanned three times using a 1.5T Signa HDxt machine equipped with one of three different coils: a neurovascular array (NV) coil, an 8-channel CTL spine array coil, and a 3-inch surface coil. A qualitative image quality rating was assigned to each image. The images were also evaluated by measuring the signal to noise ratio (SNR) using Osirix 4.2.3 software. The noise was estimated from the mean intensities of the region of interest in the background of the images and the signal was measured in the muscle adjacent to the vessel wall. The SNRs of the three coils were compared using one-way ANOVA, with 104 images used for the data analysis. The mean image quality scores for the NV head coil, CTL coil, and 3-inch coil were 3.4, 3.33, and 1.67, respectively. In addition, the SNRs differed significantly (p < 0.05). The mean SNR for the 3-inch coil was significantly higher (56.21 ± 25.06) than those for the NV head coil (27.34 ± 15.47) and CTL coil (21.77 ± 13.14). The Bonferroni post-hoc test revealed that there was no significant difference between the NV head coil and the CTL coil (p = 0.21). The optimum SNR value was 20-27. These results indicate that the NV head coil and CTL coil can be used to evaluate the carotid arterial wall with optimum image quality and higher resolution. These coil can deliver fast and robust data to image the carotid vessel wall in vivo.

  10. Segmentation of arterial vessel wall motion to sub-pixel resolution using M-mode ultrasound.

    PubMed

    Fancourt, Craig; Azer, Karim; Ramcharan, Sharmilee L; Bunzel, Michelle; Cambell, Barry R; Sachs, Jeffrey R; Walker, Matthew

    2008-01-01

    We describe a method for segmenting arterial vessel wall motion to sub-pixel resolution, using the returns from M-mode ultrasound. The technique involves measuring the spatial offset between all pairs of scans from their cross-correlation, converting the spatial offsets to relative wall motion through a global optimization, and finally translating from relative to absolute wall motion by interpolation over the M-mode image. The resulting detailed wall distension waveform has the potential to enhance existing vascular biomarkers, such as strain and compliance, as well as enable new ones.

  11. Mechanical Characterization of the Vessel Wall by Data Assimilation of Intravascular Ultrasound Studies

    PubMed Central

    Maso Talou, Gonzalo D.; Blanco, Pablo J.; Ares, Gonzalo D.; Guedes Bezerra, Cristiano; Lemos, Pedro A.; Feijóo, Raúl A.

    2018-01-01

    Atherosclerotic plaque rupture and erosion are the most important mechanisms underlying the sudden plaque growth, responsible for acute coronary syndromes and even fatal cardiac events. Advances in the understanding of the culprit plaque structure and composition are already reported in the literature, however, there is still much work to be done toward in-vivo plaque visualization and mechanical characterization to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this work, a methodology for the mechanical characterization of the vessel wall plaque and tissues is proposed based on the combination of intravascular ultrasound (IVUS) imaging processing, data assimilation and continuum mechanics models within a high performance computing (HPC) environment. Initially, the IVUS study is gated to obtain volumes of image sequences corresponding to the vessel of interest at different cardiac phases. These sequences are registered against the sequence of the end-diastolic phase to remove transversal and longitudinal rigid motions prescribed by the moving environment due to the heartbeat. Then, optical flow between the image sequences is computed to obtain the displacement fields of the vessel (each associated to a certain pressure level). The obtained displacement fields are regarded as observations within a data assimilation paradigm, which aims to estimate the material parameters of the tissues within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed, endowed with a forward operator which amounts to address the solution of a hyperelastic solid mechanics model in the finite strain regime taking into account the axially stretched state of the vessel, as well as the effect of internal and external forces acting on the arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence, the data assimilation and computational solid mechanics computations are parallelized at three levels: (i) a Kalman

  12. Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins.

    PubMed

    Makowski, Marcus R; Jansen, Christian H P; Ebersberger, Ullrich; Schaeffter, Tobias; Razavi, Reza; Mangino, Massimo; Spector, Tim D; Botnar, Rene M; Greil, Gerald F

    2017-11-01

    The aim of this study was to investigate the impact of BMI on late gadolinium enhancement (LGE) of the coronary artery wall in identical monozygous twins discordant for BMI. Coronary LGE represents a useful parameter for the detection and quantification of atherosclerotic coronary vessel wall disease. Thirteen monozygote female twin pairs (n = 26) with significantly different BMIs (>1.6 kg/m2) were recruited out of >10,000 twin pairs (TwinsUK Registry). A coronary 3D-T2prep-TFE MR angiogram and 3D-IR-TFE vessel wall scan were performed prior to and following the administration of 0.2 mmol/kg of Gd-DTPA on a 1.5 T MR scanner. The number of enhancing coronary segments and contrast to noise ratios (CNRs) of the coronary wall were quantified. An increase in BMI was associated with an increased number of enhancing coronary segments (5.3 ± 1.5 vs. 3.5 ± 1.6, p < 0.0001) and increased coronary wall enhancement (6.1 ± 1.1 vs. 4.8 ± 0.9, p = 0.0027) compared to matched twins with lower BMI. This study in monozygous twins indicates that acquired factors predisposing to obesity, including lifestyle and environmental factors, result in increased LGE of the coronary arteries, potentially reflecting an increase in coronary atherosclerosis in this female study population. • BMI-discordant twins allow the investigation of the influence of lifestyle factors independent from genetic confounders. • Only thirteen obesity-discordant twins were identified underlining the strong genetic component of BMI. • In female twins, a BMI increase is associated with increased coronary late gadolinium enhancement. • Increased late gadolinium enhancement in the coronary vessel wall potentially reflects increased atherosclerosis.

  13. Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo.

    PubMed

    Fan, Zhaoyang; Yang, Qi; Deng, Zixin; Li, Yuxia; Bi, Xiaoming; Song, Shlee; Li, Debiao

    2017-03-01

    Although three-dimensional (3D) turbo spin echo (TSE) with variable flip angles has proven to be useful for intracranial vessel wall imaging, it is associated with inadequate suppression of cerebrospinal fluid (CSF) signals and limited spatial coverage at 3 Tesla (T). This work aimed to modify the sequence and develop a protocol to achieve whole-brain, CSF-attenuated T 1 -weighted vessel wall imaging. Nonselective excitation and a flip-down radiofrequency pulse module were incorporated into a commercial 3D TSE sequence. A protocol based on the sequence was designed to achieve T 1 -weighted vessel wall imaging with whole-brain spatial coverage, enhanced CSF-signal suppression, and isotropic 0.5-mm resolution. Human volunteer and pilot patient studies were performed to qualitatively and quantitatively demonstrate the advantages of the sequence. Compared with the original sequence, the modified sequence significantly improved the T 1 -weighted image contrast score (2.07 ± 0.19 versus 3.00 ± 0.00, P = 0.011), vessel wall-to-CSF contrast ratio (0.14 ± 0.16 versus 0.52 ± 0.30, P = 0.007) and contrast-to-noise ratio (1.69 ± 2.18 versus 4.26 ± 2.30, P = 0.022). Significant improvement in vessel wall outer boundary sharpness was observed in several major arterial segments. The new 3D TSE sequence allows for high-quality T 1 -weighted intracranial vessel wall imaging at 3 T. It may potentially aid in depicting small arteries and revealing T 1 -mediated high-signal wall abnormalities. Magn Reson Med 77:1142-1150, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Primary Metabolism during Biosynthesis of Secondary Wall Polymers of Protoxylem Vessel Elements1[OPEN

    PubMed Central

    Morisaki, Keiko; Sawada, Yuji; Sano, Ryosuke; Yamamoto, Atsushi; Kurata, Tetsuya; Suzuki, Shiro; Matsuda, Mami; Hasunuma, Tomohisa; Hirai, Masami Yokota

    2016-01-01

    Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell’s metabolic

  15. JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr

    NASA Image and Video Library

    1991-06-27

    S91-40049 (27 June 1991) --- JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.

  16. JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr

    NASA Technical Reports Server (NTRS)

    1991-01-01

    JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.

  17. Domain walls and ferroelectric reversal in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    2017-01-01

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180∘ domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall-mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond-valence sums. Our results thus provide both theoretical and empirical guidance for future searches for ferroelectric candidates in materials of the corundum derivative family.

  18. Experimental Investigation of Composite Pressure Vessel Performance and Joint Stiffness for Pyramid and Inverted Pyramid Joints

    NASA Technical Reports Server (NTRS)

    Verhage, Joseph M.; Bower, Mark V.; Gilbert, Paul A. (Technical Monitor)

    2001-01-01

    The focus of this study is on the suitability in the application of classical laminate theory analysis tools for filament wound pressure vessels with adhesive laminated joints in particular: pressure vessel wall performance, joint stiffness and failure prediction. Two 18-inch diameter 12-ply filament wound pressure vessels were fabricated. One vessel was fabricated with a 24-ply pyramid laminated adhesive double strap butt joint. The second vessel was fabricated with the same number of plies in an inverted pyramid joint. Results from hydrostatic tests are presented. Experimental results were used as input to the computer programs GENLAM and Laminate, and the output compared to test. By using the axial stress resultant, the classical laminate theory results show a correlation within 1% to the experimental results in predicting the pressure vessel wall pressure performance. The prediction of joint stiffness for the two adhesive joints in the axial direction is within 1% of the experimental results. The calculated hoop direction joint stress resultant is 25% less than the measured resultant for both joint configurations. A correction factor is derived and used in the joint analysis. The correction factor is derived from the hoop stress resultant from the tank wall performance investigation. The vessel with the pyramid joint is determined to have failed in the joint area at a hydrostatic pressure 33% value below predicted failure. The vessel with the inverted pyramid joint failed in the wall acreage at a hydrostatic pressure within 10% of the actual failure pressure.

  19. Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture

    NASA Technical Reports Server (NTRS)

    Johanson, Kelly; Allen, Patricia L.; Lewis, Fawn; Cubano, Luis A.; Hyman, Linda E.; Hammond, Timothy G.

    2002-01-01

    This study utilizes Saccharomyces cerevisiae to study genetic responses to suspension culture. The suspension culture system used in this study is the high-aspect-ratio vessel, one type of the rotating wall vessel, that provides a high rate of gas exchange necessary for rapidly dividing cells. Cells were grown in the high-aspect-ratio vessel, and DNA microarray and metabolic analyses were used to determine the resulting changes in yeast gene expression. A significant number of genes were found to be up- or downregulated by at least twofold as a result of rotational growth. By using Gibbs promoter alignment, clusters of genes were examined for promoter elements mediating these genetic changes. Candidate binding motifs similar to the Rap1p binding site and the stress-responsive element were identified in the promoter regions of differentially regulated genes. This study shows that, as in higher order organisms, S. cerevisiae changes gene expression in response to rotational culture and also provides clues for investigations into the signaling pathways involved in gravitational response.

  20. Rôle of contrast media viscosity in altering vessel wall shear stress and relation to the risk of contrast extravasations.

    PubMed

    Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles

    2016-12-01

    Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Domain walls and ferroelectric reversal in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180° domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy, and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond valence sums. Our results thus provide both theoretical and empirical guidance to further search for ferroelectric candidates in materials of the corundum derivative family. The work is supported by ONR Grant N00014-12-1-1035.

  2. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology

    NASA Astrophysics Data System (ADS)

    Nahmany, Moshe; Stern, Adin; Aghion, Eli; Frage, Nachum

    2017-10-01

    Additive manufacturing of metals by selective laser melting (AM-SLM) is hampered by significant limitations in product size due to the limited dimensions of printing trays. Electron beam welding (EBW) is a well-established process that results in relatively minor metallurgical modifications in workpieces due to the ability of EBW to pass high-density energy to the related substance. The present study aims to evaluate structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced from components prepared by SLM technology. Following the EB welding process, leak and burst tests were conducted, as was fractography analysis. The welded vessels showed an acceptable holding pressure of 30 MPa, with a reasonable residual deformation up to 2.3% and a leak rate better than 1 × 10-8 std-cc s-1 helium. The failures that occurred under longitudinal stresses reflected the presence of two weak locations in the vessels, i.e., the welded joint region and the transition zone between the vessel base and wall. Fractographic analysis of the fracture surfaces of broken vessels displayed the ductile mode of the rupture, with dimples of various sizes, depending on the failure location.

  3. Vessel Wall Enhancement and Blood-Cerebrospinal Fluid Barrier Disruption After Mechanical Thrombectomy in Acute Ischemic Stroke.

    PubMed

    Renú, Arturo; Laredo, Carlos; Lopez-Rueda, Antonio; Llull, Laura; Tudela, Raúl; San-Roman, Luis; Urra, Xabier; Blasco, Jordi; Macho, Juan; Oleaga, Laura; Chamorro, Angel; Amaro, Sergio

    2017-03-01

    Less than half of acute ischemic stroke patients treated with mechanical thrombectomy obtain permanent clinical benefits. Consequently, there is an urgent need to identify mechanisms implicated in the limited efficacy of early reperfusion. We evaluated the predictors and prognostic significance of vessel wall permeability impairment and its association with blood-cerebrospinal fluid barrier (BCSFB) disruption after acute stroke treated with thrombectomy. A prospective cohort of acute stroke patients treated with stent retrievers was analyzed. Vessel wall permeability impairment was identified as gadolinium vessel wall enhancement (GVE) in a 24- to 48-hour follow-up contrast-enhanced magnetic resonance imaging, and severe BCSFB disruption was defined as subarachnoid hemorrhage or gadolinium sulcal enhancement (present across >10 slices). Infarct volume was evaluated in follow-up magnetic resonance imaging, and clinical outcome was evaluated with the modified Rankin Scale at day 90. A total of 60 patients (median National Institutes of Health Stroke Scale score, 18) were analyzed, of whom 28 (47%) received intravenous alteplase before mechanical thrombectomy. Overall, 34 (57%) patients had GVE and 27 (45%) had severe BCSFB disruption. GVE was significantly associated with alteplase use before thrombectomy and with more stent retriever passes, along with the presence of severe BCSFB disruption. GVE was associated with poor clinical outcome, and both GVE and severe BCSFB disruption were associated with increased final infarct volume. These findings may support the clinical relevance of direct vessel damage and BCSFB disruption after acute stroke and reinforce the need for further improvements in reperfusion strategies. Further validation in larger cohorts of patients is warranted. © 2017 American Heart Association, Inc.

  4. Freezing resistance in Patagonian woody shrubs: the role of cell wall elasticity and stem vessel size.

    PubMed

    Zhang, Yong-Jiang; Bucci, Sandra J; Arias, Nadia S; Scholz, Fabian G; Hao, Guang-You; Cao, Kun-Fang; Goldstein, Guillermo

    2016-08-01

    Freezing resistance through avoidance or tolerance of extracellular ice nucleation is important for plant survival in habitats with frequent subzero temperatures. However, the role of cell walls in leaf freezing resistance and the coordination between leaf and stem physiological processes under subzero temperatures are not well understood. We studied leaf and stem responses to freezing temperatures, leaf and stem supercooling, leaf bulk elastic modulus and stem xylem vessel size of six Patagonian shrub species from two sites (plateau and low elevation sites) with different elevation and minimum temperatures. Ice seeding was initiated in the stem and quickly spread to leaves, but two species from the plateau site had barriers against rapid spread of ice. Shrubs with xylem vessels smaller in diameter had greater stem supercooling capacity, i.e., ice nucleated at lower subzero temperatures. Only one species with the lowest ice nucleation temperature among all species studied exhibited freezing avoidance by substantial supercooling, while the rest were able to tolerate extracellular freezing from -11.3 to -20 °C. Leaves of species with more rigid cell walls (higher bulk elastic modulus) could survive freezing to lower subzero temperatures, suggesting that rigid cell walls potentially reduce the degree of physical injury to cell membranes during the extracellular freezing and/or thaw processes. In conclusion, our results reveal the temporal-spatial ice spreading pattern (from stem to leaves) in Patagonian shrubs, and indicate the role of xylem vessel size in determining supercooling capacity and the role of cell wall elasticity in determining leaf tolerance of extracellular ice formation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Kitslaar, Pieter H; Coolen, Bram F; van den Berg, Alexandra M; Smits, Loek P; Shahzad, Rahil; Shamonin, Denis P; de Koning, Patrick J H; Nederveen, Aart J; van der Geest, Rob J

    2017-10-01

    The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI. The proposed method segments the lumen and outer wall surfaces including the bifurcation region by fitting a subdivision surface constructed hierarchical-tree model to the image data. In particular, a hybrid segmentation which combines deformable model fitting with boundary classification was applied to extract the lumen surface. The 3D model ensures the correct shape and topology of the carotid artery, while the boundary classification uses combined image information of 3D TOF-MRA and 3D BB-MRI to promote accurate delineation of the lumen boundaries. The proposed algorithm was validated on 25 subjects (48 arteries) including both healthy volunteers and atherosclerotic patients with 30% to 70% carotid stenosis. For both lumen and outer wall border detection, our result shows good agreement between manually and automatically determined contours, with contour-to-contour distance less than 1 pixel as well as Dice overlap greater than 0.87 at all different carotid artery sections. The presented 3D segmentation technique has demonstrated the capability of providing vessel wall delineation for 3D carotid MRI data with high accuracy and limited user interaction. This brings benefits to large-scale patient studies for assessing the effect of pharmacological treatment of atherosclerosis by reducing image analysis time and bias between human observers. © 2017 American Association of Physicists in Medicine.

  6. Automatic plaque characterization and vessel wall segmentation in magnetic resonance images of atherosclerotic carotid arteries

    NASA Astrophysics Data System (ADS)

    Adame, Isabel M.; van der Geest, Rob J.; Wasserman, Bruce A.; Mohamed, Mona; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.

    2004-05-01

    Composition and structure of atherosclerotic plaque is a primary focus of cardiovascular research. In vivo MRI provides a meanse to non-invasively image and assess the morphological features of athersclerotic and normal human carotid arteries. To quantitatively assess the vulnerability and the type of plaque, the contours of the lumen, outer boundary of the vessel wall and plaque components, need to be traced. To achieve this goal, we have developed an automated contou detection technique, which consists of three consecutive steps: firstly, the outer boundary of the vessel wall is detected by means of an ellipse-fitting procedure in order to obtain smoothed shapes; secondly, the lumen is segnented using fuzzy clustering. Thre region to be classified is that within the outer vessel wall boundary obtained from the previous step; finally, for plaque detection we follow the same approach as for lumen segmentation: fuzzy clustering. However, plaque is more difficult to segment, as the pixel gray value can differ considerably from one region to another, even when it corresponds to the same type of tissue. That makes further processing necessary. All these three steps might be carried out combining information from different sequences (PD-, T2-, T1-weighted images, pre- and post-contrast), to improve the contour detection. The algorithm has been validated in vivo on 58 high-resolution PD and T1 weighted MR images (19 patients). The results demonstrate excellent correspondence between automatic and manual area measurements: lumen (r=0.94), outer (r=0.92), and acceptable for fibrous cap thickness (r=0.76).

  7. Design and characterisation of a wall motion phantom.

    PubMed

    Dineley, J; Meagher, S; Poepping, T L; McDicken, W N; Hoskins, P R

    2006-09-01

    Arterial wall motion is an essential feature of a healthy cardiovascular system and it is known that wall motion is affected by age and disease. In recent years, methods have been developed for measurement of wall motion with the intention of providing diagnostically useful information. An issue with all of these techniques is the accuracy and variability of both wall motion and derived quantities such as elasticity, which requires the development of suitable test tools. In this paper, a vessel wall phantom is described for use in ultrasound studies of wall motion. The vessel was made from polyvinyl alcohol (PVA) subjected to a freeze-thaw process to form a cryogel (PVA-C). The elastic modulus, acoustic velocity and attenuation coefficient varied from 57 kPa, 1543 m s(-1) and 0.18 dB cm(-1) MHz(-1) for one freeze-thaw cycle to 330 kPa, 1583 m s(-1) and 0.42 dB cm(-1) MHz(-1) for 10 freeze-thaw cycles. Wall motion was effected by the use of pulsatile flow produced from a gear pump. The use of a downstream flow resistor removed gross distortions in the wall motion waveform, possibly by removal of reflected pressure waves. However, a low amplitude 20 Hz oscillation remained, which is unphysiologic and thought to be caused by the vibration of the distended PVA-C vessel.

  8. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity

    NASA Technical Reports Server (NTRS)

    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A.

    1992-01-01

    High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

  9. Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging.

    PubMed

    Cheng, Christopher P; Parker, David; Taylor, Charles A

    2002-09-01

    Arterial wall shear stress is hypothesized to be an important factor in the localization of atherosclerosis. Current methods to compute wall shear stress from magnetic resonance imaging (MRI) data do not account for flow profiles characteristic of pulsatile flow in noncircular vessel lumens. We describe a method to quantify wall shear stress in large blood vessels by differentiating velocity interpolation functions defined using cine phase-contrast MRI data on a band of elements in the neighborhood of the vessel wall. Validation was performed with software phantoms and an in vitro flow phantom. At an image resolution corresponding to in vivo imaging data of the human abdominal aorta, time-averaged, spatially averaged wall shear stress for steady and pulsatile flow were determined to be within 16% and 23% of the analytic solution, respectively. These errors were reduced to 5% and 8% with doubling in image resolution. For the pulsatile software phantom, the oscillation in shear stress was predicted to within 5%. The mean absolute error of circumferentially resolved shear stress for the nonaxisymmetric phantom decreased from 28% to 15% with a doubling in image resolution. The irregularly shaped phantom and in vitro investigation demonstrated convergence of the calculated values with increased image resolution. We quantified the shear stress at the supraceliac and infrarenal regions of a human abdominal aorta to be 3.4 and 2.3 dyn/cm2, respectively.

  10. Protective interior wall and attach8ing means for a fusion reactor vacuum vessel

    DOEpatents

    Phelps, Richard D.; Upham, Gerald A.; Anderson, Paul M.

    1988-01-01

    An array of connected plates mounted on the inside wall of the vacuum vessel of a magnetic confinement reactor in order to provide a protective surface for energy deposition inside the vessel. All fasteners are concealed and protected beneath the plates, while the plates themselves share common mounting points. The entire array is installed with torqued nuts on threaded studs; provision also exists for thermal expansion by mounting each plate with two of its four mounts captured in an oversize grooved spool. A spool-washer mounting hardware allows one edge of a protective plate to be torqued while the other side remains loose, by simply inverting the spool-washer hardware.

  11. Coronary artery wall imaging.

    PubMed

    Keegan, Jennifer

    2015-05-01

    Like X-Ray contrast angiography, MR coronary angiograms show the vessel lumens rather than the vessels themselves. Consequently, outward remodeling of the vessel wall, which occurs in subclinical coronary disease before luminal narrowing, cannot be seen. The current gold standard for assessing the coronary vessel wall is intravascular ultrasound, and more recently, optical coherence tomography, both of which are invasive and use ionizing radiation. A noninvasive, low-risk technique for assessing the vessel wall would be beneficial to cardiologists interested in the early detection of preclinical disease and for the safe monitoring of the progression or regression of disease in longitudinal studies. In this review article, the current state of the art in MR coronary vessel wall imaging is discussed, together with validation studies and recent developments. © 2014 Wiley Periodicals, Inc.

  12. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment

  13. Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors.

    PubMed

    Schmidt, Dörthe; Asmis, Lars M; Odermatt, Bernhard; Kelm, Jens; Breymann, Christian; Gössi, Matthias; Genoni, Michele; Zund, Gregor; Hoerstrup, Simon P

    2006-10-01

    Tissue-engineered living blood vessels (TEBV) with growth capacity represent a promising new option for the repair of congenital malformations. We investigate the functionality of TEBV with endothelia generated from human umbilical cord blood-derived endothelial progenitor cells. Tissue-engineered living blood vessels were generated from human umbilical cord-derived myofibroblasts seeded on biodegradable vascular scaffolds, followed by endothelialization with differentiated cord blood-derived endothelial progenitor cells. During in vitro maturation the TEBV were exposed to physiologic conditioning in a flow bioreactor. For functional assessment, a subgroup of TEBV was stimulated with tumor necrosis factor-alpha. Control vessels endothelialized with standard vascular endothelial cells were treated in parallel. Analysis of the TEBV included histology, immunohistochemistry, biochemistry (extracellular matrix analysis, DNA), and biomechanical testing. Endothelia were analyzed by flow cytometry and immunohistochemistry (CD31, von Willebrand factor, thrombomodulin, tissue factor, endothelial nitric oxide synthase). Histologically, a three-layered tissue organization of the TEBV analogous to native vessels was observed, and biochemistry revealed the major matrix constituents (collagen, proteoglycans) of blood vessels. Biomechanical properties (Young's modulus, 2.03 +/- 0.65 MPa) showed profiles resembling those of native tissue. Endothelial progenitor cells expressed typical endothelial cell markers CD31, von Willebrand factor, and endothelial nitric oxide synthase comparable to standard vascular endothelial cells. Stimulation with tumor necrosis factor-alpha resulted in physiologic upregulation of tissue factor and downregulation of thrombomodulin expression. These results indicate that TEBV with tissue architecture and functional endothelia similar to native blood vessels can be successfully generated from human umbilical cord progenitor cells. Thus, blood-derived

  14. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels

    USDA-ARS?s Scientific Manuscript database

    Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under norma...

  15. Curved and conformal high-pressure vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The firstmore » inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.« less

  16. Low-density lipoprotein transport in blood vessel walls of squirrel monkeys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tompkins, R.G.; Yarmush, M.L.; Schnitzer, J.J.

    1989-08-01

    Transmural accumulations of low-density lipoprotein (LDL) were examined in the blood vessel walls of four squirrel monkeys. Vascular wall concentrations of LDL were measured using quantitative autoradiography after {sup 125}I-labeled LDL circulation for 30 min. Profiles of relative tissue concentration from different sections in the same region were similar to each other, and there was little animal-to-animal variation. Concentrations were highest near the luminal endothelium, lower near the medial-adventitial border, and lowest within the media. Profiles from different regions fell into three groups: (1) aortic samples had steep intimal concentration gradients and near-zero media concentrations; (2) the iliac, femoral, popliteal,more » and common carotid arteries had higher intimal concentrations than group 1 but had similar concentrations deep within the media; and (3) the cerebral and coronary arteries, inferior vena cava, and pulmonary artery had intimal concentrations that were similar to group 2, but the concentrations deep within the media were greater than either groups 1 or 2. Arterial bifurcation profiles from the inner wall and the outer walls were similar to each other and to profiles from the upstream and downstream areas. Out of 280 total sites examined, 15 examples of profiles with substantially increased concentrations near the luminal endothelium were found scattered throughout the cardiovascular system, demonstrating that there are focal regions throughout the cardiovascular system which have greatly increased {sup 125}I-LDL transendothelial permeability.« less

  17. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors.

    PubMed

    DiStefano, Tyler; Chen, Holly Yu; Panebianco, Christopher; Kaya, Koray Dogan; Brooks, Matthew J; Gieser, Linn; Morgan, Nicole Y; Pohida, Tom; Swaroop, Anand

    2018-01-09

    Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies. Published by Elsevier Inc.

  18. Dual shell pressure balanced vessel

    DOEpatents

    Fassbender, Alexander G.

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  19. [Morphological signs of mitochondrial cytopathy in skeletal muscles and micro-vessel walls in a patient with cerebral artery dissection associated with MELAS syndrome].

    PubMed

    Sakharova, A V; Kalashnikova, L A; Chaĭkovskaia, R P; Mir-Kasimov, M F; Nazarova, M A; Pykhtina, T N; Dobrynina, L A; Patrusheva, N L; Patrushev, L I; Protskiĭ, S V

    2012-01-01

    Skin and muscles biopsy specimens of a patient harboring A3243G mutation in mitochondrial DNA, with dissection of internal carotid and vertebral arteries, associated with MELAS were studied using histochemical and electron-microscopy techniques. Ragged red fibers, regional variability of SDH histochemical reaction, two types of morphologically atypical mitochondria and their aggregation were found in muscle. There was correlation between SDH histochemical staining and number of mitochondria revealed by electron microscopy in muscle tissue. Similar mitochondrial abnormality, their distribution and cell lesions followed by extra-cellular matrix mineralization were found in the blood vessel walls. In line with generalization of cytopathy process caused by gene mutation it can be supposed that changes found in skin and muscle microvessels also exist in large cerebral vessels causing the vessel wall "weakness", predisposing them to dissection.

  20. Wall shear stress estimation in the aorta: Impact of wall motion, spatiotemporal resolution, and phase noise.

    PubMed

    Zimmermann, Judith; Demedts, Daniel; Mirzaee, Hanieh; Ewert, Peter; Stern, Heiko; Meierhofer, Christian; Menze, Bjoern; Hennemuth, Anja

    2018-04-01

    Wall shear stress (WSS) presents an important parameter for assessing blood flow characteristics and evaluating flow-mediated lesions in the aorta. To investigate the robustness of WSS and oscillatory shear index (OSI) estimation based on 4D flow MRI against vessel wall motion, spatiotemporal resolution, and velocity encoding (VENC). Simulated and prospective. Synthetic 4D flow MRI data of the aorta, simulated using the Lattice-Boltzmann method; in vivo 4D flow MRI data of the aorta from healthy volunteers (n = 11) and patients with congenital heart defects (n = 17). 1.5T; 4D flow MRI with PEAK-GRAPPA acceleration and prospective electrocardiogram triggering. Predicated upon 3D cubic B-splines interpolation of the image velocity field, WSS was estimated in mid-systole, early-diastole, and late-diastole and OSI was derived. We assessed the impact of spatiotemporal resolution and phase noise, and compared results based on tracked-using deformable registration-and static vessel wall location. Bland-Altman analysis to assess WSS/OSI differences; Hausdorff distance (HD) to assess wall motion; and Pearson's correlation coefficient (PCC) to assess correlation of HD with WSS. Synthetic data results show systematic over-/underestimation of WSS when different spatial resolution (mean ± 1.96 SD up to -0.24 ± 0.40 N/m 2 and 0.5 ± 1.38 N/m 2 for 8-fold and 27-fold voxel size, respectively) and VENC-depending phase noise (mean ± 1.96 SD up to 0.31 ± 0.12 N/m 2 and 0.94 ± 0.28 N/m 2 for 2-fold and 4-fold VENC increase, respectively) are given. Neglecting wall motion when defining the vessel wall perturbs WSS estimates to a considerable extent (1.96 SD up to 1.21 N/m 2 ) without systematic over-/underestimation (Bland-Altman mean range -0.06 to 0.05). In addition to sufficient spatial resolution and velocity to noise ratio, accurate tracking of the vessel wall is essential for reliable image-based WSS estimation and should not be

  1. T2‐Weighted intracranial vessel wall imaging at 7 Tesla using a DANTE‐prepared variable flip angle turbo spin echo readout (DANTE‐SPACE)

    PubMed Central

    Viessmann, Olivia; Li, Linqing; Benjamin, Philip

    2016-01-01

    Purpose To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. Methods A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black‐blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE‐preparation module for 7T. Signal‐to‐noise ratio (SNR), contrast‐to‐noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE‐SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE‐SPACE. Results The 7T‐optimized SPACE sequence improved the vessel wall point‐spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE‐SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). Conclusion The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655–663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26890988

  2. Proof test criteria for thin-walled 2219 aluminum pressure vessels. Volume 1: Program summary and data analysis

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1976-01-01

    This experimental program was undertaken to investigate the crack growth behavior of deep surface flaws in 2219 aluminum. The program included tests of uniaxially loaded surface flaw and center crack panels at temperatures ranging from 20K (-423 F) to ambient. The tests were conducted on both the base metal and as-welded weld metal material. The program was designed to provide data on the mechanisms of failure by ligament penetration, and the residual cyclic life, after proof-testing, of a vessel which has been subjected to incipient penetration by the proof test. The results were compared and analyzed with previously developed data to develop guidelines for the proof testing of thin walled 2219 pressure vessels.

  3. Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties

    PubMed Central

    Xiong, Guanglei; Figueroa, C. Alberto; Xiao, Nan; Taylor, Charles A.

    2011-01-01

    SUMMARY Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid–structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms. PMID:21765984

  4. Dissolver vessel bottom assembly

    DOEpatents

    Kilian, Douglas C.

    1976-01-01

    An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.

  5. Identification of vessel wall degradation in ascending thoracic aortic aneurysms with OCT

    PubMed Central

    Real, Eusebio; Val-Bernal, José Fernando; Revuelta, José M.; Pontón, Alejandro; Díez, Marta Calvo; Mayorga, Marta; López-Higuera, José M.; Conde, Olga M.

    2014-01-01

    Degradation of the wall of human ascending thoracic aorta has been assessed through Optical Coherence Tomography (OCT). OCT images of the media layer of the aortic wall exhibit micro-structure degradation in case of diseased aortas from aneurysmal vessels. The OCT indicator of degradation depends on the dimension of areas of the media layer where backscattered reflectivity becomes smaller due to a disorder on the morphology of elastin, collagen and smooth muscle cells (SMCs). Efficient pre-processing of the OCT images is required to accurately extract the dimension of degraded areas after an optimized thresholding procedure. OCT results have been validated against conventional histological analysis. The OCT qualitative assessment has achieved a pair sensitivity-specificity of 100%-91.6% in low-high degradation discrimination when a threshold of 4965.88µm2 is selected. This threshold suggests to have physiological meaning. The OCT quantitative evaluation of degradation achieves a correlation of 0.736 between the OCT indicator and the histological score. This in-vitro study can be transferred to the clinical scenario to provide an intraoperative assessment tool to guide cardiovascular surgeons in open repair interventions. PMID:25426332

  6. Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall.

    PubMed

    Middelburg, T A; de Bruijn, H S; Tettero, L; van der Ploeg van den Heuvel, A; Neumann, H A M; de Haas, E R M; Robinson, D J

    2013-09-05

    Vascular responses to photodynamic therapy (PDT) may influence the availability of oxygen during PDT and the extent of tumor destruction after PDT. However, for topical PDT vascular effects are largely unknown. Arteriole and venule diameters were measured before and after hexylaminolevulinate (HAL) and aminolevulinic acid (ALA) PDT and related to the protoporphyrin IX (PpIX) concentration in the vessel wall. A mouse skin fold chamber model and an intravital confocal microscope allowed direct imaging of the subcutaneous vessels underlying the treated area. In both HAL and ALA groups over 60% of arterioles constricted completely, while venules generally did not respond, except for two larger veins that constricted partially. Arteriole vasoconstriction strongly correlated with PpIX fluorescence intensity in the arteriole wall. Total PpIX fluorescence intensity was significantly higher for HAL than ALA for the whole area that was imaged but not for the arteriole walls. In conclusion, complete arteriole vasoconstriction occurs frequently in both HAL and ALA based topical PDT, especially when relatively high PpIX concentrations in arteriole walls are reached. Vasoconstriction will likely influence PDT effect and should be considered in studies on topical HAL and ALA-PDT. Also, our results may redefine the vasculature as a potential secondary target for topical PDT. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Monitoring the Wall Mechanics During Stent Deployment in a Vessel

    PubMed Central

    Steinert, Brian D.; Zhao, Shijia; Gu, Linxia

    2012-01-01

    Clinical trials have reported different restenosis rates for various stent designs1. It is speculated that stent-induced strain concentrations on the arterial wall lead to tissue injury, which initiates restenosis2-7. This hypothesis needs further investigations including better quantifications of non-uniform strain distribution on the artery following stent implantation. A non-contact surface strain measurement method for the stented artery is presented in this work. ARAMIS stereo optical surface strain measurement system uses two optical high speed cameras to capture the motion of each reference point, and resolve three dimensional strains over the deforming surface8,9. As a mesh stent is deployed into a latex vessel with a random contrasting pattern sprayed or drawn on its outer surface, the surface strain is recorded at every instant of the deformation. The calculated strain distributions can then be used to understand the local lesion response, validate the computational models, and formulate hypotheses for further in vivo study. PMID:22588353

  8. Rapid dark-blood carotid vessel-wall imaging with random bipolar gradients in a radial SSFP acquisition.

    PubMed

    Lin, Hung-Yu; Flask, Chris A; Dale, Brian M; Duerk, Jeffrey L

    2007-06-01

    To investigate and evaluate a new rapid dark-blood vessel-wall imaging method using random bipolar gradients with a radial steady-state free precession (SSFP) acquisition in carotid applications. The carotid artery bifurcations of four asymptomatic volunteers (28-37 years old, mean age = 31 years) were included in this study. Dark-blood contrast was achieved through the use of random bipolar gradients applied prior to the signal acquisition of each radial projection in a balanced SSFP acquisition. The resulting phase variation for moving spins established significant destructive interference in the low-frequency region of k-space. This phase variation resulted in a net nulling of the signal from flowing spins, while the bipolar gradients had a minimal effect on the static spins. The net effect was that the regular SSFP signal amplitude (SA) in stationary tissues was preserved while dark-blood contrast was achieved for moving spins. In this implementation, application of the random bipolar gradient pulses along all three spatial directions nulled the signal from both in-plane and through-plane flow in phantom and in vivo studies. In vivo imaging trials confirmed that dark-blood contrast can be achieved with the radial random bipolar SSFP method, thereby substantially reversing the vessel-to-lumen contrast-to-noise ratio (CNR) of a conventional rectilinear SSFP "bright-blood" acquisition from bright blood to dark blood with only a modest increase in TR (approximately 4 msec) to accommodate the additional bipolar gradients. Overall, this sequence offers a simple and effective dark-blood contrast mechanism for high-SNR SSFP acquisitions in vessel wall imaging within a short acquisition time.

  9. Do xylem fibers affect vessel cavitation resistance?

    PubMed

    Jacobsen, Anna L; Ewers, Frank W; Pratt, R Brandon; Paddock, William A; Davis, Stephen D

    2005-09-01

    Possible mechanical and hydraulic costs to increased cavitation resistance were examined among six co-occurring species of chaparral shrubs in southern California. We measured cavitation resistance (xylem pressure at 50% loss of hydraulic conductivity), seasonal low pressure potential (P(min)), xylem conductive efficiency (specific conductivity), mechanical strength of stems (modulus of elasticity and modulus of rupture), and xylem density. At the cellular level, we measured vessel and fiber wall thickness and lumen diameter, transverse fiber wall and total lumen area, and estimated vessel implosion resistance using (t/b)(h)(2), where t is the thickness of adjoining vessel walls and b is the vessel lumen diameter. Increased cavitation resistance was correlated with increased mechanical strength (r(2) = 0.74 and 0.76 for modulus of elasticity and modulus of rupture, respectively), xylem density (r(2) = 0.88), and P(min) (r(2) = 0.96). In contrast, cavitation resistance and P(min) were not correlated with decreased specific conductivity, suggesting no tradeoff between these traits. At the cellular level, increased cavitation resistance was correlated with increased (t/b)(h)(2) (r(2) = 0.95), increased transverse fiber wall area (r(2) = 0.89), and decreased fiber lumen area (r(2) = 0.76). To our knowledge, the correlation between cavitation resistance and fiber wall area has not been shown previously and suggests a mechanical role for fibers in cavitation resistance. Fiber efficacy in prevention of vessel implosion, defined as inward bending or collapse of vessels, is discussed.

  10. T2-Weighted intracranial vessel wall imaging at 7 Tesla using a DANTE-prepared variable flip angle turbo spin echo readout (DANTE-SPACE).

    PubMed

    Viessmann, Olivia; Li, Linqing; Benjamin, Philip; Jezzard, Peter

    2017-02-01

    To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black-blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE-preparation module for 7T. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE-SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE-SPACE. The 7T-optimized SPACE sequence improved the vessel wall point-spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE-SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655-663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  11. Fluid-Structure Model of Lymphatic Valve and Vessel

    NASA Astrophysics Data System (ADS)

    Wolf, Ki; Ballard, Matthew; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander

    The lymphatic system is a part of the circulatory system that performs a range of important functions such as transportation of interstitial fluid, fatty acid, and immune cells. The lymphatic vessels are composed of contractile walls to pump lymph against adverse pressure gradient and lymphatic valves that prevent back flow. Despite the importance of lymphatic system, the contribution of mechanical and geometric changes of lymphatic valves and vessels in pathologies of lymphatic dysfunction, such as lymphedema, is not well understood. We developed a coupled fluid-solid computational model to simultaneously simulate a lymphatic vessel, valve, and flow. A lattice Boltzmann model is used to represent the fluid component, while lattice spring model is used for the solid component of the lymphatic vessel, whose mechanical properties are derived experimentally. Behaviors such as lymph flow pattern and lymphatic valve performance against backflow and adverse pressure gradient under varied parameters of lymphatic valve and vessel geometry and mechanical properties are investigated to provide a better insight into the dynamics of lymphatic vessels, valves, and system and give insight into how they might fail in disease. NSF CMMI-1635133.

  12. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, Douglas E.; Orr, Richard

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  13. General and crevice corrosion study of the in-wall shielding materials for ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Joshi, K. S.; Pathak, H. A.; Dayal, R. K.; Bafna, V. K.; Kimihiro, Ioki; Barabash, V.

    2012-11-01

    Vacuum vessel In-Wall Shield (IWS) will be inserted between the inner and outer shells of the ITER vacuum vessel. The behaviour of IWS in the vacuum vessel especially concerning the susceptibility to crevice of shielding block assemblies could cause rapid and extensive corrosion attacks. Even galvanic corrosion may be due to different metals in same electrolyte. IWS blocks are not accessible until life of the machine after closing of vacuum vessel. Hence, it is necessary to study the susceptibility of IWS materials to general corrosion and crevice corrosion under operations of ITER vacuum vessel. Corrosion properties of IWS materials were studied by using (i) Immersion technique and (ii) Electro-chemical Polarization techniques. All the sample materials were subjected to a series of examinations before and after immersion test, like Loss/Gain weight measurement, SEM analysis, and Optical stereo microscopy, measurement of surface profile and hardness of materials. After immersion test, SS 304B4 and SS 304B7 showed slight weight gain which indicate oxide layer formation on the surface of coupons. The SS 430 material showed negligible weight loss which indicates mild general corrosion effect. On visual observation with SEM and Metallography, all material showed pitting corrosion attack. All sample materials were subjected to series of measurements like Open Circuit potential, Cyclic polarization, Pitting potential, protection potential, Critical anodic current and SEM examination. All materials show pitting loop in OC2 operating condition. However, its absence in OC1 operating condition clearly indicates the activity of chloride ion to penetrate oxide layer on the sample surface, at higher temperature. The critical pitting temperature of all samples remains between 100° and 200°C.

  14. Primary structure of the wall peptidoglycan of leprosy-derived corynebacteria.

    PubMed Central

    Janczura, E; Leyh-Bouille, M; Cocito, C; Ghuysen, J M

    1981-01-01

    The cell walls isolated from axenically grown leprosy-derived corynebacteria were submitted to various chemical and enzymatic degradations. The glycan strands of the wall peptidoglycan are essentially composed of N-acetylglycosaminyl-N-acetylmuramic acid disaccharide units. Small amounts of N-acetylglycosaminyl-N-glycolylmuramic acid (less than 10%) were also detected. The muramic acid residues of adjacent glycan strands are substituted by amidated tetrapeptide units which, in turn, are cross-linked through direct linkages extending between the C-terminal D-alanine residue of one tetrapeptide and the mesodiaminopimelic acid residue of another tetrapeptide. Such a structure is very similar to that of the wall peptidoglycan found in the taxonomically related microorganisms of the Corynebacterium, Mycobacterium, and Nocardia groups. PMID:7462160

  15. A new fractional order derivative based active contour model for colon wall segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Li, Lihong C.; Wang, Huafeng; Wei, Xinzhou; Huang, Shan; Chen, Wensheng; Liang, Zhengrong

    2018-02-01

    Segmentation of colon wall plays an important role in advancing computed tomographic colonography (CTC) toward a screening modality. Due to the low contrast of CT attenuation around colon wall, accurate segmentation of the boundary of both inner and outer wall is very challenging. In this paper, based on the geodesic active contour model, we develop a new model for colon wall segmentation. First, tagged materials in CTC images were automatically removed via a partial volume (PV) based electronic colon cleansing (ECC) strategy. We then present a new fractional order derivative based active contour model to segment the volumetric colon wall from the cleansed CTC images. In this model, the regionbased Chan-Vese model is incorporated as an energy term to the whole model so that not only edge/gradient information but also region/volume information is taken into account in the segmentation process. Furthermore, a fractional order differentiation derivative energy term is also developed in the new model to preserve the low frequency information and improve the noise immunity of the new segmentation model. The proposed colon wall segmentation approach was validated on 16 patient CTC scans. Experimental results indicate that the present scheme is very promising towards automatically segmenting colon wall, thus facilitating computer aided detection of initial colonic polyp candidates via CTC.

  16. Cuff for Blood-Vessel Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Shimizu, M.

    1982-01-01

    Pressure within blood vessel is measured by new cufflike device without penetration of vessel. Device continuously monitors blood pressure for up to 6 months or longer without harming vessel. Is especially useful for vessels smaller than 4 or 5 millimeters in diameter. Invasive methods damage vessel wall, disturb blood flow, and cause clotting. They do not always give reliable pressure measurements over prolonged periods.

  17. Participation of blood vessel cells in human adaptive immune responses.

    PubMed

    Pober, Jordan S; Tellides, George

    2012-01-01

    Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  19. Method of fabricating a prestressed cast iron vessel

    DOEpatents

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  20. In-Vessel Tritium Retention and Removal in ITER-FEAT

    NASA Astrophysics Data System (ADS)

    Federici, G.; Brooks, J. N.; Iseli, M.; Wu, C. H.

    Erosion of the divertor and first-wall plasma-facing components, tritium uptake in the re-deposited films, and direct implantation in the armour material surfaces surrounding the plasma, represent crucial physical issues that affect the design of future fusion devices. In this paper we present the derivation, and discuss the results, of current predictions of tritium inventory in ITER-FEAT due to co-deposition and implantation and their attendant uncertainties. The current armour materials proposed for ITER-FEAT are beryllium on the first-wall, carbon-fibre-composites on the divertor plate near the separatrix strike points, to withstand the high thermal loads expected during off-normal events, e.g., disruptions, and tungsten elsewhere in the divertor. Tritium co-deposition with chemically eroded carbon in the divertor, and possibly with some Be eroded from the first-wall, is expected to represent the dominant mechanism of in-vessel tritium retention in ITER-FEAT. This demands efficient in-situ methods of mitigation and retrieval to avoid frequent outages due to the reaching of precautionary operating limits set by safety considerations (e.g., ˜350 g of in-vessel co-deposited tritium) and for fuel economy reasons. Priority areas where further R&D work is required to narrow the remaining uncertainties are also briefly discussed.

  1. Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.

    1994-01-01

    The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.

  2. Optimal 3D culture of primary articular chondrocytes for use in the rotating wall vessel bioreactor.

    PubMed

    Mellor, Liliana F; Baker, Travis L; Brown, Raquel J; Catlin, Lindsey W; Oxford, Julia Thom

    2014-08-01

    Reliable culturing methods for primary articular chondrocytes are essential to study the effects of loading and unloading on joint tissue at the cellular level. Due to the limited proliferation capacity of primary chondrocytes and their tendency to dedifferentiate in conventional culture conditions, long-term culturing conditions of primary chondrocytes can be challenging. The goal of this study was to develop a suspension culturing technique that not only would retain the cellular morphology, but also maintain the gene expression characteristics of primary articular chondrocytes. Three-dimensional culturing methods were compared and optimized for primary articular chondrocytes in the rotating wall vessel bioreactor, which changes the mechanical culture conditions to provide a form of suspension culture optimized for low shear and turbulence. We performed gene expression analysis and morphological characterization of cells cultured in alginate beads, Cytopore-2 microcarriers, primary monolayer culture, and passaged monolayer cultures using reverse transcription-PCR and laser scanning confocal microscopy. Primary chondrocytes grown on Cytopore-2 microcarriers maintained the phenotypical morphology and gene expression pattern observed in primary bovine articular chondrocytes, and retained these characteristics for up to 9 d. Our results provide a novel and alternative culturing technique for primary chondrocytes suitable for studies that require suspension such as those using the rotating wall vessel bioreactor. In addition, we provide an alternative culturing technique for primary chondrocytes that can impact future mechanistic studies of osteoarthritis progression, treatments for cartilage damage and repair, and cartilage tissue engineering.

  3. Automated registration of multispectral MR vessel wall images of the carotid artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purposemore » of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image

  4. Plating Repair Of Nickel-Alloy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steve K.; Chagnon, Kevin M.

    1989-01-01

    Procedure for localized electrodeposition of nickel enables repair of small damaged nickel-based pressure vessels. Electrodeposition restores weakened areas of vessel wall to at least their former strength.

  5. Pressure vessels fabricated with high-strength wire and electroformed nickel

    NASA Technical Reports Server (NTRS)

    Roth, B.

    1966-01-01

    Metal pressure vessels of various shapes having high strength-to-weight ratios are fabricated by using known techniques of filament winding and electroforming. This eliminates nonuniform wall thickness and unequal wall strength which resulted from welding formed vessel segments together.

  6. Light-weight spherical submergence vessel

    NASA Technical Reports Server (NTRS)

    Baker, I.

    1974-01-01

    Design vessel with very low thickness-to-radius ratio to obtain low weight, and fabricate it with aid of precision tracer-lathe to limit and control imperfections in spherical shape. Vessel is thin-walled, spherical, monocoque shell constructed from hemispheres joined with sealed and bolted meridional flange.

  7. Blood Vessel Adaptation with Fluctuations in Capillary Flow Distribution

    PubMed Central

    Hu, Dan; Cai, David; Rangan, Aaditya V.

    2012-01-01

    Throughout the life of animals and human beings, blood vessel systems are continuously adapting their structures – the diameter of vessel lumina, the thickness of vessel walls, and the number of micro-vessels – to meet the changing metabolic demand of the tissue. The competition between an ever decreasing tendency of luminal diameters and an increasing stimulus from the wall shear stress plays a key role in the adaptation of luminal diameters. However, it has been shown in previous studies that the adaptation dynamics based only on these two effects is unstable. In this work, we propose a minimal adaptation model of vessel luminal diameters, in which we take into account the effects of metabolic flow regulation in addition to wall shear stresses and the decreasing tendency of luminal diameters. In particular, we study the role, in the adaptation process, of fluctuations in capillary flow distribution which is an important means of metabolic flow regulation. The fluctuation in the flow of a capillary group is idealized as a switch between two states, i.e., an open-state and a close-state. Using this model, we show that the adaptation of blood vessel system driven by wall shear stress can be efficiently stabilized when the open time ratio responds sensitively to capillary flows. As micro-vessel rarefaction is observed in our simulations with a uniformly decreased open time ratio of capillary flows, our results point to a possible origin of micro-vessel rarefaction, which is believed to induce hypertension. PMID:23029014

  8. Rapid Anastomosis of Endothelial Progenitor Cell–Derived Vessels with Host Vasculature Is Promoted by a High Density of Cotransplanted Fibroblasts

    PubMed Central

    Chen, Xiaofang; Aledia, Anna S.; Popson, Stephanie A.; Him, Linda; Hughes, Christopher C.W.

    2010-01-01

    To ensure survival of engineered implantable tissues thicker than approximately 2–3 mm, convection of nutrients and waste products to enhance the rate of transport will be required. Creating a network of vessels in vitro, before implantation (prevascularization), is one potential strategy to achieve this aim. In this study, we developed three-dimensional engineered vessel networks in vitro by coculture of endothelial cells (ECs) and fibroblasts in a fibrin gel for 7 days. Vessels formed by cord blood endothelial progenitor cell–derived ECs (EPC-ECs) in the presence of a high density of fibroblasts created an interconnected tubular network within 4 days, compared with 5–7 days in the presence of a low density of fibroblasts. Vessels derived from human umbilical vein ECs (HUVECs) in vitro showed similar kinetics. Implantation of the prevascularized tissues into immune-compromised mice, however, revealed a dramatic difference in the ability of EPC-ECs and HUVECs to form anastomoses with the host vasculature. Vascular beds derived from EPC-ECs were perfused within 1 day of implantation, whereas no HUVEC vessels were perfused at day 1. Further, while almost 90% of EPC-EC–derived vascular beds were perfused at day 3, only one-third of HUVEC-derived vascular beds were perfused. In both cases, a high density of fibroblasts accelerated anastomosis by 2–3 days. We conclude that both EPC-ECs and a high density of fibroblasts significantly accelerate the rate of functional anastomosis, and that prevascularizing an engineered tissue may be an effective strategy to enhance convective transport of nutrients in vivo. PMID:19737050

  9. Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow

    PubMed Central

    Wu, Ziheng; Xu, Zhiliang; Kim, Oleg; Alber, Mark

    2014-01-01

    When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet–platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor–ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific. PMID:24982253

  10. Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hirano, Mitsuharu; Tonosaki, Shozo; Ueno, Takahiro; Tanaka, Masato; Hasegawa, Takemi

    2014-02-01

    We report an improved method to visualize lipid distribution in axial and lateral direction within arterial vessel walls by spectroscopic spectral-domain Optical Coherence Tomography (OCT) at 1.7μm wavelength for identification of lipidrich plaque that is suspected to cause coronary events. In our previous method, an extended InGaAs-based line camera detects an OCT interferometric spectrum from 1607 to 1766 nm, which is then divided into twenty subbands, and A-scan OCT profile is calculated for each subband, resulting in a tomographic spectrum. This tomographic spectrum is decomposed into lipid spectrum having an attenuation peak at 1730 nm and non-lipid spectrum independent of wavelength, and the weight of each spectrum, that is, lipid and non-lipid score is calculated. In this paper, we present an improved algorithm, in which we have combined the lipid score and the non-lipid score to derive a corrected lipid score. We have found that the corrected lipid score is better than the raw lipid score in that the former is more robust against false positive occurring due to abrupt change in reflectivity at vessel surface. In addition, we have optimized spatial smoothing filter and reduced false positive and false negative due to detection noise and speckle. We have verified this improved algorithm by the use of measuring data of normal porcine coronary artery and lard as a model of lipid-rich plaque and confirmed that both the sensitivity and the specificity of lard are 92%.

  11. Pulse wave velocity as a diagnostic index: The effect of wall thickness

    NASA Astrophysics Data System (ADS)

    Hodis, Simona

    2018-06-01

    Vascular compliance is a major determinant of wave propagation within the vascular system, and hence the measurement of pulse wave velocity (PWV) is commonly used clinically as a method of detecting vascular stiffening. The accuracy of that assessment is important because vascular stiffening is a major risk factor for hypertension. PWV is usually measured by timing a pressure wave as it travels from the carotid artery to the femoral or radial artery and estimating the distance that it traveled in each case to obtain the required velocity. A major assumption on which this technique is based is that the vessel wall thickness h is negligibly small compared with the vessel radius a . The extent to which this assumption is satisfied in the cardiovascular system is not known because the ratio h /a varies widely across different regions of the vascular tree and under different pathological conditions. Using the PWV as a diagnostic test without knowing the effect of wall thickness on the measurement could lead to error when interpreting the PWV value as an index of vessel wall compliance. The aim of the present study was to extend the validity of the current practice of assessing wall stiffness by developing a method of analysis that goes beyond the assumption of a thin wall. We analyzed PWVs calculated with different wall models, depending on the ratio of wall thickness to vessel radius and the results showed that PWV is not reliable when it is estimated with the classic thin wall theory if the vessel wall is not around 25% of vessel radius. If the arterial wall is thicker than 25% of vessel radius, then the wave velocity calculated with the thin wall theory could be overestimated and in the clinical setting, this could lead to a false positive. For thicker walls, a thick wall model presented here should be considered to account for the stresses within the wall thickness that become dominant compared with the wall inertia.

  12. Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree.

    PubMed

    Huo, Yunlong; Choy, Jenny Susana; Svendsen, Mark; Sinha, Anjan Kumar; Kassab, Ghassan S

    2009-03-26

    The compliance of the vessel wall affects hemodynamic parameters which may alter the permeability of the vessel wall. Based on experimental measurements, the present study established a finite element (FE) model in the proximal elastic vessel segments of epicardial right coronary arterial (RCA) tree obtained from computed tomography. The motion of elastic vessel wall was measured by an impedance catheter and the inlet boundary condition was measured by an ultrasound flow probe. The Galerkin FE method was used to solve the Navier-Stokes and Continuity equations, where the convective term in the Navier-Stokes equation was changed in the arbitrary Lagrangian-Eulerian (ALE) framework to incorporate the motion due to vessel compliance. Various hemodynamic parameters (e.g., wall shear stress-WSS, WSS spatial gradient-WSSG, oscillatory shear index-OSI) were analyzed in the model. The motion due to vessel compliance affects the time-averaged WSSG more strongly than WSS at bifurcations. The decrease of WSSG at flow divider in elastic bifurcations, as compared to rigid bifurcations, implies that the vessel compliance decreases the permeability of vessel wall and may be atheroprotective. The model can be used to predict coronary flow pattern in subject-specific anatomy as determined by noninvasive imaging.

  13. Enhanced delineation of degradation in aortic walls through OCT

    NASA Astrophysics Data System (ADS)

    Real, Eusebio; Val-Bernal, José Fernando; Revuelta, José M.; Pontón, Alejandro; Calvo Díez, Marta; Mayorga, Marta; López-Higuera, José M.; Conde, Olga M.

    2015-03-01

    Degradation of the wall of human ascending thoracic aorta has been assessed through Optical Coherence Tomography (OCT). OCT images of the media layer of the aortic wall exhibit micro-structure degradation in case of diseased aortas from aneurysmal vessels or in aortas prone to aortic dissections. The degeneration in vessel walls appears as low-reflectivity areas due to the invasive appearance of acidic polysaccharides and mucopolysaccharides within a typical ordered microstructure of parallel lamellae of smooth muscle cells, elastin and collagen fibers. An OCT indicator of wall degradation can be generated upon the spatial quantification of the extension of degraded areas in a similar way as conventional histopathology. This proposed OCT marker offers a real-time clinical insight of the vessel status to help cardiovascular surgeons in vessel repair interventions. However, the delineation of degraded areas on the B-scan image from OCT is sometimes difficult due to presence of speckle noise, variable SNR conditions on the measurement process, etc. Degraded areas could be outlined by basic thresholding techniques taking advantage of disorders evidences in B-scan images, but this delineation is not always optimum and requires complex additional processing stages. This work proposes an optimized delineation of degraded spots in vessel walls, robust to noisy environments, based on the analysis of the second order variation of image intensity of backreflection to determine the type of local structure. Results improve the delineation of wall anomalies providing a deeper physiological perception of the vessel wall conditions. Achievements could be also transferred to other clinical scenarios: carotid arteries, aorto-iliac or ilio-femoral sections, intracranial, etc.

  14. Fractographic study of a thick wall pressure vessel failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canonico, D.A.; Crouse, R.S.; Henson, T.J.

    1979-01-01

    The pressure vessel described in this paper is identified as Intermediate Test Vessel 1 (ITV-1) and was fabricated of SA508, Class 2 Steel. It was tested to failure at 54/sup 0/C (130/sup 0/F). The gross failure appeared to be a brittle fracture although accompanied by a measured strain of 0.9%. Seven regions of the fracture were examined in detail and the observed surfaces were compared to Charpy V-notch (C/sub v/) specimens of SA508, Class 2 steel broken at temperatures above and below the ductile to brittle transition temperature. Three samples from the vessel were taken in the region around themore » fatigue notch and four from areas well removed from the notch. All these were carefully examined both optically and by scanning electron microscopy (SEM). It was established that early crack extension was by ductile mode until a large flaw approximately 500 mm long 83 mm wide was developed. At this point the vessel could no longer contain the internal pressure and final rupture was by brittle fracture.« less

  15. Evaluation of robotic endovascular catheters for arch vessel cannulation.

    PubMed

    Riga, Celia V; Bicknell, Colin D; Hamady, Mohamad S; Cheshire, Nicholas J W

    2011-09-01

    Conventional catheter instability and embolization risk limits the adoption of endovascular therapy in patients with challenging arch anatomy. This study investigated whether arch vessel cannulation can be enhanced by a remotely steerable robotic catheter system. Seventeen clinicians with varying endovascular experience cannulated all arch vessels within two computed tomography-reconstructed pulsatile flow phantoms (bovine type I and type III aortic arches), under fluoroscopic guidance, using conventional and robotic techniques. Quantitative (catheterization times, catheter tip movements, vessel wall hits, catheter deflection) and qualitative metrics (Imperial College Complex Endovascular Cannulation Scoring Tool [IC3ST]) performance scores were compared. Robotic catheterization techniques resulted in a significant reduction in median carotid artery cannulation times and the median number of catheter tip movements for all vessels. Vessel wall contact with the aortic arch wall was reduced to a median of zero with robotic catheters. During stiff guidewire exchanges, robotic catheters maintained stability with zero deflection, independent of the distance the catheter was introduced into the carotid vessels. Overall IC3ST performance scores (interquartile range) were significantly improved using the robotic system: Type I arch score was 26/35 (20-30.8) vs 33/35 (31-34; P = .001), and type III arch score was 20.5/35 (16.5-28.5) vs 26.5/35 (23.5-28.8; P = .001). Low- and medium-volume interventionalists demonstrated an improvement in performance with robotic cannulation techniques. The high-volume intervention group did not show statistically significant improvement, but cannulation times, movements, and vessel wall hits were significantly reduced. Robotic technology has the potential to reduce the time, risk of embolization and catheter dislodgement, radiation exposure, and the manual skill required for carotid and arch vessel cannulation, while improving overall

  16. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  17. A probe for blood-vessel and spinal interiors

    NASA Technical Reports Server (NTRS)

    Frazer, R. E.

    1978-01-01

    Probe design allows insertion into lumen of blood vessels to perform oximetry and investigate plaque on interior vessel walls. Probe is more accurate than standard oximetry procedures of determining oxygenation of circulating blood.

  18. Analysis of the vibration regimes of vascular walls

    NASA Astrophysics Data System (ADS)

    Kudryashov, A. V.; Rozenblyum, L. A.; Khurlapova, T. V.; Yakhno, V. G.

    1980-11-01

    The theoretical description exposed here can be used for explaining the differences which are sometimes observed between the values of the diastolic pressure derived from direct measurements and those derived from indirect measurements. Nervous and emotional action may alter markedly the mechanical properties of the muscular layer of the wall. In this respect it is important to what side the hysteresis loop in the radiusstress curve will be shifted. If the hysteresis is shifted towards the region of high pressures, then tones will be recorded at higher pi — P l values and, hence, the error in an indirect measurement of the pressure will increase. From this point of view the phenomenon of an "infinite tone" is explained by the dependence of the hysteresis of the radius on the stress on the wall in the pressure range Pdiastwall appear. From the hypothesis proposed it follows that the duration of the main phase of the tone can be used as a parameter characterizing the viscosity of a vascular wall. The rigidity and the mass of a vascular wall can be estimated from the high-frequency phase of the tone (this phase being determined by the resonance characteristics of the vessel). A check of the clinical value of these parameters requires additional investigations.

  19. Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo.

    PubMed

    Wang, Jun Kit; Yeo, Kim Pin; Chun, Yong Yao; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Angeli, Véronique; Choong, Cleo

    2017-11-01

    In this study, Type I collagen was extracted from fish scales asa potential alternative source of collagen for tissue engineering applications. Since unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo, additional methylation modification and 1,4-butanediol diglycidyl ether (BDE) crosslinking steps were used to improve the physicochemical properties of fish scale-derived collagen. Subsequently, in vivo studies using a murine model demonstrated the biocompatibility of the different fish scale-derived collagen patches. In general, favorable integration of the collagen patches to the surrounding tissues, with good infiltration of cells, blood vessels (BVs) and lymphatic vessels (LVs) were observed under growth factor-free conditions. Interestingly, significantly higher (p<0.05) number of LVs was found to be more abundant around collagen patches with methylation modification and BDE crosslinking. Overall, we have demonstrated the potential application of fish scale-derived collagen as a promising scaffolding material for various biomedical applications. Currently the most common sources of collagen are of bovine and porcine origins, although the industrial use of collagen obtained from non-mammalian species is growing in importance, particularly since they have a lower risk of disease transmission and are not subjected to any cultural or religious constraints. However, unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo. Hence, in this study, Type I collagen was successfully extracted from fish scales and chemically modified and crosslinked. In vitro studies showed overall improvement in the physicochemical properties of the material, whilst in vivo implantation studies showed improvements in the growth of blood and lymphatic host vessels in the vicinity of the implants. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Pressure and wall shear stress in blood hammer - Analytical theory.

    PubMed

    Mei, Chiang C; Jing, Haixiao

    2016-10-01

    We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pressure and wall shear stress. To examine the effects on local plaque formation we also allow the blood vessel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison with existing water hammer experiments. Copyright © 2016. Published by Elsevier Inc.

  1. Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall.

    PubMed

    Takanari, Keisuke; Hashizume, Ryotaro; Hong, Yi; Amoroso, Nicholas J; Yoshizumi, Tomo; Gharaibeh, Burhan; Yoshida, Osamu; Nonaka, Kazuhiro; Sato, Hideyoshi; Huard, Johnny; Wagner, William R

    2017-01-01

    A variety of techniques have been applied to generate tissue engineered constructs, where cells are combined with degradable scaffolds followed by a period of in vitro culture or direct implantation. In the current study, a cellularized scaffold was generated by concurrent deposition of electrospun biodegradable elastomer (poly(ester urethane)urea, PEUU) and electrosprayed culture medium + skeletal muscle-derived stem cells (MDSCs) or electrosprayed culture medium alone as a control. MDSCs were obtained from green fluorescent protein (GFP) transgenic rats. The created scaffolds were implanted into allogenic strain-matched rats to replace a full thickness abdominal wall defect. Both control and MDSC-integrated scaffolds showed extensive cellular infiltration at 4 and 8 wk. The number of blood vessels was higher, the area of residual scaffold was lower, number of multinucleated giant cells was lower and area of connective tissue was lower in MDSC-integrated scaffolds (p < 0.05). GFP + cells co-stained positive for VEGF. Bi-axial mechanical properties of the MDSC-microintegrated constructs better approximated the anisotropic behavior of the native abdominal wall. GFP + cells were observed throughout the scaffold at ∼5% of the cell population at 4 and 8 wk. RNA expression at 4 wk showed higher expression of early myogenic marker Pax7, and b-FGF in the MDSC group. Also, higher expression of myogenin and VEGF were seen in the MDSC group at both 4 and 8 wk time points. The paracrine effect of donor cells on host cells likely contributed to the differences found in vivo between the groups. This approach for the rapid creation of highly-cellularized constructs with soft tissue like mechanics offers an attractive methodology to impart cell-derived bioactivity into scaffolds providing mechanical support during the healing process and might find application in a variety of settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Isotropic thin-walled pressure vessel experiment

    NASA Technical Reports Server (NTRS)

    Denton, Nancy L.; Hillsman, Vernon S.

    1992-01-01

    The objectives are: (1) to investigate the stress and strain distributions on the surface of a thin walled cylinder subject to internal pressure and/or axial load; and (2) to relate stress and strain distributions to material properties and cylinder geometry. The experiment, supplies, and procedure are presented.

  3. Vibration mitigation in partially liquid-filled vessel using passive energy absorbers

    NASA Astrophysics Data System (ADS)

    Farid, M.; Levy, N.; Gendelman, O. V.

    2017-10-01

    We consider possible solutions for vibration mitigation in reduced-order model (ROM) of partially filled liquid tank under impulsive forcing. Such excitations may lead to strong hydraulic impacts applied to the tank inner walls. Finite stiffness of the tank walls is taken into account. In order to mitigate the dangerous internal stresses in the tank walls, we explore both linear (Tuned Mass Damper) and nonlinear (Nonlinear Energy Sink) passive vibration absorbers; mitigation performance in both cases is examined numerically. The liquid sloshing mass is modeled by equivalent mass-spring-dashpot system, which can both perform small-amplitude linear oscillations and hit the vessel walls. We use parameters of the equivalent mass-spring-dashpot system for a well-explored case of cylindrical tanks. The hydraulic impacts are modeled by high-power potential and dissipation functions. Critical location in the tank structure is determined and expression of the corresponding local mechanical stress is derived. We use finite element approach to assess the natural frequencies for specific system parameters. Numerical evaluation criteria are suggested to determine the energy absorption performance.

  4. \\mathscr{H}_2 optimal control techniques for resistive wall mode feedback in tokamaks

    NASA Astrophysics Data System (ADS)

    Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; Navratil, Gerald

    2018-04-01

    DIII-D experiments show that a new, advanced algorithm enables resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic flux diffusion time of the vacuum vessel wall. Experiments have shown that modern control techniques like linear quadratic Gaussian (LQG) control require less current than the proportional controller in use at DIII-D when using control coils external to DIII-D’s vacuum vessel. Experiments were conducted to develop control of a rotating n  =  1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high βN experiments also show that advanced feedback techniques using external control coils may be as effective as internal control coil feedback using classical control techniques.

  5. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  6. Influence of cerebral blood vessel movements on the position of perivascular synapses.

    PubMed

    Urrecha, Miguel; Romero, Ignacio; DeFelipe, Javier; Merchán-Pérez, Angel

    2017-01-01

    Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow.

  7. Influence of cerebral blood vessel movements on the position of perivascular synapses

    PubMed Central

    DeFelipe, Javier

    2017-01-01

    Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow. PMID:28199396

  8. Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT.

    PubMed

    Lamare, Frederic; Hinz, Rainer; Gaemperli, Oliver; Pugliese, Francesca; Mason, Justin C; Spinks, Terence; Camici, Paolo G; Rimoldi, Ornella E

    2011-01-01

    We investigated whether PET/CT angiography using 11C-(R)-PK11195, a selective ligand for the translocator protein (18 kDa) expressed in activated macrophages, could allow imaging and quantification of arterial wall inflammation in patients with large-vessel vasculitis. Seven patients with systemic inflammatory disorders (3 symptomatic patients with clinical suspicion of active vasculitis and 4 asymptomatic patients) underwent PET with 11C-(R)-PK11195 and CT angiography to colocalize arterial wall uptake of 11C-(R)-PK11195. Tissue regions of interest were defined in bone marrow, lung parenchyma, wall of the ascending aorta, aortic arch, and descending aorta. Blood-derived and image-derived input functions (IFs) were generated. A reversible 1-tissue compartment with 2 kinetic rate constants and a fractional blood volume term were used to fit the time-activity curves to calculate total volume of distribution (VT). The correlation between VT and standardized uptake values was assessed. VT was significantly higher in symptomatic than in asymptomatic patients using both image-derived total plasma IF (0.55±0.15 vs. 0.27±0.12, P=0.009) and image-derived parent plasma IF (1.40±0.50 vs. 0.58±0.25, P=0.018). A good correlation was observed between VT and standardized uptake value (R=0.79; P=0.03). 11C-(R)-PK11195 imaging allows visualization of macrophage infiltration in inflamed arterial walls. Tracer uptake can be quantified with image-derived IF without the need for metabolite corrections and evaluated semiquantitatively with standardized uptake values.

  9. Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection.

    PubMed

    Leijdekkers, A G M; Sanders, M G; Schols, H A; Gruppen, H

    2011-12-23

    Analysis of complex mixtures of plant cell wall derived oligosaccharides is still challenging and multiple analytical techniques are often required for separation and characterization of these mixtures. In this work it is demonstrated that hydrophilic interaction chromatography coupled with evaporative light scattering and mass spectrometry detection (HILIC-ELSD-MS(n)) is a valuable tool for identification of a wide range of neutral and acidic cell wall derived oligosaccharides. The separation potential for acidic oligosaccharides observed with HILIC is much better compared to other existing techniques, like capillary electrophoresis, reversed phase and porous-graphitized carbon chromatography. Important structural information, such as presence of methyl esters and acetyl groups, is retained during analysis. Separation of acidic oligosaccharides with equal charge yet with different degrees of polymerization can be obtained. The efficient coupling of HILIC with ELSD and MS(n)-detection enables characterization and quantification of many different oligosaccharide structures present in complex mixtures. This makes HILIC-ELSD-MS(n) a versatile and powerful additional technique in plant cell wall analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.

    PubMed

    Lu, Yiling; Lu, Xiyun; Zhuang, Lixian; Wang, Wen

    2002-01-01

    Non-planarity in blood vessels is known to influence arterial flows and wall shear stress. To gain insight, computational fluid dynamics (CFD) has been used to investigate effects of curvature and out-of-plane geometry on the distribution of fluid flows and wall shear stresses in a hypothetical non-planar bifurcation. Three-dimensional Navier-Stokes equations for a steady state Newtonian fluid were solved numerically using a finite element method. Non-planarity in one of the two daughter vessels is found to deflect flow from the inner wall of the vessel to the outer wall and to cause changes in the distribution of wall shear stresses. Results from this study agree to experimental observations and CFD simulations in the literature, and support the view that non-planarity in blood vessels is a factor with important haemodynamic significance and may play a key role in vascular biology and pathophysiology.

  11. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the

  12. Finite element analysis of the design and manufacture of thin-walled pressure vessels used as aerosol cans

    NASA Astrophysics Data System (ADS)

    Abdussalam, Ragba Mohamed

    Thin-walled cylinders are used extensively in the food packaging and cosmetics industries. The cost of material is a major contributor to the overall cost and so improvements in design and manufacturing processes are always being sought. Shape optimisation provides one method for such improvements. Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex shape consisting of truncated cone top, parallel cylindrical section and inverted dome base. They are manufactured in one piece by a reverse-extrusion process, which produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 mm in the base for a 53 mm diameter can. During manufacture, packaging and charging, they are subjected to pressure, axial and radial loads and design calculations are generally outside the British and American pressure vessel codes. 'Design-by-test' appears to be the favoured approach. However, a more rigorous approach is needed in order to optimise the designs. Finite element analysis (FEA) is a powerful tool for predicting stress, strain and displacement behaviour of components and structures. FEA is also used extensively to model manufacturing processes. In this study, elastic and elastic-plastic FEA has been used to develop a thorough understanding of the mechanisms of yielding, 'dome reversal' (an inherent safety feature, where the base suffers elastic-plastic buckling at a pressure below the burst pressure) and collapse due to internal pressure loading and how these are affected by geometry. It has also been used to study the buckling behaviour under compressive axial loading. Furthermore, numerical simulations of the extrusion process (in order to investigate the effects of tool geometry, friction coefficient and boundary conditions) have been undertaken. Experimental verification of the buckling and collapse behaviours has also been carried out and there is reasonable agreement between the experimental data and the numerical

  13. Myocytes of chorionic vessels from placentas with meconium-associated vascular necrosis exhibit apoptotic markers.

    PubMed

    King, Erin L; Redline, Raymond W; Smith, Steven D; Kraus, Frederick T; Sadovsky, Yoel; Nelson, D Michael

    2004-04-01

    Meconium-associated vascular necrosis (MAVN) is a histological abnormality of human placental chorionic vessels that is associated with poor neonatal outcome. We tested the hypothesis that MAVN shows apoptosis in the walls of chorionic vessels. Archival placental specimens with MAVN (n = 5) were compared with specimens from uncomplicated pregnancies at term (n = 5) and from placentas with intense chorionic vasculitis associated with acute chorioamnionitis with (n = 5) or without (n = 5) a clinical history of meconium in the amniotic fluid. Sections from all placentas were processed by the TUNEL method, and 2 observers who were blinded to specimen diagnosis quantified the immunofluorescent TUNEL staining in both the amnion-facing and villous-facing walls of the larger chorionic vessels in each specimen. Compared with the other 3 groups, only the amnion-facing wall of chorionic vessels in MAVN showed a significantly greater number of apoptotic cells. This was verified by morphological criteria and caspase 3 staining. There were limited or no detectable TUNEL-stained cells in either the villous-facing walls of vessels in the MAVN specimens or in any of the vessels of the placentas from uncomplicated pregnancies. There was a negligible level of apoptosis in chorionic vessels of placentas with intense chorionic vasculitis, with or without meconium, despite the inflammatory response or presence of meconium. We conclude that apoptosis contributes to the pathophysiology of MAVN.

  14. Three-dimensional ultrasound measurements of carotid vessel wall and plaque thickness and their relationship with pulmonary abnormalities in ex-smokers without airflow limitation.

    PubMed

    Cheng, Jieyu; Pike, Damien; Chow, Tommy W S; Kirby, Miranda; Parraga, Grace; Chiu, Bernard

    2016-09-01

    The relationship between carotid disease and modestly abnormal airflow in ex-smokers without chronic obstructive pulmonary disease (COPD) is not well-understood. We generated 3D ultrasound measurements of carotid vessel-wall-plus-plaque thickness (VWT) and vessel wall volume (VWV) to quantify and evaluate such carotid ultrasound measurements in ex- and never-smokers without airflow limitation. These patients did not fulfill the diagnostic criteria for COPD. We also investigated the relationship of carotid atherosclerosis with pulmonary phenotypes of COPD. We evaluated 61 subjects without a clinical diagnosis of pulmonary or vascular diseases including 34 never-smokers (72 ± 6 year) and 27 ex-smokers (73 ± 9 year). We measured mean VWT ([Formula: see text]) and mean VWT specific to carotid regions-of-interest ([Formula: see text]) and evaluated potential differences between ex- and never-smokers. Carotid ultrasound and pulmonary disease measurement relationships were also evaluated using correlation coefficients (r) and multivariate regression analyses. Ex-smokers had a significantly greater [Formula: see text] (p = 0.003) and [Formula: see text] (p < 0.00001) than never-smokers, whereas a significant difference between the two groups was not detected by VWV (p = 1.0). There were significant correlations between the ventilation defect percent (VDP) measured by MRI with [Formula: see text] (r = 0.42, p = 0.001) and [Formula: see text] (r = 0.56, p = 0.00001). Multivariate regression models showed that VDP significantly predicted [Formula: see text] (β = 0.38, p = 0.004) and [Formula: see text] (β = 0.50, p = 0.00001). VWT-based measurements detected differences in vessel-wall-plus-plaque burden in ex- and never-smokers, which were not revealed using VWV. There were significant correlations between cardiovascular and pulmonary disease biomarkers in these ex-smokers who did not have a clinical diagnosis of

  15. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    PubMed

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2018-06-01

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  16. A scaling and experimental approach for investigating in-vessel cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, R.E.

    1997-02-01

    The TMI-2 accident experienced the relocation of a large quantity of core material to the lower plenum. The TMI-2 vessel investigation project concluded that approximately 20 metric tonnes of once molten fuel material drained into the RPV lower head. As a result, the lower head wall experienced a thermal transient that has been characterized as reaching temperatures as high as 1100{degrees}C, then a cooling transient with a rate of 10 to 100{degrees}C/min. Two mechanisms have been proposed as possible explanations for this cooling behavior. One is the ingression of water through core material as a result of interconnected cracks inmore » the frozen debris and/or water ingression around the crust which is formed on internal structures (core supports and in-core instrumentation) in the lower head. The second focuses on the lack of adhesion of oxidic core debris to the RPV wall when the debris contacts the wall. Furthermore, the potential for strain of the RPV lower head when the wall is overheated could provide for a significant cooling path for water to ingress between the RPV and the frozen core material next to the wall. To examine these proposed mechanisms, a set of scaled experiments have been developed to examine the potential for cooling. These are performed in a scaled system in which the high temperature molten material is iron termite and the RPV wall is carbon steel. A termite mass of 40 kg is used and the simulated reactor vessels have water in the lower head at pressures up to 2.2 MPa. Furthermore, two different thicknesses of the vessel wall are examined with the thicker vessel having virtually no potential for material creep during the experiment and the thinner wall having the potential for substantial creep. Moreover, the experiment includes the option of having molten iron as the first material to drain into the RPV lower head or molten aluminum oxide being the only material that drains into the test configuration.« less

  17. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N

    2011-10-01

    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  18. Continuum mathematical modelling of pathological growth of blood vessels

    NASA Astrophysics Data System (ADS)

    Stadnik, N. E.; Dats, E. P.

    2018-04-01

    The present study is devoted to the mathematical modelling of a human blood vessel pathological growth. The vessels are simulated as the thin-walled circular tube. The boundary value problem of the surface growth of an elastic thin-walled cylinder is solved. The analytical solution is obtained in terms of velocities of stress strain state parameters. The condition of thinness allows us to study finite displacements of cylinder surfaces by means of infinitesimal deformations. The stress-strain state characteristics, which depend on the mechanical parameters of the biological processes, are numerically computed and graphically analysed.

  19. The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.

    PubMed

    Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert

    2008-01-01

    Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.

  20. Vessel structural support system

    DOEpatents

    Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.

    1992-01-01

    Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.

  1. New baking system for the RFX vacuum vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collarin, P.; Luchetta, A.; Sonato, P.

    A heating system based on eddy currents has been developed for the vacuum vessel of the RFX Reversed Field Pinch device. After a testing phase, carried out at low power, the final power supply system has been designed and installed. It has been used during last year to bake out the vessel and the graphite first wall up to 320{degree}C. Recently the heating system has been completed with a control system that allows for baking sessions with an automatic control of the vacuum vessel temperature and for pulse sessions with a heated first wall. After the description of the preliminarymore » analyses and tests, and of the main characteristics of the power supply and control systems, the experimental results of the baking sessions performed during last year are presented. 6 refs., 7 figs.« less

  2. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  3. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  4. Control of Mechanical Stresses of High Pressure Container Walls by Magnetoelastic Method

    NASA Astrophysics Data System (ADS)

    Kulak, S. M.; Novikov, V. F.; Baranov, A. V.

    2016-10-01

    Deformations of the walls of pressure vessels arising in the process of testing and operation, as well as reduce their thickness due to corrosion, to create the prerequisites for the growth of mechanical stresses which accelerating the processes of strain aging, embrittlement of the material and reducing its fatigue properties. This article is devoted to researches of the magnetoelastic demagnetization in the wall of steel vessel of loading by internal pressure. It is established that the increasing pressure on the vessel wall is accompanied by a monotonic decrease in the intensity of the magnetic stray field of local magnetization of steel. It is shown that a magnetic stray field of local magnetization of the wall of steel vessel is non-uniform due to differences in structure and stresses. It is proposed to use the obtained results to control the stress state of vessels, experiencing multi-axial loads generated by internal pressure (pipelines, oil tanks, etc.) The method of magnetoelastic of the demagnetization of the steel has a high sensitivity to mechanical stress, the simplicity of implementation and expressiveness compared to the strain gauge and method of coercive force.

  5. Acrolein generation stimulates hypercontraction in isolated human blood vessels

    PubMed Central

    Conklin, D.J.; Bhatnagar, A.; Cowley, H.R.; Johnson, G.H.; Wiechmann, R.J.; Sayre, L.M.; Trent, M.B.; Boor, P.J.

    2012-01-01

    Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension—all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H2O2 exposure (1 μM–1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 μM), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca2+ to hypercontraction. Acrolein or allylamine but not H2O2, benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca2+-free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague–Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension. PMID:17095030

  6. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall.

    PubMed

    Huber, V; Huber, A; Kinna, D; Balboa, I; Collins, S; Conway, N; Drewelow, P; Maggi, C F; Matthews, G F; Meigs, A G; Mertens, Ph; Price, M; Sergienko, G; Silburn, S; Wynn, A; Zastrow, K-D

    2016-11-01

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  7. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, V., E-mail: V.Huber@fz-juelich.de; Huber, A.; Mertens, Ph.

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  8. Disruption forces on the tokamak wall with and without poloidal currents

    NASA Astrophysics Data System (ADS)

    Pustovitov, V. D.

    2017-05-01

    The contributions into the disruption radial force on the tokamak vacuum vessel wall are calculated and analyzed. One is due to the induced toroidal current in the wall, and another is due to the poloidal current. The latter is not accounted for in the models that represent the wall as a set of isolated toroidal filaments. It is shown that such modeling must lead to significant errors in the evaluation of the force during either thermal or current quench. The analytical derivations are performed here for an arbitrary tokamak configuration with final estimates for a circular large-aspect-ratio plasma and a coaxial wall reacting on perturbations as a perfect conductor. The results are compared with those recently obtained numerically by the codes DINA, MAXFEA and CarMa0NL. The discrepancies between the DINA simulations (Khayrutdinov et al 2016 Plasma Phys. Control. Fusion 58 115012) and earlier analytical predictions are explained. The recent conclusion (Villone et al 2015 Fusion Eng. Des. 93 57) on the role of the disruption-induced poloidal current in the wall is confirmed and extended to a wider area.

  9. Microbubbles and Blood Brain Barrier Opening: A Numerical Study on Acoustic Emissions and Wall Stress Predictions

    PubMed Central

    Goertz, David E.; Hynynen, Kullervo

    2015-01-01

    Focused ultrasound with microbubbles is an emerging technique for blood brain barrier (BBB) opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble’s non-spherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index. PMID:25546853

  10. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2012-10-01 2012-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  11. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2013-10-01 2013-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  12. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2014-10-01 2014-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  13. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2010-10-01 2010-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  14. 46 CFR 4.03-35 - Nuclear vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INVESTIGATIONS Definitions § 4.03-35 Nuclear vessel. The term nuclear vessel means any vessel in which power for propulsion, or for any other purpose, is derived from nuclear energy; or any vessel handling or processing... 46 Shipping 1 2011-10-01 2011-10-01 false Nuclear vessel. 4.03-35 Section 4.03-35 Shipping COAST...

  15. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emission (AE) tests have been conducted on small-diameter Kevlar 49/epoxy pressure vessels subjected to long-term sustained load-to-failure tests. Single-cycle burst tests were used as a basis for determining the test pressure in the sustained-loading tests. AE data from two vessel locations were compared. The data suggest that AE from vessel wall-mounted transducers is quite different for identical vessels subjected to the same pressure loading. AE from boss-mounted transducers yielded relatively consistent values. These values were not a function of time for vessel failure. The development of an AE test procedure for predicting the residual service life or integrity of composite vessels is discussed.

  16. Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel

    NASA Astrophysics Data System (ADS)

    Larimi, M. M.; Ramiar, A.; Ranjbar, A. A.

    2014-08-01

    Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of super paramagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. The present paper is devoted to study on MDT (Magnetic Drug Targeting) technique by particle tracking in the presence of magnetic field in a bifurcation vessel. The blood flow in bifurcation is considered incompressible, unsteady and Newtonian. The flow analysis applies the time dependent, two dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The Lagrangian particle tracking is performed to estimate particle behavior under influence of imposed magnetic field gradients along the bifurcation. According to the results, the magnetic field increased the volume fraction of particle in target region, but in vessels with high Reynolds number, the efficiency of MDT technique is very low. Also the results showed that in the bifurcation vessels with lower angles, wall shear stress is higher and consequently the risk of the vessel wall rupture increases.

  17. Bulge-Formed Cooling Channels In A Wall

    NASA Technical Reports Server (NTRS)

    Mcaninch, Michael D.; Holbrook, Richard L.; Lacount, Dale F.; Kawashige, Chester M.; Crapuchettes, John M.; Scala, James

    1996-01-01

    Vessels bounded by walls shaped as surfaces of revolution and contain integral cooling channels fabricated by improved method involving combination of welding and bulge forming. Devised to make rocket nozzles; also useful in fabrication of heat exchangers, stationary combustion chambers, and chemical-reactor vessels. Advantages include easier fabrication and greater flexibility of design.

  18. In Situ Blood Vessel Regeneration Using SP (Substance P) and SDF (Stromal Cell-Derived Factor)-1α Peptide Eluting Vascular Grafts.

    PubMed

    Shafiq, Muhammad; Zhang, Qiuying; Zhi, Dengke; Wang, Kai; Kong, Deling; Kim, Dong-Hwee; Kim, Soo Hyun

    2018-05-31

    The objective of this study was to develop small-diameter vascular grafts capable of eluting SDF (stromal cell-derived factor)-1α-derived peptide and SP (substance P) for in situ vascular regeneration. Polycaprolactone (PCL)/collagen grafts containing SP or SDF-1α-derived peptide were fabricated by electrospinning. SP and SDF-1α peptide-loaded grafts recruited significantly higher mesenchymal stem cells than that of the control group. The in vivo potential of PCL/collagen, SDF-1, and SP grafts was assessed by implanting them in a rat abdominal aorta for up to 4 weeks. All grafts remained patent as observed using color Doppler and stereomicroscope. Host cells infiltrated into the graft wall and the neointima was formed in peptides-eluting grafts. The lumen of the SP grafts was covered by the endothelial cells with cobblestone-like morphology, which were elongated in the direction of the blood flow, as discerned using scanning electron microscopy. Moreover, SDF-1α and SP grafts led to the formation of a confluent endothelium as evaluated using immunofluorescence staining with von Willebrand factor antibody. SP and SDF-1α grafts also promoted smooth muscle cell regeneration, endogenous stem cell recruitment, and blood vessel formation, which was the most prominent in the SP grafts. Evaluation of inflammatory response showed that 3 groups did not significantly differ in terms of the numbers of proinflammatory macrophages, whereas SP grafts showed significantly higher numbers of proremodeling macrophages than that of the control and SDF-1α grafts. SDF-1α and SP grafts can be potential candidates for in situ vascular regeneration and are worthy for future investigations. © 2018 American Heart Association, Inc.

  19. RAPID COMMUNICATION: Magnetic resonance imaging inside metallic vessels

    NASA Astrophysics Data System (ADS)

    Han, Hui; Balcom, Bruce J.

    2010-10-01

    We introduce magnetic resonance imaging (MRI) measurements inside metallic vessels. Until now, MRI has been unusable inside metallic vessels because of eddy currents in the walls. We have solved the problem and generated high quality images by employing a magnetic field gradient monitoring method. The ability to image within metal enclosures and structures means many new samples and systems are now amenable to MRI. Most importantly this study will form the basis of new MRI-compatible metallic pressure vessels, which will permit MRI of macroscopic systems at high pressure.

  20. Derivation of the out-of-plane behaviour of an English bond masonry wall through homogenization strategies

    NASA Astrophysics Data System (ADS)

    Silva, Luís Carlos; Milani, Gabriele; Lourenço, Paulo B.

    2017-11-01

    Two finite element homogenized-based strategies are presented for the out-of-plane behaviour characterization of an English bond masonry wall. A finite element micro-modelling approach using Cauchy stresses and first order movements are assumed for both strategies. The material nonlinearity is lumped on joints interfaces and bricks are considered elastic. Nevertheless, the first model is based on a Plane-stress assumption, in which the out-of-plane quantities are derived through on-thickness wall integration considering a Kirchhoff-plate theory. The second model is a tridimensional one, in which the homogenized out-of-plane quantities can be directly derived after solving the boundary value problem. The comparison is conducted by assessing the obtained out-of-plane bending- and torsion-curvature diagrams. A good agreement is found for the present study case.

  1. On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier

    NASA Astrophysics Data System (ADS)

    Wiedemair, W.; Tuković, Ž.; Jasak, H.; Poulikakos, D.; Kurtcuoglu, V.

    2012-02-01

    The complex interaction between an ultrasound-driven microbubble and an enclosing capillary microvessel is investigated by means of a coupled, multi-domain numerical model using the finite volume formulation. This system is of interest in the study of transient blood-brain barrier disruption (BBBD) for drug delivery applications. The compliant vessel structure is incorporated explicitly as a distinct domain described by a dedicated physical model. Red blood cells (RBCs) are taken into account as elastic solids in the blood plasma. We report the temporal and spatial development of transmural pressure (Ptm) and wall shear stress (WSS) at the luminal endothelial interface, both of which are candidates for the yet unknown mediator of BBBD. The explicit introduction of RBCs shapes the Ptm and WSS distributions and their derivatives markedly. While the peak values of these mechanical wall parameters are not affected considerably by the presence of RBCs, a pronounced increase in their spatial gradients is observed compared to a configuration with blood plasma alone. The novelty of our work lies in the explicit treatment of the vessel wall, and in the modelling of blood as a composite fluid, which we show to be relevant for the mechanical processes at the endothelium.

  2. Shock-induced collapse of a bubble inside a deformable vessel

    PubMed Central

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  3. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  4. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice.

    PubMed

    Bentzon, Jacob F; Weile, Charlotte; Sondergaard, Claus S; Hindkjaer, Johnny; Kassem, Moustapha; Falk, Erling

    2006-12-01

    Recent studies of bone marrow (BM)-transplanted apoE knockout (apoE-/-) mice have concluded that a substantial fraction of smooth muscle cells (SMCs) in atherosclerosis arise from circulating progenitor cells of hematopoietic origin. This pathway, however, remains controversial. In the present study, we reexamined the origin of plaque SMCs in apoE-/- mice by a series of BM transplantations and in a novel model of atherosclerosis induced in surgically transferred arterial segments. We analyzed plaques in lethally irradiated apoE-/- mice reconstituted with sex-mismatched BM cells from eGFP+ apoE-/- mice, which ubiquitously express enhanced green fluorescent protein (eGFP), but did not find a single SMC of donor BM origin among approximately 10,000 SMC profiles analyzed. We then transplanted arterial segments between eGFP+ apoE-/- and apoE-/- mice (isotransplantation except for the eGFP transgene) and induced atherosclerosis focally within the graft by a recently invented collar technique. No eGFP+ SMCs were found in plaques that developed in apoE-/- artery segments grafted into eGFP+ apoE-/- mice. Concordantly, 96% of SMCs were eGFP+ in plaques induced in eGFP+ apoE-/- artery segments grafted into apoE-/- mice. These experiments show that SMCs in atherosclerotic plaques are exclusively derived from the local vessel wall in apoE-/- mice.

  5. Vascular wall progenitor cells in health and disease.

    PubMed

    Psaltis, Peter J; Simari, Robert D

    2015-04-10

    The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease. © 2015 American Heart Association, Inc.

  6. Blood Vessel-Derived Acellular Matrix for Vascular Graft Application

    PubMed Central

    Dall'Olmo, Luigi; Zanusso, Ilenia; Di Liddo, Rosa; Chioato, Tatiana; Bertalot, Thomas; Conconi, Maria Teresa

    2014-01-01

    To overcome the issues connected to the use of autologous vascular grafts and artificial materials for reconstruction of small diameter (<6 mm) blood vessels, this study aimed to develop acellular matrix- (AM-) based vascular grafts. Rat iliac arteries were decellularized by a detergent-enzymatic treatment, whereas endothelial cells (ECs) were obtained through enzymatic digestion of rat skin followed by immunomagnetic separation of CD31-positive cells. Sixteen female Lewis rats (8 weeks old) received only AM or previously in vitro reendothelialized AM as abdominal aorta interposition grafts (about 1 cm). The detergent-enzymatic treatment completely removed the cellular part of vessels and both MHC class I and class II antigens. One month after surgery, the luminal surface of implanted AMs was partially covered by ECs and several platelets adhered in the areas lacking cell coverage. Intimal hyperplasia, already detected after 1 month, increased at 3 months. On the contrary, all grafts composed by AM and ECs were completely covered at 1 month and their structure was similar to that of native vessels at 3 months. Taken together, our findings show that prostheses composed of AM preseeded with ECs could be a promising approach for the replacement of blood vessels. PMID:25136610

  7. Derivation of jack movement influence coefficients as a basis for selecting wall contours giving reduced levels of interference in flexible walled test sections

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    This report covers work done in a transonic wind tunnel towards providing data on the influence of the movement of wall-control jacks on the Mach number perturbations along the test section. The data is derived using an existing streamline-curvature program, and in application is reduced to matrices of influence coefficients.

  8. $$\\mathscr{H}_2$$ optimal control techniques for resistive wall mode feedback in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, Mitchell; Hanson, Jeremy; Bialek, Jim

    DIII-D experiments show that a new, advanced algorithm improves resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic ux di usion time of the vacuum vessel wall. The VALEN RWM model has been used to gauge the e ectiveness of RWM control algorithms in tokamaks. Simulations and experiments have shown that modern control techniques like Linear Quadratic Gaussian (LQG) control will perform better, using 77% less current, than classical techniques when usingmore » control coils external to DIII-D's vacuum vessel. Experiments were conducted to develop control of a rotating n = 1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high N experiments also show that advanced feedback techniques using external control coils may be as e ective as internal control coil feedback using classical control techniques.« less

  9. $$\\mathscr{H}_2$$ optimal control techniques for resistive wall mode feedback in tokamaks

    DOE PAGES

    Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; ...

    2018-02-28

    DIII-D experiments show that a new, advanced algorithm improves resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic ux di usion time of the vacuum vessel wall. The VALEN RWM model has been used to gauge the e ectiveness of RWM control algorithms in tokamaks. Simulations and experiments have shown that modern control techniques like Linear Quadratic Gaussian (LQG) control will perform better, using 77% less current, than classical techniques when usingmore » control coils external to DIII-D's vacuum vessel. Experiments were conducted to develop control of a rotating n = 1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high N experiments also show that advanced feedback techniques using external control coils may be as e ective as internal control coil feedback using classical control techniques.« less

  10. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.

  11. Nuclear reactor vessel fuel thermal insulating barrier

    DOEpatents

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  12. On connecting large vessels to small. The meaning of Murray's law

    PubMed Central

    1981-01-01

    A large part of the branching vasculature of the mammalian circulatory and respiratory systems obeys Murray's law, which states that the cube of the radius of a parent vessel equals the sum of the cubes of the radii of the daughters. Where this law is obeyed, a functional relationship exists between vessel radius and volumetric flow, average linear velocity of flow, velocity profile, vessel-wall shear stress, Reynolds number, and pressure gradient in individual vessels. In homogeneous, full-flow sets of vessels, a relation is also established between vessel radius and the conductance, resistance, and cross- sectional area of a full-flow set. PMID:7288393

  13. Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Djenidi, Lyazid; Antonia, Robert A.; Talluru, Murali K.; Abe, Hiroyuki

    2017-06-01

    Hot-wire measurements are carried out in turbulent boundary layers over smooth and rough walls in order the assess the behavior of the skewness (S ) and flatness (F ) factors of the longitudinal velocity derivative as y , the distance from the wall, increases. The measurements are complemented by direct numerical simulations of a smooth wall turbulent channel flow. It is observed that, as the distance to the wall increases, S and F vary significantly before approaching a constant in the outer layer of the boundary layer. Further, S and F exhibit a nontrivial dependence on the Taylor microscale Reynolds number (Reλ). For example, in the region below about 0.2 δ (δ is the boundary layer thickness) where Reλ varies significantly, S and F strongly vary with Reλ and can be multivalued at a given Reλ. In the outer region, between 0.3 δ and 0.6 δ , S , F , and Reλ remain approximately constant. The channel flow direct numerical simulation data for S and F exhibit a similar behavior. These results point to the ambiguity that can arise when assessing the Reλ dependence of S and F in wall shear flows. In particular, the multivaluedness of S and F can lead to erroneous conclusions if y /δ is known only poorly, as is the case for the atmospheric shear layer (ASL). If the laboratory turbulent boundary layer is considered an adequate surrogate to the neutral ASL, then the behavior of S and F in the ASL is expected to be similar to that reported here.

  14. Protective interior wall and attaching means for a fusion reactor vacuum vessel

    DOEpatents

    Phelps, R.D.; Upham, G.A.; Anderson, P.M.

    1985-03-01

    The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.

  15. Computer-Aided Evaluation of Blood Vessel Geometry From Acoustic Images.

    PubMed

    Lindström, Stefan B; Uhlin, Fredrik; Bjarnegård, Niclas; Gylling, Micael; Nilsson, Kamilla; Svensson, Christina; Yngman-Uhlin, Pia; Länne, Toste

    2018-04-01

    A method for computer-aided assessment of blood vessel geometries based on shape-fitting algorithms from metric vision was evaluated. Acoustic images of cross sections of the radial artery and cephalic vein were acquired, and medical practitioners used a computer application to measure the wall thickness and nominal diameter of these blood vessels with a caliper method and the shape-fitting method. The methods performed equally well for wall thickness measurements. The shape-fitting method was preferable for measuring the diameter, since it reduced systematic errors by up to 63% in the case of the cephalic vein because of its eccentricity. © 2017 by the American Institute of Ultrasound in Medicine.

  16. Simple method for forming thin-wall pressure vessels

    NASA Technical Reports Server (NTRS)

    Erickson, A. L.; Guist, L. R.

    1972-01-01

    Application of internal hydrostatic pressure to seam-welded circular cylindrical tanks having corner-welded, flat, circular ends forms large thin-walled high quality tanks. Form limits expansion of cylindrical portion of final tank while hemispherical ends develop freely; no external form or restraint is required to fabricate spherical tanks.

  17. Blood Vessel Tension Tester

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.

  18. The crosstalk between autonomic nervous system and blood vessels

    PubMed Central

    Sheng, Yulan; Zhu, Li

    2018-01-01

    The autonomic nervous system (ANS), comprised of two primary branches, sympathetic and parasympathetic nervous system, plays an essential role in the regulation of vascular wall contractility and tension. The sympathetic and parasympathetic nerves work together to balance the functions of autonomic effector organs. The neurotransmitters released from the varicosities in the ANS can regulate the vascular tone. Norepinephrine (NE), adenosine triphosphate (ATP) and Neuropeptide Y (NPY) function as vasoconstrictors, whereas acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) can mediate vasodilation. On the other hand, vascular factors, such as endothelium-derived relaxing factor nitric oxide (NO), and constriction factor endothelin, play an important role in the autonomic nervous system in physiologic conditions. Endothelial dysfunction and inflammation are associated with the sympathetic nerve activity in the pathological conditions, such as hypertension, heart failure, and diabetes mellitus. The dysfunction of the autonomic nervous system could be a risk factor for vascular diseases and the overactive sympathetic nerve is detrimental to the blood vessel. In this review, we summarize findings concerning the crosstalk between ANS and blood vessels in both physiological and pathological conditions and hope to provide insight into the development of therapeutic interventions of vascular diseases. PMID:29593847

  19. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  20. Stress intensity factors in a reinforced thick-walled cylinder

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    An elastic thick-walled cylinder containing a radial crack is considered. It is assumed that the cylinder is reinforced by an elastic membrane on its inner surface. The model is intended to simulate pressure vessels with cladding. The formulation of the problem is reduced to a singular integral equation. Various special cases including that of a crack terminating at the cylinder-reinforcement interface are investigated and numerical examples are given. Results indicate that in the case of the crack touching the interface the crack surface displacement derivative is finite and consequently the stress state around the corresponding crack tip is bounded; and generally, for realistic values of the stiffness parameter, the effect of the reinforcement is not very significant.

  1. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  2. Iterative Otsu's method for OCT improved delineation in the aorta wall

    NASA Astrophysics Data System (ADS)

    Alonso, Daniel; Real, Eusebio; Val-Bernal, José F.; Revuelta, José M.; Pontón, Alejandro; Calvo Díez, Marta; Mayorga, Marta; López-Higuera, José M.; Conde, Olga M.

    2015-07-01

    Degradation of human ascending thoracic aorta has been visualized with Optical Coherence Tomography (OCT). OCT images of the vessel wall exhibit structural degradation in the media layer of the artery, being this disorder the final trigger of the pathology. The degeneration in the vessel wall appears as low-reflectivity areas due to different optical properties of acidic polysaccharides and mucopolysaccharides in contrast with typical ordered structure of smooth muscle cells, elastin and collagen fibers. An OCT dimension indicator of wall degradation can be generated upon the spatial quantification of the extension of degraded areas in a similar way as conventional histopathology. This proposed OCT marker can offer in the future a real-time clinical perception of the vessel status to help cardiovascular surgeons in vessel repair interventions. However, the delineation of degraded areas on the B-scan image from OCT is sometimes difficult due to presence of speckle noise, variable signal to noise ratio (SNR) conditions on the measurement process, etc. Degraded areas can be delimited by basic thresholding techniques taking advantage of disorders evidences in B-scan images, but this delineation is not optimum in the aorta samples and requires complex additional processing stages. This work proposes an optimized delineation of degraded areas within the aorta wall, robust to noisy environments, based on the iterative application of Otsu's thresholding method. Results improve the delineation of wall anomalies compared with the simple application of the algorithm. Achievements could be also transferred to other clinical scenarios: carotid arteries, aorto-iliac or ilio-femoral sections, intracranial, etc.

  3. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration.

    PubMed

    Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung

    2017-03-01

    Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH) 2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. Magnesium and its alloys are candidates for a new generation of biodegradable stent materials. However, the in vitro degradation of magnesium stents does not match the clinical degradation rates, corrupting the validity of conventional degradation tests. Here we report an ex vivo vascular bioreactor, which allows simulation of the microenvironment with and without blood vessel integration to study the biodegradation of magnesium implants in comparison with standard in vitro test conditions and with in vivo implantations. The bioreactor did simulate the corrosion of an intramural implant very well, but

  4. Detecting thermal discrepancies in vessel walls

    NASA Technical Reports Server (NTRS)

    Casscells, S. Ward (Inventor); Willerson, James T. (Inventor); Eastwood, Michael L. (Inventor); Bearman, Gregory H. (Inventor); Krabach, Timothy N. (Inventor)

    1999-01-01

    An infrared, heat-sensing catheter particularly useful for identifying potentially fatal arterial plaques in patients with disease of the coronary or other arteries and its use are detailed. In one embodiment, an infrared fiberoptic system (with or without ultrasound) is employed at the tip of the catheter to locate inflamed, heat-producing, atherosclerotic plaque, which is at greater risk for rupture, fissure, or ulceration, and consequent thrombosis and occlusion of the artery. In another embodiment, a catheter with an infrared detector (with or without ultrasound) employed at its tip will likewise locate inflamed heat-producing atherosclerotic plaque. The devices and methods of the invention may be used to detect abscesses, infection, and cancerous regions by the heat such regions differentially display over the ambient temperature of immediately adjacent tissues. The methods and devices of the invention may also be used to detect regions of cooler than ambient tissue in a vessel or organ which indicate cell death, thrombosis, cell death, hemorrhage, calcium or cholesterol accumulations, or foreign materials.

  5. Reactor vessel lower head integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) inmore » this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.« less

  6. [Role of C5b-9 expression in skeletal muscle blood vessels in necrotizing myopathy].

    PubMed

    Cong, Lu; Pu, Chuanqiang; Mao, Yanling; Liu, Jiexiao; Lu, Xianghui; Wang, Qian

    2012-05-01

    To investigate the expression of C5b-9 in the skeletal muscle blood vessels in patients with necrotizing myopathy and explore its role in the pathogenesis of this disease. The expression of C5b-9 and MHC-I in the skeletal muscular fibers and blood vessels in 4 patients with necrotizing myopathy was detected using enzymohistochemistry and immunohistochemistry. Focal or dispersive necrotic muscle fibers with obvious phagocytosis were observed in all the 4 patients. No inflammatory cell infiltration was found in the perimysium or perivascular regions. HE staining showed a decreased number of local small blood vessels, and the some small blood vessels showed thickened vascular walls. Immunohistochemistry detected prominent C5b-9 expression in the necrotic muscle fibers and the blood vessels, and diffuse strong C5b-9 expression was found in the vascular walls, vascular endothelial cells and the smooth muscle layer. No MHC-I deposition was detected in the muscular fibers and blood vessels. C5b-9 contributes to the pathogenesis of necrotizing myopathy mediated by pathologies in the blood vessels.

  7. Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis.

    PubMed

    Francisco, Gerardo D; Li, Zhong; Albright, J Donald; Eudy, Nancy H; Katz, Alan H; Petersen, Peter J; Labthavikul, Pornpen; Singh, Guy; Yang, Youjun; Rasmussen, Beth A; Lin, Yang-I; Mansour, Tarek S

    2004-01-05

    Over 50 phenyl thiazolyl urea and carbamate derivatives were synthesized for evaluation as new inhibitors of bacterial cell-wall biosynthesis. Many of them demonstrated good activity against MurA and MurB and gram-positive bacteria including MRSA, VRE and PRSP. 3,4-Difluorophenyl 5-cyanothiazolylurea (3p) with clog P of 2.64 demonstrated antibacterial activity against both gram-positive and gram-negative bacteria.

  8. Xylem Development and Cell Wall Changes of Soybean Seedlings Grown in Space

    PubMed Central

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-01-01

    Background and Aims Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Methods Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Key Results Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. Conclusions The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth. PMID:18252765

  9. Xylem development and cell wall changes of soybean seedlings grown in space.

    PubMed

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-04-01

    Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.

  10. Delayed Contrast-Enhanced MRI of the Coronary Artery Wall in Takayasu Arteritis

    PubMed Central

    Schneeweis, Christopher; Schnackenburg, Bernhard; Stuber, Matthias; Berger, Alexander; Schneider, Udo; Yu, Jing; Gebker, Rolf; Weiss, Robert G.; Fleck, Eckart; Kelle, Sebastian

    2012-01-01

    Background Takayasu arteritis (TA) is a rare form of chronic inflammatory granulomatous arteritis of the aorta and its major branches. Late gadolinium enhancement (LGE) with magnetic resonance imaging (MRI) has demonstrated its value for the detection of vessel wall alterations in TA. The aim of this study was to assess LGE of the coronary artery wall in patients with TA compared to patients with stable CAD. Methods We enrolled 9 patients (8 female, average age 46±13 years) with proven TA. In the CAD group 9 patients participated (8 male, average age 65±10 years). Studies were performed on a commercial 3T whole-body MR imaging system (Achieva; Philips, Best, The Netherlands) using a 3D inversion prepared navigator gated spoiled gradient-echo sequence, which was repeated 34–45 minutes after low-dose gadolinium administration. Results No coronary vessel wall enhancement was observed prior to contrast in either group. Post contrast, coronary LGE on IR scans was detected in 28 of 50 segments (56%) seen on T2-Prep scans in TA and in 25 of 57 segments (44%) in CAD patients. LGE quantitative assessment of coronary artery vessel wall CNR post contrast revealed no significant differences between the two groups (CNR in TA: 6.0±2.4 and 7.3±2.5 in CAD; p = 0.474). Conclusion Our findings suggest that LGE of the coronary artery wall seems to be common in patients with TA and similarly pronounced as in CAD patients. The observed coronary LGE seems to be rather unspecific, and differentiation between coronary vessel wall fibrosis and inflammation still remains unclear. PMID:23236382

  11. Delayed contrast-enhanced MRI of the coronary artery wall in takayasu arteritis.

    PubMed

    Schneeweis, Christopher; Schnackenburg, Bernhard; Stuber, Matthias; Berger, Alexander; Schneider, Udo; Yu, Jing; Gebker, Rolf; Weiss, Robert G; Fleck, Eckart; Kelle, Sebastian

    2012-01-01

    Takayasu arteritis (TA) is a rare form of chronic inflammatory granulomatous arteritis of the aorta and its major branches. Late gadolinium enhancement (LGE) with magnetic resonance imaging (MRI) has demonstrated its value for the detection of vessel wall alterations in TA. The aim of this study was to assess LGE of the coronary artery wall in patients with TA compared to patients with stable CAD. We enrolled 9 patients (8 female, average age 46±13 years) with proven TA. In the CAD group 9 patients participated (8 male, average age 65±10 years). Studies were performed on a commercial 3T whole-body MR imaging system (Achieva; Philips, Best, The Netherlands) using a 3D inversion prepared navigator gated spoiled gradient-echo sequence, which was repeated 34-45 minutes after low-dose gadolinium administration. No coronary vessel wall enhancement was observed prior to contrast in either group. Post contrast, coronary LGE on IR scans was detected in 28 of 50 segments (56%) seen on T2-Prep scans in TA and in 25 of 57 segments (44%) in CAD patients. LGE quantitative assessment of coronary artery vessel wall CNR post contrast revealed no significant differences between the two groups (CNR in TA: 6.0±2.4 and 7.3±2.5 in CAD; p = 0.474). Our findings suggest that LGE of the coronary artery wall seems to be common in patients with TA and similarly pronounced as in CAD patients. The observed coronary LGE seems to be rather unspecific, and differentiation between coronary vessel wall fibrosis and inflammation still remains unclear.

  12. Visualization of turbulent combustion of TNT detonation products in a steel vessel

    NASA Astrophysics Data System (ADS)

    Wolański, P.; Gut, Z.; Trzciński, W. A.; Szymańczyk, L.; Paszula, J.

    Mixing and afterburning of TNT detonation products in a steel vessel are recorded by the use of the Schlieren visualization system and high speed photography. The vessel is filled with air or 50% oxygen enriched air. Overpressure histories at the vessel wall are also recorded by using pressure transducers. In these experiments nitrogen, air or 50% oxygen enriched air are used as vessel fillers. The Oppenheim-Kuhl theory of thermodynamics of closed systems is applied to estimate the released energy on the basis of pressure histories.

  13. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  14. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models.

    PubMed

    Alimohammadi, Mona; Sherwood, Joseph M; Karimpour, Morad; Agu, Obiekezie; Balabani, Stavroula; Díaz-Zuccarini, Vanessa

    2015-04-15

    The management and prognosis of aortic dissection (AD) is often challenging and the use of personalised computational models is being explored as a tool to improve clinical outcome. Including vessel wall motion in such simulations can provide more realistic and potentially accurate results, but requires significant additional computational resources, as well as expertise. With clinical translation as the final aim, trade-offs between complexity, speed and accuracy are inevitable. The present study explores whether modelling wall motion is worth the additional expense in the case of AD, by carrying out fluid-structure interaction (FSI) simulations based on a sample patient case. Patient-specific anatomical details were extracted from computed tomography images to provide the fluid domain, from which the vessel wall was extrapolated. Two-way fluid-structure interaction simulations were performed, with coupled Windkessel boundary conditions and hyperelastic wall properties. The blood was modelled using the Carreau-Yasuda viscosity model and turbulence was accounted for via a shear stress transport model. A simulation without wall motion (rigid wall) was carried out for comparison purposes. The displacement of the vessel wall was comparable to reports from imaging studies in terms of intimal flap motion and contraction of the true lumen. Analysis of the haemodynamics around the proximal and distal false lumen in the FSI model showed complex flow structures caused by the expansion and contraction of the vessel wall. These flow patterns led to significantly different predictions of wall shear stress, particularly its oscillatory component, which were not captured by the rigid wall model. Through comparison with imaging data, the results of the present study indicate that the fluid-structure interaction methodology employed herein is appropriate for simulations of aortic dissection. Regions of high wall shear stress were not significantly altered by the wall motion

  15. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  16. High-resolution 3D coronary vessel wall imaging with near 100% respiratory efficiency using epicardial fat tracking: reproducibility and comparison with standard methods.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N

    2011-01-01

    To quantitatively assess the performance and reproducibility of 3D spiral coronary artery wall imaging with beat-to-beat respiratory-motion-correction (B2B-RMC) compared to navigator gated 2D spiral and turbo-spin-echo (TSE) acquisitions. High-resolution (0.7 × 0.7 mm) cross-sectional right coronary wall acquisitions were performed in 10 subjects using four techniques (B2B-RMC 3D spiral with alternate (2RR) and single (1RR) R-wave gating, navigator-gated 2D spiral (2RR) and navigator-gated 2D TSE (2RR)) on two occasions. Wall thickness measurements were compared with repeated measures analysis of variance (ANOVA). Reproducibility was assessed with the intraclass correlation coefficient (ICC). In all, 91% (73/80) of acquisitions were successful (failures: four TSE, two 3D spiral (1RR) and one 3D spiral (2RR)). Respiratory efficiency of the B2B-RMC was less variable and substantially higher than for navigator gating (99.6 ± 1.2% vs. 39.0 ± 7.5%, P < 0.0001). Coronary wall thicknesses (± standard deviation [SD]) were not significantly different: 1.10 ± 0.14 mm (3D spiral (2RR)), 1.20 ± 0.16 mm (3D spiral (1RR)), 1.14 ± 0.15 mm (2D spiral), and 1.21 ± 0.17 mm (TSE). Wall thickness reproducibility ranged from good (ICC = 0.65, 3D spiral (1RR)) to excellent (ICC = 0.87, 3D spiral (2RR)). High-resolution 3D spiral imaging with B2B-RMC permits coronary vessel wall assessment over multiple thin contiguous slices in a clinically feasible duration. Excellent reproducibility of the technique potentially enables studies of disease progression/regression. Copyright © 2010 Wiley-Liss, Inc.

  17. Conformable pressure vessel for high pressure gas storage

    DOEpatents

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  18. Direct calculation of wall interferences and wall adaptation for two-dimensional flow in wind tunnels with closed walls

    NASA Technical Reports Server (NTRS)

    Amecke, Juergen

    1986-01-01

    A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.

  19. Flow in Atherosclerotic Blood Vessels

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Stroud, Jenn S.

    2000-11-01

    Atherosclerotic lesions occur in arteries where there are major changes in flow structure, e.g. bifurcations and junctions. The reduction of vessel lumen alters the flow, including the mechanical forces on the walls. We have examined the flow in carotid artery bifurcations with realistic plaque contours. The unsteady, incompressible, Navier-Stokes equations are solved in finite-volume form. Steady and pulsatile flows have been analyzed for laminar and turbulent flows, using for the latter a low-Reynolds number k- ɛ model and a k-ω model. Non-Newtonian viscosity is also considered using a power-law model. In general the very irregular contours of the vessels lead to recirculating regions, strong spatial variations of wall shear stresses, and in some cases, vortex shedding. Even steady inlet flow exhibits fluctuating, unsteady behavior. Neither turbulence models captures all the physics of the flow. The flow, in fact, appears to be transitional and not fully turbulent. For unsteady flow, there are also strong temporal variations of normal and shear stresses, which together with the strong spatial variations, has important implications for the onset and progression of atherosclerotic disease.

  20. Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies.

    PubMed

    Cilip, Christopher M; Rosenbury, Sarah B; Giglio, Nicholas; Hutchens, Thomas C; Schweinsberger, Gino R; Kerr, Duane; Latimer, Cassandra; Nau, William H; Fried, Nathaniel M

    2013-05-01

    Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578 ± 154, 530 ± 171, and 426 ± 174  mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0 ± 0.4  mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4  mm outer diameter).

  1. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  2. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces.

    PubMed

    Busse, Rudi; Fleming, Ingrid

    2003-01-01

    Endothelial cells, which are situated at the interface between blood and the vessel wall, have a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro-atherosclerotic and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of endothelium-derived autacoids [from the Greek autos (self) and akos (remedy)], which are generally short-lived and locally acting. In vivo, endothelial cells are constantly subjected to mechanical stimulation, which in turn determines the acute production of autacoids and the levels of autacoid-producing enzymes.

  3. Engineering secondary cell wall deposition in plants

    PubMed Central

    Yang, Fan; Mitra, Prajakta; Zhang, Ling; Prak, Lina; Verhertbruggen, Yves; Kim, Jin-Sun; Sun, Lan; Zheng, Kejian; Tang, Kexuan; Auer, Manfred; Scheller, Henrik V; Loqué, Dominique

    2013-01-01

    Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies—lignin rewiring with APFL insertion—enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis. PMID:23140549

  4. Acoustic emission testing of 12-nickel maraging steel pressure vessels

    NASA Technical Reports Server (NTRS)

    Dunegan, H. L.

    1973-01-01

    Acoustic emission data were obtained from three point bend fracture toughness specimens of 12-nickel maraging steel, and two pressure vessels of the same material. One of the pressure vessels contained a prefabricated flaw which was extended and sharpened by fatigue cycling. It is shown that the flawed vessel had similar characteristics to the fracture specimens, thereby allowing estimates to be made of its nearness to failure during a proof test. Both the flawed and unflawed pressure vessel survived the proof pressure and 5 cycles to the working pressure, but it was apparent from the acoustic emission response during the proof cycle and the 5 cycles to the working pressure that the flawed vessel was very near failure. The flawed vessel did not survive a second cycle to the proof pressure before failure due to flaw extension through the wall (causing a leak).

  5. Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.

    PubMed

    Rolland, Vivien; Bergstrom, Dana M; Lenné, Thomas; Bryant, Gary; Chen, Hua; Wolfe, Joe; Holbrook, N Michele; Stanton, Daniel E; Ball, Marilyn C

    2015-08-01

    Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Optical coherence tomography assessment of vessel wall degradation in thoracic aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Díez, Marta Calvo; Fernando Val-Bernal, José; Mayorga, Marta; Revuelta, José M.; López-Higuera, José M.; Conde, Olga M.

    2013-12-01

    Optical coherence tomography images of human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall. These disorders can be employed as indicators for wall degradation and, therefore, become a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. Two approaches are followed to evaluate this risk: the analysis of the reflectivity decay along the penetration depth and the textural analysis of a two-dimensional spatial distribution of the aortic wall backscattering. Both techniques require preprocessing stages for the identification of the air-sample interface and for the segmentation of the media layer. Results show that the alterations in the media layer of the aortic wall are better highlighted when the textural approach is considered and also agree with a semiquantitative histopathological grading that assesses the degree of wall degradation. The correlation of the co-occurrence matrix attains a sensitivity of 0.906 and specificity of 0.864 when aneurysm automatic diagnosis is evaluated with a receiver operating characteristic curve.

  7. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.

    PubMed

    Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em

    2016-01-01

    Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. © 2016 The Author(s).

  8. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    PubMed Central

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  9. Agreement between methods of measurement of mean aortic wall thickness by MRI.

    PubMed

    Rosero, Eric B; Peshock, Ronald M; Khera, Amit; Clagett, G Patrick; Lo, Hao; Timaran, Carlos

    2009-03-01

    To assess the agreement between three methods of calculation of mean aortic wall thickness (MAWT) using magnetic resonance imaging (MRI). High-resolution MRI of the infrarenal abdominal aorta was performed on 70 subjects with a history of coronary artery disease who were part of a multi-ethnic population-based sample. MAWT was calculated as the mean distance between the adventitial and luminal aortic boundaries using three different methods: average distance at four standard positions (AWT-4P), average distance at 100 automated positions (AWT-100P), and using a mathematical computation derived from the total vessel and luminal areas (AWT-VA). Bland-Altman plots and Passing-Bablok regression analyses were used to assess agreement between methods. Bland-Altman analyses demonstrated a positive bias of 3.02+/-7.31% between the AWT-VA and the AWT-4P methods, and of 1.76+/-6.82% between the AWT-100P and the AWT-4P methods. Passing-Bablok regression analyses demonstrated constant bias between the AWT-4P method and the other two methods. Proportional bias was, however, not evident among the three methods. MRI methods of measurement of MAWT using a limited number of positions of the aortic wall systematically underestimate the MAWT value compared with the method that calculates MAWT from the vessel areas. Copyright (c) 2009 Wiley-Liss, Inc.

  10. Studies on in-vessel debris coolability in ALPHA program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi

    1997-02-01

    In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heatedmore » vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.« less

  11. The role of heat shock proteins in protection and pathophysiology of the arterial wall.

    PubMed

    Xu, Q; Wick, G

    1996-09-01

    The arterial wall is an integrated functional component of the circulatory system that is continually remodelling in response to various stressors, including localized injury, toxins, smoking and hypercholesterolaemia. These stimuli directly or indirectly cause changes in blood pressure and damage to the vessel wall, and eventually induce arterial stiffness and obstruction. To maintain the homeostasis of the vessel wall, the vascular cells produce a high level of stress proteins, also known as heat shock proteins, which protect against damage during haemodynamic stress. However, an immune reaction to heat shock proteins might contribute to the development of atherosclerosis. We hypothesize that the induction of heat shock proteins is beneficial in the arterial wall's response to stress but is harmful in certain other circumstances.

  12. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Sytkowski, A. J.; Davis, K. L.

    2001-01-01

    Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1 x g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1 x g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1 x g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.

  13. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development.

    PubMed

    Hen, Gideon; Nicenboim, Julian; Mayseless, Oded; Asaf, Lihee; Shin, Masahiro; Busolin, Giorgia; Hofi, Roy; Almog, Gabriella; Tiso, Natascia; Lawson, Nathan D; Yaniv, Karina

    2015-12-15

    Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds. © 2015. Published by The Company of Biologists Ltd.

  14. Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research.

    PubMed

    Meixner, Eva; Michelson, Georg

    2015-11-01

    To measure the wall-to-lumen ratio (WLR) and the cross-sectional area of the vascular wall (WCSA) of retinal arterioles by an Adaptive Optics (AO) retinal camera. Forty-seven human subjects were examined and their medical history was explored. WLR and WCSA were measured on the basis of retinal arteriolar wall thickness (VW), lumen diameter (LD) and vessel diameter (VD) assessed by rtx1 Adaptive Optics retinal camera. WLR was calculated by the formula [Formula: see text]. Arterio-venous ratio (AVR) and microvascular abnormalities were attained by quantitative and qualitative assessment of fundus photographs. Influence of age, arterial hypertension, body mass index (BMI) and retinal microvascular abnormalities on the WLR was examined. An age-adjusted WLR was created to test influences on WLR independently of age. Considering WLR and WCSA, a distinction between eutrophic and hypertrophic retinal remodeling processes was possible. The intra-observer variability (IOV) was 6 % ± 0.9 for arteriolar wall thickness and 2 % ± 0.2 for arteriolar wall thickness plus vessel lumen. WLR depended significantly on the wall thickness (r = 0.715; p < 0.01) of retinal arterioles, but was independent of the total vessel diameter (r = 0.052; p = 0.728). WLR correlated significantly with age (r = 0.769; p < 0.01). Arterial hypertension and a higher BMI were significantly associated with an increased age-adjusted WLR. WLR correlated significantly with the stage of microvascular abnormalities. 55 % of the hypertensive subjects and 11 % of the normotensive subjects showed eutrophic remodeling, while hypertrophic remodeling was not detectable. WLR correlated inversely with AVR. AVR was independent of the arteriolar wall thickness, age and arterial hypertension. The technique of AO retinal imaging allows a direct measurement of the retinal vessel wall and lumen diameter with good intra-observer variability. Age, arterial hypertension and an elevated BMI level

  15. Blunt trauma to large vessels: a mathematical study

    PubMed Central

    Ismailov, Rovshan M; Shevchuk, Nikolai A; Schwerha, Joseph; Keller, Lawrence; Khusanov, Higmat

    2004-01-01

    Background Blunt trauma causes short-term compression of some or all parts of the chest, abdomen or pelvis and changes hemodynamics of the blood. Short-term compression caused by trauma also results in a short-term decrease in the diameter of blood vessels. It has been shown that with a sudden change in the diameter of a tube or in the direction of the flow, the slower-moving fluid near the wall stops or reverses direction, which is known as boundary layer separation (BLS). We hypothesized that a sudden change in the diameter of elastic vessel that results from compression may lead not only to BLS but also to other hemodynamic changes that can damage endothelium. Methods We applied Navier-Stokes, multiphase and boundary layer equations to examine such stress. The method of approximation to solve the BL equations was used. Experiments were conducted in an aerodynamic tube, where incident flow velocity and weight of carriage with particles before and after blowing were measured. Results We found that sudden compression resulting from trauma leads to (1) BLS on the curved surface of the vessel wall; (2) transfer of laminar boundary layer into turbulent boundary layer. Damage to the endothelium can occur if compression is at least 25% and velocity is greater than 2.4 m/s or if compression is at least 10% and velocity is greater than 2.9 m/s. Conclusion Our research may point up new ways of reducing the damage from blunt trauma to large vessels. It has the potential for improvement of safety features of motor vehicles. This work will better our understanding of the precise mechanics and critical variables involved in diagnosis and prevention of blunt trauma to large vessels. PMID:15153246

  16. Vessel discoloration detection in malarial retinopathy

    NASA Astrophysics Data System (ADS)

    Agurto, C.; Nemeth, S.; Barriga, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Harding, S.; Lewallen, S.; Joshi, V.

    2016-03-01

    Cerebral malaria (CM) is a life-threatening clinical syndrome associated with malarial infection. It affects approximately 200 million people, mostly sub-Saharan African children under five years of age. Malarial retinopathy (MR) is a condition in which lesions such as whitening and vessel discoloration that are highly specific to CM appear in the retina. Other unrelated diseases can present with symptoms similar to CM, therefore the exact nature of the clinical symptoms must be ascertained in order to avoid misdiagnosis, which can lead to inappropriate treatment and, potentially, death. In this paper we outline the first system to detect the presence of discolored vessels associated with MR as a means to improve the CM diagnosis. We modified and improved our previous vessel segmentation algorithm by incorporating the `a' channel of the CIELab color space and noise reduction. We then divided the segmented vasculature into vessel segments and extracted features at the wall and in the centerline of the segment. Finally, we used a regression classifier to sort the segments into discolored and not-discolored vessel classes. By counting the abnormal vessel segments in each image, we were able to divide the analyzed images into two groups: normal and presence of vessel discoloration due to MR. We achieved an accuracy of 85% with sensitivity of 94% and specificity of 67%. In clinical practice, this algorithm would be combined with other MR retinal pathology detection algorithms. Therefore, a high specificity can be achieved. By choosing a different operating point in the ROC curve, our system achieved sensitivity of 67% with specificity of 100%.

  17. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    PubMed

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-10-01

    Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  18. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  19. Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

    2012-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.

  20. Collaborative investigations of in-service irradiated material from the Japan Power Demonstration Reactor pressure vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corwin, W.R.; Broadhead, B.L.; Suzuki, M.

    1997-02-01

    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel that has been irradiated during normal service. Just such an evaluation is currently being conducted on material from the wall of the pressure vessel from the Japan Power Demonstration Reactor (JPDR). The research is being jointly performed at the Tokai Research Establishment of the Japan Atomic Energy Research Institute (JAERI) and by the Nuclear Regulatory Commission (NRC)-funded Heavy-Section Steel Irradiation Program at the Oak Ridge National Laboratory (ORNL).

  1. Corrosion monitoring on a large steel pressure vessel by thin-layer activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, G.; Boulton, L.H.; Hodder, D.

    1989-12-01

    Thin-layer activation (TLA) is a technique in which a surface is irradiated by a nuclear accelerator and thereby labeled with an accurate depth profile of low-level radioactivity. By monitoring this activity it is possible to calculate how much of that surface has been removed by corrosion. As the radioactivity is marked by the emission of penetrating gamma rays, it is possible to monitor this corrosion remotely through several centimeters of steel. This technique has been used to monitor erosion-corrosion occurring on the inner carbon steel wall of a continuous Kraft pulp digester at a paper mill. Representative coupons of themore » same steel as the digester wall were irradiated and fixed to the walls in the liquor extraction zone during a maintenance shutdown. The loss of metal over the six months was measured by external monitoring of gamma radiation through the vessel wall, and converted to a corrosion rate. Subsequent weight-loss measurements and comparison with ultrasonic thickness measurements established that the corrosion rate measured gave accurate results over a much shorter time scale. TLA thus enables current, rather than historical corrosion rates to be measured in a large steel pressure vessel.« less

  2. An in vivo pilot study of a microporous thin film nitinol-covered stent to assess the effect of porosity and pore geometry on device interaction with the vessel wall.

    PubMed

    Chun, Youngjae; Kealey, Colin P; Levi, Daniel S; Rigberg, David A; Chen, Yanfei; Tillman, Bryan W; Mohanchandra, K P; Shayan, Mahdis; Carman, Gregory P

    2017-03-01

    Sputter-deposited thin film nitinol constructs with various micropatterns were fabricated to evaluate their effect on the vessel wall in vivo when used as a covering for commercially available stents. Thin film nitinol constructs were used to cover stents and deployed in non-diseased swine arteries. Swine were sacrificed after approximately four weeks and the thin film nitinol-covered stents were removed for histopathologic evaluation. Histopathology revealed differences in neointimal thickness that correlated with the thin film nitinol micropattern. Devices covered with thin film nitinol with a lateral × vertical length = 20 × 40 µm diamond pattern had minimal neointimal growth with well-organized cell architecture and little evidence of ongoing inflammation. Devices covered with thin film nitinol with smaller fenestrations exhibited a relatively thick neointimal layer with inflammation and larger fenestrations showed migration of inflammatory and smooth muscle cells through the micro fenestrations. This "proof-of-concept" study suggests that there may be an ideal thin film nitinol porosity and pore geometry to encourage endothelialization and incorporation of the device into the vessel wall. Future work will be needed to determine the optimal pore size and geometry to minimize neointimal proliferation and in-stent stenosis.

  3. Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting

    NASA Astrophysics Data System (ADS)

    Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang

    2016-12-01

    Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.

  4. Wall-to-lumen ratio of intracranial arteries measured by indocyanine green angiography

    PubMed Central

    Nakagawa, Daichi; Shojima, Masaaki; Yoshino, Masanori; Kin, Taichi; Imai, Hideaki; Nomura, Seiji; Saito, Toki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2016-01-01

    Background: The wall-to-lumen ratio (WLR) is an important parameter in vascular medicine because it indicates the character of vascular wall as well as the degree of stenosis. Despite the advances in medical imaging technologies, it is still difficult to measure the thin-walled normal intracranial arteries, and the reports on the WLR of normal intracranial artery are limited. It might be possible to calculate the WLR using the indocyanine green (ICG) angiography, which is used to observe intracranial vessels during microsurgery. Purpose: To evaluate the WLR of normal intracranial arteries using ICG angiography. Materials and Methods: From the three cases in which ICG angiography was recorded with a ruler during microsurgery, 20 measurement points were chosen for the analysis. The ICG was injected intravenously with a dose of 0.2 mg/kg, and the vessels were inspected at high magnification using an operating microscope equipped with near-infrared illumination system. The vessel outer diameter and the luminal diameter were measured using the images before and after the ICG arrival based on the pixel ratio method using a ruler as reference, respectively. The WLR was calculated as 0.5 × (vessel outer diameter − vessel luminal diameter). Results: The WLR (mean ± standard deviation) of normal intracranial arteries was 0.086 ± 0.022. The WLR tended to be high in small arteries. Conclusion: The WLR of normal intracranial arteries calculated using ICG angiography was consistent with the WLR reported in the previous reports based on human autopsy. PMID:27695538

  5. Influence and Modeling of Residual Stresses in Thick Walled Pressure Vessels with Through Holes

    DTIC Science & Technology

    2012-02-28

    9 FIGURE 4 ENVIRONMENTAL CRACKING OBSERVED IN EVACUATOR HOLE .......... 9 FIGURE 5 STRESSES PRESENT IN STRAIGHT EVACUATOR... ASSESMENT OF INITIAL DAMAGE Through investigation was undertaken on vessels similar in size and strength level to pressure vessels 85A and 85B...suggesting that the source of the residual stresses required to initiate and propagate these environmental cracks is not a resultant of the typical

  6. Mathematical models of real geometrical factors in restricted blood vessels for the analysis of CAD (coronary artery diseases) using Legendre, Boubaker and Bessel polynomials.

    PubMed

    Awojoyogbe, O B; Faromika, O P; Dada, M; Boubaker, Karem; Ojambati, O S

    2011-12-01

    Most cardiovascular emergencies are directly caused by coronary artery disease. Coronary arteries can become clogged or occluded, leading to damage to the heart muscle supplied by the artery. Modem cardiovascular medicine can certainly be improved by meticulous analysis of geometrical factors closely associated with the degenerative disease that results in narrowing of the coronary arteries. There are, however, inherent difficulties in developing this type of mathematical models to completely describe the real or ideal geometries that are very critical in plaque formation and thickening of the vessel wall. Neither the mathematical models of the blood vessels with arthrosclerosis generated by the heart and blood flow or the NMR/MRI data to construct them are available. In this study, a mathematical formulation for the geometrical factors that are very critical for the understanding of coronary artery disease is presented. Based on the Bloch NMR flow equations, we derive analytical expressions to describe in detail the NMR transverse magnetizations and signals as a function of some NMR flow and geometrical parameters which are invaluable for the analysis of blood flow in restricted blood vessels. The procedure would apply to the situations in which the geometry of the fatty deposits, (plague) on the interior walls of the coronary arteries is spherical. The boundary conditions are introduced based on Bessel, Boubaker and Legendre polynomials.

  7. Wall shear stress estimates in coronary artery constrictions

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Crawford, D. W.

    1992-01-01

    Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.

  8. Effects of 532 nm pulsed-KTP laser parameters on vessel ablation in the avian chorioallantoic membrane: implications for vocal fold mucosa.

    PubMed

    Broadhurst, Matthew S; Akst, Lee M; Burns, James A; Kobler, James B; Heaton, James T; Anderson, R Rox; Zeitels, Steven M

    2007-02-01

    Selective vascular ablation (photoangiolysis) using pulsed lasers that target hemoglobin is an effective treatment strategy for many vocal fold lesions. However, vessel rupture with extravasation of blood reduces selectivity for vessels, which is frequently observed with the 0.45-ms, 585-nm pulsed dye laser. Previous studies have shown that vessel rupture is the result of vaporization of blood, an event that varies with laser pulse width and pulse fluence (energy per unit area). Clinical observations using a 532-nm wavelength pulsed potassium-titanyl-phosphate (KTP) laser revealed less laser-induced hemorrhage than the pulsed dye laser. This study investigated settings for the pulsed KTP laser to achieve selective vessel destruction without rupture using the avian chorioallantoic membrane under conditions similar to flexible laryngoscopic delivery of the laser in clinical practice. The chick chorioallantoic membrane offers convenient access to many small blood vessels similar in size to those targeted in human vocal fold. Using a 532-nm pulsed KTP laser, pulse width, pulse energy, and working distance from the optical delivery fiber were varied to assess influence on the ability to achieve vessel coagulation without vessel wall rupture. Third-order vessels (n = 135) were irradiated: Energy (471-550 mJ), pulse width (10, 15, 30 ms), and fiber-to-tissue distance (1 mm, 3 mm) were varied systematically. Selective vessel destruction without vessel wall rupture was more often achieved by increasing pulse width, increasing the fiber-to-tissue distance, and decreasing energy. Vessel destruction without rupture was consistently achieved using 15- or 30-ms pulses with a fiber-to-tissue distance of 3 mm (pulse fluence of 13-16 J/cm). This study substantiates our clinical observation that a 532-nm pulsed KTP laser was effective for ablating microcirculation while minimizing vessel wall rupture and hemorrhage.

  9. The effect of vessel material properties and pulsatile wall motion on the fixation of a proximal stent of an endovascular graft.

    PubMed

    Corbett, T J; Molony, D S; Callanan, A; McGloughlin, T M

    2011-01-01

    Migration is a serious failure mechanism associated with endovascular abdominal aortic aneurysm (AAA) repair (EVAR). The effect of vessel material properties and pulsatile wall motion on stent fixation has not been previously investigated. A proximal stent from a commercially available stent graft was implanted into the proximal neck of silicone rubber abdominal aortic aneurysm models of varying proximal neck stiffness (β=25.39 and 20.44). The stent was then dislodged by placing distal force on the stent struts. The peak force to completely dislodge the stent was measured using a loadcell. Dislodgment was performed at ambient pressure with no flow (NF) and during pulsatile flow (PF) at pressures of 120/80 mmHg and 140/100 mmHg to determine if pulsatile wall motions affected the dislodgement force. An imaging analysis was performed at ambient pressure and at pressures of 120 mmHg and 140 mmHg to investigate diameter changes on the model due to the radial force of the stent and internal pressurisation. Stent displacement forces were ~50% higher in the stiffer model (7.16-8.4 N) than in the more compliant model (3.67-4.21 N). The mean displacement force was significantly reduced by 10.95-12.83% from the case of NF to the case of PF at 120/80 mmHg. A further increase in pressure to 140/120 mmHg had no significant effect on the displacement force. The imaging analysis showed that the diameter in the region of the stent was 0.37 mm greater in the less stiff model at all the pressures which could reduce the fixation of the stent. The results suggest that the fixation of passively fixated aortic stents could be comprised in more compliant walls and that pulsatile motions of the wall can reduce the maximum stent fixation. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. The protective effect of EGB761 on vessels of denervated gastrocnemius in rats and its mechanism.

    PubMed

    Zhang, Dongyi; Wu, Rui; Kang, Hao; Hong, Guangxiang; Kang, Shensong; Zhang, Zhengwen

    2011-12-01

    This study investigated the protective effect of EGB761 on blood vessels of denervated gastrocnemius of rat and its possible mechanism. Fifteen male adult SD rats were randomly divided into three groups: normal control group (n=3), control group (n=6) and EGB761-treated group (n=6). The rats in the control and EGB761-treated group underwent a neurotomy to bilateral sciatic nerves. Then, they were administered EGB761 [100 mg/(kg·d)] and isovolumic normal saline, respectively by gavage everyday. No treatment was given to the rats in the normal control group. Gastrocnemius was harvested at 1 and 3 week(s) postoperatively in each group. Immunohistochemical method was used to detect the ratio of capillary/fiber (CFR) of denervated gastrocnemius and the expression of VEGF, fetal liver kinase -1(Flk-1) receptor and HSP70 in the vascular wall. The results showed that in the normal control group, VEGF, Flk-1 and HSP70 were expressed in the vessel wall of gastrocnemius, with Flk-1 expressed only in the endothelial cell of vessels. CFR in the EGB761-treated group was significantly higher than that in the control group at 1 week and 3 week(s) after neurotomy. The expression of VEGF and Flk-1 in the vessel wall of both control and EGB761-treated group was much lower than that in the normal control group, and the expression of these proteins in the EGB761-treated group was decreased as compared with that in the control group. The expression of HSP70 in the vessel wall of both control and EGB761-treated groups was enhanced when compared with that in the normal control group, and it was substantially augmented in the EGB761-treated group in comparison to the control group. It was concluded that EGB761 has a protective effect on blood vessels of denervated gastrocnemius, which is related to the increased HSP70 expression but not the expression of VEGF and its receptor Flk-1.

  11. Novel Method for Vessel Cross-Sectional Shear Wave Imaging.

    PubMed

    He, Qiong; Li, Guo-Yang; Lee, Fu-Feng; Zhang, Qihao; Cao, Yanping; Luo, Jianwen

    2017-07-01

    Many studies have investigated the applications of shear wave imaging (SWI) to vascular elastography, mainly on the longitudinal section of vessels. It is important to investigate SWI in the arterial cross section when evaluating anisotropy of the vessel wall or complete plaque composition. Here, we proposed a novel method based on the coordinate transformation and directional filter in the polar coordinate system to achieve vessel cross-sectional shear wave imaging. In particular, ultrasound radiofrequency data were transformed from the Cartesian to the polar coordinate system; the radial displacements were then estimated directly. Directional filtering was performed along the circumferential direction to filter out the reflected waves. The feasibility of the proposed vessel cross-sectional shear wave imaging method was investigated through phantom experiments and ex vivo and in vivo studies. Our results indicated that the dispersion relation of the shear wave (i.e., the guided circumferential wave) within the vessel can be measured via the present method, and the elastic modulus of the vessel can be determined. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo.

    PubMed

    Massberg, Steffen; Konrad, Ildiko; Bültmann, Andreas; Schulz, Christian; Münch, Götz; Peluso, Mario; Lorenz, Michael; Schneider, Simon; Besta, Felicitas; Müller, Iris; Hu, Bin; Langer, Harald; Kremmer, Elisabeth; Rudelius, Martina; Heinzmann, Ulrich; Ungerer, Martin; Gawaz, Meinrad

    2004-02-01

    Platelet-collagen interactions play a fundamental role in the process of arterial thrombosis. The major platelet collagen receptor is the glycoprotein VI (GPVI). Here, we determined the effects of a soluble dimeric form of GPVI on platelet adhesion in vitro and in vivo. We fused the extracellular domain of GPVI with the human immunoglobulin Fc domain. The soluble dimeric form of GPVI (GPVI-Fc) specifically bound to immobilized collagen. Binding of GPVI-Fc to collagen was inhibited competitively by soluble GPVI-Fc, but not control Fc lacking the external GPVI domain. GPVI-Fc inhibited the adhesion of CHO cells that stably express human GPVI and of platelets on collagen and attenuated thrombus formation under shear conditions in vitro. To test the effects of GPVI-Fc in vivo, arterial thrombosis was induced in the mouse carotid artery, and platelet-vessel wall interactions were visualized by intravital fluorescence microscopy. Infusion of GPVI-Fc but not of control Fc virtually abolished stable arrest and aggregation of platelets following vascular injury. Importantly, GPVI-Fc but not control Fc, was detected at areas of vascular injury. These findings further substantiate the critical role of the collagen receptor GPVI in the initiation of thrombus formation at sites of vascular injury and identify soluble GPVI as a promising antithrombotic strategy.

  13. Arterial Wall Imaging in Pediatric Stroke.

    PubMed

    Dlamini, Nomazulu; Yau, Ivanna; Muthusami, Prakash; Mikulis, David J; Elbers, Jorina; Slim, Mahmoud; Askalan, Rand; MacGregor, Daune; deVeber, Gabrielle; Shroff, Manohar; Moharir, Mahendranath

    2018-04-01

    Arteriopathy is common in childhood arterial ischemic stroke (AIS) and predicts stroke recurrence. Currently available vascular imaging techniques mainly image the arterial lumen rather than the vessel wall and have a limited ability to differentiate among common arteriopathies. We aimed to investigate the value of a magnetic resonance imaging-based technique, namely noninvasive arterial wall imaging (AWI), for distinguishing among arteriopathy subtypes in a consecutive cohort of children presenting with AIS. Children with confirmed AIS and magnetic resonance angiography underwent 3-Tesla AWI including T1-weighted 2-dimensional fluid-attenuated inversion recovery fast spin echo sequences pre- and post-gadolinium contrast. AWI characteristics, including wall enhancement, wall thickening, and luminal stenosis, were documented for all. Twenty-six children with AIS had AWI. Of these, 9 (35%) had AWI enhancement. AWI enhancement was associated with anterior circulation magnetic resonance angiography abnormality and cortical infarction in 8 of 9 (89%) children and normal magnetic resonance angiography with posterior circulation subcortical infarction in 1 (1 of 9; 11%) child. AWI enhancement was not seen in 17 (65%), 10 (59%) of whom had an abnormal magnetic resonance angiography. Distinct patterns of pre- and postcontrast signal abnormality were demonstrated in the vessel wall in the region of interest in children with transient cerebral arteriopathy, arterial dissection, primary central nervous system angiitis, dissecting aneurysm, and cardioembolic stroke. AWI is a noninvasive, high-resolution magnetic resonance AWI technique, which can be successfully used in children presenting with AIS. Patterns of AWI enhancement are recognizable and associated with specific AIS pathogeneses. Further studies are required to assess the additional diagnostic utility of AWI over routine vascular imaging techniques, in childhood AIS. © 2018 American Heart Association, Inc.

  14. Platelets secrete stromal cell–derived factor 1α and recruit bone marrow–derived progenitor cells to arterial thrombi in vivo

    PubMed Central

    Massberg, Steffen; Konrad, Ildiko; Schürzinger, Katrin; Lorenz, Michael; Schneider, Simon; Zohlnhoefer, Dietlind; Hoppe, Katharina; Schiemann, Matthias; Kennerknecht, Elisabeth; Sauer, Susanne; Schulz, Christian; Kerstan, Sandra; Rudelius, Martina; Seidl, Stefan; Sorge, Falko; Langer, Harald; Peluso, Mario; Goyal, Pankaj; Vestweber, Dietmar; Emambokus, Nikla R.; Busch, Dirk H.; Frampton, Jon; Gawaz, Meinrad

    2006-01-01

    The accumulation of smooth muscle and endothelial cells is essential for remodeling and repair of injured blood vessel walls. Bone marrow–derived progenitor cells have been implicated in vascular repair and remodeling; however, the mechanisms underlying their recruitment to the site of injury remain elusive. Here, using real-time in vivo fluorescence microscopy, we show that platelets provide the critical signal that recruits CD34+ bone marrow cells and c-Kit+ Sca-1+ Lin− bone marrow–derived progenitor cells to sites of vascular injury. Correspondingly, specific inhibition of platelet adhesion virtually abrogated the accumulation of both CD34+ and c-Kit+ Sca-1+ Lin− bone marrow–derived progenitor cells at sites of endothelial disruption. Binding of bone marrow cells to platelets involves both P-selectin and GPIIb integrin on platelets. Unexpectedly, we found that activated platelets secrete the chemokine SDF-1α, thereby supporting further primary adhesion and migration of progenitor cells. These findings establish the platelet as a major player in the initiation of vascular remodeling, a process of fundamental importance for vascular repair and pathological remodeling after vascular injury. PMID:16618794

  15. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo.

    PubMed

    Massberg, Steffen; Konrad, Ildiko; Schürzinger, Katrin; Lorenz, Michael; Schneider, Simon; Zohlnhoefer, Dietlind; Hoppe, Katharina; Schiemann, Matthias; Kennerknecht, Elisabeth; Sauer, Susanne; Schulz, Christian; Kerstan, Sandra; Rudelius, Martina; Seidl, Stefan; Sorge, Falko; Langer, Harald; Peluso, Mario; Goyal, Pankaj; Vestweber, Dietmar; Emambokus, Nikla R; Busch, Dirk H; Frampton, Jon; Gawaz, Meinrad

    2006-05-15

    The accumulation of smooth muscle and endothelial cells is essential for remodeling and repair of injured blood vessel walls. Bone marrow-derived progenitor cells have been implicated in vascular repair and remodeling; however, the mechanisms underlying their recruitment to the site of injury remain elusive. Here, using real-time in vivo fluorescence microscopy, we show that platelets provide the critical signal that recruits CD34+ bone marrow cells and c-Kit+ Sca-1+ Lin- bone marrow-derived progenitor cells to sites of vascular injury. Correspondingly, specific inhibition of platelet adhesion virtually abrogated the accumulation of both CD34+ and c-Kit+ Sca-1+ Lin- bone marrow-derived progenitor cells at sites of endothelial disruption. Binding of bone marrow cells to platelets involves both P-selectin and GPIIb integrin on platelets. Unexpectedly, we found that activated platelets secrete the chemokine SDF-1alpha, thereby supporting further primary adhesion and migration of progenitor cells. These findings establish the platelet as a major player in the initiation of vascular remodeling, a process of fundamental importance for vascular repair and pathological remodeling after vascular injury.

  16. Optimized Baking of the DIII-D Vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.M. Anderson; A.G. Kellman

    The DIII-D tokamak vacuum vessel baking system is used to heat the vessel walls and internal hardware to an average temperature of 350 C to allow rapid conditioning of the vacuum surfaces. The system combines inductive heating and a circulating hot air system to provide rapid heating with temperature uniformity required by stress considerations. In recent years, the time to reach 350 C had increased from 9 hrs to 14 hrs. To understand and remedy this sluggish heating rate, an evaluation of the baking system was recently performed. The evaluation indicated that the mass of additional in-vessel hardware (50% increasemore » in mass) was primarily responsible. This paper reports on this analysis and the results of the addition of an electric air heater and procedural changes that have been implemented. Preliminary results indicate that the time to 350 C has been decreased to 4.5 hours and the temperature uniformity has improved.« less

  17. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up

    PubMed Central

    Wang, Qingyu; Canton, Gador; Guo, Jian; Guo, Xiaoya; Hatsukami, Thomas S.; Billiar, Kristen L.; Yuan, Chun; Wu, Zheyang

    2017-01-01

    Background Image-based computational models are widely used to determine atherosclerotic plaque stress/strain conditions and investigate their association with plaque progression and rupture. However, patient-specific vessel material properties are in general lacking in those models, limiting the accuracy of their stress/strain measurements. A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was introduced to quantify patient-specific carotid plaque material properties for potential plaque model improvements. Vessel material property variation in patients, along vessel segment, and between baseline and follow up were investigated. Methods In vivo 3D multi-contrast and Cine MRI carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. 3D thin-layer models and an established iterative procedure were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaque samples. Effective Young’s Modulus (YM) values were calculated for comparison and analysis. Results Average Effective Young’s Modulus (YM) and circumferential shrinkage rate (C-Shrink) value of the 81 slices was 411kPa and 5.62%, respectively. Slice YM value varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 311% (149 kPa vs. 613 kPa). The average slice YM variation rate for the 16 vessels was 134%. The average variation of YM values for all patients from baseline to follow up was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For plaque progression study, YM at follow-up showed negative correlation with plaque progression measured by wall thickness increase (WTI) (r = -0.7764, p = 0.0235). Wall thickness at baseline

  18. Apparatus and method to keep the walls of a free-space reactor free from deposits of solid materials

    NASA Technical Reports Server (NTRS)

    Yamakawa, K. A. (Inventor)

    1985-01-01

    An apparatus and method is disclosed for keeping interior walls of a reaction vessel free of undesirable deposits of solid materials in gas-to-solid reactions. The apparatus includes a movable cleaning head which is configured to be substantially complementary to the interior contour of the walls of the reaction vessel. The head ejects a stream of gas with a relatively high velocity into a narrow space between the head and the walls. The head is moved substantially continuously to at least intermittently blow the stream of gas to substantially the entire surface of the walls wherein undesirable solid deposition is likely to occur. The disclosed apparatus and process is particularly useful for keeping the walls of a free-space silane-gas-to-solid-silicon reactor free of undesirable silicon deposits.

  19. Lytic and mechanical stability of clots composed of fibrin and blood vessel wall components.

    PubMed

    Rottenberger, Z; Komorowicz, E; Szabó, L; Bóta, A; Varga, Z; Machovich, R; Longstaff, C; Kolev, K

    2013-03-01

    Proteases expressed in atherosclerotic plaque lesions generate collagen fragments, release glycosaminoglycans (chondroitin sulfate [CS] and dermatan sulfate [DS]) and expose extracellular matrix (ECM) proteins (e.g. decorin) at sites of fibrin formation. Here we address the effect of these vessel wall components on the lysis of fibrin by the tissue plasminogen activator (tPA)/plasminogen system and on the mechanical stability of clots. MMP-8-digested collagen fragments, isolated CS, DS, glycosylated decorin and its core protein were used to prepare mixed matrices with fibrin (additives present at a 50-fold lower mass concentration than fibrinogen). Scanning electron microscopy (SEM) showed that the presence of ECM components resulted in a coarse fibrin structure, most pronounced for glycosylated decorin causing an increase in the median fiber diameter from 85 to 187 nm. Rheological measurements indicated that these structural alterations were coupled to decreased shear resistance (1.8-fold lower shear stress needed for gel/fluid transition of the clots containing glycosylated decorin) and rigidity (reduction of the storage modulus from 54.3 to 33.2 Pa). The lytic susceptibility of the modified fibrin structures was increased. The time to 50% lysis by plasmin was reduced approximately 2-fold for all investigated ECM components (apart from the core protein of decorin which produced a moderate reduction of the lysis time by 25%), whereas fibrin-dependent plasminogen activation by tPA was inhibited by up to 30%. ECM components compromise the chemical and mechanical stability of fibrin as a result of changes in its ultrastructure. © 2012 International Society on Thrombosis and Haemostasis.

  20. The role of the reactor wall in hydrothermal biomass conversions.

    PubMed

    Fábos, Viktória; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2012-11-01

    The processing of renewable feedstocks to platform chemicals and, to a lesser degree, fuels is a key part of sustainable development. In particular, the combination of lignocellulosic biomass with hydrothermal upgrading (HTU), using high temperature and pressure water (HTPW), is experiencing a renaissance. One of the many steps in this complicated process is the in-situ hydrogenation of intermediate compounds. As formic acid and related low-molecular-weight oxygenates are among the species generated, it is conceivable that they act as a hydrogen source. Such hydrogenations have been suggested to be catalyzed by water, by bases like NaOH, and/or to involve "reactive/nascent hydrogen". To achieve the temperatures and pressures required for HTU, it is necessary to conduct the reactions in high-pressure vessels. Metals are typical components of their walls and/or internal fittings. Here, using cyclohexanone as a model compound for more complex biomass-derived molecules, iron in the wall of high-pressure stainless steel reactors is shown to be responsible for the hydrogenation of ketones with low-molecular-weight oxygenates acting as a hydrogen source in combination with water. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Wall conditioning and particle control in Extrap T2

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Larsson, D.; Brunsell, P.; Möller, A.; Tramontin, L.

    1997-02-01

    The Extrap T2 reversed field pinch experiment is operated with the former OHTE vacuum vessel, of dimensions R = 1.24 m and a = 0.18 m and with a complete graphite liner. It is shown that a rudimentary density control can be achieved by means of frequent helium glow discharge conditioning of the wall. The standard He-GDC is well characterized and reproducible. The trapping and release of hydrogen and impurities at the wall surfaces have been studied by mass spectrometry and surface analysis. The shot to shot particle exchange between wall and plasma can be approximately accounted for.

  2. Use of the omentum in chest-wall reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, R.J.; Vasconez, L.O.

    1989-10-01

    Increased use of the omentum in chest-wall reconstruction has paralleled the refinement of anatomic knowledge and the development of safe mobilization techniques. Important anatomic points are the omental attachments to surrounding structures, the major blood supply from the left and right gastroepiploic vessels, and the collateral circulation via the gastroepiploic arch and Barkow's marginal artery. Mobilization of the omentum to the thorax involves division of its attachments to the transverse colon and separation from the greater curvature to fabricate a bipedicled flap. Most anterior chest wounds and virtually all mediastinal wounds can be covered with the omentum based on bothmore » sets of gastroepiploic vessels. The arc of transposition is increased when the omentum is based on a single pedicle, allowing coverage of virtually all chest-wall defects. The final method of increasing flap length involves division of the gastroepiploic arch and reliance on Barkow's marginal artery as collateral circulation to maintain flap viability. With regard to chest-wall reconstruction, we have included the omentum in the armamentarium of flaps used to cover mediastinal wounds. The omentum is our flap of choice for the reconstruction of most radiation injuries of the chest wall. The omentum may also be used to provide protection to visceral anastomoses, vascular conduits, and damaged structures in the chest, as well as to cover defects secondary to tumor excision or trauma. In brief, the omentum has proved to be a most dependable and versatile flap, particularly applicable to chest-wall reconstruction.« less

  3. Zone-specific remodeling of tumor blood vessels affects tumor growth.

    PubMed

    Tilki, Derya; Kilic, Nerbil; Sevinc, Sema; Zywietz, Friedrich; Stief, Christian G; Ergun, Suleyman

    2007-11-15

    Chaotic organization, abnormal leakiness, and structural instability are characteristics of tumor vessels. However, morphologic events of vascular remodeling in relation to tumor growth are not sufficiently studied yet. By using the rat rhabdomyosarcoma tumor model vascular morphogenesis was studied by light and electron microscopy and immunohistochemistry in relation to tumor regions such as tumor surrounding (TSZ), marginal (TMZ), intermediate (TIZ), and center (TCZ) zones. The analyses revealed that blood vessels of TSZ display a regular ultrastructure, whereas blood vessels of TMZ showed a chaotic organization and unstable structure with a diffuse or even lacking basal lamina, and missing or irregular assembled periendothelial cells. In contrast, blood vessels of TIZ and TCZ exhibited a more or less stabilized vessel structure with increased diameter. Correspondingly, normal assembly of alpha-smooth-muscle-actin (alpha-SMA)-positive cells into the vessel wall was observed in blood vessels of TSZ, TIZ, and TCZ. Also, Ang1 immunostaining was strongest in large vessels of TIZ and TCZ, whereas Ang2 staining was prominent in small vessels of TIZ. Tie2 staining was detectable in small and large vessels of all tumor zones. Immunostaining for alpha(v)beta(3)-integrin was strongest in small vessels of TMZ, whereas large vessels of TIZ and TCZ were almost negative. The results indicate a zone-specific remodeling of tumor blood vessels by stabilization of vessels in TIZ and TCZ, whereas small vessels of these zones obviously undergo regression leading to tumor necrosis. Thus, a better understanding of vascular remodeling and stabilization in tumors would enable new strategies in tumor therapy and imaging. (c) 2007 American Cancer Society.

  4. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  5. Vessel V-7 and V-8 repair and characterization of insert material. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domian, H.A.

    1984-05-01

    Pieces of Type SA508-2 steel, specially tempered to produce a high-impact-transition temperature, were welded in the side walls of Intermediate Test Vessels V-7 and V-8. These vessels are to be tested by the Oak Ridge National Laboratory (ORNL) in the Pressurized-Thermal-Shock (PTS) Project of the Heavy-Section Steel Technology (HSST) Program. A comparable piece of forging taken from the same source and heat treated with the vessels was characterized for its mechanical properties to provide data for use in the PTS tests.

  6. 33 CFR 401.73 - Cleaning tanks-hazardous cargo vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas freeing and tank cleaning has been reported to the nearest Seaway station. (b) Hot work permission. Before any hot work, defined as any work that uses flame or that can produce a source of ignition... prior to the vessel's arrival on SLSMC approach walls or wharfs. The hot work shall not commence until...

  7. 33 CFR 401.73 - Cleaning tanks-hazardous cargo vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas freeing and tank cleaning has been reported to the nearest Seaway station. (b) Hot work permission. Before any hot work, defined as any work that uses flame or that can produce a source of ignition... prior to the vessel's arrival on SLSMC approach walls or wharfs. The hot work shall not commence until...

  8. Application of morphological bit planes in retinal blood vessel extraction.

    PubMed

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  9. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  10. Wall shear stress fixed points in cardiovascular fluid mechanics.

    PubMed

    Arzani, Amirhossein; Shadden, Shawn C

    2018-05-17

    Complex blood flow in large arteries creates rich wall shear stress (WSS) vectorial features. WSS acts as a link between blood flow dynamics and the biology of various cardiovascular diseases. WSS has been of great interest in a wide range of studies and has been the most popular measure to correlate blood flow to cardiovascular disease. Recent studies have emphasized different vectorial features of WSS. However, fixed points in the WSS vector field have not received much attention. A WSS fixed point is a point on the vessel wall where the WSS vector vanishes. In this article, WSS fixed points are classified and the aspects by which they could influence cardiovascular disease are reviewed. First, the connection between WSS fixed points and the flow topology away from the vessel wall is discussed. Second, the potential role of time-averaged WSS fixed points in biochemical mass transport is demonstrated using the recent concept of Lagrangian WSS structures. Finally, simple measures are proposed to quantify the exposure of the endothelial cells to WSS fixed points. Examples from various arterial flow applications are demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse

    PubMed Central

    Kerjaschki, Dontscho; Bago-Horvath, Zsuzsanna; Rudas, Margaretha; Sexl, Veronika; Schneckenleithner, Christine; Wolbank, Susanne; Bartel, Gregor; Krieger, Sigurd; Kalt, Romana; Hantusch, Brigitte; Keller, Thomas; Nagy-Bojarszky, Katalin; Huttary, Nicole; Raab, Ingrid; Lackner, Karin; Krautgasser, Katharina; Schachner, Helga; Kaserer, Klaus; Rezar, Sandra; Madlener, Sybille; Vonach, Caroline; Davidovits, Agnes; Nosaka, Hitonari; Hämmerle, Monika; Viola, Katharina; Dolznig, Helmut; Schreiber, Martin; Nader, Alexander; Mikulits, Wolfgang; Gnant, Michael; Hirakawa, Satoshi; Detmar, Michael; Alitalo, Kari; Nijman, Sebastian; Offner, Felix; Maier, Thorsten J.; Steinhilber, Dieter; Krupitza, Georg

    2011-01-01

    In individuals with mammary carcinoma, the most relevant prognostic predictor of distant organ metastasis and clinical outcome is the status of axillary lymph node metastasis. Metastases form initially in axillary sentinel lymph nodes and progress via connecting lymphatic vessels into postsentinel lymph nodes. However, the mechanisms of consecutive lymph node colonization are unknown. Through the analysis of human mammary carcinomas and their matching axillary lymph nodes, we show here that intrametastatic lymphatic vessels and bulk tumor cell invasion into these vessels highly correlate with formation of postsentinel metastasis. In an in vitro model of tumor bulk invasion, human mammary carcinoma cells caused circular defects in lymphatic endothelial monolayers. These circular defects were highly reminiscent of defects of the lymphovascular walls at sites of tumor invasion in vivo and were primarily generated by the tumor-derived arachidonic acid metabolite 12S-HETE following 15-lipoxygenase-1 (ALOX15) catalysis. Accordingly, pharmacological inhibition and shRNA knockdown of ALOX15 each repressed formation of circular defects in vitro. Importantly, ALOX15 knockdown antagonized formation of lymph node metastasis in xenografted tumors. Furthermore, expression of lipoxygenase in human sentinel lymph node metastases correlated inversely with metastasis-free survival. These results provide evidence that lipoxygenase serves as a mediator of tumor cell invasion into lymphatic vessels and formation of lymph node metastasis in ductal mammary carcinomas. PMID:21540548

  12. An approach to localize the retinal blood vessels using bit planes and centerline detection.

    PubMed

    Fraz, M M; Barman, S A; Remagnino, P; Hoppe, A; Basit, A; Uyyanonvara, B; Rudnicka, A R; Owen, C G

    2012-11-01

    The change in morphology, diameter, branching pattern or tortuosity of retinal blood vessels is an important indicator of various clinical disorders of the eye and the body. This paper reports an automated method for segmentation of blood vessels in retinal images. A unique combination of techniques for vessel centerlines detection and morphological bit plane slicing is presented to extract the blood vessel tree from the retinal images. The centerlines are extracted by using the first order derivative of a Gaussian filter in four orientations and then evaluation of derivative signs and average derivative values is performed. Mathematical morphology has emerged as a proficient technique for quantifying the blood vessels in the retina. The shape and orientation map of blood vessels is obtained by applying a multidirectional morphological top-hat operator with a linear structuring element followed by bit plane slicing of the vessel enhanced grayscale image. The centerlines are combined with these maps to obtain the segmented vessel tree. The methodology is tested on three publicly available databases DRIVE, STARE and MESSIDOR. The results demonstrate that the performance of the proposed algorithm is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. ITER in-vessel system design and performance

    NASA Astrophysics Data System (ADS)

    Parker, R. R.

    2000-03-01

    The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events.

  14. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    NASA Astrophysics Data System (ADS)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  15. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.

    PubMed

    Martin, David M; Murphy, Eoin A; Boyle, Fergal J

    2014-08-01

    In many computational fluid dynamics (CFD) studies of stented vessel haemodynamics, the geometry of the stented vessel is described using non-deformed (NDF) geometrical models. These NDF models neglect complex physical features, such as stent and vessel deformation, which may have a major impact on the haemodynamic environment in stented coronary arteries. In this study, CFD analyses were carried out to simulate pulsatile flow conditions in both NDF and realistically-deformed (RDF) models of three stented coronary arteries. While the NDF models were completely idealised, the RDF models were obtained from nonlinear structural analyses and accounted for both stent and vessel deformation. Following the completion of the CFD analyses, major differences were observed in the time-averaged wall shear stress (TAWSS), time-averaged wall shear stress gradient (TAWSSG) and oscillatory shear index (OSI) distributions predicted on the luminal surface of the artery for the NDF and RDF models. Specifically, the inclusion of stent and vessel deformation in the CFD analyses resulted in a 32%, 30% and 31% increase in the area-weighted mean TAWSS, a 3%, 7% and 16% increase in the area-weighted mean TAWSSG and a 21%, 13% and 21% decrease in the area-weighted mean OSI for Stents A, B and C, respectively. These results suggest that stent and vessel deformation are likely to have a major impact on the haemodynamic environment in stented coronary arteries. In light of this observation, it is recommended that these features are considered in future CFD studies of stented vessel haemodynamics. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Stromal Cell-Derived Factor-1 Is Associated with Angiogenesis and Inflammatory Cell Infiltration in Aneurysm Walls

    PubMed Central

    Hoh, Brian L.; Hosaka, Koji; Downes, Daniel P.; Nowicki, Kamil W.; Wilmer, Erin N.; Velat, Gregory J.; Scott, Edward W.

    2013-01-01

    Object A small percentage of cerebral aneurysms rupture, but when they do, the effects are devastating. Current management of unruptured aneurysms consist of surgery, endovascular treatment, or watchful waiting. If the biology of how aneurysms grow and rupture were better known, a novel drug could be developed to prevent unruptured aneurysms from rupturing. Ruptured cerebral aneurysms are characterized by inflammation-mediated wall remodeling. We studied the role of stromal cell-derived factor-1 (SDF-1) in inflammation-mediated wall remodeling in cerebral aneurysms. Methods Human aneurysms; murine carotid aneurysms; and murine intracranial aneurysms were studied by immunohistochemistry. Flow cytometry analysis was performed on blood from mice developing carotid aneurysms or intracranial aneurysms. The effect of SDF-1 on endothelial cells and macrophages was studied by chemotaxis cell migration assay and capillary tube formation assay. Anti-SDF-1 blocking antibody was given to mice and compared to control (vehicle)-administered mice for its effects on the walls of carotid aneurysms and the development of intracranial aneurysms. Results Human aneurysms, murine carotid aneurysms, and murine intracranial aneurysms, all express SDF-1; and mice with developing carotid aneurysms or intracranial aneurysms have increased progenitor cells expressing CXCR4, the receptor for SDF-1 (P<0.01 and P<0.001, respectively). Human aneurysms and murine carotid aneurysms have endothelial cells, macrophages, and capillaries in the walls of the aneurysms; and the presence of capillaries in the walls of human aneurysms is associated with presence of macrophages (P=0.01). SDF-1 promotes endothelial cell and macrophage migration (P<0.01 for each), and promotes capillary tube formation (P<0.001). When mice are given anti-SDF-1 blocking antibody, there is a significant reduction in endothelial cells (P<0.05), capillaries (P<0.05), and cell proliferation (P<0.05) in the aneurysm wall. Mice given

  17. Intraoperative intravital microscopy permits the study of human tumour vessels

    PubMed Central

    Fisher, Daniel T.; Muhitch, Jason B.; Kim, Minhyung; Doyen, Kurt C.; Bogner, Paul N.; Evans, Sharon S.; Skitzki, Joseph J.

    2016-01-01

    Tumour vessels have been studied extensively as they are critical sites for drug delivery, anti-angiogenic therapies and immunotherapy. As a preclinical tool, intravital microscopy (IVM) allows for in vivo real-time direct observation of vessels at the cellular level. However, to date there are no reports of intravital high-resolution imaging of human tumours in the clinical setting. Here we report the feasibility of IVM examinations of human malignant disease with an emphasis on tumour vasculature as the major site of tumour-host interactions. Consistent with preclinical observations, we show that patient tumour vessels are disorganized, tortuous and ∼50% do not support blood flow. Human tumour vessel diameters are larger than predicted from immunohistochemistry or preclinical IVM, and thereby have lower wall shear stress, which influences delivery of drugs and cellular immunotherapies. Thus, real-time clinical imaging of living human tumours is feasible and allows for detection of characteristics within the tumour microenvironment. PMID:26883450

  18. On/off switching of capillary vessel flow controls mitochondrial and glycolysis pathways for energy production.

    PubMed

    Abo, Toru; Watanabe, Mayumi; Tomiyama, Chikako; Kanda, Yasuhiro

    2014-07-01

    Capillary vessel flow in the base of the fingernail can be observed by microscopy. This flow is switched off under some conditions, such as coldness, surprise, and anger and is switched on again under other conditions, such as warming, relaxation, and mild exercise. In other words, capillary vessels perform two functions: switching flow on and off. It is speculated that the switch-off function is necessary to direct energy production to the glycolysis pathway, while the switch-on function is necessary for the mitochondrial pathway. This is because glycolysis takes place under anaerobic conditions, while oxidative phosphorylation in the mitochondria proceeds under aerobic conditions in the body. To switch off circulation, the negative electric charges on the surface of erythrocytes and the capillary wall may be decreased by stimulation of the sympathetic nerves and secretion of steroid hormones. Negative charge usually acts as repulsive force between erythrocytes and between erythrocytes and the capillary wall. By decreasing the negative charge, erythrocytes can aggregate and also adhere to the capillary wall. These behaviors may be related to the capillary flow switch-off function. Here, it is emphasized that the capillary vessels possess not only a switch-on function but also a switch-off function for circulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Fibulin-1 is required for morphogenesis of neural crest-derived structures

    PubMed Central

    Cooley, Marion A.; Kern, Christine B.; Fresco, Victor M.; Wessels, Andy; Thompson, Robert P.; McQuinn, Tim C.; Twal, Waleed O.; Mjaatvedt, Corey H.; Drake, Christopher J.; Argraves, W. Scott

    2008-01-01

    Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2–7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels. PMID:18538758

  20. Cell wall layers delimit cell groups derived from cell division in the foliose trebouxiophycean alga Prasiola japonica.

    PubMed

    Mine, Ichiro; Kinoshita, Urara; Kawashima, Shigetaka; Sekida, Satoko

    2018-01-22

    The cells in the foliose thallus of trebouxiophycean alga Prasiola japonica apparently develop into 2 × 2 cell groups composed of two two-celled groups, each of which is a pair of derivative cells of the latest cell division. In the present study, the structural features of cell walls of the alga P. japonica concerning the formation of the cell groups were investigated using histochemical methods. Thin cell layers stained by Calcofluor White appeared to envelope the two-celled and four-celled groups separately and, hence, separated them from neighboring cell groups, and the Calcofluor White-negative gaps between neighboring four-celled groups were specifically stained by lectins, such as soybean agglutinin, jacalin, and Vicia villosa lectin conjugated with fluorescein. These results indicated that the Calcofluor White-positive cell wall layer of parent cell that existed during two successive cell divisions structurally distinguished two-celled and four-celled groups from others in this alga. Moreover, the results suggested that the cell wall components of the Calcofluor White-negative gaps would possibly contribute to the formation of the planar thallus through lateral union of the cell groups.

  1. Research on wall shear stress considering wall roughness when shear swirling flow vibration cementing

    NASA Astrophysics Data System (ADS)

    Cui, Zhihua; Ai, Chi; Feng, Fuping

    2017-01-01

    When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.

  2. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Young, S. A.; Willard, L. H.; McGee, J. D.; Sweat, T.; Chittoor, J. M.; Guikema, J. A.; Leach, J. E.

    2001-01-01

    The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During resistant responses, the xylem secondary walls thicken within 48 h and the pit diameter decreases, effectively reducing the area of pit membrane exposed for access by bacteria. In susceptible interactions and mock-inoculated controls, the xylem walls do not thicken within 48 h. Xylem secondary wall thickening is developmental and, in untreated 65-day-old rice plants, the size of the pit also is reduced. Activity and accumulation of a secreted cationic peroxidase, PO-C1, were previously shown to increase in xylem vessel walls and lumen. Peptide-specific antibodies and immunogold-labeling were used to demonstrate that PO-C1 is produced in the xylem parenchyma and secreted to the xylem lumen and walls. The timing of the accumulation is consistent with vessel secondary wall thickening. The PO-C1 gene is distinct but shares a high level of similarity with previously cloned pathogen-induced peroxidases in rice. PO-C1 gene expression was induced as early as 12 h during resistant interactions and peaked between 18 and 24 h after inoculation. Expression during susceptible interactions was lower than that observed in resistant interactions and was undetectable after infiltration with water, after mechanical wounding, or in mature leaves. These data are consistent with a role for vessel secondary wall thickening and peroxidase PO-C1 accumulation in the defense response in rice to X. oryzae pv. oryzae.

  3. Cholinergic innervation of human mesenteric lymphatic vessels.

    PubMed

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M

    2013-11-01

    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  4. Numerical model study of radio frequency vessel sealing thermodynamics

    NASA Astrophysics Data System (ADS)

    Pearce, John

    2015-03-01

    Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.

  5. Automated measurement of retinal blood vessel tortuosity

    NASA Astrophysics Data System (ADS)

    Joshi, Vinayak; Reinhardt, Joseph M.; Abramoff, Michael D.

    2010-03-01

    Abnormalities in the vascular pattern of the retina are associated with retinal diseases and are also risk factors for systemic diseases, especially cardiovascular diseases. The three-dimensional retinal vascular pattern is mostly formed congenitally, but is then modified over life, in response to aging, vessel wall dystrophies and long term changes in blood flow and pressure. A characteristic of the vascular pattern that is appreciated by clinicians is vascular tortuosity, i.e. how curved or kinked a blood vessel, either vein or artery, appears along its course. We developed a new quantitative metric for vascular tortuosity, based on the vessel's angle of curvature, length of the curved vessel over its chord length (arc to chord ratio), number of curvature sign changes, and combined these into a unidimensional metric, Tortuosity Index (TI). In comparison to other published methods this method can estimate appropriate TI for vessels with constant curvature sign and vessels with equal arc to chord ratios, as well. We applied this method to a dataset of 15 digital fundus images of 8 patients with Facioscapulohumeral muscular dystrophy (FSHD), and to the other publically available dataset of 60 fundus images of normal cases and patients with hypertensive retinopathy, of which the arterial and venous tortuosities have also been graded by masked experts (ophthalmologists). The method produced exactly the same rank-ordered list of vessel tortuosity (TI) values as obtained by averaging the tortuosity grading given by 3 ophthalmologists for FSHD dataset and a list of TI values with high ranking correlation with the ophthalmologist's grading for the other dataset. Our results show that TI has potential to detect and evaluate abnormal retinal vascular structure in early diagnosis and prognosis of retinopathies.

  6. Reconstitution of hepatic tissue architectures from fetal liver cells obtained from a three-dimensional culture with a rotating wall vessel bioreactor.

    PubMed

    Ishikawa, Momotaro; Sekine, Keisuke; Okamura, Ai; Zheng, Yun-wen; Ueno, Yasuharu; Koike, Naoto; Tanaka, Junzo; Taniguchi, Hideki

    2011-06-01

    Reconstitution of tissue architecture in vitro is important because it enables researchers to investigate the interactions and mutual relationships between cells and cellular signals involved in the three-dimensional (3D) construction of tissues. To date, in vitro methods for producing tissues with highly ordered structure and high levels of function have met with limited success although a variety of 3D culture systems have been investigated. In this study, we reconstituted functional hepatic tissue including mature hepatocyte and blood vessel-like structures accompanied with bile duct-like structures from E15.5 fetal liver cells, which contained more hepatic stem/progenitor cells comparing with neonatal liver cells. The culture was performed in a simulated microgravity environment produced by a rotating wall vessel (RWV) bioreactor. The hepatocytes in the reconstituted 3D tissue were found to be capable of producing albumin and storing glycogen. Additionally, bile canaliculi between hepatocytes, characteristics of adult hepatocyte in vivo were also formed. Apart from this, bile duct structure secreting mucin was shown to form complicated tubular branches. Furthermore, gene expression analysis by semi-quantitative RT-PCR revealed the elevated levels of mature hepatocyte markers as well as genes with the hepatic function. With RWV culture system, we could produce functionally reconstituted liver tissue and this might be useful in pharmaceutical industry including drug screening and testing and other applications such as an alternative approach to experimental animals. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yu; Nichols, Joseph W.; Toh, Kazuko; Nomoto, Takahiro; Cabral, Horacio; Miura, Yutaka; Christie, R. James; Yamada, Naoki; Ogura, Tadayoshi; Kano, Mitsunobu R.; Matsumura, Yasuhiro; Nishiyama, Nobuhiro; Yamasoba, Tatsuya; Bae, You Han; Kataoka, Kazunori

    2016-06-01

    Enhanced permeability in tumours is thought to result from malformed vascular walls with leaky cell-to-cell junctions. This assertion is backed by studies using electron microscopy and polymer casts that show incomplete pericyte coverage of tumour vessels and the presence of intercellular gaps. However, this gives the impression that tumour permeability is static amid a chaotic tumour environment. Using intravital confocal laser scanning microscopy we show that the permeability of tumour blood vessels includes a dynamic phenomenon characterized by vascular bursts followed by brief vigorous outward flow of fluid (named ‘eruptions’) into the tumour interstitial space. We propose that ‘dynamic vents’ form transient openings and closings at these leaky blood vessels. These stochastic eruptions may explain the enhanced extravasation of nanoparticles from the tumour blood vessels, and offer insights into the underlying distribution patterns of an administered drug.

  8. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall andmore » surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.« less

  9. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    PubMed Central

    2012-01-01

    Background Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. Results Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx) mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. Conclusions Spatial and temporal deposition of xylan in the secondary cell wall of Arabidopsis can be manipulated by

  10. New techniques for modeling the reliability of reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.

    1986-01-01

    In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes several new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel wall thickness, and fluence distributions that vary throughout the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper.more » The effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithms for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RT/sub NDT/. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest toughness with subsequent initiation toughnesses.« less

  11. New techniques for modeling the reliability of reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.

    1985-12-01

    In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel walls thickness, and fluence distributions that vary through-out the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper. Themore » effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithm for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RTNDT. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest thoughness with subsequent initiation toughnesses. 21 refs.« less

  12. Regulator of calcineurin 1 mediates pathological vascular wall remodeling

    PubMed Central

    Esteban, Vanesa; Méndez-Barbero, Nerea; Jesús Jiménez-Borreguero, Luis; Roqué, Mercè; Novensá, Laura; Belén García-Redondo, Ana; Salaices, Mercedes; Vila, Luis; Arbonés, María L.

    2011-01-01

    Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression. PMID:21930771

  13. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    PubMed Central

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  14. Implications of diapir-derived detritus and gypsic paleosols in Lower Triassic strata near the Castle Valley salt wall, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Lawton, Timothy F.; Buck, Brenda J.

    2006-10-01

    Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.

  15. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  16. Skyrmions from Instantons inside Domain Walls

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David

    2005-12-01

    Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-Abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the world volume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as domain wall Skyrmions.

  17. Symmetric vibrations of a liquid in a vessel with a separator and an elastic bottom

    NASA Astrophysics Data System (ADS)

    Goncharov, D. A.; Pozhalostin, A. A.

    2018-04-01

    The paper considers the problem of small axisymmetric vibrations of an ideal fluid filling a vessel with rigid walls and an elastic bottom. The liquid is divided into two layers by an elastic septum. The elastic baffle and the vessel elastic bottom are modeled by elastic membranes. The Neumann boundary-value problem is posed for the fluid. The equations of motion of the membranes are integrated with boundary conditions.

  18. An in situ optical imaging system for measuring lipid uptake, vessel contraction, and lymph flow in small animal lymphatic vessels

    NASA Astrophysics Data System (ADS)

    Kassis, Timothy; Weiler, Michael J.; Dixon, J. Brandon

    2012-03-01

    All dietary lipids are transported to venous circulation through the lymphatic system, yet the underlying mechanisms that regulate this process remain unclear. Understanding how the lymphatics functionally respond to changes in lipid load is important in the diagnosis and treatment of lipid and lymphatic related diseases such as obesity, hypercholesterolemia, and lymphedema. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. A custom-built optical set-up provides us with the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. This is achieved by dividing the light path into two optical bands. Utilizing high-speed and back-illuminated CCD cameras and post-acquisition image processing algorithms, we have the potential quantify correlations between vessel contraction, lymph flow and lipid concentration of mesenteric lymphatic vessels in situ. Local flow velocity is measured through lymphocyte tracking, vessel contraction through measurements of the vessel walls and lipid uptake through fluorescence intensity tracking of a fluorescent long chain fatty acid analogue, Bodipy FL C16. This system will prove to be an invaluable tool for both scientists studying lymphatic function in health and disease, and those investigating strategies for targeting the lymphatic system with orally delivered drugs.

  19. In vivo Visualization of the Water-refilling Process in Xylem Vessels Using X-ray Micro-imaging

    PubMed Central

    Lee, Sang-Joon; Kim, Yangmin

    2008-01-01

    Background and Aims Xylem vessels containing gases (embolized) must be refilled with water if they are to resume transport of water through the plant, so refilling is of great importance for the maintenance of water balance in plants. However, the refilling process is poorly understood because of inadequate examination methods. Simultaneous measurements of plant anatomy and vessel refilling are essential to elucidate the mechanisms involved. In the present work, a new technique based on phase-contrast X-ray imaging is presented that visualizes, in vivo and in real time, both xylem anatomy and refilling of embolized vessels. Methods With the synchrotron X-ray micro-imaging technique, the refilling of xylem vessels of leaves and a stem of Phyllostachys bambusoides with water is demonstrated under different conditions. The technique employs phase contrast imaging of X-ray beams, which are transformed into visible light and are photographed by a charge coupled device camera. X-ray images were captured consecutively at every 0·5 s with an exposure time of 10 ms. Key Results The interface (meniscus) between the water and gas phases in refilling the xylem vessels is displayed. During refilling, the rising menisci in embolized vessels showed repetitive flow, i.e. they temporarily stopped at the end walls of the vessel elements while gas bubbles were removed. The meniscus then passed through the end wall at a faster rate than the speed of flow in the main vessels. In the light, the speed of refilling in a specific vessel was slower than that in the dark, but this rate increased again after repeated periods in darkness. Conclusions Real-time, non-destructive X-ray micro-imaging is an important, useful and novel technique to study the relationship between xylem structure and the refilling of embolized vessels in intact plants. It provides new insight into understanding the mechanisms of water transport and the refilling of embolized vessels, which are not understood well

  20. Assembly & Metrology of First Wall Components of SST-1

    NASA Astrophysics Data System (ADS)

    Parekh, Tejas; Santra, Prosenjit; Biswas, Prabal; Patel, Hiteshkumar; Paravastu, Yuvakiran; Jaiswal, Snehal; Chauhan, Pradeep; Babu, Gattu Ramesh; A, Arun Prakash; Bhavsar, Dhaval; Raval, Dilip C.; Khan, Ziauddin; Pradhan, Subrata

    2017-04-01

    First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a meticulous planning of assembly sequence, quality checks at every stage of the assembly process. This paper will present the metrology aspects & procedure of each FWC, both outside the vacuum vessel, and inside the vessel, assembly tolerances, tools, equipment and jig/fixtures, used at each stage of assembly, starting from location of support bases on vessel rings, fixing of copper modules on support structures, around 3800 graphite tile mounting on 136 copper modules with proper tightening torques, till final toroidal and poloidal geometry of the in-vessel components are obtained within acceptable limits, also ensuring electrical continuity of passive stabilizers to form a closed saddle loop, electrical isolation of passive stabilizers from vacuum vessel.

  1. Cell Wall Modifications in Arabidopsis Plants with Altered α-l-Arabinofuranosidase Activity[C][W

    PubMed Central

    Chávez Montes, Ricardo A.; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M.; Cobbett, Christopher S.; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah

    2008-01-01

    Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis. PMID:18344421

  2. Crystal Melting and Wall Crossing Phenomena

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    This paper summarizes recent developments in the theory of Bogomol'nyi-Prasad-Sommerfield (BPS) state counting and the wall crossing phenomena, emphasizing in particular the role of the statistical mechanical model of crystal melting. This paper is divided into two parts, which are closely related to each other. In the first part, we discuss the statistical mechanical model of crystal melting counting BPS states. Each of the BPS states contributing to the BPS index is in one-to-one correspondence with a configuration of a molten crystal, and the statistical partition function of the melting crystal gives the BPS partition function. We also show that smooth geometry of the Calabi-Yau manifold emerges in the thermodynamic limit of the crystal. This suggests a remarkable interpretation that an atom in the crystal is a discretization of the classical geometry, giving an important clue as such to the geometry at the Planck scale. In the second part, we discuss the wall crossing phenomena. Wall crossing phenomena states that the BPS index depends on the value of the moduli of the Calabi-Yau manifold, and jumps along real codimension one subspaces in the moduli space. We show that by using type IIA/M-theory duality, we can provide a simple and an intuitive derivation of the wall crossing phenomena, furthermore clarifying the connection with the topological string theory. This derivation is consistent with another derivation from the wall crossing formula, motivated by multicentered BPS extremal black holes. We also explain the representation of the wall crossing phenomena in terms of crystal melting, and the generalization of the counting problem and the wall crossing to the open BPS invariants.

  3. Photoacoustic removal of occlusions from blood vessels

    DOEpatents

    Visuri, Steven R.; Da Silva, Luiz B.; Celliers, Peter M.; London, Richard A.; Maitland, IV, Duncan J.; Esch, Victor C.

    2002-01-01

    Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

  4. Placement of trans-sternal wires according to an ellipsoid pressure vessel model of sternal forces.

    PubMed

    Casha, Aaron R; Manché, Alex; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Schembri-Wismayer, Pierre; Sant, Zdenka; Gatt, Ruben; Grima, Joseph N

    2012-03-01

    Dehiscence of median sternotomy wounds remains a clinical problem. Wall forces in thin-walled pressure vessels can be calculated by membrane stress theory. An ellipsoid pressure vessel model of sternal forces is presented together with its application for optimal wire placement in the sternum. Sternal forces were calculated by computational simulation using an ellipsoid chest wall model. Sternal forces were correlated with different sternal thicknesses and radio-density as measured by computerized tomography (CT) scans of the sternum. A comparison of alternative placement of trans-sternal wires located either at the levels of the costal cartilages or the intercostal spaces was made. The ellipsoid pressure vessel model shows that higher levels of stress are operative at increasing chest diameter (P < 0.001). CT scans show that the thickness of the sternal body is on average 3 mm and 30% thicker (P < 0.001) and 53% more radio-dense (P < 0.001) at the costal cartilage levels when compared with adjacent intercostal spaces. This results in a decrease of average sternal stress from 438 kPa at the intercostal space level to 338 kPa at the costal cartilage level (P = 0.003). Biomechanical modelling suggests that placement of trans-sternal wires at the thicker bone and more radio-dense level of the costal cartilages will result in reduced stress.

  5. Aseismic safety analysis of a prestressed concrete containment vessel for CPR1000 nuclear power plant

    NASA Astrophysics Data System (ADS)

    Yi, Ping; Wang, Qingkang; Kong, Xianjing

    2017-01-01

    The containment vessel of a nuclear power plant is the last barrier to prevent nuclear reactor radiation. Aseismic safety analysis is the key to appropriate containment vessel design. A prestressed concrete containment vessel (PCCV) model with a semi-infinite elastic foundation and practical arrangement of tendons has been established to analyze the aseismic ability of the CPR1000 PCCV structure under seismic loads and internal pressure. A method to model the prestressing tendon and its interaction with concrete was proposed and the axial force of the prestressing tendons showed that the simulation was reasonable and accurate. The numerical results show that for the concrete structure, the location of the cylinder wall bottom around the equipment hatch and near the ring beam are critical locations with large principal stress. The concrete cracks occurred at the bottom of the PCCV cylinder wall under the peak earthquake motion of 0.50 g, however the PCCV was still basically in an elastic state. Furthermore, the concrete cracks occurred around the equipment hatch under the design internal pressure of 0.4MPa, but the steel liner was still in the elastic stage and its leak-proof function soundness was verified. The results provide the basis for analysis and design of containment vessels.

  6. [Morphological pathology of vessels in granulomatosis with polyangiitis (Wegener's disease)].

    PubMed

    Zerbino, D D; Zimba, E A

    2015-01-01

    to investigate the incidence of injuries in different vascular beds and the morphopathological changes in vessels in granulomatosis with polyangiitis. The morphopathological features of vascular injuries were investigated in 11 dead patients aged 16--74 years with granulomatosis with polyangiitis. Proliferative and destructive angiitis with predominant involvement of microcirculatory vessels and with development of necrosis-prone granulomas in their walls and perivascularly was established to underlie the clinical manifestations of granulomatosis with polyangiitis. The most typical localization of the pathologic process is the vessels of the upper respiratory tract, lungs, and kidneys. Cardiopulmonary and renal failures are causes of death in the majority of cases. It should be noted that the vessels of the heart, liver, and gastrointestinal tract are frequently involved in the pathological process. Vascular changes in these organs determine the clinical features of granulomatosis with polyangiitis and lead to a number of fatal complications. Granulomatosis with polyangiitis is a systemic disease with polymorphism of clinical manifestations, which requires in-depth analysis based on current precision patient examination methods, including a histopathological study.

  7. Major vessel involvement in Behçet disease.

    PubMed

    Calamia, Kenneth T; Schirmer, Michael; Melikoglu, Melike

    2005-01-01

    Large vessel vasculitis occurs in a subgroup of patients with Behçet disease at high risk for disease-related morbidity and mortality. Recognition of patients at risk, early detection of vasculitis, and the need for aggressive treatment are essential for optimal care of these patients. The authors review the clinical spectrum and management of large vessel problems in Behçet disease, highlighting contributions over the past year. Vasculo-Behçet patients are at risk for multiple vessel-related complications including thromboses, stenoses, occlusions, and aneurysms. A number of factors may contribute to thrombosis in individual cases, but the primary reason for clot seems to reside in the inflammatory process in the arterial wall, still incompletely understood. An appreciation for the challenges in the perioperative period requires the joint efforts of physicians and surgeons, and fuels the study of alternate, less invasive procedures for Behçet patients. Because of earlier recognition, aggressive medical treatment, and novel surgical procedures, the morbidity and mortality of large vessel vasculitis in Behçet disease are beginning to change. In the absence of controlled treatment studies, reports of clinical experience remain an important source of information for clinicians. Identification of patients at risk for vascular complications remains a priority.

  8. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT).

    PubMed

    Pai, Vinay M; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-01

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO(4) ) solution. As a tissue-staining contrast agent, OsO(4) is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO(4) preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE(-/-) ) mice at 10 μm resolution. The results show that walls of coronary arteries as small as 45 μm in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO(4) and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts. Published 2012. This article is a US Government work and is in the public domain in the USA. Journal of Anatomy © 2012 Anatomical Society.

  9. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley

    PubMed Central

    Held, Michael A.; Penning, Bryan; Brandt, Amanda S.; Kessans, Sarah A.; Yong, Weidong; Scofield, Steven R.; Carpita, Nicholas C.

    2008-01-01

    Small-interfering RNAs (siRNAs) from natural cis-antisense pairs derived from the 3′-coding region of the barley (Hordeum vulgare) CesA6 cellulose synthase gene substantially increase in abundance during leaf elongation. Strand-specific RT-PCR confirmed the presence of an antisense transcript of HvCesA6 that extends ≥1230 bp from the 3′ end of the CesA-coding sequence. The increases in abundance of the CesA6 antisense transcript and the 21-nt and 24-nt siRNAs derived from the transcript are coincident with the down-regulation of primary wall CesAs, several Csl genes, and GT8 glycosyl transferase genes, and are correlated with the reduction in rates of cellulose and (1 → 3),(1 → 4)-β-D-glucan synthesis. Virus induced gene silencing using unique target sequences derived from HvCesA genes attenuated expression not only of the HvCesA6 gene, but also of numerous nontarget Csls and the distantly related GT8 genes and reduced the incorporation of D-14C-Glc into cellulose and into mixed-linkage (1 → 3),(1 → 4)-β-D-glucans of the developing leaves. Unique target sequences for CslF and CslH conversely silenced the same genes and lowered rates of cellulose and (1 → 3),(1 → 4)-β-D-glucan synthesis. Our results indicate that the expression of individual members of the CesA/Csl superfamily and glycosyl transferases share common regulatory control points, and siRNAs from natural cis-antisense pairs derived from the CesA/Csl superfamily could function in this global regulation of cell-wall synthesis. PMID:19075248

  10. Jam proof closure assembly for lidded pressure vessels

    DOEpatents

    Cioletti, Olisse C.

    1992-01-01

    An expendable closure assembly is provided for use (in multiple units) with a lockable pressure vessel cover along its rim, such as of an autoclave. This assembly is suited to variable compressive contact and locking with the vessel lid sealing gasket. The closure assembly consists of a thick walled sleeve insert for retention in the under bores fabricated in the cover periphery and the sleeve is provided with internal threading only. A snap serves as a retainer on the underside of the sleeve, locking it into an under bore retention channel. Finally, a standard elongate externally threaded bolt is sized for mating cooperation with the so positioned sleeve, whereby the location of the bolt shaft in the cover bore hole determines its compressive contact on the underlying gasket.

  11. Use of human and porcine dermal-derived bioprostheses in complex abdominal wall reconstructions: a literature review and case report.

    PubMed

    Baillie, Daniel R; Stawicki, S Peter; Eustance, Nicole; Warsaw, David; Desai, Darius

    2007-05-01

    The goal of abdominal wall reconstruction is to restore and maintain abdominal domain. A PubMed(R) review of the literature (including "old" MEDLINE through February 2007) suggests that bioprosthetic materials are increasingly used to facilitate complex abdominal wall reconstruction. Reported results (eight case reports/series involving 137 patients) are encouraging. The most commonly reported complications are wound seroma (18 patients, 13%), skin dehiscence with graft exposure without herniation (six, 4.4%), superficial and deep wound infections (five, 3.6%), hernia recurrence (four, 2.9%), graft failure with dehiscence (two), hematoma (two), enterocutaneous fistula (one), and flap necrosis (one). Two recent cases are reported herein. In one, a 46-year-old woman required open abdominal management after gastric remnant perforation following a Roux-en-Y gastric bypass procedure. Porcine dermal collagen combined with cutaneous flaps was used for definitive abdominal wall reconstruction. The patient's condition improved postoperatively and she was well 5 months after discharge from the hospital. In the second, a 54-year-old woman underwent repair of an abdominal wall defect following resection of a large leiomyosarcoma. Human acellular dermis combined with myocutaneous flaps was used to reconstruct the abdominal wall defect. The patient's recovery was uncomplicated and 20 weeks following surgery she was doing well with no evidence of recurrence or hernia. The results reported to date and the outcomes presented here suggest that bioprosthetic materials are safe and effective for repair of large abdominal wall defects. Prospective, randomized, controlled studies are needed to compare the safety and efficacy of other reconstructive techniques as well as human and porcine dermal-derived bioprostheses.

  12. Drag-reducing polymers diminish near-wall concentration of platelets in microchannel blood flow

    PubMed Central

    Zhao, R.; Marhefka, J.N.; Antaki, J.F.; Kameneva, M.V.

    2011-01-01

    The accumulation of platelets near the blood vessel wall or artificial surface is an important factor in the cascade of events responsible for coagulation and/or thrombosis. In small blood vessels and flow channels this phenomenon has been attributed to the blood phase separation that creates a red blood cell (RBC)-poor layer near the wall. We hypothesized that blood soluble drag-reducing polymers (DRP), which were previously shown to lessen the near-wall RBC depletion layer in small channels, may consequently reduce the near-wall platelet excess. This study investigated the effects of DRP on the lateral distribution of platelet-sized fluorescent particles (diam. = 2 µm, 2.5 × 108/ml) in a glass square microchannel (width and depth = 100 µm). RBC suspensions in PBS were mixed with particles and driven through the microchannel at flow rates of 6–18 ml/h with and without added DRP (10 ppm of PEO, MW = 4500 kDa). Microscopic flow visualization revealed an elevated concentration of particles in the near-wall region for the control samples at all tested flow rates (between 2.4 ± 0.8 times at 6 ml/h and 3.3 ± 0.3 times at 18 ml/h). The addition of a minute concentration of DRP virtually eliminated the near-wall particle excess, effectively resulting in their even distribution across the channel, suggesting a potentially significant role of DRP in managing and mitigating thrombosis. PMID:21084744

  13. Tailoring vessel morphology in vivo

    NASA Astrophysics Data System (ADS)

    Gould, Daniel Joseph

    Tissue engineering is a rapidly growing field which seeks to provide alternatives to organ transplantation in order to address the increasing need for transplantable tissues. One huge hurdle in this effort is the provision of thick tissues; this hurdle exists because currently there is no way to provide prevascularized or rapidly vascularizable scaffolds. To design thick, vascularized tissues, scaffolds are needed that can induce vessels which are similar to the microvasculature found in normal tissues. Angiogenic biomaterials are being developed to provide useful scaffolds to address this problem. In this thesis angiogenic and cell signaling and adhesion factors were incorporated into a biomimetic poly(ethylene glycol) (PEG) hydrogel system. The composition of these hydrogels was precisely tuned to induce the formation of differing vessel morphology. To sensitively measure induced microvascular morphology and to compare it to native microvessels in several tissues, this thesis developed an image-based tool for quantification of scale invariant and classical measures of vessel morphology. The tool displayed great utility in the comparison of native vessels and remodeling vessels in normal tissues. To utilize this tool to tune the vessel response in vivo, Flk1::myr-mCherry fluorescently labeled mice were implanted with Platelet Derived Growth Factor-BB (PDGF-BB) and basic Fibroblast Growth Factor (FGF-2) containing PEG-based hydrogels in a modified mouse corneal angiogenesis assay. Resulting vessels were imaged with confocal microscopy, analyzed with the image based tool created in this thesis to compare morphological differences between treatment groups, and used to create a linear relationship between space filling parameters and dose of growth factor release. Morphological parameters of native mouse tissue vessels were then compared to the linear fit to calculate the dose of growth factors needed to induce vessels similar in morphology to native vessels

  14. Histomorphometric evaluation of the coronary artery vessels in rats submitted to industrial noise.

    PubMed

    Antunes, Eduardo; Oliveira, Pedro; Oliveira, Maria João R; Brito, José; Aguas, Artur; Martins, Dos Santos José

    2013-06-01

    Industrial noise (IN) is characterized by high intensity and a wide spectrum of wavelengths that induce physical vibration on the body structures. This effect, resulting from the low-frequency sound waves, can lead to pathological alterations in the extracellular matrix with an abnormal proliferation of collagen and development of tissue fibrosis, in the absence of an inflammatory process. The aim of this study was to evaluate the modifications of the arterial coronary vessels in Wistar rats submitted to IN. Two groups of rats were considered: group A with 20 rats exposed to IN during a maximum period of 7 months; group B with 20 rats as age-matched controls.The hearts were sectioned from the ventricular apex to the atria and the mid-ventricular fragment was selected. Haematoxylin-eosin and Masson's trichrome staining were used for histological observation. Histomorphometric evaluation of the coronary vessels was performed using the computer image analysis ImageJsoftware. The mean lumen-to-vessel wall (L/W) and media vessel wall-to-perivascular tissue (W/P) ratios were calculated in each group. Histological evaluation showed a prominent perivascular tissue with fibrotic development in the absence of inflammatory cells in group A. Histomorphometric analysis showed that the mean L/W was 0.7297 and 0.6940 in group A and B, respectively. The mean W/P ratio was 0.4923 and 0.5540 in group A and B, respectively, being higher in the control group (P <0.01). There are perivascular structural modifications in arterial coronary vessels. Our results show a significant development of periarterial fibrosis induced by industrial noise in the rat heart.

  15. Reconstruction of infected abdominal wall defects using latissimus dorsi free flap.

    PubMed

    Kim, Sang Wha; Han, Sang Chul; Hwang, Kyu Tae; Ahn, Byung Kyu; Kim, Jeong Tae; Kim, Youn Hwan

    2013-12-01

    Infected abdominal defects are a challenge to surgeons. In this study, we describe 10 cases in which the latissimus dorsi myocutaneous flap was used for successful reconstruction of abdominal wall defects severely infected with methicillin-resistant Staphylococcus aureus (MRSA). Retrospective review of 10 patients with abdominal wall defects that were reconstructed using the latissimus dorsi myocutaneous flap between 2002 and 2010. All patients had abdominal defects with hernias, combined with MRSA infections. The sizes of the flaps ranged from 120 to 364 cm(2) . The deep inferior epigastric artery was the recipient vessel in nine patients and the internal mammary vessels were used for one patient. There were no complications relating to the flaps, although there were other minor complications including wound dehiscence, haematoma and fluid correction. After reconstruction, there were no signs of infection during follow-up periods, and the patients were satisfied with the final results. Reconstruction using the latissimus dorsi myocutaneous flap, including muscle fascia structures, is a potential treatment option for severely infected large abdominal wall defects. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  16. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  17. Automatic segmentation of vessels in in-vivo ultrasound scans

    NASA Astrophysics Data System (ADS)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen

    2017-03-01

    Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.

  18. Spectral derivation of the classic laws of wall-bounded turbulent flows.

    PubMed

    Gioia, Gustavo; Chakraborty, Pinaki

    2017-08-01

    We show that the classic laws of the mean-velocity profiles (MVPs) of wall-bounded turbulent flows-the 'law of the wall,' the 'defect law' and the 'log law'-can be predicated on a sufficient condition with no manifest ties to the MVPs, namely that viscosity and finite turbulent domains have a depressive effect on the spectrum of turbulent energy. We also show that this sufficient condition is consistent with empirical data on the spectrum and may be deemed a general property of the energetics of wall turbulence. Our findings shed new light on the physical origin of the classic laws and their immediate offshoot, Prandtl's theory of turbulent friction.

  19. Leptin Induces Sca-1+ Progenitor Cell Migration Enhancing Neointimal Lesions in Vessel-Injury Mouse Models

    PubMed Central

    Xie, Yao; Potter, Claire M.F.; Le Bras, Alexandra; Nowak, Witold N.; Gu, Wenduo; Bhaloo, Shirin Issa; Zhang, Zhongyi; Hu, Yanhua; Zhang, Li

    2017-01-01

    Objective— Leptin is an adipokine initially thought to be a metabolic factor. Recent publications have shown its roles in inflammation and vascular disease, to which Sca-1+ vascular progenitor cells within the vessel wall may contribute. We sought to elucidate the effects of leptin on Sca-1+ progenitor cells migration and neointimal formation and to understand the underlying mechanisms. Approach and Results— Sca-1+ progenitor cells from the vessel wall of Lepr+/+ and Lepr−/− mice were cultured and purified. The migration of Lepr+/+ Sca-1+ progenitor cells in vitro was markedly induced by leptin. Western blotting and kinase assays revealed that leptin induced the activation of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal–regulated kinases 1/2, pFAK (phosphorylated focal adhesion kinase), and Rac1 (ras-related C3 botulinum toxin substrate 1)/Cdc42 (cell division control protein 42 homolog). In a mouse femoral artery guidewire injury model, an increased expression of leptin in both injured vessels and serum was observed 24 hours post-surgery. RFP (red fluorescent protein)-Sca-1+ progenitor cells in Matrigel were applied to the adventitia of the injured femoral artery. RFP+ cells were observed in the intima 24 hours post-surgery, subsequently increasing neointimal lesions at 2 weeks when compared with the arteries without seeded cells. This increase was reduced by pre-treatment of Sca-1+ cells with a leptin antagonist. Guidewire injury could only induce minor neointima in Lepr−/− mice 2 weeks post-surgery. However, transplantation of Lepr+/+ Sca-1+ progenitor cells into the adventitial side of injured artery in Lepr−/− mice significantly enhanced neointimal formation. Conclusions— Upregulation of leptin levels in both the vessel wall and the circulation after vessel injury promoted the migration of Sca-1+ progenitor cells via leptin receptor–dependent signal transducer and activator of

  20. Leptin Induces Sca-1+ Progenitor Cell Migration Enhancing Neointimal Lesions in Vessel-Injury Mouse Models.

    PubMed

    Xie, Yao; Potter, Claire M F; Le Bras, Alexandra; Nowak, Witold N; Gu, Wenduo; Bhaloo, Shirin Issa; Zhang, Zhongyi; Hu, Yanhua; Zhang, Li; Xu, Qingbo

    2017-11-01

    Leptin is an adipokine initially thought to be a metabolic factor. Recent publications have shown its roles in inflammation and vascular disease, to which Sca-1 + vascular progenitor cells within the vessel wall may contribute. We sought to elucidate the effects of leptin on Sca-1 + progenitor cells migration and neointimal formation and to understand the underlying mechanisms. Sca-1 + progenitor cells from the vessel wall of Lepr +/+ and Lepr -/- mice were cultured and purified. The migration of Lepr +/+ Sca-1 + progenitor cells in vitro was markedly induced by leptin. Western blotting and kinase assays revealed that leptin induced the activation of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal-regulated kinases 1/2, pFAK (phosphorylated focal adhesion kinase), and Rac1 (ras-related C3 botulinum toxin substrate 1)/Cdc42 (cell division control protein 42 homolog). In a mouse femoral artery guidewire injury model, an increased expression of leptin in both injured vessels and serum was observed 24 hours post-surgery. RFP (red fluorescent protein)-Sca-1 + progenitor cells in Matrigel were applied to the adventitia of the injured femoral artery. RFP + cells were observed in the intima 24 hours post-surgery, subsequently increasing neointimal lesions at 2 weeks when compared with the arteries without seeded cells. This increase was reduced by pre-treatment of Sca-1 + cells with a leptin antagonist. Guidewire injury could only induce minor neointima in Lepr -/- mice 2 weeks post-surgery. However, transplantation of Lepr +/+ Sca-1 + progenitor cells into the adventitial side of injured artery in Lepr -/- mice significantly enhanced neointimal formation. Upregulation of leptin levels in both the vessel wall and the circulation after vessel injury promoted the migration of Sca-1 + progenitor cells via leptin receptor-dependent signal transducer and activator of transcription 3- Rac1/Cdc42-ERK (extracellular signal

  1. Plasma-wall interactions in ITER

    NASA Astrophysics Data System (ADS)

    Parker, R.; Janeschitz, G.; Pacher, H. D.; Post, D.; Chiocchio, S.; Federici, G.; Ladd, P.; Iter Joint Central Team; Home Teams

    1997-02-01

    This paper reviews the status of the design of the divertor and first-wall/shield, the main in-vessel components for ITER. Under nominal ignited conditions, 300 MW of alpha power will be produced and must be removed from the divertor and first-wall. Additional power from auxiliary sources up to the level of 100 MW must also be removed in the case of driven burns. In the ignited case, about 100 MW will be radiated to the first wall as bremsstrahlung. Allowing the remaining power to be conducted to the divertor target plates would result in excessive heat fluxes. The power handling strategy is to radiate an additional 100-150 MW in the SOL and the divertor channel via a combination of radiation from hydrogen, and intrinsic and seeded impurities. Vertical targets have been adopted for the baseline divertor configuration. This geometry promotes partial detachment, as found in present experiments and in the results of modelling runs for ITER conditions, and power densities on the target plates can be ≤ 5 MW/ m2. Such regimes promote relatively high pressure (> 1 Pa) in the divertor and even with a low helium enrichment factor of 0.2, the required pumping speed to pump helium is ≤ 50 m3/ s. An important physics question is the quality of core confinement in these attractive divertor regimes. In addition to power and particle handling issues, the effects of disruptions play a major role in the design and performance of in-vessel components. Both centered disruptions and VDE's produce stresses in the first-wall/shield modules, backplate and the divertor wings and cassettes that are near or even somewhat in excess of allowables for normal operation. Also plasma-wall contact from disruptions, including at the divertor target, together with material properties are major factors determining component lifetime. Considering the potential for impurity contamination and minimizing tritium inventory as well as thermomechanical performance, the present material selection calls

  2. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.

    PubMed

    Qiao, Ye; Steinman, David A; Qin, Qin; Etesami, Maryam; Schär, Michael; Astor, Brad C; Wasserman, Bruce A

    2011-07-01

    To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Copyright © 2011 Wiley-Liss, Inc.

  3. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.

    PubMed

    Eyni, Hossein; Ghorbani, Sadegh; Shirazi, Reza; Salari Asl, Leila; P Beiranvand, Shahram; Soleimani, Masoud

    2017-09-01

    Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid)/multi-wall

  4. Factors that affect mass transport from drug eluting stents into the artery wall

    PubMed Central

    2010-01-01

    Coronary artery disease can be treated by implanting a stent into the blocked region of an artery, thus enabling blood perfusion to distal vessels. Minimally invasive procedures of this nature often result in damage to the arterial tissue culminating in the re-blocking of the vessel. In an effort to alleviate this phenomenon, known as restenosis, drug eluting stents were developed. They are similar in composition to a bare metal stent but encompass a coating with therapeutic agents designed to reduce the overly aggressive healing response that contributes to restenosis. There are many variables that can influence the effectiveness of these therapeutic drugs being transported from the stent coating to and within the artery wall, many of which have been analysed and documented by researchers. However, the physical deformation of the artery substructure due to stent expansion, and its influence on a drugs ability to diffuse evenly within the artery wall have been lacking in published work to date. The paper highlights previous approaches adopted by researchers and proposes the addition of porous artery wall deformation to increase model accuracy. PMID:20214774

  5. A Generalized Wall Function

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.

    1999-01-01

    The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.

  6. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties

    PubMed Central

    Chen, Alvin I.; Balter, Max L.; Chen, Melanie I.; Gross, Daniel; Alam, Sheikh K.; Maguire, Timothy J.; Yarmush, Martin L.

    2016-01-01

    Purpose: This paper describes the design, fabrication, and characterization of multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. The phantoms comprise epidermis, dermis, and hypodermis skin layers, blood vessels, and blood mimicking fluid. Each tissue component may be individually tailored to a range of physiological and demographic conditions. Methods: The skin layers were constructed from varying concentrations of gelatin and agar. Synthetic melanin, India ink, absorbing dyes, and Intralipid were added to provide optical absorption and scattering in the skin layers. Bovine serum albumin was used to increase acoustic attenuation, and 40 μm diameter silica microspheres were used to induce acoustic backscatter. Phantom vessels consisting of thin-walled polydimethylsiloxane tubing were embedded at depths of 2–6 mm beneath the skin, and blood mimicking fluid was passed through the vessels. The phantoms were characterized through uniaxial compression and tension experiments, rheological frequency sweep studies, diffuse reflectance spectroscopy, and ultrasonic pulse-echo measurements. Results were then compared to in vivo and ex vivo literature data. Results: The elastic and dynamic shear behavior of the phantom skin layers and vessel wall closely approximated the behavior of porcine skin tissues and human vessels. Similarly, the optical properties of the phantom tissue components in the wavelength range of 400–1100 nm, as well as the acoustic properties in the frequency range of 2–9 MHz, were comparable to human tissue data. Normalized root mean square percent errors between the phantom results and the literature reference values ranged from 1.06% to 9.82%, which for many measurements were less than the sample variability. Finally, the mechanical and imaging characteristics of the phantoms were found to remain stable after 30 days of storage at 21 °C. Conclusions: The phantoms described in this

  7. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    PubMed

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  8. Optimal Control Techniques for ResistiveWall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Clement, Mitchell Dobbs Pearson

    Tokamaks can excite kink modes that can lock or nearly lock to the vacuum vessel wall, and whose rotation frequencies and growth rates vary in time but are generally inversely proportional to the magnetic flux diffusion time of the vacuum vessel wall. This magnetohydrodynamic (MHD) instability is pressure limiting in tokamaks and is called the Resistive Wall Mode (RWM). Future tokamaks that are expected to operate as fusion reactors will be required to maximize plasma pressure in order to maximize fusion performance. The DIII-D tokamak is equipped with electromagnetic control coils, both inside and outside of its vacuum vessel, which create magnetic fields that are small by comparison to the machine's equilibrium field but are able to dynamically counteract the RWM. Presently for RWM feedback, DIII-D uses its interior control coils using a classical proportional gain only controller to achieve high plasma pressure. Future advanced tokamak designs will not likely have the luxury of interior control coils and a proportional gain algorithm is not expected to be effective with external control coils. The computer code VALEN was designed to calculate the performance of an MHD feedback control system in an arbitrary geometry. VALEN models the perturbed magnetic field from a single MHD instability and its interaction with surrounding conducting structures using a finite element approach. A linear quadratic gaussian (LQG) control, or H 2 optimal control, algorithm based on the VALEN model for RWM feedback was developed for use with DIII-D's external control coil set. The algorithm is implemented on a platform that combines a graphics processing unit (GPU) for real-time control computation with low latency digital input/output control hardware and operates in parallel with the DIII-D Plasma Control System (PCS). Simulations and experiments showed that modern control techniques performed better, using 77% less current, than classical techniques when using coils external to

  9. Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Margolis, L. B.; Fitzgerald, W.; Glushakova, S.; Hatfill, S.; Amichay, N.; Baibakov, B.; Zimmerberg, J.

    1997-01-01

    The pathogenesis of HIV infection involves a complex interplay between both the infected and noninfected cells of human lymphoid tissue, the release of free viral particles, the de novo infection of cells, and the recirculatory trafficking of peripheral blood lymphocytes. To develop an in vitro model for studying these various aspects of HIV pathogenesis we have utilized blocks of surgically excised human tonsils and a rotating wall vessel (RWV) cell culture system. Here we show that (1) fragments of the surgically excised human lymphoid tissue remain viable and retain their gross cytoarchitecture for at least 3 weeks when cultured in the RWV system; (2) such lymphoid tissue gradually shows a loss of both T and B cells to the surrounding growth medium; however, this cellular migration is reversible as demonstrated by repopulation of the tissue by labeled cells from the growth medium; (3) this cellular migration may be partially or completely inhibited by embedding the blocks of lymphoid tissue in either a collagen or agarose gel matrix; these embedded tissue blocks retain most of the basic elements of a normal lymphoid cytoarchitecture; and (4) both embedded and nonembedded RWV-cultured blocks of human lymphoid tissue are capable of productive infection by HIV-1 of at least three various strains of different tropism and phenotype, as shown by an increase in both p24 antigen levels and free virus in the culture medium, and by the demonstration of HIV-1 RNA-positive cells inside the tissue identified by in situ hybridization. It is therefore reasonable to suggest that gel-embedded and nonembedded blocks of human lymphoid tissue, cocultured with a suspension of tonsillar lymphocytes in an RWV culture system, constitute a useful model for simulating normal lymphocyte recirculatory traffic and provide a new tool for testing the various aspects of HIV pathogenesis.

  10. Optimization study on structural analyses for the J-PARC mercury target vessel

    NASA Astrophysics Data System (ADS)

    Guan, Wenhai; Wakai, Eiichi; Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Haga, Katsuhiro; Takada, Hiroshi; Futakawa, Masatoshi

    2018-06-01

    The spallation neutron source at the Japan Proton Accelerator Research Complex (J-PARC) mercury target vessel is used for various materials science studies, work is underway to achieve stable operation at 1 MW. This is very important for enhancing the structural integrity and durability of the target vessel, which is being developed for 1 MW operation. In the present study, to reduce thermal stress and relax stress concentrations more effectively in the existing target vessel in J-PARC, an optimization approach called the Taguchi method (TM) is applied to thermo-mechanical analysis. The ribs and their relative parameters, as well as the thickness of the mercury vessel and shrouds, were selected as important design parameters for this investigation. According to the analytical results of 18 model types designed using the TM, the optimal design was determined. It is characterized by discrete ribs and a thicker vessel wall than the current design. The maximum thermal stresses in the mercury vessel and the outer shroud were reduced by 14% and 15%, respectively. Furthermore, it was indicated that variations in rib width, left/right rib intervals, and shroud thickness could influence the maximum thermal stress performance. It is therefore concluded that the TM was useful for optimizing the structure of the target vessel and to reduce the thermal stress in a small number of calculation cases.

  11. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification.

    PubMed

    Bindon, Keren A; Smith, Paul A; Holt, Helen; Kennedy, James A

    2010-10-13

    Proanthocyanidins (PAs) were isolated from the skins, seeds and flesh of commercially ripe grapes, and from wine and marc produced from the same source. In the grape berry, skin PAs accounted for 54% of the total extractable PA, while seed and flesh-derived PA accounted for 30% and 15% of the total, respectively. Following fermentation, 25% of the fruit PA was found in the wine, while 27% was found in the pericarp isolated from marc, and 48% was unaccounted for (either remaining in the seed or adsorbed to lees). To investigate the role that cell wall material (CWM) has on PA extraction during fermentation, CWM isolated from skin and flesh were combined with PA in model suspensions. In general, the affinity of flesh CWM for PA increased with increasing PA molecular mass (MM); however, this relationship was not observed for the interaction of skin CWM with skin PA. Subsequent experiments suggest that the differences in the interaction of flesh and skin CWM with PA of higher MM (>15000 g/mol) may be limited by the structure of the CWM. Observed variations in the composition between skin and flesh CWM may explain the differences in PA interaction at high MM. Among wine-derived PA, no higher MM material was detected, suggesting that, during vinification, higher MM PA are nonextractable and/or are removed from the wine by interaction with CWM.

  12. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming.

    PubMed

    Tian, Lin; Goldstein, Amit; Wang, Hai; Ching Lo, Hin; Sun Kim, Ik; Welte, Thomas; Sheng, Kuanwei; Dobrolecki, Lacey E; Zhang, Xiaomei; Putluri, Nagireddy; Phung, Thuy L; Mani, Sendurai A; Stossi, Fabio; Sreekumar, Arun; Mancini, Michael A; Decker, William K; Zong, Chenghang; Lewis, Michael T; Zhang, Xiang H-F

    2017-04-13

    Blockade of angiogenesis can retard tumour growth, but may also paradoxically increase metastasis. This paradox may be resolved by vessel normalization, which involves increased pericyte coverage, improved tumour vessel perfusion, reduced vascular permeability, and consequently mitigated hypoxia. Although these processes alter tumour progression, their regulation is poorly understood. Here we show that type 1 T helper (T H 1) cells play a crucial role in vessel normalization. Bioinformatic analyses revealed that gene expression features related to vessel normalization correlate with immunostimulatory pathways, especially T lymphocyte infiltration or activity. To delineate the causal relationship, we used various mouse models with vessel normalization or T lymphocyte deficiencies. Although disruption of vessel normalization reduced T lymphocyte infiltration as expected, reciprocal depletion or inactivation of CD4 + T lymphocytes decreased vessel normalization, indicating a mutually regulatory loop. In addition, activation of CD4 + T lymphocytes by immune checkpoint blockade increased vessel normalization. T H 1 cells that secrete interferon-γ are a major population of cells associated with vessel normalization. Patient-derived xenograft tumours growing in immunodeficient mice exhibited enhanced hypoxia compared to the original tumours in immunocompetent humans, and hypoxia was reduced by adoptive T H 1 transfer. Our findings elucidate an unexpected role of T H 1 cells in vasculature and immune reprogramming. T H 1 cells may be a marker and a determinant of both immune checkpoint blockade and anti-angiogenesis efficacy.

  13. A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow.

    PubMed

    Zhang, Wei; Hou, Chengyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2017-11-23

    Flexible and multifunctional sensors that continuously detect physical information are urgently required to fabricate wearable materials for health monitoring. This study describes the fabrication and performance of a strong and flexible vessel-like sensor. This electronic vessel consists of a self-supported braided cotton hose substrate, single-walled carbon nanotubes (SWCNTs)/ZnO@polyvinylidene fluoride (PVDF) function arrays and a flexible PVDF function fibrous membrane, and it possesses high mechanical property and accurate physical sensing. The rationally designed tubular structure facilities the detection of the applied temperature and strain and the frequency, pressure, and temperature of pulsed fluids. Therefore, the flexible electronic vessel holds promising potential for applications in wearable or implantable materials for the monitoring of health.

  14. Survival and in-vessel redistribution of beryllium droplets after ITER disruptions

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Ratynskaia, S.; Tolias, P.; Pitts, R. A.; De Temmerman, G.; Lehnen, M.; Kiramov, D.

    2018-07-01

    The motion and temperature evolution of beryllium droplets produced by first wall surface melting after ITER major disruptions and vertical displacement events mitigated during the current quench are simulated by the MIGRAINe dust dynamics code. These simulations employ an updated physical model which addresses droplet-plasma interaction in ITER-relevant regimes characterized by magnetized electron collection and thin-sheath ion collection, as well as electron emission processes induced by electron and high-Z ion impacts. The disruption scenarios have been implemented from DINA simulations of the time-evolving plasma parameters, while the droplet injection points are set to the first-wall locations expected to receive the highest thermal quench heat flux according to field line tracing studies. The droplet size, speed and ejection angle are varied within the range of currently available experimental and theoretical constraints, and the final quantities of interest are obtained by weighting single-trajectory output with different size and speed distributions. Detailed estimates of droplet solidification into dust grains and their subsequent deposition in the vessel are obtained. For representative distributions of the droplet injection parameters, the results indicate that at most a few percents of the beryllium mass initially injected is converted into solid dust, while the remaining mass either vaporizes or forms liquid splashes on the wall. Simulated in-vessel spatial distributions are also provided for the surviving dust, with the aim of providing guidance for planned dust diagnostic, retrieval and clean-up systems on ITER.

  15. Specific Accumulation of Tumor-Derived Adhesion Factor in Tumor Blood Vessels and in Capillary Tube-Like Structures of Cultured Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru

    1996-08-01

    Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

  16. Particle image velocimetry of a flow at a vaulted wall.

    PubMed

    Kertzscher, U; Berthe, A; Goubergrits, L; Affeld, K

    2008-05-01

    The assessment of flow along a vaulted wall (with two main finite radii of curvature) is of general interest; in biofluid mechanics, it is of special interest. Unlike the geometry of flows in engineering, flow geometry in nature is often determined by vaulted walls. Specifically the flow adjacent to the wall of blood vessels is particularly interesting since this is where either thrombi are formed or atherosclerosis develops. Current measurement methods have problems assessing the flow along vaulted walls. In contrast with conventional particle image velocimetry (PIV), this new method, called wall PIV, allows the investigation of a flow adjacent to transparent flexible surfaces with two finite radii of curvature. Using an optical method which allows the observation of particles up to a predefined depth enables the visualization solely of the boundary layer flow. This is accomplished by adding a specific dye to the fluid which absorbs the monochromatic light used to illuminate the region of observation. The obtained images can be analysed with the methods of conventional PIV and result in a vector field of the velocities along the wall. With wall PIV, the steady flow adjacent to the vaulted wall of a blood pump was investigated and the resulting velocity field as well as the velocity fluctuations were assessed.

  17. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    PubMed

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels.

    PubMed

    Price, Alexander K; Fischer, David J; Martin, R Scott; Spence, Dana M

    2004-08-15

    The ability of nitric oxide to relax smooth muscle cells surrounding resistance vessels in vivo is well documented. Here, we describe a series of studies designed to quantify amounts of adenosine triphosphate (ATP), a known stimulus of NO production in endothelial cells, released from erythrocytes that are mechanically deformed as these cells traverse microbore channels in lithographically patterned microchips. Results indicate that micromolar amounts of ATP are released from erythrocytes flowing through channels having cross sectional dimensions of 60 x 38 micron (2.22 +/- 0.50 microM ATP). Microscopic images indicate that erythrocytes, when being pumped through the microchip channels, migrate toward the center of the channels, leaving a cell-free or skimming layer at the walls of the channel, a profile known to exist in circulatory vessels in vivo. A comparison of the amounts of ATP released from RBCs mechanically deformed in microbore tubing (2.54 +/- 0.15 microM) vs a microchip (2.59 +/- 0.32 microM) suggests that channels in microchips may serve as functional biomimics of the microvasculature. Control studies involving diamide, a membrane-stiffening agent, suggest that the RBC-derived ATP is not due to cell lysis but rather physical deformation.

  19. NG2 glia are required for vessel network formation during embryonic development

    PubMed Central

    Minocha, Shilpi; Valloton, Delphine; Brunet, Isabelle; Eichmann, Anne

    2015-01-01

    The NG2+ glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2+ glia originate from the Nkx2.1+ progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2+ glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2+ glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2+ glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2+ glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains. DOI: http://dx.doi.org/10.7554/eLife.09102.001 PMID:26651999

  20. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow

    PubMed Central

    Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2014-01-01

    Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. PMID:24780131

  1. Feeling Wall Tension in an Interactive Demonstration of Laplace's Law

    ERIC Educational Resources Information Center

    Letic, Milorad

    2012-01-01

    Laplace's Law plays a major role in explanations of the wall tension of structures like blood vessels, the bladder, the uterus in pregnancy, bronchioles, eyeballs, and the behavior of aneurisms or the enlarged heart. The general relation of Laplace's law, expressing that the product of the radius of curvature (r) and pressure (P) is equal to wall…

  2. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  3. The development of cerebral amyloid angiopathy in cerebral vessels. A review with illustrations based upon own investigated post mortem cases.

    PubMed

    Mendel, T A; Wierzba-Bobrowicz, T; Lewandowska, E; Stępień, T; Szpak, G M

    2013-12-01

    The process of β-amyloid accumulation in cerebral vessels is presented. Cerebral amyloid angiopathy (CAA) was confirmed during an autopsy. It was diagnosed according to the Boston criteria. Cerebral amyloid angiopathy can involve all kinds of cerebral vessels (cortical and leptomeningeal arterioles, capillaries and veins). The development of CAA is a progressive process. β-amyloid appears first in the tunica media, surrounding smooth muscle cells, and in the adventitia. β-amyloid is progressively accumulated, causing a gradual loss of smooth muscle cells in the vessel wall and finally replacing them. Then, the detachment and delamination of the outer part of the tunica media results in the "double barrel" appearance, fibrinoid necrosis, and microaneurysm formation. Microbleeding with perivascular deposition of erythrocytes and blood breakdown products can also occur. β-amyloid can also be deposited in the surrounding of the affected vessels of the brain parenchyma, known as "dysphoric CAA". Ultrastructurally, when deposits of amyloid fibers were localized in or outside the arteriolar wall, the degenerating vascular smooth muscle cells were observed. In the Institute of Psychiatry and Neurology the study was carried out in a group of 48 patients who died due to intracerebral hemorrhage caused by sporadic CAA.

  4. Transduction of a Foreign Histocompatibility Gene into the Arterial Wall Induces Vasculitis

    NASA Astrophysics Data System (ADS)

    Nabel, Elizabeth G.; Plautz, Gregory; Nabel, Gary J.

    1992-06-01

    Autoimmune vasculitis represents a disease characterized by focal inflammation within arteries at multiple sites in the vasculature. Therapeutic interventions in this disease are empirical and often unsuccessful, and the mechanisms of immune injury are not well-defined. The direct transfer of recombinant genes and their expression in the arterial wall provides an opportunity to explore the pathogenesis and treatment of vascular disease. In this report, an animal model for vasculitis has been developed. Inflammation has been elicited by direct gene transfer of a foreign class I major histocompatibility complex gene, HLA-B7, to specific sites in porcine arteries. Transfer and expression of this recombinant gene was confirmed by a polymerase chain reaction and immunohistochemistry, and cytolytic T cells specific for HLA-B7 were detected. These findings demonstrate that expression of a recombinant gene in the vessel wall can induce a focal immune response and suggest that vessel damage induced by cell-mediated immune injury can initiate vasculitis.

  5. The slowly reacting mode of combustion of gaseous mixtures in spherical vessels. Part 1: Transient analysis and explosion limits

    NASA Astrophysics Data System (ADS)

    Liñán, Amable; Moreno-Boza, Daniel; Iglesias, Immaculada; Sánchez, Antonio L.; Williams, Forman A.

    2016-11-01

    Frank-Kamenetskii's analysis of thermal explosions is revisited, using also a single-reaction model with an Arrhenius rate having a large activation energy, to describe the transient combustion of initially cold gaseous mixtures enclosed in a spherical vessel with a constant wall temperature. The analysis shows two modes of combustion. There is a flameless slowly reacting mode for low wall temperatures or small vessel sizes, when the temperature rise resulting from the heat released by the reaction is kept small by the heat-conduction losses to the wall, so as not to change significantly the order of magnitude of the reaction rate. In the other mode, the slow reaction rates occur only in an initial ignition stage, which ends abruptly when very large reaction rates cause a temperature runaway, or thermal explosion, at a well-defined ignition time and location, thereby triggering a flame that propagates across the vessel to consume the reactant rapidly. Explosion limits are defined, in agreement with Frank-Kamenetskii's analysis, by the limiting conditions for existence of the slowly reacting mode of combustion. In this mode, a quasi-steady temperature distribution is established after a transient reaction stage with small reactant consumption. Most of the reactant is burnt, with nearly uniform mass fraction, in a subsequent long stage during which the temperature follows a quasi-steady balance between the rates of heat conduction to the wall and of chemical heat release. The changes in the explosion limits caused by the enhanced heat-transfer rates associated with buoyant motion are described in an accompanying paper.

  6. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    NASA Astrophysics Data System (ADS)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  7. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  8. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  9. Carotid Arterial Wall Dynamics During Gravity Changes on Partial-g Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Leguy, C. A. D.; Beck, P.; Gauger, P.; Beck, L. E. J.; Limper, U.

    2014-10-01

    The investigation of systemic blood pressure (BP) responses under partial-g conditions is of particular importance with respect to post-space-flight orthostatic intolerance. In this study, changes in vessel diameter and wall distension of the common carotid artery (CCA) were assessed under graded gravity. Measurements were performed on 8 healthy subjects in standing position under lunar (0.16 g), Martian (0.38 g), 1.0 g and hypergravity (1.8 g) during partial-g parabolic flights. Data are reported as means ± SE estimated by linear mixed effects modeling. The CCA diameter was significantly enlarged under Martian and lunar-g (6.55 ± 0.2 and 6.54 ± 0.2 mm; p < 0.001 each) with respect to 1.0 g (6.39 ± 0.2 mm). The CCA distension showed significant enlargement under Martian-g (622 ± 91 μm) with respect to 1.0 g (603 ± 82 μm; p < 0.05). Furthermore, the distension was significantly lower under hyper-g with respect to 1.0 g (550 ± 88 μm; p < 0.001). These results show that rapid changes of gravitational stress induce significant modifications of hemodynamic parameters reflected in the CCA vessel wall diameter and distension. The increased vessel wall diameter under partial-g is likely due to the rise in mean BP at the CCA level caused by the absence of hydrostatic pressure and may trigger the baroreflex to maintain homeostatis. We can assume that the increase in distension during the partial-g phase originates from a larger stroke volume and enhanced BP reflections. Furthermore, this study demonstrates the reliability of functional high resolution vascular ultrasound technique during parabolic flights.

  10. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63... BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s) and vessel(s) are interchangeable or synonymous words, and include every description of watercraft...

  11. Renal cell carcinoma with venous extension: prediction of inferior vena cava wall invasion by MRI.

    PubMed

    Adams, Lisa C; Ralla, Bernhard; Bender, Yi-Na Y; Bressem, Keno; Hamm, Bernd; Busch, Jonas; Fuller, Florian; Makowski, Marcus R

    2018-05-03

    Renal cell carcinoma (RCC) are accompanied by inferior vena cava (IVC) thrombus in up to 10% of the cases, with surgical resection remaining the only curative option. In case of IVC wall invasion, the operative procedure is more challenging and may even require IVC resection. This study aims to determine the diagnostic performance of contrast-enhanced magnetic resonance imaging (MRI) for the assessment of wall invasion by IVC thrombus in patients with RCC, validated with intraoperative findings. Data were collected on 81 patients with RCC and IVC thrombus, who received a radical nephrectomy and vena cava thrombectomy between February 2008 and November 2017. Forty eight patients met the inclusion criteria. Sensitivity and specificity as well as the positive and negative predictive values were calculated for preoperative MRI, based on the assessments of the two readers for visual wall invasion. Furthermore, a logistic regression model was used to determine if there was an association between intraoperative wall adherence and IVC diameter. Complete occlusion of the IVC lumen or vessel breach could reliably assess IVC wall invasion with a sensitivity of 92.3% (95%-CI: 0.75-0.99) and a specificity of 86.4% (95%-CI: 0.65-0.97) (Fisher-test: p-value< 0.001). The positive predictive value (PPV) was 88.9% (95%-CI: 0.71-0.98) and the negative predictive value reached 90.5% (95%-CI: 0.70-0.99). There was an excellent interobserver agreement for determining IVC wall invasion with a kappa coefficient of 0.90 (95%CI: 0.79-1.00). The present study indicates that standard preoperative MR imaging can be used to reliably assess IVC wall invasion, evaluating morphologic features such as the complete occlusion of the IVC lumen or vessel breach. Increases in IVC diameter are associated with a higher probability of IVC wall invasion.

  12. 46 CFR 381.8 - Subsidized vessel participation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from MARAD an amount for the operating-differential subsidy (ODS) likely to be paid for the carriage of... subsidized bidders; (2) Deriving “augmented bids” for the subsidized operators by adding the ODS amount to... on MARAD's calculation of anticipated costs (less ODS in the case of a subsidized vessel) for the...

  13. Runge-Kutta method for wall shear stress of blood flow in stenosed artery

    NASA Astrophysics Data System (ADS)

    Awaludin, Izyan Syazana; Ahmad, Rokiah@Rozita

    2014-06-01

    A mathematical model of blood flow through stenotic artery is considered. A stenosis is defined as the partial occlusion of the blood vessels due to the accumulation of cholesterols, fats and the abnormal growth of tissue on the artery walls. The development of stenosis in the artery is one of the factors that cause problem in blood circulation system. This study was conducted to determine the wall shear stress of blood flow in stenosed artery. Modified mathematical model is used to analyze the relationship of the wall shear stress versus the length and height of stenosis. The existing models that have been created by previous researchers are solved using fourth order Runge-Kutta method. Numerical results show that the wall shear stress is proportionate to the length and height of stenosis.

  14. Diffusion and localization of hematoporphyrin derivative in the normal bladder wall of pig and rat after local administration

    NASA Astrophysics Data System (ADS)

    Bisson, Jean F.; Notter, Dominique; Labrude, P.; Vigneron, C.; Guillemin, Francois H.

    1996-01-01

    Photodynamic therapy (PDT) consists in the administration of a photosensitizer and subsequent irradiation of the tumor with visible light. Routinely, the photosensitizer is given intravenously (i.v.), but the major drawback of this procedure is the resulting skin photosensitivity. The goal of our study was to examine whether intravesical (i.b.) instillation of the photosensitizer for PDT of bladder cancer might be feasible in order to target the tumors and to avoid the photosensitization phenomenon. After studying the normal bladder histology of pig and rat, not much described so far, we studied the diffusion and localization of hematoporphyrin derivative (HpD) in vitro on the pig bladder and the biodistribution of HpD in vivo in the rat bladder, two and four hours after intravesical administration, by spectrofluorimetry and fluorescence microscopy. We have the following results: (1) no diffusion through the pig bladder wall was detected; (2) the penetration depth of HpD into the pig bladder wall was 450 plus or minus 44 micrometers (n equals 8), including urothelium and chorion in totality and a small part of the muscles; (3) the penetration depth of HpD into the rat bladder wall was 55 plus or minus 9 micrometer (n equals 9) after two hours and 960 plus or minus 118 micrometer (n equals 9) after four hours, corresponding respectively to the totality of the urothelium and a small part of the chorion or almost completely in the bladder wall, a small part of the adventicia being excluded. In conclusion, intravesical instillation is feasible and, as superficial bladder cancer, especially carcinoma in situ particularly occur in the urothelium or in the chorion, a bladder instillation of two hours should be advantageous.

  15. The receptor-like kinase AtVRLK1 regulates secondary cell wall thickening.

    PubMed

    Huang, Cheng; Zhang, Rui; Gui, Jinshan; Zhong, Yu; Li, Laigeng

    2018-04-20

    During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis thaliana leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related RLK 1), that is specifically expressed in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, upregulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that downregulation of AtVRLK1 promoted secondary cell wall thickening and upregulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  16. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow.

    PubMed

    Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L

    2014-07-01

    Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels.

    PubMed

    Jung, Youngmee; Ji, HaYeun; Chen, Zaozao; Fai Chan, Hon; Atchison, Leigh; Klitzman, Bruce; Truskey, George; Leong, Kam W

    2015-10-12

    Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.

  18. A reduced-dimensional model for near-wall transport in cardiovascular flows

    PubMed Central

    Hansen, Kirk B.

    2015-01-01

    Near-wall mass transport plays an important role in many cardiovascular processes, including the initiation of atherosclerosis, endothelial cell vasoregulation, and thrombogenesis. These problems are characterized by large Péclet and Schmidt numbers as well as a wide range of spatial and temporal scales, all of which impose computational difficulties. In this work, we develop an analytical relationship between the flow field and near-wall mass transport for high-Schmidt-number flows. This allows for the development of a wall-shear-stress-driven transport equation that lies on a codimension-one vessel-wall surface, significantly reducing computational cost in solving the transport problem. Separate versions of this equation are developed for the reaction-rate-limited and transport-limited cases, and numerical results in an idealized abdominal aortic aneurysm are compared to those obtained by solving the full transport equations over the entire domain. The reaction-rate-limited model matches the expected results well. The transport-limited model is accurate in the developed flow regions, but overpredicts wall flux at entry regions and reattachment points in the flow. PMID:26298313

  19. Chemical synthesis of β-arabinofuranosyl containing oligosaccharides derived from plant cell wall extensins.

    PubMed

    Kaeothip, Sophon; Boons, Geert-Jan

    2013-08-21

    Extensins are plant-derived glycoproteins that are densely modified by oligo-arabinofuranosides linked to hydroxyproline residues. These glycoproteins have been implicated in many aspects of plant growth and development. Here, we describe the chemical synthesis of a tetrameric β(1-2)-linked arabinofuranoside that is capped by an α(1-3)-arabinofuranoside and a similar trisaccharide lacking the capping moiety. The challenging β(1-2)-linked arabinofuranosides were installed by using an arabinofuranosyl donor protected with 3,5-O-(di-tert-butylsilane) and a C-2 2-methylnaphthyl (Nap) ether. It was found that the cyclic silane-protecting group of the glycosyl donor greatly increased β-anomeric selectivity. It was, however, imperative to remove the silane-protecting group of an arabinosyl acceptor to achieve optimal anomeric selectivities. The anomeric linker of the synthetic compounds was modified by a biotin moiety for immobilization of the compounds to microtiter plates coated with streptavidine. The resulting microtiter plates were employed to screen for binding against a panel of antibodies elicited against plant cell wall polysaccharides.

  20. Primo vessel inside a lymph vessel emerging from a cancer tissue.

    PubMed

    Lee, Sungwoo; Ryu, Yeonhee; Cha, Jinmyung; Lee, Jin-Kyu; Soh, Kwang-Sup; Kim, Sungchul; Lim, Jaekwan

    2012-10-01

    Primo vessels were observed inside the lymph vessels near the caudal vena cava of a rabbit and a rat and in the thoracic lymph duct of a mouse. In the current work we found a primo vessel inside the lymph vessel that came out from the tumor tissue of a mouse. A cancer model of a nude mouse was made with human lung cancer cell line NCI-H460. We injected fluorescent nanoparticles into the xenografted tumor tissue and studied their flow in blood, lymph, and primo vessels. Fluorescent nanoparticles flowed through the blood vessels quickly in few minutes, and but slowly in the lymph vessels. The bright fluorescent signals of nanoparticles disappeared within one hour in the blood vessels but remained much longer up to several hours in the case of lymph vessels. We found an exceptional case of lymph vessels that remained bright with fluorescence up to 24 hours. After detailed examination we found that the bright fluorescence was due to a putative primo vessel inside the lymph vessel. This rare observation is consistent with Bong-Han Kim's claim on the presence of a primo vascular system in lymph vessels. It provides a significant suggestion on the cancer metastasis through primo vessels and lymph vessels. Copyright © 2012. Published by Elsevier B.V.

  1. The effect of irreversible electroporation on blood vessels.

    PubMed

    Maor, Elad; Ivorra, Antoni; Leor, Jonathan; Rubinsky, Boris

    2007-08-01

    We present a pilot study on the long term effects of irreversible electroporation (IRE) on a large blood vessel. The study was motivated by the anticipated use of IRE for treatment of cancer tumors abutting large blood vessels. A sequence of 10 direct current IRE pulses of 3800 V/cm, 100 micros each, at a frequency of 10 pulses per second, were applied directly to the carotid artery in six rats. Measuring tissue conductivity during the procedure showed, as predicted, an increase in conductivity during the application of the pulse, which suggests that this measurement can be used to control the application of IRE. All the animals survived the procedure and showed no side effects. Histology performed 28 days after the procedure showed that the connective matrix of the blood vessels remained intact and the number of vascular smooth muscle cells (VSMC) in the arterial wall decreased with no evidence of aneurysm, thrombus formation or necrosis. Average VSMC density was significantly lower following IRE ablation compared with control (24 +/- 11 vs. 139 +/- 14, P<0.001), with no apparent damage to extra cellular matrix components and structure. In addition to the relevance of this study to treatment of cancer near large blood vessels these findings tentatively suggest that IRE has possible applications to treatment of pathological processes in which it is desired to reduce the proliferation of VSMC population, such as restenosis and for attenuating atherosclerotic processes in clinical important locations such as coronary, carotid and renal arteries.

  2. Combination of Vessel-Targeting Agents and Fractionated Radiation Therapy: The Role of the SDF-1/CXCR4 Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Fang-Hsin; Fu, Sheng-Yung; Yang, Ying-Chieh

    2013-07-15

    Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumormore » microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor.« less

  3. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Simulation of NO and O2 transport facilitated by polymerized hemoglobin solutions in an arteriole that takes into account wall shear stress-induced NO production.

    PubMed

    Zhou, Yipin; Cabrales, Pedro; Palmer, Andre F

    2012-03-01

    A mathematical model was developed to study nitric oxide (NO) and oxygen (O(2)) transport in an arteriole and surrounding tissues exposed to a mixture of red blood cells (RBCs) and hemoglobin (Hb)-based O(2) carriers (HBOCs). A unique feature of this model is the inclusion of blood vessel wall shear stress-induced production of endothelial-derived NO, which is very sensitive to the viscosity of the RBC and HBOC mixture traversing the blood vessel lumen. Therefore in this study, a series of polymerized bovine Hb (PolyHb) solutions with high viscosity, varying O(2) affinities, NO dioxygenation rate constants and O(2) dissociation rate constants that were previously synthesized and characterized by our group was evaluated via mathematical modeling, in order to investigate the effect of these biophysical properties on the transport of NO and O(2) in an arteriole and its surrounding tissues subjected to anemia with the commercial HBOC Oxyglobin® and cell-free bovine Hb (bHb) serving as appropriate controls. The computer simulation results indicated that transfusion of high viscosity PolyHb solutions promoted blood vessel wall shear stress dependent generation of the vasodilator NO, especially in the blood vessel wall and should transport enough NO inside the smooth muscle layer to activate vasodilation compared to the commercial HBOC Oxyglobin® and cell-free bHb. However, NO scavenging in the arteriole lumen was unavoidable due to the intrinsic high NO dioxygenation rate constant of the HBOCs being studied. This study also observed that all PolyHbs could potentially improve tissue oxygenation under hypoxic conditions, while low O(2) affinity PolyHbs were more effective in oxygenating tissues under normoxic conditions compared with high O(2) affinity PolyHbs. In addition, all ultrahigh molecular weight PolyHbs displayed higher O(2) transfer rates than the commercial HBOC Oxyglobin® and cell-free bHb. Therefore, these results suggest that ultrahigh molecular weight

  5. Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannell, Gary L.; Huth, Ralph J.; Hallum, Randall T.

    2013-08-26

    In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work inmore » a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.« less

  6. Device for inspecting vessel surfaces

    DOEpatents

    Appel, D. Keith

    1995-01-01

    A portable, remotely-controlled inspection crawler for use along the walls of tanks, vessels, piping and the like. The crawler can be configured to use a vacuum chamber for supporting itself on the inspected surface by suction or a plurality of magnetic wheels for moving the crawler along the inspected surface. The crawler is adapted to be equipped with an ultrasonic probe for mapping the structural integrity or other characteristics of the surface being inspected. Navigation of the crawler is achieved by triangulation techniques between a signal transmitter on the crawler and a pair of microphones attached to a fixed, remote location, such as the crawler's deployment unit. The necessary communications are established between the crawler and computers external to the inspection environment for position control and storage and/or monitoring of data acquisition.

  7. Electrochemical wall shear rate microscopy of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Reuter, Fabian; Mettin, Robert

    2018-06-01

    An electrochemical high-speed wall shear raster microscope is presented. It involves chronoamperometric measurements on a microelectrode that is flush-mounted in a submerged test specimen. Wall shear rates are derived from the measured microelectrode signal by numerically solving a convection-diffusion equation with an optimization approach. This way, the unsteady wall shear rates from the collapse of a laser pulse seeded cavitation bubble close to a substrate are measured. By planar scanning, they are resolved in high spatial resolution. The wall shear rates are related to the bubble dynamics via synchronized high-speed imaging of the bubble shape.

  8. Effect of gravitation stress and hypokinesia on blood vessels of the testicle

    NASA Technical Reports Server (NTRS)

    Palazhchenko, E. F.

    1979-01-01

    Rabbits were exposed to single maximum endurable stresses of cranio-caudal direction, hypokinesia for periods of one to eight weeks, and hypokinesia followed by gravitation stresses. The stresses caused dilatation of vessels, greater sinuosity, and occasional ruptures of the walls and extravasation. The greater part of the capillaries were dilated; the greatest part constricted. In hypokinesia there was an increasing atrophy of the testes. Significant results are reported.

  9. Cells, walls, and endless forms.

    PubMed

    Monniaux, Marie; Hay, Angela

    2016-12-01

    A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Periodontal healing in one-wall intra-bony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial.

    PubMed

    Kim, Chang-Sung; Choi, Seong-Ho; Cho, Kyoo-Sung; Chai, Jung-Kiu; Wikesjö, Ulf M E; Kim, Chong-Kwan

    2005-06-01

    Autogenous bone grafts and bone biomaterials are being used as part of protocols aiming at reconstruction of periodontal defects. There is a limited biologic information on the effect of such materials on periodontal healing, in particular aberrant healing events that may prevent their general use. The objective of this study was, using histological techniques, to evaluate periodontal healing with focus on root resorption and ankylosis following implantation of autogenous bone and a coral-derived biomaterial into intra-bony defects in dogs. One-wall intra-bony periodontal defects were surgically created at the distal aspect of the second and the mesial aspect of the fourth mandibular premolars in either right or left jaw quadrants in four Beagle dogs. Each animal received particulated autogenous bone and the resorbable calcium carbonate biomaterial into discrete one-wall intra-bony defects. The mucoperiosteal flaps were positioned and sutured to their pre-surgery position. The animals were euthanized 8 weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis. There were no significant differences in periodontal healing between sites receiving autograft bone and the coral-derived biomaterial. A well-organized periodontal ligament bridging new bone and cementum regeneration was observed extending coronal to a notch prepared to delineate the apical extent of the defect. Osteoid and bone with enclosed osteocytes were formed onto the surface of both autograft and coral particles. Although small resorption pits were evident in most teeth, importantly none of the biomaterials provoked marked root resorption. Ankylosis was not observed. Particulated autogenous bone and the coral-derived biomaterial may be implanted into periodontal defects without significant healing aberrations such as root resorption and ankylosis. The histopathological evaluation suggests that the autogenous bone graft has a limited

  11. Plant cell wall sugars: sweeteners for a bio-based economy.

    PubMed

    Van de Wouwer, Dorien; Boerjan, Wout; Vanholme, Bartel

    2018-02-12

    Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development. This article is protected by copyright. All rights reserved.

  12. Tracking Vessels to Illegal Pollutant Discharges Using Multisource Vessel Information

    NASA Astrophysics Data System (ADS)

    Busler, J.; Wehn, H.; Woodhouse, L.

    2015-04-01

    Illegal discharge of bilge waters is a significant source of oil and other environmental pollutants in Canadian and international waters. Imaging satellites are commonly used to monitor large areas to detect oily discharges from vessels, off-shore platforms and other sources. While remotely sensed imagery provides a snap-shot picture useful for detecting a spill or the presence of vessels in the vicinity, it is difficult to directly associate a vessel to an observed spill unless the vessel is observed while the discharge is occurring. The situation then becomes more challenging with increased vessel traffic as multiple vessels may be associated with a spill event. By combining multiple sources of vessel location data, such as Automated Information Systems (AIS), Long Range Identification and Tracking (LRIT) and SAR-based ship detection, with spill detections and drift models we have created a system that associates detected spill events with vessels in the area using a probabilistic model that intersects vessel tracks and spill drift trajectories in both time and space. Working with the Canadian Space Agency and the Canadian Ice Service's Integrated Satellite Tracking of Pollution (ISTOP) program, we use spills observed in Canadian waters to demonstrate the investigative value of augmenting spill detections with temporally sequenced vessel and spill tracking information.

  13. Stability of Thin-Walled Tubes Under Torsion

    NASA Technical Reports Server (NTRS)

    Donnell, L H

    1935-01-01

    In this report a theoretical solution is developed for the torsion on a round thin-walled tube for which the walls become unstable. The results of this theory are given by a few simple formulas and curves which cover all cases. The differential equations of equilibrium are derived in a simpler form than previously found, it being shown that many items can be neglected.

  14. Use of positron emission tomography (PET) for the diagnosis of large-vessel vasculitis.

    PubMed

    Loricera, J; Blanco, R; Hernández, J L; Martínez-Rodríguez, I; Carril, J M; Lavado, C; Jiménez, M; González-Vela, C; González-Gay, M Á

    2015-01-01

    The term vasculitis encompasses a heterogeneous group of diseases that share the presence of inflammatory infiltrates in the vascular wall. The diagnosis of large-vessel vasculitis is often a challenge because the presenting clinical features are nonspecific in many cases and they are often shared by different types of autoimmune and inflammatory diseases including other systemic vasculitides. Moreover, the pathogenesis of large-vessel vasculitis is not fully understood. Nevertheless, the advent of new imaging techniques has constituted a major breakthrough to establish an early diagnosis and a promising tool to monitor the follow-up of patients with largevessel vasculitis. This is the case of the molecular imaging with the combination of positron emission tomography with computed tomography (PET/CT) using different radiotracers, especially the (18)F-fluordeoxyglucose ((18)F-FDG). In this review we have focused on the contribution of (18)F-FDG PET in the diagnosis of large-vessel vasculitis. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  15. Elevated Cell Wall Serine in Pleiotropic Staphylococcal Mutants

    PubMed Central

    Korman, Ruth Z.

    1966-01-01

    Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Elevated cell wall serine in pleiotropic staphylococcal mutants. J. Bacteriol. 92:762–768. 1966.—Physically purified cell walls were prepared from two staphylococcal strains and from pleiotropic variants derived from them. The quantitative amino acid and amino sugar content of these walls is reported. The pleiotypes, which are identified culturally by their failure to elaborate coagulase, their resistance to bacteriophage, and their sensitivity to mannitol, have altered molar ratios of amino acids and amino sugars in their cell walls. In comparison with lysine content, the serine content of the mutant wall is elevated and the glycine content is reduced. The glucosamine content is reduced also. It is postulated that the pleiotropic mutants possess an altered cell wall biosynthetic pathway. Images PMID:5922547

  16. A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity Under Pressurized Thermal Shock Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, C.E.

    2001-01-29

    Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This reportmore » serves as a summary of those experiments, and provides a guide to references for detailed information.« less

  17. Investigation of the design of a metal-lined fully wrapped composite vessel under high internal pressure

    NASA Astrophysics Data System (ADS)

    Kalaycıoğlu, Barış; Husnu Dirikolu, M.

    2010-09-01

    In this study, a Type III composite pressure vessel (ISO 11439:2000) loaded with high internal pressure is investigated in terms of the effect of the orientation of the element coordinate system while simulating the continuous variation of the fibre angle, the effect of symmetric and non-symmetric composite wall stacking sequences, and lastly, a stacking sequence evaluation for reducing the cylindrical section-end cap transition region stress concentration. The research was performed using an Ansys® model with 2.9 l volume, 6061 T6 aluminium liner/Kevlar® 49-Epoxy vessel material, and a service internal pressure loading of 22 MPa. The results show that symmetric stacking sequences give higher burst pressures by up to 15%. Stacking sequence evaluations provided a further 7% pressure-carrying capacity as well as reduced stress concentration in the transition region. Finally, the Type III vessel under consideration provides a 45% lighter construction as compared with an all metal (Type I) vessel.

  18. The plant cell wall in the feeding sites of cyst nematodes.

    PubMed

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  19. Does Mechanical Thrombectomy in Acute Embolic Stroke Have Long-term Side Effects on Intracranial Vessels? An Angiographic Follow-up Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurre, Wiebke, E-mail: w.kurre@klinikum-stuttgart.de; Perez, Marta Aguilar; Horvath, Diana

    Purpose. Mechanical thrombectomy (mTE) proved to be effective treating acute vessel occlusions with an acceptable rate of procedural complications. Potential long-term side effects of the vessel wall trauma caused by mechanical irritation of the endothelium are unknown up to now. Methods. From a retrospectively established database of 640 acute stroke treatments, we selected 261 patients with 265 embolic vessel occlusions treated successfully by mTE without permanent implantation of a stent. Analysis comprised the type of devices used and the number of passes performed. Digital subtraction angiography immediately after treatment was evaluated for vasospasm, dissection, and extravasation. Control angiographic images weremore » evaluated for any morphological change compared to the immediate posttreatment angiographic run. Results. Recanalization was achieved with a median of one (range 1-10) mTE maneuvers. Vasospasm occurred in 69 territories (26.0 %) and was treated with glyceroltrinitrate in three. Dissection was observed in one vessel (0.4 %). Intraprocedural hemorrhage in two patients (0.8 %) was either wire or device induced. Follow-up digital subtraction angiography was available for 117 territories after a median of 107 days, revealing target vessel occlusion in one segment (0.9 %) and a de novo stenosis of four segments (3.4 %). All findings were clinically asymptomatic. Posttreatment vasospasm was more frequent in patients with de novo stenosis and occlusion (p = 0.038). Conclusion. De novo stenoses and occlusions occur in a small proportion of patients after mTE. Because all lesions were clinically asymptomatic, this finding does not affect the overall benefit of the treatment. Vasospasm may predict late vessel wall changes.« less

  20. Development of blood vessel searching system for HMS

    NASA Astrophysics Data System (ADS)

    Kandani, Hirofumi; Uenoya, Toshiyuki; Uetsuji, Yasutomo; Nakamachi, Eiji

    2008-08-01

    In this study, we develop a new 3D miniature blood vessel searching system by using near-infrared LED light, a CMOS camera module with an image processing unit for a health monitoring system (HMS), a drug delivery system (DDS) which requires very high performance for automatic micro blood volume extraction and automatic blood examination. Our objective is to fabricate a highly reliable micro detection system by utilizing image capturing, image processing, and micro blood extraction devices. For the searching system to determine 3D blood vessel location, we employ the stereo method. The stereo method is a common photogrammetric method. It employs the optical path principle to detect 3D location of the disparity between two cameras. The principle for blood vessel visualization is derived from the ratio of hemoglobin's absorption of the near-infrared LED light. To get a high quality blood vessel image, we adopted an LED, with peak a wavelength of 940nm. The LED is set on the dorsal side of the finger and it irradiates the human finger. A blood vessel image is captured by a CMOS camera module, which is set below the palmer side of the finger. 2D blood vessel location can be detected by the luminance distribution of a one pixel line. To examine the accuracy of our detecting system, we carried out experiments using finger phantoms with blood vessel diameters of 0.5, 0.75, 1.0mm, at the depths of 0.5 ~ 2.0 mm from the phantom's surface. The experimental results of the estimated depth obtained by our detecting system shows good agreements with the given depths, and the viability of this system is confirmed.

  1. Evaluation of Impact Damage to the Burster Detonation Vessel Caused by Fragments from a Drained M121A1 Chemical Munition Detonated with an Initiation Charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KIPP, MARLIN E.

    2001-12-01

    Explosive charges placed on the fuze end of a drained chemical munition are expected to be used as a means to destroy the fuze and burster charges of the munition. Analyses are presented to evaluate the effect of these additional initiation charges on the fragmentation characteristics for the M121A1 155mm chemical munition, modeled with a T244 fuze attached, and to assess the consequences of these fragment impacts on the walls of a containment chamber--the Burster Detonation Vessel. A numerical shock physics code (CTH) is used to characterize the mass and velocity of munition fragments. Both two- and three-dimensional simulations ofmore » the munition have been completed in this study. Based on threshold fragment velocity/mass results drawn from both previous and current analyses, it is determined that under all fragment impact conditions from the munition configurations considered in this study, no perforation of the inner chamber wall will occur, and the integrity of the Burster Detonation Vessel is retained. However, the munition case fragments have sufficient mass and velocity to locally damage the surface of the inner wall of the containment vessel.« less

  2. Unloading oxygen in a capillary vessel under a pathological condition.

    PubMed

    Escobar, C; Méndez, F

    2008-10-01

    In this work, we study theoretically the unloading of oxygen from a hemoglobin molecule to the wall of a typical capillary vessel, considering that the hemoglobin under pathological conditions, obeys the rheological Maxwell model. Based on recent experimental evidences in hypertension, we consider that the red blood cells (RBCs) are composed by a single continuous medium in contrast with the classical particulate or discrete RBC models, which are only valid under normal physiological conditions. The analysis considers the hemodynamic interactions between the plasma and the hemoglobin, both circulating in a long horizontal capillary. We apply numerical and analytical methods to obtain the main fluid-dynamic characteristics for both fluids in the limit of low Reynolds and Womersley numbers. A diffusion boundary layer formulation for the oxygen transport in the combined plasma-hemoglobin core region is presented. The main aspects derived are the time and spatial evolution of the membrane. The hemoglobin and plasma velocities and the pressure distributions are shown. For the oxygen unloading the results are the oxy-hemoglobin saturation, the oxygen flux and the oxygen concentration in the cell-free plasma layer. The volume fraction of red blood cells and the Strouhal number have a great influence on the hemodynamic interactions.

  3. Vessel-Specific Reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed ccr1 Mutants Restores Vessel and Xylary Fiber Integrity and Increases Biomass1[OPEN

    PubMed Central

    Özparpucu, Merve

    2018-01-01

    Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars due to the presence of lignin. To render lignocellulosic biomass a suitable feedstock for the bio-based economy, plants can be engineered to have decreased amounts of lignin. However, engineered plants with the lowest amounts of lignin exhibit collapsed vessels and yield penalties. Previous efforts were not able to fully overcome this phenotype without settling in sugar yield upon saccharification. Here, we reintroduced CINNAMOYL-COENZYME A REDUCTASE1 (CCR1) expression specifically in the protoxylem and metaxylem vessel cells of Arabidopsis (Arabidopsis thaliana) ccr1 mutants. The resulting ccr1 ProSNBE:CCR1 lines had overcome the vascular collapse and had a total stem biomass yield that was increased up to 59% as compared with the wild type. Raman analysis showed that monolignols synthesized in the vessels also contribute to the lignification of neighboring xylary fibers. The cell wall composition and metabolome of ccr1 ProSNBE:CCR1 still exhibited many similarities to those of ccr1 mutants, regardless of their yield increase. In contrast to a recent report, the yield penalty of ccr1 mutants was not caused by ferulic acid accumulation but was (largely) the consequence of collapsed vessels. Finally, ccr1 ProSNBE:CCR1 plants had a 4-fold increase in total sugar yield when compared with wild-type plants. PMID:29158331

  4. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review.

    PubMed

    Ma, Jun; Zhao, Nan; Betts, Lexxus; Zhu, Donghui

    2016-09-01

    Biodegradable magnesium (Mg) alloy stents are the most promising next generation of bio-absorbable stents. In this article, we summarized the progresses on the in vitro studies, animal testing and clinical trials of biodegradable Mg alloy stents in the past decades. These exciting findings led us to propose the importance of the concept "bio-adaption" between the Mg alloy stent and the local tissue microenvironment after implantation. The healing responses of stented blood vessel can be generally described in three overlapping phases: inflammation, granulation and remodeling. The ideal bio-adaption of the Mg alloy stent, once implanted into the blood vessel, needs to be a reasonable function of the time and the space/dimension. First, a very slow degeneration of mechanical support is expected in the initial four months in order to provide sufficient mechanical support to the injured vessels. Although it is still arguable whether full mechanical support in stented lesions is mandatory during the first four months after implantation, it would certainly be a safety design parameter and a benchmark for regulatory evaluations based on the fact that there is insufficient human in vivo data available, especially the vessel wall mechanical properties during the healing/remodeling phase. Second, once the Mg alloy stent being degraded, the void space will be filled by the regenerated blood vessel tissues. The degradation of the Mg alloy stent should be 100% completed with no residues, and the degradation products (e.g., ions and hydrogen) will be helpful for the tissue reconstruction of the blood vessel. Toward this target, some future research perspectives are also discussed.

  5. [Hemodynamic phenomena in retrobulhar and eyeball vessels].

    PubMed

    Modrzejewska, Monika

    2011-01-01

    The purpose of this review was to evaluate factors connected with blood flow and indices regulating vascular diameter and some parameters influencing retrobulbar circulation such as type of vascular resistance, anatomical structure of vascular wall and vessel lumen. Neurogenic and angiogenic factors, rheological blood composition, presence of anatomical and pathological obstructions on blood flow pathway as well as degree of development of collateral circulation pathways--have influence on the volume and blood flow velocity in eyeball. There were discussed bulbar circulation hemodynamics, emphasizing the importance of perfusion pressure. The role of risk factors was underlined for pathological lesions in vessels supplying blood to eyeball and in ophthalmic artery (OA) and its collaterals, in central retinal artery (CRA) as well as posterior ciliary arteries (PCAs), and in venous system carrying away blood from eye. IN CONCLUSION--the results of many studies of retrobulbar blood flow in different types of ophthalmic diseases of the vascular etiopathogenesis indicate that registry of the mean values of blood flow parameters and vascular resistance indices parallel to measurement of blood flow spectrum in OA, CRA, PCAs arteries, might contribute much information to explain or to evaluate nature of pathological changes in retinal and choroidal circulation.

  6. A simple design for microwave assisted digestion vessel with low reagent consumption suitable for food and environmental samples

    NASA Astrophysics Data System (ADS)

    Gholami, Mehrdad; Behkami, Shima; Zain, Sharifuddin Md.; Bakirdere, Sezgin

    2016-11-01

    The objective of this work is to prepare a cost-effective, low reagent consumption and high performance polytetrafluoroethylene (PTFE) vessel that is capable to work in domestic microwave for digesting food and environmental samples. The designed vessel has a relatively thicker wall compared to that of commercial vessels. In this design, eight vessels are placed in an acrylonitrile butadiene styrene (ABS) holder to keep them safe and stable. This vessel needs only 2.0 mL of HNO3 and 1.0 mL H2O2 to digest 100 mg of biological sample. The performance of this design is then evaluated with an ICP-MS instrument in the analysis of the several NIST standard reference material of milk 1849a, rice flour 1568b, spinach leave 1570a and Peach Leaves 1547 in a domestic microwave oven with inverter technology. Outstanding agreement to (SRM) values are observed by using the suggested power to time microwave program, which simulates the reflux action occurring in this closed vessel. Taking into account the high cost of commercial microwave vessels and the volume of chemicals needed for various experiments (8-10 mL), this simple vessel is cost effective and suitable for digesting food and environmental samples.

  7. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s...

  8. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s...

  9. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s...

  10. 46 CFR 42.05-63 - Ship(s) and vessel(s).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Ship(s) and vessel(s). 42.05-63 Section 42.05-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-63 Ship(s) and vessel(s). The terms ship(s...

  11. Development of helium electron cyclotron wall conditioning on TCV

    NASA Astrophysics Data System (ADS)

    Douai, D.; Goodman, T.; Isayama, A.; Fukumoto, M.; Wauters, T.; Sozzi, C.; Coda, S.; Blanchard, P.; Figini, L.; Garavaglia, S.; Miyata, Y.; Moro, A.; Ricci, D.; Silva, M.; Theiler, C.; Vartanian, S.; Verhaegh, K.; the EUROfusion MST1 Team; the TCV Team

    2018-02-01

    JT-60SA envisions electron cyclotron wall conditioning (ECWC), as wall conditioning method in the presence of the toroidal field to control fuel and impurity recycling and to improve plasma performance and reproducibility. This paper reports on Helium ECWC experiments on TCV in support of JT-60SA operation. Nearly sixty Helium conditioning discharges have been successfully produced in TCV, at a toroidal field B T  =  1.3 or 1.54 T, with gyrotrons at 82.7 GHz in X2 mode, mimicking ECWC operation in JT-60SA at the second harmonic of the EC wave. Discharge parameters were tuned in order to (i) minimize the time for the onset of ECWC plasmas, thus minimizing absorption of stray radiation by in-vessel components, (ii) improve discharge homogeneity by extending the discharge vertically and radially, and wall coverage, in particular of inboard surfaces where JT-60SA plasmas will be initiated, (iii) assess the efficiency of He-ECWC to deplete carbon walls from fuel. An optimized combination of vertical and radial magnetic fields, with amplitudes typically 0.1 to 0.6% of that of B T, has been determined, which resulted in lowest breakdown time, improved wall coverage and enhanced fuel removal. A standard ohmic D 2-plasma could be then sustained, whereas it would not have been possible without He-ECWC.

  12. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.

    PubMed

    Preis, Itan; Abramson, Miron; Shoseyov, Oded

    2018-04-01

    Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

  13. Newly developed surface coil for endoluminal MRI, depiction of pig gastric wall layers and vascular architecture in ex vivo study.

    PubMed

    Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato; Matsuoka, Yuichiro; Kuroda, Kagayaki; Gotanda, Masakazu; Sekino, Naomi; Kumamoto, Etsuko; Yoshida, Masaru; Inokuchi, Hideto; Azuma, Takeshi

    2009-01-01

    The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n = 4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study.

  14. Presence of a groove in the lateral wall of the human orbit.

    PubMed Central

    Santo Neto, H; Penteado, C V; de Carvalho, V C

    1984-01-01

    The presence of a groove in the lateral wall of the human orbit (Royle, 1973) was found in 45 of 100 orbits examined (45%). In 15 skulls the groove was present bilaterally. The groove probably lodges an anastomosis between the middle meningeal and infraorbital blood vessels. No reference to this groove was found in general anatomical texts. Images Fig. 1 PMID:6746401

  15. Determining the syringyl/guaiacyl lignin ratio in the vessel and fiber cell walls of transgenic Populus plants

    DOE PAGES

    Tolbert, Allison K.; Ma, Tao; Kalluri, Udaya C.; ...

    2016-06-20

    Observation of the spatial lignin distribution throughout the plant cell wall provides insight into the physicochemical characteristics of lignocellulosic biomass. The distribution of syringyl (S) and guaiacyl (G) lignin in cell walls of a genetically modified Populus deltoides and its corresponding empty vector control were analyzed with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and then mapped to determine the S/G lignin ratio of the sample surface and specific regions of interest (ROIs). The surface characterizations of transgenic cross-sections within 1 cm vertical distance of each other on the stem possess similar S/G lignin ratios. Furthermore, the analysis of the ROIsmore » determined that there was a 50% decrease in the S/G lignin ratio of the transgenic xylem fiber cell walls.« less

  16. Determining the syringyl/guaiacyl lignin ratio in the vessel and fiber cell walls of transgenic Populus plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, Allison K.; Ma, Tao; Kalluri, Udaya C.

    Observation of the spatial lignin distribution throughout the plant cell wall provides insight into the physicochemical characteristics of lignocellulosic biomass. The distribution of syringyl (S) and guaiacyl (G) lignin in cell walls of a genetically modified Populus deltoides and its corresponding empty vector control were analyzed with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and then mapped to determine the S/G lignin ratio of the sample surface and specific regions of interest (ROIs). The surface characterizations of transgenic cross-sections within 1 cm vertical distance of each other on the stem possess similar S/G lignin ratios. Furthermore, the analysis of the ROIsmore » determined that there was a 50% decrease in the S/G lignin ratio of the transgenic xylem fiber cell walls.« less

  17. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration

    PubMed Central

    Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F.; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung

    2017-01-01

    Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH)2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. PMID:28013101

  18. Anatomic distribution of nerves and microvascular density in the human anterior vaginal wall: prospective study.

    PubMed

    Li, Ting; Liao, Qinping; Zhang, Hong; Gao, Xuelian; Li, Xueying; Zhang, Miao

    2014-01-01

    The presence of the G-spot (an assumed erotic sensitive area in the anterior wall of the vagina) remains controversial. We explored the histomorphological basis of the G-spot. Biopsies were drawn from a 12 o'clock direction in the distal- and proximal-third areas of the anterior vagina of 32 Chinese subjects. The total number of protein gene product 9.5-immunoreactive nerves and smooth muscle actin-immunoreactive blood vessels in each specimen was quantified using the avidin-biotin-peroxidase assay. Vaginal innervation was observed in the lamina propria and muscle layer of the anterior vaginal wall. The distal-third of the anterior vaginal wall had significantly richer small-nerve-fiber innervation in the lamina propria than the proximal-third (p = 0.000) and in the vaginal muscle layer (p = 0.006). There were abundant microvessels in the lamina propria and muscle layer, but no small vessels in the lamina propria and few in the muscle layer. Significant differences were noted in the number of microvessels when comparing the distal- with proximal-third parts in the lamina propria (p = 0.046) and muscle layer (p = 0.002). Significantly increased density of nerves and microvessels in the distal-third of the anterior vaginal wall could be the histomorphological basis of the G-spot. Distal anterior vaginal repair could disrupt the normal anatomy, neurovascular supply and function of the G-spot, and cause sexual dysfunction.

  19. Time-dependent response of filamentary composite spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.

    1983-01-01

    A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.

  20. Histopathological analysis of cellular localization of cathepsins in abdominal aortic aneurysm wall.

    PubMed

    Lohoefer, Fabian; Reeps, Christian; Lipp, Christina; Rudelius, Martina; Zimmermann, Alexander; Ockert, Stefan; Eckstein, Hans-Henning; Pelisek, Jaroslav

    2012-08-01

    An important feature of abdominal aortic aneurysm (AAA) is the destruction of vessel wall, especially elastin and collagen. Besides matrix metalloproteinases, cathepsins are the most potent elastolytic enzymes. The expression of cathepsins with known elastolytic and collagenolytic activities in the individual cells within AAA has not yet been determined. The vessel wall of 32 AAA patients and 10 organ donors was analysed by immunohistochemistry for expression of cathepsins B, D, K, L and S, and cystatin C in all cells localized within AAA. Luminal endothelial cells (ECs) of AAA were positive for cathepsin D and partially for cathepsins B, K and S. Endothelial cells of the neovessels and smooth muscle cells in the media were positive for all cathepsins tested, especially for cathepsin B. In the inflammatory infiltrate all cathepsins were expressed in the following pattern: B > D = S > K = L. Macrophages showed the highest staining intensity for all cathepsins. Furthermore, weak overall expression of cystatin C was observed in all the cells localized in the AAA with the exception of the ECs. There is markedly increased expression of the various cathepsins within the AAA wall compared to healthy aorta. Our data are broadly consistent with a role for cathepsins in AAA; and demonstrate expression of cathepsins D, B and S in phagocytic cells in the inflammatory infiltrate; and also may reveal a role for cathepsin B in lymphocytes. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  1. Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP

    NASA Astrophysics Data System (ADS)

    Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.

    2017-10-01

    In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.

  2. High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-01-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.

  3. High-power piezoelectric acoustic-electric power feedthru for metal walls

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu

    2008-03-01

    Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall using elastic waves. This approach allows for the elimination of the need for holes through structures for cabling or electrical feed-thrus . The technology supplies power to electric equipment inside sealed containers, vacuum or pressure vessels, etc where holes in the wall are prohibitive or may result in significant performance degradation or requires complex designs. In the our previous work, 100-W of electric power was transferred through a metal wall by a small, piezoelectric device with a simple-structure. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-thru devices were analyzed by finite element modeling. An equivalent circuit model was developed to predict the characteristics of power transfer to different electric loads. Based on the analytical results, a prototype device was designed, fabricated and successfully demonstrated to transfer electric power at a level of 1-kW. Methods of minimizing plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this paper.

  4. Applications of a new wall function to turbulent flow computations

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.

    1986-01-01

    A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.

  5. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahni, Abha; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; Wang, Nadan

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reportedmore » that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.« less

  6. Correction-free pyrometry in radiant wall furnaces

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W. (Inventor)

    1994-01-01

    A specular, spherical, or near-spherical target is located within a furnace having inner walls and a viewing window. A pyrometer located outside the furnace 'views' the target through pyrometer optics and the window, and it is positioned so that its detector sees only the image of the viewing window on the target. Since this image is free of any image of the furnace walls, it is free from wall radiance, and correction-free target radiance is obtained. The pyrometer location is determined through a nonparaxial optical analysis employing differential optical ray tracing methods to derive a series of exact relations for the image location.

  7. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review

    PubMed Central

    Ma, Jun; Zhao, Nan; Betts, Lexxus; Zhu, Donghui

    2016-01-01

    Biodegradable magnesium (Mg) alloy stents are the most promising next generation of bio-absorbable stents. In this article, we summarized the progresses on the in vitro studies, animal testing and clinical trials of biodegradable Mg alloy stents in the past decades. These exciting findings led us to propose the importance of the concept “bio-adaption” between the Mg alloy stent and the local tissue microenvironment after implantation. The healing responses of stented blood vessel can be generally described in three overlapping phases: inflammation, granulation and remodeling. The ideal bio-adaption of the Mg alloy stent, once implanted into the blood vessel, needs to be a reasonable function of the time and the space/dimension. First, a very slow degeneration of mechanical support is expected in the initial four months in order to provide sufficient mechanical support to the injured vessels. Although it is still arguable whether full mechanical support in stented lesions is mandatory during the first four months after implantation, it would certainly be a safety design parameter and a benchmark for regulatory evaluations based on the fact that there is insufficient human in vivo data available, especially the vessel wall mechanical properties during the healing/remodeling phase. Second, once the Mg alloy stent being degraded, the void space will be filled by the regenerated blood vessel tissues. The degradation of the Mg alloy stent should be 100% completed with no residues, and the degradation products (e.g., ions and hydrogen) will be helpful for the tissue reconstruction of the blood vessel. Toward this target, some future research perspectives are also discussed. PMID:27698548

  8. Direct comparison of regulators of calcification between bone and vessels in humans.

    PubMed

    Schweighofer, N; Aigelsreiter, A; Trummer, O; Graf-Rechberger, M; Hacker, N; Kniepeiss, D; Wagner, D; Stiegler, P; Trummer, C; Pieber, T; Obermayer-Pietsch, B; Müller, H

    2016-07-01

    Calcification is not only physiologically present in bone but is a main pathophysiological process in vasculature, favouring cardiovascular diseases. Our aim was to investigate changes in the expression of calcification regulators during vascular calcification in bone and vasculature. Levels of gene expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), osteopontin (OPN), matrix gla protein (MGP), bone sialoprotein (BSP), SMAD6, and runt-related transcription factor 2 (RUNX2) were determined in bone, aorta, and external iliac artery tissue samples of transplant donors. Histological stages of atherosclerosis (AS) in vessels are defined as "no changes", "intima thickening", or "intima calcification". Patients' bone samples were subgrouped accordingly. We demonstrate that in vessels BSP and OPN expression significantly increased during intima thickening and decreased during intima calcification, whereas the expression of regulators of calcification did not significantly change in bone during intima thickening and intima calcification. At the stage of intima thickening, MGP, OPG, and SMAD6 expression and at stage of intima calcification only MGP expression was lower in bone than in vessel. The expression of BSP and RANKL was regulated in opposite ways in bone and vessels, whereas the expression of MGP, OC, RUNX2, and OPN was regulated in a tissue-specific manner. Our study is the first direct comparison of gene expression changes during AS progression in bone and vessels. Our results indicate that changes in the expression of regulators of calcification in the vessel wall as well as in bone occur early in the calcification process, even prior to deposition of calcium/phosphate precipitation. Copyright © 2016. Published by Elsevier Inc.

  9. Altering carbon allocation in hybrid poplar ( Populus alba × grandidentata ) impacts cell wall growth and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unda, Faride; Kim, Hoon; Hefer, Charles

    Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. For hybrid poplar (Populus alba 9 grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sectionsmore » of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. Additionally, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. Our results suggest that the over expression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.« less

  10. Altering carbon allocation in hybrid poplar ( Populus alba × grandidentata ) impacts cell wall growth and development

    DOE PAGES

    Unda, Faride; Kim, Hoon; Hefer, Charles; ...

    2017-03-04

    Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. For hybrid poplar (Populus alba 9 grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sectionsmore » of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. Additionally, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. Our results suggest that the over expression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.« less

  11. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Li, Bing; Chow, Tommy W. S.

    2013-09-01

    With the advent of new therapies and management strategies for carotid atherosclerosis, there is a parallel need for measurement tools or biomarkers to evaluate the efficacy of these new strategies. 3D ultrasound has been shown to provide reproducible measurements of plaque area/volume and vessel wall volume. However, since carotid atherosclerosis is a focal disease that predominantly occurs at bifurcations, biomarkers based on local plaque change may be more sensitive than global volumetric measurements in demonstrating efficacy of new therapies. The ultimate goal of this paper is to develop a biomarker that is based on the local distribution of vessel-wall-plus-plaque thickness change (VWT-Change) that has occurred during the course of a clinical study. To allow comparison between different treatment groups, the VWT-Change distribution of each subject must first be mapped to a standardized domain. In this study, we developed a technique to map the 3D VWT-Change distribution to a 2D standardized template. We then applied a feature selection technique to identify regions on the 2D standardized map on which subjects in different treatment groups exhibit greater difference in VWT-Change. The proposed algorithm was applied to analyse the VWT-Change of 20 subjects in a placebo-controlled study of the effect of atorvastatin (Lipitor). The average VWT-Change for each subject was computed (i) over all points in the 2D map and (ii) over feature points only. For the average computed over all points, 97 subjects per group would be required to detect an effect size of 25% that of atorvastatin in a six-month study. The sample size is reduced to 25 subjects if the average were computed over feature points only. The introduction of this sensitive quantification technique for carotid atherosclerosis progression/regression would allow many proof-of-principle studies to be performed before a more costly and longer study involving a larger population is held to confirm the treatment

  12. Mesoscale Simulation of Blood Flow in Small Vessels

    PubMed Central

    Bagchi, Prosenjit

    2007-01-01

    Computational modeling of blood flow in microvessels with internal diameter 20–500 μm is a major challenge. It is because blood in such vessels behaves as a multiphase suspension of deformable particles. A continuum model of blood is not adequate if the motion of individual red blood cells in the suspension is of interest. At the same time, multiple cells, often a few thousands in number, must also be considered to account for cell-cell hydrodynamic interaction. Moreover, the red blood cells (RBCs) are highly deformable. Deformation of the cells must also be considered in the model, as it is a major determinant of many physiologically significant phenomena, such as formation of a cell-free layer, and the Fahraeus-Lindqvist effect. In this article, we present two-dimensional computational simulation of blood flow in vessels of size 20–300 μm at discharge hematocrit of 10–60%, taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population comprising of as many as 2500 cells are simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell-free layer are studied. Results on the trajectory and velocity traces of the RBCs, and their fluctuations are presented. Also presented are the results on the plug-flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The numerical results also allow us to investigate the variation of apparent blood viscosity along the cross-section of a vessel. The computational results are compared with the experimental results. To the best of our knowledge, this article presents the first simulation to simultaneously consider a large ensemble of red blood cells and the cell deformation. PMID:17208982

  13. Vesselness propagation: a fast interactive vessel segmentation method

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Dachille, Frank; Harris, Gordon J.; Yoshida, Hiroyuki

    2006-03-01

    With the rapid development of multi-detector computed tomography (MDCT), resulting in increasing temporal and spatial resolution of data sets, clinical use of computed tomographic angiography (CTA) is rapidly increasing. Analysis of vascular structures is much needed in CTA images; however, the basis of the analysis, vessel segmentation, can still be a challenging problem. In this paper, we present a fast interactive method for CTA vessel segmentation, called vesselness propagation. This method is a two-step procedure, with a pre-processing step and an interactive step. During the pre-processing step, a vesselness volume is computed by application of a CTA transfer function followed by a multi-scale Hessian filtering. At the interactive stage, the propagation is controlled interactively in terms of the priority of the vesselness. This method was used successfully in many CTA applications such as the carotid artery, coronary artery, and peripheral arteries. It takes less than one minute for a user to segment the entire vascular structure. Thus, the proposed method provides an effective way of obtaining an overview of vascular structures.

  14. An engineering study of hybrid adaptation of wind tunnel walls for three-dimensional testing

    NASA Technical Reports Server (NTRS)

    Brown, Clinton; Kalumuck, Kenneth; Waxman, David

    1987-01-01

    Solid wall tunnels having only upper and lower walls flexing are described. An algorithm for selecting the wall contours for both 2 and 3 dimensional wall flexure is presented and numerical experiments are used to validate its applicability to the general test case of 3 dimensional lifting aircraft models in rectangular cross section wind tunnels. The method requires an initial approximate representation of the model flow field at a given lift with wallls absent. The numerical methods utilized are derived by use of Green's source solutions obtained using the method of images; first order linearized flow theory is employed with Prandtl-Glauert compressibility transformations. Equations are derived for the flexed shape of a simple constant thickness plate wall under the influence of a finite number of jacks in an axial row along the plate centerline. The Green's source methods are developed to provide estimations of residual flow distortion (interferences) with measured wall pressures and wall flow inclinations as inputs.

  15. Scenario based optimization of a container vessel with respect to its projected operating conditions

    NASA Astrophysics Data System (ADS)

    Wagner, Jonas; Binkowski, Eva; Bronsart, Robert

    2014-06-01

    In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  16. [Ultrastructure of the blood vessels and muscle fibers in the skeletal muscle of rats flown on the Kosmos-605 and Kosmos-782 biosatellites].

    PubMed

    Savik, Z F; Rokhlenko, K D

    1981-01-01

    Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.

  17. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation.

    PubMed

    Zana, F; Klein, J C

    2001-01-01

    This paper presents an algorithm based on mathematical morphology and curvature evaluation for the detection of vessel-like patterns in a noisy environment. Such patterns are very common in medical images. Vessel detection is interesting for the computation of parameters related to blood flow. Its tree-like geometry makes it a usable feature for registration between images that can be of a different nature. In order to define vessel-like patterns, segmentation is performed with respect to a precise model. We define a vessel as a bright pattern, piece-wise connected, and locally linear, mathematical morphology is very well adapted to this description, however other patterns fit such a morphological description. In order to differentiate vessels from analogous background patterns, a cross-curvature evaluation is performed. They are separated out as they have a specific Gaussian-like profile whose curvature varies smoothly along the vessel. The detection algorithm that derives directly from this modeling is based on four steps: (1) noise reduction; (2) linear pattern with Gaussian-like profile improvement; (3) cross-curvature evaluation; (4) linear filtering. We present its theoretical background and illustrate it on real images of various natures, then evaluate its robustness and its accuracy with respect to noise.

  18. A computational model of microbubble transport through a blood-filled vessel bifurcation

    NASA Astrophysics Data System (ADS)

    Calderon, Andres

    2005-11-01

    We are developing a novel gas embolotherapy technique to occlude blood vessels and starve tumors using gas bubbles that are produced by the acoustic vaporization of liquid perfluorocarbon droplets. The droplets are small enough to pass through the microcirculation, but the subsequent bubbles are large enough to lodge in vessels. The uniformity of tumor infarction depends on the transport the blood-borne bubbles before they stick. We examine the transport of a semi-infinite bubble through a single bifurcation in a liquid-filled two-dimensional channel. The flow is governed by the conservation of fluid mass and momentum equations. Reynolds numbers in the microcirculation are small, and we solve the governing equations using the boundary element method. The effect of gravity on bubble splitting is investigated and results are compared with our previous bench top experiments and to a quasi-steady one-dimensional analysis. The effects of daughter tube outlet pressures and bifurcation geometry are also considered. The findings suggest that slow moving bubbles will favor the upper branch of the bifurcation, but that increasing the bubble speed leads to more even splitting. It is also found that some bifurcation geometries and flow conditions result in severe thinning of the liquid film separating the bubble from the wall, suggesting the possibility bubble-wall contact. This work is supported by NSF grant BES-0301278 and NIH grant EB003541.

  19. Device for inspecting vessel surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.

    1995-12-12

    A portable, remotely-controlled inspection crawler is described for use along the walls of tanks, vessels, piping and the like. The crawler can be configured to use a vacuum chamber for supporting itself on the inspected surface by suction or a plurality of magnetic wheels for moving the crawler along the inspected surface. The crawler is adapted to be equipped with an ultrasonic probe for mapping the structural integrity or other characteristics of the surface being inspected. Navigation of the crawler is achieved by triangulation techniques between a signal transmitter on the crawler and a pair of microphones attached to amore » fixed, remote location, such as the crawler`s deployment unit. The necessary communications are established between the crawler and computers external to the inspection environment for position control and storage and/or monitoring of data acquisition. 5 figs.« less

  20. Effects of simulated weightlessness on fish otolith growth: Clinostat versus Rotating-Wall Vessel

    NASA Astrophysics Data System (ADS)

    Brungs, Sonja; Hauslage, Jens; Hilbig, Reinhard; Hemmersbach, Ruth; Anken, Ralf

    2011-09-01

    Stimulus dependence is a general feature of developing sensory systems. It has been shown earlier that the growth of inner ear heavy stones (otoliths) of late-stage Cichlid fish ( Oreochromis mossambicus) and Zebrafish ( Danio rerio) is slowed down by hypergravity, whereas microgravity during space flight yields an opposite effect, i.e. larger than 1 g otoliths, in Swordtail ( Xiphophorus helleri) and in Cichlid fish late-stage embryos. These and related studies proposed that otolith growth is actively adjusted via a feedback mechanism to produce a test mass of the appropriate physical capacity. Using ground-based techniques to apply simulated weightlessness, long-term clinorotation (CR; exposure on a fast-rotating Clinostat with one axis of rotation) led to larger than 1 g otoliths in late-stage Cichlid fish. Larger than normal otoliths were also found in early-staged Zebrafish embryos after short-term Wall Vessel Rotation (WVR; also regarded as a method to simulate weightlessness). These results are basically in line with the results obtained on Swordtails from space flight. Thus, the growth of fish inner ear otoliths seems to be an appropriate parameter to assess the quality of "simulated weightlessness" provided by a particular simulation device. Since CR and WVR are in worldwide use to simulate weightlessness conditions on ground using small-sized specimens, we were prompted to directly compare the effects of CR and WVR on otolith growth using developing Cichlids as model organism. Animals were simultaneously subjected to CR and WVR from a point of time when otolith primordia had begun to calcify both within the utricle (gravity perception) and the saccule (hearing); the respective otoliths are the lapilli and the sagittae. Three such runs were subsequently carried out, using three different batches of fish. The runs were discontinued when the animals began to hatch. In the course of all three runs performed, CR led to larger than normal lapilli, whereas WVR

  1. Towards cavitation-enhanced permeability in blood vessel on a chip

    NASA Astrophysics Data System (ADS)

    De Luca, R.; Silvani, G.; Scognamiglio, C.; Sinibaldi, G.; Peruzzi, G.; Chinappi, M.; Kiani, M. F.; Casciola, C. M.

    2017-08-01

    The development of targeted delivery systems releasing pharmaceutical agents directly at the desired site of action may improve their therapeutic efficiency while minimizing damage to healthy tissues, toxicity to the patient and drug waste. In this context, we have developed a bio-inspired microdevice mimicking the tumour microvasculature which represents a valuable tool for assessing the enhancement of blood vessel permeability due to cavitation. This novel system allows us to investigate the effects of ultrasound-driven microbubbles that temporarily open the endothelial intercellular junctions allowing drug to extravasate blood vessels into tumour tissues. The blood vessel on a chip consists of a tissue chamber and two independent vascular channels (width 200 µm, height 100 µm, length 2762 µm) cultured with endothelial cells placed side-by-side and separated by a series of 3 µm pores. Its geometry and dimensions mimic the three-dimensional morphology, size and flow characteristics of microvessels in vivo. The early stage of this project had a twofold objective: 1. To define the protocol for culturing of Human Umbilical Vein Endothelial Cells (HUVECs) within the vascular channel; 2. To develop a fluorescence based microscopy technique for measuring permeability. We have developed a reliable and reproducible protocol to culture endothelial cells within the artificial vessels in a realistic manner: HUVECs show the typical elongated shape in the direction of flow, exhibit tight junction formation and form a continuous layer with a central lumen that completely covers the channels wall. As expected, the permeability of cell-free device is higher than the one cultured with HUVECs in the vascular channels. The proposed blood vessel on a chip and the permeability measurement protocol have a significant potential to allow for the study of cavitation-enhanced permeability of the endothelium and improve efficiency in screening drug delivery systems.

  2. A study on the radiation damage and recovery of neutron irradiated vessel steel using magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Park, Duck-Gun; Jeong, Hee-Tae; Hong, Jun-Hwa

    1999-04-01

    The radiation damage and thermal recovery characteristic of neutron irradiated SA508-3 reactor pressure vessel steel specimens have been investigated. Two recovery stages were identified from the results of hardness measurements during isochronal annealing and the mechanism responsible for the two stages was explained by using the results of Barkhausen noise measurement on the basis of the interaction between radiation induced defects and the magnetic domain wall. The coercivity was not changed by neutron irradiation, whereas the maximum magnetic induction increased. Barkhausen noise parameters associated with the domain wall motion were decreased by neutron irradiation and recovered with subsequent heat treatments.

  3. Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Jelinek, Herbert F.; Cree, Michael J.; Leandro, Jorge J. G.; Soares, João V. B.; Cesar, Roberto M.; Luckie, A.

    2007-05-01

    Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73-0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.

  4. Quantification and Control of Wall Effects in Porous Media Experiments

    NASA Astrophysics Data System (ADS)

    Roth, E. J.; Mays, D. C.; Neupauer, R.; Crimaldi, J. P.

    2017-12-01

    Fluid flow dynamics in porous media are dominated by media heterogeneity. This heterogeneity can create preferential pathways in which local seepage velocities dwarf system seepage velocities, further complicating an already incomplete understanding of dispersive processes. In physical models of porous media flows, apparatus walls introduce preferential flow paths (i.e., wall effects) that may overwhelm other naturally occurring preferential pathways within the apparatus, leading to deceptive results. We used planar laser-induced fluorescence (PLIF) in conjunction with refractive index matched (RIM) porous media and pore fluid to observe fluid dynamics in the porous media, with particular attention to the region near the apparatus walls in a 17 cm x 8 cm x 7 cm uniform flow cell. Hexagonal close packed spheres were used to create an isotropic, homogenous porous media field in the interior of the apparatus. Visualization of the movement of a fluorescent dye revealed the influence of the wall in creating higher permeability preferential flow paths in an otherwise homogenous media packing. These preferential flow paths extended approximately one half of one sphere diameter from the wall for homogenously packed regions, with a quickly diminishing effect on flow dynamics for homogenous media adjacent to the preferential pathway, but with major influence on flow dynamics for adjoining heterogeneous regions. Multiple approaches to mitigate wall effects were investigated, and a modified wall was created such that the fluid dynamics near the wall mimics the fluid dynamics within the homogenous porous media. This research supports the design of a two-dimensional experimental apparatus that will simulate engineered pumping schemes for use in contaminant remediation. However, this research could benefit the design of fixed bed reactors or other engineering challenges in which vessel walls contribute to unwanted preferential flow.

  5. Thermal Spore Exposure Vessels

    NASA Technical Reports Server (NTRS)

    Beaudet, Robert A.; Kempf, Michael; Kirschner, Larry

    2006-01-01

    Thermal spore exposure vessels (TSEVs) are laboratory containers designed for use in measuring rates of death or survival of microbial spores at elevated temperatures. A major consideration in the design of a TSEV is minimizing thermal mass in order to minimize heating and cooling times. This is necessary in order to minimize the number of microbes killed before and after exposure at the test temperature, so that the results of the test accurately reflect the effect of the test temperature. A typical prototype TSEV (see figure) includes a flat-bottomed stainless-steel cylinder 4 in. (10.16 cm) long, 0.5 in. (1.27 cm) in diameter, having a wall thickness of 0.010 plus or minus 0.002 in. (0.254 plus or minus 0.051 mm). Microbial spores are deposited in the bottom of the cylinder, then the top of the cylinder is closed with a sterile rubber stopper. Hypodermic needles are used to puncture the rubber stopper to evacuate the inside of the cylinder or to purge the inside of the cylinder with a gas. In a typical application, the inside of the cylinder is purged with dry nitrogen prior to a test. During a test, the lower portion of the cylinder is immersed in a silicone-oil bath that has been preheated to and maintained at the test temperature. Test temperatures up to 220 C have been used. Because the spores are in direct contact with the thin cylinder wall, they quickly become heated to the test temperature.

  6. Histomorphometric comparative study of blood vessels and their pattern in follicular cyst, odontogenic keratocyst, and ameloblastoma.

    PubMed

    Seifi, Safora; Feizi, Farideh; Khafri, Thoraya; Aram, Mehrdad

    2013-03-01

    The present study aimed at assessment and histomorphometric analysis of intratumoral and peritumoral (cystic) blood vessels in odontogenic lesions and their pattern on their clinical behavior by immunohistochemistry and morphometry. In a descriptive and analytical cross-sectional study, 45 paraffin blocks of ameloblastoma, odontogenic keratocyst, and follicular cyst were selected and stained immunohistochemically for CD34. In each slide, images of 3 microscopic fields with the highest microvessel density in intratumoral and peritumoral (cystic) areas were captured at 40× magnification with attached camera system. Inner vascular diameter (IVD) and outer vascular diameter (OVD), cross-sectional area (CSA), and the wall thickness (WT) of the vessels were measured with Motic Plus 2 software. The vascular pattern in odontogenic lesions was analyzed. Outer vascular diameter, IVD, and CSA of the vessels in peritumoral (cystic) areas were greater in ameloblastoma than keratocyst (P = 0.001) and follicular cyst (P < 0.001). However, WT of the blood vessels did not show any significant statistical difference among the 3 odontogenic lesions (P = 0.05). The differences in OVD, IVD (P = 0.8), CSA (P = 0.6), and WT (P = 0.4) of the blood vessels in intratumoral (cystic) areas were not statistically significant. The blood vessel pattern was circumferential in ameloblastoma, and it was directional in keratocyst and follicular cyst. Morphometric specifications of blood vessels (IVD, OVD, CSA) and their pattern in peritumoral (cystic) areas may influence the aggressive clinical behavior of ameloblastoma in comparison with keratocyst and follicular cyst.

  7. Monitoring and controlling the dissolved oxygen (DO) concentration within the high aspect ratio vessel (HARV).

    PubMed

    Saarinen, Mark A; Reece, Julie S; Arnold, Mark A; Murhammer, David W

    2003-01-01

    A probe-type oxygen sensor was developed utilizing a radioluminescent (RL)-based light source and a ruthenium-based sensing chemistry for monitoring the dissolved oxygen (DO) concentration in a modified version of the NASA-designed high aspect ratio vessel (HARV), a batch rotating wall vessel. This sensor provided the means to monitor the DO concentration in the HARV without influencing the flow pattern, thereby retaining the low shear HARV environment conducive to the formation of 3-dimensional cell aggregates. This sensor lost significant signal as a result of exposure to the first three autoclave cycles, but only minimal change in signal was observed following exposure to subsequent autoclave cycles. A new calibration model requiring only one fitted parameter was developed that accurately fit data over the entire range from 0% to 100% oxygen saturation. The ability for DO concentration control within the vessel was demonstrated by using this sensor to monitor the DO concentration inside the HARV.

  8. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis.

    PubMed

    Ruel, Katia; Nishiyama, Yoshiharu; Joseleau, Jean-Paul

    2012-09-01

    In the cell walls of higher plants, cellulose chains are present in crystalline microfibril, with an amorphous part at the surface, or present as amorphous material. To assess the distribution and relative occurrence of the two forms of cellulose in the inflorescence stem of Arabidopsis, we used two carbohydrate-binding modules, CBM3a and CBM28, specific for crystalline and amorphous cellulose, respectively, with immunogold detection in TEM. The binding of the two CBMs displayed specific patterns suggesting that the synthesis of cellulose leads to variable nanodomains of cellulose structures according to cell type. In developing cell walls, only CBM3a bound significantly to the incipient primary walls, indicating that at the onset of its deposition cellulose is in a crystalline structure. As the secondary wall develops, the labeling with both CBMs becomes more intense. The variation of the labeling pattern by CBM3a between transverse and longitudinal sections appeared related to microfibril orientation and differed between fibers and vessels. Although the two CBMs do not allow the description of the complete status of cellulose microstructures, they revealed the dynamics of the deposition of crystalline and amorphous forms of cellulose during wall formation and between cell types adapting cellulose microstructures to the cell function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Automatic classification of retinal vessels into arteries and veins

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; van Ginneken, Bram; Abràmoff, Michael D.

    2009-02-01

    Separating the retinal vascular tree into arteries and veins is important for quantifying vessel changes that preferentially affect either the veins or the arteries. For example the ratio of arterial to venous diameter, the retinal a/v ratio, is well established to be predictive of stroke and other cardiovascular events in adults, as well as the staging of retinopathy of prematurity in premature infants. This work presents a supervised, automatic method that can determine whether a vessel is an artery or a vein based on intensity and derivative information. After thinning of the vessel segmentation, vessel crossing and bifurcation points are removed leaving a set of vessel segments containing centerline pixels. A set of features is extracted from each centerline pixel and using these each is assigned a soft label indicating the likelihood that it is part of a vein. As all centerline pixels in a connected segment should be the same type we average the soft labels and assign this average label to each centerline pixel in the segment. We train and test the algorithm using the data (40 color fundus photographs) from the DRIVE database1 with an enhanced reference standard. In the enhanced reference standard a fellowship trained retinal specialist (MDA) labeled all vessels for which it was possible to visually determine whether it was a vein or an artery. After applying the proposed method to the 20 images of the DRIVE test set we obtained an area under the receiver operator characteristic (ROC) curve of 0.88 for correctly assigning centerline pixels to either the vein or artery classes.

  10. Neuroradiologic Characteristics of Primary Angiitis of the Central Nervous System According to the Affected Vessel Size.

    PubMed

    Thaler, Christian; Kaufmann-Bühler, Ann-Katrin; Gansukh, Tserenchunt; Gansukh, Amarjargal; Schuster, Simon; Bachmann, Henrike; Thomalla, Götz; Magnus, Tim; Matschke, Jakob; Fiehler, Jens; Siemonsen, Susanne

    2017-09-05

    Magnetic resonance imaging (MRI) has an important impact in diagnosing primary angiitis of the central nervous system (PACNS). However, neuroradiologic findings may vary immensely, making an easy and definite diagnosis challenging. In this retrospective, single center study, we analyzed neuroradiologic findings of patients with PACNS diagnosed at our hospital between 2009 and 2014. Furthermore, we classified patients according to the affected vessel size and compared imaging characteristics between the subgroups. Thirty-three patients were included (mean age 43 [±15.3] years, 17 females) in this study. Patients with positive angiographic findings were classified as either medium or large vessel PACNS and presented more ischemic lesions (p < 0.001) and vessel wall enhancement (p = 0.017) compared to patients with small vessel PACNS. No significant differences were detected for the distribution of contrast-enhancing lesions (parenchymal or leptomeningeal), hemorrhages, or lesions with mass effect. Twenty-five patients underwent brain biopsy. Patients with medium or large vessel PACNS were less likely to have positive biopsy results. It is essential to differentiate between small and medium/large vessel PACNS since results in MRI, digital subtraction angiography and brain biopsy may differ immensely. Since image quality of MR scanners improves gradually and brain biopsy may often be nonspecific or negative, our results emphasize the importance of MRI/MRA in the diagnosis process of PACNS.

  11. Dynamical clustering of red blood cells in capillary vessels.

    PubMed

    Boryczko, Krzysztof; Dzwinel, Witold; Yuen, David A

    2003-02-01

    We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.

  12. 33 CFR 83.25 - Sailing vessels underway and vessels under oars (Rule 25).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sailing vessels underway and... OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Lights and Shapes § 83.25 Sailing vessels underway and vessels under oars (Rule 25). (a) Sailing vessels underway. A sailing vessel underway shall...

  13. 33 CFR 83.25 - Sailing vessels underway and vessels under oars (Rule 25).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sailing vessels underway and... OF HOMELAND SECURITY INLAND NAVIGATION RULES RULES Lights and Shapes § 83.25 Sailing vessels underway and vessels under oars (Rule 25). (a) Sailing vessels underway. A sailing vessel underway shall...

  14. Modeling the effect of reflection from metallic walls on spectroscopic measurements.

    PubMed

    Zastrow, K-D; Keatings, S R; Marot, L; O'Mullane, M G; de Temmerman, G

    2008-10-01

    A modification of JET is presently being prepared to bring operational experience with ITER-like first wall (Be) and divertor (W) materials, geometry and plasma parameters. Reflectivity measurements of JET sample tiles have been performed and the data are used within a simplified model of the JET and ITER vessels to predict additional contributions to quantitative spectroscopic measurements. The most general method to characterize reflectivity is the bidirectional reflection distribution function (BRDF). For extended sources however, such as bremsstrahlung and edge emission of fuel and intrinsic impurities, the results obtained in the modeling are almost as accurate if the total reflectivity with ideal Lambertian angular dependence is used. This is in contrast to the experience in other communities, such as optical design, lighting design, or rendering who deal mostly with pointlike light sources. This result is so far based on a very limited set of measurements and will be reassessed when more detailed BRDF measurements of JET tiles have been made. If it is true it offers the possibility of in situ monitoring of the reflectivity of selected parts of the wall during exposure to plasma operation, while remeasurement of the BRDF is performed during interventions. For a closed vessel structure such as ITER, it is important to consider multiple reflections. This makes it more important to represent the whole of the vessel reasonably accurately in the model, which on the other hand is easier to achieve than for the more complex internal structure of JET. In both cases the dominant contribution is from the first reflection, and a detailed model of the areas intersected by lines of sight of diagnostic interest is required.

  15. A video-angiometer for simultaneous and continuous measurement of inner and outer vessel diameters. Technical report.

    PubMed

    Assmann, R; Henrich, H

    1978-09-29

    A system is described for continuously measuring vessel diameters. It bases on the evaluation of video signal differences of a video camera which are induced by light intensity differences (grey levels) caused by the vascular wall structures. The system is electronically linear, automatically measuring and in addition eyeball controlled by the human sensor: the inaccuracy does not exceed the 5% level.

  16. Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue

    PubMed Central

    Roy, Sashwati; Patel, Darshan; Khanna, Savita; Gordillo, Gayle M.; Biswas, Sabyasachi; Friedman, Avner; Sen, Chandan K.

    2007-01-01

    Chronic wounds represent a substantial public health problem. The development of tools that would enable sophisticated scrutiny of clinical wound tissue material is highly desirable. This work presents evidence enabling rapid specific identification and laser capture of blood vessels from human tissue in a manner which lends itself to successful high-density (U133A) microarray analysis. Such screening of transcriptome followed by real-time PCR and immunohistochemical verification of candidate genes and their corresponding products were performed by using 3 mm biopsies. Of the 18,400 transcripts and variants screened, a focused set of 53 up-regulated and 24 down-regulated genes were noted in wound-derived blood vessels compared with blood vessels from intact human skin. The mean abundance of periostin in wound-site blood vessels was 96-fold higher. Periostin is known to be induced in response to vascular injury and its expression is associated with smooth muscle cell differentiation in vitro and promotes cell migration. Forty-fold higher expression of heparan sulfate 6-O-endosulfatase1 (Sulf1) was noted in wound-site vessels. Sulf1 has been recently recognized to be anti-angiogenic. During embryonic vasculogenesis, CD24 expression is down-regulated in human embryonic stem cells. Wound-site vessels had lower CD24 expression. The findings of this work provide a unique opportunity to appreciate the striking contrast in the transcriptome composition in blood vessels collected from the intact skin and from the wound-edge tissue. Sets of genes with known vascular functions but never connected to wound healing were identified to be differentially expressed in wound-derived blood vessels paving the way for innovative clinically relevant hypotheses. PMID:17728400

  17. Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation

    PubMed Central

    Chappell, John C.; Cluceru, Julia G.; Nesmith, Jessica E.; Mouillesseaux, Kevin P.; Bradley, Vanessa B.; Hartland, Caitlin M.; Hashambhoy-Ramsay, Yasmin L.; Walpole, Joseph; Peirce, Shayn M.; Mac Gabhann, Feilim; Bautch, Victoria L.

    2016-01-01

    Aims In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. Methods and results Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages—sprout initiation, extension, connection, and stability—that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1−/− mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1−/− vascular networks, with an overall outcome of reduced numbers of new conduits. Conclusions These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies. PMID:27142980

  18. Semi-automated segmentation of solid and GGO nodules in lung CT images using vessel-likelihood derived from local foreground structure

    NASA Astrophysics Data System (ADS)

    Yaguchi, Atsushi; Okazaki, Tomoya; Takeguchi, Tomoyuki; Matsumoto, Sumiaki; Ohno, Yoshiharu; Aoyagi, Kota; Yamagata, Hitoshi

    2015-03-01

    Reflecting global interest in lung cancer screening, considerable attention has been paid to automatic segmentation and volumetric measurement of lung nodules on CT. Ground glass opacity (GGO) nodules deserve special consideration in this context, since it has been reported that they are more likely to be malignant than solid nodules. However, due to relatively low contrast and indistinct boundaries of GGO nodules, segmentation is more difficult for GGO nodules compared with solid nodules. To overcome this difficulty, we propose a method for accurately segmenting not only solid nodules but also GGO nodules without prior information about nodule types. First, the histogram of CT values in pre-extracted lung regions is modeled by a Gaussian mixture model and a threshold value for including high-attenuation regions is computed. Second, after setting up a region of interest around the nodule seed point, foreground regions are extracted by using the threshold and quick-shift-based mode seeking. Finally, for separating vessels from the nodule, a vessel-likelihood map derived from elongatedness of foreground regions is computed, and a region growing scheme starting from the seed point is applied to the map with the aid of fast marching method. Experimental results using an anthropomorphic chest phantom showed that our method yielded generally lower volumetric measurement errors for both solid and GGO nodules compared with other methods reported in preceding studies conducted using similar technical settings. Also, our method allowed reasonable segmentation of GGO nodules in low-dose images and could be applied to clinical CT images including part-solid nodules.

  19. Biomechanical deformable image registration of longitudinal lung CT images using vessel information

    NASA Astrophysics Data System (ADS)

    Cazoulat, Guillaume; Owen, Dawn; Matuszak, Martha M.; Balter, James M.; Brock, Kristy K.

    2016-07-01

    Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix’s eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: 5.8+/- 2.9 , 3.4+/- 2.3 and 1.6+/- 1.3 mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable

  20. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection.

    PubMed

    Chu, Dafeng; Gao, Jin; Wang, Zhenjia

    2015-12-22

    Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute lung inflammation, we demonstrated that intravenously (iv) infused NPs made from denatured bovine serum albumin (BSA) were specifically internalized by activated neutrophils, and subsequently, the neutrophils containing NPs migrated across blood vessels into inflammatory tissues. When neutrophils were depleted using anti-Gr-1 in a mouse, the transport of albumin NPs across blood vessel walls was robustly abolished. Furthermore, it was found that albumin nanoparticle internalization did not affect neutrophil mobility and functions. Administration of drug-loaded albumin NPs markedly mitigated the lung inflammation induced by LPS (lipopolysaccharide) or infection by Pseudomonas aeruginosa. These results demonstrate the use of an albumin nanoparticle platform for in situ targeting of activated neutrophils for delivery of therapeutics across the blood vessel barriers into diseased sites. This study demonstrates our ability to hijack neutrophils to deliver nanoparticles to targeted diseased sites.

  1. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    PubMed

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  2. Ballistic Limit Equation for Single Wall Titanium

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  3. Vapor Wall Deposition in Chambers: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    McVay, R.; Cappa, C. D.; Seinfeld, J.

    2014-12-01

    In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.

  4. Microfluidic strategy to investigate dynamics of small blood vessel function

    NASA Astrophysics Data System (ADS)

    Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel

    2010-11-01

    Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.

  5. Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels

    NASA Astrophysics Data System (ADS)

    Hoshiar, Ali Kafash; Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok; Yoon, Jungwon

    2017-04-01

    Magnetic-guided targeted drug delivery (TDD) systems can enhance the treatment of diverse diseases. Despite the potential and promising results of nanoparticles, aggregation prevents precise particle guidance in the vasculature. In this study, we developed a simulation platform to investigate aggregation during steering of nanoparticles using a magnetic field function. The magnetic field function (MFF) comprises a positive and negative pulsed magnetic field generated by electromagnetic coils, which prevents adherence of particles to the vessel wall during magnetic guidance. A commonly used Y-shaped vessel was simulated and the performance of the MFF analyzed; the experimental data were in agreement with the simulation results. Moreover, the effects of various parameters on magnetic guidance were evaluated and the most influential identified. The simulation results presented herein will facilitate more precise guidance of nanoparticles in vivo.

  6. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.

    PubMed

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun

    2016-10-01

    The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Turbulent flow in a vessel agitated by side entering inclined blade turbine with different diameter using CFD simulation

    NASA Astrophysics Data System (ADS)

    Fathonah, N. N.; Nurtono, T.; Kusdianto; Winardi, S.

    2018-03-01

    Single phase turbulent flow in a vessel agitated by side entering inclined blade turbine has simulated using CFD. The aim of this work is to identify the hydrodynamic characteristics of a model vessel, which geometrical configuration is adopted at industrial scale. The laboratory scale model vessel is a flat bottomed cylindrical tank agitated by side entering 4-blade inclined blade turbine with impeller rotational speed N=100-400 rpm. The effect of the impeller diameter on fluid flow pattern has been investigated. The fluid flow patterns in a vessel is essentially characterized by the phenomena of macro-instabilities, i.e. the flow patterns change with large scale in space and low frequency. The intensity of fluid flow in the tank increase with the increase of impeller rotational speed from 100, 200, 300, and 400 rpm. It was accompanied by shifting the position of the core of circulation flow away from impeller discharge stream and approached the front of the tank wall. The intensity of fluid flow in the vessel increase with the increase of the impeller diameter from d=3 cm to d=4 cm.

  8. The forced sound transmission of finite single leaf walls using a variational technique.

    PubMed

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  9. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping

  10. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass

  11. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE PAGES

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.; ...

    2014-04-15

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass

  12. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    PubMed

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample

  13. Low-dimensional representation of near-wall dynamics in shear flows, with implications to wall-models.

    PubMed

    Schmid, P J; Sayadi, T

    2017-03-13

    The dynamics of coherent structures near the wall of a turbulent boundary layer is investigated with the aim of a low-dimensional representation of its essential features. Based on a triple decomposition into mean, coherent and incoherent motion and a dynamic mode decomposition to recover statistical information about the incoherent part of the flow field, a driven linear system coupling first- and second-order moments of the coherent structures is derived and analysed. The transfer function for this system, evaluated for a wall-parallel plane, confirms a strong bias towards streamwise elongated structures, and is proposed as an 'impedance' boundary condition which replaces the bulk of the transport between the coherent velocity field and the coherent Reynolds stresses, thus acting as a wall model for large-eddy simulations (LES). It is interesting to note that the boundary condition is non-local in space and time. The extracted model is capable of reproducing the principal Reynolds stress components for the pretransitional, transitional and fully turbulent boundary layer.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  14. Dynamic fluid sloshing in a one-dimensional array of coupled vessels

    NASA Astrophysics Data System (ADS)

    Huang, Y. H.; Turner, M. R.

    2017-12-01

    This paper investigates the coupled motion between the dynamics of N vessels coupled together in a one-dimensional array by springs and the motion of the inviscid fluid sloshing within each vessel. We develop a fully nonlinear model for the system relative to a moving frame such that the fluid in each vessel is governed by the Euler equations and the motion of each vessel is modeled by a forced spring equation. By considering a linearization of the model, the characteristic equation for the natural frequencies of the system is derived and analyzed for a variety of nondimensional parameter regimes. It is found that the problem can exhibit a variety of resonance situations from the 1 :1 resonance to (N +1 ) -fold 1 :⋯:1 resonance, as well as more general r :s :⋯:t resonances for natural numbers r ,s ,t . This paper focuses in particular on determining the existence of regions of parameter space where the (N +1 ) -fold 1 :⋯:1 resonance can be found.

  15. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  16. Role of Resident Stem Cells in Vessel Formation and Arteriosclerosis.

    PubMed

    Zhang, Li; Issa Bhaloo, Shirin; Chen, Ting; Zhou, Bin; Xu, Qingbo

    2018-05-25

    Vascular, resident stem cells are present in all 3 layers of the vessel wall; they play a role in vascular formation under physiological conditions and in remodeling in pathological situations. Throughout development and adult early life, resident stem cells participate in vessel formation through vasculogenesis and angiogenesis. In adults, the vascular stem cells are mostly quiescent in their niches but can be activated in response to injury and participate in endothelial repair and smooth muscle cell accumulation to form neointima. However, delineation of the characteristics and of the migration and differentiation behaviors of these stem cells is an area of ongoing investigation. A set of genetic mouse models for cell lineage tracing has been developed to specifically address the nature of these cells and both migration and differentiation processes during physiological angiogenesis and in vascular diseases. This review summarizes the current knowledge on resident stem cells, which has become more defined and refined in vascular biology research, thus contributing to the development of new potential therapeutic strategies to promote endothelial regeneration and ameliorate vascular disease development. © 2018 The Authors.

  17. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    PubMed

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  18. Murray's Law in elastin haploinsufficient (Eln+/-) and wild-type (WT) mice.

    PubMed

    Sather, Bradley A; Hageman, Daniel; Wagenseil, Jessica E

    2012-12-01

    Using either the principle of minimum energy or constant shear stress, a relation can be derived that predicts the diameters of branching vessels at a bifurcation. This relation, known as Murray's Law, has been shown to predict vessel diameters in a variety of cardiovascular systems from adult humans to developing chicks. The goal of this study is to investigate Murray's Law in vessels from mice that are haploinsufficient for the elastin protein (Eln+/-). Elastin is one of the major proteins in the blood vessel wall and is organized in concentric rings, known as lamellae, with smooth muscle cells (SMCs) around the vessel lumen. Eln+/- mice have an increased number of lamellae, as well as smaller, thinner vessels. It is possible that due to decreased amounts of elastin available for vessel wall remodeling during development and in adulthood, Eln+/- vessels would not follow Murray's Law. We examined vessel bifurcations in six different physiologic regions, including the brain, heart, epidermis, ceocum (or cecum), testes, and intestines, in Eln+/- mice and wild-type (WT) littermates. All vessels were between 40 and 300 μm in diameter. We found that the diameters of both Eln+/- and WT vessels have an average of 13% error from the diameters predicted by Murray's Law, with no significant differences between genotypes or physiologic regions. The data suggest that vessels are optimized to follow Murray's Law, despite limitations on the proteins available for growth and remodeling of the vessel wall.

  19. Joint segmentation of lumen and outer wall from femoral artery MR images: Towards 3D imaging measurements of peripheral arterial disease.

    PubMed

    Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron

    2015-12-01

    Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.

    PubMed

    Shi, Aiwei; Huang, Peixuan; Guo, Shifang; Zhao, Lu; Jia, Yingjie; Zong, Yujin; Wan, Mingxi

    2016-07-01

    In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels.

    PubMed

    Prakash, J; Ramesh, K; Tripathi, D; Kumar, R

    2018-07-01

    A numerical simulation is presented to study the heat and flow characteristics of blood flow altered by electroosmosis through the tapered micro-vessels. Blood is assumed as non-Newtonian (micropolar) nanofluids. The flow regime is considered as asymmetric diverging (tapered) microchannel for more realistic micro-vessels which is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The Rosseland approximation is employed to model the radiation heat transfer and temperatures of the walls are presumed constants. The mathematical formulation of the present problem is simplified under the long-wavelength, low-Reynolds number and Debye-Hückel linearization approximations. The influence of various dominant physical parameters are discussed for axial velocity, microrotation distribution, thermal temperature distribution and nanoparticle volume fraction field. However, our foremost emphasis is to determine the effects of thermal radiation and coupling number on the axial velocity and microrotation distribution beneath electroosmotic environment. This analysis places a significant observation on the thermal radiation and coupling number which plays an influential role in hearten fluid velocity. This study is encouraged by exploring the nanofluid-dynamics in peristaltic transport as symbolized by heat transport in biological flows and also in novel pharmacodynamics pumps and gastro-intestinal motility enhancement. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology

    PubMed Central

    Ben Shoham, Adi; Rot, Chagai; Stern, Tomer; Krief, Sharon; Akiva, Anat; Dadosh, Tali; Sabany, Helena; Lu, Yinhui; Kadler, Karl E.

    2016-01-01

    Recently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix. PMID:27621060

  3. Tumor Blood Vessel Dynamics

    NASA Astrophysics Data System (ADS)

    Munn, Lance

    2009-11-01

    ``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure

  4. Energy Conservation in Optical Fibers With Distributed Brick-Walls Filters

    NASA Astrophysics Data System (ADS)

    Garcia, Javier; Ghozlan, Hassan; Kramer, Gerhard

    2018-05-01

    A band-pass filtering scheme is proposed to mitigate spectral broadening and channel coupling in the Nonlinear Schr\\"odinger (NLS) fiber optic channel. The scheme is modeled by modifying the NLS Equation to include an attenuation profile with multiple brick-wall filters centered at different frequencies. It is shown that this brick-walls profile conserves the total in-band energy of the launch signal. Furthermore, energy fluctuations between the filtered channels are characterized, and conditions on the channel spacings are derived that ensure energy conservation in each channel. The maximum spectral efficiency of such a system is derived, and a constructive rule for achieving it using Sidon sequences is provided.

  5. A preliminary assessment of the effects of heat flux distribution and penetration on the creep rupture of a reactor vessel lower head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.; Simpson, R.

    1997-02-01

    The objective of the Lower Head Failure (LHF) Experiment Program is to experimentally investigate and characterize the failure of the reactor vessel lower head due to thermal and pressure loads under severe accident conditions. The experiment is performed using 1/5-scale models of a typical PWR pressure vessel. Experiments are performed for various internal pressure and imposed heat flux distributions with and without instrumentation guide tube penetrations. The experimental program is complemented by a modest modeling program based on the application of vessel creep rupture codes developed in the TMI Vessel Investigation Project. The first three experiments under the LHF programmore » investigated the creep rupture of simulated reactor pressure vessels without penetrations. The heat flux distributions for the three experiments are uniform (LHF-1), center-peaked (LHF-2), and side-peaked (LHF-3), respectively. For all the experiments, appreciable vessel deformation was observed to initiate at vessel wall temperatures above 900K and the vessel typically failed at approximately 1000K. The size of failure was always observed to be smaller than the heated region. For experiments with non-uniform heat flux distributions, failure typically occurs in the region of peak temperature. A brief discussion of the effect of penetration is also presented.« less

  6. The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?

    NASA Astrophysics Data System (ADS)

    Truffer, M.

    2017-12-01

    The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.

  7. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor

    NASA Technical Reports Server (NTRS)

    Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.

    1999-01-01

    PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.

  8. Effect of blood flow on near-the-wall mass transport of drugs and other bioactive agents: a simple formula to estimate boundary layer concentrations.

    PubMed

    Rugonyi, Sandra

    2008-04-01

    Transport of bioactive agents through the blood is essential for cardiovascular regulatory processes and drug delivery. Bioactive agents and other solutes infused into the blood through the wall of a blood vessel or released into the blood from an area in the vessel wall spread downstream of the infusion/release region and form a thin boundary layer in which solute concentration is higher than in the rest of the blood. Bioactive agents distributed along the vessel wall affect endothelial cells and regulate biological processes, such as thrombus formation, atherogenesis, and vascular remodeling. To calculate the concentration of solutes in the boundary layer, researchers have generally used numerical simulations. However, to investigate the effect of blood flow, infusion rate, and vessel geometry on the concentration of different solutes, many simulations are needed, leading to a time-consuming effort. In this paper, a relatively simple formula to quantify concentrations in a tube downstream of an infusion/release region is presented. Given known blood-flow rates, tube radius, solute diffusivity, and the length of the infusion region, this formula can be used to quickly estimate solute concentrations when infusion rates are known or to estimate infusion rates when solute concentrations at a point downstream of the infusion region are known. The developed formula is based on boundary layer theory and physical principles. The formula is an approximate solution of the advection-diffusion equations in the boundary layer region when solute concentration is small (dilute solution), infusion rate is modeled as a mass flux, and there is no transport of solute through the wall or chemical reactions downstream of the infusion region. Wall concentrations calculated using the formula developed in this paper were compared to the results from finite element models. Agreement between the results was within 10%. The developed formula could be used in experimental procedures to

  9. Four-dimensional echocardiography area strain combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis.

    PubMed

    Deng, Yan; Peng, Long; Liu, Yuan-Yuan; Yin, Li-Xue; Li, Chun-Mei; Wang, Yi; Rao, Li

    2017-09-01

    The aim of this prospective study was to assess the diagnosis value of four-dimensional echocardiography area strain (AS) combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis. Based on treadmill exercise load status, two-dimensional conventional echocardiography and four-dimensional echocardiography area strain were performed on patients suspected coronary artery disease before coronary angiogram. Thirty patients (case group) with mild left anterior descending coronary artery stenosis (stenosis <50%) and thirty gender- and age-matched patients (control group) without coronary artery stenosis according to the coronary angiogram results were prospectively enrolled. All the patients had no left ventricular regional wall motion abnormality in two-dimensional echocardiography at rest and exercise stress. There was no significant difference in the 16 segmental systolic peak AS at rest between two groups. After exercise stress, the peak systolic AS rest-stress at mid anterior wall (-7.00%±10.90% vs 2.80%±23.69%) and mid anterolateral wall (-4.40%±18.81% vs 8.80%±19.16%) were decreased, while increased at basal inferolateral wall (14.00%±19.27% vs -5.60%±15.94%) in case group compared with control group (P<.05). In patients with mild single vessel coronary artery stenosis, the area strain was decreased at involved segments, while compensatory increased at noninvolved segments after exercise stress. Four-dimensional echocardiography area strain combined with exercise stress echocardiography could sensitively find left ventricular regional systolic function abnormality in patients with mild single vessel coronary artery stenosis, and locate stenosis coronary artery accordingly. © 2017, Wiley Periodicals, Inc.

  10. An experimental investigation of flame behavior during cylindrical vessel explosions

    NASA Astrophysics Data System (ADS)

    Starke, R.; Roth, P.

    1986-12-01

    The propagation of premixed flames centrally ignited at one of the end flanges of a closed cylindrical vessel and the flame-induced flow have been investigated. Photographic records show that under specific geometrical conditions the flame exhibits a cone form with a backward directed top, called tulip-shaped. This appears after the flame has lost a main part of its area by side wall quenching. The instantaneous flow velocity during the short explosion process was measured, together with pressure records, with an LDV. An analogy to the experiments of Markstein (1964), is shown, and the explanations of several authors for the 'tulip' formation are given.

  11. Effect of gravitational overloads, hypokinesia and hypodynamia on the vessels of the pulmonary blood circuit

    NASA Technical Reports Server (NTRS)

    Kasimtsev, A. A.

    1980-01-01

    Vessels of the pulmonary circuit are studied under normal conditions, in exposure to single stress or continuous threshold endurable chestspine gravitational stresses, and one to eight weak hypokinesia and hypodynamic effects followed by stress. Examination methods include rentgenography and microrentgenography, clearing, and histology. In exposure to gravitational stress the distal portions of the arterial vessels of the 3 and 4 orders constrict, while all veins dilate. Sinuosity of all vessels is noted. The volume of the capillary bed increases and signs of perivascular edema occur. Due to hypokinesia and hypodynamia the arteries constricted and the arterial bed becomes poor. The veins of all orders dilate and the volume of the capillary bed increases. The changes grew greater the longer the terms of hypodyamic effects. Successive combination of hypokinesia and hypodynamia and gravitational stresses cause more pronounced changes than separate effects of these two factors and result in great deformity of the vascular walls, including their rupture and penetration of formed elements beyond the limits of the vascular bed.

  12. Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls

    PubMed Central

    Zhou, Chenming

    2017-01-01

    At the ultrahigh frequencies common to portable radios, tunnels such as mine entries are often modeled by hollow dielectric waveguides. The roughness condition of the tunnel walls has an influence on radio propagation, and therefore should be taken into account when an accurate power prediction is needed. This paper investigates how wall roughness affects radio propagation in tunnels, and presents a unified ray tracing and modal method for modeling radio propagation in tunnels with rough walls. First, general analytical formulas for modeling the influence of the wall roughness are derived, based on the modal method and the ray tracing method, respectively. Second, the equivalence of the ray tracing and modal methods in the presence of wall roughnesses is mathematically proved, by showing that the ray tracing-based analytical formula can converge to the modal-based formula through the Poisson summation formula. The derivation and findings are verified by simulation results based on ray tracing and modal methods. PMID:28935995

  13. Strain-encoded cardiac MRI as an adjunct for dobutamine stress testing: incremental value to conventional wall motion analysis.

    PubMed

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A; Osman, Nael F

    2009-03-01

    High-dose dobutamine stress MRI is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, strain-encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC with that provided by conventional wall motion analysis for the detection of inducible ischemia during dobutamine stress MRI. Stress-induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent dobutamine stress MRI in a clinical 1.5-T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (> or =50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86 of 101 versus 71 of 101 diseased coronary vessels (P<0.01 versus cine) and showed normal strain response in 189 of 202 versus 194 of 202 vessels with <50% stenosis (P=NS versus cine). On a patient level, SENC detected inducible ischemia in 63 of 64 versus 55 of 64 patients with CAD (P<0.05 versus cine) and showed normal strain response in 32 of 37 versus 34 of 37 patients without CAD (P=NS versus cine). Quantification analysis demonstrated a significant correlation between strain rate reserve and coronary artery stenosis severity (r(2)=0.56, P<0.001), and a cutoff value of strain rate reserve of 1.64 was deemed as a highly accurate marker for the detection of > or =50% stenosis (area under the curve, 0.96; SE, 0.01; 95% CI, 0.94 to 0.98; P<0.001). The direct color-coded visualization of strain on MR images is a useful adjunct for dobutamine stress MRI, which provides incremental value for the detection of CAD compared with conventional wall motion readings on cine images.

  14. Using the adaptive SMA composite cylinder concept to reduce radial dilation in composite pressure vessels

    NASA Astrophysics Data System (ADS)

    Paine, Jeffrey S.; Rogers, Craig A.

    1995-05-01

    Composite materials are widely used in the design of pressurized gas and fluid vessels for applications ranging from underground gasoline storage tanks to rocket motors for the space shuttle. In the design of a high pressure composite vessel (Pi > 12 Ksi), thick-wall (R/h < 15) vessels are required. For efficient material use in composite material vessels, the radial dilation (expansion or swelling) of the composite vessel can often approach values nearing 2 percent of the diameter. Over long periods of internal pressure loading over elevated temperatures, composite material cylinders may also experience substantial creep. The short term dilation and long term creep are not problematic for applications requiring only the containment of the pressurized fluid. In applications where metallic liners are required, however, substantial dilation and creep causes plastic yielding which leads to reduced fatigue life. To applications such as a hydraulic accumulator, where a piston is employed to fit and seal the fluid in the composite cylinder, the dilation and creep may allow leakage and pressure loss around the piston. A concept called the adaptive composite cylinder is experimentally presented. Shape memory alloy wire in epoxy resin is wrapped around or within polymer matrix composite cylinders to reduce radial dilation of the cylinder. Experimental results are presented that demonstrate the ability of the SMA wire layers to reduce radial dilation. Results from experimental testing of the recovery stress fatigue response of nitinol shape memory alloy wires is also presented.

  15. Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-01-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

  16. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method.

    PubMed

    Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.

  17. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method

    PubMed Central

    Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892

  18. 78 FR 77430 - Proposed Information Collection; Comment Request; Foreign Fishing Vessel Permits, Vessel, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Collection; Comment Request; Foreign Fishing Vessel Permits, Vessel, and Gear Identification, and Reporting..., vessels and certain gear be marked for identification purposes, and for permit holders to report their... information for a permit, mark their vessels and gear, or submit information about their fishing activities...

  19. Analysis of solid propellant combustion in a closed vessel including secondary reaction

    NASA Technical Reports Server (NTRS)

    Benreuven, M.; Summerfield, M.

    1980-01-01

    A theory for combustion of solid propellants in a closed vessel is presented allowing for residual exothermic chemical reaction in the bulk of the gas in the vessel. Particular attention is given to propellants exhibiting thick gaseous flame zones such as nitrocellulose, double-base and nitramine propellants. For these, the reaction at high pressures is assumed to involve mainly the oxidation of residual hydrocarbons by NO. It is shown that the direct dynamic coupling between the exothermicity, the molecular weight reduction and the changing pressure can influence the dp/dt-p traces obtained, in a manner not directly related to mass burning rate of the solid. Energy and species conservation equations are derived for the bulk of the vessel in differential form; the system is solved numerically. The results show the effect of extended chemical reaction upon measurable combustion characteristics such as dp/dt-p and burn rate pressure exponent, demonstrating its potential importance in interpretation of closed vessel firing data, depending on the pace of the residual gas phase reactions.

  20. Research Vessel Meteorological and Oceanographic Systems Support Satellite and Model Validation Studies

    NASA Astrophysics Data System (ADS)

    Smith, S. R.; Lopez, N.; Bourassa, M. A.; Rolph, J.; Briggs, K.

    2012-12-01

    between surface atmospheric products derived from satellite observations and the underway research vessel observations will be shown. The strengths and limitations of research observations for validation studies will be highlighted through these case studies.

  1. Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells.

    PubMed

    Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu

    2017-11-15

    The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  3. A dispersion relationship governing incompressible wall turbulence

    NASA Technical Reports Server (NTRS)

    Tsuge, S.

    1978-01-01

    The method of separation of variables is shown to make turbulent correlation equations of Karman-Howarth type tractable for shear turbulence as well under the condition of neglected triple correlation. The separated dependent variable obeys an Orr-Sommerfeld equation. A new analytical method is developed using a scaling law different from the classical one due to Heisenberg and Lin and more appropriate for wall turbulent profiles. A dispersion relationship between the wave number and the separation constant which has the dimension of a frequency is derived in support of experimental observations of wave or coherent structure of wall turbulence.

  4. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis

    PubMed Central

    Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan

    2011-01-01

    Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323

  5. The Flow in a Model Rotating-Wall Bioreactor.

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Neitzel, G. Paul

    1997-11-01

    Aggregates of mammalian cells can be grown on artificial polymer constructs in a reactor vessel in order to produce high-quality tissue for medical applications. The growth and differentiation of these cells is greatly affected by the fluid flow and mass transfer within the bioreactor. The surface shear stress on the constructs is an especially important quantity of interest. Here, we consider a bioreactor in the form of two concentric, independently-rotating cylinders with the axis of rotation in a horizontal plane. We shall examine the flow around a model tissue construct in the form of a disk fixed in the flow produced by the rotating walls of the bioreactor. Using CFD techniques, we shall determine the flow field and the surface shear stress distribution on the construct as a function of the wall velocities, the Reynolds number of the flow, and the construct size and position. The results will be compared to the PIV measurements of this system reported by Brown & Neitzel(1997 Meeting of the APS/DFD.).

  6. Pressure vessel bottle mount

    NASA Technical Reports Server (NTRS)

    Wingett, Paul (Inventor)

    2001-01-01

    A mounting assembly for mounting a composite pressure vessel to a vehicle includes a saddle having a curved surface extending between two pillars for receiving the vessel. The saddle also has flanged portions which can be bolted to the vehicle. Each of the pillars has hole in which is mounted the shaft portion of an attachment member. A resilient member is disposed between each of the shaft portions and the holes and loaded by a tightening nut. External to the holes, each of the attachment members has a head portion to which a steel band is attached. The steel band circumscribes the vessel and translates the load on the springs into a clamping force on the vessel. As the vessel expands and contracts, the resilient members expand and contract so that the clamping force applied by the band to the vessel remains constant.

  7. Structural Health Monitoring of Composite Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, Raj; Taylor, Scott; Jackson, Kurt; Myers, George; Sharma, A.

    2002-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. Incorporating these FBG sensors for monitoring the integrity of structures during their life cycle will provide valuable information about viability of the usage of such material. The use of these sensors by surface bonding or embedding in this composite will measure internal strain and temperature, and hence the integrity of the assembled engineering structures. This paper focuses on such a structure, called a composite wound pressure vessel. This vessel was fabricated from the composite material: TRH50 (a Mitsubishi carbon fiber with a 710-ksi tensile strength and a 37 Msi modulus) impregnated with an epoxy resin from NEWPORT composites (WDE-3D-1). This epoxy resin in water dispersed system without any solvents and it cures in the 240-310 degrees F range. This is a toughened resin system specifically designed for pressure applications. These materials are a natural fit for fiber sensors since the polyimide outer buffer coating of fiber can be integrated into the polymer matrix of the composite material with negligible residual stress. The tank was wound with two helical patterns and 4 hoop wraps. The order of winding is: two hoops, two helical and two hoops. The wall thickness of the composite should be about 80 mil or less. The tank should burst near 3,000 psi or less. We can measure the actual wall thickness by ultrasonic or we can burst the tank and measure the pieces. Figure 1 shows a cylinder fabricated out of carbon-epoxy composite material. The strain in different directions is measured with a surface bonded fiber Bragg gratings and with embedded fiber Bragg gratings as the cylinder is pressurized to burst pressures. Figure 2 shows the strain as a function of pressure of carbon-epoxy cylinder as it is pressurized with water. Strain is measured in different directions by multiple gratings

  8. 76 FR 59660 - Proposed Information Collection; Comment Request; Permitting, Vessel Identification, and Vessel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Permitting, Vessel Identification, and Vessel Monitoring System Requirements for... satellite- based vessel monitoring system (VMS). This collection of information is needed for permit...

  9. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  10. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    PubMed Central

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E. M.; Kluger, Petra J.; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors. PMID:27104576

  11. Vessel-to-Reef Projects

    EPA Pesticide Factsheets

    Using vessels as artificial reefs is an option for disposal. Artificial reefs serve to benefit the environment. Vessel-to-reef projects can follow the best management practices guidance. Guidance are provided for how to clean up vessels for use as reefs.

  12. 33 CFR 90.3 - Pushing vessel and vessel being pushed: Composite unit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pushed: Composite unit. 90.3 Section 90.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... vessel being pushed: Composite unit. Rule 24(b) of the Inland Rules states that when a pushing vessel and a vessel being pushed ahead are rigidly connected in a composite unit, they are regarded as a power...

  13. CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan-Bill Cheung; Joy L. Rempe

    2004-06-01

    In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boilingmore » experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.« less

  14. Radiant vessel auxiliary cooling system

    DOEpatents

    Germer, John H.

    1987-01-01

    In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

  15. Blood vessel rupture by cavitation

    PubMed Central

    Chen, Hong; Brayman, Andrew A.; Bailey, Michael R.

    2011-01-01

    Cavitation is thought to be one mechanism for vessel rupture during shock wave lithotripsy treatment. However, just how cavitation induces vessel rupture remains unknown. In this work, a high-speed photomicrography system was set up to directly observe the dynamics of bubbles inside blood vessels in ex vivo rat mesenteries. Vascular rupture correlating to observed bubble dynamics were examined by imaging bubble extravasation and dye leakage. The high-speed images show that bubble expansion can cause vessel distention, and bubble collapse can lead to vessel invagination. Liquid jets were also observed to form. Our results suggest that all three mechanisms, vessel distention, invagination and liquid jets, can contribute to vessel rupture. PMID:20680255

  16. 50 CFR 300.116 - Requirements for a vessel monitoring system for U.S. vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system for U.S. vessels. 300.116 Section 300.116 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED... vessel monitoring system for U.S. vessels. (a) Requirement for use. Within 30 days after NMFS publishes... for AMLR must ensure that such vessel has a NMFS-approved, operating VMS on board when on any fishing...

  17. 50 CFR 300.116 - Requirements for a vessel monitoring system for U.S. vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... system for U.S. vessels. 300.116 Section 300.116 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED... vessel monitoring system for U.S. vessels. (a) Requirement for use. Within 30 days after NMFS publishes... for AMLR must ensure that such vessel has a NMFS-approved, operating VMS on board when on any fishing...

  18. 50 CFR 300.116 - Requirements for a vessel monitoring system for U.S. vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... system for U.S. vessels. 300.116 Section 300.116 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED... vessel monitoring system for U.S. vessels. (a) Requirement for use. Within 30 days after NMFS publishes... for AMLR must ensure that such vessel has a NMFS-approved, operating VMS on board when on any fishing...

  19. 50 CFR 300.116 - Requirements for a vessel monitoring system for U.S. vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... system for U.S. vessels. 300.116 Section 300.116 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED... vessel monitoring system for U.S. vessels. (a) Requirement for use. Within 30 days after NMFS publishes... for AMLR must ensure that such vessel has a NMFS-approved, operating VMS on board when on any fishing...

  20. 50 CFR 300.116 - Requirements for a vessel monitoring system for U.S. vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... system for U.S. vessels. 300.116 Section 300.116 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED... vessel monitoring system for U.S. vessels. (a) Requirement for use. Within 30 days after NMFS publishes... for AMLR must ensure that such vessel has a NMFS-approved, operating VMS on board when on any fishing...

  1. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...

  2. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...

  3. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...

  4. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...

  5. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450 in...

  6. Suppression of tumour growth by orally administered osteopontin is accompanied by alterations in tumour blood vessels.

    PubMed

    Rittling, S R; Wejse, P L; Yagiz, K; Warot, G A; Hui, T

    2014-03-04

    The integrin-binding protein osteopontin is strongly associated with tumour development, yet is an abundant dietary component as a constituent of human and bovine milk. Therefore, we tested the effect of orally administered osteopontin (o-OPN) on the development of subcutaneous tumours in mice. Bovine milk osteopontin was administered in drinking water to tumour-bearing immune-competent mice. Tumour growth, proliferation, necrosis, apoptosis and blood vessel size and number were measured. Expression of the α₉ integrin was determined. o-OPN suppressed tumour growth, increased the extent of necrosis, and induced formation of abnormally large blood vessels. Anti-OPN reactivity detected in the plasma of OPN-null mice fed OPN suggested that tumour-blocking peptides were absorbed during digestion, but the o-OPN effect was likely distinct from that of an RGD peptide. Expression of the α₉ integrin was detected on both tumour cells and blood vessels. Potential active peptides from the α₉ binding site of OPN were identified by mass spectrometry following in vitro digestion, and injection of these peptides suppressed tumour growth. These results suggest that peptides derived from o-OPN are absorbed and interfere with tumour growth and normal vessel development. o-OPN-derived peptides that target the α₉ integrin are likely involved.

  7. The heritability of vessel size of the pampiniform plexus as a means to assess the genetic component of varicocele

    USDA-ARS?s Scientific Manuscript database

    Ultrasonography of each testicle was used to capture a coronal-saggital image of the veins of the pampiniform plexus (PP) and the testicular artery of 239 boars at approximately 6 months of age. Three to 10 vessels of the PP were used to derive the average area of right PP vessels (AAR) and the aver...

  8. A low dimensional dynamical system for the wall layer

    NASA Technical Reports Server (NTRS)

    Aubry, N.; Keefe, L. R.

    1987-01-01

    Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.

  9. 33 CFR 82.3 - Pushing vessel and vessel being pushed: Composite unit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pushed: Composite unit. 82.3 Section 82.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... vessel being pushed: Composite unit. Rule 24(b) of the 72 COLREGS states that when a pushing vessel and a vessel being pushed ahead are rigidly connected in a composite unit, they are regarded as a power-driven...

  10. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-02

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  11. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    NASA Astrophysics Data System (ADS)

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-01

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1-2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S0 and A0, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A0 to thickness variations was shown to be superior to S0, however, the attenuation from A0 when a liquid loading was present was much higher than S0. A0 was less sensitive to the presence of coatings on the surface of than S0.

  12. A computational algorithm addressing how vessel length might depend on vessel diameter

    Treesearch

    Jing Cai; Shuoxin Zhang; Melvin T. Tyree

    2010-01-01

    The objective of this method paper was to examine a computational algorithm that may reveal how vessel length might depend on vessel diameter within any given stem or species. The computational method requires the assumption that vessels remain approximately constant in diameter over their entire length. When this method is applied to three species or hybrids in the...

  13. Conditional Switching of Vascular Endothelial Growth Factor (VEGF) Expression in Tumors: Induction of Endothelial Cell Shedding and Regression of Hemangioblastoma-Like Vessels by VEGF Withdrawal

    NASA Astrophysics Data System (ADS)

    Benjamin, Laura E.; Keshet, Eli

    1997-08-01

    We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously ``on,'' tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

  14. Proof-test-based life prediction of high-toughness pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panontin, T.L.; Hill, M.R.

    1996-02-01

    The paper examines the problems associated with applying proof-test-based life prediction to vessels made of high-toughness metals. Two A106 Gr B pipe specimens containing long, through-wall circumferential flaws were tested. One failed during hydrostatic testing and the other during tension-tension cycling following a hydrostatic test. Quantitative fractography was used to verify experimentally obtained fatigue crack growth rates and a variety of LEFM and EPFM techniques were used to analyze the experimental results. The results show that: plastic collapse analysis provides accurate predictions of screened (initial) crack size when the flow stress is determined experimentally; LEFM analysis underestimates the crack sizemore » screened by the proof test and overpredicts the subsequent fatigue life of the vessel when retardation effects are small (i.e., low proof levels); and, at a high proof-test level (2.4 {times} operating pressure), the large retardation effect on fatigue crack growth due to the overload overwhelmed the deleterious effect on fatigue life from stable tearing during the proof test and alleviated the problem of screening only long cracks due to the high toughness of the metal.« less

  15. Age determination of vessel wall hematoma in spontaneous cervical artery dissection: A multi-sequence 3T Cardiovascular Magnetic resonance study

    PubMed Central

    2011-01-01

    Background Previously proposed classifications for carotid plaque and cerebral parenchymal hemorrhages are used to estimate the age of hematoma according to its signal intensities on T1w and T2w MR images. Using these classifications, we systematically investigated the value of cardiovascular magnetic resonance (CMR) in determining the age of vessel wall hematoma (VWH) in patients with spontaneous cervical artery dissection (sCAD). Methods 35 consecutive patients (mean age 43.6 ± 9.8 years) with sCAD received a cervical multi-sequence 3T CMR with fat-saturated black-blood T1w-, T2w- and TOF images. Age of sCAD was defined as time between onset of symptoms (stroke, TIA or Horner's syndrome) and the CMR scan. VWH were categorized into hyperacute, acute, early subacute, late subacute and chronic based on their signal intensities on T1w- and T2w images. Results The mean age of sCAD was 2.0, 5.8, 15.7 and 58.7 days in patients with acute, early subacute, late subacute and chronic VWH as classified by CMR (p < 0.001 for trend). Agreement was moderate between VWH types in our study and the previously proposed time scheme of signal evolution for cerebral hemorrhage, Cohen's kappa 0.43 (p < 0.001). There was a strong agreement of CMR VWH classification compared to the time scheme which was proposed for carotid intraplaque hematomas with Cohen's kappa of 0.74 (p < 0.001). Conclusions Signal intensities of VWH in sCAD vary over time and multi-sequence CMR can help to determine the age of an arterial dissection. Furthermore, findings of this study suggest that the time course of carotid hematomas differs from that of cerebral hematomas. PMID:22122756

  16. LANL Robotic Vessel Scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, Nels W.

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.Themore » project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.« less

  17. Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Zamora, G.; Bauman, W.; Soliz, P.

    2012-03-01

    Retinal vasculature is one of the most important anatomical structures in digital retinal photographs. Accurate segmentation of retinal blood vessels is an essential task in automated analysis of retinopathy. This paper presents a new and effective vessel segmentation algorithm that features computational simplicity and fast implementation. This method uses morphological pre-processing to decrease the disturbance of bright structures and lesions before vessel extraction. Next, a vessel probability map is generated by computing the eigenvalues of the second derivatives of Gaussian filtered image at multiple scales. Then, the second order local entropy thresholding is applied to segment the vessel map. Lastly, a rule-based decision step, which measures the geometric shape difference between vessels and lesions is applied to reduce false positives. The algorithm is evaluated on the low-resolution DRIVE and STARE databases and the publicly available high-resolution image database from Friedrich-Alexander University Erlangen-Nuremberg, Germany). The proposed method achieved comparable performance to state of the art unsupervised vessel segmentation methods with a competitive faster speed on the DRIVE and STARE databases. For the high resolution fundus image database, the proposed algorithm outperforms an existing approach both on performance and speed. The efficiency and robustness make the blood vessel segmentation method described here suitable for broad application in automated analysis of retinal images.

  18. Mineralocorticoid receptor activation causes cerebral vessel remodeling and exacerbates the damage caused by cerebral ischemia.

    PubMed

    Dorrance, Anne M; Rupp, Nikki C; Nogueira, Edson F

    2006-03-01

    Mineralocorticoid receptor antagonists protect against ischemic cerebrovascular disease; this appears to be caused by changes in cerebral vessel structure that would promote blood flow. Therefore, we hypothesized that mineralocorticoid receptor activation with deoxycorticosterone acetate would cause deleterious remodeling of the cerebral vasculature and exacerbate the damage caused by cerebral ischemia. Six-week-old male Wistar rats were treated with deoxycorticosterone acetate (200 mg/kg) for 6 weeks. At 12 weeks of age, the deoxycorticosterone acetate-treated rats had elevated systolic blood pressure compared with age-matched controls (157+/-5.9 versus 124+/-3.1 mm Hg deoxycorticosterone acetate versus control; P<0.05). The area of ischemic damage resulting from middle cerebral artery occlusion was greater in the deoxycorticosterone acetate-treated rats than control (63.5+/-3.72 versus 46.6+/-5.52% of the hemisphere infarcted, deoxycorticosterone acetate versus control; P<0.05). Middle cerebral artery structure was assessed using a pressurized arteriograph under calcium-free conditions. Over a range of intralumenal pressures, the lumen and ODs of the middle cerebral arteries were smaller in the deoxycorticosterone acetate-treated rats than the control rats (P<0.05). There was also an increase in the wall thickness and wall:lumen ratio in the vessels from deoxycorticosterone acetate-treated rats (P<0.05). The vessels from the deoxycorticosterone acetate-treated rats were stiffer than those from control rats as evidenced by a leftward shift in the stress/strain curve. These novel data suggest that mineralocorticoid receptor activation without salt loading and nephrectomy is sufficient to elicit deleterious effects on the cerebral vasculature that lead to inward hypertrophic remodeling and an increase in the ischemic damage in the event of a stroke.

  19. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.

    PubMed

    Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  20. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves

    NASA Astrophysics Data System (ADS)

    Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.