Science.gov

Sample records for desert research station

  1. Summary of the 2009-2010 Season at the Mars Desert Research Station

    NASA Astrophysics Data System (ADS)

    Nelson, J. V.; Westenberg, A.

    2011-03-01

    The Mars Desert Research Station in Hanksville, Utah is the most accessible, cost-effective martian analog station available. Each year the station is host to dozens of research projects from disciplines including biology, engineering, geology, hydrology, and psychology.

  2. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  3. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah

    PubMed Central

    Freebury, Colin E.; Hamilton, Paul B.; Saarela, Jeffery M.

    2016-01-01

    Abstract The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  4. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah.

    PubMed

    Sokoloff, Paul C; Freebury, Colin E; Hamilton, Paul B; Saarela, Jeffery M

    2016-01-01

    The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  5. Investigation of microbial diversity in a desert Mars-like environment: Mars Desert Research Station (MDRS), Utah

    NASA Astrophysics Data System (ADS)

    Direito, Maria Susana; Staats, Martijn; Foing, Bernard H.; Ehrenfreund, Pascale; Roling, Wilfred

    The Utah Mars Desert Research Station (MDRS) harbours geo-morphology and geo-processes analogues to the planet Mars. Soil samples were collected during the EuroGeoMars campaign (from 24 January to 1 March 2009) from different locations and depths [1]. Samples were distributed among scientific collaborator institutes for analysis of microbial diversity, amino acid content and degradation, content of PAH or larger organic molecules, and respective soil properties. Our sample analysis had the objective of characterizing the microbial communities in this Mars analogue: DNA isolation, PCR (Polymerase Chain Reaction) using primers for DNA amplification of Bacteria, Archaea and Eukarya ribosomal RNA (rRNA) gene fragments, DGGE (Denaturing Gradient Gel Electrophoresis) and clone library construction with the final aim of sequencing. Results indicate that life is present in all the three domains of life (Archaea, Bacteria and Eukarya), while the most diversity was found in the domain Bacteria. Microorgan-isms are heterogeneously present and their identities are currently investigated. The obtained information will be later related to the other scientific analysis in order to obtain a better understanding of this Mars analogue site, which in turn will provide important information for the search for life on Mars. [1] Foing, B.H. et al . (2009). Exogeolab lander/rover instruments and EuroGeoMars MDRS campaign. LPI, 40, 2567.

  6. The Mobile Agents Integrated Field Test: Mars Desert Research Station April 2003

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ron

    2003-01-01

    The Mobile Agents model-based, distributed architecture, which integrates diverse components in a system for lunar and planetary surface operations, was extensively tested in a two-week field "technology retreat" at the Mars Society s Desert Research Station (MDRS) during April 2003. More than twenty scientists and engineers from three NASA centers and two universities refined and tested the system through a series of incremental scenarios. Agent software, implemented in runtime Brahms, processed GPS, health data, and voice commands-monitoring, controlling and logging science data throughout simulated EVAs with two geologists. Predefined EVA plans, modified on the fly by voice command, enabled the Mobile Agents system to provide navigation and timing advice. Communications were maintained over five wireless nodes distributed over hills and into canyons for 5 km; data, including photographs and status was transmitted automatically to the desktop at mission control in Houston. This paper describes the system configurations, communication protocols, scenarios, and test results.

  7. A Closed Mars Analog Simulation: The Approach of Crew 5 At the Mars Desert Research Station

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Koga, Dennis (Technical Monitor)

    2002-01-01

    For twelve days in April 2002 we performed a closed simulation in the Mars Desert Research Station, isolated from other people, as on Mars, while performing systematic surface exploration and life support chores. Email provided our only means of contact; no phone or radio conversations were possible. All mission-related messages were mediated by a remote mission support team. This protocol enabled a systematic and controlled study of crew activities, scheduling, and use of space. The analysis presented here focuses on two questions: Where did the time go-why did people feel rushed and unable to complete their work? How can we measure and model productivity, to compare habitat designs, schedules, roles, and tools? Analysis suggests that a simple scheduling change-having lunch and dinner earlier, plus eliminating afternoon meetings-increased the available productive time by 41%.

  8. Finding the team for Mars: a psychological and human factors analysis of a Mars Desert Research Station crew.

    PubMed

    Sawyer, Benjamin D; Hancock, P A; Deaton, John; Suedfeld, Peter

    2012-01-01

    A two-week mission in March and April of 2011 sent six team members to the Mars Desert Research Station (MDRS). MDRS, a research facility in the high Utah desert, provides an analogue for the harsh and unusual working conditions that will be faced by men and women who one day explore Mars. During the mission a selection of quantitative and qualitative psychological tests were administered to the international, multidisciplinary team. A selection of the results are presented along with discussion. PMID:22317591

  9. Geospatial Information Integration for Science Activity Planning at the Mars Desert Research Station

    NASA Astrophysics Data System (ADS)

    Berrios, Daniel C.; Sierhuis, Maarten; Keller, Richard M.

    NASA's Mobile Agents project leads coordinated planetary exploration simulations at the Mars Desert Research Station. Through ScienceOrganizer, a Web-based tool for organizing and providing contextual information for scientific data sets, remote teams of scientists access and annotate data sets, images, documents and other forms of scientific information, applying predefined semantic links and metadata using a Web browser. We designed and developed an experimental geographic information server that integrates remotely sensed images of scientific activity areas with information regarding activity plans, actors and data that had been characterized semantically using ScienceOrganizer. The server automatically obtains remotely sensed photographs of geographic survey sites at various resolutions and combines these images with scientific survey data to generate “context maps” illustrating the paths of survey actors and the sequence and types of data collected during simulated surface “extra-vehicular activities.” The remotely located scientific team found the context maps were extremely valuable for achieving and conveying activity plan consensus.

  10. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    NASA Astrophysics Data System (ADS)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  11. A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah)

    NASA Astrophysics Data System (ADS)

    Direito, Susana O. L.; Ehrenfreund, Pascale; Marees, Andries; Staats, Martijn; Foing, Bernard; Röling, Wilfred F. M.

    2011-07-01

    Humankind's innate curiosity makes us wonder whether life is or was present on other planetary bodies such as Mars. The EuroGeoMars 2009 campaign was organized at the Mars Desert Research Station (MDRS) to perform multidisciplinary astrobiology research. MDRS in southeast Utah is situated in a cold arid desert with mineralogy and erosion processes comparable to those on Mars. Insight into the microbial community composition of this terrestrial Mars analogue provides essential information for the search for life on Mars: including sampling and life detection methodology optimization and what kind of organisms to expect. Soil samples were collected from different locations. Culture-independent molecular analyses directed at ribosomal RNA genes revealed the presence of all three domains of life (Archaea, Bacteria and Eukarya), but these were not detected in all samples. Spiking experiments revealed that this appears to relate to low DNA recovery, due to adsorption or degradation. Bacteria were most frequently detected and showed high alpha- and beta-diversity. Members of the Actinobacteria, Proteobacteria, Bacteroidetes and Gemmatimonadetes phyla were found in the majority of samples. Archaea alpha- and beta-diversity was very low. For Eukarya, a diverse range of organisms was identified, such as fungi, green algae and several phyla of Protozoa. Phylogenetic analysis revealed an extraordinary variety of putative extremophiles, mainly Bacteria but also Archaea and Eukarya. These comprised radioresistant, endolithic, chasmolithic, xerophilic, hypolithic, thermophilic, thermoacidophilic, psychrophilic, halophilic, haloalkaliphilic and alkaliphilic micro-organisms. Overall, our data revealed large difference in occurrence and diversity over short distances, indicating the need for high-sampling frequency at similar sites. DNA extraction methods need to be optimized to improve extraction efficiencies.

  12. Prototype Software for Future Spaceflight Tested at Mars Desert Research Station

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maaretn; Alena, Rick; Dowding, John; Garry, Brent; Scott, Mike; Tompkins, Paul; vanHoof, Ron; Verma, Vandi

    2006-01-01

    NASA scientists in MDRS Crew 49 (April 23-May 7, 2006) field tested and significantly extended a prototype monitoring and advising system that integrates power system telemetry with a voice commanding interface. A distributed, wireless network of functionally specialized agents interacted with the crew to provide alerts (e.g., impending shut-down of inverter due to low battery voltage), access md interpret historical data, and display troubleshooting procedures. In practical application during two weeks, the system generated speech over loudspeakers and headsets lo alert the crew about the need to investigate power system problems. The prototype system adapts the Brahms/Mobile Agents toolkit to receive data from the OneMeter (Brand Electronics) electric metering system deployed by Crew 47. A computer on the upper deck was connected to loudspeakers, four others were paired with wireless (Bluetooth) headsets that enabled crew members to interact with their personal agents from anywhere in the hab. Voice commands and inquiries included: 1. What is the {battery | generator} {volts | amps | volts and amps}? 2. What is the status of the {generator | inverter | battery | solar panel}? 3. What is the hab{itat} {power usage | volts | voltage | amps | volts and amps}? 4. What was the average hab{itat} {amps | volts | voltage} since <#> {AM | PM)? 5. When did the {generator | batteries} change status? 6. Tell {me I | everyone} when{ ever} the generator goes offline. 7. Tell {me | | everyone} when the hab{itat} {amps | volts | voltage} {exceeds | drops brelow} <#>. 8. {Send | Take | Record} {a} voice note {(for | to} } {at

  13. Management Of Competition And Besting Among Crew Members: A Study At The Mars Desert Research Station (MDRS) In Utah, USA

    NASA Astrophysics Data System (ADS)

    Allner, Matthew; Bishop, Sheryl; Gushin, Vadim; McKay, Chris; Rygalov, Vadim; Allner, Matthew

    Introduction: Psychosocial group functioning has become an increased international focus of many space faring nations due to the recent shift in focus of colonizing the Moon and then preparing to travel to Mars and beyond. Purpose: This study investigates the effects of competition and besting among crewmembers in isolated and confined extreme (ICE) environments. Furthermore, the study investigates the effects associated with both preand intra-mission management efforts, which included crewmember assessments at various mission phases (pre-, intra-, and end-mission). Suggestions on how to manage competition and besting within a crew were investigated by implementing preand intra-mission awareness strategies as well as group participation in the development and implementation of countermeasures to manage crewmember tendency towards competition and besting to promote the development of positive group functioning. Methods: A six person heterogeneous American crew conducted a Mars simulation mission at the Mars Society's Mars Desert Research Station in Utah, USA in 2006 as part of a new NASA training program called Spaceward Bound. Participants were administered assessments of personality, personal and group identity/functioning, subjective stress, and subjective motivation. All participants were also provided information (pre-mission) regarding past research findings and tendencies of group functioning, stressors, cognitive functioning, and competition and besting. Results: Anecdotal data obtained from personal interviews with crewmembers strongly showed that pre-mission discussions regarding competition and besting provided awareness that allowed crewmembers to continually self-assess to prevent this tendency from surfacing during the mission. The assessment data results showed support for recorded diary materials which indicated crewmembers felt strongly that continual reminders of the besting concept, along with being allowed to participate in the development and

  14. PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah

    NASA Astrophysics Data System (ADS)

    Thiel, Cora S.; Ehrenfreund, Pascale; Foing, Bernard; Pletser, Vladimir; Ullrich, Oliver

    2011-07-01

    The search for evidence of past or present life on Mars will require the detection of markers that indicate the presence of life. Because deoxyribonucleic acid (DNA) is found in all known living organisms, it is considered to be a ‘biosignature’ of life. The main function of DNA is the long-term storage of genetic information, which is passed on from generation to generation as hereditary material. The Polymerase Chain Reaction (PCR) is a revolutionary technique which allows a single fragment or a small number of fragments of a DNA molecule to be amplified millions of times, making it possible to detect minimal traces of DNA. The compactness of the contemporary PCR instruments makes routine sample analysis possible with a minimum amount of laboratory space. Furthermore the technique is effective, robust and straightforward. Our goal was to establish a routine for the detection of DNA from micro-organisms using the PCR technique during the EuroGeoMars simulation campaign. This took place at the Mars Society's Mars Desert Research Station (MDRS) in Utah in February 2009 (organized with the support of the International Lunar Exploration Working Group (ILEWG), NASA Ames and the European Space Research and Technology Centre (ESTEC)). During the MDRS simulation, we showed that it is possible to establish a minimal molecular biology lab in the habitat for the immediate on-site analysis of samples by PCR after sample collection. Soil and water samples were taken at different locations and soil depths. The sample analysis was started immediately after the crew returned to the habitat laboratory. DNA was isolated from micro-organisms and used as a template for PCR analysis of the highly conserved ribosomal DNA to identify representatives of the different groups of micro-organisms (bacteria, archaea and eukarya). The PCR products were visualized by agarose gel electrophoresis and documented by transillumination and digital imaging. The microbial diversity in the collected

  15. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  16. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to

  17. Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Clarke, Jonathan; Direito, Susana O. L.; Blake, David; Martin, Kevin R.; Zavaleta, Jhony; Foing, Bernard

    2011-07-01

    We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO4>>CO3, as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO4 correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0×106 and 1.8×107 cells ml-1 at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars.

  18. Pre-Mission Communication And Awareness Stratgies For Positive Group Functioning And Development: Analysis Of A Crew At The Mars Desert Research Station (MDRS) In Utah, USA

    NASA Astrophysics Data System (ADS)

    Allner, Matthew; Bishop, Sheryl; Gushin, Vadim; McKay, Chris; Rygalov, Vadim; Allner, Matthew

    Introduction: Psychosocial group functioning has become an increased international focus of many space faring nations due to the recent shift in focus of colonizing the Moon and then preparing to travel to Mars and beyond. Purpose: This study investigates the effects of pre-mission communication and awareness strategies for positive group functioning in extreme environments as well as suggestive countermeasures to maintain positive group dynamic development in isolated and confined extreme (ICE) environments. The study is supported by both preand intra-mission management efforts, which included crewmember assessments at various mission phases (pre-, intra-, and end-mission). Methods: A six person heterogeneous American crew conducted a Mars simulation mission at the Mars Society's Mars Desert Research Station in Utah, USA in 2006 as part of a new NASA training program called Spaceward Bound. Participants were administered assessments of personality, personal and group identity/functioning, subjective stress, coping, and subjective motivation. All participants were also provided information (pre-mission) regarding past research and tendencies of group functioning, stressors, cognitive functioning, and mission mistakes from a mission phase analysis approach, to see if this would be a factor in positive group dynamic development. Results: Data collected and obtained by both assessment and journaling methods were both consistent and indicative of positive personalities desirable of expedition crews. Assessment data further indicated positive group cohesion and group interactions, along with supportive and strong leadership, all which led to positive personal and group experiences for crewmembers. Crewmembers all displayed low levels of competition while still reporting high motivation and satisfaction for the group dynamic development and the mission objectives that were completed. Journals kept by the crew psychologist indicated that crewmembers all felt that the pre

  19. Space Station Habitability Research

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  20. Space Station habitability research

    NASA Technical Reports Server (NTRS)

    Clearwater, Y. A.

    1986-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Cente is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  1. Desert Research and Technology Studies 2008 Report

    NASA Technical Reports Server (NTRS)

    Romig, Barbara; Kosmo, Joseph; Gernhardt, Michael; Abercromby, Andrew

    2009-01-01

    During the last two weeks of October 2008, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2008 Desert Research and Technology Studies (D-RATS) near Flagstaff, AZ. The Desert RATS field test activity is the year-long culmination of various individual science and advanced engineering discipline areas technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The 2008 Desert RATS was the eleventh RATS field test and was the most focused and successful test to date with participants from six NASA field centers, three research organizations, one university, and one other government agency. The main test objective was to collect Unpressurized Rover (UPR) and Lunar Electric Rover (LER) engineering performance and human factors metrics while under extended periods of representative mission-based scenario test operations involving long drive distances, night-time driving, Extravehicular Activity (EVA) operations, and overnight campover periods. The test was extremely successful with all teams meeting the primary test objective. This paper summarizes Desert RATS 2008 test hardware, detailed test objectives, test operations, and test results.

  2. Desert Research and Technology Studies 2005 Report

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.; Kosmo, Joseph J.; Janoiko, Barbara A.; Bernard, Craig; Splawn, Keith; Eppler, Dean B.

    2006-01-01

    During the first two weeks of September 2005, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2005 Research and Technology Studies (RATS). The Desert RATS field test activity is the culmination of the various individual science and advanced engineering discipline areas year-long technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The purpose of the RATS is to drive out preliminary exploration concept of operations EVA system requirements by providing hands-on experience with simulated planetary surface exploration extravehicular activity (EVA) hardware and procedures. The RATS activities also are of significant importance in helping to develop the necessary levels of technical skills and experience for the next generation of engineers, scientists, technicians, and astronauts who will be responsible for realizing the goals of the Constellation Program. The 2005 Desert RATS was the eighth RATS field test and was the most systems-oriented, integrated field test to date with participants from NASA field centers, the United States Geologic Survey (USGS), industry partners, and research institutes. Each week of the test, the 2005 RATS addressed specific sets of objectives. The first week focused on the performance of surface science astro-biological sampling operations, including planetary protection considerations and procedures. The second week supported evaluation of the Science, Crew, Operations, and Utility Testbed (SCOUT) proto-type rover and its sub-systems. Throughout the duration of the field test, the Communications, Avionics, and Infomatics pack (CAI-pack) was tested. This year the CAI-pack served to provide information on surface navigation, science sample collection procedures, and EVA timeline awareness. Additionally, 2005 was the first

  3. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wade, C. E.; Givens, J. J.

    1997-01-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  4. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.

    1995-01-01

    NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox

  5. International Space Station Research Racks

    NASA Video Gallery

    The International Space Station has a variety of multidisciplinary laboratory facilities and equipment available for scientists to use. This video highlights the capabilities of select facilities. ...

  6. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  7. Interdisciplinary research at the SMEAR Estonia station

    NASA Astrophysics Data System (ADS)

    Noe, Steffen M.; Niinemets, Ülo; Kangur, Ahto; Hõrrak, Urmas; Soosaar, Kaido; Mander, Ülo

    2014-05-01

    Interdisciplinary research on ecosystem-atmosphere relations has been an issue since many years in Estonia. Since 2008, these activities have been intensified and led to the build up of a SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) type station in Estonia. It is part of the Estonian Environmental Observatory, a delocalized research infrastructure that is operated by several Estonian universities and research institutions. It's core is located in the experimental forestry district in Järvselja where a major portion of the ecosystem and atmospheric research activities take place. Here, we present an overview of the current state of research which especially takes care of the hemiboreal forest ecosystem. Continuous build up of comprehensive measurements at diverse sites has led to a network of stations over Estonia. It's location in the transition zone between boreal and temperate forest ecosystems allows for new and updated hypothesis regarding fluxes of energy and matter in a globally changing climate system.

  8. Telerobotics: Research needs for evolving space stations

    NASA Technical Reports Server (NTRS)

    Stark, L.

    1987-01-01

    It is argued that triplicate planning for telerobotics applicable to space stations is needed. It is important to carry out research to accomplish tasks: (1) with man alone (such as extra-vehicular activities), (2) with autonomous robots, and (3) with telerobotics. The research necessary to carry out these approaches is compared and contrasted in order to clarify present problems.

  9. Research opportunities on the Space Station

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy

    1990-01-01

    Two interdisciplinary facilities that have been proposed for the Space Station, the Gas-Grain Simulation Facility and the Cosmic Dust Collector Facility, are reviewed. Both of these facilities provide opportunities for scientists interested in carbon related research to perform experiments in earth orbit.

  10. Microgravity Particle Research on the Space Station

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W. (Editor); Mckay, Christopher P. (Editor); Schwartz, Deborah E. (Editor)

    1987-01-01

    Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

  11. Microgravity particle research on the Space Station

    SciTech Connect

    Squyres, S.W.; Mckay, C.P.; Schwartz, D.E.

    1987-12-01

    Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

  12. Exobiology research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Stratton, D. M.; Scattergood, T. W.

    1995-01-01

    The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described.

  13. Desert Research and Technology Studies Exposure of Lotus Coated Electrodynamic Shield Samples

    NASA Technical Reports Server (NTRS)

    Rodriquez, Marcello; Peters, Wanda C.; Straka, Sharon A.; Jones, Craig B.

    2011-01-01

    The Lotus dust mitigation coating and the electrodynamic shield (EDS) are two new technologies currently being developed by NASA as countermeasures for addressing dust accumulation for long-duration human space exploration. These combined technologies were chosen by the Habitation Demonstration Unit (HDU) program for desert dust exposure at the Desert Research and Technologies Studies (D-RaTS) test site in Arizona. Characterization of these samples was performed prior to, during and post D-RaTS exposure.

  14. Desert Research and Technology Studies (DRATS) Traverse Planning

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich

    2012-01-01

    Slide 1] The Desert Research and Technology Studies (DRATS) include large scale field tests of manned lunar surface exploration systems; these tests are sponsored by the Director s Office of Integration (DOI) [sic, Directorate Integration Office (DIO)] within the Constellation Program and they include geological exploration objectives along well designed traverses. These traverses are designed by the Traverse Team, an ad hoc group of some 10 geologists form NASA and academia, as well as experts in mission operation who define the operational constraints applicable to specific simulation scenarios. [Slide 2] These DRATS/DOI tests focus on 1) the performance of major surface systems, such as rovers, mobile habitats, communication architecture, navigation tools, earth-moving equipment, unmanned reconnaissance robots etc. under realistic field conditions and 2) the development of operational concepts that integrate all of these systems into a single, optimized operation. The participation of science is currently concentrating on geological sciences, with the objective of developing suitable tools and documentation protocols to sample representative rocks for Earth return, and to generate some conceptual understanding of the ground support structure that will be needed for the real time science-support of a lunar surface crew. [Slide 3] Major surface systems exercised in the June 2008 analog tests at the Moses Lake site, WA. [Upper left] The Chariot Rover (developed at Johnson Space Center) is an unpressurized vehicle driven by fully suited crews. [Upper right] Mobile Habitat provided by the Jet Propulsion Laboratory. Chariot is the more nimble and mobile vehicle and the idea is to drive the habitat remotely to some rendezvous place where Chariot would catch up - after a lengthy traverse - at the end of the day. [Lower left] The K-10 remotely operated robot (provided by NASA Ames Research Center) conducting scientific/geologic reconnaissance of the prospective traverse

  15. Opportunities for research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.

    1992-01-01

    NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences

  16. Opportunities for research on Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Phillips, Robert W.

    NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences

  17. Space Station Biological Research Project Habitat: Incubator

    NASA Technical Reports Server (NTRS)

    Nakamura, G. J.; Kirven-Brooks, M.; Scheller, N. M.

    2001-01-01

    Developed as part of the suite of Space Station Biological Research Project (SSBRP) hardware to support research aboard the International Space Station (ISS), the Incubator is a temperature-controlled chamber, for conducting life science research with small animal, plant and microbial specimens. The Incubator is designed for use only on the ISS and is transported to/from the ISS, unpowered and without specimens, in the Multi-Purpose Logistics Module (MPLM) of the Shuttle. The Incubator interfaces with the three SSBRP Host Systems; the Habitat Holding Racks (HHR), the Life Sciences Glovebox (LSG) and the 2.5 m Centrifuge Rotor (CR), providing investigators with the ability to conduct research in microgravity and at variable gravity levels of up to 2-g. The temperature within the Specimen Chamber can be controlled between 4 and 45 C. Cabin air is recirculated within the Specimen Chamber and can be exchanged with the ISS cabin at a rate of approximately equal 50 cc/min. The humidity of the Specimen Chamber is monitored. The Specimen Chamber has a usable volume of approximately equal 19 liters and contains two (2) connectors at 28v dc, (60W) for science equipment; 5 dedicated thermometers for science; ports to support analog and digital signals from experiment unique sensors or other equipment; an Ethernet port; and a video port. It is currently manifested for UF-3 and will be launched integrated within the first SSBRP Habitat Holding Rack.

  18. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  19. Biological research on a Space Station

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Johnson, Catherine C.

    1990-01-01

    A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.

  20. International Space Station -- Human Research Facility (HRF)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

  1. Validation of the McClear clear-sky model in desert conditions with three stations in Israel

    NASA Astrophysics Data System (ADS)

    Lefèvre, Mireille; Wald, Lucien

    2016-03-01

    The new McClear clear-sky model, a fast model based on a radiative transfer solver, exploits the atmospheric properties provided by the EU-funded Copernicus Atmosphere Monitoring Service (CAMS) to estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any time. The work presented here focuses on desert conditions and compares the McClear irradiances to coincident 1 min measurements made in clear-sky conditions at three stations in Israel which are distant from less than 100 km. The bias for global irradiance is comprised between 2 and 32 W m-2, i.e. between 0 and 4 % of the mean observed irradiance (approximately 830 W m-2). The RMSE ranges from 30 to 41 W m-2 (4 %) and the squared correlation coefficient is greater than 0.976. The bias for the direct irradiance at normal incidence (DNI) is comprised between -68 and +13 W m-2, i.e. between -8 and 2 % of the mean observed DNI (approximately 840 W m-2). The RMSE ranges from 53 (7 %) to 83 W m-2 (10 %). The squared correlation coefficient is close to 0.6. The performances are similar for the three sites for the global irradiance and for the DNI to a lesser extent, demonstrating the robustness of the McClear model combined with CAMS products. These results are discussed in the light of those obtained by McClear for other desert areas in Egypt and United Arab Emirates.

  2. Animal research facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

  3. Complex researches aboard the international space station

    NASA Astrophysics Data System (ADS)

    Pokhyl, Yu. A.

    Special Research and Development Bureau SRDB is a general organizer on Ukrainian part of three Ukrainian- Russian joint experiments to be implemented aboard the Russian segment of International Space Station RS-ISS Experiment Material- Friction It is proposed to carry out a series of comparative tribological research under conditions of orbital flight aboard the ISS versus those in on- ground laboratory conditions To meet these objectives there will be employed a special onboard 6-module Space- borne tribometer- facility The on- ground research will be implemented under conditions of laboratory simulation of Space environmental factors Results thus obtained would enable one to forecast a behavior of friction pairs as well as functional safety and lifetime of the space- vehicle This experiment will also enable us determine an adequacy of tribological results obtained under conditions of outer Space and on- ground simulation Experiment Penta- Fatigue It is proposed to develop fabricate and deliver aboard the RS-ISS a facility intended for studies of SEF- influence on characteristics of metallic and polymeric materials resistance to fatigue destruction Such a project to be implemented in outer Space for the first ever time would enable us to estimate the parameter of cosmic lifetime for constructional materials due to such mechanical characteristic as fatigue strength so as to enable selection of specific sorts of constructional materials appropriate to service in Space technologies At the same time

  4. Space Station Human Factors Research Review. Volume 3: Space Station Habitability and Function: Architectural Research

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)

    1987-01-01

    Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.

  5. Omics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Love, John

    2015-01-01

    The International Space Station (ISS) is an orbiting laboratory whose goals include advancing science and technology research. Completion of ISS assembly ushered a new era focused on utilization, encompassing multiple disciplines such as Biology and Biotechnology, Physical Sciences, Technology Development and Demonstration, Human Research, Earth and Space Sciences, and Educational Activities. The research complement planned for upcoming ISS Expeditions 45&46 includes several investigations in the new field of omics, which aims to collectively characterize sets of biomolecules (e.g., genomic, epigenomic, transcriptomic, proteomic, and metabolomic products) that translate into organismic structure and function. For example, Multi-Omics is a JAXA investigation that analyzes human microbial metabolic cross-talk in the space ecosystem by evaluating data from immune dysregulation biomarkers, metabolic profiles, and microbiota composition. The NASA OsteoOmics investigation studies gravitational regulation of osteoblast genomics and metabolism. Tissue Regeneration uses pan-omics approaches with cells cultured in bioreactors to characterize factors involved in mammalian bone tissue regeneration in microgravity. Rodent Research-3 includes an experiment that implements pan-omics to evaluate therapeutically significant molecular circuits, markers, and biomaterials associated with microgravity wound healing and tissue regeneration in bone defective rodents. The JAXA Mouse Epigenetics investigation examines molecular alterations in organ specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight. Lastly, Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), NASA's first foray into human omics research, applies integrated analyses to assess biomolecular responses to physical, physiological, and environmental stressors associated

  6. Nutrition Research: Basis for Station Requirements

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Rice, Barbara; Smith, Scott M.

    2011-01-01

    Prior to the Shuttle program, all understanding of nutritional needs in space came from Skylab metabolic research. Because Shuttle flights were short, most less than 14 days, research focused on major nutritional issues: energy (calories), protein and amino acids, water and electrotypes, with some more general physiology studies that related to iron and calcium. Using stable isotope tracer studies and diet intake records, we found that astronauts typically did not consume adequate calories to meet energy expenditure. To monitor energy and nutrient intake status and provide feedback to the flight surgeon and the astronauts, the International Space Station (ISS) program implemented a weekly food frequency questionnaire and routine body mass measurements. Other Shuttle investigations found that protein turnover was higher during flight, suggesting there was increased protein degradation and probably concurrent increase in protein synthesis, and this occurred even in cases of adequate protein and caloric intake. These results may partially explain some of the loss of leg muscle mass. Fluid and electrolyte flight studies demonstrated that water intake, like energy intake, was lower than required. However, sodium intakes were elevated during flight and likely related to other concerns such as calcium turnover and other health-related issues. NASA is making efforts to have tasty foods with much lower salt levels to reduce sodium intake and to promote fluid intake on orbit. Red blood cell studies conducted on the Shuttle found decreased erythrogenesis and increased serum ferritin levels. Given that the diet is high in iron there may be iron storage health concerns, especially related to the role of iron in oxidative damage, complicated by the stress and radiation. The Shuttle nutrition research lead to new monitoring and research on ISS. These data will be valuable for future NASA and commercial crewed missions.

  7. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  8. ISS Update: ISTAR -- International Space Station Testbed for Analog Research

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Sandra Fletcher, EVA Systems Flight Controller. They discuss the International Space Station Testbed for Analog Research (ISTAR) activity that...

  9. Epigenetics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  10. Levitation Technology in International Space Station Research

    NASA Technical Reports Server (NTRS)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies

  11. Desert Research and Technology Study 2003 Trip Report/ICES Paper

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Kosmo, Joseph J.; Janoiko, Barbara; Eppler, Dean

    2004-01-01

    The Advanced Extra-vehicular Activity (EVA) team of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) participated in the Desert Research and Technology Study (RATS) in September 2003, at Meteor Crater, AZ. The Desert RATS is an integrated remote field site te t with team members from several NASA centers (Johnson Space Center; Glenn and Ames Research Centers) and universities (Bowling Green State University, University of Cincinnati, Massachusetts Institute of Technology) participating. Each week of the two-week field test had a primary focus. The primary test hardware for the first week was the I-Gravity Lunar Rover Training Vehicle, or Grover, which was on loan to NASA from the United States Geological Survey (USGS) Astrogeology Research Program. The 2003 Grover driving test results serve as a rover performance characterization baseline for the Science, Crew, Operation and Utility Testbed (SCOUT) project team, which will be designing and fabricating a next generation roving vehicle prototype in Fiscal Year (FY) 2004. The second week of testing focused on EVA geologic traverses that utilized a geologic sample field analysis science trailer and also focused on human-robotic interaction between the suited subjects and the EVA Robotic Assistant (ERA). This paper will review the Advanced EVA team's role in the context of the overall Desert RATS, as well as the EVA team results and lessons learned. For information regarding other test participants' results, the authors can refer interested parties to the test reports produced by those Desert RATS teams.

  12. Digital Learning Network Education Events for the Desert Research and Technology Studies

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Guillory, Erika R.

    2007-01-01

    NASA s Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA s Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.

  13. Utilization of Space Station Freedom for technology research

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1992-01-01

    Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations

  14. History of the Central Great Plains Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Great Plains Research Station was established in 1907 as one of several Agricultural Fact Finding Institutions located in the Great Plains of the United States by the Bureau of Plant Industry. This document summarizes the circumstances surrounding the creation of the station and changes ...

  15. Desert Storm environmental effects

    NASA Astrophysics Data System (ADS)

    Kimball, E. W.

    It is noted that after more than six months of operation of the Patriot launch station in the Saudi Arabian desert no problems that were attributed to high temperature occurred. The environmental anomalies that did occur were cosmetic in nature and related to dust and salt fog. It was concluded that the Desert Storm environmental effects were typical of worldwide hot, dry climates.

  16. GPS Monitor Station Upgrade Program at the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Galysh, Ivan J.; Craig, Dwin M.

    1996-01-01

    One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.

  17. Animal research on the Space Station

    NASA Technical Reports Server (NTRS)

    Bonting, S. L.; Arno, R. D.; Corbin, S. D.

    1987-01-01

    The need for in-depth, long- and short-term animal experimentation in space to qualify man for long-duration space missions, and to study the effects of the absence and presence of Earth's gravity and of heavy particle radiation on the development and functioning of vertebrates is described. The major facilities required for these investigations and to be installed on the Space Station are: modular habitats for holding rodents and small primates in full bioisolation; a habitat holding facility; 1.8 and 4.0 m dia centrifuges; a multipurpose workbench; and a cage cleaner/disposal system. The design concepts, functions, and characteristics of these facilities are described.

  18. Space station solar concentrator materials research

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1988-01-01

    The Space Station will represent the first time that a solar dynamic power system will be used to generate electrical power in space. In a system such as this, sunlight is collected and focused by a solar concentrator onto the receiver of a heat engine which converts the energy into electricity. The concentrator must be capable of collecting and focusing as much of the incident sunlight as possible, and it must also withstand the atomic oxygen bombardment which occurs in low Earth orbit (LEO). This has led to the development of a system of thin film coatings applied to the concentrator facet surface in a chamber designed especially for this purpose. The system of thin film coatings employed gives both the necessary degree of reflectance and the required protection from the LEO atomic oxygen environment.

  19. Lithic microbial communities from a Mars analogue site in Utah desert

    NASA Astrophysics Data System (ADS)

    Rodrigues, L.; Foing, B. H.; Davies, G. R.; Stoker, C.; Clarke, J.; Correia, A.; Alves, A.

    2012-09-01

    Several rock samples have been collected as part of a Mars field analogue campaign (NASA DOMEXILEWG EuroMoonMars) at Mars Desert Research Station (MDRS) area (Utah Desert, USA), and were analyzed with respect to the microbial diversity they support; a culture-independent approach resulted in DGGE band profiles descriptive of the composition of the 3 domains, Bacteria, Archaea and Eukarya.

  20. Space Station life science research facility - The vivarium/laboratory

    NASA Technical Reports Server (NTRS)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  1. Desert Research Institute cloud droplet videometer measurements in support of MASTEX

    SciTech Connect

    1995-02-13

    In support of the Monterey Area Ship-Track Experiment (MASTEX) the Desert Research Institute completed modifications to an existing cloud droplet videometer and construction of a second unit for deployment on board the RV Glorita during the month of June 1994. Dr. Randolph Borys accompanied the instrumentation during the period the ship was at sea and assisted in the day-to-day experiments which were conducted on board. Unusually clear conditions and high winds contributed to the lack of opportunities to deploy the new instrument from the ship.

  2. Planetary Surface Science Operations for Human Missions: The 2010 Desert Research and Technology Test

    NASA Astrophysics Data System (ADS)

    Eppler, D. B.; Ming, D. W.

    2011-03-01

    Desert RATS is a hardware and operations test carried out annually in the Arizona desert. These activities exercise science operations teams, crew and hardware in a multi-day roving test, defining requirements for future planetary science operations.

  3. The opportunities for space biology research on the Space Station

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Souza, Kenneth A.

    1987-01-01

    The goals of space biology research to be conducted aboard the Space Station in 1990s include long-term studies of reproduction, development, growth, physiology, behavior, and aging in both animals and plants. They also include studies of the mechanisms by which gravitational stimuli are sensed, processed, and transmitted to a responsive site, and of the effect of microgravity on each component. The Space Station configuration will include a life sciences research facility, where experiment cyles will be on a 90-day basis (since the Space Station missions planned for the 1990s call for 90-day intervals). A modular approach is taken to accomodate animal habitats, plant growth chambers, and other specimen holding facilities; the modular habitats would be transportable between the launch systems, habitat racks, a workbench, and a variable-gravity centrifuge (included for providing artificial gravity and accurately controlled acceleration levels aboard Space Station).

  4. International Space Station Research Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Kamigaichi, Shigeki; Sorokin, Igor V.; Zell, Martin; Fuglesang, Christer; Sabbagh, Jean; Pignataro, Salvatore

    2012-01-01

    The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth -- not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.

  5. Desert Survivors!

    ERIC Educational Resources Information Center

    Horton, Jessica; Friedenstab, Steve

    2013-01-01

    This article describes a special third-grade classroom unit based on the reality show "Survivor." The goal of this engaging and interactive unit was to teach students about physical and behavioral adaptations that help animals survive in various desert biomes. The activity combines research, argument, and puppet play over one week of…

  6. Optical Dust Characterization in Manned Mars Analogue Research Stations

    NASA Technical Reports Server (NTRS)

    Bos, B. J.; Krebs, Carolyn (Technical Monitor)

    2003-01-01

    Martian dust has been identified as a potentially serious hazard to any manned Mars landing mission. NASA and other organizations realize this risk and continue to support Martian dust research through the Matador project led by researchers at the University of Arizona. The Mars Society can contribute to this work by beginning a regimen of monitoring and measuring dust properties at its Mars analogue research stations. These research facilities offer the unique opportunity to study the transport and distribution of dust particles within a crewed habitat supporting active geologic exploration. Information regarding the amount, location and size of dust particles that may accumulate in a Mars habitat will be required to design a real Mars habitat and habitat equipment. Beginning such an effort does not require a large outlay of equipment and can be accomplished using crewmembers experienced with station operations. Various optical techniques, such as dark-field illumination, coupled with image processing algorithms enable the collection of dust grain relative size and frequency information. Such approaches can be applied in several different zones within the research stations to evaluate the various dust reduction and isolation procedures implemented during a particular crew rotation. As the stations simulation fidelity increases, the applicability of such data to a functional Mars lander will increase. This presentation describes the optical equipment and procedures for measuring dust properties in Mars analogue research stations that can be implemented during the next field season.

  7. Life science research on the Space Station

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The requirements for studying the mechanisms of response and adaptation to the microgravity environment are examined. The necessary facilities, equipments, and technologies for the use of animals in space research are discussed. The application of a centrifuge to the analysis of the effects of microgravity on physiological adaptation is described.

  8. Listening for Listeners: Two Educational Radio Stations Discover Audience Research.

    ERIC Educational Resources Information Center

    Stavitsky, Alan G.

    Two pioneering public radio stations--WOSU-AM, licensed to the Ohio State University in Columbus, and WHA-AM, licensed to the University of Wisconsin in Madison--conducted audience research as early as the 1920s. The challenge for early education broadcasters became to adapt the existing audience research paradigm to their purposes, or to develop…

  9. The space station and human productivity: An agenda for research

    NASA Technical Reports Server (NTRS)

    Schoonhoven, C. B.

    1985-01-01

    Organizational problems in permanent organizations in outer space were analyzed. The environment of space provides substantial opportunities for organizational research. Questions about how to organize professional workers in a technologically complex setting with novel dangers and uncertainties present in the immediate environment are examined. It is suggested that knowledge from organization theory/behavior is an underutilized resource in the U.S. space program. A U.S. space station will be operable by the mid-1990's. Organizational issues will take on increasing importance, because a space station requires the long term organization of human and robotic work in the isolated and confined environment of outer space. When an organizational analysis of the space station is undertaken, there are research implications at multiple levels of analysis: for the individual, small group, organizational, and environmental levels of analysis. The research relevant to organization theory and behavior is reviewed.

  10. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  11. Life sciences research on the space station: An introduction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  12. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    ERIC Educational Resources Information Center

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  13. Beppu geothermal field and the Geophysical Research Station

    SciTech Connect

    Not Available

    1988-12-01

    Bathing in hot springs has always been an important part of life in Japan. There are over 2,000 spas in Japan, visited every year by over 100 million people. In spite of this interest in hot-springs, very few institutes are dedicated to research in the hot-spring sciences. In this regard, the Geophysical Research Station of Kyoto University, Beppu, is unique because of its broad range of scientific studies of geothermal phenomena. The studies include geochemical, geophysical, geological, and hydrological research on geothermal systems in their natural and modified states. The Geophysical Research Station has an ideal location on the Beppu geothermal system, one of the largest geothermal systems in Japan on the Island of Kyushu. This island is the southernmost of the four main islands of Japan, at the northeastern end of the Philippines-Kyushu volcanic arc. The Beppa geothermal system is described briefly and research projects are discussed.

  14. Space Station Freedom Integrated Research and Development Growth

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.; Ahlf, P. R.; Saucillo, Rudy J.

    1990-01-01

    Space Station Freedom is designed to be an Earth-orbiting, multidiscipline research and development (R&D) facility capable of evolution to accomodate a variety of potential uses. One evolution scenario is growth to an enhanced R&D facility. In support of the Space Station Freedom Program Preliminary Design Review (PDR), the NASA Langley Research Center Space Station Office is analyzing growth requirements and evaluating configurations for this R&D utilization. This paper presents a summary of FY1989 study results including time-phased growth plans, R&D growth issues and configurations, and recommendations for the program baseline design which will facilitate evolutionary R&D growth. This study consisted of three major areas of concentration: mission requirements analysis; Space Station Freedom systems growth analysis; and growth accomodations and trades. Mission requirements analysis was performed to develop a realistic mission model of post-Phase 1 R&D missions. A systems-level analysis was performed to project incremental growth requirements of Space Station Freedom needed to support these R&D missions. Identification of growth requirements and specific growth elements led to the need for special accomodations analyses and trades. These studies included identification of hooks and scars on the baseline design, determination of an optimal module growth pattern, analysis of the dual keel length, and determination of an optimal locaton for the customer servicing facility. Results of this study show that Space Station Freedom must be capable of evolving to a dual keel, eight pressurized module configuration (two growth habs and two growth labs); providing 275 kW power (for experimenters and station housekeeping); accomodating a crew of 24; and supporting other growth structures and special facilities to meet projected R&D mission requirements.

  15. A North Adriatic centenarian: The marine research station at Rovinj

    NASA Astrophysics Data System (ADS)

    Zavodnik, D.

    1995-03-01

    The institute in Rovinj was founded in 1891 as the field station of the Berlin Aquarium. It soon gained in scientific importance. From 1911, it was governed by various scientific bodies, such as the ‘Kaiser-Wilhelm-Gesellschaft zur Förderung der Wissenschaften’, the ‘Reale Comitato Talassografico Italiano’, and the ‘Jugoslavenska Akademija znanosti i umjetnosti’. At present, it is a department of the ‘Ruđer Bo\\vsković’ Institute, called the ‘Center for Marine Research Rovinj’. In the past hundred years, the Rovinj station experienced several ascents and declines in its development: both in the First and Second World Wars the station's scientific equipment, research vessels, library and reference collections were dispersed, and from 1945 1948 the station was closed. But in “happier” periods, rich support by the state and international bodies favoured the increase in research facilities and promoted interest among visiting scientists. The station has always been involved in studies of the Adriatic Sea, especially in its northern part. It contributed much to general knowledge of oceanography, of the physics and chemistry of the sea, but its paramount contribution is to various disciplines of marine biological sciences. Applied research, however, was most oriented to fisheries biology, especially shellfish culture, to resource studies, and, recently, to toxicology, bacteriology, eutrophication and pollution monitoring. The international approach in science and applied research was always favoured. At present, the Center is well equipped for complex coastal and offshore field- and laboratory research, and maintains facilities for graduate and postgraduate teaching. Scientific dissemination is also promoted by the public aquarium and professional meetings.

  16. Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)

    DOE Data Explorer

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.

  17. Use of international space station for fundamental physics research

    NASA Technical Reports Server (NTRS)

    Israelsson, U.; Lee, M. C.

    2002-01-01

    NASA's research plans aboard the International Space Station (ISS) are discussed. Experiments in low temperature physics and atomic physics are planned to commence in late 2005. Experiments in gravitational physics are planned to begin in 2007. A low temperature microgravity physics facility is under development for the low temperature and gravitation experiments.

  18. Space Station accommodation engineering for Life Sciences Research Facilities

    NASA Technical Reports Server (NTRS)

    Hilchey, J.; Gustan, E.; Rudiger, C. E.

    1984-01-01

    Exploratory studies conducted by NASA Marshall Space Flight Center and several contractors in connection with defining the design requirements, parameters, and tradeoffs of the Life Sciences Research Facilities for nonhuman test subjects aboard the Space Station are reviewed. The major system discriminators which determine the size of the accommodation system are identified, along with a number of mission options. Moreover, characteristics of several vivarium concepts are summarized, focusing on the cost, size, variable-g capability, and the number of specimens accommodated. Finally, the objectives of the phase B studies of the Space Station Laboratory, which are planned for FY85, are described.

  19. Life sciences biomedical research planning for Space Station

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  20. Construction techniques for the Taklamakan Desert Highway: research on the construction materials and the results of field tests

    NASA Astrophysics Data System (ADS)

    Jin, Changning; Dong, Zhibao; Li, Zhinong

    2006-03-01

    After conducting many laboratory and field experiments, several key technical issues related to the construction of China’s Taklamakan Desert Highway have been satisfactorily resolved. In particular, considerable progress has been made on the dry compaction of a sand sub-base, road design parameters, the creation of a structure that combines a sub-grade and asphalt pavement, analysis of the stability of a sand sub-base strengthened with geotextiles, and on the development of a complete set of construction techniques. The achievements of this research were successfully applied for the first time in the Taklamakan Desert, where the environmental conditions are extremely harsh. The results suggest that the construction of this highway was economical and that the simple construction methods produced a reliable highway. The resulting highway is believed to be the world’s first long-distance graded highway running through a huge desert with migrating dunes.

  1. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  2. Science and Technology Research Directions for the International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is a unique and unprecedented space research facility. Never before have scientists and engineers had access to such a robust, multidisciplinary, long-duration microgravity laboratory. To date, the research community has enjoyed success aboard such platforms as Skylab, the Space Shuttle, and the Russian Mir space station. However, these platforms were and are limited in ways that the ISS is not. Encompassing four times the volume of Mir, the ISS will support dedicated research facilities for at least a dozen scientific and engineering disciplines. Unlike the Space Shuttle, which must return to Earth after less than three weeks in space, the ISS will accommodate experiments that require many weeks even months to complete. Continual access to a microgravity laboratory will allow selected scientific disciplines to progress at a rate far greater than that obtainable with current space vehicles.

  3. Space research in the era of the space station

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1985-01-01

    The major elements of the NASA manned space station are described, and science activities it could be used for are suggested. The core facilities include at least two major laboratory modules with supporting utilities, including habitation accommodations, docking facilities, power and heat rejection units, and external space and support for attached payloads. A vertically oriented structure, called the Power Tower, is being studied. Scientific accommodations inside the modules include major facility instrumentation for a variety of microgravity research projects, with initial emphasis upon materials research and life sciences. The second element is composed of free-flying satellites operating in orbits near the core station. The third element consists of satellites in polar orbits. One or more large, multi-instrument platforms are planned for Earth observation and solar-terrestrial processes research.

  4. Desert Research and Technology Studies (RATS) Local and Remote Test Sites

    NASA Technical Reports Server (NTRS)

    Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean

    2007-01-01

    Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.

  5. The opportunities for space biology research on the Space Station

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Souza, Kenneth A.

    1987-01-01

    The life sciences research facilities for the Space Station are being designed to accommodate both animal and plant specimens for long durations studies. This will enable research on how living systems adapt to microgravity, how gravity has shaped and affected life on earth, and further the understanding of basic biological phenomena. This would include multigeneration experiments on the effects of microgravity on the reproduction, development, growth, physiology, behavior, and aging of organisms. To achieve these research goals, a modular habitat system and on-board variable gravity centrifuges, capable of holding various animal, plant, cells and tissues, is proposed for the science laboratory.

  6. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  7. Unsaturated zone carbon dioxide flux, mixing, and isotopic composition at the USGS Amargosa Desert Research Site

    NASA Astrophysics Data System (ADS)

    Conaway, C. H.; Thordsen, J. J.; Thomas, B.; Haase, K.; Moreo, M. T.; Walvoord, M. A.; Andraski, B. J.; Stonestrom, D. A.

    2015-12-01

    Elevated concentrations of tritium, radiocarbon, and volatile organic compounds at the USGS Amargosa Desert Research Site, adjacent to a low-level radioactive waste disposal facility, have stimulated research on factors affecting transport of these contaminants. This research includes an examination of unsaturated zone carbon dioxide (CO2) fluxes, mixing, and isotopic composition, which can help in understanding these factors. In late April 2015 we collected 76 soil-gas samples in multi-layer foil bags from existing 1.5-m deep tubes, both inside and outside the low-level waste area, as well as from two 110-m-deep multilevel gas-sampling boreholes and a distant background site. These samples were analyzed for carbon dioxide concentration and isotopic composition by direct injection into a cavity ring-down spectrometer. Graphical analysis of results indicates mixing of CO2 characteristic of the root zone (δ13C -18 ‰ VPDB), deep soil gas of the capillary fringe (-20‰), and CO2 produced by microbial respiration of organic matter disposed in the waste area trenches (-28‰). Land-surface boundary conditions are being constrained by the application of a novel non-dispersive infrared sensor and traditional concentration and flux measurements, including discrete CO2 flux data using a gas chamber method to complement continuous data from surface- and tower-based CO2 sensors. These results shed light on radionuclide and VOC mobilization and transport mechanisms from this and similar waste disposal facilities.

  8. Research progress and accomplishments on International Space Station

    NASA Technical Reports Server (NTRS)

    Roe, Lesa B.; Uri, John J.

    2003-01-01

    The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  9. Research progress and accomplishments on International Space Station.

    PubMed

    Roe, Lesa B; Uri, John J

    2003-01-01

    The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. PMID:14649287

  10. Hexabromocyclododecane flame retardant in Antarctica: Research stations as sources.

    PubMed

    Chen, Da; Hale, Robert C; La Guardia, Mark J; Luellen, Drew; Kim, Stacy; Geisz, Heidi N

    2015-11-01

    Historical persistent organic pollutants (POPs) are banned from Antarctica under international treaty; but contemporary-use POPs can enter as additives within polymer and textile products. Over their useful lives these products may release additives in-situ. Indeed, we observed 226 and 109 ng/g dry weight (dw) of the total concentrations of α-, β- and γ-hexabromocyclododecane (HBCD) in indoor dust from McMurdo Station (U.S.) and Scott Station (New Zealand), respectively. Sewage sludge collected from wastewater treatment facilities at these stations exhibited ∑HBCD of 45 and 69 ng/g dw, respectively. Contaminants originally within the bases may exit to the local outdoor environment via wastewaters. Near McMurdo, maximum ∑HBCD levels in surficial marine sediments and aquatic biota (invertebrates and fish) were 2350 ng/g (total organic carbon basis) and 554 ng/g lipid weight, respectively. Levels declined with distance from McMurdo. Our results illustrate that Antarctic research stations serve as local HBCD sources to the pristine Antarctic environment. PMID:26312743

  11. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  12. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  13. Fundamental Biological Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Yost, Bruce; Fletcher, L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    The fundamental Biology Program of NASA's Life Sciences Division is chartered with enabling and sponsoring research on the International Space Station (ISS) in order to understand the effects of the space flight environment, particularly microgravity, on living systems. To accomplish this goal, NASA Ames Research Center (ARC) has been tasked with managing the development of a number of biological habitats, along with their support systems infrastructure. This integrated suite of habitats and support systems is being designed to support research requirements identified by the scientific community. As such, it will support investigations using cells and tissues, avian eggs, insects, plants, aquatic organisms and rodents. Studies following organisms through complete life cycles and over multiple generations will eventually be possible. As an adjunct to the development of these basic habitats, specific analytical and monitoring technologies are being targeted for maturation to complete the research cycle by transferring existing or emerging analytical techniques, sensors, and processes from the laboratory bench to the ISS research platform.

  14. Sea Level Station Metadata for Tsunami Detection, Warning and Research

    NASA Astrophysics Data System (ADS)

    Stroker, K. J.; Marra, J.; Kari, U. S.; Weinstein, S. A.; Kong, L.

    2007-12-01

    The devastating earthquake and tsunami of December 26, 2004 has greatly increased recognition of the need for water level data both from the coasts and the deep-ocean. In 2006, the National Oceanic and Atmospheric Administration (NOAA) completed a Tsunami Data Management Report describing the management of data required to minimize the impact of tsunamis in the United States. One of the major gaps defined in this report is the access to global coastal water level data. NOAA's National Geophysical Data Center (NGDC) and National Climatic Data Center (NCDC) are working cooperatively to bridge this gap. NOAA relies on a network of global data, acquired and processed in real-time to support tsunami detection and warning, as well as high-quality global databases of archived data to support research and advanced scientific modeling. In 2005, parties interested in enhancing the access and use of sea level station data united under the NOAA NCDC's Integrated Data and Environmental Applications (IDEA) Center's Pacific Region Integrated Data Enterprise (PRIDE) program to develop a distributed metadata system describing sea level stations (Kari et. al., 2006; Marra et.al., in press). This effort started with pilot activities in a regional framework and is targeted at tsunami detection and warning systems being developed by various agencies. It includes development of the components of a prototype sea level station metadata web service and accompanying Google Earth-based client application, which use an XML-based schema to expose, at a minimum, information in the NOAA National Weather Service (NWS) Pacific Tsunami Warning Center (PTWC) station database needed to use the PTWC's Tide Tool application. As identified in the Tsunami Data Management Report, the need also exists for long-term retention of the sea level station data. NOAA envisions that the retrospective water level data and metadata will also be available through web services, using an XML-based schema. Five high

  15. Microgravity fluid physics research in the Space Station Freedom era

    NASA Technical Reports Server (NTRS)

    Carpenter, Bradley M.

    1992-01-01

    Microgravity fluid physics covers an exciting range of established and potential fields of scientific research. Areas in which the Microgravity Science and Applications Division of NASA's Office of Space Science and Applications is currently supporting research include: multiphase flow and phase change heat transfer, behavior of granular media and colloids; and interface dynamics, morphological stability, and contact line phenomena. As they contribute to our knowledge of fluid behavior, advances in these areas will enhance our understanding of materials processing on Earth and in space, and will contribute to technologies as diverse as chemical extraction, the prediction of soil behavior in earthquakes, and the production of oil reservoirs. NASA' s primary platform for research in microgravity fluid physics will soon be the Fluid Physics/Dynamics Facility on Space Station Freedom. This facility shares a rack for control and utilities with the Modular Combustion Facility, and has one rack for experiment-unique instruments. It is planned to change out the content of the experiment-unique rack at intervals on the order of one year. In order to obtain a maximum return on the operation of the facility during these intervals, the research community must carefully plan and coordinate an effort that brings the efforts of many investigators to bear on problems of particular importance. NASA is currently working with the community to identify research areas in which microgravity can make a unique and valuable contribution, and to build a balanced program of research around these areas or thrusts. Selections will soon be made from our first solicitation for research in fluid dynamics and transport phenomena. These solicitations will build the research community that will make Space Station Freedom a catalyst for scientific and technological discovery, and offer U.S. scientists in many disciplines a unique opportunity to participate in space science.

  16. Desert Research and Technology Studies (DRATS) 2010 Education and Public Outreach (EPO)

    NASA Astrophysics Data System (ADS)

    Paul, Heather L.

    2013-10-01

    The Exploration Systems Mission Directorate, Directorate Integration Office conducts analog field test activities, such as Desert Research and Technology Studies (DRATS), to validate exploration system architecture concepts and conduct technology demonstrations. Education and Public Outreach (EPO) activities have been a part of DRATS missions in the past to engage students, educators, and the general public in analog activities. However, in 2010, for the first time, EPO was elevated as a principal task for the mission and metrics were collected for all EPO activities. EPO activities were planned well in advance of the mission, with emphasis on creating a multitude of activities to attract students of all ages. Web-based and social media interaction between August 31 and September 14, 2010 resulted in 62,260 DRATS Flickr views; 10,906 views of DRATS videos on YouTube; 1,483 new DRATS Twitter followers; and a 111% increase in DRATS Facebook fan interactions. Over 7,000 outreach participants were directly involved in the DRATS 2010 analog mission via student visitations at both the integrated dry-runs prior to the field mission and during the field mission; by participating in live, interactive webcasts and virtual events; and online voting to determine a traverse site as part of the NASA initiative for Participatory Exploration (PE).

  17. Recent Research applications at the Athens Neutron Monitor Station

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Gerontidou, M.; Paschalis, P.; Papaioannou, A.; Paouris, E.; Papailiou, M.; Souvatzoglou, G.

    2015-08-01

    The ground based neutron monitor measurements play a key role in the field of space physics, solar-terrestrial relations, and space weather applications. The Athens cosmic ray group has developed several research applications such as an optimized automated Ground Level Enhancement Alert (GLE Alert Plus) and a web interface, providing data from multiple Neutron Monitor stations (Multi-Station tool). These services are actually available via the Space Weather Portal operated by the European Space Agency (http://swe.ssa.esa.int). In addition, two simulation tools, based on Geant4, have also been implemented. The first one is for the simulation of the cosmic ray showers in the atmosphere (DYASTIMA) and the second one is for the simulation of the 6NM-64 neutron monitor. The contribution of the simulation tools to the calculations of the radiation dose received by air crews and passengers within the Earth's atmosphere and to the neutron monitor study is presented as well. Furthermore, the accurate calculation of the barometric coefficient and the primary data processing by filtering algorithms, such as the well known Median Editor and the developed by the Athens group ANN Algorithm and Edge Editor which contribute to the provision of high quality neutron monitor data are also discussed. Finally, a Space Weather Forecasting Center which provides a three day geomagnetic activity report on a daily basis has been set up and has been operating for the last two years at the Athens Neutron Monitor Station.

  18. Lithium-ion Battery Demonstration for the 2007 NASA Desert Research and Technology Studies (Desert RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William; Baldwin, Richard

    2007-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and produced five lithium-ion battery packs for demonstration in a portable life support system (PLSS) on spacesuit simulators. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, over-discharge and over-temperature. The 500-gram batteries were designed to deliver a constant power of 38 watts over 103 minutes of discharge time (130 Wh/kg). Battery design details are described and field and laboratory test results are summarized.

  19. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  20. Space Station Centrifuge: A Requirement for Life Science Research

    NASA Technical Reports Server (NTRS)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  1. International Space Station Research and Facilities for Life Sciences

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  2. Integration of multiple research disciplines on the International Space Station

    NASA Technical Reports Server (NTRS)

    Penley, N. J.; Uri, J.; Sivils, T.; Bartoe, J. D.

    2000-01-01

    The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines do not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements. Significant challenges exist to ensure the highest quality research return for each investigation. Requirements from different investigations must be identified, clarified, integrated and communicated to ISS personnel in a consistent manner. Resources such as power, crew time, etc. must be apportioned to allow the conduct of each investigation. Decisions affecting research must be made at the strategic level as well as at a very detailed execution level. The timing of the decisions can range from years before an investigation to real-time operations. The international nature of the Space Station program adds to the complexity. Each participating country must be assured that their interests are represented during the entire planning and operations process. A process for making decisions regarding research planning, operations, and real-time replanning is discussed. This process ensures adequate representation of all research investigators. It provides a means for timely decisions, and it includes a means to ensure that all ISS International Partners have their programmatic interests represented. c 2000 Published by Elsevier Science Ltd. All rights reserved.

  3. The International Space Station Research Opportunities and Accomplishments

    NASA Technical Reports Server (NTRS)

    Alleyne, Camille W.

    2011-01-01

    In 2010, the International Space Station (ISS) construction and assembly was completed to become a world-class scientific research laboratory. We are now in the era of utilization of this unique platform that facilitates ground-breaking research in the microgravity environment. There are opportunities for NASA-funded research; research funded under the auspice of the United States National Laboratory; and research funded by the International Partners - Japan, Europe, Russia and Canada. The ISS facilities offer an opportunity to conduct research in a multitude of disciplines such as biology and biotechnology, physical science, human research, technology demonstration and development; and earth and space science. The ISS is also a unique resource for educational activities that serve to motivate and inspire students to pursue careers in Science, Technology, Engineering and Mathematics. Even though we have just commenced full utilization of the ISS as a science laboratory, early investigations are yielding major results that are leading to such things as vaccine development, improved cancer drug delivery methods and treatment for debilitating diseases, such as Duchenne's Muscular Dystrophy. This paper

  4. Research on the International Space Station - An Overview

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations November 1998 to November 2000 it hosted a few early science experiments months before the first international crew took up residence. Since that time and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks. A synoptic publication of these results will be forthcoming in 2009. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities were tripled with the addition of ESA's Columbus and JAXA's Kibo scientific modules joining NASA's Destiny Laboratory. All three

  5. Facilities for Biological Research Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.

    1996-01-01

    A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.

  6. Space Station Freedom: a unique laboratory for gravitational biology research.

    PubMed

    Phillips, R W; Cowing, K L

    1993-04-01

    The advent of Space Station Freedom (SSF) will provide a permanent laboratory in space with unparalleled opportunities to perform biological research. As with any spacecraft there will also be limitations. It is our intent to describe this space laboratory and present a picture of how scientists will conduct research in this unique environment we call space. SSF is an international venture which will continue to serve as a model for other peaceful international efforts. It is hoped that as the human race moves out from this planet back to the moon and then on to Mars that SSF can serve as a successful example of how things can and should be done. PMID:11537716

  7. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  8. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program. PMID:15835037

  9. Accomplishments in bioastronautics research aboard International Space Station

    NASA Astrophysics Data System (ADS)

    Uri, John J.; Haven, Cynthia P.

    2005-05-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  10. Dusty Plasma Research under Microgravity: from the Orbital Station ``Mir'' to the International Space Station

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir

    Dusty, or complex plasmas are composed of a weakly ionized gas and charged microparticles. Dust and dusty plasmas are ubiquitous in space -- they are present in planetary rings, cometary tails, interplanetary and interstellar clouds, the mesosphere, thunderclouds, they are found in the vicinity of artificial satellites and space stations, etc. Dusty plasmas formed by micronsize particles are actively investigated in many laboratories. This research has many interesting applications like nanomaterial synthesis, nanoparticle handling or particle waste removal just to mention a few. But, the most interesting application of dusty plasmas is the use as model systems for fundamental physics. It allows investigation on the most fundamental -- the kinetic level and provides insights into physics of solids and liquids with a precision not achievable in natural systems. Experiments performed on Earth are always altered or even hindered by gravity. Microgravity conditions are necessary to make investigations of large homogeneous 3-dimensional dusty plasma systems. Here we present the survey of results of the dusty plasma physics investigations under microgravity conditions with the help of experimental installations ``Plasma Crystal-1'' (PK-1) and ``PK-2'' used on the Orbital Station ``Mir'', and the unique experimental installations ``PK-3'' and ``PK-3 Plus'' used on the International Space Station. The use of these installations has given a possibility to obtain new knowledge on the dusty plasma properties. The phase transition from the isotropic liquid dusty plasma system to the so-called electrorheological plasma has been performed. The transition is the isotropic one and is fully reversible. The other interesting phenomenon is an interpenetration of two clouds of microparticles of different sizes. When a velocity of the penetrating particles is rather high the lane formation has been observed. This phenomenon is the non-equilibrium transition, depends upon peculiarities

  11. Space Station thermal storage/refrigeration system research and development

    NASA Technical Reports Server (NTRS)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  12. The Palm Desert renewable [hydrogen] transportation system

    SciTech Connect

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  13. Mini Neutron Monitors at Concordia Research Station, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Poluianov, Stepan; Usoskin, Ilya; Mishev, Alexander; Moraal, Harm; Kruger, Helena; Casasanta, Giampietro; Traversi, Rita; Udisti, Roberto

    2015-12-01

    Two mini neutron monitors are installed at Concordia research station (Dome C, Central Antarctica, 75° 06' S, 123° 23' E, 3,233 m.a.s.l.). The site has unique properties ideal for cosmic ray measurements, especially for the detection of solar energetic particles: very low cutoff rigidity < 0.01 GV, high elevation and poleward asymptotic acceptance cones pointing to geographical latitudes > 75° S. The instruments consist of a standard neutron monitor and a "bare" (lead-free) neutron monitor. The instrument operation started in mid-January 2015. The barometric correction coefficients were computed for the period from 1 February to 31 July 2015. Several interesting events, including two notable Forbush decreases on 17 March 2015 and 22 June 2015, and a solar particle event of 29 October 2015 were registered. The data sets are available at cosmicrays.oulu.fi and nmdb.eu.

  14. Psychosocial Research on the International Space Station: Special Privacy Considerations

    NASA Astrophysics Data System (ADS)

    Kanas, N.; Salnitskiy, V.; Ritsher, J.; Grund, E.; Weiss, D.; Gushin, V.; Kozerenko, O.

    Conducting psychosocial research with astronauts and cosmonauts requires special privacy and confidentiality precautions due to the high profile nature of the subject population and to individual crewmember perception of the risks inherent in divulging sensitive psychological information. Sampling from this small population necessitates subject protections above and beyond standard scientific human subject protocols. Many of these protections have relevance for psychosocial research on the International Space Station. In our previous study of psychosocial issues involving crewmembers on the Mir space station, special precautions were taken during each phase of the missions. These were implemented in order to gain the trust necessary to ameliorate the perceived risks of divulging potentially sensitive psychological information and to encourage candid responses. Pre-flight, a standard confidentiality agreement was provided along with a special layman's summary indicating that only group-level data would be presented, and subjects chose their own ID codes known only to themselves. In-flight, special procedures and technologies (such as encryption) were employed to protect the data during the collection. Post-flight, an analytic strategy was chosen to further mask subject identifiers, and draft manuscripts were reviewed by the astronaut office prior to publication. All of the eligible five astronauts and eight cosmonauts who flew joint US/Russian missions on the Mir were successfully recruited to participate, and their data completion rate was 76%. Descriptive analyses of the data indicated that there was sufficient variability in all of the measures to indicate that thoughtful, discriminating responses were being provided (e.g., the full range of response options was used in 63 of the 65 items of the Profile of Mood States measure, and both true and false response options were used in all 126 items of the Group Environment and the Work Environment measures). This

  15. The role of the space station in earth science research

    SciTech Connect

    Kaye, Jack A.

    1999-01-22

    The International Space Station (ISS) has the potential to be a valuable platform for earth science research. By virtue of its being in a mid-inclination orbit (51.5 deg.), ISS provides the opportunity for nadir viewing of nearly 3/4 of the Earth's surface, and allows viewing to high latitudes if limb-emission or occultation viewing techniques are used. ISS also provides the opportunity for viewing the Earth under a range of lighting conditions, unlike the polar sun-synchronous satellites that are used for many earth observing programs. The ISS is expected to have ample power and data handling capability to support Earth-viewing instruments, provide opportunities for external mounting and retrieval of instruments, and be in place for a sufficiently long period that long-term data records can be obtained. On the other hand, there are several questions related to contamination, orbital variations, pointing knowledge and stability, and viewing that are of concern in consideration of ISS for earth science applications. The existence of an optical quality window (the Window Observational Research Facility, or WORF), also provides the opportunity for Earth observations from inside the pressurized part of ISS. Current plans by NASA for earth science research from ISS are built around the Stratospheric Aerosol and Gas Experiment (SAGE III) instrument, planned for launch in 2002.

  16. Research Priorities for the International Space Station and Beyond

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Adolf, Jurine A.; Woolford, Barbara J.

    1999-01-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  17. X-38 research aircraft launch from Space Station - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, CA, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some problems

  18. Human factors in space station architecture 1: Space station program implications for human factors research

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.

    1985-01-01

    The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.

  19. Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph; Romig, Barbara

    2008-01-01

    Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi

  20. Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research

    NASA Technical Reports Server (NTRS)

    Tanner, Trieve (Editor); Clearwater, Yvonne A. (Editor); Cohen, Marc M. (Editor)

    1988-01-01

    A variety of human factors studies related to space station design are presented. Subjects include proximity operations and window design, spatial perceptual issues regarding displays, image management, workload research, spatial cognition, virtual interface, fault diagnosis in orbital refueling, and error tolerance and procedure aids.

  1. Commercial Research Results from the International Space Station

    NASA Technical Reports Server (NTRS)

    Nall, Mark

    2003-01-01

    As part of NASA's mission of enabling commercial opportunities in space, the Space Product Development Office has sponsored the flight of twelve commercial payloads to the International Space Station (ISS) during calendar year 2002. These twelve follow seven commercial payloads flown to the ISS during 2001. Many of these payloads, which were among the first users of this new laboratory, built upon successful commercial investigations that previously were restricted to the limited flight duration of the Space Shuttle. While the majority of early commercial use of the ISS is in the area of biotechnology, there is a significant shift towards commercial materials research over the next two years. New commercial payloads such as Space-DRUMS and Vulcan will advance commercial materials research on the ISS. Commercial flight hardware is available to the broader NASA community in order to provide benefit to the entire NASA microgravity program, and the scientific community on a space available basis and at very low cost. The first commercial operations on the ISS provides not only a needed capability to the commercial development of space program, it will also augment the science program as well.

  2. Rodent Research on the International Space Station - A Look Forward

    NASA Technical Reports Server (NTRS)

    Kapusta, A. B.; Smithwick, M.; Wigley, C. L.

    2014-01-01

    Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and

  3. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  4. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  5. Desert Communities.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on desert communities, their similarities, and differences; (2) student activities on this topic; and (3) ready-to-copy student pages with pictures of desert animals and plants. Each activity includes objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. (DH)

  6. Desert Sojourn.

    ERIC Educational Resources Information Center

    Greenman, Geri

    1999-01-01

    Focuses on an activity in which the students in a beginning drawing class used middle-value brown paper and earthen shades of conte to draw pictures of bones in a desert environment. Discusses how the assignment teaches appreciation of the colors, sounds, and shapes of the desert. (CMK)

  7. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives

    NASA Technical Reports Server (NTRS)

    Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian

    2009-01-01

    The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their

  8. The Plant Research Unit: An International Space Station Habitat

    NASA Technical Reports Server (NTRS)

    Morrow, Robert; Reiss-Bubenheim, Debra; Schaefer, Ronald L.

    2003-01-01

    The Plant Research Unit (PRU) is one of six life science habitats being developed as part of the Space Station Biological Research Program. The PRU is designed for experiments in microgravity and will utilize the ISS Centrifuge Facility to provide gravity levels between microgravity and 29. The PRU will provide and control all aspects of a plant s needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut s environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, "watering," and air filtering and cleaning .must be done within strict limitations of volume, weight, power, and crew time while at the same time providing a very high level of reliability and a service life in excess of 10 years. The PRU will contain two plant chambers 31.5 cm tall, each with independent control of temperature, humidity, light level and photoperiod, CO2 level, nutrient and water delivery, and video and data acquisition. The PRU is currently in the preliminary design phase and a number of subsystem components have been prototyped for testing, including the temperature and humidity control systems, the plant chambers, the LED lighting system, the atmospheric control system and a variety of nutrient delivery systems. The LED prototype provides independent feedback control of 5 separate spectral bands and variable output between 0 and 1000 micro-mol sq m/sec. The water and nutrient delivery system (WNDS) prototypes have been used to test particulate based, thin film, and gel-based WNDS configurations.

  9. International Space Station Research: Accomplishments and Pathways for Exploration and Fundamental Research

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    Beginning with the launch of the European Columbus module planned for December 2007, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science resource facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for April 2009. A larger crew enables significant more scientific use of all the facilities for the life of ISS. Planning for the use of the International Space Station as a national laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research both exploration related and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the International Space Station when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.

  10. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  11. Growth requirements for multidiscipline research and development on the evolutionary space station

    NASA Technical Reports Server (NTRS)

    Meredith, Barry; Ahlf, Peter; Saucillo, Rudy; Eakman, David

    1988-01-01

    The NASA Space Station Freedom is being designed to facilitate on-orbit evolution and growth to accommodate changing user needs and future options for U.S. space exploration. In support of the Space Station Freedom Program Preliminary Requirements Review, The Langley Space Station Office has identified a set of resource requirements for Station growth which is deemed adequate for the various evolution options. As part of that effort, analysis was performed to scope requirements for Space Station as an expanding, multidiscipline facility for scientific research, technology development and commercial production. This report describes the assumptions, approach and results of the study.

  12. Management and research of desert tortoises for the Yucca Mountain Project

    SciTech Connect

    Rautenstrauch, K.R.; Cox, M.K.; Doerr, T.B.; Green, R.A.; Mueller, J.M.; O`Farrell, T.P.; Rakestraw, D.L.

    1991-12-31

    A program has been developed for the Yucca Mountain Project (YMP) to manage and study the desert tortoise (Gopherus agassizi), a threatened species that occurs at low densities at Yucca Mountain. The goals of this program are to better understand the biology and status of the desert tortoise population at Yucca Mountain, assess impacts on tortoises of site characterization (SC) activities, and minimize those impacts. The first steps we took to develop this program were to compile the available information on the biology of tortoises at Yucca Mountain, ascertain what information was lacking, and identify the potential impacts on tortoises of SC. We then developed a technical design that can be used to identify and mitigate direct and cumulative impacts and provide information on tortoise biology. Interrelated studies were developed to achieve these objectives. The primary sampling unit for the impact monitoring studies is radiomarked tortoises. Three populations of tortoises will be sampled: Individuals isolated from disturbances (control), individuals near major SC activities (direct effects treatment and worst-case cumulative effects treatment), and individuals from throughout Yucca Mountain (cumulative effects treatment). Impacts will be studied by measuring and comparing survival, reproduction, movements, habitat use, health, and diet of these tortoises. A habitat quality model also will be developed and the efficacy of mitigation techniques, such as relocating tortoises, will be evaluated.

  13. Management and research of desert tortoises for the Yucca Mountain Project

    SciTech Connect

    Rautenstrauch, K.R.; Cox, M.K.; Doerr, T.B.; Green, R.A.; Mueller, J.M.; O`Farrell, T.P.; Rakestraw, D.L.

    1991-04-01

    A program has been developed for the Yucca Mountain Project (YMP) to manage and study the desert tortoise (Gopherus agassizi), a threatened species that occurs at low densities at Yucca Mountain. The goals of this program are to better understand the biology and status of the desert tortoise population at Yucca Mountain, assess impacts on tortoises of site characterization (SC) activities, and minimize those impacts. The first steps we took to develop this program were to compile the available information on tortoise biology at Yucca Mountain, ascertain what information was lacking, and identify the potential impacts on tortoises of SC. We then developed a technical design for identifying and mitigating direct and cumulative impacts and providing information on tortoise biology. Interrelated studies were developed to achieve these objectives. The primary sampling unit for the impact monitoring studies is radiomarked tortoises. Three populations of tortoises will be sampled: individuals isolated from disturbances (control), individuals near major SC activities (direct effects treatment and worst-case cumulative effects treatment), and individuals from throughout Yucca Mountain (cumulative effects treatment). Impacts will be studied by measuring and comparing survival, reproduction, movements, habitat use, health, and diet of these tortoises. A habitat quality model also will be developed and the efficacy of mitigation techniques, such as relocating tortoises, will be evaluated. 29 refs.

  14. Space station architectural elements model study. Space station human factors research review

    NASA Technical Reports Server (NTRS)

    Taylor, Thomas C.; Khan, Eyoub; Spencer, John; Rocha, Carlos; Cliffton, Ethan Wilson

    1987-01-01

    Presentation visuals and an extended abstract represent a study to explore and analyze the interaction of major utilities distribution, generic workstation, and spatial composition of the SPACEHAB space station module. Issues addressed include packing densities vs. circulation, efficiency of packing vs. standardization, flexibility vs. diversity, and composition of interior volume as space for living vs. residual negative volume. The result of the study is expected to be a series of observations and preliminary evaluation criteria which focus on the productive living environment for a module in orbit.

  15. [Climate implications of terrestrial paleoclimate]. Quaternary Sciences Center, Desert Research Institute annual report, fiscal year 1994/1995

    SciTech Connect

    Wigand, P.E.

    1995-12-31

    The objective of this study is to collect terrestrial climate indicators for paleoclimate synthesis. The paleobiotic and geomorphic records are being examined for the local and regional impact of past climates to assess Yucca Mountain`s suitability as a high-level nuclear waste repository. In particular these data are being used to provide estimates of the timing, duration and extremes of past periods of moister climate for use in hydrological models of local and regional recharge that are being formulated by USGS and other hydrologists for the Yucca Mountain area. The project includes botanical, faunal, and geomorphic components that will be integrated to accomplish this goal. To this end personnel at the Quaternary Sciences Center of the Desert Research Institute in Reno, Nevada are conducting the following activities: Analyses of packrat middens; Analysis of pollen samples; and Determination of vegetation climate relationships.

  16. David Blackwell’s Forty Years in the Idaho Desert, The Foundation for 21st Century Geothermal Research

    SciTech Connect

    McLing, Travis; McCurry, Mike; Cannon, Cody; Neupane, Ghanashyam; Wood, Thomas; Podgorney, Robert; Welhan, John; Mines, Greg; Mattson, Earl; Wood, Rachel; Palmer, Carl

    2015-04-01

    Dr. David Blackwell has had a profound influence on geo-thermal exploration and R&D in Idaho. Forty years have elapsed since the first Southern Methodist University (SMU) temperature logging truck rolled onto the high desert in Southern Idaho, yet even after so much time has elapsed, most recent and ongoing geothermal R&D can trace its roots to the foundational temperature studies led by Dr. Blackwell. We believe that the best way to honor any scientist is to see their work carried forward by others. As this paper demonstrates, it has been an easy task to find a host of Idaho researchers and students eager to contribute to this tribute paper. We organize this paper by ongoing or recent projects that continue to benefit left to Idaho by Dr. David Blackwell.

  17. Direct current resistivity profiling to study distribution of water in the unsaturated zone near the Amargosa Desert Research Site, Nevada

    USGS Publications Warehouse

    Abraham, Jared D.; Lucius, Jeffrey E.

    2004-01-01

    In order to study the distribution of water in the unsaturated zone and potential for ground-water recharge near the Amargosa Desert Research Site south of Beatty, Nevada, the U.S. Geological Survey collected direct-current resistivity measurements along three profiles in May 2003 using an eight-channel resistivity imaging system. Resistivity data were collected along profiles across the ADRS, across a poorly incised (distributary) channel system of the Amargosa River southwest of the ADRS, and across a well-incised flood plain of the Amargosa River northwest of the ADRS. This report describes results of an initial investigation to estimate the distribution of water in the unsaturated zone and to evaluate the shallow subsurface stratigraphy near the ADRS. The geophysical method of dc resistivity was employed by using automated data collection with numerous electrodes. 'Cross sections' of resistivity, produced by using an inversion algorithm on the field data, at the three field sites are presented and interpreted.

  18. Potential applications of expert systems and operations research to space station logistics functions

    NASA Technical Reports Server (NTRS)

    Lippiatt, Thomas F.; Waterman, Donald

    1985-01-01

    The applicability of operations research, artificial intelligence, and expert systems to logistics problems for the space station were assessed. Promising application areas were identified for space station logistics. A needs assessment is presented and a specific course of action in each area is suggested.

  19. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  20. Designing a Web-Based Design Curriculum for Middle School Science: The WISE "Houses in the Desert" Project. Research Report

    ERIC Educational Resources Information Center

    Cuthbert, Alex; Slotta, James

    2004-01-01

    Design activities allow students to create their own solutions, drawing upon a personal understanding of science principles and examples. We created the 'Houses in the Desert' project to engage middle school students in designing a passive solar house that will keep its owners comfortable in the desert climate. Students used their knowledge of…

  1. The effect of research activities and winter precipitation on voiding behaviour of Agassiz’s desert tortoises (Gopherus agassizii)

    USGS Publications Warehouse

    Agha, Mickey; Murphy, Mason O.; Lovich, Jeffrey E.; Ennen, Joshua R.; Oldham, Christian R.; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Austin, Meaghan; Madrak, Sheila V.; Loughran, Caleb L.; Tennant, Laura A.; Price, Steven J.

    2015-01-01

    Implications: This study has demonstrated that common handling practices on desert tortoise may cause voiding behaviour. These results suggest that in order to minimise undesirable behavioural responses in studied desert tortoise populations, defined procedures or protocols must be followed by the investigators to reduce contact period to the extent feasible.

  2. Wind regime and sand transport in China's Badain Jaran Desert

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcai; Dong, Zhibao; Li, Chunxiao

    2015-06-01

    Wind controls the formation and development of aeolian dunes, therefore understanding the wind environment is necessary in aeolian dune research. In recent years, climate has changed in and around the Badain Jaran Desert, and the factors that control aeolian dune development have changed with it. In this paper, we analyzed characteristics of the desert's wind regime based on data from seven weather stations in and around the desert. The temporal and spatial variation in the wind regime's characteristics have different effects on dune formation and development. The annual mean wind velocity, maximum wind velocity, and the proportion of the time the wind exceeded the sand-entrainment threshold are largest at the northern margin of the desert, and these values decrease from north to south and from east to west. The dominant winds are from the northwest, northeast, and southwest. The drift potential (DP) in the desert decreases from north to south, and can be divided into three regions: high in the north, intermediate in the central region, and low in the south. The effects of climate change on the calculated DP will be complex; although DP increased with increasing mean wind velocity and temperature, there was little or no relationship with precipitation and relative humidity.

  3. Microgravity research results and experiences from the NASA/MIR space station program

    NASA Astrophysics Data System (ADS)

    Schlagheck, R. A.; Trach, B. L.

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.

  4. Thar Desert

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER sub-scene covers an area of 12 x 15 km in NW India in the Thar Desert. The sand dunes of the Thar Desert constantly shift and take on new shapes. Located in northwestern India and eastern Pakistan, the desert is bounded on the south by a salt marsh known as the Rann of Kutch, and on the west by the Indus River plain. About 800 kilometers long and about 490 kilometers wide, the desert's terrain is mainly rolling sandhills with scattered growths of shrub and rock outcroppings. Only about 12 to 25 centimeters of rain fall on the desert each year, and temperatures rise as high as 52 degrees Celsius. Much of the population is pastoral, raising sheep for their wool. The image is located at 24.4 degrees north latitude and 69.3 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  5. The undersea habitat as a space station analog: Evaluation of research and training potential

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Wilhelm, John A.

    1985-01-01

    An evaluation is given of the utility of undersea habitats for both research and training on behavioral issues relative to the space station. The feasibility of a particular habitat, La Chalupa, is discussed.

  6. Desert winds; monitoring wind-related surface processes in Arizona, New Mexico, and California

    USGS Publications Warehouse

    Breed, Carol S., (Edited By); Reheis, Marith C.

    1999-01-01

    The 18-year Desert Winds Project established instrumented field sites in the five major regions of the North American Desert to obtain meteorological, geological, and vegetation data for natural desert sites affected by wind erosion. The eight chapters in this volume describe the settings and operation of the stations and summarize eolian-related research to date around the stations. The report includes studies of the sand-moving effectiveness of storm winds, wind-erosion susceptibility of different ground-surface types, relations of dust storms to meteorological conditions, mediation of wind erosion by vegetation, remote sensing to detect vegetation changes related to climate change, and comparison of regional dust deposition to that near Owens (dry) Lake.

  7. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  8. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    USGS Publications Warehouse

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  9. Commercial combustion research aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    1999-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is planning a number of combustion experiments to be done on the International Space Station (ISS). These experiments will be conducted in two ISS facilities, the SpaceDRUMS™ Acoustic Levitation Furnace (ALF) and the Combustion Integrated Rack (CIR) portion of the Fluids and Combustion Facility (FCF). The experiments are part of ongoing commercial projects involving flame synthesis of ceramic powders, catalytic combustion, water mist fire suppression, glass-ceramics for fiber and other applications and porous ceramics for bone replacements, filters and catalyst supports. Ground- and parabolic aircraft-based experiments are currently underway to verify the scientific bases and to test prototype flight hardware. The projects have strong external support.

  10. Discovering Deserts.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1985-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Discovering Deserts." Contents are organized into the following sections: (1)…

  11. Mexican Americans--A Survey of Research by the Texas Agricultural Experiment Station, 1964-73.

    ERIC Educational Resources Information Center

    Salinas, Esteban; And Others

    Over the last decade the Texas Agricultural Experiment Station (TAES) has stimulated and sponsored research related to the status, problems, and future prospects of Mexican Americans in Texas. This document lists the over 40 reports which were part of 6 TAES research projects. It also contains relevant TAES and Texas A&M research reports available…

  12. Applicability of NASA Polar Technologies to British Antarctic Survey Halley VI Research Station

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    From 1993 through 1997 NASA and the National Science Foundation (NSF), developed a variety of environmental infrastructure technologies for use at the Amundsen-Scott South Pole Station. The objective of this program was to reduce the cost of operating the South Pole Station, reduce the environmental impact of the Station, and to increase the quality of life for Station inhabitants. The result of this program was the development of a set of sustainability technologies designed specifically for Polar applications. In the intervening eight years many of the technologies developed through this program have been commercialized and tested in extreme environments and are now available for use throughout Antarctica and circumpolar north. The objective of this document is to provide information covering technologies that might also be applicable to the British Antarctic Survey s (BAS) proposed new Halley VI Research Station. All technologies described are commercially available.

  13. NASA/FAA North Texas Research Station Overview

    NASA Technical Reports Server (NTRS)

    Borchers, Paul F.

    2012-01-01

    NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.

  14. Science and payload options for animal and plant research accommodations aboard the early Space Station

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Arno, Roger D.; Gustan, Edith; Rudiger, C. E.

    1986-01-01

    The resources to be allocated for the development of the Initial Operational Capability (IOC) Space Station Animal and Plant Research Facility and the Growth Station Animal and Plant Vivarium and Laboratory may be limited; also, IOC accommodations for animal and plant research may be limited. An approach is presented for the development of Initial Research Capability Minilabs for animal and plant studies, which in appropriate combination and sequence can meet requirements for an evolving program of research within available accommodations and anticipated budget constraints.

  15. ESA hardware for plant research on the International Space Station

    NASA Astrophysics Data System (ADS)

    Brinckmann, E.

    The long awaited launch of the European Modular Cultivation System (EMCS) will provide a platform on which long-term and shorter experiments with plants will be performed on the International Space Station (ISS). EMCS is equipped with two centrifuge rotors (600 mm diameter), which can be used for in-flight 1 g controls and for studies with acceleration levels from 0.001 g to 2.0 g. Several experiments are in preparation investigating gravity relating to gene expression, gravisensing and phototropism of Arabidopsis thaliana and lentil roots. The experiment-specific hardware provides growth chambers for seedlings and whole A. thaliana plants and is connected to the EMCS Life Support System. Besides in-flight video observation, the experiments will be evaluated post-flight by means of fixed or frozen material. EMCS will have for the first time the possibility to fix samples on the rotating centrifuge, allowing a detailed analysis of the process of gravisensing. About two years after the EMCS launch, ESA's Biolab will be launched in the European "Columbus" Module. In a similar way as in EMCS, Biolab will accommodate experiments with plant seedlings and automatic fixation processes on the centrifuge. The hardware concepts for these experiments are presented in this communication.

  16. Considerations in the design of life sciences research facilities for the Space Station

    NASA Technical Reports Server (NTRS)

    Heinrich, M.; Rudiger, C. E.

    1985-01-01

    The facilities required for life science research on a permanent Space Station are examined. Specifications important to the designing of facilities and planning of activities on the Space Shuttle are: (1) the species to be tested, (2) the number and procedure for testing, (3) the number of specimens at each sampling time, (4) the analyses required, (5) the methods of preserving samples, instruments, and supplies, and (6) the amount of crew time required. Experiments which are relevant to understanding the effects of microgravity on living systems are to be performed on the Space Station. The design and instruments of a Space Station laboratory and specimen centrifuge are described.

  17. The Palm Desert Renewable Hydrogen Transportation System

    SciTech Connect

    Lehman, P.

    1996-10-01

    The present paper describes, for purposes of the Department of Energy (DoE) Hydrogen Program Review, Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period January through June 1996. This period represents the first six months of the three year project. The estimated cost over three years is $3.9M, $1.859M of which is funded by the DoE ($600 k for fiscal year 1996). The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project will demonstrate the practical utility of hydrogen as a transportation fuel and proton exchange membrane (PEM) fuel cells as vehicle power plants. This transportation system will be developed in the City of Palm Desert in southern California and will include a fleet of 8 fuel cell powered vehicles, solar and wind powered hydrogen generating facilities, a consumer-ready refueling station, and a service infrastructure. The system holds the promise of a clean environment and an energy supply that is predictable, domestic, safe, and abundant. During, the first part of 1996 SERC has nearly completed building a fuel cell powered personal utility vehicle, which features an upgraded safety and computer system; they have designed and built a test bench that is able to mimic golf cart loads and test fuel cell system auxiliary components; they have begun the design of the solar hydrogen generating station; they have worked with Sandia National Laboratory on an advanced metal hydride storage system; they have increased the power density of the SERC fuel cell by as much as 50%; and they have reached out to the rest of the world with a new fact sheet, world wide web pages, a press release, video footage for a television program. and instruction within the community.

  18. The dawn of the Southern Plains Range Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On 31 October 1913, U.S. Senator Thomas P. Gore announced that Woodward would be the site of the government experiment farm in western Oklahoma. This marked the beginning of a century of USDA agricultural research on the southern Great Plains. A 160 acre parcel of land located southwest of the cit...

  19. Research from the Coastal Plain Experiment Station, Tifton, Georgia, to minimize contamination in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists with the United States Department of Agriculture - Agricultural Research Service and scientists with the University of Georgia located at the Coastal Plain Experiment Station in Tifton, Georgia have been conducting research on aflatoxin contamination of peanut since the early 1960's. Ear...

  20. 78 FR 42928 - Draft Environmental Assessment for the Cotton Quality Research Station Land Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... Protection Specialist, USDA-ARS-SHEMB, NCAUR, 1815 North University Street, Room 2016, Peoria, Illinois 61604... Research Station Land Transfer AGENCY: Agricultural Research Service, USDA. ACTION: Notice of the Draft... Act of 1976 (FLPMA), as amended, the United States Department of Agriculture (USDA) has prepared...

  1. Research Station "Ice Base "Cape Baranov"- overview of activities in 2013 - 2015 years

    NASA Astrophysics Data System (ADS)

    Makshtas, Alexander; Sokolov, Vladimir; Bogorodskii, Peter; Kustov, Vasily; Movchan, Vadim; Laurila, Tuomas; Asmi, Eija; Popovicheva, Olga; Eleftheriadis, Kostas

    2016-04-01

    Research Station "Ice base "Cape Baranov" of Arctic and Antarctic Research Institute (AARI) had been opened in the fall 2013 on the Bolshevik Island, Archipelago Severnaya Zemlia. Now it is going as the integrated observatory, conducting comprehensive studies in practically all areas of Earth Sciences: from free atmosphere to sea ice and sea water structure in the Shokalsky Strait, from glaciers to permafrost, from paleogeography to ornithology. Overview of activities together with some preliminary results of field works at the station performing in 2014 - 2015 years by international multidisciplinary team in frame of free atmosphere, atmospheric surface layer, greenhouse gases and aerosol studies is presented together with model estimations of active soil layer.

  2. Stemflow and its significant to the fertilizer islands in desert shrub area

    NASA Astrophysics Data System (ADS)

    Wang, Xinping; Wang, Zhengning; Pan, Yanxia; Zhang, Yafeng

    2010-05-01

    Stemflow is a spatially localized point input of precipitation and fine particles of airborne dust from vegetation canopy at the plant stem and is of hydrological and ecological significance in desert shrub ecosystems, where precipitation is the sole source of water replenishment to sustaining the desert ecosystem. In the present study, stemflow production and the fine particles associated with the stemflow of the two main xerophytic shrubs was quantified by aluminum foil collar method at the desert shrub area of Shapotou Desert Experimental Research Station, Chinese Academy of Sciences. The results indicated that stemflow yield and the thresholds for stemflow occurrence varied within shrub species. The relationship between funnelling ratios and gross precipitation indicated that a certain value of precipitation was required for the shrubs. There was a large variability of funnelling ratio for the rainfall events with intensity of less than 4 mm h-1, and the variability tended to decease when rainfall intensity was greater than 4 mm h-1. Significant positive linear relationships were found between stemflow production and precipitation for the shrubs, statistical analysis showed that stemflow and fine particle yield varies as a function of meteorological conditions, canopy size and structure. An accurate modeling of stemflow water and nutrient inputs into desert soils may result in the understanding of the formation mechanism of fertilizer islands. Keywords: Desert ecosystem; Hydrology; Stemflow; Xerophytic shrub

  3. Growing the Desert: Educational Pathways for Remote Indigenous People. A National Vocational Education and Training Research and Evaluation Program Report

    ERIC Educational Resources Information Center

    Young, Metta; Guenther, John; Boyle, Alicia

    2007-01-01

    This report maps the picture of Indigenous people's participation in vocational education and training and other educational services across Australia's desert regions. The report identifies a range of innovations and barriers experienced in enabling pathways through learning into work and other meaningful livelihood opportunities. (Contains 6…

  4. What Makes a Desert a Desert?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Presents background information and activities which focus on definition of a desert, locations of deserts, and factors influencing locations. Activities include objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. Two ready-to-copy pages with desert landforms and temperature/rainfall data are…

  5. Spectrum of the cosmic background radiation: early and recent measurements from the White Mountain Research Station

    SciTech Connect

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model.

  6. Characterization of a Real-time Neutron Imaging Test Station at China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    He, Linfeng; Han, Songbai; Wang, Hongli; Wei, Guohai; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    A real-time neutron imaging test station was recently installed at the China Advanced Research Reactor. The objective of this work was to determine its operational characteristics, including neutron beam profile, the spatial resolution and time resolution. The performance of the equipment was demonstrated by a real time neutron imaging test of the water dynamics in a fuel cell.

  7. NASA Human Research Program (HRP). International Space Station Medical Project (ISSMP)

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation describes the various flight investigations performed on the International Space Station as part of the NASA Human Research Program (HRP). The evaluations include: 1) Stability; 2) Periodic Fitness Evaluation with Oxygen Uptake Measurement; 3) Nutrition; 4) CCISS; 5) Sleep; 6) Braslet; 7) Integrated Immune; 8) Epstein Barr; 9) Biophosphonates; 10) Integrated cardiovascular; and 11) VO2 max.

  8. Counter-Geographies: The Campaign against Rationalisation of Agricultural Research Stations in New South Wales, Australia

    ERIC Educational Resources Information Center

    Gibson, Chris; Dufty, Rae; Phillips, Samantha; Smith, Heather

    2008-01-01

    This paper discusses an example of community action mounted in a rural region of New South Wales, Australia, in response to proposals by the State Government to rationalise agricultural research stations operated by the Department of Primary Industries. Informed by a Foucaultian understanding of power and the concept of governmentality,…

  9. Human-Agent Knowledge Cartography for e-Science: NASA Field Trials at the Mars Desert Research Station

    NASA Astrophysics Data System (ADS)

    Sierhuis, Maarten; Shum, Simon Buckingham

    This chapter describes the sociotechnical embedding of a knowledge cartography approach (Conversational Modelling) within a prototype e-science work system. This was evaluated over two 2-week field trials, simulating collaborative Mars-Earth geological exploration. We believe this work is the first demonstration of a knowledge mapping tool embedded within a human/software multiagent work system, with humans and agents reading and writing structures amenable to agent understanding and autonomous agent execution, and human understanding, annotation and argumentation. Secondly, in terms of the applied problem, we have demonstrated how human and agent plans, data, multimedia documents, metadata, discussions, interpretations and arguments can be mapped in an integrated manner, and successfully deployed in field trials which simulated aspects of mission workload pressure.

  10. Research priorities and plans for the International Space Station-results of the 'REMAP' Task Force

    NASA Technical Reports Server (NTRS)

    Kicza, M.; Erickson, K.; Trinh, E.

    2003-01-01

    Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  11. Research priorities and plans for the International Space Station-results of the 'REMAP' Task Force.

    PubMed

    Kicza, M; Erickson, K; Trinh, E

    2003-01-01

    Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output. PMID:14649263

  12. Deserts of China

    USGS Publications Warehouse

    Walker, Alta S.

    1982-01-01

    Improving arid land quality requires an understanding of the original state of the land and its relationship to wind, water, and plant regimes, as well as understanding of interactions within the present ecosystem.  Chinese scientists and local residents have made significant advances in improving arid environments in gobi and sandy deserts and in less arid sandy lands.  Wind patterns are being changed by planting forest belts to protect oases and sandy lands, and on a smaller scale by planting grasses and shrubs or constructing straw grids.  Research on reclamation of deserts is now focusing on how sand-fixing plants may be adapted to local environments, and how the resources of grazing land and water may be effectively exploited without being overused.

  13. On developing the local research environment of the 1990s - The Space Station era

    NASA Technical Reports Server (NTRS)

    Chase, Robert; Ziel, Fred

    1989-01-01

    A requirements analysis for the Space Station's polar platform data system has been performed. Based upon this analysis, a cluster, layered cluster, and layered-modular implementation of one specific module within the Eos Data and Information System (EosDIS), an active data base for satellite remote sensing research has been developed. It is found that a distributed system based on a layered-modular architecture and employing current generation work station technologies has the requisite attributes ascribed by the remote sensing research community. Although, based on benchmark testing, probabilistic analysis, failure analysis and user-survey technique analysis, it is found that this architecture presents some operational shortcomings that will not be alleviated with new hardware or software developments. Consequently, the potential of a fully-modular layered architectural design for meeting the needs of Eos researchers has also been evaluated, concluding that it would be well suited to the evolving requirements of this multidisciplinary research community.

  14. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    NASA Technical Reports Server (NTRS)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  15. Life Sciences Research Facility automation requirements and concepts for the Space Station

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  16. Meteor detections at the Metsähovi Fundamental Geodetic Research Station (Finland)

    NASA Astrophysics Data System (ADS)

    Raja-Halli, A.; Gritsevich, M.; Näränen, J.; Moreno-Ibáñez, M.; Lyytinen, E.; Virtanen, J.; Zubko, N.; Peltoniemi, J.; Poutanen, M.

    2016-01-01

    We provide an overview and present some spectacular examples of the recent meteor observations at the Metsähovi Geodetic Research Station. In conjunction with the Finnish Fireball Network the all-sky images are used to reconstruct atmospheric trajectories and to calculate the pre-impact meteor orbits in the Solar System. In addition, intensive collaborative work is pursued with the meteor research groups worldwide. We foresee great potential of this activity also for educational and outreach purposes.

  17. Complex Geodetic Research in Ukrainian Antarctic Station "Academician Vernadsky" (Years 2002 - 2005, 2013-2014)

    NASA Astrophysics Data System (ADS)

    Tretyak, Kornyliy; Hlotov, Volodymyr; Holubinka, Yuriy; Marusazh, Khrystyna

    2016-06-01

    In this paper is given an information about complex geodetic research in Ukrainian Antarctic station "Academician Vernadsky". Research were carried by Lviv polytechnic scientists, during Antarctic expeditions in years 2002 - 2005, 2013, 2014. Main objectives of the studies were: (a) study of the islands glaciers surface volumes changes in Antarctic archipelago and Antarctic Peninsula using terestrial laser scaning and digital terrestrial stereophotogrammetry survey; (b) investigation of Penola strain tectonic fault, using the results of precise GNSS observations.

  18. The space station window observational research facility; a high altitude imaging laboratory

    SciTech Connect

    Runco, Susan K.; Eppler, Dean B.; Scott, Karen P.

    1999-01-22

    Earth Science will be one of the major research areas to be conducted on the International Space Station. The facilities from which this research will be accomplished are currently being constructed and will be described in this paper. By April 1999, the International Space Station nadir viewing research window fabrication will be completed and ready for installation. The window will provide a 20 inch (51 cm) diameter clear aperture. The three fused silica panes, which make up the window are fabricated such that the total peak-to-valley wavefront error in transmission through the three panes over any six inch diameter aperture does not exceed {lambda}/7 where the reference wavelength is 632.8 nm. The window will have over 90% transmission between about 400 and 750, above 50% transmission between about 310 nm and 1375 nm and 40% transmission between 1386 nm and 2000 nm. The Window Operational Research Facility (WORF) is designed to accommodate payloads using this research window. The WORF will provide access to the International Space Station utilities such as data links, temperature cooling loops and power. Emphasis has been placed on the factors which will make this facility an optimum platform for conducting Earth science research.

  19. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  20. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  1. End-to-End Data System Architecture for the Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Mian, Arshad; Scimemi, Sam; Adeni, Kaiser; Picinich, Lou; Ramos, Rubin (Technical Monitor)

    1998-01-01

    The Space Station Biological Research Project (SSBRP) Is developing hardware referred to as the "facility" for providing life sciences research capability on the International Space Station. This hardware includes several biological specimen habitats, habitat holding racks, a centrifuge and a glovebox. An SSBRP end to end data system architecture has been developed to allow command and control of the facility from the ground, either with crew assistance or autonomously. The data system will be capable of handling commands, sensor data, and video from multiple cameras. The data will traverse through several onboard and ground networks and processing entities including the SSBRP and Space Station onboard and ground data systems. A large number of onboard and ground (,entities of the data system are being developed by the Space Station Program, other NASA centers and the International Partners. The SSBRP part of the system which includes the habitats, holding racks, and the ground operations center, User Operations Facility (UOF) will be developed by a multitude of geographically distributed development organizations. The SSBRP has the responsibility to define the end to end data and communications systems to make the interfaces manageable and verifiable with multiple contractors with widely varying development constraints and schedules. This paper provides an overview of the SSBRP end-to-end data system. Specifically, it describes the hardware, software and functional interactions of individual systems, and interface requirements among various entities of the end-to-end system.

  2. ECOLOGY OF DESERT SYSTEMS BOOK REVIEW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 12 chapters of Whitford's book, Ecology of Desert Systems, summarize the comprehensive experiences and knowledge of a scientist with an extensive research background on a wide variety of physical and biological aspects of desert ecology. The author illustrates facts and concepts presented in th...

  3. Evening Pass Over the Sahara Desert and the Middle East

    NASA Video Gallery

    This video over the Sahara Desert and the Middle East was taken by the crew of Expedition 29 aboard the International Space Station. This sequence of shots was taken on Oct. 6, 2011, from 19:46:23 ...

  4. Characterization and evaluation of five jaboticaba accessions at the subtropical horticulture research station in Miami, Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit of five Jaboticaba (Myrciaria caulifloria) cultivars ‘MC-05-06’, ‘MC-05-14’, ‘MC-05-12’, ‘MC-06-15,’ and ‘MC-06-14’ were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clona...

  5. Data multiplex system for the dispensing station at the Tritium Research Laboratory

    SciTech Connect

    Strout, R.E.

    1980-03-01

    Throughout the Tritium Research Laboratory's dispensing station, pressure and temperature are monitored continuously. A multiplex system brings the data from the monitoring points to a central location for use in a programmable calculator. The system consists of a programmable calculator, a multiprogrammer, four address units, digital panel meters, and buffer units interfacing the meters with the rest of the components. This report describes how each component fits into the system to make it work.

  6. Accommodation requirements for microgravity science and applications research on space station

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Holland, L. R.; Wear, W. O.

    1985-01-01

    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.

  7. Space Station Freedom - Its role as an international research laboratory and observatory

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn

    1989-01-01

    The international partnership agreed to just a year ago among the United States, Canada, Japan and nations participating in the European Space Agency bring us one giant leap closer to unprecedented opportunities in space science and observation. While the driving force of Space Station Freedom has been and continues to be an expansion of human presence in space, the goals of the program go far beyond support of exploration. Integral to the international program is research, conducted on four spacecraft, centering on laboratory and observatory experiments. Research onboard the station's manned base, two polar orbiting observation platforms and the Columbus Free Flying Laboratory will offer research opportunities never available before in life sciences, materials sciences, earth observation, astrophysics and planetary sciences for a wide variety of users over a period of three decades. As such, Space Station Freedom, the world's largest and most useful facility in space, is expected to stimulate advanced technologies, promote the commercial use of space, and increase international cooperation in the peaceful utilization of outer space.

  8. Desert Voices: Southwestern Children's Literature.

    ERIC Educational Resources Information Center

    Polette, Keith

    1997-01-01

    Examines three books with different ways of writing about the desert. Discusses: "Here Is the Southwestern Desert" by Madeline Dunphy, "The Desert Is My Mother" by Pat Mora, and "The Desert Mermaid" by Alberto Blanco. (PA)

  9. Cardiovascular research in space - Considerations for the design of the human research facility of the United States Space Station

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Bungo, M. W.

    1986-01-01

    The design of the Space Station's Human Research Facility for the collection of information on the long-time physiological adjustments of humans to space is described. The Space Life Sciences-1 mission will carry a rack-mounted echocardiograph for cardiac imaging, a mass spectrometer for cardiac output and respiratory function assessments at rest and during exercise, and a device to stimulate the carotid sinus baroreceptors and measure the resulting changes in heart rate.

  10. In-space research, technology and engineering experiments and Space Station

    NASA Technical Reports Server (NTRS)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  11. Sea Breezes over the Red Sea: Affect of topography and interaction with Desert Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Khan, Basit A.; Stenchikov, Georgiy; Abualnaja, Yasser

    2014-05-01

    Thermodynamic structure of sea-breeze, its interaction with coastal mountains, desert plateau and desert convective boundary layer have been investigated in the middle region of the Red Sea around 25°N, at the Western coast of Saudi Arabia. Sea and land breeze is a common meteorological phenomenon in most of the coastal regions around the world. Sea-Breeze effects the local meteorology and cause changes in wind speed, direction, cloud cover and sometimes precipitation. The occurrence of sea-breeze, its intensity and landward propagation are important for wind energy resource assessment, load forecasting for existing wind farms, air pollution, marine and aviation applications. The thermally induced mesoscale circulation of sea breeze modifies the desert Planetary Boundary Layer (PBL) by forming Convective Internal Boundary Layer (CIBL), and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the frontal boundary and if contains enough moisture a band of clouds is formed along the sea breeze front (SBF). This study focuses on the thermodynamic structure of sea-breeze as it propagates over coastal rocky mountain range of Al-Sarawat, east of the Red Sea coast, and the desert plateau across the mountain range. Additional effects of topographical gaps such as Tokar gap on the dynamics of sea-land breezes have also been discussed. Interaction of SBF with the desert convective boundary layer provide extra lifting that could further enhance the convective instability along the frontal boundary. This study provides a detailed analysis of the thermodynamics of interaction of the SBF and convective internal boundary layer over the desert. Observational data from a buoy and meteorological stations have been utilized while The Advanced Research WRF (ARW) modeling system has been employed in real and 2D idealized configuration.

  12. Design and development of a Space Station proximity operations research and development mockup

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1986-01-01

    Proximity operations (Prox-Ops) on-orbit refers to all activities taking place within one km of the Space Station. Designing a Prox-Ops control station calls for a comprehensive systems approach which takes into account structural constraints, orbital dynamics including approach/departure flight paths, myriad human factors and other topics. This paper describes a reconfigurable full-scale mock-up of a Prox-Ops station constructed at Ames incorporating an array of windows (with dynamic star field, target vehicle(s), and head-up symbology), head-down perspective display of manned and unmanned vehicles, voice- actuated 'electronic checklist', computer-generated voice system, expert system (to help diagnose subsystem malfunctions), and other displays and controls. The facility is used for demonstrations of selected Prox-Ops approach scenarios, human factors research (work-load assessment, determining external vision envelope requirements, head-down and head-up symbology design, voice synthesis and recognition research, etc.) and development of engineering design guidelines for future module interiors.

  13. International Research Results and Accomplishments From the International Space Station - A New Compilation

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; Karabadzhak, Georgy; Sorokin, Igor V.; Cotronei, Vittorio; Jean, Sabbagh

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011 (Expeditions 0 through 30). International Space Station Research Accomplishments: An Analysis of Results. From 2000-2011 is a collection of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/iss- science) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated by cooperation and linking with the results tracking activities of each partner. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. This content is obtained through extensive and regular journal and patent database searches, and input provided by the ISS international partners ISS scientists themselves. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It rejects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a

  14. Integrated payload resource requirements for NASA's Gravitational Biology Research Laboratory on the International Space Station

    NASA Astrophysics Data System (ADS)

    Fletcher, Lauren E.; Sarver, George L., Dr.; Jahns, Gary, Dr.

    2000-01-01

    The primary mission of International Space Station (ISS) is to provide a shirt-sleeve working environment within an orbiting laboratory to support a wide variety of research conducted in the micro-gravity (μ-gravity) environment of space. The laboratory being developed by the Space Station Biological Research Project (SSBRP) at the Ames Research Center (ARC) will support NASA's Gravitational Biology and Ecology (GB&E) Research Program on the influence and affects of gravity on living systems. It will support research from the building blocks of biology (cells and tissues) through complete, fully grown systems (plants, rodents, aquatics and insects) and through all phases of growth as well as multiple generations. The results will provide an in-depth understanding of the role of gravity in living systems. It should provide the information necessary to support long-term manned missions for exploration of the solar system. In addition, it is expected to provide valuable insight into how Earth-bound biological systems work. .

  15. Facilities for animal research in space with special reference to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

    1990-01-01

    The facilities being planned for animal research on Space Station Freedom are considered in the context of the development of animal habitats from early ballistic and orbital flights to long-term missions aimed at more detailed scientific studies of the effects of space conditions on the vertebrate organism. Animal habitats are becoming more elaborate, requiring systems for environmental control, waste management, physiological monitoring, as well as ancillary facilities such as a 1-G control centrifuge and a glovebox. Habitats in use or to be used in various types of manned and unmanned spacecraft, and particularly those planned for Space Station Freedom, are described. The characteristics of the habitats are compared with each other and with current standards for animal holding facilities on the ground.

  16. Defining contamination control requirements for non-human research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.; Funk, Glenn A.

    1992-01-01

    The use of non-human biological specimens for life sciences research on Space Station Freedom has generated concerns about spacecraft internal contamination, crew safety and hardware utility. Various NASA organizations convened to discuss the concerns and determine how they should be addressed. This paper will present the issues raised at this meeting, the process by which safety concerns were identified, and the means by which contamination control requirements for all biological payloads were recommended for incorporation into Space Station Freedom safety requirements. The microbiological, toxicological and particulate contamination criteria for long-term spaceflight will be based on realistic assessment of risk and hardware will be designed to meet established contamination criteria while facilitating crew operations, thereby meeting the needs of the investigator.

  17. Mini neutron monitor measurements at the Neumayer III station and on the German research vessel Polarstern

    NASA Astrophysics Data System (ADS)

    Heber, B.; Galsdorf, D.; Herbst, K.; Gieseler, J.; Labrenz, J.; Schwerdt, C.; Walter, M.; Benadé, G.; Fuchs, R.; Krüger, H.; Moraal, H.

    2015-08-01

    Neutron monitors (NMs) are ground-based devices to measure the variation of cosmic ray intensities, and although being reliable they have two disadvantages: their size as well as their weight. As consequence, [1] suggested the development of a portable, and thus much smaller and lighter, calibration neutron monitor that can be carried to any existing station around the world [see 2; 3]. But this mini neutron monitor, moreover, can also be installed as an autonomous station at any location that provides ’’office” conditions such as a) temperatures within the range of around 0 to less than 40 degree C as well as b) internet and c) power supply. However, the best location is when the material above the NM is minimized. In 2011 a mini Neutron Monitor was installed at the Neumayer III station in Antarctica as well as the German research vessel Polarstern, providing scientific data since January 2014 and October 2012, respectively. The Polarstern, which is in the possession of the Federal Republic of Germany represented by the Ministry of Education and Research and operated by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research and managed by the shipping company Laeisz, was specially designed for working in the polar seas and is currently one of the most sophisticated polar research vessels worldwide. It spends almost 310 days a year at sea usually being located in the waters of Antarctica between November and March while spending the northern summer months in Arctic waters. Therefore, the vessel scans the rigidity range below the atmospheric threshold and above 10 GV twice a year. In contrast to spacecraft measurements NM data are influenced by variations of the geomagnetic field as well as the atmospheric conditions. Thus, in order to interpret the data a detailed knowledge of the instrument sensitivity with geomagnetic latitude (rigidity) and atmospheric pressure is essential. In order to determine the atmospheric response data from the

  18. Experimental Lithium-Ion Battery Developed for Demonstration at the 2007 NASA Desert Research and Technology Studies (D-RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2010-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.

  19. The Importance of the International Space Station for Life Sciences Research: Past and Future

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Evans, C. A.; Tate, Judy

    2008-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations, it hosted a few early science experiments months before the first international crew took up residence in November 2000. Since that time, science returns from the ISS have been growing at a steady pace. To date, early utilization of the U.S. Operating Segment of ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting U.S. and international partner research. This paper will summarize the life science accomplishments of early research aboard the ISS both applied human research for exploration, and research on the effects of microgravity on life. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities (both pressurized and external) will be tripled, with multiple scientific modules that support a wide variety of research racks and science and technology experiments conducted by all of the International Partners. A milestone was reached in February 2008 with the launch and commissioning of ESA s Columbus module and in March of 2008 with the first of three components of the Japanese Kibo laboratory. Although challenges lie ahead, the realization of the international scientific partnership provides new opportunities for scientific collaboration and broadens the research disciplines engaged on ISS. As the ISS nears completion of assembly in 2010, we come to full international utilization of the facilities for research. Using the past as an indicator, we are now able to envision the multidisciplinary contributions to improving life on Earth that the ISS can make as a platform for life sciences research.

  20. A proposal for the integration of behavioural research into International Space Station operations

    NASA Astrophysics Data System (ADS)

    Musson, David M.

    2000-01-01

    This paper proposes specific approaches for the conduct of psychological research on the International Space Station (ISS), and in the training programs supporting ISS. Justification for such research is presented, including improved safety and efficiency, the furthering of scientific knowledge, and the establishment of firm recommendations for the selection, training and support of future long duration crews on a mission to Mars. Data collection techniques and research methodologies are reviewed, including behavioural observations, surveys and interviews, and incident reporting systems. The specific uses of these data are discussed, including training refinement, validation of crew selection criteria, and design of future missions. The essential requirement that astronauts be partners in such research is also discussed, along with an exploration of the need for absolute confidentiality of psychological data and the requirement that information collected must not be used to impair astronaut careers or flight assignments. .

  1. Preliminary Concepts for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

    1999-01-01

    The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

  2. Magnetic Analysis Techniques Applied to Desert Varnish

    NASA Technical Reports Server (NTRS)

    Schmidgall, E. R.; Moskowitz, B. M.; Dahlberg, E. D.; Kuhlman, K. R.

    2003-01-01

    Desert varnish is a black or reddish coating commonly found on rock samples from arid regions. Typically, the coating is very thin, less than half a millimeter thick. Previous research has shown that the primary components of desert varnish are silicon oxide clay minerals (60%), manganese and iron oxides (20-30%), and trace amounts of other compounds [1]. Desert varnish is thought to originate when windborne particles containing iron and manganese oxides are deposited onto rock surfaces where manganese oxidizing bacteria concentrate the manganese and form the varnish [4,5]. If desert varnish is indeed biogenic, then the presence of desert varnish on rock surfaces could serve as a biomarker, indicating the presence of microorganisms. This idea has considerable appeal, especially for Martian exploration [6]. Magnetic analysis techniques have not been extensively applied to desert varnish. The only previous magnetic study reported that based on room temperature demagnetization experiments, there were noticeable differences in magnetic properties between a sample of desert varnish and the substrate sandstone [7]. Based upon the results of the demagnetization experiments, the authors concluded that the primary magnetic component of desert varnish was either magnetite (Fe3O4) or maghemite ( Fe2O3).

  3. Systematics of Natural Perchlorate in Precipitation, Soils, and Plants at the Amargosa Desert Research Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Andraski, B. J.; Stonestrom, D. A.; Jackson, W. A.; Rajagopalan, S.; Taylor, E. M.

    2007-12-01

    Naturally occurring perchlorate is known to be associated with nitrate deposits of the hyperarid Atacama Desert in Chile, and recent large-scale sampling has identified a substantial reservoir (up to 1 kg/ha) of natural perchlorate in diverse unsaturated zones of the arid and semiarid Southwestern United States (Rao et al., 2007, ES&T, DOI: 10.1021/es062853i). The objective of the Amargosa Desert work is to develop a better understanding of the deposition, accumulation, and biological cycling of perchlorate in arid environments. Occurrence of perchlorate was evaluated by sampling shallow soil profiles up to 3 m in depth at four different locations and at two different time periods, and by sampling dominant plant species growing near the subsurface profiles. Deposition of perchlorate was evaluated by analyzing both bulk deposition (precipitation plus dry fall, collected under oil) collected on site and wet deposition samples collected by the National Atmospheric Deposition program at a nearby site. Soil samples and atmospheric-deposition samples were tested for both perchlorate (ClO4- ) and major anions. Perchlorate concentrations (0.2-20 µg/kg) were variable with depth in soil profiles and generally correlated most highly with chloride (Cl-) and nitrate (NO3-), although the intensity of these relations differed among profiles. Plant concentrations were generally above 1 mg/kg, suggesting ClO4- accumulation. Concentrations of ClO4- were generally much greater in total deposition than wet deposition samples, indicating a substantial dryfall component of meteoric deposition. This presentation will present the mass distribution and variability of perchlorate in bulk deposition, soils, and plants. Reasons for observed relations between subsurface concentrations of perchlorate and other anions will be explored.

  4. Characterization of the indoor particles and their sources in an Antarctic research station.

    PubMed

    Pagel, Érica Coelho; Costa Reis, Neyval; de Alvarez, Cristina Engel; Santos, Jane Méri; Conti, Melina Moreira; Boldrini, Ricardo Salvador; Kerr, Américo Sansigolo

    2016-03-01

    Many studies have been carried out on the environmental impact of the research stations on the Antarctic continent. However, the assessment of indoor air quality in these confined environments has been neglected. The main objectives of this study are to investigate the granulometric distribution of the indoor particles in the different compartments of the Brazilian Antarctic Station, to examine the number and mass concentration of the indoor particles, to conduct chemical and morphological analyses of the indoor PM2.5, and to identify the possible sources of the PM. The results showed that Na, K, Cl, Fe, Zn, S and Si were the main elements detected. High levels of black carbon were recorded in the workshop, which may be associated with the use of diesel vehicles. To identify the human activities related to the indoor particle emission in the station, the size distribution of the particles in the living room was monitored for seven consecutive days, during normal station operation. It was possible to identify the influence of individual processes, such as incineration, cooking and the movement of people, upon the particle size number concentration. The indoor/outdoor (I/O) ratio for the total suspended particles (TSP), PM10, PM2.5 and PM1 measured was significantly larger than those reported for urban buildings. In general, the I/O ratio distribution for all the compartments shows peak values between 2.5 and 10 μm, which is often related to human activity, such as cleaning, personnel circulation or clothing surfaces. The maximum I/O ratio at this range varied from 12 to 60. In addition, the compartments affected by combustion processes tend to present a significant number of submicron particles. PMID:26884354

  5. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  6. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  7. A New Direction for the NASA Materials Science Research using the International Space Station

    NASA Astrophysics Data System (ADS)

    Schlagheck, R.

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  8. Space station systems analysis study. Part 3: Documentation. Volume 4: Supporting research and technology report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A brief description of recommended supporting research and technology items resulting from the space station analysis study is provided. Descriptions include the title; the status with respect to the state of the art; the justification; the technical plan including objectives and technical approach; resource requirements categorized by manpower, specialized facilities, and funding in 1977 dollars; and also the target schedule. The goal is to provide high confidence in the solutions for the various functional system development problems, and to do so within a time period compatible with the overall evolutionary space construction base schedule.

  9. Crew station research and development facility training for the light helicopter demonstration/validation program

    NASA Technical Reports Server (NTRS)

    Matsumoto, Joy Hamerman; Rogers, Steven; Mccauley, Michael; Salinas, AL

    1992-01-01

    The U.S. Army Crew Station Research and Development Branch (CSRDB) of the Aircraft Simulation Division (AVSCOM) was tasked by the Light Helicopter Program Manager (LH-PM) to provide training to Army personnel in advanced aircraft simulation technology. The purpose of this training was to prepare different groups of pilots to support and evaluate two contractor simulation efforts during the Demonstration/Validation (DEM/VAL) phase of the LH program. The personnel in the CSRDB developed mission oriented training programs to accomplish the objectives, conduct the programs, and provide guidance to army personnel and support personnel throughout the DEM/VAL phase.

  10. Office of Commercial Programs' research activities for Space Station Freedom utilization

    NASA Technical Reports Server (NTRS)

    Fountain, James A.

    1992-01-01

    One of the objectives of the Office of Commercial Programs (OCP) is to encourage, enable, and help implement space research which meets the needs of the U.S. industrial sector. This is done mainly through seventeen Centers for the Commercial Development of Space (CCDS's) which are located throughout the United States. The CCDS's are composed of members from U.S. companies, universities, and other government agencies. These Centers are presently engaged in industrial research in space using a variety of carriers to reach low Earth orbit. One of the goals is to produce a body of experience and knowledge that will allow U.S. industrial entities to make informed decisions regarding their participation in commercial space endeavors. A total of 32 items of payload hardware were built to date. These payloads have flown in space a total of 73 times. The carriers range from the KC-135 parabolic aircraft and expendable launch vehicles to the Space Shuttle. This range of carriers allows the experimenter to evolve payloads in complexity and cost by progressively extending the time in microgravity. They can start with a few seconds in the parabolic aircraft and go to several minutes on the rocket flights, before they progress to the complexities of manned flight on the Shuttle. Next year, two new capabilities will become available: COMET, an expendable-vehicle-launched experiment capsule that can carry experiments aloft for thirty days; and SPACEHAB, a new Shuttle borne module which will greatly add to the capability to accommodate small payloads. All of these commercial research activities and carrier capabilities are preparing the OCP to evolve those experiments that prove successful to Space Station Freedom. OCP and the CCDS's are actively involved in Space Station design and utilization planning and have proposed a set of experiments to be launched in 1996 and 1997. These experiments are to be conducted both internal and external to Space Station Freedom and will

  11. Empirical Requirements Analysis for Mars Surface Operations Using the Flashline Mars Arctic Research Station

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Lee, Pascal; Sierhuis, Maarten; Norvig, Peter (Technical Monitor)

    2001-01-01

    Living and working on Mars will require model-based computer systems for maintaining and controlling complex life support, communication, transportation, and power systems. This technology must work properly on the first three-year mission, augmenting human autonomy, without adding-yet more complexity to be diagnosed and repaired. One design method is to work with scientists in analog (mars-like) setting to understand how they prefer to work, what constrains will be imposed by the Mars environment, and how to ameliorate difficulties. We describe how we are using empirical requirements analysis to prototype model-based tools at a research station in the High Canadian Arctic.

  12. The concept of a facility for cosmic dust research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; Rogers, Fred

    1996-01-01

    A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

  13. Geometeorological data collected by the USGS Desert Winds Project at Desert Wells, Sonoran Desert, central-west Arizona, 1981 - 1996

    USGS Publications Warehouse

    Helm, Paula J.; Breed, Carol S.; Tigges, Richard; Creighton, Shawn

    1998-01-01

    The data in this report were obtained by instruments deployed on a GOES-satellite data collection station operated by the U.S. Geological Survey Desert Winds Project at Desert Wells (latitude 33° 42' 08" N, longitude 113° 48' 40" W), La Paz County, west-central Arizona. The elevation is 344 m (1,130 ft). From January 9, 1981 through May 31, 1995 the station recorded eight parameters: wind direction, wind speed, peak gust, air temperature, precipitation, humidity, barometric pressure, and soil temperature. On June 1, 1995, the station was upgraded by adding a SENSIT sand-flux sensor, which records grain impacts concurrently with wind speed and wind direction measurements. Included with the data is descriptive text on the geology, soils, climate, vegetation, and land use at the site, as well as text on data format, date retrieval software and instructions, and metadata

  14. Desert R.A.T.S. 2011

    NASA Video Gallery

    Desert Research And Technology Studies (D-R.A.T.S) kicks off an exciting new year of field testing. The crew is back in action, testing communication scenarios for near-Earth asteroids, and two new...

  15. 2011 Desert RATS Sights and Sounds

    NASA Video Gallery

    Watch scenes from the 2011 Desert Research and Technology Studies (RATS) analog field test, as NASA scientists and engineers drive the Space Exploration Vehicle, assemble equipment in the Habitat D...

  16. Concepts of bioisolation for life sciences research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Funk, Glenn A.; Johnson, Catherine C.

    1991-01-01

    The risk concepts related to biological research in space are defined with attention given to the design and operation of experimental hardware for NASA's Biological Flight Research Laboratory (BFRL). The definitions are set forth to describe safety measures for the use of nonhuman specimens in microgravity environments and the direct application of the risk-control concepts. Bioisolation is the process by which biological systems can coexist productively by means of physical, chemical, or biological methods; bioisolation requirements are given for mammals, plants, and microspecimens. The BRFL provides two levels of containment based on the complete sealing of all joints and interfaces in the Modular Habitat and an airflow system designed to provide net negative pressure of at least 0.13 kPa. The requirements are designed to assure a safe working environment for conducting nonhuman life-sciences research in the Space Station Freedom.

  17. On the use of Space Station Freedom in support of the SEI - Life science research

    NASA Technical Reports Server (NTRS)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  18. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  19. Micrometeorological, evapotranspiration, and soil-moisture data at the Amargosa Desert Research site in Nye County near Beatty, Nevada, 2006-11

    USGS Publications Warehouse

    Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.

    2012-01-01

    This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.

  20. Next-Generation Real-Time Geodetic Station Sensor Web for Natural Hazards Research and Applications

    NASA Astrophysics Data System (ADS)

    Bock, Y.; Clayton, R. W.; Fang, P.; Geng, J.; Gutman, S. I.; Kedar, S.; Laber, J. L.; Moore, A. W.; Owen, S. E.; Small, I.; Squibb, M. B.; Webb, F.; Yu, E.

    2012-12-01

    We report on a NASA AIST project focused on better forecasting, assessing, and mitigating natural hazards, including earthquakes, tsunamis, and extreme storms and flooding through development and implementation of a modular technology for the next-generation in-situ geodetic station, and a Geodetic Sensor Web to support the flow of information from multiple stations to scientists, mission planners, decision makers, and first responders. Meaningful warnings save lives when issued within 1-2 minutes for destructive earthquakes, several tens of minutes for tsunamis, and up to several hours for extreme storms and flooding, and can be provided by on-site fusion of multiple data types and generation of higher-order data products: GPS and accelerometer measurements to estimate point displacements, and GPS and meteorological measurements to estimate moisture variability in the free atmosphere. By operating semi-autonomously, each station can provide low-latency, high-fidelity and compact data products within the constraints of narrow communications bandwidth that often accompanies natural disasters. The project encompasses the following tasks, including hardware and software components: (1) Development of a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS, a MEMS accelerometer package, and a MEMS meteorological sensor package, for deployment at 26 existing continuous GPS stations in southern California. The low-cost modular design is scalable to the many existing continuous GPS stations worldwide. (2) Estimation of new on-the-fly data products with 1 mm precision and accuracy, including three-dimensional broadband displacements and precipitable water, by new software embedded in the Geodetic Module's processor, rather than at a central processing facility. (3) Development of a Geodetic Sensor Web to allow the semi-autonomous sensors to transmit and receive information in real time by means of redundant sensor proxy

  1. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  2. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  3. Desert Research and Technology Studies (DRATS) 2010 science operations: Operational approaches and lessons learned for managing science during human planetary surface missions

    NASA Astrophysics Data System (ADS)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; Garry, Brent; Graff, Trevor; Gruener, John; Heldmann, Jennifer; Hodges, Kip; Hörz, Friedrich; Hurtado, Jose; Hynek, Brian; Isaacson, Peter; Juranek, Catherine; Klaus, Kurt; Kring, David; Lanza, Nina; Lederer, Susan; Lofgren, Gary; Marinova, Margarita; May, Lisa; Meyer, Jonathan; Ming, Doug; Monteleone, Brian; Morisset, Caroline; Noble, Sarah; Rampe, Elizabeth; Rice, James; Schutt, John; Skinner, James; Tewksbury-Christle, Carolyn M.; Tewksbury, Barbara J.; Vaughan, Alicia; Yingst, Aileen; Young, Kelsey

    2013-10-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space. The results from the RATS tests allow selection of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  4. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    NASA Technical Reports Server (NTRS)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; Garry, Brent; Graff, Trevor; Gruener, John; Heldmann, Jennifer; Hodges, Kip; Horz, Friedrich; Hurtado, Jose; Hynek, Brian; Isaacson, Peter; Juranek, Catherine; Klaus, Kurt; Kring, David; Lanza, Nina; Lederer, Susan; Lofgren, Gary

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  5. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  6. Reusable Rack Interface Controller Common Software for Various Science Research Racks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Lu, George C.

    2003-01-01

    The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall

  7. Research on the International Space Station: Understanding Future Potential from Current Accomplishments

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    In November 2007, the International Space Station (ISS) will have supported seven years of continuous presence in space, with 15 Expeditions completed. These years have been characterized by the numerous technical challenges of assembly as well as operational and logistical challenges related to the availability of transportation by the Space Shuttle. During this period, an active set of early research objectives have also been accomplished alongside the assembly. This paper will review the research accomplishments on ISS to date, with the objective of drawing insights on the potential of future research following completion of ISS assembly. By the end of Expedition 15, an expected 121 U.S.-managed investigations will have been conducted on ISS, with 91 of these completed. Many of these investigations include multiple scientific objectives, with an estimated total of 334 scientists served. Through February 2007, 101 scientific publications have been identified. Another 184 investigations have been sponsored by ISS international partners, which independently track their scientists served and results publication. Through this survey of U.S. research completed on ISS, three different themes will be addressed: (1) How have constraints on transportation of mass to orbit affected the types of research successfully completed on the ISS to date? What lessons can be learned for increasing the success of ISS as a research platform during the period following the retirement of the Space Shuttle? (2) How have constraints on crew time for research during assembly and the active participation of crewmembers as scientists affected the types of research successfully completed on the ISS to date? What lessons can be learned for optimizing research return following the increase in capacity from 3 to 6 crewmembers (planned for 2009)? What lessons can be learned for optimizing research return after assembly is complete? (3) What do early research results indicate about the various

  8. The Era of International Space Station Research: Discoveries and Potential of an Unprecedented Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011. Its largest research instrument, the Alpha Magnetic Spectrometer is planned for launch in late April. Unlike any previous laboratory in space, the ISS offers a long term platform where scientists can operate experiments rapidly after developing a new research question, and extend their experiments based on early results. This presentation will explain why having a laboratory in orbit is important for a wide variety of experiments that cannot be done on Earth. Some of the most important results from early experiments are already having impacts in areas such as health care, telemedicine, and disaster response. The coming decade of full utilization offers the promise of new understanding of the nature of physical and biological processes and even of matter itself.

  9. The Materials Science Laboratory -A research Facility on Board the International Space Station

    NASA Astrophysics Data System (ADS)

    Lenski, Harald

    The Materials Science Laboratory (MSL) is a multi-user facility that supports processing and investigation of metals, alloys, and semiconductors under weightlessness in a temperature range up to 1800C. MSL was built under a contract of the European Space Agency and is currently operated as part of NASA's Materials Science Research Rack in the US-Laboratory of the In-ternational Space Station. Various research fields are supported by means of dedicated Furnace Inserts which are exchanged on orbit over the ten years lifetime of the facility. MSL provides a very precise process control, several built-in diagnostics features, and the capability to add experiment specific diagnostics. An overview on the MSL design is given and technological challenges encountered during the development are discussed.

  10. Space research with intact organisms: The role of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Haddy, Francis J.

    1993-01-01

    The study of intact organisms has provided biologists with a good working knowledge of most of the common organisms that have evolved in the 1 g environment of Earth. Reasonably accurate predictions can be made about organismal responses to most stimuli on Earth. To extend this knowledge to life without gravity, we must have access to the space environment for prolonged periods. Space Station Freedom will provide a facility with which to begin this type of research. Spaceflight research to date has been limited to relatively short-term exposures that have been informative but incomplete. This paper provides a brief background of known changes that have occurred in intact organisms in the space environment and proposes the kinds of experiments that are needed to expand our knowledge of life on Earth and in space.

  11. NASA's plans for life sciences research facilities on a Space Station

    NASA Technical Reports Server (NTRS)

    Arno, R.; Heinrich, M.; Mascy, A.

    1984-01-01

    A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

  12. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  13. The International Space Station as a Research Laboratory: A View to 2010 and Beyond

    NASA Technical Reports Server (NTRS)

    Uri, John J.; Sotomayor, Jorge L.

    2007-01-01

    Assembly of International Space Station (ISS) is expected to be complete in 2010, with operations planned to continue through at least 2016. As we move nearer to assembly complete, replanning activities by NASA and ISS International Partners have been completed and the final complement of research facilities on ISS is becoming more certain. This paper will review pans for facilities in the US On-orbit Segment of ISS, including contributions from International Partners, to provide a vision of the research capabilities that will be available starting in 2010. At present, in addition to research capabilities in the Russian segment, the United States Destiny research module houses nine research facilities or racks. These facilities include five multi-purpose EXPRESS racks, two Human Research Facility (HRF) racks, the Microgravity Science Glovebox (MSG), and the Minus Eighty-degree Laboratory Freezer for ISS (MELFI), enabling a wide range of exploration-related applied as well as basic research. In the coming years, additional racks will be launched to augment this robust capability: Combustion Integrated Rack (CIR), Fluids Integrated Rack (FIR), Window Observation Rack Facility (WORF), Microgravity Science Research Rack (MSRR), Muscle Atrophy Research Exercise System (MARES), additional EXPRESS racks and possibly a second MELFI. In addition, EXPRESS Logistics Carriers (ELC) will provide attach points for external payloads. The European Space Agency s Columbus module will contain five research racks and provide four external attach sites. The research racks are Biolab, European Physiology Module (EPM), Fluid Science Lab (FSL), European Drawer System (EDS) and European Transport Carrier (ETC). The Japanese Kibo elements will initially support three research racks, Ryutai for fluid science, Saibo for cell science, and Kobairo for materials research, as well as 10 attachment sites for external payloads. As we look ahead to assembly complete, these new facilities represent

  14. Annual report on paleoclimate studies for the Yucca Mountain project site characterization conducted by the Desert Research Institute

    SciTech Connect

    1994-12-31

    The prospect that Yucca Mountain may become a repository for high-level radionuclides with especially long half-lives means that the intended waste containment area must be well beyond the reach of the hydrologic system for at least ten millennia. Through the integration of several avenues of paleoclimatic proxy data, the authors intend to arrive at definite conclusions regarding rates of change, and extremes and stabilities of past climate regimes. These will in turn lead to rough estimates of: the amounts of rainfall available for recharge during past periods of effectively wetter climate, and the durations and frequencies of recharge periods. The paper gives summaries of the following studies: Late Quaternary and Holocene climate derived from vegetation history and plant cellulose stable isotope records from the Great basin of western North America; Accomplishments of paleofaunal studies, 1993--1994; Geomorphology studies in the Great Basin; Alluvial fan response to climatic change, Buena Vista Valley, central Nevada; Sedimentology, stratigraphy, and chronology of lacustrine deposition in the Fernley Basin, west-central Nevada; Tree-rings, lake chronologies, alluvial sequences and climate--Implications for Great Basin paleoenvironmental studies; Stable isotopic validation studies--Fossil snails; and Late Pleistocene and Holocene eolian activity in the Mojave Desert.

  15. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2013-01-01

    Conducting Research on the International Space Station using the EXPRESS Rack Facilities. Sean W. Thompson and Robert E. Lake. NASA Marshall Space Flight Center, Huntsville, AL, USA. Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations

  16. Utö Atmospheric and Marine Research Station - a new Baltic Sea ICOS-site for sea-atmosphere research

    NASA Astrophysics Data System (ADS)

    Laakso, Lauri; Laurila, Tuomas; Mäkelä, Timo; Hatakka, Juha; Purokoski, Tero; Hietala, Riikka; Roine, Tuomo; Jämsen, Pertti; Kielosto, Sami; Asmi, Eija; Lonka, Harry; Alenius, Pekka; Drebs, Achim; Seppälä, Jukka; Ylöstalo, Pasi; Tamminen, Timo

    2015-04-01

    Atmospheric research has developed a concept of focused, multidisciplinary, automated observation platforms with continuous high time resolution observations. This approach containing state-of-the-art equipment has enabled research on physical, chemical and biological processes and seasonal variability and showed up new, previously unknown phenomena. New technical and engineering solutions allowing, such approach is also state-of-the-art in marine research through projects like US Ocean Observatories Initiative (OOI), European Multidisciplinary Seafloor Observatory (EMSO), JERICO-NEXT and Japanese DONET. At the Baltic Sea, on Island of Utö (59° 46'50N, 21° 22'23E), Finnish Meteorological Institute has observed meteorology since 1881, marine parameters since 1900 and a diversity of atmospheric chemical and physical variables since 1980. Recent years the stations has also been upgraded with aerosol observations, and together with Finnish Environment Institute, on marine observations. The current and observations under construction at Utö Atmospheric and Marine Research Station (en.ilmatieteenlaitos.fi/uto. Marine observations: surface waves, ice-cover radar, temperature and salinity and oxygen at different depths, chlorophyll, cyanobacteria, underwater flows, turbidity, pCO2 and nutrients. Atmospheric observations: T, WS, WD, visibility, cloud height, boundary layer wind profiles and turbulence, weather and underwater camera, aerosol particle size distributions, aerosol light scattering and absorption, SO2, NOx, CO, O3, CO2, CH4, sea-atmosphere CO2- and heat fluxes. In our presentation, we present for the first time some 100 years of climate relevant atmospheric and marine observations from Utö.

  17. Applications of Combustion Research on the International Space Station to Industrial Processes on Earth

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F.

    2002-01-01

    The mission of the Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is to conduct research and educate students in scientific areas related to combustion. The center focuses on those areas where results can be applied to the development of commercial products and processes and where the research can benefit from the unique properties of space. The center is planning combustion-related research aboard the International Space Station (ISS) that will further this mission. The research will be conducted in the two ISS facilities designed for combustion experiments, Space-DRUMSTM and the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility. Space-DRUMSTM is a containerless processing facility employing dynamic acoustic positioning. Guigne International, Ltd. of St. John's, Newfoundland, a CCACS member, is developing the facility in partnership with Astrium Space- Infrastructure and Teledyne Brown Engineering. This universal processing facility can handle large samples with virtually complete vibration isolation from the space station and no contamination from the experimental processing chamber. The CCACS research to be done in Space-DRUMSTM includes combustion synthesis of glass-ceramics and porous materials, nanoparticle synthesis, catalytic combustion, fluid physics and granular materials. The launch of Space-DRUMSTM to the ISS is currently scheduled for ULF-1 in January of 2003. The CIR is being developed by NASA-Glenn Research Center, and is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. The CCACS research to be done in the CIR includes water mist fire suppression, flame synthesis of ceramic powders, nanoparticle synthesis and catalytic combustion. The CIR is currently under development, with an expected launch date in the 2005 timeframe. The applications of this combustion research in manufacturing and processing industries are far

  18. Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

  19. Research on International Space Station - Building a Partnership for the Future

    NASA Technical Reports Server (NTRS)

    Gindl, Heinz; Scheimann, Jens; Shirakawa, Masaki; Suvorov, Vadim; Uri, John J.

    2004-01-01

    As its name implies, the International Space Station is a platform where the research programs of 16 partner nations are conducted. While each partner pursues its own research priorities, cooperation and coordination of the various national and agency research programs occurs at multiple levels, from strategic through tactical planning to experiment operations. Since 2000, a significant number of experiments have been carried out in the Russian ISS utilization program, which consists of the Russian national program of fundamental and applied research in 11 research areas and international cooperative programs and contract activities. The US research program began with simple payloads in 2000 and was significantly expanded with the addition of the US Laboratory module Destiny in 2001, and its outfitting with seven research racks to date. The Canadian Space Agency (CSA), the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) have made use of international cooperative arrangements with both the US and Russia to implement a variety of investigations in diverse research areas, and in the case of ESA included the flights of crewmembers to ISS as part of Soyuz Science Missions. In the future, ESA and JAXA will add their own research modules, Columbus and Kibo, respectively, to expand research capabilities both inside and outside ISS. In the aftermath of the Columbia accident and the temporary grounding of the Space Shuttle fleet, all ISS logistics have relied on Russian Progress and Sopz vehicles. The Russian national program has continued as before the Shuttle accident, as have international cooperative programs and contract activities, both during long-duration expeditions and visiting taxi missions. In several instances, Russian international cooperative activities with JAXA and ESA have also involved the use of US facilities and crewmembers in successful truly multilateral efforts. The US research program was rapidly refocused after the

  20. Space Station Engineering and Technology Development. Proceedings of the Panel on Solar Thermodynamics Research and Technology Development, July 31, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.

  1. The Era of International Space Station Utilization Begins: Research Strategy, International Collaboration, and Realized Potential

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Ruttley, Tara; Johnson-Green, Perry; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Jean, Sabbagh

    2010-01-01

    With the assembly of the International Space Station (ISS) nearing completion and the support of a full-time crew of six, a new era of utilization for research is beginning. For more than 15 years, the ISS international partnership has weathered financial, technical and political challenges proving that nations can work together to complete assembly of the largest space vehicle in history. And while the ISS partners can be proud of having completed one of the most ambitious engineering projects ever conceived, the challenge of successfully using the platform remains. During the ISS assembly phase, the potential benefits of space-based research and development were demonstrated; including the advancement of scientific knowledge based on experiments conducted in space, development and testing of new technologies, and derivation of Earth applications from new understanding. The configurability and human-tended capabilities of the ISS provide a unique platform. The international utilization strategy is based on research ranging from physical sciences, biology, medicine, psychology, to Earth observation, human exploration preparation and technology demonstration. The ability to complete follow-on investigations in a period of months allows researchers to make rapid advances based on new knowledge gained from ISS activities. During the utilization phase, the ISS partners are working together to track the objectives, accomplishments, and the applications of the new knowledge gained. This presentation will summarize the consolidated international results of these tracking activities and approaches. Areas of current research on ISS with strong international cooperation will be highlighted including cardiovascular studies, cell and plant biology studies, radiation, physics of matter, and advanced alloys. Scientific knowledge and new technologies derived from research on the ISS will be realized through improving quality of life on Earth and future spaceflight endeavours

  2. Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Woodling, Mark A.

    2000-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

  3. New Directions of Research in Complex Plasmas on the International Space Station

    SciTech Connect

    Thomas, H. M.; Morfill, G. E.; Ivlev, A. V.; Hagl, T.; Rothermel, H.; Khrapak, S. A.; Suetterlin, K. R.; Rubin-Zuzic, M.; Schwabe, M.; Zhdanov, S. K.; Raeth, C.; Fortov, V. E.; Molotkov, V. I.; Lipaev, A. M.; Petrov, O. F.; Tokarev, V. I.; Malenchenko, Y. I.; Turin, M. V.; Vinogradov, P. V.; Yurchikhin, F. N.

    2008-09-07

    PK-3 Plus is the second generation laboratory for investigations of complex plasmas under microgravity conditions on the International Space Station. Compared to its pre-cursor PKE-Nefedov, operational 2001-2005, it has an advanced hardware and software. Improved diagnostics and especially a much better homogeneity of the complex plasma allow more detailed investigations, helping to understand the fundamentals of complex plasmas. Typical investigations are performed to observe the structure of homogeneous and isotropic complex plasmas and instabilities occurring at high particle densities. In addition, the new setup allows the tuning of the interaction potential between the microparticles by using external ac electric fields. Thus, we are able to initiate electrorheological phenomena in complex plasma fluids in the PK-3 Plus laboratory, and observe the phase transition from a normal fluid to a string fluid state at the individual particle level for the first time. Such new possibilities open up new directions of research under microgravity conditions.

  4. Technology development activities for housing research animals on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jenner, Jeffrey W.; Garin, Vladimir M.; Nguyen, Frank D.

    1991-01-01

    The development and design of animal facilities are described in terms of the technological needs for NASA's Biological Flight Research Laboratory. Animal habitats are presented with illustrations which encompass waste-collection techniques for microgravity conditions that reduce the need for crew participation. The technology is intended to be highly compatible with animal morphology, and airflow is employed as the primary mechanism of waste control. The airflow can be utilized in the form of localized high-speed directed flow that simultaneously provides a clean animal habitat and low airflow rates. The design of an animal-habitat testbed is presented which capitalizes on contamination-control mechanisms and suitable materials for microgravity conditions. The developments in materials and technologies represent significant contributions for the design of the centrifuge facilities for the Space Station Freedom.

  5. The Plant Research Unit: Long-Term Plant Growth Support for Space Station

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Brown, C. S.; Goins, G. D.; Kliss, M.; Levine, H.; Lomax, P. A.; Porter, R. L.; Wheeler, R.

    1996-01-01

    The specifications of the plant research unit (PRU) plant habitat, designed for space station operations, are presented. A prototype brassboard model of the PRU is described, and the results of the subsystems tests are outlined. The effects of the long term red light emitting diode (LED) illumination as the sole source for plant development were compared with red LEDs supplemented with blue wavelengths, and white fluorescent sources. It was found that wheat and Arabidopsis were able to complete a life cycle under red LEDs alone, but with differences in physiology and morphology. The differences noted were greatest for the Arabidopsis, where the time to flowering was increased under red illumination. The addition of 10 percent of blue light was effective in eliminating the observed differences. The results of the comparative testing of three nutrient delivery systems for the PRU are discussed.

  6. Conceptual design and programmatics studies of space station accommodations for Life Sciences Research Facilities (LSRF)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Conceptual designs and programmatics of the space station accommodations for the Life Sciences Research Facilities (LSRF) are presented. The animal ECLSS system for the LSRF provides temperature-humidity control, air circulation, and life support functions for experimental subjects. Three ECLSS were studied. All configurations presented satisfy the science requirements for: animal holding facilities with bioisolation; facilities interchangeable to hold rodents, small primates, and plants; metabolic cages interchangeable with standard holding cages; holding facilities adaptable to restrained large primates and rodent breeding/nesting cages; volume for the specified instruments; enclosed ferm-free workbench for manipulation of animals and chemical procedures; freezers for specimen storage until return; and centrifuge to maintain animals and plants at fractional g to 1 g or more, with potential for accommodating humans for short time intervals.

  7. Evaluation of speech recognizers for use in advanced combat helicopter crew station research and development

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.

    1990-01-01

    The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.

  8. An EXPRESS Rack Overview and Support for Microgravity Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joseph J.; Jordan, Lee P.

    2008-01-01

    The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.

  9. Development and User Research of a Smart Bedside Station System toward Patient-Centered Healthcare System.

    PubMed

    Yoo, Sooyoung; Lee, Kee-Hyuck; Baek, Hyunyoung; Ryu, Borim; Chung, Eunja; Kim, Kidong; Yi, Jay Chaeyong; Park, Soo Beom; Hwang, Hee

    2015-09-01

    User experience design that reflects real-world application and aims to support suitable service solutions has arisen as one of the current issues in the medical informatics research domain. The Smart Bedside Station (SBS) is a screen that is installed on the bedside for the personal use and provides a variety of convenient services for the patients. Recently, bedside terminal systems have been increasingly adopted in hospitals due to the rapid growth of advanced technology in healthcare at the point of care. We designed user experience (UX) research to derive users' unmet needs and major functions that are frequently used in the field. To develop the SBS service, a service design methodology, the Double Diamond Design Process Model, was undertaken. The problems or directions of the complex clinical workflow of the hospital, the requirements of stakeholders, and environmental factors were identified through the study. The SBS system services provided to patients were linked to the hospital's main services or to related electronic medical record (EMR) data. Seven key services were derived from the results of the study. The primary services were as follows: Bedside Check In and Out, Bedside Room Service, Bedside Scheduler, Ready for Rounds, My Medical Chart, Featured Healthcare Content, and Bedside Community. This research developed a patient-centered SBS system with improved UX using service design methodology applied to complex and technical medical services, providing insights to improve the current healthcare system. PMID:26208595

  10. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    NASA Astrophysics Data System (ADS)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  11. X-38 research aircraft mounted in Shuttle docked at Space Station - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the Earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some

  12. Animals of the Desert.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information and student activities on how desert animals have adapted to dryness and heat, how and when animals move on the desert, and nocturnal/diurnal animals. Each activity includes objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. Ready-to-copy pages are included for a…

  13. People and Deserts.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on ways people affect deserts and ways deserts affect people; (2) student activities on this topic; and (3) ready-to-copy materials (culture match worksheet and causes worksheet). Each activity includes objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. (DH)

  14. Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base.

    PubMed

    Emnet, Philipp; Gaw, Sally; Northcott, Grant; Storey, Bryan; Graham, Lisa

    2015-01-01

    Pharmaceutical and personal care products (PPCPs) are a major source of micropollutants to the aquatic environment. Despite intense research on the fate and effects of PPCPs in temperate climates, there is a paucity of data on their presence in polar environments. This study reports the presence of selected PPCPs in sewage effluents from two Antarctic research stations, the adjacent coastal seawater, sea ice, and biota. Sewage effluents contained bisphenol-A, ethinylestradiol, estrone, methyl triclosan, octylphenol, triclosan, and three UV-filters. The maximum sewage effluent concentrations of 4-methyl-benzylidene camphor, benzophenone-1, estrone, ethinylestradiol, and octylphenol exceeded concentrations previously reported. Coastal seawaters contained bisphenol-A, octylphenol, triclosan, three paraben preservatives, and four UV-filters. The sea ice contained a similar range and concentration of PPCPs as the seawater. Benzophenone-3 (preferential accumulation in clams), estradiol, ethinylestradiol, methyl paraben (preferential accumulation in fish, with concentrations correlating negatively with fillet size), octylphenol, and propyl paraben were detected in biota samples. PPCPs were detected in seawater and biota at distances up to 25 km from the research stations WWTP discharges. Sewage effluent discharges and disposal of raw human waste through sea ice cracks have been identified as sources of PPCPs to Antarctic coastal environments. PMID:25460654

  15. NASA Glenn Research Center's Materials International Space Station Experiments (MISSE 1-7)

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce a.; Dever, Joyce A.; Jaworske, Donald A.; Miller, Sharon K.; Sechkar, Edward A.; Panko, Scott R.

    2008-01-01

    NASA Glenn Research Center (Glenn) has 39 individual materials flight experiments (>540 samples) flown as part of the Materials International Space Station Experiment (MISSE) to address long duration environmental durability of spacecraft materials in low Earth orbit (LEO). MISSE is a series of materials flight experiments consisting of trays, called Passive Experiment Carriers (PECs) that are exposed to the space environment on the exterior of the International Space Station (ISS). MISSE 1-5 have been successfully flown and retrieved and were exposed to the space environment from one to four years. MISSE 6A & 6B were deployed during the STS-123 shuttle mission in March 2008, and MISSE 7A & 7B are being prepared for launch in 2009. The Glenn MISSE experiments address atomic oxygen (AO) effects such as erosion and undercutting of polymers, AO scattering, stress effects on AO erosion, and in-situ AO fluence monitoring. Experiments also address solar radiation effects such as radiation induced polymer shrinkage, stress effects on radiation degradation of polymers, and radiation degradation of indium tin oxide (ITO) coatings and spacesuit fabrics. Additional experiments address combined AO and solar radiation effects on thermal control films, paints and cermet coatings. Experiments with Orion Crew Exploration Vehicle (CEV) seals and UltraFlex solar array materials are also being flown. Several experiments were designed to provide ground-facility to in-space calibration data thus enabling more accurate in-space performance predictions based on ground-laboratory testing. This paper provides an overview of Glenn s MISSE 1-7 flight experiments along with a summary of results from Glenn s MISSE 1 & 2 experiments.

  16. Space station capability for research in rotational hypogravity. [to study human physiological responses to rotational acceleration stresses

    NASA Technical Reports Server (NTRS)

    Keller, G.

    1973-01-01

    Certain capabilities provided in preliminary designs of orbital space stations for research in rotational hypogravity are outlined. Also indicated are alternative configurations that are being considered. Principal addresses are members of an international community of physiologists whose work in earth oriented, as well as space oriented, physiology can be supported through observation under the background environment of null gravity. Their participation in originating and devising advanced experiments and in developing requirements is expected to enhance final design of the selected space station and to make the research program more meaningful.

  17. Estimation of Endocarpon pusillum Hedwig carbon budget in the Tengger Desert based on its photosynthetic rate.

    PubMed

    Ding, Liping; Zhou, Qiming; Wei, Jiangchun

    2013-09-01

    This study investigated the photosynthetic rate of the lichen Endocarpon pusillum at the Chinese Academy of Sciences Shapotou Desert Research Station and estimated its annual contribution to the carbon budget in the ecosystem. The software SigmaPlot 10.0 with "Macro-Area below curves" was used to calculate the carbon fixation capacity of the lichen. The total carbon budget (ΣC) of the lichen was obtained by subtracting the respiratory carbon loss (ΣDR) from the photosynthetic carbon gain (ΣNP). Because water from precipitation plays an important role in photosynthesis in this ecosystem, the annual carbon budget of E. pusillum at the station was estimated based on the three-year average precipitation data from 2009 to 2011. Our results indicate that the lichen fixes 14.6 g C m(-2) annually. The results suggest that artificial inoculation of the crust lichen in the Tengger Desert could not only help reduce the sand and dust storms but also offer a significant carbon sink, fixing a total of 438000 t of carbon over the 30000 km(2) of the Tengger Desert. The carbon sink could potentially help mitigate the atmospheric greenhouse effect. Our study suggests that the carpet-like lichen E. pusillum is an excellent candidate for "Bio-carpet Engineering" of arid and semi-arid regions. PMID:23907293

  18. Food Deserts and Overweight Schoolchildren: Evidence from Pennsylvania

    ERIC Educational Resources Information Center

    Schafft, Kai A.; Jensen, Eric B.; Hinrichs, C. Clare

    2009-01-01

    The concept of the "food desert", an area with limited access to retail food stores, has increasingly been used within social scientific and public health research to explore the dimensions of spatial inequality and community well-being. While research has demonstrated that food deserts are frequently characterized by higher levels of poverty and…

  19. Proposed upgrade of the Deep Space Network research and development station

    NASA Technical Reports Server (NTRS)

    Smith, Joel G.

    1987-01-01

    Continued exploration of the solar system will require continued evolution of capabilities to support deep space communication and navigation. That evolution will rely, as it has in the past, on the development, demonstration, and field testing of communication and navigation technologies. The existing Deep Space Network (DSN) research and development station, DSS 13, at the Venus site, Goldstone, California was instrumental in those prior developments. However, the present antenna is no longer able to provide the necessary support for technology. The 26 meter antenna has good performance at S-band, fair performance at X-band, but is unusable at the anticipated Ka-band. It is not suitable for conversion to beam waveguides, and is not usable as a test bed for demonstrating high efficiency because of structural pliancy. Additionally, its size and age are increasingly a liability in demonstrations. A 34 meter beam waveguide version of the existing DSN high efficiency (HEF) antennas was proposed for FY-88 Construction of Facilities budget. The antenna is to be built at the Venus site, adjacent to the old antenna, and serve as the DSN research and development antenna through the end of the century.

  20. Research Opportunities on the Low Temperature Microgravity Physics Facility (LTMPF) on the International Space Station

    NASA Technical Reports Server (NTRS)

    Liu, Feng-Chuan; Adriaans, Mary Jayne; Pensinger, John; Israelsson, Ulf

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is a state-of-the-art facility for long duration science Investigations whose objectives can only be achieved in microgravity and at low temperature. LTMPF consists of two reusable, cryogenic facilities with self-contained electronics, software and communication capabilities. The Facility will be first launched by Japanese HIIA Rocket in 2003 and retrieved by the Space Shuttle, and will have at least five months cryogen lifetime on the Japanese Experiment Module Exposed Facility (JEM EF) of the International Space Station. A number of high precision sensors of temperature, pressure and capacitance will be available, which can be further tailored to accommodate a wide variety of low temperature experiments. This paper will describe the LTMPF and its goals and design requirements. Currently there are six candidate experiments in the flight definition phase to fly on LTMPF. Future candidate experiments will be selected through the NASA Research Announcement process. Opportunities for utilization and collaboration with international partners will also be discussed. This work is being carried out by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. The work was funded by NASA Microgravity Research Division.

  1. Laboratory Instruments Available to Support Space Station Researchers at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Gorti, Sridhar

    2013-01-01

    Micro-analyzer (EPMA) for very precise microanalysis are available as needed by the researcher. Space Station researchers are invited to work with MSFC in analyzing their samples using these techniques.

  2. Growing the Desert: Educational Pathways for Remote Indigenous People. Support Document

    ERIC Educational Resources Information Center

    Collier, Pam; King, Sharijn; Lawrence, Kate; Nangala, Irene; Nangala, Marilyn; Schaber, Evelyn; Young, Metta; Guenther, John; Oster, John

    2007-01-01

    As part of a project funded by the National Centre for Vocational Education and Research (NCVER) and the Desert Knowledge CRC (DKCRC), the "Growing the desert" research team have conducted a broad-ranging analysis of the role of formal and non-formal training opportunities that lead to employment and enterprise opportunities in the desert region…

  3. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    NASA Technical Reports Server (NTRS)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  4. Microgravity science and applications overview - Research, facility and instrumentation development, Space Station Freedom operations and utilization planning

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.

    1990-01-01

    An overview is provided of NASA's Microgravity Science and Applications Program, with emphasis on plans for evolution to the Space Station. The Microgravity Science and Applications Division program consists of two major parts including the ground-based research program and the flight program. Transition to flight experiment status may occur only after the ground-based research and testing demonstrates sufficient technical maturity to assure that scientific objectives can be met in space with a high degree of success. Program strategy calls for a transition to the Space Station Freedom before the end of the century. In this connection, six multi-user facilities are planned to be phased into operation aboard the Space Station over an extended time frame. It is projected that the design of these facilities will evolve based on experience with precursor experiment hardware designed and operated on Skylab and other carriers.

  5. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    NASA Technical Reports Server (NTRS)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; Vunjak-Novakovic, Gordana; Searby, Nancy D.

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  6. Are Food Deserts Also Play Deserts?

    PubMed

    Cohen, Deborah A; Hunter, Gerald; Williamson, Stephanie; Dubowitz, Tamara

    2016-04-01

    Although food deserts are areas that lack easy access to food outlets and considered a barrier to a healthy diet and a healthy weight among residents, food deserts typically comprise older urban areas which may have many parks and street configurations that could facilitate more physical activity. However, other conditions may limit the use of available facilities in these areas. This paper assesses the use of parks in two Pittsburgh food desert neighborhoods by using systematic observation. We found that while the local parks were accessible, they were largely underutilized. We surveyed local residents and found that only a minority considered the parks unsafe for use during the day, but a substantial proportion suffered from health limitations that interfered with physical activity. Residents also felt that parks lacked programming and other amenities that could potentially draw more park users. Parks programming and equipment in food desert areas should be addressed to account for local preferences and adjusted to meet the needs and limitations of local residents, especially seniors. PMID:27033184

  7. A natural experiment opportunity in two low-income urban food desert communities: research design, community engagement methods, and baseline results.

    PubMed

    Dubowitz, Tamara; Ncube, Collette; Leuschner, Kristin; Tharp-Gilliam, Shannah

    2015-04-01

    A growing body of evidence has highlighted an association between a lack of access to nutritious, affordable food (e.g., through full-service grocery stores [FSGs]), poor diet, and increased risk for obesity. In response, there has been growing interest among policy makers in encouraging the siting of supermarkets in "food deserts," that is, low-income geographic areas with low access to healthy food options. However, there is limited research to evaluate the impact of such efforts, and most studies to date have been cross-sectional. The Pittsburgh Hill/Homewood Research on Eating, Shopping, and Health (PHRESH) is a longitudinal quasi-experimental study of a dramatic change (i.e., a new FSG) in the food landscape of a low-income, predominantly Black neighborhood. The study is following a stratified random sample of households (n = 1,372), and all food venues (n = 60) in both intervention and control neighborhoods, and the most frequently reported food shopping venues outside both neighborhoods. This article describes the study design and community-based methodology, which focused simultaneously on the conduct of scientifically rigorous research and the development and maintenance of trust and buy-in from the involved neighborhoods. Early results have begun to define markers for success in creating a natural experiment, including strong community engagement. Baseline data show that the vast majority of residents already shop at a FSG and do not shop at the nearest one. Follow-up data collection will help determine whether and how a new FSG may change behaviors and may point to the need for additional interventions beyond new FSGs alone. PMID:25829122

  8. The Spectrumof the Cosmic Background Radiation: Early and RecentMeasurements from the White Mountain Research Station

    SciTech Connect

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model.

  9. Morphological and physio-chemical characterization of five Canistel accessions at the subtropical horticulture research station in Miami Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit of five canistel cultivars, 'Fairchild','E11', 'Keisau', 'TREC#3' and 'TREC 3680' were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clonal accessions during July and August, ...

  10. Heterogeneity in genetic variation and energy sink relationships for residual feed intake across research stations and countries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our long-term objective is to develop genomic prediction strategies for improving feed efficiency in dairy cattle. In this study, phenotypic data were pooled across multiple research stations to facilitate investigation of the genetic and non-genetic components of feed efficiency in Holstein cattle....

  11. An astronomical site survey at the Barcroft Facility of the White Mountain Research Station

    NASA Astrophysics Data System (ADS)

    Marvil, J.; Ansmann, M.; Childers, J.; Cole, T.; Davis, G. V.; Hadjiyska, E.; Halevi, D.; Heimberg, G.; Kangas, M.; Levy, A.; Leonardi, R.; Lubin, P.; Meinhold, P.; O'Neill, H.; Parendo, S.; Quetin, E.; Stebor, N.; Villela, T.; Williams, B.; Wuensche, C. A.; Yamaguchi, K.

    2006-01-01

    We present a distillation of weather and sky condition data collected from September 2001 to November 2004 at the University of California White Mountain Research Station, Barcroft Facility. Our conclusion is that Barcroft is an excellent site for microwave observation because of a cold microwave zenith temperature, low precipitable water, and a high percentage of clear days. The solar intensity was above 80% of the theoretical maximum 66% of the time. About 71% of the daytime, the cloud cover was acceptable for observing. Median precipitable water vapor was estimated to be 1.75 mm. We measure a median opacity at 225 GHz of 0.11, which corresponds to a transmission of 89.6%. Zenith sky temperatures were determined to be 9.0 ± 0.2 K and 10.0 ± 0.6 K in Q-band (38-46 GHz) and W-band (81-98 GHz), respectively. We also demonstrate a correlation between measurements of precipitable water vapor from a weatherstation and a 225 GHz radiometer.

  12. Regulation of animal care and research? Viewpoint of an agricultural experiment station scientist.

    PubMed

    Ullrey, D E

    1980-08-01

    The issue of regulating animal care in modern animal production systems and in the research laboratory is discussed from the perspective of an animal scientist with a farm background and 25 years of agricultural experiment station experience. Evidence is presented for a long-term association of humans with (and dependence on) animals, which extends into prehistory far beyond the beginnings of animal domestication some 11,000 years ago. The problem of feeding humans without animals was discussed, and it is concluded that the world population of humans cannot be adequately nourished by plant foods alone. Man's activities affect all of his companion creatures in many ways, and he is obviously a participant in a global ecosystem, not just an observer. It is vital to his welfare and to that of his fellow creatures that he manage this ecosystem fellow creatures that he manage this ecosystem correctly, including members of both the animal and vegetable kingdoms. There is a serious difference in perspective between many "animal philosophers" and professional animal scientists. The latter believe that they have an obligation to practice and to teach respect for the lives and welfare of the animals with which they work. Human qualities of kindness, mercy and compassion should govern actions toward animals. However, anthropomorphism is a philosophy to which the author and many other animal scientists do not subscribe. PMID:7440444

  13. Design studies and commissioning plans for plasma acceleration research station experimental program

    SciTech Connect

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-15

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  14. Design studies and commissioning plans for plasma acceleration research station experimental program

    NASA Astrophysics Data System (ADS)

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-01

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  15. Offshore wind profile measurements using a Doppler LIDAR at the Hazaki Oceanographical Research Station

    NASA Astrophysics Data System (ADS)

    Shimada, Susumu; Ohsawa, Teruo; Ohgishi, Tatsuya; Kikushima, Yoshihiro; Kogaki, Testuya; Kawaguchi, Koji; Nakamura, Satoshi

    2014-08-01

    Vertical wind speed profiles near the coast were observed using a Doppler Light Detection and Ranging (LIDAR) system at the Hazaki Oceanographical Research Station (HORS) from September 17 to 26, 2013. The accuracies of the theoretical wind profile models of the log profile model and the Monin-Obukov similarity (MOS) theory were examined by comparing them to those of the observed wind profiles. As a result, MOS, which takes into account the stability effects during wind profile calculations, successfully estimated the wind profile more accurately than the log profile model when the wind was from a sea sector (from sea to land). Conversely, both models did not estimate the profile adequately when the wind was from a land sector (from land to sea). Moreover, the wind profile for the land sector was found to include an obvious diurnal cycle, which is relevant to the stability change over land. Consequently, it is found that the atmospheric stability plays an important roll to determine the offshore wind speed profiles near the coast for not only the sea sector but also the land sector.

  16. Socialization into science: An ethnographic study in a field research station

    NASA Astrophysics Data System (ADS)

    Calovini, Theresa Ann

    While the place of language in building the tasks and activities of the science classroom has received attention in the education literature, how students do the work of affiliation building through language remains poorly understood. This dissertation is based on ethnographic research in an apprenticeship learning situation at a biological field research station. I carried out this research with five undergraduates apprentices. I focus on how the language used in this apprenticeship situation positioned the apprentices with science. Issues of access and diversity in science education have motivated this research but this point can be missed because the five apprentices were all fairly successful in university science. They had all secured their job for the summer as paid research assistants. Yet, even with these successful students, science had a complicated place in their lives. I draw on Gee's (1999) notion of Discourse to understand this complexity. I focus on four Discourses--- Science, Knowing about the Animals, Senior Projects and RAships, and Relationships ---which were important in the apprentices' learning about and socialization with science. I try to understand the inter-workings of these four Discourses through a detailed analysis of three conversations involving one of the participants, Michelle. Michelle's use of narrative emerged as a linguistic resource which she used to explore dilemmas she experienced in the tensions between these four Discourses. Michelle was in many ways an ideal apprentice. She did her job well and she sought and received expert advice on her Senior project. Nonetheless, Michelle faced obstacles in her pursuit of a career in science and these obstacles related to language use and her use of narrative. I show how her use of narrative either facilitated or impeded her learning, depending on the context of the interaction. My analysis of Discourse points to important issues in language use by both students and teachers, with

  17. Tritium in unsaturated zone gases and air at the Amargosa Desert Research Site, and in spring and river water, near Beatty, Nevada, May 1997

    USGS Publications Warehouse

    Striegl, R.G.; Healy, R.W.; Michel, R.L.; Prudic, D.E.

    1998-01-01

    Elevated tritium concentrations in the unsaturated zone at the Amargosa Desert Research Site (ADRS), immediately south and west of the low-level radioactive-waste burial site south of Beatty, Nevada, have stimulated research of processes that control the transport of tritium in arid unsaturated zones. In May 1997, 58 samples were collected from 1.5 m (meters) depth within a 250 m by 250 m grid at the ADRS. Measured concentrations ranged from 16 ? 9 to 36,900 ? 300 tritium units (TU), decreasing from northeast to southwest, possibly along an ancestral Amargosa River channel. The 10 air ports at test hole UZB-2 also were sampled, including ports at 57.6, 106.4, and 108.8 m depths that had not been sampled since 1994. Of the remaining seven ports, five were sampled in 1994, 1995, and 1996, and two were sampled in 1994 and 1996. Tritium concentrations at the four ports deeper than 50 m ranged from 791 ? 15 to 1765 ? 29 TU, having increased since they were last sampled. Tritium concentrations at the six ports shallower than 50 m ranged from 367 ? 11 to 1283 ? 20 TU, and appear to have stabilized since 1996. Tritium concentration in water vapor collected from air within the creosote bush canopy was 75 ? 9 TU near test hole UZB-2 and 9 ? 6 TU near the uncontaminated Fischer test hole, 3.2 km to the south. Elevated tritium concentration in air near test hole UZB-2 was attributed to plant transpiration removing water from the unsaturated zone. Nearby surface water tritium concentrations were 6.3 ? 0.4 TU at Specie Spring, 0.0 ? 0.3 TU at Lower Indian Springs and at Upper Indian Springs, and 0.8 ? 0.6 TU in Amargosa River water.

  18. Life science research objectives and representative experiments for the space station

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  19. Teachers in the desert: Creating ecological research opportunities for teachers and students on the US-Mexico border

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considerable research provides evidence for the value of teaching science using enhanced context strategies. These strategies include making learning relevant to students by using real-world examples and problems as well as taking students out of the classroom to learn about the topic. Unfortunately...

  20. What is Desert RATS?

    NASA Video Gallery

    The mission manager and test coordinators for the 2011 mission explain why Desert RATS was started 14 years ago, questions being studied in this year's activities, technologies being tested and the...

  1. WIND CHARACTERISTICS OF MESQUITE STREETS IN THE NORTHERN CHIHUAHUAN DESERT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Past research has shown that the most important areas for active sand movement in the northern part of the Chihuahuan Desert are mesquite-dominated desert ecosystems possessing sandy soil texture. The most active sand movement in the mesquite-dominated ecosystems has been shown to take place on elon...

  2. Biomolecular Analysis Capability for Cellular and Omics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy

  3. International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2012-01-01

    Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the

  4. Soil carbon balance on drained and afforested transitional bog in forest research station Vesetnieki in Latvia

    NASA Astrophysics Data System (ADS)

    Lupiķis, Ainārs; Lazdiņš, Andis

    2015-04-01

    Around 0.8 mill. ha forests in Latvia are located on organic soils and 0.5 mill. ha of these forests are drained. Drainage of organic soils alters carbon stock and may has impact on the climate change. The aim of this study is to analyse the impact of drainage on a soil carbon stock in transitional bog (average growing stock before drainage 50 m3*ha-1) located in central part of Latvia in research station "Vesetnieki". Drainage was done in 1960. Average peat thickness is around 4.5 m; dominant tree species are pine (Pinus sylvestris L.) and spruce (Picea abies Karst.) with average growing stock 226 m3*ha-1 and 213 m3*ha-1. Volumetric peat samples were taken from soil surface down to 80 cm depth in 30 sample plots in drained sites and non-drained areas (transitional bog), which have been left as a control. Bulk density, carbon content in peat was determined to evaluate carbon stock changes in soil. Ground surface levelling in drained sites was done before drainage and repeatedly in 1966, 1970, 1975, 1977, 1982 and 2014 to calculate peat subsidence. The rate of peat subsidence after drainage increased rapidly, and 14 years after drainage 15.8 cm decrease of the surface level was found. The rate of the peat subsidence decreased later, and the ground level reduced by 9.9 cm in the following 40 years, reaching 25.7±3.5 cm from initial ground surface level in the 2014. The rapid decrease of the surface level after drainage can be explained by physical alters and by decomposition of the peat surface layers, however, it is not possible to assess now, which of these processes dominated. However, the significant (α=0.05) increase of the peat bulk density and carbon content in upper layers (0-80 cm) in drained sites compared to non-drained leads to conclusion that the compaction was the dominating process. Average carbon stock (0-80 cm deep soil layer) in non-drained areas is 339±29 tons*ha-1 and 513±27 tons*ha-1 in drained sites. We compared carbon stock in upper 80 cm

  5. Using Distributed Operations to Enable Science Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna

    2011-01-01

    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload

  6. A BIBLIOGRAPHY OF IMPORTANT PLANT SPECIES IN THE CHIHUAHUAN DESERT OF NORTH AMERICA (1904-2002)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desert covers an area of 453,000 km2 in the United States and Mexico. Managers of military lands in the desert require a detailed understanding of installation natural resources. A comprehensive bibliography of current research and information on desert plants is needed. The objective of this wor...

  7. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-03-01

    The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the

  8. The value and potential of animal research in enabling astronaut health - Transition from Spacelab to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Garshnek, V.; Ballard, R. W.

    1993-01-01

    Maintaining astronaut health is a critical aspect of human space exploration. Three decades of space research have demonstrated that microgravity produces significant physiological changes in astronauts. For long-duration missions, the possibility exists that these changes may prevent the achievement of full health and safety and may therefore require countermeasures. Meeting this goal depends on a strong biomedical foundation. Although much research is conducted with humans, some of the most critical work involves a necessary in-depth look into complex problem areas requiring invasive procedures using animals. Much of this research cannot be performed in humans within the bounds of accepted medical practice. A large portion of knowledge and experience in flying animals and applying the data to astronaut health has been obtained through the Spacelab experience and can be applied to a space station situation (expanded to accommodate necessary standardization and flexibility). The objectives of this paper are to (a) discuss the value and potential of animal research in answering critical questions to enable astronaut health for advanced missions, (b) discuss how previous Spacelab operational experience in animal studies can be applied to facilitate transition into a space station era, and (c) review capabilities of biological facilities projected for Space Station Freedom.

  9. REU Programs at Field Research Stations Offer Unique Advantages that may Enhance Retention of Students in STEM Fields.

    NASA Astrophysics Data System (ADS)

    Kim, D. Y.; Marinelli, R. L.; Heidelberg, K., IV

    2014-12-01

    Studies have shown that undergraduate participation in research opportunities strengthens the retention of students in STEM fields. Increasing students' confidence levels in their scientific abilities, aiding in the development of their scientific identity, and strengthening their sense of belonging to a scientific community have been cited as important contributing factors. Research field stations offer unique advantages that amplify these benefits by challenging students to plan and work in the field, enhancing networking opportunities with multi-disciplinary professionals from numerous institutions and hierarchical levels, and creating a stronger sense of belonging and comradery within a science community. The USC Wrigley Institute for Environmental Studies' (WIES) Research Experiences for Undergraduates (REU) program is an 8-week program that begins on the main USC campus in Los Angeles and moves to a marine field station on Catalina Island during weeks 2-7, before returning to the mainland to complete the last week of the program. This unique model provides REU students with an opportunity to become integrated into faculty mentors' labs on the main campus, while exposing them to life as a researcher at a field station, both of which contribute significantly to the students' development as a scientist. Here, we present the WIES REU model and include a discussion of benefits and challenges to this unique infrastructure.

  10. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results. Appendix D: Life sciences research facility requirements

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.

  11. A Natural Experiment Opportunity in Two Low-Income Urban Food Desert Communities: Research Design, Community Engagement Methods, and Baseline Results

    ERIC Educational Resources Information Center

    Dubowitz, Tamara; Ncube, Collette; Leuschner, Kristin; Tharp-Gilliam, Shannah

    2015-01-01

    A growing body of evidence has highlighted an association between a lack of access to nutritious, affordable food (e.g., through full-service grocery stores [FSGs]), poor diet, and increased risk for obesity. In response, there has been growing interest among policy makers in encouraging the siting of supermarkets in "food deserts," that…

  12. Rapid Reconnaissance Mapping of Volatile Organic Compounds by Photoionization Detection at the USGS Amargosa Desert Research Site

    NASA Astrophysics Data System (ADS)

    Thordsen, J. J.; Stonestrom, D. A.; Conaway, C. H.; Luo, W.; Baker, R. J.; Andraski, B. J.

    2015-12-01

    Two types of handheld photoionization detectors were evaluated in April 2015 for reconnaissance mapping of volatile organic compounds (VOCs) in the unsaturated zone surrounding legacy disposal trenches for commercial low-level radioactive waste near Beatty, Nevada (USA). This method is rapid and cost effective when compared to the more conventional procedure used ate the site, where VOCs are collected on sorbent cartridges in the field followed by thermal desorption, gas chromatographic separation, and quantitation by mass spectroscopy in the laboratory (TD-GC-MS analysis). Using the conventional method, more than sixty distinct compounds have been identified in the 110-m deep unsaturated zone vapor phase, and the changing nature of the VOC mix over a 15-yr timeframe has been recorded. Analyses to date have identified chlorofluorocarbons (CFCs), chlorinated ethenes, chlorinated ethanes, gasoline-range hydrocarbons, chloroform, and carbon tetrachloride as the main classes of VOCs present. The VOC plumes emanating from the various subgroups of trenches are characterized by different relative abundances of the compound classes, and total VOC concentrations that cover several orders of magnitude. One of the photoionization detectors, designed for industrial compliance testing, lacked sufficient dynamic range and sensitivity to be useful. The other, a wide range (1 ppb-20,000 ppm) research-grade instrument with a 10.6 eV photoionization detector (PID) lamp, produced promising results, detecting roughly half of the non-CFC VOCs present. The rapid and inexpensive photoionization method is envisioned as a screening tool to supplement, expedite, and direct the collection of additional samples for TD-GC-MS analyses at this and other VOC-contaminated sites.

  13. NASA Desert RATS 2011 Education Pilot Project and Classroom Activities

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; McGlone, M.; Allen, J.; Tobola, K.; Graff, P.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of hardware and operations carried out annually in the high desert of Arizona, as an analog to future exploration activities beyond low Earth orbit [1]. For the past several years, these tests have occurred in the San Francisco Volcanic Field, north of Flagstaff. For the 2011 Desert RATS season, the Exploration Systems Mission Directorate (ESMD) at NASA headquarters provided support to develop an education pilot project that would include student activities to parallel the Desert RATS mission planning and exploration activities in the classroom, and educator training sessions. The development of the pilot project was a joint effort between the NASA Johnson Space Center (JSC) Astromaterials Research and Exploration Science (ARES) Directorate and the Aerospace Education Services Project (AESP), managed at Penn State University.

  14. The Research and Implementation of Three Stages Traffic Stations Intelligent Monitor Systems Based on GIS

    NASA Astrophysics Data System (ADS)

    Hong-ying, Chen; Ting, Xiao; WangTao; Jin-yi, He

    This system used three stage intelligent traffic station subsystems to forecast the path on which vehicle will go. First stage subsystem can forecast road node which adjacented to traffic station. Second stage subsystem was designed for bigger area, for example city, the third stage subsystem was for the larger area between city. Second stage subsystem system used A* based on orientation to calculate shortest path, third stage subsystem calculated critical node of a large area. The system can compose dispersed monitor information, forecast vehicle path, dynamic analysis, hierarchical monitor .It played an important role in ITS.

  15. Using Arduinos and 3D-printers to Build Research-grade Weather Stations and Environmental Sensors

    NASA Astrophysics Data System (ADS)

    Ham, J. M.

    2013-12-01

    Many plant, soil, and surface-boundary-layer processes in the geosphere are governed by the microclimate at the land-air interface. Environmental monitoring is needed at smaller scales and higher frequencies than provided by existing weather monitoring networks. The objective of this project was to design, prototype, and test a research-grade weather station that is based on open-source hardware/software and off-the-shelf components. The idea is that anyone could make these systems with only elementary skills in fabrication and electronics. The first prototypes included measurements of air temperature, humidity, pressure, global irradiance, wind speed, and wind direction. The best approach for measuring precipitation is still being investigated. The data acquisition system was deigned around the Arduino microcontroller and included an LCD-based user interface, SD card data storage, and solar power. Sensors were sampled at 5 s intervals and means, standard deviations, and maximum/minimums were stored at user-defined intervals (5, 30, or 60 min). Several of the sensor components were printed in plastic using a hobby-grade 3D printer (e.g., RepRap Project). Both passive and aspirated radiation shields for measuring air temperature were printed in white Acrylonitrile Butadiene Styrene (ABS). A housing for measuring solar irradiance using a photodiode-based pyranometer was printed in opaque ABS. The prototype weather station was co-deployed with commercial research-grade instruments at an agriculture research unit near Fort Collins, Colorado, USA. Excellent agreement was found between Arduino-based system and commercial weather instruments. The technology was also used to support air quality research and automated air sampling. The next step is to incorporate remote access and station-to-station networking using Wi-Fi, cellular phone, and radio communications (e.g., Xbee).

  16. Dynamics of landfast sea ice near Jangbogo Antarctic Research Station observed by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Han, H.

    2015-12-01

    Landfast sea ice is a type of sea ice adjacent to the coast and immobile for a certain period of time. It is important to analyze the temporal and spatial variation of landfast ice because it has significant influences on marine ecosystem and the safe operation of icebreaker vessels. However, it has been a difficult task for both remote sensing and in situ observation to discriminate landfast ice from other types of sea ice, such as pack ice, and also to understand the dynamics and internal strss-strain of fast ice. In this study, we identify landfast ice and its annual variation in Terra Nova Bay (74° 37' 4"S, 164° 13' 7"E), East Antarctica, where Jangbogo Antarctic Research Station has recently been constructed in 2014, by using Interferometric Synthetic Aperture Radar (InSAR) technology. We generated 38 interferograms having temporal baselines of 1-9 days out of 62 COSMO-SkyMed SAR images over Terra Nova Bay obtained from December 2010 to January 2012. Landfast ice began to melt in November 2011 when air temperature raised above freezing point but lasted more than two month to the end of the study period in January 2012. No meaningful relationship was found between sea ice extent and wind and current. Glacial strain (~67cm/day) is similar to tidal strain (~40 cm) so that they appear similar in one-day InSAR. As glacial stress is cumulative while tidal stress is oscillatory, InSAR images with weekly temporal baseline (7~9 days) revealed that a consistent motion of Campbell Glacier Tongue (CGT) is pushing the sea ice continuously to make interferometric fringes parallel to the glacier-sea ice contacts. Glacial interferometric fringe is parallel to the glacier-sea ice contact lines while tidal strain should be parallel to the coastlines defined by sea shore and glacier tongue. DDInSAR operation removed the consistent glacial strain leaving tidal strain alone so that the response of fast ice to tide can be used to deduce physical properties of sea ice in various

  17. Selected micrometeorological and soil-moisture data at Amargosa Desert Research Site, an arid site near Beatty, Nye County, Nevada, 1998-2000

    USGS Publications Warehouse

    Johnson, Michael J.; Mayers, Charles J.; Andraski, Brian J.

    2002-01-01

    Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radioactive waste and hazardous chemical waste facility near Beatty, Nev., 1998-2000. Data were collected in support of ongoing research studies to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include precipitation, air temperature, solar radiation, net radiation, relative humidity, ambient vapor pressure, wind speed and direction, barometric pressure, soil temperature, and soil-heat flux. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily mean, maximum, and minimum values, and hourly mean values. For precipitation, data output consisted of daily, hourly, and 5-minute totals. Soil-moisture data included periodic measurements of soil-water content at nine neutron-probe access tubes with measurable depths ranging from 5.25 to 29.75 meters. The computer data files included in this report contain the complete micrometeorological and soil-moisture data sets. The computer data consists of seven files with about 14 megabytes of information. The seven files are in tabular format: (1) one file lists daily mean, maximum, and minimum micrometeorological data and daily total precipitation; (2) three files list hourly mean micrometeorological data and hourly precipitation for each year (1998-2000); (3) one file lists 5-minute precipitation data; (4) one file lists mean soil-water content by date and depth at four experimental sites; and (5) one file lists soil-water content by date and depth for each neutron-probe access tube. This report highlights selected data contained in the computer data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are

  18. Selected Micrometeorological, Soil-Moisture, and Evapotranspiration Data at Amargosa Desert Research Site in Nye County near Beatty, Nevada, 2001-05

    USGS Publications Warehouse

    Johnson, Michael J.; Mayers, C. Justin; Garcia, C. Amanda; Andraski, B.J.

    2007-01-01

    Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada, 2001-05. Evapotranspiration data were collected from February 2002 through the end of December 2005. Data were col-lected in support of ongoing research to improve the understanding of hydrologic and con-taminant-transport processes in arid environments. Micrometeorological data include solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, precipita-tion, near-surface soil temperature, soil-heat flux and soil-water content. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily and hourly mean values. Daily maximum and minimum values are based on hourly mean values. Precipitation data output includes daily and hourly totals. Selected soil-moisture profiles at depth include periodic measure-ments of soil volumetric water-content measurements at nine neutron-probe access tubes to depths ranging from 5.25 to 29.25 meters. Evapotranspiration data include measurement of daily evapotranspiration and 15-minute fluxes of the four principal energy budget components of latent-heat flux, sensible-heat flux, soil-heat flux, and net radiation. Other data collected and used in equations to determine evapotranspiration include temperature and water content of soil, temperature and vapor pressure of air, and covariance values. Evapotranspiration and flux estimates during 15-minute intervals were calculated at a 0.1-second execution interval using the eddy covariance method. Data files included in this report contain the complete micrometeorological, soil-moisture, and evapotranspiration field data sets. These data files are presented in tabular Excel spreadsheet format. This report highlights selected data con-tained in the

  19. Influence of seasonal environmental variables on the distribution of presumptive fecal Coliforms around an Antarctic research station.

    PubMed

    Hughes, Kevin A

    2003-08-01

    Factors affecting fecal microorganism survival and distribution in the Antarctic marine environment include solar radiation, water salinity, temperature, sea ice conditions, and fecal input by humans and local wildlife populations. This study assessed the influence of these factors on the distribution of presumptive fecal coliforms around Rothera Point, Adelaide Island, Antarctic Peninsula during the austral summer and winter of February 1999 to September 1999. Each factor had a different degree of influence depending on the time of year. In summer (February), although the station population was high, presumptive fecal coliform concentrations were low, probably due to the biologically damaging effects of solar radiation. However, summer algal blooms reduced penetration of solar radiation into the water column. By early winter (April), fecal coliform concentrations were high, due to increased fecal input by migrant wildlife, while solar radiation doses were low. By late winter (September), fecal coliform concentrations were high near the station sewage outfall, as sea ice formation limited solar radiation penetration into the sea and prevented wind-driven water circulation near the outfall. During this study, environmental factors masked the effect of station population numbers on sewage plume size. If sewage production increases throughout the Antarctic, environmental factors may become less significant and effective sewage waste management will become increasingly important. These findings highlight the need for year-round monitoring of fecal coliform distribution in Antarctic waters near research stations to produce realistic evaluations of sewage pollution persistence and dispersal. PMID:12902283

  20. X-36 in Flight over Mojave Desert

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The unusual lines of the X-36 technology demonstrator contrast sharply with the desert floor as the remotely piloted aircraft scoots across the California desert at low altitude during a research flight on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with

  1. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China

    NASA Astrophysics Data System (ADS)

    Xin, Jinyuan; Gong, Chongshui; Wang, Shigong; Wang, Yuesi

    2016-05-01

    The optical properties of dust aerosols were measured using narrow-band data from a portable sun photometer at four desert and semi-desert stations in northwestern China from 2004 to 2007. Ground-based and satellite observations indicated absorbing dust aerosol loading over the region surrounded by eight large-scale deserts. Radiation forcing was identified by using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The ranges of annual mean aerosol optical depth (AOD), Angström exponents, and single-scattering albedo (SSA) were from 0.25 to 0.35, from - 0.73 to 1.18, and from 0.77 to 0.86, respectively. The ranges of annual mean aerosol direct radiative forcing values at the top of the atmosphere (TOA), mid-atmosphere, and on the surface were from 3.9 to 12.0, from 50.0 to 53.1, and from - 39.1 to - 48.1 W/m2, respectively. The aerosols' optical properties and radiative characteristics showed strong seasonal variations in both the desert and semi-desert regions. Strong winds and relatively low humidity will lead dust aerosols in the atmosphere to an increase, which played greatly affected these optical properties during spring and winter in northwestern China. Based on long-term observations and retrieved data, aerosol direct radiative forcing was confirmed to heat the atmosphere (50-53 W/m2) and cool the surface (- 39 to - 48 W/m2) above the analyzed desert. Radiative forcing in the atmosphere in spring and winter was 18 to 21 W/m2 higher than other two seasons. Based on the dust sources around the sites, the greater the AOD, the more negative the forcing. The annual averaged heating rates for aerosols close to the ground (1 km) were approximately 0.80-0.85 K/day.

  2. Materials Science Experiment Module Accommodation within the Materials Science Research Rack (MSRR-1) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.

    2000-01-01

    The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.

  3. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases

  4. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  5. Development of an experimental space station model for structural dynamics research

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Edighoffer, Harold E.; Wallace, John W.

    1990-01-01

    Design, analysis, and testing of an experimental space station scale model is presented. The model contains hardware components with dynamic characteristics similar to those expected for other large space structures. Validation of analysis models is achieved through correlation with dynamic tests of hardware components and representative assembly configurations. A component mode synthesis analysis method is examined through comparisons with results from fully mated system models. Selection of input requirements for accurate component synthesis analysis predictions are assessed.

  6. A scientific role for Space Station Freedom: Research at the cellular level

    NASA Technical Reports Server (NTRS)

    Johnson, Terry C.; Brady, John N.

    1993-01-01

    The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.

  7. International Space Station Bus Regulation With NASA Glenn Research Center Flywheel Energy Storage System Development Unit

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E.; Kenny, Barbara H.; Dever, Timothy P.; Santiago, Walter; Jansen, Ralph H.

    2001-01-01

    An experimental flywheel energy storage system is described. This system is being used to develop a flywheel based replacement for the batteries on the International Space Station (ISS). Motor control algorithms which allow the flywheel to interface with a simplified model of the ISS power bus, and function similarly to the existing ISS battery system, are described. Results of controller experimental verification on a 300 W-hr flywheel are presented.

  8. Report of the Committee on the Space Station of the National Research Council

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Space Station Program will be the most ambitious space project the nation has ever undertaken; will require tens of billions of dollars; and will entwine for many years the space program with those of international partners. It must have enduring stable support across administrations, and the support must be generous. The current Space Shuttle is barely adequate for the limited purpose of deploying the Space Station, and it is inadequate to meet broader national needs in space. The Committee recommends in the strongest terms that the Shuttle be upgraded with new improved solid rocket motors, that it be supplemented with expendable launch vehicles, and that a heavy lift launch vehicle be developed for use in the latter half of the 1990s. The Committee strongly recommends that NASA prepare a new Space Station Program cost estimate in conjunction with the Program Requirements Review scheduled for early next year by NASA. The exercise should address the full range of uncertainties in the current Program, some of which are discussed in the report.

  9. Research on evacuation in the subway station in China based on the Combined Social Force Model

    NASA Astrophysics Data System (ADS)

    Wan, Jiahui; Sui, Jie; Yu, Hua

    2014-01-01

    With the increasing number of subway stations, more and more attention has been paid to their emergency evacuation, as it plays an important part in urban emergency management. The present paper puts forward a method of crowd evacuation simulation for bioterrorism in subway station environment using the basic theory of the Social Force Model combined with the Gaussian Puff Model. A Combined Social Force Model is developed which is suitable for a real situation where there is a sudden toxic gas event. The model can also be used to demonstrate some individual behaviors in evacuation, such as competitive, grouping and herding. At last a series of experiments are conducted and the results are as follows. (1) When there is a toxic gas terroristic attack in subway stations, the influence on passengers varies according to the position that the gas source lies in and the numbers of gas sources. (2) More casualties will occur if managers do not detect the toxic gas danger and inform passengers about it. (3) The larger the wind speed is, the smaller the number of injured passengers will be. With the experiments, the number of people affected and other parameters like gas concentration can be estimated, which could support rapid and efficient emergency decisions.

  10. Glocalized New Age Spirituality: A Mental Map of the New Central Bus Station in Tel Aviv, Deciphered through Its Visual Codes and Based on Ethno-Visual Research

    ERIC Educational Resources Information Center

    Ben-Peshat, Malka; Sitton, Shoshana

    2011-01-01

    We present here the findings of an ethno-visual research study involving the creation of a mental map of images, artifacts and practices in Tel Aviv's New Central Bus Station. This huge and complex building, part bus station, part shopping mall, has become a stage for multicultural encounters and interactions among diverse communities of users.…

  11. Sounds of the Desert.

    ERIC Educational Resources Information Center

    McCullough-Brabson, Ellen; Achilles, Elayne; Ashcraft, Joan

    1997-01-01

    Discusses the program called "Sounds of the Desert" that celebrates the Southwest indigenous culture and focuses on understanding music in relation to history and culture. Emphasizes the study of Mariachi music that is being taught alongside band, orchestra, and chorus from the third grade to senior high in many Tucson (Arizona) schools. (CMK)

  12. How desert varnish forms?

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Kolb, Vera M.; Lynne, Bridget Y.; Sephton, Mark A.; Mcloughlin, Nicola; Engel, Michael H.; Olendzenski, Lorraine; Brasier, Martin; Staley, James T., Jr.

    2005-09-01

    Desert varnish is a black, manganese-rich rock coating that is widespread on Earth. The mechanism underlying its formation, however, has remained unresolved. We present here new data and an associated model for how desert varnish forms, which substantively challenges previously accepted models. We tested both inorganic processes (e.g. clays and oxides cementing coatings) and microbial methods of formation. Techniques used in this preliminary study include SEM-EDAX with backscatter, HRTEM of focused ion beam prepared (FIB) wafers and several other methods including XRPD, Raman spectroscopy, XPS and Tof-SIMS. The only hypothesis capable of explaining a high water content, the presence of organic compounds, an amorphous silica phase (opal-A) and lesser quantities of clays than previously reported, is a mechanism involving the mobilization and redistribution of silica. The discovery of silica in desert varnish suggests labile organics are preserved by interaction with condensing silicic acid. Organisms are not needed for desert varnish formation but Bacteria, Archaea, Eukarya, and other organic compounds are passively incorporated and preserved as organominerals. The rock coatings thus provide useful records of past environments on Earth and possibly other planets. Additionally this model also helps to explain the origin of key varnish and rock glaze features, including their hardness, the nature of the "glue" that binds heterogeneous components together, its layered botryoidal morphology, and its slow rate of formation.

  13. Plants of the Desert.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information and student activities on plants of the desert, including various adaptations for life with limited water supplies. Each activity includes objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. A ready-to-copy student worksheet is included. (DH)

  14. Mojave Desert Diary

    ERIC Educational Resources Information Center

    Breed, Allen F.

    1974-01-01

    This is an account of a trip to the Mojave Desert sponsored by the California Youth Authority's Community Parole Center for wards who are selected on the basis of their potential for growth and their ability to make a connection between what they do in the wilderness and what they do on the streets. (PD)

  15. [Specific diversity and distribution characteristics of annual synusia in Alashan desert].

    PubMed

    Liang, Cunzhu; Liu, Zhongling; Zhu, Zongyuan; Wang, Wei

    2003-06-01

    Alashan desert, sited in the east of Asia desert, is a special vegetation geography area in Asia desert region. Its geographic range is from west Ordos (108 degrees E) to west Ejina (98 degrees E), and from Gobi-Altai Mountain in Mongolia (43 degrees N) to Hexi Corridor (37 degrees-39 degrees N). The annual plants grow well, and are constant synusiae that act on important function in keeping the stabilization of desert ecosystem in Alashan desert. Moreover, the annual synusiae may take on heavy responsibilities in local animal husbandry production. The specific diversity and distribution characteristics of annual synusiae are discussed in the paper. Based on our observation and research in many years, 61 species of annual plants, which could be divided into 4 types of annual short grass, annual Salsola, annual Artemisia and annual weeds, are discovered in Alanshan desert. They belong to 12 families and 35 genera, and could be divided into 12 areal types, and 10 species of them were endemic to Alashan. The annual plants grow widely on clayey deserts, sandy deserts, gritty deserts, gravelly deserts rocky deserts and oasis. In general, one or several plant species form summer rain synusiae, and form a homogeneous or patchy distribution pattern in desert communities. Sometimes, some plant species distribute along runoff line, and form a dendritic or line pattern. The ecological adaptation and function were also discussed in the paper. PMID:12973992

  16. The effect of drought on four plant communities in the northern Mojave Desert

    SciTech Connect

    Schultz, B.W.; Ostler, W.K.

    1993-12-31

    Desert plant communities contain many perennial plant species that are well adapted to arid environments; therefore, one would intuitively believe that perennial desert species readily survive drought conditions. Abundant research on plant-soil-water relationships in North American deserts has shown that many species can maintain water uptake and growth when the soil-water potential is low. Little research, however, has focused on how prolonged drought conditions affect plant species in vegetation associations in desert ecosystems. A prolonged and widespread drought occurred in much of the western United States, including the Northern Mojave Desert, from 1987 through 1991. During this drought period vegetation characterization studies, initiated in 1990, by the US Department of Energy (DOE) at Yucca Mountain, Nevada, allowed EG and G Energy Measurements to collect data that could be used to infer how both desert vegetation associations and desert plant species reacted to a prolonged drought. This paper presents the preliminary results.

  17. Configuration of water resources for a typical river basin in an arid region of China based on the ecological water requirements (EWRs) of desert riparian vegetation

    NASA Astrophysics Data System (ADS)

    Ling, Hongbo; Guo, Bin; Xu, Hailiang; Fu, Jinyi

    2014-11-01

    Desert riparian vegetation is a natural cover promoting the stability and development of inland river ecosystems in arid regions. Calculating the ecological water requirements (EWRs) of desert riparian vegetation is an important step in achieving reasonable water utilization. Therefore, this study examined the Tarim River, located in an extremely arid region of China, and collected relevant data on hydrology, weather and vegetation using remote sensing. Subsequently, we analyzed the spatial distribution of the desert riparian vegetation in four sections of the Tarim River and calculated the EWR of the desert riparian vegetation using the phreatic evaporation model; additionally, we determined the required runoffs at five hydrologic stations based on the water balance principle. Ultimately, the necessary protection ranges and goals for desert riparian vegetation were established according to the water resource variations in the Tarim River. Our research showed that the total area of desert riparian vegetation along the Tarim River is 16,285.3 km2; this distribution area gradually decreased as the distance from the river increased, and areas varied in the different river sections. The EWRs of desert riparian vegetation from Sections 1 to 5 are 5.698 × 108, 7.585 × 108, 4.900 × 108, 4.101 × 108 m3 and 1.078 × 108 m3, respectively. Therefore, the total EWR of the study region is 23.362 × 108 m3. In terms of the transpiration law of the "unimodal type", the peak value of EWR of natural vegetation occurs in July, and the decreasing trend appears in the other months. Based on the water balance principle, the required runoffs in Alar, Xinquman, Yingbaza, Wusiman and Qiala were determined to be 47.105 × 108, 35.174 × 108, 22.734 × 108, 15.775 × 108 and 7.707 × 108 m3, respectively. According to the water resource frequency and the EWR of the desert riparian vegetation along the Tarim River, we divided the region into three protection ranges: key protection (8

  18. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel

  19. A study of Desert Dermatoses in the Thar Desert Region

    PubMed Central

    Chatterjee, Manas; Vasudevan, Biju

    2015-01-01

    Introduction: Desert dermatology describes the cutaneous changes and the diseases affecting those living in the desert. Diurnal variation in temperature is high and is characteristic of the deserts. The lack of water affects daily activities and impacts dermatological conditions. Adaptation to the desert is therefore important to survival. This original article focuses on dermatoses occurring in a population in the Thar desert of India, predominantly located in Rajasthan. Materials and Methods: This is a descriptive study involving various dermatoses seen in patients residing in the Thar desert region over a duration of 3 years. Results: Infections were the most common condition seen among this population and among them fungal infections were the most common. The high incidence of these infections would be accounted for by the poor hygienic conditions due to lack of bathing facilities due to scarcity of water and the consequent sweat retention and overgrowth of cutaneous infective organisms. Pigmentary disorders, photodermatoses, leishmaniasis and skin tumors were found to be more prevalent in this region. Desert sweat dermatitis was another specific condition found to have an increased incidence. Conclusion: The environment of the desert provides for a wide variety of dermatoses that can result in these regions with few of these dermatoses found in much higher incidence than in other regions. The concept of desert dermatology needs to be understood in more details to provide better care to those suffering from desert dermatoses and this article is a step forward in this regard. PMID:25657392

  20. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  1. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C.; Hua, F.; Anilkumar, A. V.

    2006-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting real-time and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  2. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Luz, Paul; Smith, Guy; Spivey, Reggie; Jeter, Linda; Gillies, Donald; Hua, Fay; Anikumar, A. V.

    2007-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting "real-time" and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  3. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-02-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  4. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  5. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  6. Spatial and temporal variations of blowing dust events in the Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; Shen, Shuanghe; Yang, Fan; He, Qing; Ali, Mamtimin; Huo, Wen; Liu, Xinchun

    2016-08-01

    The Taklimakan Desert is the source of most blowing dust events in China. However, previous studies of sandstorms in this region have not included data from the inner desert because of the difficulty in making observations in this area. In this study, the spatial and temporal variations of blowing dust events, including sandstorms and blowing sand, and its relations with climatic parameters in the Taklimakan Desert were analyzed using data from ten desert-edge meteorological stations during 1961 to 2010 and two inner-desert meteorological stations during 1988 to 1990, 1996 to 2010, and 1992 to 2010. The results identified two regions (Pishan-Hotan-Minfeng and Xiaotang-Tazhong) where blowing dust events occur on average more than 80 days per year. The regions with the highest occurrence of sandstorms, blowing sand, and blowing dust events were different, with sandstorms centered in the north of the desert (Xiaotang, 46.9 days), whereas the central location for blowing sand (Pishan, 86.4 days) and blowing dust events (Minfeng, 113.5 days) activity was located at the southwestern and southern edges of the desert, respectively. The occurrence of sandstorms generally decreased from 1961 to 2010, while the occurrence of blowing sand increased from 1961 to 1979 and then generally decreased. The temporal variation of blowing dust events was mainly affected by the occurrence of strong wind and daily temperature, with average correlation coefficients of 0.46 and -0.41 for these variables across the whole desert.

  7. Next-Generation Geodetic Station for Natural Hazards Research and Applications

    NASA Astrophysics Data System (ADS)

    Bock, Y.; Melgar-Moctezuma, D.; Crowell, B. W.; Webb, F.; Moore, A. W.; Kedar, S.; Owen, S. E.; Clayton, R. W.

    2011-12-01

    accelerometer measurements to estimate point displacements, and GNSS and meteorological measurements to estimate precipitable water. By allowing autonomous, low-latency, and compact data products, we anticipate narrow communications bandwidths that often accompany natural disasters, make possible more efficient data analysis, and provide a modular design that can be used to efficiently upgrade the thousands of existing geodetic stations. By integrating individual stations into a real-time geodetic sensor web, in which individual sensors/stations share and update their information with multiple regional processing nodes, the cumulative fidelity of the Earth science products they produce is further enhanced and single points of failure at central processing facilities are eliminated. Next-generation geodetic stations can also supply real-time calibration information to several NASA space missions, e.g., the NPP mission as part of a demonstration of the next-generation weather satellite and the DESDynI mission, and contribute to NASA's Space Geodesy Project (SGP) which is developing the next generation of collocated space geodetic fiducial stations.

  8. The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

    2010-01-01

    The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

  9. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2004-03-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors

  10. International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer

    2009-01-01

    This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.

  11. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-05-18

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being

  12. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  13. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    PubMed

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3). PMID:22468544

  14. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  15. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2013-01-01

    Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  16. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

    2007-03-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many

  17. Namib Desert, Namibia, Africa

    NASA Technical Reports Server (NTRS)

    1990-01-01

    One of the driest regions on Earth, the Namib Desert, Namibia, Africa (23.0N, 15.0E) lies adjacent to the Atlantic coast but upwelling oceanic water causes a very stable rainless atmosphere. The few local inland rivers do not reach the sea but instead appear as long indentations where rivers penetrate the dune fields and end as small dry lakes. The vast dune fields are the result of sands deposited over millions of years by the stream flow.

  18. Namib Desert, Namibia, Africa

    NASA Technical Reports Server (NTRS)

    1990-01-01

    One of the driest regions on Earth, the Namib Desert, Namibia, Africa (23.0N, 15.0E) lies adjacent to the Atlantic coast but the upwelling oceanic water causes a very stable rainless atmosphere. The few local inland rivers do not reach the sea but instead, appear as long indentations where they penetrate the dune fields and end as small dry lakes. The vast dune fields are the result of sands deposited over millions of years by the stream flow.

  19. Unchanging Desert Sand Dunes

    NASA Astrophysics Data System (ADS)

    Gadhiraju, S.; Banerjee, B.; Buddhiraju, K.; Shah, V.

    2013-12-01

    Deserts are one of the major landforms on earth. They occupy nearly 20% of the total land area but are relatively less studied. With the rise in human population, desert regions are being gradually occupied for settlement posing a management challenge to the concerned authorities. Unrestrained erosion is generally a feature of bare dunes. Stabilized dunes, on the other hand, do not undergo major changes in textures, and can thus facilitate the growth of vegetation. Keeping in view of the above factors, better mapping and monitoring of deserts and particularly of sand dunes is needed. Mapping dunes using field instruments is very arduous and they generate relatively sparse data. In this communication, we present a method of clustering and monitoring sand dunes through imagery captured by remote sensing sensors. Initially Radon spectrum of an area is obtained by decomposition of the image into various projections sampled at finer angular directions. Statistical features such as mode, entropy and standard deviation of Radon spectrum are used in delineation and clustering of regions with different dune orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiment's, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations. While these findings have implications for understanding of dune geomorphology and changes occurring in dune directions, they also highlight the importance of a wider study of dunes and their evolution both at regional and global scales. Results for Dataset 1 & Dataset 2 Results for Dataset 3

  20. Deserts and Arid Lands

    NASA Astrophysics Data System (ADS)

    Brown, Glen F.

    The exponential growth of global population and often concomitant degradation of the environment has forced human expansion into the more hostile and less well-known terrains of arid lands and deserts. Drought in the African Sahel, with recent wholesale movement of tribes seeking survival, has focused interest in such regions. However, geologic and geomorphic knowledge of deserts has expanded slowly until the last few decades. For instance, the arid cycle of erosion, as conceived by William Morse Davis (now deceased; formerly, Harvard University, Cambridge, Mass.), with modifications by W. Penck (now deceased; formerly, Leipzig University, Leipzig, German Democratic Republic), and L. C. King (University of Natal and Durban, South Africa), has dominated desert geomorphological deductions until recently. Since World War II and the verification of plate tectonics, the knowledge of arid lands has increased dramatically, especially in synoptic mapping from remote sensing data and space photography, which transcends political boundaries, thanks to the open skies policy of the U.S. space pioneers.

  1. The Desert Crossings of Mars

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.

    Apart from the polar caps, the Martian volcanoes and the Valles Marineris, ~80% of the martian surface can essentially be classified as `desert'. The methods used to explore Mars, the scientific priorities and the philo- sophical and historical precedents that drive human exploration on Mars will primarily come from our experiences in terrestrial deserts. Here, the methods and approaches used for terrestrial desert expeditions are discussed with reference to Mars. Some of the physical challenges such as low temperature and frost formation will be akin to cold polar desert exploration on Earth. However, some challenges, such as dust storms and lack of liquid water will be akin to hot desert exploration. Expeditions that draw the appropriate lessons from both hot and cold desert terrestrial expeditions will succeed. Examples of major regions on Mars that might be regarded as significant exploratory challenges for expeditions are identified. Key parameters of these expeditions including distance and plausible scientific objectives are provided.

  2. Jeeps Penetrating a Hostile Desert

    ERIC Educational Resources Information Center

    Bailey, Herb

    2009-01-01

    Several jeeps are poised at base camp on the edge of a desert aiming to escort one of them as far as possible into the desert, while the others return to camp. They all have full tanks of gas and share their fuel to maximize penetration. In a friendly desert it is best to leave caches of fuel along the way to help returning jeeps. We solve the…

  3. Microbial origin of desert varnish.

    PubMed

    Dorn, R I; Oberlander, T M

    1981-09-11

    Scanning electron microscopy and energy dispersive x-ray analyses of desert varnish reveal that microorganisms concentrate ambient manganese that becomes greatly enhanced in brown to black varnish. Specific characteristics of desert varnish and of varnish bacteria support a microbial origin for manganese-rich films. Varnish microbes can be cultured and produce laboratory manganese films. Accordingly, natural desert varnish and also manganese-rich rock varnishes in nondesert environments appear to be a product of microbial activity. PMID:17744757

  4. Research on Optimal Operation by Adjusting Blade Angle in Jiangdu No. 4 Pumping Station of China

    NASA Astrophysics Data System (ADS)

    Lihua, Zhang; Jilin, Chang; Rentian, Zhang; Yi, Gong

    2010-06-01

    A Nonlinear Programming Model for the optimal day-operation of multi-units pump in one pumping station by adjusting blade angle has been put out, where the peak-valley electricity prices is considered in this paper. The model takes the minimal operation cost of pump assembly as objective function. In the meantime, the periods are defined as stage variables. The blade angle and the number of the working-pumps are expressed as decision variables and the water volume pumped in one day as constraint condition. The problem is very difficult to be settled by regular methods. This paper presents a new method which adopts experimental optimization method of adjusting blade angle in different periods and linear integral programming method to select the number of pumps. After applying the method to the optimal operation of Jiangdu No.4 pumping station, which is the source pump station of Eastern Route Project of South-to-North Water Diversion(Where there are seven pumps and the design flow rate of single-unit is 30.0m3/sec), we get the results which are as follows:(1) With the constraint conditions of typical tidal process which are average tidal levels from December to February of next year, designed average pumping head of 7.8m, and the operation load at 100%,80%,60% of full-load(the water volume when the pumps working with the blade angle of 0 degree and the speed of 150r/min in full day), the relative energy-saving reaches 5.18%˜33.02% comparing with the state of keeping the pump operating at its designed blade angle which is 0 degree when considering peak-valley electricity prices. While not considering the peak-valley electricity prices, the number is 1.96%˜9.71%, and less load corresponds to more cost-saving. (2) The key factory on deciding the operation state of pumps is electricity price when we consider the peak-valley electricity prices. All the pumps should be working and the blade angle should be in the largest state when at the valley price, while the number

  5. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-08-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. A year into the life of this cooperative agreement, we note the following achievements: (1) Progress on the vertical line array (VLA) of sensors: (A) Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, (B) Cabling upgrade to allow installation of positioning sensors, (C) Adaptation of SDI's Angulate program to use acoustic slant ranges and DGPS data to compute and map the bottom location of the vertical array, (D) Progress in T''0'' delay and timing issues for improved control in data recording, (E) Successful deployment and recovery of the VLA twice during an October, 2003 cruise, once in 830m water, once in 1305m water, (F) Data collection and recovery from the DATS data logger, (G) Sufficient

  6. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    Carol Lutken

    2006-09-30

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period

  7. The Pore Formation and Mobility Investigation: A Summary of Conducted Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Volz, M. P.; Anilkumar, A.

    2006-01-01

    The Pore Formation and Mobility Investigation (PFMI) is being conducted in the Microgravity Science Glovebox (MSG) aboard the International Space Station (ISS) with the goal of understanding bubble generation and interactions during controlled directional solidification processing. Through the course of the experiments, beginning in September 2002, a number of key factors pertinent to solidification processing of materials in a microgravity environment have been directly observed, measured, and modeled. Though most experiments ran uninterrupted, on four separate occasions malfunctions to the PFMI hardware and software were experienced that required crew intervention, including in-space repair. Fortunately, each repair attempt was successful and restored the PFMI apparatus to a fully functional condition. Based on PFMI results and lessons learned, the intent of this presentation is to draw attention to the role ISS experiments/hardware can play in providing insight to potential fabrication processing techniques and repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  8. IMP: Using microsat technology to support engineering research inside of the International Space Station

    NASA Astrophysics Data System (ADS)

    Carroll, Kieran A.

    2000-01-01

    This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .

  9. Estimation of saltation emission in the Kubuqi Desert, North China.

    PubMed

    Du, Heqiang; Xue, Xian; Wang, Tao

    2014-05-01

    The Kubuqi Desert suffered more severe wind erosion hazard. Every year, a mass of aeolian sand was blown in the Ten Tributaries that are tributaries of the Yellow River. To estimate the quantity of aeolian sediment blown into the Ten Tributaries from the Kubuqi Desert, it is necessary to simulate the saltation processes of the Kubuqi Desert. A saltation submodel of the IWEMS (Integrated Wind-Erosion Modeling System) and its accompanying RS (Remote Sensing) and GIS (Geographic Information System) methods were used to model saltation emissions in the Kubuqi Desert. To calibrate the saltation submodel, frontal area of vegetation, soil moisture, wind velocity and saltation sediment were observed synchronously on several points in 2011 and 2012. In this study, a model namely BEACH (Bridge Event And Continuous Hydrological) was introduced to simulate the daily soil moisture. Using the surface parameters (frontal area of vegetation and soil moisture) along with the observed wind velocities and saltation sediments for the observed points, the saltation model was calibrated and validated. To reduce the simulate error, a subdaily wind velocity program, WINDGEN was introduced in this model to simulate the hourly wind velocity of the Kubuqi Desert. By incorporating simulated hourly wind velocity, and model variables, the saltation emission of the Kubuqi Desert was modeled. The model results show that the total sediment flow rate was 1-30.99 tons/m over the last 10years (2001-2010). The saltation emission mainly occurs in the north central part of the Kubuqi Desert in winter and spring. Integrating the wind directions, the quantity of the aeolian sediment that deposits in the Ten Tributaries was estimated. Compared with the observed data by the local government and hydrometric stations, our estimation is reasonable. PMID:24534701

  10. How tethered systems can benefit microgravity research in the Space Station era

    NASA Technical Reports Server (NTRS)

    Lavitola, Maria Stella; Giani, Francesco; Briccarello, Mauro

    1989-01-01

    The use of a tethered movable orbiting laboratory for microgravity research is examined. The relation between reduced microgravity carriers and acceleration levels, and the effects of acceleration levels on in-orbit experiments are studied. The tuning of the gravity level at a space laboratory by employing a tether is described. The applications of the variable gravity environment to research in fluids and materials sciences, life sciences, separative techniques, and physical and applied chemistry are discussed.

  11. A Decision Support Framework for Feasibility Analysis of International Space Station (ISS) Research Capability Enhancing Options

    NASA Technical Reports Server (NTRS)

    Ortiz, James N.; Scott,Kelly; Smith, Harold

    2004-01-01

    The assembly and operation of the ISS has generated significant challenges that have ultimately impacted resources available to the program's primary mission: research. To address this, program personnel routinely perform trade-off studies on alternative options to enhance research. The approach, content level of analysis and resulting outputs of these studies vary due to many factors, however, complicating the Program Manager's job of selecting the best option. To address this, the program requested a framework be developed to evaluate multiple research-enhancing options in a thorough, disciplined and repeatable manner, and to identify the best option on the basis of cost, benefit and risk. The resulting framework consisted of a systematic methodology and a decision-support toolset. The framework provides quantifiable and repeatable means for ranking research-enhancing options for the complex and multiple-constraint domain of the space research laboratory. This paper describes the development, verification and validation of this framework and provides observations on its operational use.

  12. Development of the Materials Science Research Facility (MSRF) and Experiment Apparatus for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for phased deployment into the United States Laboratory Module beginning on the third Utilization Flight (UF-3). The facility will house the materials processing apparatus and common subsystems required for operating each device, and will use the ISS Active Rack Isolation System (ARIS). Each MSRR is an autonomous rack and will be comprised of on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multi-user generic processing apparatus. The MSRF will be the primary apparatus for satisfying near-term and long-range materials science discipline goals and objectives with each MSRR supporting a wide range of materials science themes in the NASA research program.

  13. The Microgravity Science Glovebox (MSG), a Resource for Gravity-Dependent Phenomena Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris

    2007-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG s unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to the MSG facility to further enhance the resources provided to investigations.

  14. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Chouker, Alexander

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test

  15. Libyan Desert, Libya, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Desert landscapes such as this part of the northern Sahara (27.0N, 11.0E) may be analogous to other planets which have no soil or plant growth. The dark rocks in this view are probably volcanic in origin and have many stream beds leading into the dune areas. These stream beds carry sediments towards the lower terrain where the water evaporates, leaving the sediments to be wind blown into the complex dune patterns. The red color comes from iron oxides.

  16. World Saccharum Collection at the USDA Subtropical Research Station, National Germplasm Repository Miami, Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1980, the U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), established a genebank, the National Clonal Germplasm Repository (NCGR) in Miami, Florida. This repository is devoted to conservation of subtropical and tropical fruit, sugarcane and related grasses and ornamen...

  17. The Future of Teacher Education: Needed Research and Practice. Conference Proceedings (College Station, Texas, May 1982).

    ERIC Educational Resources Information Center

    Corrigan, Dean C., Ed.; And Others

    This book contains seven papers presented at a conference on the future of teacher education. Richard M. Hersh examines the social organization of the school and the school's instruction and curriculum in "What Makes Some Schools and Teachers More Effective." In "Teacher Education: Needed Research and Practice for the Preparation of Teaching…

  18. Evaluation and characterization in bananas (Musa ssp.) at the USDA-ARS Tropical Agriculture Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana, Musa spp., is a key horticultural crop in tropical regions of the world where they provide sustenance and serve as cash crops. The plantain subgroup in particular, is an important staple in the Caribbean, Central America and some countries in South America. One of the integral research comp...

  19. Compilation of water-resources data and hydrogeologic setting for four research stations in the Piedmont and Blue Ridge physiographic provinces of North Carolina, 2000-2004

    USGS Publications Warehouse

    Huffman, Brad A.; Pfeifle, Cassandra A.; Chapman, Melinda J.; Bolich, Richard E.; Campbell, Ted R.; Geddes, Donald J., Jr.; Pippin, Charles G.

    2006-01-01

    Water-resources data were collected to describe the hydrologic conditions at four research stations in the Piedmont and Blue Ridge Physiographic Provinces of North Carolina. Data collected by the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, from September 2000 through September 2004 are presented in this report. The locations and periods of data collection are as follows: the Lake Wheeler Road research station (Raleigh) from April 2001 to September 2004, the Langtree Peninsula research station (Mooresville) from September 2000 to September 2004, the Upper Piedmont research station (Reidsville) from March 2002 to September 2004, and the Bent Creek research station (Asheville) from July 2002 to September 2004. Data presented in this report include well-construction characteristics for 110 wells, periodic ground-water-level measurements for 96 wells, borehole geophysical logs for 23 wells, hourly ground-water-level measurements for 12 wells, continuous-stage measurements for 2 streams, continuous water-quality measurements for 8 wells and 2 streams, periodic water-quality samples for 57 wells and 6 stream sites, slug-test results for 38 wells, and shallow ground-water-flow maps. In addition, the geology and hydrogeology at each site are summarized.

  20. Altus II aircraft flying over southern California desert

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The snow-capped peak of Mt. San Antonio in the San Gabriel range is visible as the the remotely piloted Altus II flies over Southern California's high desert. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  1. Altus II aircraft flying over southern California desert

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The San Gabriel range is visible as the the remotely piloted Altus II flies over Southern California's high desert. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  2. Evapotranspiration of Caragana korshinskii communities in a revegetated desert area: Tengger Desert, China

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Ping; Brown-Mitic, Constance M.; Kang, Er-Si; Zhang, Jing-Guang; Li, Xin-Rong

    2004-12-01

    More than 40 years of revegetation using mainly Caragana korshinskii at Shapotou Desert Experimental Research Station in China has established a dwarf-shrub and herbaceous cover on the stabilized sand dunes. The evapotranspiration (ET) of the dwarf-shrub C. korshinskii community and the evaporation (E) of the bare soil were measured by the auto-weighing lysimeter method during the growing seasons from 1990 to 1995. The average ET rate was 0.83 mm d-1, which varied from 0.71 to 1.06 mm d-1 during the 6-year period. Monthly ET ranged from 0.14 to 2.35 mm d-1, with a monthly precipitation (P) range of 0 to 3.12 mm d-1. Monthly ET/P ratios varied from 0.94 to 1.28 and averaged 97·4% overall. Most of the precipitation in this area usually falls between June and September. The lowest precipitation was recorded in 1991, with most of it falling during April and May. This temporal anomaly in the precipitation resulted in the highest ET/P ratio (by 0.33) and soil moisture depletion (S = -31·5 mm) for the 6-year period. ET from the revegetated sand dunes around Shapotou under natural precipitation may account for 1.·2% of the potential evaporation. Cumulative P and cumulative ET and E were highly correlated, with a well-defined linear relationship of ET = 0.80P + 10.0 and E = 0.55P + 5.89, with regression R2 ranging from 0.953 to 0.985. In 1991, however, the regression equations for both ET and E were considerably different than the other years, with a steeper slope and a negative intercept resulting from the anomaly in the precipitation pattern.

  3. Desert landscape irrigation

    SciTech Connect

    Quinones, R.

    1995-06-01

    Industrialization can take place in an arid environment if a long term, overall water management program is developed. The general rule to follow is that recharge must equal or exceed use. The main problem encountered in landscape projects is that everyone wants a lush jungle setting, tall shade trees, ferns, with a variety of floral arrangements mixed in. What we want, what we can afford, and what we get are not always the same. Vegetation that requires large quantities of water are not native to any desert. Surprisingly; there are various types of fruit trees, and vegetables that will thrive in the desert. Peaches, plums, nut trees, do well with drip irrigation as well as tomatoes. Shaded berry plans will also do well, the strawberry being one. In summary; if we match our landscape to our area, we can then design our irrigation system to maintain our landscape and grow a variety of vegetation in any arid or semiarid environment. The application of science and economics to landscaping has now come of age.

  4. Supersymmetry without the Desert

    SciTech Connect

    Nomura, Yasunori; Poland, David

    2006-09-26

    Naturalness of electroweak symmetry breaking in weak scale supersymmetric theories may suggest the absence of the conventional supersymmetric desert. We present a simple, realistic framework for supersymmetry in which (most of) the virtues of the supersymmetric desert are naturally reproduced without having a large energy interval above the weak scale. The successful supersymmetric prediction for the low-energy gauge couplings is reproduced due to a gauged R symmetry present in the effective theory at the weak scale. The observable sector superpotential naturally takes the form of the next-to-minimal supersymmetric standard model, but without being subject to the Landau pole constraints up to the conventional unification scale. Supersymmetry breaking masses are generated by the F-term and D-term VEVs of singlet and U(1){sub R} gauge fields, as well as by anomaly mediation, at a scale not far above the weak scale. We study the resulting pattern of supersymmetry breaking masses in detail, and find that it can be quite distinct. We construct classes of explicit models within this framework, based on higher dimensional unified theories with TeV-sized extra dimensions. A similar model based on a non-R symmetry is also presented. These models have a rich phenomenology at the TeV scale, and allow for detailed analyses of, e.g., electroweak symmetry breaking.

  5. Probing wind-turbine/atmosphere interactions at utility scale: Novel insights from the EOLOS wind energy research station

    NASA Astrophysics Data System (ADS)

    Hong, J.; Guala, M.; Chamorro, L. P.; Sotiropoulos, F.

    2014-06-01

    Despite major research efforts, the interaction of the atmospheric boundary layer with turbines and multi-turbine arrays at utility scale remains poorly understood today. This lack of knowledge stems from the limited number of utility-scale research facilities and a number of technical challenges associated with obtaining high-resolution measurements at field scale. We review recent results obtained at the University of Minnesota utility-scale wind energy research station (the EOLOS facility), which is comprised of a 130 m tall meteorological tower and a fully instrumented 2.5MW Clipper Liberty C96 wind turbine. The results address three major areas: 1) The detailed characterization of the wake structures at a scale of 36×36 m2 using a novel super-large-scale particle image velocimetry based on natural snowflakes, including the rich tip vortex dynamics and their correlation with turbine operations, control, and performance; 2) The use of a WindCube Lidar profiler to investigate how wind at various elevations influences turbine power fluctuation and elucidate the role of wind gusts on individual blade loading; and 3) The systematic quantification of the interaction between the turbine instantaneous power output and tower foundation strain with the incoming flow turbulence, which is measured from the meteorological tower.

  6. Optical research of the terrestial atmosphere, ionosphere and astrophysical objects friom the "Saliut-4" orbital station

    NASA Astrophysics Data System (ADS)

    Grechko, Gheorghy Mikhailovich

    1983-12-01

    The abstract represents a description of the Doctoral work of the cosmonaut G. M. Grechko, defended on 23 december 1983 at the Specialized Council D105.01.01 at the S.I. Vavilov State Optical Institute in Leningrad. Official referees: Doctors S.G. Grinishin, M.Ya. Marov, V.I. Moroz. The abstract includes also: a) the actuality of the problem b) The main purposes of the research c) scientific novelty d) The practical importance e)the scientific conferences (13), where the work was presented f) a short description of the Doctoral work's content g) Conclusions and recommendations h) Main publications (33).

  7. A consortium approach for disaster relief and technology research and development: Fire station earth

    NASA Astrophysics Data System (ADS)

    Ling, Douglas C.

    1992-06-01

    A new paradigm is proposed for alleviating the chronic problem of inadequate response to natural and man-made disasters. Fundamental flaws and weaknesses in the current disaster mitigation system point to the need for an international consortium involving governments, academia, industry, and businesses. Recent changes in social and political framework offer a unique opportunity of rethink and reform the existing disaster response mechanism. Benefits of a collaborative consortium approach may include commercial incentives, improved cost effectiveness, coherence in research and development efforts, conduciveness for long-term planning, and improved deployment of technology for disaster mitigation.

  8. The International Space Station: A Research Platform to Understand Environmental and Human Microbiomes

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark

    2016-01-01

    ISS microbiological operations and research are a key part of protect the astronauts and their vehicles. These studies are also providing novel findings that can translate into benefits for the general public on Earth. Understanding the environmental and human microbiomes is especially critical as we leave Earth's orbit on our future exploration efforts. ISS Platform Advantages Remarkable correlation potential for crew and environmental metadata Almost closed environment enables a baseline understanding of humans with their environment ISS Platform Disadvantages Sample number for human microbiome studies is very low Most of the samples must be returned for a full analysis.

  9. Organic chemicals from the Chihuahuan desert

    SciTech Connect

    Campos-Lopez, E.; Roman-Alemany, A.

    1980-03-01

    A consideration of social, economic, political, and technological factors in the search for new renewable sources of raw materials suggests the exploitation and development of the resources of marginal land regions. Desert regions on the North American continent, which cannot be used for food production, nonetheless, grow a variety of indigenous floral species which offer, in their chemical composition, possibilities for agroindustrial development. Prospects for utilization of the resources of the Chihuahuan Desert for the production of organic raw materials are presented. Research and development projects presently underway in Mexico for the commercialization of plants such as Guayule (Parthenium argentatum), Creosote Bush (Larrea tridentata), Candelilla (Euphorbia antisyphilitica), and Palma (Yucca filiera), among others, are documented. Raw materials obtained from such plants are characterized, with emphasis on the identification of components of industrial interest. Current bench and pilot plant activities, as well as process and product development requirements, are detailed.

  10. Ames Culture Chamber System: Enabling Model Organism Research Aboard the international Space Station

    NASA Technical Reports Server (NTRS)

    Steele, Marianne

    2014-01-01

    Understanding the genetic, physiological, and behavioral effects of spaceflight on living organisms and elucidating the molecular mechanisms that underlie these effects are high priorities for NASA. Certain organisms, known as model organisms, are widely studied to help researchers better understand how all biological systems function. Small model organisms such as nem-atodes, slime mold, bacteria, green algae, yeast, and moss can be used to study the effects of micro- and reduced gravity at both the cellular and systems level over multiple generations. Many model organisms have sequenced genomes and published data sets on their transcriptomes and proteomes that enable scientific investigations of the molecular mechanisms underlying the adaptations of these organisms to space flight.

  11. Techniques to minimize adjacent band emissions from Earth Exploration Satellites to protect the Space Research (Category B) Earth Stations in the 8400-8450 MHz band

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Sue, Miles K.; Manshadi, Farzin

    2004-01-01

    The Earth Exploration Satellites operating in the 8025-8400 MHz band can have strong adjacent band emissions on the8400-8450 MHz band which is allocated for Space Research (Category-B). The unwanted emission may exceed the protection criterion establish by the ITU-R for the protection of the Space Research (Category B) earth stations, i.e., deep-space earth stations. An SFCG Action Item (SF 23/14) was created during the 23rd SFCG meeting to explore technical and operational techniques to reduce the adjacent band emissions. In response to this action item, a study was conducted and results are presented in this document.

  12. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  13. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-09-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements six months into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: Analysis and repair attempts of the VLA used in the deep water deployment during October 2003 have been completed; Definition of an interface protocol for the VLA DATS to the SFO has been established; Design modifications to allow integration of the VLA to the SFO have been made; Experience gained in the deployments of the first VLA is being applied to the design of the next VLAs; One of the two planned new VLAs being modified to serve as an Oceanographic Line Array (OLA). (2) Progress on the Sea Floor Probe: The decision to replace the Sea Floor Probe technology with the borehole emplacement of a geophysical array was reversed due to the 1300m water depth at the JIP

  14. Making silica rock coatings in the lab: synthetic desert varnish

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Kolb, Vera M.; Philip, Ajish I.; Lynne, Bridget Y.; McLoughlin, Nicola; Sephton, Mark; Wacey, David; Green, Owen R.

    2005-09-01

    Desert varnish and silica rock coatings have perplexed investigators since Humboldt and Darwin. They are found in arid regions and deserts on Earth but the mechanism of their formation remains challenging (see Perry et al. this volume). One method of researching this is to investigate natural coatings, but another way is to attempt to produce coatings in vitro. Sugars, amino acids, and silicic acid, as well as other organic and (bio)organic compounds add to the complexity of naturally forming rock coatings. In the lab we reduced the complexity of the natural components and produced hard, silica coatings on basaltic chips obtained from the Mojave Desert. Sodium silicate solution was poured over the rocks and continuously exposed to heat and/or UV light. Upon evaporation the solutions were replenished. Experiments were performed at various pH's. The micro-deposits formed were analyzed using optical, SEM-EDAX, and electron microprobe. The coatings formed are similar in hardness and composition to silica glazes found on basalts in Hawaii as well as natural desert varnish found in US southwest deserts. Thermodynamic mechanisms are presented showing the theoretical mechanisms for overcoming energy barriers that allow amorphous silica to condense into hard coatings. This is the first time synthetic silica glazes that resemble natural coatings in hardness and chemical composition have been successfully reproduced in the laboratory, and helps to support an inorganic mechanism of formation of desert varnish as well as manganese-deficient silica glazes.

  15. The metalcasting industry and future research on the International Space Station

    NASA Astrophysics Data System (ADS)

    Santner, Joe; Overfelt, Tony

    2000-01-01

    Fourteen million tons of castings are used annually in ninety percent of all manufactured goods and in all manufacturing machinery making metalcasting the manufacturing backbone of America. There are approximately 3,000 foundries located in 49 states directly providing employment to 200,000 people and indirectly supporting transportation, petrochemical, construction, and other end-user industries. The Solidification Design Center (SDC) began a pioneering effort to address metalcasting industry technical needs to maintain US global leadership in quality, price, and delivery. While individual companies have interacted in the past with the Auburn University SDC, eighty-percent of the foundries employ less than 100 individuals while only six-percent of the foundries employ more than 250 persons. The American Foundrymen's Society (AFS) formed the Solidification Design and Control Consortium to reach the small businesses in the U.S. metalcasting industry. Over a century of operation has proved the AFS committee structure to be a robust management tool. The recognized metalcasting industry technical needs and the unique opportunities that low earth orbit offers foundry process research are described in the present paper. In addition, the metalcasting approach to prioritize proposals, transfer technology developed within the small business community, and the metalcasting industry concerns regarding working with a government aerospace program are also discussed. .

  16. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Display model of space station concept--Manned Orbiting Research Laboratory in Saturn S-IVB Orbit configuration. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995).

  17. Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and influence of Asian outflows

    NASA Astrophysics Data System (ADS)

    Han, J.; Shin, B.; Lee, M.; Hwang, G.; Kim, J.; Shim, J.; Lee, G.; Shim, C.

    2015-06-01

    Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The average ozone concentrations were 51.8 ± 15.9 ppbv during June 2003-December 2010. The seasonal variation of ozone was distinct, with a summer minimum (37.8 ppbv) and a spring maximum (61.1 ppbv), and was largely affected by seasonal wind pattern over East Asia. The fractional contribution of ozone at IORS could be attributed to six well distinguished air masses that were classified by the cluster analysis of backward trajectories. Marine air from the Pacific Ocean represents a relatively clean background air with a lowest ozone level of 32.2 ppbv in summer. In spring and winter the influence of Chinese outflows was dominant with higher ozone concentrations of 61.6 and 49.3 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS, of which extent was apt to be changed by meteorological state, particularly at a long-term scale.

  18. Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows

    NASA Astrophysics Data System (ADS)

    Han, J.; Shin, B.; Lee, M.; Hwang, G.; Kim, J.; Shim, J.; Lee, G.; Shim, C.

    2015-11-01

    Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The seasonal variation of ozone was distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), and was largely affected by the seasonal wind pattern over east Asia. At IORS, six types of air masses were distinguished with different levels of O3 concentrations by the cluster analysis of backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean background air with a lowest ozone level of 32 ppbv, which was most frequently observed in summer (July-August). In spring (March-April) and winter (December-February), the influence of Chinese outflows was dominant with higher ozone concentrations of 62 and 49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS and its extent was dependent on meteorological state, particularly at a long-term scale.

  19. The case for Mars: Concept development for a Mars research station

    NASA Astrophysics Data System (ADS)

    Welch, S. M.; Stoker, C. R.

    1986-04-01

    A program to establish a permanent scientific research base on Mars is described. A Mars base as the much needed long-term focus for the space program is presented. A permanent base was chosen rather than the more conventional concept of a series of individual missions to different sites because the permanent base offers much greater scientific return plus greater crew safety and the potential for eventual growth into a settlement. The Mars base will strive for self-sufficiency and autonomy from Earth. Martian resources will be used to provide life support materials and consumables. The Martian atmosphere will provide a convenient source of volatiles: CO2, N2, and water. Rocket propellant (for returning vehicles), fuels, breathable air, and fertilizers will be manufactured from Mars air. Food will be grown on Mars using Martian materials as plant nutrients. A permanent human presence will be maintained on Mars beginning with the first manned landing via a strategy of crew overlap. This permanent presence will ensure safety and reliability of systems through continuous tending, maintenance, and expansion of the base's equipment and systems. A permanent base will allow the development of a substantial facility on Mars for the same cost (in terms of Earth departure mass) as a series of temporary camps. A base equipped with surface rovers, airplanes, and the ability to manufacture consumables and return propellant will allow far more extensive planetary exploration over a given period of years than would approaches featuring a series of short exploration missions such as the Apollo Moon program.

  20. The case for Mars: Concept development for a Mars research station

    NASA Technical Reports Server (NTRS)

    Welch, S. M. (Editor); Stoker, C. R. (Editor)

    1986-01-01

    A program to establish a permanent scientific research base on Mars is described. A Mars base as the much needed long-term focus for the space program is presented. A permanent base was chosen rather than the more conventional concept of a series of individual missions to different sites because the permanent base offers much greater scientific return plus greater crew safety and the potential for eventual growth into a settlement. The Mars base will strive for self-sufficiency and autonomy from Earth. Martian resources will be used to provide life support materials and consumables. The Martian atmosphere will provide a convenient source of volatiles: CO2, N2, and water. Rocket propellant (for returning vehicles), fuels, breathable air, and fertilizers will be manufactured from Mars air. Food will be grown on Mars using Martian materials as plant nutrients. A permanent human presence will be maintained on Mars beginning with the first manned landing via a strategy of crew overlap. This permanent presence will ensure safety and reliability of systems through continuous tending, maintenance, and expansion of the base's equipment and systems. A permanent base will allow the development of a substantial facility on Mars for the same cost (in terms of Earth departure mass) as a series of temporary camps. A base equipped with surface rovers, airplanes, and the ability to manufacture consumables and return propellant will allow far more extensive planetary exploration over a given period of years than would approaches featuring a series of short exploration missions such as the Apollo Moon program.

  1. A Microscopists View of Desert Varnish from the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Garvie, L. A. J.; Burt, D. M.; Buseck, P. R.

    2009-03-01

    Nanometer-scale element mapping and spectroscopy of desert varnish reveals a dynamic disequilibrium system characterized by post-depositional mineralogical, chemical, and structural changes, activated by liquid water.

  2. Factors influencing the rates, processes and magnitude of accumulation of carbon in desert soils

    NASA Technical Reports Server (NTRS)

    Mcfadden, Leslie D.

    1994-01-01

    This report summarizes research funded through NASA's Soil Landscape Climate Program which includes studies of the systematics of carbon storage and flux in the terrestrial environment, specifically terrestrial soils. Efforts focussed on the nature of carbon behavior in arid environments, where the majority of the carbon is present as inorganic carbon stored as pedogenic carbonate in desert calcic soils. Studies were supported of soils in two areas of western North America's major deserts: the Mojave Desert and the Chihuahuan Desert. Part 1 of this report summarizes the results of research conducted in the area of the Providence Mountains, California in the eastern Mojave Desert. Part 2 of this report summarizes the results of research in the Sevilleta Wildlife Refuge in central New Mexico, one of the sites of the UMN Biology Department's Long Term Ecological Research.

  3. Factors influencing the rates, processes and magnitude of accumulation of carbon in desert soils

    NASA Astrophysics Data System (ADS)

    McFadden, Leslie D.

    This report summarizes research funded through NASA's Soil Landscape Climate Program which includes studies of the systematics of carbon storage and flux in the terrestrial environment, specifically terrestrial soils. Efforts focussed on the nature of carbon behavior in arid environments, where the majority of the carbon is present as inorganic carbon stored as pedogenic carbonate in desert calcic soils. Studies were supported of soils in two areas of western North America's major deserts: the Mojave Desert and the Chihuahuan Desert. Part 1 of this report summarizes the results of research conducted in the area of the Providence Mountains, California in the eastern Mojave Desert. Part 2 of this report summarizes the results of research in the Sevilleta Wildlife Refuge in central New Mexico, one of the sites of the UMN Biology Department's Long Term Ecological Research.

  4. Challenge of a desert: revegetation of disturbed desert lands

    SciTech Connect

    Wallace, A.; Romney, E.M.; Hunter, R.B.

    1980-01-01

    The revegetation of disturbed, arid lands is one of the great challenges of a desert. An attempt to encourage it is not an impossible task, however, if the natural and the man-made resources available are utilized and managed. Where rainfall and temperature conditions approach or exceed those of the Great Basin desert, restoration of disturbed land will occur through natural revegetation processes within a reasonable period of time. This is not generally the case in the more arid Mojave Desert areas where the moisture and temperature conditions are less favorable for germination and seedling survival. Restoration of vegetation by natural reseeding can, however, occur within local sites where moisture has concentrated as the result of terrain features forming catchment basins. Otherwise, the natural revegetation processes in the Mojave Desert areas require much longer periods of time (possibly decades or centuries) than are practical for meeting environmental protection standards imposed by current legislation. Through better understanding of the processes governing revegetation and the ability to control them, it is possible for man to more rapidly restore disturbed desert lands. Terrain manipulation to form moisture catchment basins, selection of seed from pioneering shrub species, preservation of existing shrub clump fertile islands in the soil, supplemental fertilization, irrigation, organic amendments, and transplanting vigorous shrub species are some of the important things that can be done to help restore disturbed desert land.

  5. Chemical composition, mixing state, size and morphology of Ice nucleating particles at the Jungfraujoch research station, Switzerland

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Worringen, Annette; Kandler, Konrad; Weinbruch, Stephan; Schenk, Ludwig; Mertes, Stephan; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nilius, Björn; Danielczok, Anja; Bingemer, Heinz

    2014-05-01

    An intense field campaign from the Ice Nuclei Research Unit (INUIT) was performed in January and February of 2013 at the High-Alpine Research Station Jungfraujoch (3580 m a.s.l., Switzerland). Main goal was the assessment of microphysical and chemical properties of free-tropospheric ice-nucelating particles. The ice-nucleating particles were discriminated from the total aerosol with the 'Fast Ice Nucleation CHamber' (FINCH; University Frankfurt) and the 'Ice-Selective Inlet' (ISI, Paul Scherer Institute) followed by a pumped counter-stream virtual impactor. The separated ice-nucleating particles were then collected with a nozzle-type impactor. With the 'FRankfurt Ice nuclei Deposition freezinG Experiment' (FRIDGE), aerosol particles are sampled on a silicon wafer, which is than exposed to ice-activating conditions in a static diffusion chamber. The locations of the growing ice crystals are recorded for later analysis. Finally, with the ICE Counter-stream Virtual Impactor (ICE-CVI) atmospheric ice crystals are separated from the total aerosol and their water content is evaporated to retain the ice residual particles, which are then collected also by impactor sampling. All samples were analyzed in a high-resolution scanning electron microscope. By this method, for each particle its size, morphology, mixing-state and chemical composition is obtained. In total approximately 1700 ice nucleating particles were analyzed. Based on their chemical composition, the particles were classified into seven groups: silicates, metal oxides, Ca-rich particles, (aged) sea-salt, soot, sulphates and carbonaceous matter. Sea-salt is considered as artifact and is not regarded as ice nuclei here. The most frequent ice nucleating particles/ice residuals at the Jungfraujoch station are silicates > carbonaceous particles > metal oxides. Calcium-rich particles and soot play a minor role. Similar results are obtained by quasi-parallel measurements with an online single particle laser ablation

  6. Sonoran Desert: Fragile Land of Extremes

    USGS Publications Warehouse

    Produced and Directed by Wessells, Stephen

    2003-01-01

    'Sonoran Desert: Fragile Land of Extremes' shows how biologists with the U.S. Geological Survey work with other scientists in an effort to better understand native plants and animals such as desert tortoises, saguaro cacti, and Gila monsters. Much of the program was shot in and around Saguaro National Park near Tucson, Arizona. Genetic detective work, using DNA, focuses on understanding the lives of tortoises. Studies of saguaros over many decades clarify how these amazing plants reproduce and thrive in the desert. Threats from fire, diseases in tortoises, and a growing human population motivate the scientists. Their work to identify how these organisms live and survive is a crucial step for the sound management of biological resources on public lands. This 28-minute program, USGS Open-File Report 03-305, was shot entirely in high definition video and produced by the USGS Western Ecological Research Center and Southwest Biological Science Center; produced and directed by Stephen Wessells, Western Region Office of Communications.

  7. Keeping the desert at bay

    SciTech Connect

    El-Kassas, M.

    1981-02-01

    Man-made desert (areas that are no longer productive) has increased the world's deserts from 36.3 to 43% of the land surface. Desertification involves ecological degradation that makes the land less productive or allows an uneconomic type of vegetation, such as mesquite, to replace an economic plant. The process was first thought to be an encroachment by expanding deserts, but, except for the movement of sand dunes, desertification is now viewed as productive land that deteriorated and was added to the desert. Land is lost to agriculture by erosion, loss of nutrients, compaction, salination, urban development, and pollution. The interacting biosphere, technosphere, and social sphere form the framework of man's existence. An understanding of this framework is crucial to those offering technological assistance to developing countries. (DCK)

  8. AUTOMATIC FISH TRACKING SYSTEM FOR THE U.S. E.P.A.'S (ENVIRONMENTAL PROTECTION AGENCY'S) MONTICELLO ECOLOGICAL RESEARCH STATION

    EPA Science Inventory

    An automatic tracking system controlled by an RCA 1802 microprocessor was developed to locate fish in a 400 m outdoor experimental stream channel at the U.S. EPA Monticello Ecological Research Station. The monitoring network consisted of 12 horizontally polarized antennas spaced ...

  9. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results. Appendix E: Work breakdown structure and dictionary

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    A work breakdown structure for the Space Station Life Sciences Research Facility (LSRF) is presented up to level 5. The purpose is to provide the framework for task planning and control and to serve as a basis for budgeting, task assignment, cost collection and report, and contractual performance measurement and tracking of the Full Scale Development Phase tasks.

  10. How two single events control the erosion process on citrus orchards in the Montesa soil erosion research station

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Giménez-Morera, A.; Domínguez-Gento, A.

    2010-05-01

    Single events control the soil erosion processes on Mediterranean type ecosystems. They contribute with the largest soil and water losses. A five year research carried out on the soil erosion experimental station of Montesa, eastern Spain demonstrates that the soil erosion by water is mainly concentrated on high intensity (> 100 mm day-1) thunderstorms. Six plots (300 m2) were built in 2003 to collect runoff and sediments after each rainfall event. The measurements show that 91.34 % of the total soil loss and the 76.32 % of the runoff collected from 2004 to 2008 was collected during two rainfall events that surpassed 160 mm day-1. The six plots were under organic farming strategies and then the soil losses were always lower than 1 Mg ha-1 year-1. Under dense vegetation cover found on organic farming orchards the soil erosion process is concentrated on short periods of time. In fact, two days of rainfall contributed with 9-times more runoff and soil losses than the 345 days of rainfall during the 5 year times of the study.

  11. The In-Space Soldering Investigation: Research Conducted on the International Space Station in Support of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fincke, M.; Sergre, P. N.; Ogle, J. A.; Funkhouser, G.; Parris, F.; Murphy, L.; Gillies, D.; Hua, F.

    2004-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still. internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  12. Feasibility of Conducting J-2X Engine Testing at the Glenn Research Center Plum Brook Station B-2 Facility

    NASA Technical Reports Server (NTRS)

    Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.

    2008-01-01

    A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.

  13. Establishing a communications-intensive network to resolve artificial intelligence issues within NASA's Space Station Freedom research centers community

    NASA Technical Reports Server (NTRS)

    Howard, E. Davis, III

    1990-01-01

    MITRE Corporation's, A Review of Space Station Freedom Program Capabilities for the Development and Application of Advanced Automation, cites as a critical issue the following situation, extant at the NASA facilities visited in the course of preparing the review: The major issues noted with regard to design and research facilities deal with cooperative problem solving, technology transfer, and communication between these facilities. While the authors were visiting lab and test beds to collect information, personnel at many of these facilities were interested in any information they could collect on activities at other facilities. A formal means of gathering this information could not be identified by these personnel. While communication between some facilities was taking place or was planned, for technology transfer or coordination of schedules (e.g., for SADP demonstrations), poor communication between these facilities could lead to a lack of technical standards, duplication of effort, poorly defined interfaces, scheduling problems, and increased cost. Formal mechanisms by which effective communication and cooperative problem solving can take place, and information can be disseminated, must be defined. A solution is proposed for the communications aspects of the issues addressed above; and offered at the same time a solution which can prove effective in dealing with some of the problems being encountered with expertise being lost via retirement or defection to the private sector. The proffered recommendations are recognizably cost-effective and tap the rising sector of expert knowledge being produced by the American academic community.

  14. Mate desertion in the snail kite

    USGS Publications Warehouse

    Beissinger, S.R.; Snyder, N.F.R.

    1988-01-01

    Mate desertion during the breeding cycle was documented at 28 of 36 (78%) snail kite, Rostrhamus sociabilis nests in Florida between 1979 and 1983. Offspring mortality occurred at only one deserted nest, however. Parents that were deserted by their mates continued to care for their young until independence (3?5 additional weeks) and provided snails at a rate similar to that of both parents combined before desertion. Males and females deserted with nearly equal frequency, except in 1982 when more females deserted. No desertion occurred during drought years, whereas desertion occurred at nearly every nest during favourable conditions. The occurrence of mate desertion was generally related to indirect measures of snail abundance: foraging range, snail delivery rates to the young and growth rates. Small broods were deserted more frequently by females than by males and tended to be deserted earlier than large ones. After desertion, deserters had the opportunity to re-mate and nest again since breeding seasons were commonly lengthy, but whether they did so was impossible to determine conclusively in most cases. The deserted bird sometimes incurred increased energetic costs and lost breeding opportunities during periods of monoparental care.

  15. Capabilities of the Advanced Astroculture plant growth unit to support plant research conducted on the International Space Station

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Durst, S.; Meyers, R.; Tellez, G.; Demars, M.; Sandstrom, P.

    Since 1990, WCSAR has developed a number of technologies for plant-based space life support systems, with a goal of providing robust and capable facilities suitable for conducting quality plant research in microgravity environment. These technologies have been substantially validated using the Astroculture payload through a series of space shuttle flights. Advanced ASTROCULTURETM (ADVASC), a space-based plant growth unit, has been developed to take advantage of plant research opportunities during the early assembly phase of the International Space Station (ISS) when ISS resources and up/down mass availability are limited. ADVASC provides an enclosed, environmentally controlled plant growth chamber with controlled parameters of temperature, relative humidity, light intensity, fluid nutrient delivery, and CO2 and hydrocarbon (ethylene) concentrations. Auto-prime technology eliminates the need for electrical power during launch vehicle ascent/descent, and therefore greatly relieves the shortage of launch vehicle resources and ISS crew time. State-of-the-art control software combined with fault tolerance and recovery technology significantly increases overall system robustness and efficiency. Tele-science features allow engineers and scientists to remotely receive telemetry data and video images, send remote commands, monitor plant development status, and troubleshoot subsystems if any unexpected behavior occurs. ADVASC is configured as two single-Middeck-Locker inserts installed in a standard EXPRESS Rack, with one insert containing the support systems and the other containing a large plant growth chamber. Thus, the insert with the support systems can remain on the ISS and only the insert containing the plant chamber needs to be transported to and from the ISS to accommodate different experiments. ADVASC has been used to successfully conduct three plant life cycle studies on board the ISS, two for Arabidopsis seed-to-seed growth and one for soybean seed-to-seed growth

  16. A differential augmentation method based on aerostat reference stations

    NASA Astrophysics Data System (ADS)

    Shi, Zhengfa; Gong, Yingkui; Chen, Xiao

    2016-01-01

    Ground based regional augmentation systems is unable to cover regions such as the oceans, mountains and deserts. And its signal is vulnerable of building block. Besides, its positioning precision for high airspace object is limited. To settle such problems, a Differential augmentation method based on troposphere error corrections using aerostat reference stations is proposed. This method utilizes altitudes of mobile station and aerostat station to estimate troposphere delay errors, resulting in troposphere delay difference value between mobile stations and aerostat reference stations. With the aid of satellite navigation information of mobile stations and aerostat station and both troposphere delay difference values, mobile stations' positioning precision is enhanced by eliminating measurement errors (Satellite clock error, Ephemeris error, Ionospheric delay error, Tropospheric delay error) after differential. It is showed by simulation test that aerostat reference station Differential augmentation method based on tropospheric error corrections improves 3D positioning precision of mobile station to within 2m.

  17. Space station executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An executive summary of the modular space station study is presented. The subjects discussed are: (1) design characteristics, (2) experiment program, (3) operations, (4) program description, and (5) research implications. The modular space station is considered a candidate payload for the low cost shuttle transportation system.

  18. A methodology to estimate representativeness of LAI station observation for validation: a case study with Chinese Ecosystem Research Network (CERN) in situ data

    NASA Astrophysics Data System (ADS)

    Xu, Baodong; Li, Jing; Liu, Qinhuo; Zeng, Yelu; Yin, Gaofei

    2014-11-01

    Leaf Area Index (LAI) is known as a key vegetation biophysical variable. To effectively use remote sensing LAI products in various disciplines, it is critical to understand the accuracy of them. The common method for the validation of LAI products is firstly establish the empirical relationship between the field data and high-resolution imagery, to derive LAI maps, then aggregate high-resolution LAI maps to match moderate-resolution LAI products. This method is just suited for the small region, and its frequencies of measurement are limited. Therefore, the continuous observing LAI datasets from ground station network are important for the validation of multi-temporal LAI products. However, due to the scale mismatch between the point observation in the ground station and the pixel observation, the direct comparison will bring the scale error. Thus it is needed to evaluate the representativeness of ground station measurement within pixel scale of products for the reasonable validation. In this paper, a case study with Chinese Ecosystem Research Network (CERN) in situ data was taken to introduce a methodology to estimate representativeness of LAI station observation for validating LAI products. We first analyzed the indicators to evaluate the observation representativeness, and then graded the station measurement data. Finally, the LAI measurement data which can represent the pixel scale was used to validate the MODIS, GLASS and GEOV1 LAI products. The result shows that the best agreement is reached between the GLASS and GEOV1, while the lowest uncertainty is achieved by GEOV1 followed by GLASS and MODIS. We conclude that the ground station measurement data can validate multi-temporal LAI products objectively based on the evaluation indicators of station observation representativeness, which can also improve the reliability for the validation of remote sensing products.

  19. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  20. Desert and desertification in Iran

    NASA Astrophysics Data System (ADS)

    Bahrami, M.

    2009-04-01

    One of the greatest environmental concerns in Iran as in other arid and semiarid countries is the transformation of once productive, or marginally productive, land to deteriorated land and soil unable to support plants and animals. Because the land becomes barren and dry, the process is described as desertification, which occurs as a sequence of events. The area of deserts in Iran is about 340,000 Km2 (less than one fifth of its total area), of which 100,000 Km2 is being used for some cultivation, 120,000 Km2 is subjected to moving sands about 40 % of which is active sand dunes. Most of features and processes usual in world famous deserts are also observed in Iran: low precipitation, high evaporation, poor or lack of vegetation, saline and alkaline soils, low population and small and sparse oases. The deserts of Iran are generally classified in the subtropical, warm, arid and semiarid group, but the effect and presence of some geographical and geoclimatical factors such as height, vicinity to Indian Ocean and so on do some changes in climatic conditions and geographical features causing some local and regional differences in them. Geographically, two groups of deserts have been known in Iran: (1) Coastal deserts which, like a ribbon with variable width, stretch from extreme southeast to extreme southwest, at the north parts of Oman Sea and Persian Gulf. One important feature of these deserts is relatively high humidity which differentiates them from other deserts. This causes an increase in vegetation coverage and hence a decrease in eolian erosion and also a dominance of chemical weathering to that of physical. (2) internal deserts, which rest in central, eastern and southeastern plateau of the country and in independent and semi dependent depressions. This situation, which is due to the surrounding high mountains, blocks humidity entry and causes the aridity of these deserts. Wind as a dominant process in the area causes deflated features such as Reg (desert

  1. Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts

    USGS Publications Warehouse

    Kamp, Johannes; Koshkin, Maxim A; Bragina, Tatyana M; Katzner, Todd Eli; Milner-Gulland, E J; Schreiber, Dagmar; Sheldon, Robert; Shmalenko, Alyona; Smelansky, Ilya; Terraube, Julien; Urazaliev, Ruslan

    2016-01-01

    Temperate grasslands have suffered disproportionally from conversion to cropland, degradation and fragmentation. A large proportion of the world’s remaining near-natural grassland is situated in Kazakhstan. We aimed to assess current and emerging threats to steppe and semi-desert biodiversity in Kazakhstan and evaluate conservation research priorities. We conducted a horizon-scanning exercise among conservationists from academia and practice. We first compiled a list of 45 potential threats. These were then ranked by the survey participants according to their perceived severity, the need for research on them, and their novelty. The highest-ranked threats were related to changes in land use (leading to habitat loss and deterioration), direct persecution of wildlife, and rapid infrastructure development due to economic and population growth. Research needs were identified largely in the same areas, and the mean scores of threat severity and research need were highly correlated. Novel threats comprised habitat loss by photovoltaic and wind power stations, climate change and changes in agriculture such as the introduction of biofuels. However, novelty was not correlated with threat severity or research priority, suggesting that the most severe threats are the established ones. Important goals towards more effective steppe and semi-desert conservation in Kazakhstan include more cross-sector collaboration (e.g. by involving stakeholders in conservation and agriculture), greater allocation of funds to under-staffed areas (e.g. protected area management), better representativeness and complementarity in the protected area system and enhanced data collection for wildlife monitoring and threat assessments (including the use of citizen-science databases).

  2. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-11-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2

  3. Internet-to-orbit gateway and virtual ground station: A tool for space research and scientific outreach

    NASA Astrophysics Data System (ADS)

    Jaffer, Ghulam; Nader, Ronnie; Koudelka, Otto

    2011-09-01

    Students in higher education, and scientific and technological researchers want to communicate with the International Space Station (ISS), download live satellite images, and receive telemetry, housekeeping and science/engineering data from nano-satellites and larger spacecrafts. To meet this need the Ecuadorian Civilian Space Agency (EXA) has recently provided the civilian world with an internet-to-orbit gateway (Hermes-A/Minotaur) Space Flight Control Center (SFCC) available for public use. The gateway has a maximum range of tracking and detection of 22,000 km and sensitivity such that it can receive and discriminate the signals from a satellite transmitter with power˜0.1 W. The capability is enough to receive the faintest low-earth-orbit (LEO) satellites. This gateway virtually connects participating internet clients around the world to a remote satellite ground station (GS), providing a broad community for multinational cooperation. The goal of the GS is to lower financial and engineering barriers that hinder access to science and engineering data from orbit. The basic design of the virtual GS on a user side is based on free software suites. Using these and other software tools the GS is able to provide access to orbit for a multitude of users without each having to go through the costly setups. We present the design and implementation of the virtual GS in a higher education and scientific outreach settings. We also discuss the basic architecture of the single existing system and the benefits of a proposed distributed system. Details of the software tools and their applicability to synchronous round-the-world tracking, monitoring and processing performed by students and teams at Graz University of Technology, Austria, EXA-Ecuador, University of Michigan, USA and JAXA who have participated in various mission operations and have investigated real-time satellite data download and image acquisition and processing. Students and other remote users at these

  4. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  5. Ecological principles of recovery of degraded desert communities

    SciTech Connect

    Gunin, P.D.; Dedkov, V.P.

    1986-07-01

    In 1973-1984, the authors conducted a study of edaphic conditions at various stages of mossing-over and the reaction of dominant species (sedge, white saxaul, and others) to a change in ecological conditions. Investigations were conducted over the territory of the Repetek sandy-desert station in the Eastern Kara-kums. Experiments to test the resistance of grass species to mossing-over were conducted simultaneously. The results obtained allow the authors to draw a conclusion about the actual possibility for restoring the degraded pastures by means of creating ilak-meadowgrass communities. The method for battling degraded desert pastures by the introduction of meadowgrass into moss-ilak-white saxaul is shown to be the most promising since it makes it possible to restore productivity and increase its fodder content.

  6. Lidar Measurements for Desert Dust Characterization: An Overview

    NASA Technical Reports Server (NTRS)

    Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.

    2012-01-01

    We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper

  7. Carbonaceous aerosols observed at Ieodo Ocean Research Station and implication for the role of secondary aerosols in fog formation

    NASA Astrophysics Data System (ADS)

    Han, J.; Shin, B.; Hwang, G.; Kim, J.; Lee, M.; Shim, J.

    2014-12-01

    Carbonaceous components and soluble ions of PM2.5 were measured at Ieodo Ocean Research Station (IORS) from December 2004 to June 2008. IORS is a 40-m research tower and located in the East China Sea (32.07°N, 125.10°E). As IORS is distanced equally from South Korea, China, and Japan, it is an ideal place to monitor Asian outflows with the least influence of local emissions. The mean concentration of PM2.5 mass was 21.8 ± 14.9 μg/m3 with the maximum of 35.3 μg/m3 (March) and the minimum of 11.2 μg/m3 (September). The monthly variation of PM2.5 mass was similar to that of O3 due to meteorological conditions, which determines the degree of influence from nearby lands. Chinese outflows were mostly responsible for the enhancement of mass and major constituents of PM2.5 such as sulfate, OC, and EC. Their concentrations were the lowest in summer when aged marine air masses were dominant. It is noteworthy that sulfate was also enhanced when air mass passed through Japan, even though its concentration was not as high as that of Chinese outflows. In June, OC concentration was distinctively high with high OC/EC ratio of ~9.5. At IORS, June is characterized by the most frequent occurrence of fog and the lowest visibility with the highest relative humidity. In China, the clearing fire of agricultural residues is the major source of fine aerosols in June, leading to severe haze (e.g., Cheng et al., 2014). In addition, the aerosol optical depth was also observed to be the maximum over northeast Asia in June (Kim et al., 2007). Consequently, our results suggest that organic aerosol played a critical role in fog formation in the study region. References Cheng, Z., et al. (2014) Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011, Atmos. Chem. Phys., 14, 4573-4585, doi:10.5194/acp-14-4573-2014. Kim, S.-W., et al. (2007) Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from

  8. Phytoremediation for Oily Desert Soils

    NASA Astrophysics Data System (ADS)

    Radwan, Samir

    This chapter deals with strategies for cleaning oily desert soils through rhizosphere technology. Bioremediation involves two major approaches; seeding with suitable microorganisms and fertilization with microbial growth enhancing materials. Raising suitable crops in oil-polluted desert soils fulfills both objectives. The rhizosphere of many legume and non-legume plants is richer in oil-utilizing micro-organisms than non-vegetated soils. Furthermore, these rhizospheres also harbour symbiotic and asymbiotic nitrogen-fixing bacteria, and are rich in simple organic compounds exuded by plant roots. Those exudates are excellent nutrients for oil-utilizing microorganisms. Since many rhizospheric bacteria have the combined activities of hydrocarbon-utilization and nitrogen fixation, phytoremediation provides a feasible and environmentally friendly biotechnology for cleaning oil-polluted soils, especially nitrogen-poor desert soils.

  9. Can shrub cover increase predation risk for a desert rodent?

    USGS Publications Warehouse

    Schooley, R.L.; Sharpe, Peter B.

    1996-01-01

    Previous research indicates that predation risk may influence activity patterns, habitat partitioning, and community structure of nocturnal desert rodents. Shrub microhabitat is typically considered safer than open microhabitat for these small mammals. We investigated predation risk for Townsend's ground squirrels (Spermophilus townsendii), which are diurnal desert rodents that detect predators visually and use burrows for refuge. Our results suggested that shrub cover may increase risk for these squirrels by decreasing their ability to escape from predators. Our field experiment indicated that running speeds of juvenile squirrels were lower in shrub (Ceratoides lanata) habitat than in open areas. Shrub cover was also associated with shorter predator-detection distances (mammalian and avian) and fewer refuges (burrow entrances per hectare) than in open areas in one year but not in another. Our study demonstrated that the visual and locomotive obstruction of vegetative cover may increase predation risk for diurnal desert rodents and that elements of habitat-dependent risk may be temporally dynamic.

  10. Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    J. Robert Woolsey; Thomas McGee; Carol Lutken

    2008-05-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency

  11. Desert soil collection at the JPL soil science laboratory

    NASA Technical Reports Server (NTRS)

    Blank, G. B.; Cameron, R. E.

    1969-01-01

    Collection contains desert soils and other geologic materials collected from sites in the United States and foreign countries. Soils are useful for test purposes in research related to extraterrestrial life detection, sampling, harsh environmental studies, and determining suitable areas for training astronauts for lunar exploration.

  12. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  13. Atmospheric Movement of Microorganisms in Clouds of Desert Dust and Implications for Human Health

    PubMed Central

    Griffin, Dale W.

    2007-01-01

    Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources. PMID:17630335

  14. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health

    USGS Publications Warehouse

    Griffin, Dale W.

    2007-01-01

    Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources.

  15. Atmospheric phosphorus load to the Baltic Sea - first measurements at the Utö Atmospheric and Marine Research station

    NASA Astrophysics Data System (ADS)

    Ruoho-Airola, Tuija; Saarnio, Karri; Hemmilä, Marja; Knuuttila, Seppo; Makkonen, Ulla; Vuorenmaa, Jussi

    2015-04-01

    The HELCOM (Baltic Marine Environment Protection Commission) Baltic Sea Action Plan (BSAP) has the overall objective of reaching the Baltic Sea in a good environmental status by 2021. The HELCOM Contracting Parties have agreed to restrict their nutrient loads to the Baltic Sea according to the BSAP Maximum Allowable Inputs (MAI) of nitrogen and phosphorus (P), which base on the eutrophication targets. Both waterborne and airborne loads should be taken into account in the implementation of the country allocation of nutrient reductions. The waterborne P load is regularly assessed in detail, whereas for the airborne part a very preliminary estimate is available due to insufficient monitoring data. At present a fixed estimate of 5 mg m-2 of atmospheric P deposition per year is used in the BSAP implementation. Measurements of bulk deposition and particulate concentration of P have been performed at the Utö Atmospheric and Marine Research station (59° 46'50N, 21° 22'23E) at the outer edge of the Archipelago Sea. Utö is a small rocky island without any arable land, so the local anthropogenic P emissions are low. Weekly bulk deposition measurements started in February, 2013 and the weekly sampling for the PM2.5 and the daily sampling for PM10 in 2014. Based on the results of the first year of the bulk deposition measurements, the annual wet deposition of total P in precipitation was nearly 5 mg m-2. For soluble PO4-P, the wet deposition in precipitation was about 2 mg m-2. The maximum concentrations were measured in late spring and in summer during the biological growing period. The level of the soluble PO4-P concentration in the PM10 particles was lower during the winter months (median 6 ng m-3) compared to the growing season (median 10 ng m-3). In fine particles (PM2.5), the PO4-P level was lower (1-2 ng m-3) than in the PM10 samples, often under the detection level of the IC method used. Natural biogenic aerosols like pollen, algae and fragments of leaves are

  16. Long-term MAX-DOAS measurement of trace gases and aerosol in the Environmental Research Station Schneefernerhaus

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoru; Hao, Nan; Hendrick, François; Van Roozendael, Michel; Holla, Robert; Valks, Pieter

    2016-04-01

    The Environmental Research Station Schneefernerhaus (Umwelt Forschungsstation Schneefernerhaus, UFS) is located immediately under the summit of Zugspitze (2962 m), the highest mountain of Germany, at a height of 2650 m. The UFS is a rare observation site in Germany with mostly clean and unpolluted air. It is ideal for both stratospheric composition measurements and trace gas measurements in the free-troposphere. It is optimal for detecting pollution events in the free-troposphere, which are indications of short- or long-range transport of air pollutants. A MAX-DOAS instrument has been working in the UFS since February 2011. With the zenith spectrum of each cycle used as the reference, the differential slant column densities (DSCDs) of trace gases are calculated from the spectra with Differential Optical Absorption Spectroscopy (DOAS) method. The DSCDs of both O4 and NO2 are calculated in two different wavelength intervals, 338-370 nm in the UV region and 440-490 nm in the VIS region. For HCHO and HONO, optimal fitting windows have been determined in the UV region. A retrieval algorithm, based on the radiative transfer model LIDORT and the optimal estimation technique, is used to provide information on the vertical profiles and vertical column densities (VCDs) of aerosol and trace gases. Meanwhile, zenith-sky radiance spectra during twilight hours are analyzed using DOAS method to derive the total vertical column densities (VCDs) of O3 and NO2. A zenith spectrum measured in the noon of a summer day was chosen as the reference spectrum. The slant column densities (SCDs) of O3 and NO2, which are the direct product of the DOAS analysis, are then converted into VCDs using the air mass factors (AMFs) derived by radiative transfer calculations. This work presents the results of the MAX-DOAS measurement in the UFS from 2012 to 2015, including aerosol (derived from O4 measurement), NO2, HCHO, and HONO, etc. The vertical profiles as well as the seasonal and diurnal variation

  17. Radiogeochemical Properties and Cycling at the Caribbean National Forest El Verde Research Station and Surrounding Region on the Island of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Ithier-Guzman, W.; Pyrtle, A. J.

    2007-12-01

    From 1964 through the early 1970's the Atomic Energy Commission conducted a series of experiments at The El Verde Research Station in Puerto Rico. Among these experiments included several involving the use of Cs-137 and other anthropogenic radionuclides. Radiological tests on the trees and vegetation were conducted in a small section of rainforest to study mineral cycling and metabolism. Studies on fauna and water movement were also conducted. In 2003 an investigation of long-term radiogeochemical cycling at the El Verde Research Station was launched. Results from radiogeochemical analysis of sediments and soils collected from El Verde Research Station, nearby streams, as well as the estuary of Coco Beach in the municipality of Rio Grande, Puerto Rico are presented. Cs-137 activities range from below detection limits to 0.4 Bq/g. Ancillary data obtained from grain size, X-ray diffraction, ICP-OES analyses are also discussed. Understanding the current environmental health of study region's ecosystem is vital, given the fact that this area serves as one of the largest sources of potable water for more than 13 municipalities of Puerto Rico.

  18. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... Wind Farm Project AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Intent to... GRC Plum Brook Station Wind Farm Project located near Sandusky, Ohio, pursuant to the National... and operation of the wind farm. The purpose of constructing and operating the wind farm is for NASA...

  19. [MODERN INSTRUMENTS FOR EAR, NOSE AND THROAT RENDERING AND EVALUATION IN RESEARCHES ON RUSSIAN SEGMENT OF THE INTERNATIONAL SPACE STATION].

    PubMed

    Popova, I I; Orlov, O I; Matsnev, E I; Revyakin, Yu G

    2016-01-01

    The paper reports the results of testing some diagnostic video systems enabling digital rendering of TNT teeth and jaws. The authors substantiate the criteria of choosing and integration of imaging systems in future on Russian segment of the International space station kit LOR developed for examination and download of high-quality images of cosmonauts' TNT, parodentium and teeth. PMID:27344858

  20. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  1. Targeting space station technologies

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1983-01-01

    NASA's Space Station Technology Steering Committee has undertaken the definition of the level of technology that is desirable for use in the initial design and operation of an evolutionary, long service life space station, as well as the longer term technology required for the improvement of capabilities. The technology should initially become available in 1986, in order to support a space station launch as early as 1990. Toward this end, the committee seeks to assess technology forecasts based on existing research and testing capacity, and then plan and monitor a program which will move current technology to the requisite level of sophistication and reliability. The Space Shuttle is assumed to be the vehicle for space station delivery, assembly, and support on a 90-day initial cycle. Space station tasks will be military, commercial, and scientific, including on-orbit satellite servicing.

  2. ANALYSIS AND ASSESSMENT OF IMPACTS ON BIODIVERSITY: A FRAMEWORK FOR ENVIRONMENTAL MANAGEMENT ON DOD LANDS WITHIN THE CALIFORNIA MOJAVE DESERT: A RESEARCH PLAN

    EPA Science Inventory

    The purpose of the research proposed in this document is to evaluate the effects of human activities on biodiversity and related environmental concerns within the Mojave ecoregion of California both at the present and in 2020. While planning efforts and analyses are ongoing withi...

  3. The emergence of modern statistics in agricultural science: analysis of variance, experimental design and the reshaping of research at Rothamsted Experimental Station, 1919-1933.

    PubMed

    Parolini, Giuditta

    2015-01-01

    During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher's methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians' tools and expertise into the station research programme. Fisher's statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them. PMID:25311906

  4. Relationship Between Job Burnout and Neuroendocrine Indicators in Soldiers in the Xinjiang Arid Desert: A Cross-Sectional Study.

    PubMed

    Tao, Ning; Zhang, Jianjiang; Song, Zhixin; Tang, Jinhua; Liu, Jiwen

    2015-12-01

    The purpose of this study was to explore the relationship between job burnout and neuroendocrine indicators in soldiers living in a harsh environment. Three hundred soldiers stationed in the arid desert and 600 in an urban area were recruited. They filled in the Chinese Maslach Burnout Inventory questionnaire. One hundred soldiers were randomly selected from each group to measure their levels of noradrenaline, serotonin, heat shock protein (HSP)-70, adrenocorticotropic hormone, and serum cortisol. Job burnout was more common in soldiers from urban areas than those from rural areas. Job burnout was significantly higher among soldiers stationed in the arid desert than those in urban areas. For soldiers in the arid desert, the levels of HSP-70, serum cortisol, and adrenocorticotropic hormone were significantly higher than in soldiers in urban areas. Correlation analyses showed that the degree of job burnout was weakly negatively correlated with the level of HSP-70. Being an only child, HSP-70 levels, cortisol levels, and ACTH levels were independently associated with job burnout in soldiers stationed in the arid desert. A higher level of job burnout in soldiers stationed in arid desert and a corresponding change in neuroendocrine indicators indicated a correlation between occupational stress and neurotransmitters. PMID:26633442

  5. Relationship Between Job Burnout and Neuroendocrine Indicators in Soldiers in the Xinjiang Arid Desert: A Cross-Sectional Study

    PubMed Central

    Tao, Ning; Zhang, Jianjiang; Song, Zhixin; Tang, Jinhua; Liu, Jiwen

    2015-01-01

    The purpose of this study was to explore the relationship between job burnout and neuroendocrine indicators in soldiers living in a harsh environment. Three hundred soldiers stationed in the arid desert and 600 in an urban area were recruited. They filled in the Chinese Maslach Burnout Inventory questionnaire. One hundred soldiers were randomly selected from each group to measure their levels of noradrenaline, serotonin, heat shock protein (HSP)-70, adrenocorticotropic hormone, and serum cortisol. Job burnout was more common in soldiers from urban areas than those from rural areas. Job burnout was significantly higher among soldiers stationed in the arid desert than those in urban areas. For soldiers in the arid desert, the levels of HSP-70, serum cortisol, and adrenocorticotropic hormone were significantly higher than in soldiers in urban areas. Correlation analyses showed that the degree of job burnout was weakly negatively correlated with the level of HSP-70. Being an only child, HSP-70 levels, cortisol levels, and ACTH levels were independently associated with job burnout in soldiers stationed in the arid desert. A higher level of job burnout in soldiers stationed in arid desert and a corresponding change in neuroendocrine indicators indicated a correlation between occupational stress and neurotransmitters. PMID:26633442

  6. Application of Space Technology to Discovery of Ancient Desert Trade Routes in the Southern Arabian Peninsula

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Crippen, Robert; Hedges, George; Zarins, Juris

    1997-01-01

    Over the last decade, an unusual combination of historical research, traditional archaeology, and application of space technolgy has demonstrated the existence of trans-desert trade routes in the sourthern Arabian peninsula.

  7. Modeling Soil Moisture in the Mojave Desert

    USGS Publications Warehouse

    Miller, David M.; Hughson, Debra; Schmidt, Kevin M.

    2008-01-01

    The Mojave Desert is an arid region of southeastern California and parts of Nevada, Arizona, and Utah; the desert occupies more than 25,000 square miles (fig. 1). Ranging from below sea level to over 5,000 feet (1,524 m) in elevation, the Mojave Desert is considered a ?high desert.? On the west and southwest it is bounded by the Sierra Nevada, the San Gabriel, and the San Bernardino Mountains. These imposing mountains intercept moisture traveling inland from the Pacific Ocean, producing arid conditions characterized by extreme fluctuations in daily temperatures, strong seasonal winds, and an average annual precipitation of less than six inches. The Mojave Desert lies farther south and at a lower elevation than the cooler Great Basin Desert and grades southward into the even lower and hotter Sonoran Desert.

  8. Desert Pathfinder at Work

    NASA Astrophysics Data System (ADS)

    2005-09-01

    The Atacama Pathfinder Experiment (APEX) project celebrates the inauguration of its outstanding 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, passed successfully its Science Verification phase in July, and since then is performing regular science observations. This new front-line facility provides access to the "Cold Universe" with unprecedented sensitivity and image quality. After months of careful efforts to set up the telescope to work at the best possible technical level, those involved in the project are looking with satisfaction at the fruit of their labour: APEX is not only fully operational, it has already provided important scientific results. "The superb sensitivity of our detectors together with the excellence of the site allow fantastic observations that would not be possible with any other telescope in the world," said Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project. ESO PR Photo 30/05 ESO PR Photo 30/05 Sub-Millimetre Image of a Stellar Cradle [Preview - JPEG: 400 x 627 pix - 200k] [Normal - JPEG: 800 x 1254 pix - 503k] [Full Res - JPEG: 1539 x 2413 pix - 1.3M] Caption: ESO PR Photo 30/05 is an image of the giant molecular cloud G327 taken with APEX. More than 5000 spectra were taken in the J=3-2 line of the carbon monoxide molecule (CO), one of the best tracers of molecular clouds, in which star formation takes place. The bright peak in the north of the cloud is an evolved star forming region, where the gas is heated by a cluster of new stars. The most interesting region in the image is totally inconspicuous in CO: the G327 hot core, as seen in methanol contours. It is a truly exceptional source, and is one of the richest sources of emission from complex organic molecules in the

  9. Nelson's big horn sheep (Ovis canadensis nelsoni) trample Agassiz's desert tortoise (Gopherus agassizii) burrow at a California wind energy facility

    USGS Publications Warehouse

    Agha, Mickey; Delaney, David F.; Lovich, Jeffrey E.; Briggs, Jessica; Austin, Meaghan; Price, Steven J.

    2015-01-01

    Research on interactions between Agassiz's desert tortoises (Gopherus agassizii) and ungulates has focused exclusively on the effects of livestock grazing on tortoises and their habitat (Oldemeyer, 1994). For example, during a 1980 study in San Bernardino County, California, 164 desert tortoise burrows were assessed for vulnerability to trampling by domestic sheep (Ovis aries). Herds of grazing sheep damaged 10% and destroyed 4% of the burrows (Nicholson and Humphreys 1981). In addition, a juvenile desert tortoise was trapped and an adult male was blocked from entering a burrow due to trampling by domestic sheep. Another study found that domestic cattle (Bos taurus) trampled active desert tortoise burrows and vegetation surrounding burrows (Avery and Neibergs 1997). Trampling also has negative impacts on diversity of vegetation and intershrub soil crusts in the desert southwest (Webb and Stielstra 1979). Trampling of important food plants and overgrazing has the potential to create competition between desert tortoises and domestic livestock (Berry 1978; Coombs 1979; Webb and Stielstra 1979).

  10. Elementary and Secondary Educational Services of Public Television Grantees: Highlights from the 1997 Station Activities Survey. CPB Research Notes, No. 104.

    ERIC Educational Resources Information Center

    Corporation for Public Broadcasting, Washington, DC.

    This report provides a summary of K-12 educational services offered by Corporation for Public Broadcasting-supported television stations from CPB's annual Station Activities Survey. Stations are broken into cohorts by license type and budget size. The 1997 Station Activities Survey asked public television stations whether they provided…

  11. Compilation of Water-Resources Data and Hydrogeologic Setting for the Allison Woods Research Station in Iredell County, North Carolina, 2005-2008

    USGS Publications Warehouse

    Huffman, Brad A.; Abraham, Joju

    2010-01-01

    Water-resources data were collected to describe the hydrologic conditions at the Allison Woods research station near Statesville, North Carolina, in the Piedmont Physiographic Province of North Carolina. Data collected by the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, from April 2005 through September 2008 are presented in this report. Data presented include well-construction characteristics and periodic groundwater-level measurements for 29 wells, borehole geophysical logs for 8 wells, hourly groundwater-level measurements for 5 wells, continuous water-quality measurements for 3 wells, periodic water-quality samples for 12 wells and 1 surface-water station, slug-test results for 11 wells, and shallow groundwater-flow maps. In addition, the geology and hydrogeology at the site are summarized.

  12. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  13. Microbiology and Moisture Uptake of Desert Soils

    NASA Astrophysics Data System (ADS)

    Kress, M. E.; Bryant, E. P.; Morgan, S. W.; Rech, S.; McKay, C. P.

    2005-12-01

    We have initiated an interdisciplinary study of the microbiology and water content of desert soils to better understand microbial activity in extreme arid environments. Water is the one constituent that no organism can live without; nevertheless, there are places on Earth with an annual rainfall near zero that do support microbial ecosystems. These hyperarid deserts (e.g. Atacama and the Antarctic Dry Valleys) are the closest terrestrial analogs to Mars, which is the subject of future exploration motivated by the search for life beyond Earth. We are modeling the moisture uptake by soils in hyperarid environments to quantify the environmental constraints that regulate the survival and growth of micro-organisms. Together with the studies of moisture uptake, we are also characterizing the microbial population in these soils using molecular and culturing methods. We are in the process of extracting DNA from these soils using MoBio extraction kits. This DNA will be used as a template to amplify bacterial and eukaryotic ribosomal DNA to determine the diversity of the microbial population. We also have been attempting to determine the density of organisms by culturing on one-half strength R2A agar. The long-range goal of this research is to identify special adaptations of terrestrial life that allow them to inhabit extreme arid environments, while simultaneously quantifying the environmental parameters that enforce limits on these organisms' growth and survival.

  14. Desert tortoise hibernation: Temperatures, timing, and environment

    USGS Publications Warehouse

    Nussear, K.E.; Esque, T.C.; Haines, D.F.; Tracy, C.R.

    2007-01-01

    This research examined the onset, duration, and termination of hibernation in Desert Tortoises (Gopherus agassizii) over several years at multiple sites in the northeastern part of their geographic range, and recorded the temperatures experienced by tortoises during winter hibernation. The timing of hibernation by Desert Tortoises differed among sites and years. Environmental cues acting over the short-term did not appear to influence the timing of the hibernation period. Different individual tortoises entered hibernation over as many as 44 days in the fall and emerged from hibernation over as many as 49 days in the spring. This range of variation in the timing of hibernation indicates a weak influence at best of exogenous cues hypothesized to trigger and terminate hibernation. There do appear to be regional trends in hibernation behavior as hibernation tended to begin earlier and continue longer at sites that were higher in elevation and generally cooler. The emergence date was generally more similar among study sites than the date of onset. While the climate and the subsequent timing of hibernation differed among sites, the average temperatures experienced by tortoises while hibernating differed by only about five degrees from the coldest site to the warmest site. ?? 2007 by the American Society of Ichthyologists and Herpetologists.

  15. The Princess Elisabeth Station

    NASA Technical Reports Server (NTRS)

    Berte, Johan

    2012-01-01

    Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.

  16. Distribution of desert varnish in Arizona

    NASA Technical Reports Server (NTRS)

    Elvidge, Christopher D.

    1989-01-01

    Desert varnish is the dark coat of clay and ferromanganese oxides developed on exposed rock surfaces in arid regions. It forms from the accretion of material from windblown dust. The distribution of desert varnish was mapped in Arizona. It was discovered that desert varnish could be mapped on a regional scale. Well developed desert varnish is common on stable rock surfaces in areas having alkaline soils and less than about 25 cm of annual precipitation. Rock surfaces in areas having more than 40 cm of annual precipitation are generally devoid of desert varnish. An experiment was conducted with varnished desert pavement stone. The stones were broken in half and half was set on a roof in central Illinois from April until October. Removed from the alkaline desert environment, it only took seven months for the varnish to develop an eroded appearance. This experiment graphically illustrates the dependency of desert varnish on alkalinity. In this context, the zones of eroded desert varnish in Arizona indicate that the area of active desert varnish formation has fluctuated, expanding in drier times and contracting/eroding in wetter times.

  17. Science Operations Development for Field Analogs: Lessons Learned from the 2010 Desert RATS Test

    NASA Technical Reports Server (NTRS)

    Eppler, D. B.; Ming, D. W.

    2011-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities.

  18. Basic results of the medical research conducted during the flight of two crews on the Salyut-5 orbital station

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The study of the effect of space factors, especially weightlessness, on man, taking into account prophylactic measures and devices to counteract that effect was part of the program for two flights on the Salyut 5 orbital station. Information from the equipment on board was transmitted telemetrically including: an electrocardiogram; a sphygmogram of carotid and femoral arteries; a kinetocardiogram; a tacho-oscillogram of the humeral artery, perimetric oscillations of the femur, venous pulse and pressure in the jugular veins, vital capacity of the lungs, respiration rate and lung ventilation. Stress factors, metabolism, biological and bacteriological and other tests were included. A comparison was made between these data and pre- and postflight test result.

  19. Vegetation, smegetation: How InSAR research on tectonics and land surface change has expanded from the deserts to the rain forests and beyond.

    NASA Astrophysics Data System (ADS)

    Lohman, R. B.

    2015-12-01

    The upcoming avalanche of openly available SAR imagery is expanding the horizons of what can and cannot be accomplished with InSAR. Historically, InSAR performed best in arid regions - an observation that became a bit of a self-fulfilling prophecy as satellite agencies acquired less data in regions with vegetation and agricultural activity. Here we present an overview of the development of InSAR research in tectonics and land surface change over the past 2+ decades, with a view towards some of the new advances in modeling and data management that will be necessary to fully take advantage of SAR data in the near future. One of the most basic breakthroughs will be that issues with decorrelation and the need for sophisticated time series analysis just to enable phase unwrapping will no longer be a major problem over many areas of the globe. New challenges will be the interpretation of coherent signal related to vegetation, soil moisture and time-variable phase scattering height in regions that previously would have just been flagged as "noise". We present results based on the ingestion of independent optical and radar observation types into SAR time series analysis, with applications to deformation sources in the Central and Eastern United States.The land surface properties in the Central and Eastern United States differ from those in the arid regions where InSAR has often been used, both in the presence of vegetation and the often very rapid changes in surface scattering characteristics that occur seasonally and during single events (snowfall, flooding, etc.). In the past, observations were so sparse that these changes resulted in decorrelation, rendering the data unusable. However, shorter acquisition times and a wider range of radar wavelengths allow the extraction of coherent signals from these areas, even spanning large snow storms. The resulting data contain signals that were often disregarded during InSAR time series analysis, but that must be either accounted

  20. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  1. Land Surface Processes Simulation Over Thar Desert in Northwest India

    NASA Astrophysics Data System (ADS)

    Raja, P.; Srinivas, C. V.; Hari Prasad, K. B. R. R.; Singh, Nilendu

    2016-06-01

    Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute's experimental field station (26o59'41″N; 71o29'10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12-14 January (peak winter); 29-31 May (peak summer), 19-21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are

  2. Land Surface Processes Simulation Over Thar Desert in Northwest India

    NASA Astrophysics Data System (ADS)

    Raja, P.; Srinivas, C. V.; Hari Prasad, K. B. R. R.; Singh, Nilendu

    2016-02-01

    Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute's experimental field station (26o59'41″N; 71o29'10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12-14 January (peak winter); 29-31 May (peak summer), 19-21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are

  3. Status of the Desert Fireball Network

    NASA Astrophysics Data System (ADS)

    Devillepoix, H. A. R.; Bland, P. A.; Towner, M. C.; Cupák, M.; Sansom, E. K.; Jansen-Sturgeon, T.; Howie, R. M.; Paxman, J.; Hartig, B. A. D.

    2016-01-01

    A meteorite fall precisely observed from multiple locations allows us to track the object back to the region of the Solar System it came from, and sometimes link it with a parent body, providing context information that helps trace the history of the Solar System. The Desert Fireball Network (DFN) is built in arid areas of Australia: its observatories get favorable observing conditions, and meteorite recovery is eased thanks to the mostly featureless terrain. After the successful recovery of two meteorites with 4 film cameras, the DFN has now switched to a digital network, operating 51 cameras, covering 2.5 million km2 of double station triangulable area. Mostly made of off-the-shelf components, the new observatories are cost effective while maintaining high imaging performance. To process the data (~70TB/month), a significant effort has been put to writing an automated reduction pipeline so that all events are reduced with little human intervention. Innovative techniques have been implemented for this purpose: machine learning algorithms for event detection, blind astrometric calibration, and particle filter simulations to estimate both physical properties and state vector of the meteoroid. On 31 December 2015, the first meteorite from the digital systems was recovered: Murrili (the 1.68 kg H5 ordinary chondrite was observed to fall on 27 November 2015). Another 11 events have been flagged as potential meteorites droppers, and are to be searched in the coming months.

  4. Stability and resilience in coastal copepod assemblages: The case of the Mediterranean long-term ecological research at Station MC (LTER-MC)

    NASA Astrophysics Data System (ADS)

    Mazzocchi, Maria Grazia; Dubroca, Laurent; García-Comas, Carmen; Capua, Iole Di; Ribera d'Alcalà, Maurizio

    2012-05-01

    We analyzed the copepod assemblages over two decades (1984-2006) in a coastal ongoing time-series at Station MC in the inner Gulf of Naples (Tyrrhenian Sea, Western Mediterranean), which is part of the International network of Long-Term Ecological Research (LTER). The seasonal and interannual time courses of species abundance and composition were related to depth integrated temperature, salinity, and chlorophyll a, which provide essential information on the local environmental dynamics. Our aims were to characterize the main modes of copepod variability and to highlight possible changes occurred in the period in relation to the local environmental dynamics. Despite the great variability at seasonal and interannual scales, our site did not show evidence of discontinuities or trends in water column properties as compared to other Mediterranean sites for the same period, which we interpret as resulting from the position of Station MC that is exposed to the influence of a complex climate forcing. Abrupt changes did not appear for most of the key representative species (e.g., Acartia clausi, Centropages typicus, Paracalanus parvus, Temora stylifera, and juveniles of Clausocalanus spp./P. parvus) beyond the high interannual variability in the abundance patterns. A few indications suggest that our station might have acquired less coastal characters (e.g., decreasing chlorophyll a concentrations), but the signals from the copepod assemblages appeared only in rare species. A significant increase was observed in the occurrence of some typical offshore calanoids (e.g., Neocalanus gracilis, Scolecithricella spp.), while a few species typical of confined areas disappeared (e.g., Acartia margalefi, Paracartia latisetosa). STATICO analysis showed a significant resilience in the seasonal cycle of the copepod assemblages at Station MC, even when there was high variability in the environmental parameters. While the changes recorded in the least abundant species may be indicative of

  5. HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO

    SciTech Connect

    Lutken, Carol

    2013-07-31

    A permanent observatory has been installed on the seafloor at Federal Lease Block, Mississippi Canyon 118 (MC118), northern Gulf of Mexico. Researched and designed by the Gulf of Mexico Hydrates Research Consortium (GOM-HRC) with the geological, geophysical, geochemical and biological characterization of in situ gas hydrates systems as the research goal, the site has been designated by the Bureau of Ocean Energy Management as a permanent Research Reserve where studies of hydrates and related ocean systems may take place continuously and cooperatively into the foreseeable future. The predominant seafloor feature at MC118 is a carbonate-hydrate complex, officially named Woolsey Mound for the founder of both the GOM-HRC and the concept of the permanent seafloor hydrates research facility, the late James Robert “Bob” Woolsey. As primary investigator of the overall project until his death in mid-2008, Woolsey provided key scientific input and served as chief administrator for the Monitoring Station/ Seafloor Observatory (MS-SFO). This final technical report presents highlights of research and accomplishments to date. Although not all projects reached the status originally envisioned, they are all either complete or positioned for completion at the earliest opportunity. All Department of Energy funds have been exhausted in this effort but, in addition, leveraged to great advantage with additional federal input to the project and matched efforts and resources. This report contains final reports on all subcontracts issued by the University of Mississippi, Administrators of the project, Hydrate research activities that both support and derive from the monitoring station/sea-floor Observatory, Mississippi Canyon 118, northern Gulf of Mexico, as well as status reports on the major components of the project. All subcontractors have fulfilled their primary obligations. Without continued funds designated for further project development, the Monitoring Station

  6. Discussion of the design of satellite-laser measurement stations in the eastern Mediterranean under the geological aspect. Contribution to the earthquake prediction research by the Wegener Group and to NASA's Crustal Dynamics Project

    NASA Technical Reports Server (NTRS)

    Paluska, A.; Pavoni, N.

    1983-01-01

    Research conducted for determining the location of stations for measuring crustal dynamics and predicting earthquakes is discussed. Procedural aspects, the extraregional kinematic tendencies, and regional tectonic deformation mechanisms are described.

  7. Interior view to the south of computer work stations in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view to the south of computer work stations in front of elevated work area 1570 on left and elevated glassed in work area 1870 on right - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID

  8. Biological soil crusts as an integral component of desert environments

    USGS Publications Warehouse

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  9. Potential of energy farming in the southeastern California desert

    SciTech Connect

    Lew, V.

    1980-04-01

    The California Energy Commission is currently analyzing the use of energy farms to provide future sources of energy for California. Energy farms can be defined as growing plants and converting them to various forms of energy. The use of marginal desert lands in southeastern California for the siting of energy farms using acacia, Eucalyptus, euphorbia, quayule, jojoba, mesquite, or tamarisk is considered. Two hypothetical scenarios using either rainfall, or rainfall and groundwater as water sources were described to determine the maximum amount of energy produced from estimated amounts of suitable land in this area. Considering both scenarios, the maximum range of energy produced is .03 to 0.4 Quads. It is recommended that (1) genetic research be continued to increase biomass yields of these and other candidate plants grown in the desert; and (2) small test plots be established at varying desert locations to collect yield growth, and survival data. Once this information is known, the identification of the best plant(s) to use for energy farming in the California desert area will be known, as well as the cost and quantity of energy produced.

  10. Performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) and other hardware in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Hogan, Robert P.; Dalton, Bonnie P.

    1991-01-01

    This paper discusses the performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) plus other associated hardware during the recent flight of Spacelab Life Sciences 1 (SLS-1). The RAHF was developed to provide proper housing (food, water, temperature control, lighting and waste management) for up to 24 rodents during flights on the Spacelab. The GPWS was designed to contain particulates and toxic chemicals generated during plant and animal handling and dissection/fixation activities during space flights. A history of the hardware development involves as well as the redesign activities prior to the actual flight are discussed.

  11. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results, attachment 2. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.

  12. The NASA Physical Science Program in Reduced Gravity: Combustion and Fluid Physics Work at the NASA Glenn Research Center and the International Space Station

    NASA Astrophysics Data System (ADS)

    Sacksteder, Kurt

    The completion of the International Space Station (ISS) includes the launching and installa-tion of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR), providing an unprecedented capability for conducting fundamental and applied research in the physical sciences. In addition to ongoing work, NASA has initiated a variety of investigations in combus-tion and fluid physics including ground-based testing and theoretical development to prepare for the utilization of these ISS capabilities. This paper will provide an overview of the CIR and FIR facilities and the portfolio of investigations that are currently aboard the ISS utilizing these facilities and the investigations that are underway for future utilization.

  13. Design, evaluation and construction of TEXESS and LUXESS, and research in mini-array technology and use of data from single stations and sparse networks

    NASA Astrophysics Data System (ADS)

    Herrin, Eugene; Golden, Paul; Robertson, Herbert

    1994-10-01

    Objectives of the contract are twofold: (1) to conduct research in seismic mini-array technology & use of data from single stations & sparse networks, and (2) to design, evaluate and construct 2 mini-array, TEXESS (Texas Experimental Seismic System) in s.w. Texas and LUXESS (Luxor Experimental Seismic System), which is NE of Luxor, Egypt. These two tasks are dubbed CLIN 1 & CLIN 2. The proposed design was along the lines of a GSE Alpha Station. TEXESS was installed by SMU personnel the week of Aug 22, 1993, & the 1st event was a local, recorded on 31 Aug. With de-installation on hold until diplomatic agreements are in place between the U.S. and Egypt for the installation of LUXESS, work has been directed to CLIN 1 research; array processing, Ms:mb studies, & the AR (3) discrimination method. Research on time-domain processing of array data has resulted in a significant decrease in the standard deviation of azimuths as compared with this statistic obtained using f-k processing. The Ms:mb method is an effective and transportable discriminant for shallow events with mb greater than 4.75. Autoregressive (AR) modeling on Lg data has resulted in the ability to discriminate small economic explosions from small earthquakes.

  14. Network topology of the desert rose

    NASA Astrophysics Data System (ADS)

    Hope, Sigmund; Kundu, Sumanta; Roy, Chandreyee; Manna, Subhrangshu; Hansen, Alex

    2015-09-01

    Desert roses are gypsum crystals that consist of intersecting disks. We determine their geometrical structure using computer assisted tomography. By mapping the geometrical structure onto a graph, the topology of the desert rose is analyzed and compared to a model based on diffusion limited aggregation. By comparing the topology, we find that the model gets a number of the features of the real desert rose right, whereas others do not fit so well.

  15. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    NASA Astrophysics Data System (ADS)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations

  16. Space Station Freedom Utilization Conference. Executive summary

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.

  17. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China.

    PubMed

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca(2+) were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca(2+). Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95 g.kg(-1)). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca(2+) to DOM, application of chemical fertilizers weakened Ca(2+) association with components of the amide II group (1510 cm(-1)) and Si-O linkage (1080 cm(-1)), whereas application of goat manure enhanced the affinity of Ca(2+) for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca(2+) and organic matter complexes. PMID:26751962

  18. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China

    PubMed Central

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca2+ were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca2+. Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95g.kg-1). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca2+ to DOM, application of chemical fertilizers weakened Ca2+ association with components of the amide II group (1510 cm-1) and Si-O linkage (1080 cm-1), whereas application of goat manure enhanced the affinity of Ca2+ for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca2+ and organic matter complexes. PMID:26751962

  19. The age of the Taklimakan Desert.

    PubMed

    Sun, Jimin; Liu, Tungsheng

    2006-06-16

    The Taklimakan Desert is located in the foreland basin of the Tibetan Plateau. We report here the results of stratigraphic investigations of a 1626-meter-thick sequence with interbedded wind-blown silt from the southern marginal Taklimakan Desert. Because the studied section is located downwind of the desert, the eolian silt accumulation is closely linked to desert formation. Our new evidence indicates that shifting sand dunes prevailed in the Tarim Basin by at least 5.3 million years ago, as they do today. We attribute this event to late Cenozoic climatic deterioration, as well as to changes in atmospheric circulation induced by Tibetan Plateau uplift. PMID:16778048

  20. Dreaming in the desert

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Saudi Arabia's bold new co-educational research university deserves to succeed Imagine you want to build, from scratch, a brand new, world-beating university dedicated to science and technology in less than two years. What would you need for the job? Well, a big pot of cash would be essential - an endowment of 10bn, let's say. You would need money for lab equipment - about 1.5bn over five years will do nicely - and a visionary leader who can attract talented staff from around the world. They would have to be tempted by fat salaries, given houses to live in and offered goodies like, say, a yachting marina, private golf course and bowling alley. Throw in free satellite TV in every house, install WiFi Internet access across the campus and, oh, invite 3000 people to a spectacular opening ceremony so the world knows that you mean business.

  1. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  2. Geolab 2010: Desert Rats Field Demonstration

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Calaway, M. J.; Bell, M. S.

    2009-01-01

    In 2010, Desert Research and Technology Studies (Desert RATS), NASA's annual field exercise designed to test spacesuit and rover technologies, will include a first generation lunar habitat facility, the Habitat Demonstration Unit (HDU). The habitat will participate in joint operations in northern Arizona with the Lunar Electric Rover (LER) and will be used as a multi-use laboratory and working space. A Geology Laboratory or GeoLab is included in the HDU design. Historically, science participation in Desert RATS exercises has supported the technology demonstrations with geological traverse activities that are consistent with preliminary concepts for lunar surface science Extravehicular Activities (EVAs). Next year s HDU demonstration is a starting point to guide the development of requirements for the Lunar Surface Systems Program and test initial operational concepts for an early lunar excursion habitat that would follow geological traverses along with the LER. For the GeoLab, these objectives are specifically applied to support future geological surface science activities. The goal of our GeoLab is to enhance geological science returns with the infrastructure that supports preliminary examination, early analytical characterization of key samples, and high-grading lunar samples for return to Earth [1, 2] . Figure 1: Inside view schematic of the GeoLab a 1/8 section of the HDU, including a glovebox for handling and examining geological samples. Other outfitting facilities are not depicted in this figure. GeoLab Description: The centerpiece of the GeoLab is a glovebox, allowing for samples to be brought into the habitat in a protected environment for preliminary examination (see Fig. 1). The glovebox will be attached to the habitat bulkhead and contain three sample pass-through antechambers that would allow direct transfer of samples from outside the HDU to inside the glovebox. We will evaluate the need for redundant chambers, and other uses for the glovebox

  3. The Capabilities of Space Stations

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

  4. Space Station Freedom Utilization Conference: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

  5. Observation Station

    ERIC Educational Resources Information Center

    Rutherford, Heather

    2011-01-01

    This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while…

  6. Exobiology experiments for space station

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.; Griffiths, L. D.

    1985-01-01

    The benefits the Space Station could provide to the study of the origin, evolution, and distribution of life throughout the universe are described. Space Station experiments relevant to the cosmic evolution of biogenic elements and compounds, prebiotic chemical evolution, early evolution of life, and the evolution of advanced life forms are examined. The application of astronomical and astrometric observations to be obtained from the Space Station to the origin of life research is discussed.

  7. Space Station - The next logical step

    NASA Technical Reports Server (NTRS)

    Finn, T. T.; Hodge, J. D.

    1984-01-01

    NASA is committed to the development of a permanently manned Space Station within a decade, in concert with European and Japanese space agencies. In addition to continuing scientific research, the Space Station will proceed with applied science and industrialization experiments. International cooperation opportunities arise within the Space Station program for users (in the definition of missions), for builders (in the development of station resources and capabilities), and operators (in the orbital maintenance of the Space Station).

  8. Mycobiota of biological soil crusts in the Negev desert, Israel - differences on a regional and local scale

    NASA Astrophysics Data System (ADS)

    Grishkan, I.; Zaady, E.; Kidron, G.

    2012-04-01

    with the fact that the rainfall amount weakly influenced spatial variations of the most observed mycological characteristics, indicated that microenvironmental (edaphic) factors played a more essential role in the formation of studied communities than macroenvironmental (climatic) factors. On a local scale, we studied variations in microfungal communities from different crust types (cyanobacterial - moss-dominated) at the Nizzana research station, the western Negev Desert, and their relationship with moisture retention time and intensity of solar radiation. A total of 78 species from 48 genera was isolated. Microfungal communities in the Nizzana crusts were also dominated by melanin-containing species with large, thick-walled and multi-celled conidia. Abundance of this xeric group significantly increased with the increase of radiation intensity, while abundance of mesic Penicillium spp. and Zygomycota displayed the opposite trend. Density of microfungal isolates showed significant positive non-linear relationship with moisture retention time. The moss dominated crust differed markedly from the cyanobacterial crusts on species relative abundances, diversity level, and isolate density. The study showed the parallelism between structure of crust microfungal communities along a regional precipitation gradient in the Negev desert and within a small drainage basin of the Nizzana research station.

  9. Notes from the Great American Desert

    ERIC Educational Resources Information Center

    Grady, Marilyn L.; LaCost, Barbara Y.

    2005-01-01

    In the good old days, the state that is Nebraska was identified as part of the Great American Desert. In many ways, in climate and terrain, it still bears a resemblance to a desert. As a frontier or a land of pioneers, it deserves recognition. Invisibility may be one of the greatest challenges women face. One of the great flaws in the writing of…

  10. Humans on the International Space Station-How Research, Operations, and International Collaboration are Leading to New Understanding of Human Physiology and Performance in Microgravity

    NASA Technical Reports Server (NTRS)

    Ronbinson, Julie A.; Harm, Deborah L.

    2009-01-01

    As the International Space Station (ISS) nears completion, and full international utilization is achieved, we are at a scientific crossroads. ISS is the premier location for research aimed at understanding the effects of microgravity on the human body. For applications to future human exploration, it is key for validation, quantification, and mitigation of a wide variety of spaceflight risks to health and human performance. Understanding and mitigating these risks is the focus of NASA s Human Research Program. However, NASA s approach to defining human research objectives is only one of many approaches within the ISS international partnership (including Roscosmos, the European Space Agency, the Canadian Space Agency, and the Japan Aerospace Exploration Agency). Each of these agencies selects and implements their own ISS research, with independent but related objectives for human and life sciences research. Because the science itself is also international and collaborative, investigations that are led by one ISS partner also often include cooperative scientists from around the world. The operation of the ISS generates significant additional data that is not directly linked to specific investigations. Such data comes from medical monitoring of crew members, life support and radiation monitoring, and from the systems that have been implemented to protect the health of the crew (such as exercise hardware). We provide examples of these international synergies in human research on ISS and highlight key early accomplishments that derive from these broad interfaces. Taken as a whole, the combination of diverse research objectives, operational data, international sharing of research resources on ISS, and scientific collaboration provide a robust research approach and capability that no one partner could achieve alone.

  11. Energy-efficiency urban center in the Egyptian desert

    SciTech Connect

    Albis, A.H.A.

    1985-01-01

    This research effort is concerned with the identification and utilization of practical design guidelines to meet the demand for guidance in innovative planning and building design for Egyptian desert conditions. An energy-conscious design can be realized with a minimum expenditure of exhaustible energy resources and maximum utilization of the natural energies for cooling and heating. The energy design guidelines developed will be applied to an Urban Center, on a site selected to alleviate the stress on Cairo, which has been suffering for over two decades from housing shortages due to overpopulation. Design criteria to meet the challenges of this research include: neighborhood planning; orientation; building details; shading; colors of walls and roofs; materials; and massing configuration. In this research, desert construction and its aspects, use of building materials, approaches to energy conservation, and architectural principles for neighborhood planning are identified. The human requirement for thermal comfort specific to desert environments are analyzed and related to diurnal and annual patterns of outdoor conditions, and to the potential for modifying indoor thermal conditions by designs suitable to prevailing climatic conditions.

  12. Agricultural Experiment Stations and Branch Stations in the United States

    ERIC Educational Resources Information Center

    Pearson, Calvin H.; Atucha, Amaya

    2015-01-01

    In 1887, Congress passed the Hatch Act, which formally established and provided a funding mechanism for agricultural experiment stations in each state and territory in the United States. The main purpose of agricultural experiment stations is to conduct agricultural research to meet the needs of the citizens of the United States. The objective of…

  13. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Mock-up of Manned Space Laboratory. 'Two Langley engineers test an experimental air lock between an arriving spacecraft and a space station portal in January 1964.' : Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 299.

  14. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'A Langley engineer takes a walk-in simulated zero gravity around a mock-up of a full-scale, 24-foot-diameter space station.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 282.

  15. Space Station - early concept

    NASA Technical Reports Server (NTRS)

    1964-01-01

    'William N. Gardner, head of the MORL Studies Office, explains the interior design of the space station at the 1964 NASA inspection.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 300.

  16. An Ecological Study of Food Desert Prevalence and 4th Grade Academic Achievement in New York State School Districts

    PubMed Central

    Frndak, Seth E.

    2014-01-01

    Background This ecological study examines the relationship between food desert prevalence and academic achievement at the school district level. Design and methods Sample included 232 suburban and urban school districts in New York State. Multiple open-source databases were merged to obtain: 4th grade science, English and math scores, school district demographic composition (NYS Report Card), regional socioeconomic indicators (American Community Survey), school district quality (US Common Core of Data), and food desert data (USDA Food Desert Atlas). Multiple regression models assessed the percentage of variation in achievement scores explained by food desert variables, after controlling for additional predictors. Results The proportion of individuals living in food deserts significantly explained 4th grade achievement scores, after accounting for additional predictors. School districts with higher proportions of individuals living in food desert regions demonstrated lower 4th grade achievement across science, English and math. Conclusions Food deserts appear to be related to academic achievement at the school district level among urban and suburban regions. Further research is needed to better understand how food access is associated with academic achievement at the individual level. Significance for public health The prevalence of food deserts in the United States is of national concern. As poor nutrition in United States children continues to spark debate, food deserts are being evaluated as potential sources of low fruit and vegetable intake and high obesity rates. Cognitive development and IQ have been linked to nutrition patterns, suggesting that children in food desert regions may have a disadvantage academically. This research evaluates if an ecological relationship between food desert prevalence and academic achievement at the school district level can be demonstrated. Results suggest that food desert prevalence may relate to poor academic performance at

  17. Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile.

    PubMed

    Bull, Alan T; Asenjo, Juan A

    2013-06-01

    Interests in the Atacama Desert of northern Chile until very recently were founded on its mineral resources, notably nitrate, copper, lithium and boron. Now this vast desert, the oldest and most arid on Earth, is revealing a microbial diversity that was unimagined even a decade or so ago; indeed the extreme hyper-arid core of the Desert was considered previously to be completely devoid of life. In this Perspective article we highlight pioneering research that, to the contrary, establishes the Atacama as a combination of rich microbial habitats including bacteria that influence biogeochemical transformations in the desert and others that are propitious sources of novel natural products. Many of the Atacama's habitats are especially rich in actinobacteria, not necessarily as dense populations but extensive in taxonomic diversity and capacities to synthesize novel secondary metabolites. Among the latter, compounds have been characterized that express a range of antibiotic, anti-cancer and anti- inflammatory properties to which a variety of bioinformatics and metabolic engineering tools are being applied in order to enhance potencies and productivities. Unquestionably the Atacama Desert is a living desert with regard to which future microbiology and biotechnology research presents exciting opportunities. PMID:23564162

  18. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  19. Decadal changes in fish assemblages in waters near the Ieodo ocean research station (East China Sea) in relation to climate change from 1984 to 2010

    NASA Astrophysics Data System (ADS)

    Hwang, Kangseok; Jung, Sukgeun

    2012-06-01

    We compiled and analyzed past time-series data to evaluate changes in oceanographic conditions and marine ecosystems near the Ieodo ocean research station (IORS) in the East China Sea (N 31°15'-33°45', E 124°15'-127°45') in relation to longterm changes in climate and global warming. The environment data we used was a depth-specific time-series of temperature and salinity for the water columns at 175 fixed stations along 22 oceanographic lines in Korean waters, based on bimonthly measurements since 1961 taken by the National Fisheries Research & Development Institute. As an indicator for the ecosystem status of the waters off Ieodo, we analyzed species composition in biomass of fishes caught by Korean fishing vessels in the waters near the IORS (1984-2010) and summarized the data in relation to the environmental changes using canonical correspondence analysis (CCA). To detect step changes in the time-series of environmental factors, we applied a sequential t-test analysis of regime shift. Correspondence analysis detected a major shift in fish assemblage structure between 1990 and 1993: the dominant species was filefish during 1981-1992, but chub mackerel during 1992-2007. This shift in fish assemblage structure seemed to be related to the well-established 1989 regime shift in the North Pacific, which was confirmed again with respect to temperature in the Yellow Sea and the Korea Strait (but not in the waters off the IORS). In overall from 1984 to 2010, salinity was more important than water temperature in CCA, implying that the fluctuation of the Tsushima warm current is a most important force driving the long-term changes in fish assemblage structure in the waters off the IORS. Further multidisciplinary researches are required to identify oceanographic and biological processes that link climate-driven physical changes to fish recruitment and habitat range fluctuations.

  20. Morphological characteristics of interactions between deserts and rivers in northern China

    NASA Astrophysics Data System (ADS)

    Yan, Ping; Li, XiaoMei; Ma, YuFeng; Wu, Wei; Qian, Yao

    2015-12-01

    Arid regions are affected by long-term interactions between various factors including water and wind. Recent research has concentrated on aeolian-fluvial interactions in dryland environments, including the important role of rivers in providing sand and spaces for deserts development, as well as the influences of aeolian activity upon river landforms. However, there is still a lack of comprehensive data at the large watershed scale to support such research. In this study, we analyzed statistically the morphological parameters related to twelve deserts and ten watersheds in dryland regions of northern China using remote sensing data, maps of desert and watershed distributions, and classification of aeolian landforms. Results indicate that, in view of the relationship between deserts and rivers, the geomorphic structures of drainage basins in northern China can be overall divided into five large drainage zones: northwestern drainage (ND), western drainage (WD), drainage of northern Qinghai-Tibet Plateau (PD), middle drainage (MD) and eastern drainage (ED). In the terms of percent area of desert in drainages, it can be sequenced as WD > MD > ND > ED > PD. For percent area of shifting dunes in deserts, WD > PD > MD > ED > ND. Considering the classification of aeolian dunes, transverse dune dominates in all drainages, and its proportion can be sorted as PD > ED > MD > WD > ND. There is a significant difference in their morphological parameters between interior and exterior watersheds. In exterior watersheds, desert area, shifting dune or transverse dune areas are not significantly associated with drainage area respectively, but interior watersheds have good correlations between them. And in three rivers of Tarim Basin, along with increasing distance from the river bank, the types of aeolian dune (complexity) increased step-wisely, implying that sand dune extends along the river terrace. Those data and preliminary findings confirm that the rivers are indispensable to the

  1. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2007-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  2. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2008-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  3. Space station accommodations for life sciences research facilities. Phase 1: Conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.

  4. Desert Test Site Uniformity Analysis

    NASA Technical Reports Server (NTRS)

    Kerola, Dana X.; Bruegge, Carol J.

    2009-01-01

    Desert test sites such as Railroad Valley (RRV) Nevada, Egypt-1, and Libya-4 are commonly targeted to assess the on-orbit radiometric performance of sensors. Railroad Valley is used for vicarious calibration experiments, where a field-team makes ground measurements to produce accurate estimates of top-of-atmosphere (TOA) radiances. The Sahara desert test sites are not instrumented, but provide a stable target that can be used for sensor cross-comparisons, or for stability monitoring of a single sensor. These sites are of interest to NASA's Atmospheric Carbon Observation from Space (ACOS) and JAXA's Greenhouse Gas Observation SATellite (GOSAT) programs. This study assesses the utility of these three test sites to the ACOS and GOSAT calibration teams. To simulate errors in sensor-measured radiance with pointing errors, simulated data have been created using MODIS Aqua data. MODIS data are further utilized to validate the campaign data acquired from June 22 through July 5, 2009. The first GOSAT vicarious calibration experiment was conducted during this timeframe.

  5. Desert test site uniformity analysis

    NASA Astrophysics Data System (ADS)

    Kerola, Dana X.; Bruegge, Carol J.

    2009-08-01

    Desert test sites such as Railroad Valley (RRV) Nevada, Egypt-1, and Libya-4 are commonly targeted to assess the on-orbit radiometric performance of sensors. Railroad Valley is used for vicarious calibration experiments, where a field-team makes ground measurements to produce accurate estimates of top-of-atmosphere (TOA) radiances. The Sahara desert test sites are not instrumented, but provide a stable target that can be used for sensor cross-comparisons, or for stability monitoring of a single sensor. These sites are of interest to NASA's Atmospheric Carbon Observation from Space (ACOS) and JAXA's Greenhouse Gas Observation SATellite (GOSAT) programs. This study assesses the utility of these three test sites to the ACOS and GOSAT calibration teams. To simulate errors in sensor-measured radiance with pointing errors, simulated data have been created using MODIS Aqua data. MODIS data are further utilized to validate the campaign data acquired from June 22 through July 5, 2009. The first GOSAT vicarious calibration experiment was conducted during this timeframe.

  6. Modular space station facilities.

    NASA Technical Reports Server (NTRS)

    Parker, P. J.

    1973-01-01

    The modular space station will operate as a general purpose laboratory (GPL). In addition, the space station will be able to support many attached or free-flying research and application modules that would be dedicated to specific projects like astronomy or earth observations. The GPL primary functions have been organized into functional laboratories including an electrical/electronics laboratory, a mechanical sciences laboratory, an experiment and test isolation laboratory, a hard data process facility, a data evaluation facility, an optical sciences laboratory, a biomedical and biosciences laboratory, and an experiment/secondary command and control center.

  7. Space Station medical sciences concepts

    NASA Technical Reports Server (NTRS)

    Mason, J. A. (Editor); Johnson, P. C., Jr. (Editor)

    1984-01-01

    Current life sciences concepts relating to Space Station are presented including the following: research, extravehicular activity, biobehavioral considerations, medical care, maintenance of dental health, maintaining health through physical conditioning and countermeasures, protection from radiation, atmospheric contamination control, atmospheric composition, noise pollution, food supply and service, clothing and furnishings, and educational program possibilities. Information on the current status of Soviet Space Stations is contained.

  8. An Overview of the Microgravity Science Glovebox (MSG) Facility, and the Gravity-Dependent Phenomena Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Sheredy, William A.; Flores, Ginger

    2008-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation, The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120, 28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion, reaction control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG and an overview of investigations planning to operate in the MSG. In addition, this paper will address possible changes to the MSG utilization process that will be brought about by the transition to ISS as a National Laboratory.

  9. Life at the dry edge: microorganisms of the Atacama Desert.

    PubMed

    Azua-Bustos, Armando; Urrejola, Catalina; Vicuña, Rafael

    2012-08-31

    The Atacama Desert, located in northern Chile, is the driest and oldest desert on Earth. Research aimed at the understanding of this unique habitat and its diverse microbial ecosystems begun only a few decades ago, mainly driven by NASA's astrobiology program. A milestone in these efforts was a paper published in 2003, when the Atacama was shown to be a proper model of Mars. From then on, studies have been focused to examine every possible niche suitable for microbial life in this extreme environment. Habitats as different as the underside of quartz rocks, fumaroles at the Andes Mountains, the inside of halite evaporates and caves of the Coastal Range, among others, have shown that life has found ingenious ways to adapt to extreme conditions such as low water availability, high salt concentration and intense UV radiation. PMID:22819826

  10. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  11. EduCable. Evaluation of Station KUON-TV, Lincoln, Nebraska. Cable Television Research Program Demonstration. CPB Technical Report #8006.

    ERIC Educational Resources Information Center

    Corporation for Public Broadcasting, Washington, DC.

    Documentation of the status of the University of Nebraska-Lincoln Television Department's Cable Television Communications Research Project is provided, along with a report of an evaluation which was undertaken both to determine the impact and effectiveness of the EduCable program service to cable system subscribers and to assess the viability of…

  12. Hydrogeologic Setting, Ground-Water Flow, and Ground-Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, 2000-2005

    USGS Publications Warehouse

    Pippin, Charles G.; Chapman, Melinda J.; Huffman, Brad A.; Heller, Matthew J.; Schelgel, Melissa E.

    2008-01-01

    A 6-year intensive field study (2000-2005) of a complex, regolith-fractured bedrock ground-water system was conducted at the Langtree Peninsula research station on the Davidson College Lake Campus in Iredell County, North Carolina. This research station was constructed as part of the Piedmont and Mountains Resource Evaluation Program, a cooperative study being conducted by the North Carolina Department of Environment and Natural Resources and the U.S. Geological Survey. Results of the study characterize the distinction and interaction of a two-component ground-water system in a quartz diorite rock type. The Langtree Peninsula research station includes 17 monitoring wells and 12 piezometers, including 2 well transects along high to low topographic settings, drilled into separate parts of the ground-water-flow system. The location of the research station is representative of a metaigneous intermediate (composition) regional hydrogeologic unit. The primary rock type is mafic quartz diorite that has steeply dipping foliation. Primary and secondary foliations are present in the quartz diorite at the site, and both have an average strike of about N. 12 degree E. and dip about 60 degree in opposite directions to the southeast (primary) and the northwest (secondary). This rock is cut by granitic dikes (intrusions) ranging in thickness from 2 to 50 feet and having an average strike of N. 20 degree W. and an average dip of 66 degree to the southwest. Depth to consolidated bedrock is considered moderate to deep, ranging from about 24 to 76 feet below land surface. The transition zone was delineated and described in each corehole near the well clusters but had a highly variable thickness ranging from about 1 to 20 feet. Thickness of the regolith (23 to 68 feet) and the transition zone do not appear to be related to topographic setting. Delineated bedrock fractures are dominantly low angle (possibly stress relief), which were observed to be open to partially open at depths of

  13. 75 FR 57761 - Desert Southwest Power, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Energy Regulatory Commission Desert Southwest Power, LLC; Notice of Filing September 14, 2010. Take notice that on September 10, 2010, Desert Southwest Power, LLC (Desert Southwest) filed responses to the... Commission's July 28, 2010 letter regarding Desert Southwest's petition for declaratory order...

  14. Space station contamination modeling

    NASA Technical Reports Server (NTRS)

    Gordon, T. D.

    1989-01-01

    Current plans for the operation of Space Station Freedom allow the orbit to decay to approximately an altitude of 200 km before reboosting to approximately 450 km. The Space Station will encounter dramatically increasing ambient and induced environmental effects as the orbit decays. Unfortunately, Shuttle docking, which has been of concern as a high contamination period, will likely occur during the time when the station is in the lowest orbit. The combination of ambient and induced environments along with the presence of the docked Shuttle could cause very severe contamination conditions at the lower orbital altitudes prior to Space Station reboost. The purpose here is to determine the effects on the induced external environment of Space Station Freedom with regard to the proposed changes in altitude. The change in the induced environment will be manifest in several parameters. The ambient density buildup in front of ram facing surfaces will change. The source of such contaminants can be outgassing/offgassing surfaces, leakage from the pressurized modules or experiments, purposeful venting, and thruster firings. The third induced environment parameter with altitude dependence is the glow. In order to determine the altitude dependence of the induced environment parameters, researchers used the integrated Spacecraft Environment Model (ISEM) which was developed for Marshall Space Flight Center. The analysis required numerous ISEM runs. The assumptions and limitations for the ISEM runs are described.

  15. Thermal and water relations of desert beetles

    NASA Astrophysics Data System (ADS)

    Cloudsley-Thompson, J.

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these - such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  16. Thermal and water relations of desert beetles.

    PubMed

    Cloudsley-Thompson, J L

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these--such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments. PMID:11771473

  17. Solar Technology Validation Project - Solargen (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-06

    SciTech Connect

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  18. Biomedical research on the International Space Station postural and manipulation problems of the human upper limb in weightlessness

    NASA Astrophysics Data System (ADS)

    Neri, Gianluca; Zolesi, Valfredo

    2000-01-01

    Accumulated evidence, based on information gathered on space flight missions and ground based models involving both humans and animals, clearly suggests that exposure to states of microgravity conditions for varying duration induces certain physiological changes; they involve cardiovascular deconditioning, balance disorders, bone weakening, muscle hypertrophy, disturbed sleep patterns and depressed immune responses. The effects of the microgravity on the astronauts' movement and attitude have been studied during different space missions, increasing the knowledge of the human physiology in weightlessness. The purpose of the research addressed in the present paper is to understand and to assess the performances of the upper limb, especially during grasp. Objects of the research are the physiological changes related to the long-term duration spaceflight environment. Specifically, the changes concerning the upper limb are investigated, with particular regard to the performances of the hand in zero-g environments. This research presents also effects on the Earth, improving the studies on a number of pathological states, on the health care and the rehabilitation. In this perspective, a set of experiments are proposed, aimed at the evaluation of the effects of the zero-g environments on neurophysiology of grasping movements, fatigue assessment, precision grip. .

  19. Are wildlife detector dogs or people better at finding Desert Tortoises (Gopherus agassizii)?

    USGS Publications Warehouse

    Nussear, K.E.; Esque, T.C.; Heaton, J.S.; Cablk, M.E.; Drake, K.K.; Valentin, C.; Yee, J.L.; Medica, P.A.

    2008-01-01

    Our ability to study threatened and endangered species depends on locating them readily in the field. Recent studies highlight the effectiveness of trained detector dogs to locate wildlife during field surveys, including Desert Tortoises in a semi-natural setting. Desert Tortoises (Gopherus agassizii) are cryptic and difficult to detect during surveys, especially the smaller size classes. We conducted comparative surveys to determine whether human or detector dog teams were more effective at locating Desert Tortoises in the wild. We compared detectability of Desert Tortoises and the costs to deploy human and dog search teams. Detectability of tortoises was not statistically different for either team, and was estimated to be approximately 70% (SE = 5%). Dogs found a greater proportion of tortoises located in vegetation than did humans. The dog teams finished surveys 2.5 hours faster than the humans on average each day. The human team cost was approximately $3,000 less per square kilometer sampled. Dog teams provided a quick and effective method for surveying for adult Desert Tortoises; however, we were unable to determine-their effectiveness at locating smaller size classes. Detection of smaller size classes during surveys would improve management of the species and should be addressed by future research using Desert Tortoise detector dogs.

  20. Effects of desert wildfires on desert tortoise (Gopherus agassizii) and other small vertebrates

    USGS Publications Warehouse

    Esque, T.C.; Schwalbe, C.R.; DeFalco, L.A.; Duncan, R.B.; Hughes, T.J.

    2003-01-01

    We report the results of standardized surveys to determine the effects of wildfires on desert tortoises (Gopherus agassizii) and their habitats in the northeastern Mojave Desert and northeastern Sonoran Desert. Portions of 6 burned areas (118 to 1,750 ha) were examined for signs of mortality of vertebrates. Direct effects of fire in desert habitats included animal mortality and loss of vegetation cover. A range of 0 to 7 tortoises was encountered during surveys, and live tortoises were found on all transects. In addition to desert tortoises, only small (<1 kg) mammals and reptiles (11 taxa) were found dead on the study areas. We hypothesize that indirect effects of fire on desert habitats might result in changes in the composition of diets and loss of vegetation cover, resulting in an increase in predation and loss of protection from temperature extremes. These changes in habitat also might cause changes in vertebrate communities in burned areas.