Science.gov

Sample records for desert sand crusts

  1. Effects of sand burial and wind disturbances on moss soil crusts in a revegetated area of the Tennger Desert, Northern China

    NASA Astrophysics Data System (ADS)

    Jia, R. L.; Li, X. R.; Liu, L. C.; Gao, Y. H.

    2012-04-01

    Sand burial and wind are two predominant natural disturbances in the desert ecosystems worldwide. However, the effects of sand burial and wind disturbances on moss soil crusts are still largely unexplored. In this study, two sets of experiments were conducted separately to evaluated the effects of sand burial (sand depth of 0, 1, 2, 3 and 4 mm) and wind blowing (wind speed of 0.2, 3, 6 and 9ms-1) on ecophysiological variables of two moss soil crusts collected from a revegetated area of the Tengger Desert, Northern China. Firstly, the results from the sand burial experiment revealed that respiration rate was significantly decreased and that moss shoot elongation was significantly increased after burial. In addition, Bryum argenteum crust showed the fastest speed of emergence and highest tolerance index, followed by Didymodon vinealis crust. This sequence was consistent with the successional order of the two moss crusts that happened in our study area, indicating that differential sand burial tolerance explains their succession sequence. Secondly, the results from the wind experiment showed that CO2 exchange, PSII photochemical efficiency, photosynthetic pigments, shoot upgrowth, productivity and regeneration potential of the two moss soil crust mentioned above were all substantially depressed. Furthermore, D. vinealis crust exhibited stronger wind resistance than B. argenteum crust from all aspects mentioned above. And this is comparison was identical with their contrasting microhabitats with B. argenteum crust being excluded from higher wind speed microsites in the windward slopes, suggesting that the differential wind resistance of moss soil crusts explains their microdistribution pattern. In conclusion, the ecogeomorphological processes of moss soil crusts in desert ecosystems can be largely determined by natural disturbances caused by sand burial and wind blowing in desert ecosystems.

  2. The effects of extreme rainfall events on carbon release from Biological Soil Crusts covered soil in fixed sand dunes in the Tengger Desert, northern China

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Li, Xinrong; Pan, Yanxia; Hui, Rong

    2016-04-01

    How soil cover types and extreme rainfall event influence carbon (C) release in temperate desert ecosystems has largely been unexplored. We assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, Shapotou regionof northern China. We removed intact crusts down to 10 cm and measured them in PVC mesocosms. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2•s), 0.10 and 0.45 μmolCO2/(m2•s), 0.83 and 1.69 μmolCO2/(m2•s). Our study indicated that moss crust in the advanced succession stage can well adapt to extreme rainfall events in the short term. Keywords: carbon release; extreme rainfall events; biological soil crust

  3. Light-induced changes within photosystem II protects Microcoleus sp. in biological desert sand crusts against excess light.

    PubMed

    Ohad, Itzhak; Raanan, Hagai; Keren, Nir; Tchernov, Dan; Kaplan, Aaron

    2010-01-01

    The filamentous cyanobacterium Microcoleus vaginatus, a major primary producer in desert biological sand crusts, is exposed to frequent hydration (by early morning dew) followed by desiccation during potentially damaging excess light conditions. Nevertheless, its photosynthetic machinery is hardly affected by high light, unlike "model" organisms whereby light-induced oxidative stress leads to photoinactivation of the oxygen-evolving photosystem II (PSII). Field experiments showed a dramatic decline in the fluorescence yield with rising light intensity in both drying and artificially maintained wet plots. Laboratory experiments showed that, contrary to "model" organisms, photosynthesis persists in Microcoleus sp. even at light intensities 2-3 times higher than required to saturate oxygen evolution. This is despite an extensive loss (85-90%) of variable fluorescence and thermoluminescence, representing radiative PSII charge recombination that promotes the generation of damaging singlet oxygen. Light induced loss of variable fluorescence is not inhibited by the electron transfer inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB), nor the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), thus indicating that reduction of plastoquinone or O(2), or lumen acidification essential for non-photochemical quenching (NPQ) are not involved. The rate of Q(A) (-) re-oxidation in the presence of DCMU is enhanced with time and intensity of illumination. The difference in temperatures required for maximal thermoluminescence emissions from S(2)/Q(A) (-) (Q band, 22 degrees C) and S(2,3)/Q(B) (-) (B band, 25 degrees C) charge recombinations is considerably smaller in Microcoleus as compared to "model" photosynthetic organisms, thus indicating a significant alteration of the S(2)/Q(A) (-) redox potential. We propose that enhancement of non-radiative charge recombination with rising light intensity may reduce

  4. Light-Induced Changes within Photosystem II Protects Microcoleus sp. in Biological Desert Sand Crusts against Excess Light

    PubMed Central

    Ohad, Itzhak; Raanan, Hagai; Keren, Nir; Tchernov, Dan; Kaplan, Aaron

    2010-01-01

    The filamentous cyanobacterium Microcoleus vaginatus, a major primary producer in desert biological sand crusts, is exposed to frequent hydration (by early morning dew) followed by desiccation during potentially damaging excess light conditions. Nevertheless, its photosynthetic machinery is hardly affected by high light, unlike “model” organisms whereby light-induced oxidative stress leads to photoinactivation of the oxygen-evolving photosystem II (PSII). Field experiments showed a dramatic decline in the fluorescence yield with rising light intensity in both drying and artificially maintained wet plots. Laboratory experiments showed that, contrary to “model” organisms, photosynthesis persists in Microcoleus sp. even at light intensities 2–3 times higher than required to saturate oxygen evolution. This is despite an extensive loss (85–90%) of variable fluorescence and thermoluminescence, representing radiative PSII charge recombination that promotes the generation of damaging singlet oxygen. Light induced loss of variable fluorescence is not inhibited by the electron transfer inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB), nor the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), thus indicating that reduction of plastoquinone or O2, or lumen acidification essential for non-photochemical quenching (NPQ) are not involved. The rate of QA− re-oxidation in the presence of DCMU is enhanced with time and intensity of illumination. The difference in temperatures required for maximal thermoluminescence emissions from S2/QA− (Q band, 22°C) and S2,3/QB− (B band, 25°C) charge recombinations is considerably smaller in Microcoleus as compared to “model” photosynthetic organisms, thus indicating a significant alteration of the S2/QA− redox potential. We propose that enhancement of non-radiative charge recombination with rising light intensity may reduce harmful radiative

  5. Unchanging Desert Sand Dunes

    NASA Astrophysics Data System (ADS)

    Gadhiraju, S.; Banerjee, B.; Buddhiraju, K.; Shah, V.

    2013-12-01

    Deserts are one of the major landforms on earth. They occupy nearly 20% of the total land area but are relatively less studied. With the rise in human population, desert regions are being gradually occupied for settlement posing a management challenge to the concerned authorities. Unrestrained erosion is generally a feature of bare dunes. Stabilized dunes, on the other hand, do not undergo major changes in textures, and can thus facilitate the growth of vegetation. Keeping in view of the above factors, better mapping and monitoring of deserts and particularly of sand dunes is needed. Mapping dunes using field instruments is very arduous and they generate relatively sparse data. In this communication, we present a method of clustering and monitoring sand dunes through imagery captured by remote sensing sensors. Initially Radon spectrum of an area is obtained by decomposition of the image into various projections sampled at finer angular directions. Statistical features such as mode, entropy and standard deviation of Radon spectrum are used in delineation and clustering of regions with different dune orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiment's, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations. While these findings have implications for understanding of dune geomorphology and changes occurring in dune directions, they also highlight the importance of a wider study of dunes and their evolution both at regional and global scales. Results for Dataset 1 & Dataset 2 Results for Dataset 3

  6. A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity.

    PubMed

    Treves, Haim; Raanan, Hagai; Finkel, Omri M; Berkowicz, Simon M; Keren, Nir; Shotland, Yoram; Kaplan, Aaron

    2013-12-01

    We recently isolated a small green alga from a biological sand crust (BSC) in the NW Negev, Israel. Based on its 18S rRNA and rbcL genes, it is a close relative of Chlorella sorokiniana and of certain strains of C. vulgaris and C. variabilis, but differs substantially in many aspects from C. sorokiniana. Because the classification of Chlorellales is still not resolved, we designated this species as C. ohadii (Trebouxiophyceae) in honor of Professor Itzhak Ohad. Under controlled laboratory conditions, C. ohadii showed marked structural and photosynthetic performance changes, depending on the carbon source used during growth, as well as remarkable resistance to photoinhibition. CO2 -dependent O2 evolution was not affected even when exposed to a light intensity of 3500 μmole photons m(-2)  s(-1) , over 1.5 times the maximal intensity reached at the BSC surface, whereas the variable fluorescence declined sharply. We briefly discuss the use of fluorescence to assess photosynthetic rate and the implications of this finding for the assessment of global BSCs activity. PMID:23773145

  7. Microphytic crusts: 'topsoil' of the desert

    USGS Publications Warehouse

    Belnap, Jayne

    1990-01-01

    Deserts throughout the world are the home of microphytic, or cryptogamic, crusts. These crusts are dominated by cyanobacteria, previously called blue-green algae, and also include lichens, mosses, green algae, microfungi and bacteria. They are critical components of desert ecosystems, significantly modifying the surfaces on which they occur. In the cold deserts of the Colorado Plateau (including parts of Utah, Arizona, Colorado, and New Mexico), these crusts are extraordinarily well-developed, and may represent 70-80% of the living ground cover.

  8. The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Yuan-ming; Downing, Alison; Cheng, Jun-hui; Zhou, Xiao-bing; Zhang, Bing-chang

    2009-12-01

    SummaryDew is an important source of moisture for plants, biological soil crusts, invertebrates and small vertebrates in desert environments. In this paper, measurements were taken to investigate the effects of three different types of biological soil crusts (cyanobacteria, lichen and moss) and bare sand on dew deposition in the Gurbantunggut Desert. Dew quantities were measured using micro-lysimeters with a diameter of 6 cm and a height of 3.5 cm. The results showed that the total amount of dew deposited increased with the development of soil crusts, from bare sand to cyanobacterial crust to lichen crust to moss crust. The average amount of dew deposited daily on the moss crust was the highest of all and it was significant higher than the other three soil surfaces (lichen crust, cyanobacterial crust and bare sand) ( p < 0.05). During the period of the study, for each type of crust studied, the maximum amount of dew recorded was several times greater than the minimum. Moss crust was characterized by having the greatest amount of dew at dawn and also the maximum amount of dew deposited, whereas bare sand yielded the lowest amount of dew, with lichen crust and cyanobacterial crust exhibiting intermediate values. However, this was not the case for dew duration, as bare sand retained moisture for the longest period of time, followed by cyanobacterial crust, moss crust and finally lichen crust. Dew continued to condense even after sunrise. Furthermore, the differences in dew deposition may be partially attributed to an effect of the biological soil crusts on surface area. This study demonstrates the important effect of biological soil crusts upon dew deposition and may assist in evaluating the role of dew in arid and semi-arid environments.

  9. Microenvironments and microscale productivity of cyanobacterial desert crusts

    USGS Publications Warehouse

    Garcia-Pichel, F.; Belnap, Jayne

    1996-01-01

    We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4a??9.4 mmol O2A?ma??2A?ha??1) and dark respiration (0.81a??3.1 mmol Oa??2A?ma??2A?ha??1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2a??3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.

  10. Contrasting effects of microbiotic crusts on runoff in desert surfaces

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.; Monger, H. Curtis; Vonshak, Ahuva; Conrod, William

    2012-02-01

    Microbiotic crusts (MCs) play an important role in surface hydrology by altering runoff yield. In order to study the crust's role on water redistribution, rainfall and runoff were measured during 1998-2000 at three sites within the northern Chihuahuan Desert, New Mexico, USA: the Sevilleta National Wildlife Refuge (SEV), the White Sands National Monument (WS), and the Jornada Experimental Range (JER). Whereas quartz and gypsum sand characterize the SEV and WS sites, respectively, both of which have high infiltration rates, silty alluvial deposits characterize the JER site. Runoff was measured in four pairs of 1.8-6.4 m 2 plots having MCs, one of which was scalped in each pair. No runoff was generated at WS, whether on the crusted or the scalped plots. Runoff was however generated at SEV and JER, being higher on the crusted plots at SEV and lower on the JER plots. The results were explained by the combined effect of (a) parent material and (b) the crust properties, such as species composition, microrelief (surface roughness) and exopolysaccharide (EPS) content (reflected in the ratio of carbohydrates to chlorophyll). Whereas the effective rainfall, the fines and the EPS content were found to explain runoff initiation, the effective rainfall and the crust microrelief were found to explain the amount of runoff at SEV and JER where runoff generation took place. The findings attest to the fundamental role of the parent material and the crust's species composition and properties on runoff and hence to the complex interactions and the variable effects that MCs have on dryland hydrology.

  11. Soil stabilization by a prokaryotic desert crust - Implications for Precambrian land biota

    NASA Technical Reports Server (NTRS)

    Campbell, S. E.

    1979-01-01

    The ecology of the cyanophyte-dominated stromatolitic mat forming the ground cover over desert areas of Utah and Colorado is investigated and implications for the formation of mature Precambrian soils are discussed. The activation of the growth of the two species of filamentous cyanophyte identified and the mobility of their multiple trichromes upon wetting are observed, accompanied by the production and deposition of a sheath capable of accreting and stabilizing sand and clay particles. The formation of calcium carbonate precipitates upon the repeated wetting and drying of desert crust is noted, and it is suggested that the desert crust community may appear in fossil calcrete deposits as lithified microscopic tubes and cellular remains of algal trichromes. The invasion of dry land by both marine and freshwater algae on the model of the desert crust is proposed to be responsible for the accumulation, stabilization and biogenic modification of mature Precambrian soils.

  12. The provenance of Taklamakan desert sand

    NASA Astrophysics Data System (ADS)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  13. The influence of biological soil crusts on successional vegetation patterns in a revegetated desert area in the Tengger Desert, China

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Zhi-shan, Zhang; Xin-rong, Li

    2014-05-01

    Biological soil crusts (BSCs) are an important cover in arid desert landscapes, and have a profound effect on the soil water redistribution, plant growth and vegetation succession. Although a large number of studies have focused on the single-process of BSCs experimentally, relatively few studies have examined the eco-hydrological mechanisms of BSCs influence on successional vegetation patterns in revegetated desert areas. In this study, based on the long term monitoring and focused research on sand-binding vegetation in the Shapotou region (southeastern edge of the Tengger Desert, China) since the 1950s, the characteristics of plant community and BSCs at different successional stages, and the soil water dynamics were investigated. Then a simplified mathematical model describing the coupled dynamics of soil moisture and vegetation in drylands was developed. And finally the role of BSCs on soil water dynamics and vegetation patterns were discussed. Results have showed that BSCs was closely associated with the vegetation succession, such as in the Caragana korshinskii community, moss crusts were the dominate species and in the Artemisia ordosica community, algae crusts were the dominate species. BSCs had a significant effect on soil water infiltration and it was one of the main driving forces to vegetation pattern formations, as algae crusts would induced the tiger bush stripes and moss crusts would lead to the leopard bush spots in arid ecosystems.

  14. Geomorphic controls on biological soil crust distribution: A conceptual model from the Mojave Desert (USA)

    NASA Astrophysics Data System (ADS)

    Williams, Amanda J.; Buck, Brenda J.; Soukup, Deborah A.; Merkler, Douglas J.

    2013-08-01

    Biological soil crusts (BSCs) are bio-sedimentary features that play critical geomorphic and ecological roles in arid environments. Extensive mapping, surface characterization, GIS overlays, and statistical analyses explored relationships among BSCs, geomorphology, and soil characteristics in a portion of the Mojave Desert (USA). These results were used to develop a conceptual model that explains the spatial distribution of BSCs. In this model, geologic and geomorphic processes control the ratio of fine sand to rocks, which constrains the development of three surface cover types and biogeomorphic feedbacks across intermontane basins. (1) Cyanobacteria crusts grow where abundant fine sand and negligible rocks form saltating sand sheets. Cyanobacteria facilitate moderate sand sheet activity that reduces growth potential of mosses and lichens. (2) Extensive tall moss-lichen pinnacled crusts are favored on early to late Holocene surfaces composed of mixed rock and fine sand. Moss-lichen crusts induce a dust capture feedback mechanism that promotes further crust propagation and forms biologically-mediated vesicular (Av) horizons. The presence of thick biogenic vesicular horizons supports the interpretation that BSCs are long-lived surface features. (3) Low to moderate density moss-lichen crusts grow on early Holocene and older geomorphic surfaces that display high rock cover and negligible surficial fine sand. Desert pavement processes and abiotic vesicular horizon formation dominate these surfaces and minimize bioturbation potential. The biogeomorphic interactions that sustain these three surface cover trajectories support unique biological communities and soil conditions, thereby sustaining ecological stability. The proposed conceptual model helps predict BSC distribution within intermontane basins to identify biologically sensitive areas, set reference conditions for ecological restoration, and potentially enhance arid landscape models, as scientists address impacts

  15. Growth responses of five desert plants as influenced by biological soil crusts from a temperate desert, China

    USGS Publications Warehouse

    Zhang, Yuanming; Belnap, Jayne

    2015-01-01

    In almost all dryland systems, biological soil crusts (biocrusts) coexist alongside herbaceous and woody vegetation, creating landscape mosaics of vegetated and biocrusted patches. Results from past studies on the interaction between biocrusts and vascular plants have been contradictory. In the Gurbantunggut desert, a large temperate desert in northwestern China, well-developed lichen-dominated crusts dominate the areas at the base and between the sand dunes. We examined the influence of these lichen-dominated biocrusts on the germination, growth, biomass accumulation, and elemental content of five common plants in this desert: two shrubs (Haloxylon persicum, Ephedra distachya) and three herbaceous plants (Ceratocarpus arenarius, Malcolmia africana and Lappula semiglabra) under greenhouse conditions. The influence of biocrusts on seed germination was species-specific. Biocrusts did not affect percent germination in plants with smooth seeds, but inhibited germination of seeds with appendages that reduced or eliminated contact with the soil surface or prevented seeds from slipping into soil cracks. Once seeds had germinated, biocrusts had different influences on growth of shrub and herbaceous plants. The presence of biocrusts increased concentrations of nitrogen but did not affect phosphorus or potassium in tissue of all tested species, while the uptake of the other tested nutrients was species-specific. Our study showed that biocrusts can serve as a biological filter during seed germination and also can influence growth and elemental uptake. Therefore, they may be an important trigger for determining desert plant diversity and community composition in deserts.

  16. Biological Soil Crusts: Webs of Life in the Desert

    USGS Publications Warehouse

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  17. Effects of artificial sand fixing on community characteristics of a rare desert shrub.

    PubMed

    Liu, Huiliang; Tao, Ye; Qiu, Dong; Zhang, Daoyuan; Zhang, Yongkuan

    2013-10-01

    Eremosparton songoricum (Fabaceae) is a rare, native, clonal small shrub of the deserts of central Asia. Although human activities have greatly fragmented the distribution of E. songoricum, it occurs in areas where artificial sand fixing (AS) has been implemented. We sought to explore whether AS promotes survival and growth of E. songoricum. In the Gurbantunggut Desert of northwestern China in June 2010, we established 10 plots in an area where sand fixing occurred (5-10 years previously) and 11 plots on original sand substrate on which some plants had settled without fixing sand. Sand fixing changed soil properties and biological characteristics in sand-fixed plots. The soil surface where sand fixing occurred was covered by algal crusts and some lichen, but not bare sand (BS). Soil nutrients; water content of deep soil (30-150 cm); overall plant and herbaceous species richness, diversity, abundance, and cover; above- and belowground biomass; and cover, biomass, and height of E. songoricum in the sand-fixed plots were significantly greater than in plots of BS. However, distribution of E. songoricum individuals in the 2 types of plots did not differ. Our results indicate AS may enhance survival of E. songoricum and increase the overall diversity and stability of the desert plant community. We suggest AS as a way to protect this rare desert plant in situ. PMID:23773009

  18. Properties of Desert Sand and CMAS Glass

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2014-01-01

    As-received desert sand from a Middle East country has been characterized for its phase composition and thermal stability. X-ray diffraction analysis showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H2O), and NaAlSi3O8 phases in as-received desert sand and showed weight loss of approx. 35 percent due to decomposition of CaCO3 and CaSO4.2H2O when heated to 1400 C. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at approx. 1500 C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al2O3-61.6SiO2-0.6Fe2O3-1K2O (mole percent). Various physical, thermal and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cc, Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (T (sub g)) 706 C, softening point (T (sub d)) 764 C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m (sup 1/2), and coefficient of thermal expansion (CTE) 9.8 x 10 (exp -6)/degC in the temperature range 25 to 700 C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-Fulcher-Tamman (VFT) equation. The glass remained amorphous after heat treating at 850 C for 10 hr but crystallized into CaSiO3 and Ca-Mg-Al silicate phases at 900 C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Activation energies for the crystallization of two different phases in the glass were calculated to be 403 and 483 kJ/mol, respectively.

  19. Precipitation pulse size effects on Sonoran Desert soil microbial crusts.

    PubMed

    Cable, Jessica M; Huxman, Travis E

    2004-10-01

    Deserts are characterized by low productivity and substantial unvegetated space, which is often covered by soil microbial crust communities. Microbial crusts are important for nitrogen fixation, soil stabilization and water infiltration, but their role in ecosystem production is not well understood. This study addresses the following questions: what are the CO2 exchange responses of crusts to pulses of water, does the contribution of crusts to ecosystem flux differ from the soil respiratory flux, and is this contribution pulse size dependent? Following water application to crusts and soils, CO2 exchange was measured and respiration was partitioned through mixing model analysis of Keeling plots across treatments. Following small precipitation pulse sizes, crusts contributed 80% of soil-level CO2 fluxes to the atmosphere. However, following a large pulse event, roots and soil microbes contributed nearly 100% of the soil-level flux. Rainfall events in southern Arizona are dominated by small pulse sizes, suggesting that crusts may frequently contribute to ecosystem production. Carbon cycle studies of arid land systems should consider crusts as important contributors because of their dynamic responses to different pulse sizes as compared to the remaining ecosystem components. PMID:14669007

  20. Biological soil crusts as an integral component of desert environments

    USGS Publications Warehouse

    Belnap, Jayne; Weber, Bettina

    2013-01-01

    The biology and ecology of biological soil crusts, a soil surface community of mosses, lichens, cyanobacteria, green algae, fungi, and bacteria, have only recently been a topic of research. Most efforts began in the western U.S. (Cameron, Harper, Rushforth, and St. Clair), Australia (Rogers), and Israel (Friedmann, Evenari, and Lange) in the late 1960s and 1970s (e.g., Friedmann et al. 1967; Evenari 1985reviewed in Harper and Marble 1988). However, these groups worked independently of each other and, in fact, were often not aware of each other’s work. In addition, biological soil crust communities were seen as more a novelty than a critical component of dryland ecosystems. Since then, researchers have investigated many different aspects of these communities and have shown that although small to microscopic, biological soil crusts are critical in many ecological processes of deserts. They often cover most of desert soil surfaces and substantially mediate inputs and outputs from desert soils (Belnap et al. 2003). They can be a large source of biodiversity for deserts, as they can contain more species than the surrounding vascular plant community (Rosentreter 1986). These communities are important in reducing soil erosion and increasing soil fertility through the capture of dust and the fixation of atmospheric nitrogen and carbon into forms available to other life forms (Elbert et al. 2012). Because of their many effects on soil characteristics, such as external and internal morphological characteristics, aggregate stability, soil moisture, and permeability, they also affect seed germination and establishment and local hydrological cycles. Covering up to 70% of the surface area in many arid and semi-arid regions around the world (Belnap and Lange 2003), biological soil crusts are a key component within desert environments.

  1. Control of Lunar and Martian dust--experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China.

    PubMed

    Liu, Yongding; Cockell, Charles S; Wang, Gaohong; Hu, Chunxiang; Chen, Lanzhou; De Philippis, Roberto

    2008-02-01

    Studies on the colonization of environmentally extreme ground surfaces were conducted in a Mars-like desert area of Inner Mongolia, People's Republic of China, with microalgae and cyanobacteria. We collected and mass-cultured cyanobacterial strains from these regions and investigated their ability to form desert crusts artificially. These crusts had the capacity to resist sand wind erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration activities, particularly in confined spaces that will include greenhouses and habitats. We discuss the use of such crusts for the local control of desert sands in enclosed spaces on Mars. These experiments suggest innovative new directions in the applied use of microbe-mineral interactions to advance the human exploration and settlement of space. PMID:18240967

  2. Impacts of off-road vehicles on nitrogen cycles in biological soil crusts: Resistance in different U.S. deserts

    USGS Publications Warehouse

    Belnap, J.

    2002-01-01

    Biological soil crusts are an important component of desert ecosystems, as they influence soil stability and fertility. This study examined and compared the short-term vehicular impacts on lichen cover and nitrogenase activity (NA) of biological soil crusts. Experimental disturbance was applied to different types of soil in regions throughout the western U.S. (Great Basin, Colorado Plateau, Sonoran, Chihuahuan, and Mojave deserts). Results show that pre-disturbance cover of soil lichens is significantly correlated with the silt content of soils, and negatively correlated with sand and clay. While disturbance appeared to reduce NA at all sites, differences were statistically significant at only 12 of the 26 sites. Cool desert sites showed a greater decline than hot desert sites, which may indicate non-heterocystic cyanobacterial species are more susceptible to disturbance than non-heterocystic species. Sandy soils showed greater reduction of NA as sand content increased, while fine-textured soils showed a greater decline as sand content increased. At all sites, higher NA before the disturbance resulted in less impact to NA post-disturbance. These results may be useful in predicting the impacts of off-road vehicles in different regions and different soils. ?? 2002 Published by Elsevier Science Ltd.

  3. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Housman, D.C.; Zaki, A.M.; Shamout, Y.; Adl, S.M.; Belnap, J.; Neher, D.A.

    2006-01-01

    Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37??C. Cysts survived the upper end of daily temperatures (37-55??C), and could be stimulated to excyst if temperatures were reduced to 15??C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime. ?? 2006 by the International Society of Protistologists.

  4. Seed Mucilage Improves Seedling Emergence of a Sand Desert Shrub

    PubMed Central

    Yang, Xuejun; Baskin, Carol C.; Baskin, Jerry M.; Liu, Guangzheng; Huang, Zhenying

    2012-01-01

    The success of seedling establishment of desert plants is determined by seedling emergence response to an unpredictable precipitation regime. Sand burial is a crucial and frequent environmental stress that impacts seedling establishment on sand dunes. However, little is known about the ecological role of seed mucilage in seedling emergence in arid sandy environments. We hypothesized that seed mucilage enhances seedling emergence in a low precipitation regime and under conditions of sand burial. In a greenhouse experiment, two types of Artemisia sphaerocephala achenes (intact and demucilaged) were exposed to different combinations of burial depth (0, 5, 10, 20, 40 and 60 mm) and irrigation regimes (low, medium and high, which simulated the precipitation amount and frequency in May, June and July in the natural habitat, respectively). Seedling emergence increased with increasing irrigation. It was highest at 5 mm sand burial depth and ceased at burial depths greater than 20 mm in all irrigation regimes. Mucilage significantly enhanced seedling emergence at 0, 5 and 10 mm burial depths in low irrigation, at 0 and 5 mm burial depths in medium irrigation and at 0 and 10 mm burial depths in high irrigation. Seed mucilage also reduced seedling mortality at the shallow sand burial depths. Moreover, mucilage significantly affected seedling emergence time and quiescence and dormancy percentages. Our findings suggest that seed mucilage plays an ecologically important role in successful seedling establishment of A. sphaerocephala by improving seedling emergence and reducing seedling mortality in stressful habitats of the sandy desert environment. PMID:22511952

  5. Wind regime and sand transport in China's Badain Jaran Desert

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcai; Dong, Zhibao; Li, Chunxiao

    2015-06-01

    Wind controls the formation and development of aeolian dunes, therefore understanding the wind environment is necessary in aeolian dune research. In recent years, climate has changed in and around the Badain Jaran Desert, and the factors that control aeolian dune development have changed with it. In this paper, we analyzed characteristics of the desert's wind regime based on data from seven weather stations in and around the desert. The temporal and spatial variation in the wind regime's characteristics have different effects on dune formation and development. The annual mean wind velocity, maximum wind velocity, and the proportion of the time the wind exceeded the sand-entrainment threshold are largest at the northern margin of the desert, and these values decrease from north to south and from east to west. The dominant winds are from the northwest, northeast, and southwest. The drift potential (DP) in the desert decreases from north to south, and can be divided into three regions: high in the north, intermediate in the central region, and low in the south. The effects of climate change on the calculated DP will be complex; although DP increased with increasing mean wind velocity and temperature, there was little or no relationship with precipitation and relative humidity.

  6. Hydrological behaviour of microbiotic crusts on sand dunes of NW China: Experimental evidences and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wang, Xin Ping; Tedeschi, Anna; Orefice, Nadia; de Mascellis, Roberto; Menenti, Massimo

    2010-05-01

    Large ecological engineering projects were established to reduce and combat the hazards of sandstorms and desertification in northern China. An experiment to evaluate the effects of dunes stabilization by vegetation was carried out at Shapotou in Ningxia Hui Autonomous Region at the southeast edge of the Tengger Desert using xerophyte shrubs (Caragana korshinskii, Hedysarum scoparium and Artemisia ordosica) planted in straw checkerboard plots in 1956, 1964, 1981, 1987, 1998, and 2002. The fixed sand surface led to the formation of biotic soil crusts. Biotic crusts formed at the soil surface in the interspaces between shrubs and contribute to stabilization of soil surfaces. Previous results on the area have showed that: i) straw checkerboards enhance the capacity of the dune system to trap dust, leading to the accumulation of soil organic matter and nutrients; ii) the longer the period of dune stabilization, the greater the soil clay content in the shallow soil profile (0-5 cm), and greater the fractal dimension of soil particle size distribution. Benefit apart, one should be aware that the formation of a crusted layer at the soil surface is generally characterized by an altered pore-size distribution, with a frequent decrease of hydraulic conductivity which can induce changes of the water regime of the whole soil profile. Accordingly, the main objective of the paper is to evaluate the equivalent (from a hydraulic point of view) geometry of the crusted layer and to verify if the specific characteristics of the crusted soil layer, although local by nature, affect the hydrological behaviour of the whole soil profile. In fact, it is expected that, due to the formation of an upper, impeding soil layer, the lower soil layers do not reach saturation. Such behaviour has important consequences on both water flow and storages in soils. The final aim will be to understand how the crust at the surface of the artificially stabilized sand dune affects the infiltration capacity

  7. Biological soil crust as a bio-mediator alters hydrological processes in stabilized dune system of the Tengger Desert, China

    NASA Astrophysics Data System (ADS)

    Li, Xinrong

    2016-04-01

    Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is

  8. Activity of Wind-Blown Sand and the Formation of Feathered Sand Ridges in the Kumtagh Desert, China

    NASA Astrophysics Data System (ADS)

    Liao, Kongtai; Qu, Jianjun; Tang, Jinnian; Ding, Feng; Liu, Hujun; Zhu, Shujuan

    2010-05-01

    We study the activity of wind-blown sand and its effects on the evolution of feathered sand ridges in the Kumtagh Desert, China, and attempt to reveal the formation process of feathered sand ridges using wind-tunnel experiments, remote sensing data, and detailed field observations from 2005 to 2008. The prevailing wind direction in the Kumtagh Desert is easterly in winter and north-easterly in other seasons. The average annual wind speed is 5.9 ms-1, and winds sufficiently strong to entrain sand occur on 143 days per annum. The sand transport rate within 0.4 m of the ground is strongly influenced by local landforms, and is related to wind speed by a power function. Wind erosion occurs on the crest, the windward slope of crescent sand ridges and inter-ridge sand strips, where the blowing sand cloud is in an unsaturated state; in contrast, sand accumulation occurs on the leeward slope of the crescent sand ridges, where the blowing sand cloud is in an over-saturated state. These results indicate that the development of feathered sand ridges in the Kumtagh Desert is mainly controlled by the local wind regime. The dominant winds (from the north, north-north-east and north-east) and additional winds (from the east-north-east, east and east-south-east) determine the development of crescent sand ridges, but winds that are approximately parallel to sand ridges form the secondary inter-ridge sand strips.

  9. Nitrogen photoreduction on desert sands under sterile conditions

    PubMed Central

    Schrauzer, Gerhard N.; Strampach, Norman; Hui, Liu Nan; Palmer, Miles R.; Salehi, Jahanshah

    1983-01-01

    Sands from various geographic locations reduce N2 from the air to NH3 and traces of N2H4 on exposure to sunlight. This N2 photofixation occurs under sterile conditions on the surface of finely dispersed titanium minerals such as rutile, utilizing reducing equivalents generated through the photolysis of chemisorbed H2O. Abiological N2 photofixation is suggested to be part of the nitrogen cycle in arid and semiarid regions. It is estimated that about 10 × 105 tons of N2 is photoreduced on the total surface of the earth's deserts per year. PMID:16593330

  10. Increasing of Mechanical Parameters of Desert Sand Using Pozzolanic Materia

    NASA Astrophysics Data System (ADS)

    Mahdi Sajjadi, Seyed; Fakhraldin Sajjadi, Seyed; Beheshti, Seyed Mohammad; Mehmannavaz, Taha

    2016-04-01

    Research on roads to increase the resistance of weak soils to build structures on it has been increased in recent years. The present article provide the effects of different mixtures containing microsilica, cement, polypropylene waste fiber and dune sand on mechanical parameters such as, compressibility, compressive strength, bending strength and durability characteristic. In this study also is investigated evaluation the effect of road subgrade based on proposed material. The used dune sand in this research was obtained from Kashan city where is located in central desert of Iran. The obtained results show that the microsilica and cement could play a major role in reducing the cost and required time for building roads and also building foundation on these types of soils.

  11. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China.

    PubMed

    Zhang, Bingchang; Kong, Weidong; Wu, Nan; Zhang, Yuanming

    2016-06-01

    Biological soil crusts (BSCs) are common and play critical roles in semi-arid and arid ecosystems. Bacteria, as an important community in BSCs, play critical roles in biochemical processes. However, how bacterial diversity and community change in different successional stages of BSCs is still unknown. We used 454 pyrosequencing of 16S rRNA to investigate the bacterial composition and community, and the relationships between bacterial composition and environmental factors were also explored. In different successional stages of BSCs, the number of bacteria operational taxonomic units (OTUs) detected in each sample ranged from 2572 to 3157. Proteobacteria, Cyanobacteria, Bacteroidetes were dominant in BSCs, followed by Firmicutes, Acidobacteria, and Actinobacteria. At the successional stages of BSCs, bacterial communities, OTU composition and their relative abundance notably differentiated, and Cyanobacteria, especially Microcoleus vaginatus, dominated algal crust and lichen crust, and were the main C-fixing bacteria in BSCs. Proteobacteria and Bacteroidetes increased with the development of BSCs. OTUs related to Planomicrobium Chinese, Desulfobulbus sp., Desulfomicrobium sp., Arthrobacter sp., and Ahhaerbacter sp. showed higher relative abundance in bare sand than other successional stages of BSCs, while relative abundance of Sphingomonas sp. Niastella sp., Pedobacter, Candidatus solobacter, and Streptophyta increased with the development of BSCs. In successional stages of BSCs, bacterial OTUs composition demonstrated strong correlations with soil nutrients, soil salts, and soil enzymes. Additionally, variation of bacterial composition led to different ecological function. In bare sand, some species were related with mineral metabolism or promoting plant growth, and in algal crust and lichen crust, C-fixing bacteria increased and accumulated C to the desert soil. In later developed stage of BSCs, bacteria related with decomposition of organic matter, such as

  12. Impact of biological soil crusts and desert plants on soil microfaunal community composition

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2010-01-01

    Carbon and nitrogen are supplied by a variety of sources in the desert food web; both vascular and non-vascular plants and cyanobacteria supply carbon, and cyanobacteria and plant-associated rhizosphere bacteria are sources of biological nitrogen fixation. The objective of this study was to compare the relative influence of vascular plants and biological soil crusts on desert soil nematode and protozoan abundance and community composition. In the first experiment, biological soil crusts were removed by physical trampling. Treatments with crust removed had fewer nematodes and a greater relative ratio of bacterivores to microphytophages than treatments with intact crust. However, protozoa composition was similar with or without the presence of crusts. In a second experiment, nematode community composition was characterized along a spatial gradient away from stems of grasses or shrubs. Although nematodes generally occurred in increasing abundance nearer to plant stems, some genera (such as the enrichment-type Panagrolaimus) increased disproportionately more than others (such as the stress-tolerant Acromoldavicus). We propose that the impact of biological soil crusts and desert plants on soil microfauna, as reflected in the community composition of microbivorous nematodes, is a combination of carbon input, microclimate amelioration, and altered soil hydrology. ?? Springer Science + Business Media B.V. 2009.

  13. Sensitivity of desert cryptograms to air pollutants: soil crusts and rock lichens

    USGS Publications Warehouse

    Belnap, J.

    1991-01-01

    Parks throughout the West are being faced with increasing air pollution threats from current or proposed industries near their boundaries. For this reason, it is important to understand the effects these industries may have on desert ecosystems. Rock lichens can be excellent biomonitors, acting as early warning systems of impending damage to other components of the desert ecosystem. Cryptogamic crusts, consisting mostly of cyanobacteria and lichens, may not only be excellent bioindicators, but also are an essential part of the desert ecosystem. Their presence is critical for soil stability as well as for the contribution of nitrogen to the ecosystem in a form available to higher plants. Air pollutants, such as emissions from coal-fired power plants, may threaten the healthy functioning of these non-vascular plants. The purpose of this study is to determine if, in fact, air pollutants do have an impact on the physiological functioning of cryptogamic crusts or rock lichens in desert systems and, if so, to what extent. Some results have already been obtained. Both rock lichens and cryptogamic crusts exhibit physiological damage in the vicinity of the Navajo Generating Station in Page, Arizona. Increased electrolyte leakage and chlorophyll degradation, along with reduced nitrogen fixation, have been found. Preliminary studies comparing sensitivity between substrates indicate that crusts on limestone and sandstone substrates may be more sensitive than those on gypsum.

  14. Soil surface disturbances in cold deserts: Effects on nitrogenase activity in cyanobacterial-lichen soil crusts

    USGS Publications Warehouse

    Belnap, Jayne

    1996-01-01

    CyanobacteriaMichen soil crusts can be a dominant source of nitrogen for cold-desert ecosystems. Effects of surface disturbance from footprints, bike and vehicle tracks on the nitrogenase activity in these crusts was investigated. Surface disturbances reduced nitrogenase activity by 30-100%. Crusts dominated by the cyanobacterium Microcoleus vaginatus on sandy soils were the most susceptible to disruption; crusts on gypsiferous soils were the least susceptible. Crusts where the soil lichen Collema tenax was present showed less immediate effects; however, nitrogenase activity still declined over time. Levels of nitrogenase activity reduction were affected by the degree of soil disruption and whether sites were dominated by cyanobacteria with or without heterocysts. Consequently, anthropogenic surface disturbances may have serious implications for nitrogen budgets in these ecosystems.

  15. Isotopic Composition of Organic and Inorganic Carbon in Desert Biological Soil Crust Systems

    NASA Astrophysics Data System (ADS)

    Alexander, K.; Hartnett, H.; Anbar, A.; Beraldi, H.; Garcia-Pichel, F.

    2006-12-01

    Biological soil crusts (BSCs) are microbial communities that colonize soil surfaces in many arid regions. BSCs are important sources for fixed carbon and nitrogen in these ecosystems, and they greatly influence the structure, function, and appearance of desert soils. Biological activity of BSCs occurs during pulses of hydration requiring desert crusts to tolerate extremes in UV radiation, temperature, and desiccation. These characteristics make desert crusts unique systems that have received little consideration in the study of biogeochemical processes in extreme environments. This project investigates the impact of BSCs on carbon dynamics within desert soils. Soil cores ranging in depth from 8 to 12 cm were taken in March, 2006 from deserts near Moab, Utah. Two major BSC classes were identified: lichen-dominated (dark and pinnacled) soil crusts and cyanobacteria-dominated (light and flat) soil crusts. These two surface morphologies are related to the different biological communities. Carbon content and stable carbon isotopic composition were determined for the bulk carbon pool, as well as for the organic and inorganic carbon fractions of the soils. Expectedly, there was a net decrease in organic carbon content with depth (0.39-0.27 percent). Stable carbon isotope values for the organic fraction ranged from -5.8 per mil to -24.0 per mil (Avg: -14.4 per mil, S.D: 6.42 per mil). Stable carbon isotope values for the inorganic fraction ranged from 0.3 per mil to -3.6 per mil (Avg: -2.4 per mil, S.D.: 1.05 per mil). The variation in the isotopic composition of the organic carbon was due to a strong depletion below the surface soil value occurring between 3 and 5 cm depth, with an enrichment above the original surface value at depths below 6 to 10 cm. These data suggest that within desert soil crust systems the carbon isotopic signal is complex with both a clear biological imprint (lighter organic carbon) as well as evidence for some mechanism that results in

  16. Comparison of diurnal dynamics in evaporation rate between bare soil and moss-crusted soil within a revegetated desert ecosystem of northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui

    2016-02-01

    Effects of biological soil crusts (BSCs) on soil evaporation is quite controversial in literature, being either facilitative or inhibitive, and therein few studies have actually conducted direct evaporation measurements. Continuous field measurements of soil water evaporation were conducted on two microlysimeters, i.e., one with sand soil collected from bare sand dune area and the other with moss-crusted soil collected from an area that was revegetated in 1956, from field capacity to dry, at the southeastern edge of the Tengger Desert. We mainly aimed to quantify the diurnal variations of evaporation rate from two soils, and further comparatively discuss the effects of BSCs on soil evaporation after revegetation. Results showed that in clear days with high soil water content (Day 1 and 2), the diurnal variation of soil evaporation rate followed the typical convex upward parabolic curve, reaching its peak around mid-day. Diurnal evaporation rate and the accumulated evaporation amount of moss-crusted soil were lower (an average of 0.90 times) than that of sand soil in this stage. However, as soil water content decreased to a moderately low level (Day 3 and 4), the diurnal evaporation rate from moss-crusted soil was pronouncedly higher (an average of 3.91 times) than that of sand soil, prolonging the duration of this higher evaporation rate stage; it was slightly higher in the final stage (Day 5 and 6) when soil moisture was very low. We conclude that the effects of moss crusts on soil evaporation vary with different evaporation stages, which is closely related to soil water content, and the variation and transition of evaporation rate between bare soil and moss-crusted soil are expected to be predicted by soil water content.

  17. Stabilization of Desert Surfaces and Accumulation of Dust Under Biological Soil Crusts

    NASA Astrophysics Data System (ADS)

    Finstad, K. M.; Mcnicol, G.; Pfeiffer, M.; Amundson, R.

    2014-12-01

    Biological soil crusts (BSC) are known to play a critical role in the stabilization of desert surfaces by helping to protect sediment from wind and water erosion and aiding in the trapping of airborne particles. The crusts are often composed of cyanobacteria, algae, and fungi, and occupy the upper few cm of a soil. Due to their high tolerance of desiccation and ability to utilize fog and dew sources, BSC are able to exist in environments that may otherwise be too dry for vascular plants. In the hyperarid Atacama Desert, decades or more between measurable precipitation events has created a landscape devoid of macroscopic life. While precipitation is rare, coastal fog occurs regularly and microbial communities capable of utilizing fog and dew water are able to persist. Here we found cyanobacteria and lichen living in association with a thin sulfate and dust crust (~2 cm) covering the surface of 'dust plateaus'. Topographically the region is highly irregular and part of a largely erosional landscape. We hypothesized that these flat-topped plateaus are accretionary features that have been able to maintain dust accumulation for thousands of years as a result of the surface crusts. To test this hypothesis we conducted radiocarbon analysis of crusts and soil profiles at two sites approximately 30 km apart, one in a high fog zone and another in lower fog frequency zone. The radiocarbon analysis shows that sediment has been accumulating in the 'plateaus' for the past 15,000 years and that biological activity and rates of C cycling in the crust increase with increasing fog frequency and intensity. The ages of organic material in the dust decrease monotonically with decreasing soil thickness, suggestive of progressive upward growth by dust accumulation. Our data indicate that the BSC are capable of surviving in hyperarid the Atacama Desert, a Mars analogue, through the utilization of fog water, and that their presence can leave a visible geomorphic imprint on the landscape.

  18. Discrimination of active and inactive sand from remote sensing - Kelso dunes, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Paisley, Elizabeth C. I.; Lancaster, Nicholas; Gaddis, Lisa R.; Greeley, Ronald

    1991-01-01

    Landsat TM images, field data, and laboratoray reflectance spectra were examined for the Kelso dunes, Mojave Desert, California to assess the use of visible and near-infrared (VNIR) remote sensing data to discriminate aeolian sand populations on the basis of spectral brightness. Results show that areas of inactive sand have a larger percentage of dark, fine-grained materials compared to those composed of active sand, which contain less dark fines and a higher percentage of quartz sand-size grains. Both areas are spectrally distinct in the VNIR, suggesting that VNIR spectral data can be used to discriminate active and inactive sand populations in the Mojave Desert. Analysis of laboratory spectra was complicated by the presence of magnetite in the active sands, which decreases their laboratory reflectance values to those of inactive sands. For this application, comparison of TM and laboratory spectra suggests that less than 35 percent vegetation cover does not influence the TM spectra.

  19. Characterization of desert sand as a sensible thermal energy storage medium

    NASA Astrophysics Data System (ADS)

    Diago, Miguel; Iniesta, Alberto Crespo; Delclos, Thomas; Soum-Glaude, Audrey; Shamim, Tariq; Calvet, Nicolas

    2016-05-01

    Desert sand from the United Arab Emirates (UAE) is considered as a possible sensible heat, thermal energy storage (TES) material. Its thermal stability, specific heat capacity and tendency to agglomerate are studied at high temperatures. The analyses show that it is possible to use desert sand as a TES material up to 800-1000 °C. Above 800 °C, weak agglomeration effects start to become significant. The samples become solid above 1000 °C. This may represent a major operating limit depending on the handling mechanism in place for the possible transport of the sand. The sand chemical composition is analyzed with the XRF and XRD techniques, which reveal the dominance of quartz and carbonates. Finally, the spectral absorptivity of the samples is measured before and after a thermal cycle, as it may be possible to use the desert sand not only as a TES material but also as a direct solar absorber.

  20. Extending the western North American Proterozoic and Paleozoic continental crust through the Mojave Desert

    SciTech Connect

    Martin, M.W.; Walker, J.D. )

    1992-08-01

    Data supporting the existence of Proterozoic basement in the central and western Mojave Desert include U-Pb zircon geochronology and Nd, Sr, and Pb isotopic values of quartzofeldspathic gneisses, detrital zircon provenance ages, and the presence of basement clasts in Paleozoic and Mesozoic conglomerates. These data corroborate existing isotopic data from Mesozoic and Tertiary intrusive rocks that suggest involvement of Proterozoic crust in their genesis. Exposures of Proterozoic basement and Late Proterozoic and Paleozoic transitional miogeoclinal-cratonal facies trends in the central and western Mojave Desert consistently imply that cratonal North America continues westward uninterrupted through this region to the San Andreas fault. These data place geographic limits on the position of several pre-Tertiary tectonic elements speculated to exist in the Mojave Desert.

  1. Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, northern China

    NASA Astrophysics Data System (ADS)

    Li, X. R.; He, M. Z.; Duan, Z. H.; Xiao, H. L.; Jia, X. H.

    2007-08-01

    Recovery in soil properties and processes after sand burial in the Tengger Desert, northern China, was documented at five different-aged revegetated sites (1956, 1964, 1973, 1982, and 1991) and at a reference site with native vegetation, which had never been damaged by sand burial and was enclosed for grazing. The proportions of silt and clay, depth of topsoil and biological soil crusts, and concentrations of soil organic C, K, total N and total P increased with years since revegetation. Most characteristics of topsoil (0-5 cm) characteristics had recovered to 60% of those measured at the reference site by 50 years after sand-binding vegetation had been established. Exceptions were electrical conductivity and contents of sand, silt, CaCO 3 and organic C, which recovered to 20-40% of the values at the reference site. The difference in annual recovery rates of soil properties between the two most recently revegetated sites (0-14 years) was greater than the difference between the two oldest revegetated sites (43-50 years). Best-fit asymptote models showed that the estimated times for the soil properties in the 50-year-old site to reach the same levels as in the reference site (i.e. an undisturbed, native steppified desert ecosystem) would be between 23 and 245 years, but for some properties even maximum recovery after > 50 years still fell significantly short of the level at the reference site. These results suggest that soil recovery is a slow process in an extremely arid desert environment, and therefore the conservation of soil habitat is a crucial issue for land managers.

  2. Phylogenetic and Morphological Diversity of Cyanobacteria in Soil Desert Crusts from the Colorado Plateau

    PubMed Central

    Garcia-Pichel, Ferran; López-Cortés, Alejandro; Nübel, Ulrich

    2001-01-01

    We compared the community structures of cyanobacteria in four biological desert crusts from Utah's Colorado Plateau developing on different substrata. We analyzed natural samples, cultures, and cyanobacterial filaments or colonies retrieved by micromanipulation from field samples using microscopy, denaturing gradient gel electrophoresis, and sequencing of 16S rRNA genes. While microscopic analyses apparently underestimated the biodiversity of thin filamentous cyanobacteria, molecular analyses failed to retrieve signals for otherwise conspicuous heterocystous cyanobacteria with thick sheaths. The diversity found in desert crusts was underrepresented in currently available nucleotide sequence databases, and several novel phylogenetic clusters could be identified. Morphotypes fitting the description of Microcoleus vaginatus Gomont, dominant in most samples, corresponded to a tight phylogenetic cluster of probable cosmopolitan distribution, which was well differentiated from other cyanobacteria traditionally classified within the same genus. A new, diverse phylogenetic cluster, named “Xeronema,” grouped a series of thin filamentous Phormidium-like cyanobacteria. These were also ubiquitous in our samples and probably correspond to various botanical Phormidium and Schizothrix spp., but they are phylogenetically distant from thin filamentous cyanobacteria from other environments. Significant differences in community structure were found among soil types, indicating that soil characteristics may select for specific cyanobacteria. Gypsum crusts were most deviant from the rest, while sandy, silt, and shale crusts were relatively more similar among themselves. PMID:11282648

  3. [Effects of elevated temperature and CO2 on desert algal crust photosynthesis].

    PubMed

    Su, Yan-gui; Li, Xin-rong; Chen, Ying-wu; Cui, Yan; Lu, Yan

    2010-09-01

    Taking the 26- and 51-year-old artificial vegetation areas and the natural vegetation area in Shapotou region of southeast Tengger Desert as study sites, this paper measured the net photosynthetic rate (Pn) of algal crusts, and analyzed its relationships with crust water content (> 100%, 40%-60%, and <20%), atmospheric CO2 concentration (360 and 700 mg x L(-1)), and air temperature (13 degrees C, 24 degrees C, and 28 degrees C). The Pn of the crusts in the 26- and 51-year-old artificial vegetation areas and natural vegetation area was 3.4, 4.4, and 3.2 micromol x m(-2) x s(-1), respectively, and the Pn in 51-year-old artificial vegetation area was significantly higher than that in the other two areas. Crust water content had significant effects on the Pn, which was significantly higher at medium water content (40%-60%) than at low (<20%) and high (>100%) water content. When the CO2 concentration doubled (700 mg x L(-1)), the Pn increased by 1.8-3.3 times at medium and high crust water content but had less change at low crust water content, compared with that under ambient CO2 concentration (360 mg x L(-1)). At medium and high crust water content, the Pn at 24 degrees C and 28 degrees C was 27%-66% higher than that at 13 degrees C (P < 0.05), but at low crust water content, no significant difference was observed at the three temperatures. PMID:21265140

  4. Diazotrophic Community Structure and Function in Two Successional Stages of Biological Soil Crusts from the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Yeager, C.M.; Kornosky, J.L.; Housman, D.C.; Grote, E.E.; Belnap, J.; Kuske, C.R.

    2004-01-01

    The objective of this study was to characterize the community structure and activity of N2-fixing microorganisms in mature and poorly developed biological soil crusts from both the Colorado Plateau and Chihuahuan Desert. Nitrogenase activity was approximately 10 and 2.5 times higher in mature crusts than in poorly developed crusts at the Colorado Plateau site and Chihuahuan Desert site, respectively. Analysis of nifH sequences by clone sequencing and the terminal restriction fragment length polymorphism technique indicated that the crust diazotrophic community was 80 to 90% heterocystous cyanobacteria most closely related to Nostoc spp. and that the composition of N2-fixing species did not vary significantly between the poorly developed and mature crusts at either site. In contrast, the abundance of nifH sequences was approximately 7.5 times greater (per microgram of total DNA) in mature crusts than in poorly developed crusts at a given site as measured by quantitative PCR. 16S rRNA gene clone sequencing and microscopic analysis of the cyanobacterial community within both crust types demonstrated a transition from a Microcoleus vaginatus-dominated, poorly developed crust to mature crusts harboring a greater percentage of Nostoc and Scytonema spp. We hypothesize that ecological factors, such as soil instability and water stress, may constrain the growth of N2-fixing microorganisms at our study sites and that the transition to a mature, nitrogen-producing crust initially requires bioengineering of the surface microenvironment by Microcoleus vaginatus.

  5. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.

  6. 78 FR 37845 - Meeting of the Imperial Sand Dunes Recreation Area (ISDRA) Subgroup of the California Desert...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... California Desert District Advisory Council SUMMARY: Notice is hereby given, in accordance with Public Laws 92-463 and 94-579, that the Imperial Sand Dunes Recreation Area Subgroup of the California Desert... filed in advance of the meeting for the California Desert District Advisory Council ISDRA Subgroup,...

  7. Biological soil crusts of sand dunes in Cape Cod National Seashore, Massachusetts, USA.

    PubMed

    Smith, S M; Abed, R M M; Gercia-Pichel, F

    2004-08-01

    Biological soil crusts cover hundreds of hectares of sand dunes at the northern tip of Cape Cod National Seashore (Massachusetts, USA). Although the presence of crusts in this habitat has long been recognized, neither the organisms nor their ecological roles have been described. In this study, we report on the microbial community composition of crusts from this region and describe several of their physical and chemical attributes that bear on their environmental role. Microscopic and molecular analyses revealed that eukaryotic green algae belonging to the genera Klebsormidium or Geminella formed the bulk of the material sampled. Phylogenetic reconstruction of partial 16S rDNA sequences obtained from denaturing gradient gel electrophoresis (DGGE) fingerprints also revealed the presence of bacterial populations related to the subclass of the Proteobacteria, the newly described phylum Geothrix/ Holophaga/ Acidobacterium, the Cytophaga/ Flavobacterium/ Bacteroides group, and spirochetes. The presence of these crusts had significant effects on the hydric properties and nutrient status of the natural substrate. Although biological soil crusts are known to occur in dune environments around the world, this study enhances our knowledge of their geographic distribution and suggests a potential ecological role for crust communities in this landscape. PMID:15546040

  8. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust.

    PubMed

    Rajeev, Lara; da Rocha, Ulisses Nunes; Klitgord, Niels; Luning, Eric G; Fortney, Julian; Axen, Seth D; Shih, Patrick M; Bouskill, Nicholas J; Bowen, Benjamin P; Kerfeld, Cheryl A; Garcia-Pichel, Ferran; Brodie, Eoin L; Northen, Trent R; Mukhopadhyay, Aindrila

    2013-11-01

    Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1 h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations. PMID:23739051

  9. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust

    PubMed Central

    Rajeev, Lara; da Rocha, Ulisses Nunes; Klitgord, Niels; Luning, Eric G; Fortney, Julian; Axen, Seth D; Shih, Patrick M; Bouskill, Nicholas J; Bowen, Benjamin P; Kerfeld, Cheryl A; Garcia-Pichel, Ferran; Brodie, Eoin L; Northen, Trent R; Mukhopadhyay, Aindrila

    2013-01-01

    Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1 h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations. PMID:23739051

  10. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    PubMed

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. PMID:25809542

  11. Active sand dunes are largest dust source in the Sahara Desert

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    Dried up lakebeds and playas in the Sahara Desert of North Africa are large sources of dust in the atmosphere. The Bodélé Depression at the southern edge of the Sahara Desert, for example, is the single largest source of dust in the world; on average, 100 dust storms a year originate from the Bodélé Depression. A new study by Crouvi et al., however, finds that active sand dunes could be even bigger sources of desert dust in the atmosphere. Atmospheric dust plays active roles in climate and biological processes in the ocean: It regulates heating at the surface of the Earth; modifies cloud properties that affect rainfall; and acts as the only source of iron, a critical nutrient for microorganisms in the ocean. Little is known about types of dust sources in the Sahara Desert, which alone accounts for more than 50% of the dust in the atmosphere.

  12. Petrology of dune sand derived from basalt on the Ka'u Desert, Hawaii

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1982-01-01

    Dune sand from the Ka'u Desert, southwest flank of Kilauea volcano, Hawaii, is moderately well-sorted (median = 1.60 Phi, deviation = 0.60, skewness = 0.25, kurtosis = 0.68) and composed mostly of frosted subangular particles of basalt glass ('unfractionated' olivine-normative tholeitte), olivine, lithic fragments (subophitic and intersertal basalts; magnetite-ilmenite-rich basalts), reticular basalt glass, magnetite, ilmenite, and plagioclase, in approximately that order of abundance. Quantitative lithological comparison of the dune sand with sand-sized ash from the Keanakakoi Formation supports suggestions that the dune sand was derived largely from Keanakakoi ash. The dune sand is too well sorted to have been emplaced in its present form by base-surge but could have evolved by post-eruption reworking of the ash.

  13. Multiple dust sources in the Sahara Desert: The importance of sand dunes

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Schepanski, Kerstin; Amit, Rivka; Gillespie, Alan R.; Enzel, Yehouda

    2012-07-01

    We determine the current sources of dust in the Sahara Desert using quantitative correlation between the number of days with dust storms (NDS), derived from remote-sensing data of high temporal resolution, with the distribution of the soil types and geomorphic units. During 2006-8 the source of over 90% of the NDS was found to be sand dunes, leptosols, calcisols, arenosols, and rock debris. In contrast to previous studies, only few dust storms originated from playas and dry lake beds. Land erodibility was estimated by regressing the NDS to the number of days with high-speed wind events, and was found to be high for sand dunes. Clay and fine-silt grains and aggregates are scarce in sand dunes, which most likely produce dust particles through aeolian abrasion of sand grains. Thus, saltating sand grains impacting clay aggregates on playa surfaces cannot be the sole process for generating dust in the Sahara.

  14. Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert

    USGS Publications Warehouse

    DeFalco, L.A.; Detling, J.K.; Tracy, C.R.; Warren, S.D.

    2001-01-01

    Microbiotic crusts are important components of many aridland soils. Research on crusts typically focuses on the increase in soil fertility due to N-fixing micro-organisms, the stabilization of soils against water and wind erosion and the impact of disturbance on N-cycling. The effect of microbiotic crusts on the associated plant community has received little attention. We quantified the influence of crusts on the production, species diversity, nutrient content and water relations of winter annual plant species associated with microbiotic soil crusts in the northeast Mojave Desert. Shoot biomass of winter annuals was 37% greater and plant density was 77% greater on crusts than were biomass and density on soils lacking crust cover (=bare soils). This greater production of annuals on crusts was likely due to enhanced soil conditions including an almost two-fold increase in soil organic matter and inorganic N compared to bare soils. Crusted soils also had 53% greater volumetric water content than bare soils during November and December, the time when winter annuals become established. As plant development progressed into spring, however, soil water availability decreased: More negative plant xylem water potentials were associated with greater plant biomass on crusted soils. Plants associated with microbiotic soil crusts had lower concentrations of N in shoots (mg N g-1 dry mass). However, total shoot N (mg N m-2) was the same in plants growing on the different soil types when biomass production peaked in April. Shoots had similar patterns in their concentration and content of P. Species diversity of annuals was not statistically different between the two soil types. Yet, while native annuals comprised the greatest proportion of shoot biomass on bare soils, exotic forbs and grasses produced more biomass on crusts. Total shoot nutrient content (biomass x concentration) of the two exotic annual species examined was dramatically greater on crusts than bare soils; only one

  15. Observation (Geomorphology) of the largest mega sand of central Iran Desert, Lut, Using Remote sensing data

    NASA Astrophysics Data System (ADS)

    Abdollhai, A.; Yamani, M.

    2009-04-01

    It is believed that the Lut desert features, in elevation and volume, are unique (even in the world) in central Iran. These huge morphological features will be an excellent Sedimentary Archive in quaternary explaining the climate condition and distribution of desert surface features on the earth, meanwhile the attention less has gone on the Aeolian features in the area of interest because it is hard to access. This papers aims to present these unique features by remote sensing data. Remote sensing data including, Irs Aster, Srtm and Arial photograph data were used to measure the dune migration and other aspects of desert environment. Sand dune morphology encompasses almost all typical desert features including single, linear, pyramid, star sand and others. compressing remote sensing data between 1955 and 2000 approves the single Barkhan is being migrated at the rate of 22.65 M per year and accelerate at the last period between 2000 and 2008. A large part of scarce vegetation represents active and rapid migration creating huge morphological features. Linear dune elevation reaches more than 430 M and shows the highest elevation of dune activity on Earth. To evaluate surface temperature Aster 08 production were used. The surface temperature on the sand is probably the highest temperature received by solar energy around 84 Celsius degrees resulting High thermal cell in central Iran. This causes to create huge morphological features in central Iran reaching more than 400 m high due to repetition and reactivation under closed circumstance system.

  16. Microbial Diversity in Soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert, India.

    PubMed

    Rao, Subramanya; Chan, Yuki; Bugler-Lacap, Donnabella C; Bhatnagar, Ashish; Bhatnagar, Monica; Pointing, Stephen B

    2016-03-01

    A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca(2+) and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system. PMID:26843695

  17. The primary role of active large sand seas in forming warm-desert loess sequences

    NASA Astrophysics Data System (ADS)

    Crouvi, O.; Enzel, Y.; Amit, R.; Gillespie, A.

    2009-12-01

    Loess is a widespread aeolian deposit in warm deserts and their semiarid margins. It is commonly dominated by coarse silts. Quartz particles, commonly angular, are the main component (commonly 50%-70%) of this coarse silt fraction. Despite intensive research during the past century on loess formation, the origin of these coarse quartz silts comprising most of desert loess remains one of the fundamental debated problems in sedimentology and Quaternary geology. The ongoing debate is focused on the first stage of loess formation - the production of the quartz silt grains. Therefore this debate influences interpretations of past environmental and climatic changes. Although laboratory experiments indicate the potential of spalling coarse silt grains from abrading sand grains during saltation, field-based evidence is rare and the concept has been minimized and even rejected. We examined in detail data available for several well-known loess zones in subtropical deserts (including: Sahara, Sinai-Negev, Arabia) and show that all these, desert loess sequences are located downwind of adjacent sand dunes/seas both during the late Pleistocene as indicated by dune directions and even at present as indicated by wind data and drift analyses. Additional observations include: (a) mineralogical similarity between the loess and the upwind sand dunes, (b) temporal association of intensified erg activity and loess formation, and (c) grain-size mode reduction of loess with distance from ergs. Where there is no loess sequence downwind of ergs, there is an ocean, sometimes with reported silts (interpreted as dust) in coastal and deeper sea cores. These observations suggest that sand dunes must have been an important source for desert loess. We postulate that the silt grains are generated through active aeolian abrasion of sand grains during episodes of intense windy conditions, in most cases in glacial times. Thus our findings stress that the primary role of active ergs and aeolian

  18. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA - USEPA DEMONSTRATION PROJECT AT DESERT SANDS MDWCA, NM SIX MONTH EVALUATION

    EPA Science Inventory

    This report documents the activities performed during, and the results obtained from, the first six months of the arsenic removal treatment technology demonstration project at the Desert Sands Mutual Domestic Water Consumers Association (MDWCA) facility in Anthony, NM. The object...

  19. Large-eddy Simulation of Boundary Layer Flow over Desert Sand Dune Structures

    NASA Astrophysics Data System (ADS)

    Uhlrich, S.; Anderson, W.; Passalacqua, P.; Mohrig, D. C.; Kocurek, G.

    2012-12-01

    Complex spatiotemporal coupling exists between desert sand dune topography and surface layer physics of the atmospheric boundary layer (ABL). Although the interactions of individual desert sand dunes have been extensively studied, with categorical interaction mechanisms identified, the aero-mechanical coupling associated with these dune interactions remains an open problem. Large-eddy simulation (LES) is used to simulate turbulent boundary layer flow over dune structures from White Sands, NM. The dunes are resolved with an immersed boundary method (IBM). The flow-forcing (imposed pressure gradient) is varied to simulate the three common prevailing wind conditions at White Sands (southwest, southeast, and northwest, with southwest being the most common). In the present research, comparison between flow statistics (dune wall pressure distribution retrieved from the IBM) and time-difference dune elevation data are used to characterize the mechanisms responsible for erosion (stoss side) and deposition (lee side) of sand. Additionally, statistical details of time series of aerodynamic forcing at different locations on the dune face are evaluated, which may be used to deepen understanding of erosion and deposition events observed in the time-difference lidar data.

  20. Breeding sites of Phlebotomus sergenti, the sand fly vector of cutaneous leishmaniasis in the Judean Desert.

    PubMed

    Moncaz, Aviad; Faiman, Roy; Kirstein, Oscar; Warburg, Alon

    2012-01-01

    Phlebotomine sand flies transmit Leishmania, phlebo-viruses and Bartonella to humans. A prominent gap in our knowledge of sand fly biology remains the ecology of their immature stages. Sand flies, unlike mosquitoes do not breed in water and only small numbers of larvae have been recovered from diverse habitats that provide stable temperatures, high humidity and decaying organic matter. We describe studies designed to identify and characterize sand fly breeding habitats in a Judean Desert focus of cutaneous leishmaniasis. To detect breeding habitats we constructed emergence traps comprising sand fly-proof netting covering defined areas or cave openings. Large size horizontal sticky traps within the confined spaces were used to trap the sand flies. Newly eclosed male sand flies were identified based on their un-rotated genitalia. Cumulative results show that Phlebotomus sergenti the vector of Leishmania tropica rests and breeds inside caves that are also home to rock hyraxes (the reservoir hosts of L. tropica) and several rodent species. Emerging sand flies were also trapped outside covered caves, probably arriving from other caves or from smaller, concealed cracks in the rocky ledges close by. Man-made support walls constructed with large boulders were also identified as breeding habitats for Ph. sergenti albeit less important than caves. Soil samples obtained from caves and burrows were rich in organic matter and salt content. In this study we developed and put into practice a generalized experimental scheme for identifying sand fly breeding habitats and for assessing the quantities of flies that emerge from them. An improved understanding of sand fly larval ecology should facilitate the implementation of effective control strategies of sand fly vectors of Leishmania. PMID:22802981

  1. Breeding Sites of Phlebotomus sergenti, the Sand Fly Vector of Cutaneous Leishmaniasis in the Judean Desert

    PubMed Central

    Moncaz, Aviad; Faiman, Roy; Kirstein, Oscar; Warburg, Alon

    2012-01-01

    Phlebotomine sand flies transmit Leishmania, phlebo-viruses and Bartonella to humans. A prominent gap in our knowledge of sand fly biology remains the ecology of their immature stages. Sand flies, unlike mosquitoes do not breed in water and only small numbers of larvae have been recovered from diverse habitats that provide stable temperatures, high humidity and decaying organic matter. We describe studies designed to identify and characterize sand fly breeding habitats in a Judean Desert focus of cutaneous leishmaniasis. To detect breeding habitats we constructed emergence traps comprising sand fly-proof netting covering defined areas or cave openings. Large size horizontal sticky traps within the confined spaces were used to trap the sand flies. Newly eclosed male sand flies were identified based on their un-rotated genitalia. Cumulative results show that Phlebotomus sergenti the vector of Leishmania tropica rests and breeds inside caves that are also home to rock hyraxes (the reservoir hosts of L. tropica) and several rodent species. Emerging sand flies were also trapped outside covered caves, probably arriving from other caves or from smaller, concealed cracks in the rocky ledges close by. Man-made support walls constructed with large boulders were also identified as breeding habitats for Ph. sergenti albeit less important than caves. Soil samples obtained from caves and burrows were rich in organic matter and salt content. In this study we developed and put into practice a generalized experimental scheme for identifying sand fly breeding habitats and for assessing the quantities of flies that emerge from them. An improved understanding of sand fly larval ecology should facilitate the implementation of effective control strategies of sand fly vectors of Leishmania. PMID:22802981

  2. Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil texture, and disturbance

    USGS Publications Warehouse

    Belnap, J.; Gillette, Dale A.

    1998-01-01

    Biological soil crusts, consisting of cyanobacteria, green algae, lichens, and mosses, are important in stabilizing soils in semi-arid and arid lands. Integrity of these crusts is compromised by compressional disturbances such as foot, vehicle, or livestock traffic. Using a portable wind tunnel, we found threshold friction velocities (TFVs) of undisturbed crusts well above wind forces experienced at these sites; consequently, these soils are not vulnerable to wind erosion. However, recently disturbed soils or soils with less well-developed crusts frequently experience wind speeds that exceed the stability thresholds of the crusts. Crustal biomass is concentrated in the top 3 mm of soils. Sandblasting by wind can quickly remove this material, thereby reducing N and C inputs from these organisms. This loss can result in reduced site productivity, as well as exposure of unprotected subsurface sediments to wind and water erosion. Actions to reduce impacts to these crusts can include adjustments in type, intensity, and timing of use.

  3. Biological soil crusts are the main contributor to winter soil respiration in a temperate desert ecosystem of China

    NASA Astrophysics Data System (ADS)

    He, M. Z.

    2012-04-01

    Aims Biological soil crusts (BSCs) are a key biotic component of desert ecosystems worldwide. However, most studies carried out to date on carbon (fluxes) in these ecosystems, such as soil respiration (RS), have neglected them. Also, winter RS is reported to be a significant component of annual carbon budget in other ecosystems, however, we have less knowledge about winter RS of BSCs in winter and its contribution to carbon cycle in desert regions. Therefore, the specific objectives of this study were to: (i) quantify the effects of different BSCs types (moss crust, algae crust, physical crust) on the winter RS; (ii) explore relationships of RS against soil temperature and water content for different BSCs, and (iii) assess the relative contribution of BSCs to the annual amount of C released by RS at desert ecosystem level. Methods Site Description The study sites are located at the southeast fringe of the Tengger Desert in the Shapotou region of the Ningxia Hui Autonomous Region [37°32'N and 105°02'E, at 1340 m above mean sea level (a.m.s.l.)], western China. The mean daily temperature in January is -6.9°C , while it is 24.3°C in July. The mean annual precipitation is 186 mm, approximately 80% of which falls between May and September. The annual potential evaporation is 2800 mm. The landscape of the Shapotou region is characterized by large and dense reticulate barchans chains of sand dunes that migrate south-eastward at a velocity of 3-6 m per year. The soil is loose, infertile and mobile and can thus be classified as orthic sierozem and Aeolian sandy soil. Additionally, the soil has a consistent gravimetric water content that ranges from 3 to 4%. The groundwater in the study area is too deep (>60 m) to support large areas of the native vegetation cover; therefore, precipitation is usually the only source of freshwater. The predominant native plants are Hedysarum scoparium Fisch. and Agriophyllum squarrosum Moq., Psammochloa cillosa Bor, which scattered

  4. Diagenetic origin of ironstone crusts in the Lower Cenomanian Bahariya Formation, Bahariya Depression, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Afify, A. M.; Sanz-Montero, M. E.; Calvo, J. P.; Wanas, H. A.

    2015-01-01

    In this paper, a new interpretation of the ironstone crusts of the Bahariya Formation as late diagenetic products is provided. The siliciclastic Lower Cenomanian Bahariya Formation outcropping in the northern part of the Bahariya Depression (Western Desert, Egypt) is subdivided into three informal units that are mainly composed of thinly laminated siltstone, cross-bedded and massive sandstone, fossiliferous sandstone/sandy limestone and variegated shale. Abundant ironstone crusts occur preferentially within its lower and upper units but are absent in the middle unit. The ironstone crusts show selective replacement of carbonate components, including calcretes, by iron oxyhydroxides. More permeable parts of the terrigenous beds such as burrow traces, subaerial exposure surfaces, concretionary features and soft-sediment deformation structures led to heterogeneous distribution of the iron oxyhydroxides. A variety of diagenetic minerals, where goethite and hematite are the main end-products, were characterized by mineralogical analysis (XRD), petrography and SEM observation, and geochemical determinations (EMPA). Other diagenetic minerals include Fe-dolomite/ankerite, siderite, manganese minerals, barite, silica, illite/smectite mixed-layer, and bitumen. These minerals are interpreted to be formed in different diagenetic stages. Some minerals, especially those formed during eodiagenesis, show features indicative of biogenic activity. During burial, dolomite and ankerite replaced preferentially the depositional carbonates and infilled secondary porosity as well. Also during mesodiagenesis, the decomposition of organic matter resulted in the formation of bitumen and created reducing conditions favorable for the mobilization of iron-rich fluids in divalent stage. Telodiagenesis of the Cenomanian Bahariya deposits took place during the Turonian-Santonian uplift of the region. This resulted in partial or total dissolution of Fe-dolomite and ankerite which was concomitant to

  5. Biological Soil Crusts Influence Hydrologic Function Differently in Various Deserts And Future Climate and Land Use will Affect These Relationships

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Wilcox, B.; Barger, N.; Herrick, J.; van Soyoc, M.

    2012-04-01

    Biological soil crusts (biocrusts) can completely cover plant interspaces in dryland regions, and can constitute 70% or more of the living ground cover. In these areas, where precipitation is low and soils have low fertility, native plants often rely on intact biological soil crusts to provide water and nutrient flow to the broadly scattered vegetation. In cool desert systems, well-developed biocrusts (dominated by lichens and mosses) roughen the soil surface, increasing residence time of surface water flow. This results in increased and relatively homogenous infiltration of water into the soils. Filaments associated with cyanobacteria, fungi, mosses and lichens increase aggregate formation and stabilize soils, thus reducing sediment production, with well-developed biocrusts conferring much more stability on soils than less developed cyanobacterial dominated biocrusts. In hot and hyper-arid desert systems, biocrusts are generally less developed and dominated by cyanobacteria. These biocrusts generally increase runoff from plant interspaces to downslope vegetation. While reduced infiltration may seem to be negative, it can actually be advantageous to the downslope plants, as they may require small watersheds above them to provide the needed amount of water and nutrients required for their growth. Thus, infiltration and nutrient additions are more heterogenous than in cool desert systems. Soil surface disturbance and climate change have the potential to dramatically alter the species composition and thereby function of biological soil crusts in different deserts. Compressional disturbances results in reduced cover and a loss of lichen and moss species. Changes in climate regimes, such as an increase in temperature or a shift in the amount, timing, or intensity of rainfall, will influence the composition and physiological functioning of biological soil crusts, as various crust components have different photosynthetic and respiration responses to temperature and

  6. Biological soil crusts are the main contributor to winter soil respiration in a temperate desert ecosystem of China

    NASA Astrophysics Data System (ADS)

    He, M. Z.

    2012-04-01

    Aims Biological soil crusts (BSCs) are a key biotic component of desert ecosystems worldwide. However, most studies carried out to date on carbon (fluxes) in these ecosystems, such as soil respiration (RS), have neglected them. Also, winter RS is reported to be a significant component of annual carbon budget in other ecosystems, however, we have less knowledge about winter RS of BSCs in winter and its contribution to carbon cycle in desert regions. Therefore, the specific objectives of this study were to: (i) quantify the effects of different BSCs types (moss crust, algae crust, physical crust) on the winter RS; (ii) explore relationships of RS against soil temperature and water content for different BSCs, and (iii) assess the relative contribution of BSCs to the annual amount of C released by RS at desert ecosystem level. Methods Site Description The study sites are located at the southeast fringe of the Tengger Desert in the Shapotou region of the Ningxia Hui Autonomous Region [37°32'N and 105°02'E, at 1340 m above mean sea level (a.m.s.l.)], western China. The mean daily temperature in January is -6.9°C , while it is 24.3°C in July. The mean annual precipitation is 186 mm, approximately 80% of which falls between May and September. The annual potential evaporation is 2800 mm. The landscape of the Shapotou region is characterized by large and dense reticulate barchans chains of sand dunes that migrate south-eastward at a velocity of 3-6 m per year. The soil is loose, infertile and mobile and can thus be classified as orthic sierozem and Aeolian sandy soil. Additionally, the soil has a consistent gravimetric water content that ranges from 3 to 4%. The groundwater in the study area is too deep (>60 m) to support large areas of the native vegetation cover; therefore, precipitation is usually the only source of freshwater. The predominant native plants are Hedysarum scoparium Fisch. and Agriophyllum squarrosum Moq., Psammochloa cillosa Bor, which scattered

  7. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    NASA Astrophysics Data System (ADS)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on

  8. Feasibility of EPS-producing bacterial inoculation to speed up the sand aggregation in the Gurbantunggut Desert, Northwestern China.

    PubMed

    Wu, Nan; Pan, Hui-Xia; Qiu, Dong; Zhang, Yuan-Ming

    2014-12-01

    Exopolymers are known to be useful in improving sand aggregation and the development of biological soil crusts (BSCs). A facultative bacterium KLBB0001 was isolated from BSCs in the Gurbantunggut Desert in northwestern China. With the strong effective production of extracellular polymeric substances (EPS), this strain exhibits a multifunctional role for sand stabilization and maintenance of water under laboratory conditions. Practical testing of the feasibility of its inoculation to speed up BSC recovery in the field was also conducted in this experiment. This strain stimulated the heterotrophic community assembly in the topsoil layer (0-2 cm) before the commencement of autotrophic cyanobacteria, while also significantly increasing the number of bacteria, actinomycetes, and content of total phosphorus, available nitrogen, and available phosphorus. However, the low nitrogenase activity (NA) (0.57 µmol/h) that was observed caused us to doubt the previous identification as Azotobacter Beijerinck that was based on physiological and biochemical properties. A phylogenetic analysis based on 16S rRNA gene sequences revealed that this strain was a member of the genus Paenibacillus. It exhibited the closest phylogenetic affinity and highest sequence similarity to the strain Paenibacillus mucilaginosus VKPM B-7519 (sequence similarity 99.698%), which is well known as a typical silicate-weathering bacteria that releases lots of nutritional ions from minerals and the soil. Because P. mucilaginosus can excrete carbonic anhydrase (CA) to capture atmospheric CO2 through hydration of CO2 , it is possible that KLBB0001 might use a similar strategy for heterotrophs in the BSCs to sequester CO2 from the air. Because of its potential role in the reestablishment of the BSC ecosystem due to its ability to improve water relations, sand stabilization, and chemical erosion, EPS-producing bacterial inoculation was concluded to be a suitable and effective treatment for BSC recovery

  9. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D. (Principal Investigator); Breed, C. S.

    1973-01-01

    The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled the project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery of selected sites, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya and other areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.

  10. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D. (Principal Investigator); Breed, C. S.

    1974-01-01

    The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled this project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya, and other study areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab 4 mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.

  11. Effects of Sand Dune Stabilization on the Spatial Pattern of Artemisia ordosica Population in Mu Us Desert, Northwest China.

    PubMed

    Zhang, Jiachen; Zhang, Yuqing; Fan, Dongqing; Qin, Shugao; Jia, Xin; Wu, Bin; Chen, Dong; Gao, Hao; Zhu, Linfeng

    2015-01-01

    Vegetation patterns are strongly influenced by sand mobility in desert ecosystems. However, little is known about the spatial patterns of Artemisia ordosica, a dominant shrub in the Mu Us desert of Northwest China, in relation to sand fixation. The aim of this study was to investigate and contrast the effects of sand dune stabilization on the population and spatial distribution of this desert shrub. Spatial autocorrelation, semi-variance analysis, and point-pattern analysis were used jointly in this study to investigate the spatial patterns of A. ordosica populations on dunes in Yanchi County of Ningxia, China. The results showed that the spatial autocorrelation and spatial heterogeneity declined gradually, and the distance between the clustered individuals shortened following sand dune fixation. Seedlings were more aggregated than adults in all stage of dune stabilization, and both were more aggregated on shifting sand dunes separately. Spatial associations of the seedlings with the adults were mostly positive at distances of 0-5 m in shifting sand dunes, and the spatial association changed from positive to neutral in semi-fixed sand dunes. The seedlings were spaced in an almost random pattern around the adults, and their distances from the adults did not seem to affect their locations in semi-fixed sand dunes. Furthermore, spatial associations of the seedlings with the adults were negative in the fixed sand dune. These findings demonstrate that sand stabilization is an important factor affecting the spatial patterns of A. ordosica populations in the Mu Us desert. These findings suggest that, strong association between individuals may be the mechanism to explain the spatial pattern formation at preliminary stage of dune fixation. Sand dune stabilization can change the spatial pattern of shrub population by weakening the spatial association between native shrub individuals, which may affect the development direction of desert shrubs. PMID:26102584

  12. Effects of Sand Dune Stabilization on the Spatial Pattern of Artemisia ordosica Population in Mu Us Desert, Northwest China

    PubMed Central

    Zhang, Jiachen; Zhang, Yuqing; Fan, Dongqing; Qin, Shugao; Jia, Xin; Wu, Bin; Chen, Dong; Gao, Hao; Zhu, Linfeng

    2015-01-01

    Vegetation patterns are strongly influenced by sand mobility in desert ecosystems. However, little is known about the spatial patterns of Artemisia ordosica, a dominant shrub in the Mu Us desert of Northwest China, in relation to sand fixation. The aim of this study was to investigate and contrast the effects of sand dune stabilization on the population and spatial distribution of this desert shrub. Spatial autocorrelation, semi-variance analysis, and point-pattern analysis were used jointly in this study to investigate the spatial patterns of A. ordosica populations on dunes in Yanchi County of Ningxia, China. The results showed that the spatial autocorrelation and spatial heterogeneity declined gradually, and the distance between the clustered individuals shortened following sand dune fixation. Seedlings were more aggregated than adults in all stage of dune stabilization, and both were more aggregated on shifting sand dunes separately. Spatial associations of the seedlings with the adults were mostly positive at distances of 0–5 m in shifting sand dunes, and the spatial association changed from positive to neutral in semi-fixed sand dunes. The seedlings were spaced in an almost random pattern around the adults, and their distances from the adults did not seem to affect their locations in semi-fixed sand dunes. Furthermore, spatial associations of the seedlings with the adults were negative in the fixed sand dune. These findings demonstrate that sand stabilization is an important factor affecting the spatial patterns of A. ordosica populations in the Mu Us desert. These findings suggest that, strong association between individuals may be the mechanism to explain the spatial pattern formation at preliminary stage of dune fixation. Sand dune stabilization can change the spatial pattern of shrub population by weakening the spatial association between native shrub individuals, which may affect the development direction of desert shrubs. PMID:26102584

  13. Mineralogical and sedimentological study of gypsiferous sands from the Saharian Desert

    NASA Astrophysics Data System (ADS)

    Somma, Roberta; Bella, Francesca

    2016-04-01

    A mineralogical and sedimentological study was carried out in Quaternary aeolian sands from the Sahara Desert (Tunisia and Libya). Gypsum resulted to be the dominant mineral (65%), whereas quartz resulted to be in significant amount (25%) in all samples. Aragonite and calcite, related to marine organisms, was found especially in the Libyan sands. Gypsum grains appear in euhedral crystals or as polycrystalline twinned crystals. Crystal habitus is pseudo-octahedric or tabular. Due to the euhedral habitus, the forms of the grains is discoid or bladed but with a low roundness. Quartz grains are mostly ialin or orange as the grain surfaces are coated with thin hematite films. Quartz grains dominantly appear as subhedral crystals. Habitus is prismatic or hexagonal. Due to the subhedral habitus, quartz grain forms can be classified as bladed with a low roundness. A minor amount of quartz grains is formed by well rounded and spherical grains showing frosted and pitted surfaces. The particle size analysis indicated that the studied sediments consist of well sorted very fine sands. The studied Quaternary aeolian sands can be classified as gypsiferous sands. Notwithstanding sands are well sorted, they are immature under a mineralogical and textural point of view. Particularly, gypsum formed in present or past sabkha and the amount of marine bioclasts should suggest that the source area of the Lybian gypsum grains could be a sabkha near the sea.

  14. Living in Salt: The formation and development of extremophile habitats and biosignatures within salt crusts of the hyperarid Atacama Desert

    NASA Astrophysics Data System (ADS)

    Finstad, K. M.; Amundson, R.

    2013-12-01

    It has become increasing apparent that salt-rich deposits are present on the Martian surface and that aqueous alteration has occurred sometime during the planet's past. In the hyperarid Atacama Desert in Chile, an important Earth-based analogue to Mars, microbial life has been discovered inhabiting halite (NaCl) surface crust deposits. Is it possible that similar salt deposits on Mars once harbored microbial life? If so, what adaptations were likely necessary for survival in such an environment and what biosignatures are expected to remain? Although this fascinating ecosystem in the Atacama Desert has been recognized, neither the physical processes of halite crust formation, nor the microorganisms residing within the salts have been extensively studied. To better understand the formation and geochemical dynamics of this unique habitat, we chose two sites within the Atacama Desert which exhibit both active crust formation as well as the presence of microbial communities: one site is on a dry Holocene age lake bed, while the other is of Pleistocene age. At each site soil profiles were excavated and total geochemical analyses were performed. Field observations clearly showed that the soils exhibited transitions of carbonate to sulfate to chloride salt deposition with decreasing depth, and that the thickness and mass of halite in the surficial crust was related to the age of the soil. Isotope profiles of carbon, nitrogen, and sulfur from these soils were also analyzed. Once exposed to the atmosphere, the halite crusts reside in a dynamic state of dissolution and erosion by wind and fog, and reformation due to fog and dew. In the crust nodules, microbial communities were sampled, in centimeter increments from the surface, for carbon, nitrogen, and sulfur isotope/concentration profiles. Our analyses help elucidate the physical and geochemical processes linked to the formation and evolution of these dynamic salt crusts, and the imprint of microbial life within them. A

  15. Mycobiota of biological soil crusts in the Negev desert, Israel - differences on a regional and local scale

    NASA Astrophysics Data System (ADS)

    Grishkan, I.; Zaady, E.; Kidron, G.

    2012-04-01

    On a regional scale, we examined variations in microfungal communities inhabiting the biological soil crusts (BSC) and non-crusted soil of the northern and central Negev desert in 10 locations along a southward rainfall gradient (from 325 mm to 81 mm of annual rainfall). A total of 87 species from 49 genera were isolated using the soil dilution plate method. The mycobiota of BSC (80 species) was characterized by dominance of melanin-containing fungi, remarkable contribution of sexual Ascomycota, and low abundance of the typical soil genera Penicillium and Aspergillus. Morphological adaptations to the stressful desert environment were expressed in the prevalence of dark-colored microfungi with large, many-celled spores in the localities of the "drier" part of the rainfall gradient and in dark thick-walled fruit bodies of sexual ascomycetes. The abundance of melanin-containing species with multicellular spores was the only characteristic showed a highly significant (negative) correlation with the rainfall amount. We assume that the main factor influencing the content of these species was the latitudinal position of the locations, determining also the intensity of solar (UV) radiation. In the BSC communities, the xeric "desert" component (melanics, slow-reproducing fungi with large, thick-walled spores) was significantly more pronounced and the mesic "forest" component (Penicillium, fast-reproducing fungi with small, light-colored, and thin-walled spores) was much less represented than in the non-crusted shrub communities. In BSC, density of fungal isolates which can be considered an indirect characteristic of fungal biomass was significantly lower than in the non-crusted soil. Cluster analysis indicated that in most cases, the BSC and shrub localities, separated only by a few meters or less, differed on microfungal community structure much more significantly than BSC or shrub localities in the distance of tens of kilometers. The results of this analysis, together

  16. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    PubMed

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  17. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  18. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  19. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The most significant result to date is recongition that complexes are indeed visible on ERTS-1 images, and that the extent and nature of dune fields in many remote areas of the world can, for the first time, be observed almost simultaneously and directly compared. The primary scientific problem is to determine accurately the relationships among certain patterns, trends, and boundaries clearly revealed on ERTS-1 imagery to true surface configurations of desert landforms, and further, to relate the defined features to controlling factors such as wind direction and intensity, moisture in the air and on the ground and barriers to sand movement. It is hoped to produce, by photographic and cartographic extraction from ERTS-1 images, a set of thematic maps that will illustrate the relationships of optical appearance of various materials and effects of the color of various sand bodies upon ERTS-1 images.

  20. Seed Germination and Seedling Emergence of Three Annuals Growing on Desert Sand Dunes in China

    PubMed Central

    TOBE, KAZUO; ZHANG, LIPING; OMASA, KENJI

    2005-01-01

    • Background and Aims Information on the initial growth characteristics of annuals found in Chinese deserts is very limited. The aim of this study was to investigate seed germination and interactive effects of irrigation and seed burial depth in sand on seedling emergence and seedling survival in three annuals (Agriophyllum squarrosum, Bassia dasyphylla and Aristida adscensionis) commonly growing on sand dunes in these regions. • Methods Effects of temperature, light and polyethylene glycol-6000 on seed germination were examined by irrigating seeds sown on filter paper in Petri dishes. Seedling emergence was examined for seeds sown on the surface of, or at different depths (5, 10, 20, 30, 40 and 50 mm) in, sand-filled pots, which were irrigated under different regimes. For seeds buried at a depth of 50 mm, seed viability was examined after irrigation of the pots. • Key Results Seeds of three species germinated at most temperatures recorded between spring and autumn in their native habitats. No seed dormancy was found in any species. For all three species, seedling emergence was most favoured when seeds were buried at a depth of 10 mm. When seeds sown on the sand surface were irrigated, seed germination was considerably suppressed due to water deficiency, but many seeds remained viable. For A. squarrosum and B. dasyphylla, many seeds that were deeply buried and irrigated remained ungerminated but viable, while for A. adscensionis deeply buried seeds germinated, but the seedlings did not emerge due to unfavourable seedling growth in deep sand. • Conclusions Precipitation is the most crucial factor in determining the seasonal emergence of seedlings of the three tested species in the field. The vertical distribution of seeds in sand determines the proportion of seeds that germinate after precipitation and acts to maintain seed banks over multiple years. PMID:15644383

  1. Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter

    NASA Astrophysics Data System (ADS)

    Mikami, Masao; Yamada, Yutaka; Ishizuka, Masahide; Ishimaru, Taminoe; Gao, Weidong; Zeng, Fanjiang

    2005-09-01

    The Japan-Sino joint project, Aeolian Dust Experiment on Climate impact (ADEC), was initiated in April 2000 in order to understand the aeolian dust impact on climate via radiative forcing. As a part of the ADEC project, we have conducted field research in a sand dune and a gobi (i.e., a desert in which the soil surface consists of sand and pebbles with flat surfaces) in the south of the Taklimakan desert, China. The purpose of this study is to understand the wind erosion process and its relation to the meteorological and soil physical parameters. For this purpose, we measured the vertical profiles of wind speed, air temperature, and humidity as well as the other meteorological elements using an automatic weather station. A new sand particle counter (SPC) was newly developed to measure the saltation process. The SPC detects a signal change when a saltation particle passes through the slit between the laser beam transmitter and receiver. From this signal change, we can measure saltation particles from 30 to 667 μm diameter with 32 bin classes and particle numbers of each bin class every second. We have operated this SPC in the field, and it proved to be useful for the saltation process study when data corrections and calibration were properly made. During the observation period (1-21 April 2002), a total of eight dust events occurred; we analyzed two events: 5 April and 14 April cases. The results can be summarized as follows: (1) Total saltation fluxes in the 5 April case from 1223 to 1430 UT were 37.93 kg m-2 at 30 cm height and 43.71 kg m-2 at 20 cm height for the gobi site and 2.61 kg m-2 at 30 cm height for the dune site. (2) In the 14 April case, from 0327 to 0830 UT, the total saltation flux was 8.95 kg m-2 at 30 cm height for the gobi site. (3) Saltation flux at the gobi site in the 5 April case was more than 10 times larger than that of the sand dune, though the distance between the sites is 4 km. This is because the number of the parent soil particles

  2. SAND FLUX IN THE NORTHERN CHIHUAHUAN DESERT, NEW MEXICO, USA, AND THE INFLUENCE OF MESQUITE-DOMINATED LANDSCAPES

    EPA Science Inventory

    This study was designed to test two hypotheses: (1) that land dominated by mesquite (Prosopis glandulosa) is the most important area for active sand movement at the Jornada Experimental Range, located in the northern part of the Chihuahuan desert, and (2) that the most active san...

  3. Ecohydrology of biological soil crusts in arid sand dunes - integration from the micro-scale to the landscape

    NASA Astrophysics Data System (ADS)

    Veste, M.; Yair, A.; Breckle, S.-W.; Littmann, T.

    2012-04-01

    Biological soil crusts are distributed in many ecosystems from the polar, boreal, temperate, and mediterranean to the tropical regions. They are typical in habitats where the vegetation cover is sparse and microclimatic conditions permit their development. They play an important role for ecosystem processes, enhancing surface stability, changing surface properties and influencing hydrological processes and water re-distribution. The spatial distribution and availability of the water resources are the important factors for the vegetation in drylands. Key questions are (i) how the hydrological processes of the BSC are triggering the vegetation pattern on the landscape level and (ii) how we can integrate the hydrological processes on the micro-scale into the landscape processes and patterns? We studied the interrelations between biological soil crusts and vegetation pattern in arid sand dunes of the north-western Negev. Most of the dunes are covered by biological soil crusts and various types can be distinguished in different exposition and along a 40 km geo-ecological gradient. Rainfall increases from approx. 90 mm in the south to 170 mm in the northern dunes. Biological crusts cover nearly 90% of the sand dunes of the northern Haluza sand field, whereas the parts of the southern dune crests are still mobile. Furthermore, soil lichens plays an important role in the northern dunes, covering 30%-90% of the interdune area as well as of the stable north-/northwest slopes. The surrounding dune slopes are covered by a biological crust with cyanobacteria, green algae, mosses. Upon wetting, infiltration decreases and runoff can be observed in crust cover areas, even in sand dunes. Runoff depends on rainfall intensity, soil thickness and composition. The change of surface properties counteracts the effects of increasing rainfall on the vegetation along the geo-ecological gradient. Because of the increase in soil crust thickness the infiltration rates decrease in the dune area

  4. Impact of environmental factors and biological soil crust types on soil respiration in a desert ecosystem.

    PubMed

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93 ± 0.43 µmol m-2 s-1) and the lowest values in algae-crusted soil (0.73 ± 0.31 µmol m-2 s-1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m-3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837

  5. Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile.

    PubMed

    Vítek, Petr; Jehlička, Jan; Ascaso, Carmen; Mašek, Vlastimil; Gómez-Silva, Benito; Olivares, Héctor; Wierzchos, Jacek

    2014-11-01

    Scytonemin, a UV-screening molecule produced by certain Cyanobacteria to protect against harmful UV radiation, was studied in endolithic cyanobacterial colonies in the halite crust from one of the driest places on Earth - the hyperarid zone of the Atacama Desert. The distribution of the pigment within the evaporitic crust was studied in detail by various independent analytical methods: Raman spectroscopy (including Raman imaging); advanced microscopic observations (fluorescence microscopy, confocal laser scanning microscopy, low-temperature scanning electron microscopy); and spectrophotometric analyses. The differences in scytonemin biosynthesis were mapped within the colonized interior layers, which can be divided into scytonemin-rich and scytonemin-poor zones. A 532 nm laser for excitation proved to be an ideal excitation source with which to observe the relative content of scytonemin within a particular cell aggregate, as well as between different cell aggregates; based on the scytonemin/carotenoid Raman signal intensity ratio of selected corroborative bands for these two compounds. Significantly, scytonemin was found to accumulate within a decayed biomass in the surface portions of the halite crust. These were found to be highly enriched in both the absolute scytonemin content (as documented by UV/VIS spectrophotometry) and its content relative to other pigments associated with the cyanobacterial cells (e.g. carotenoids and chlorophyll). PMID:25056905

  6. Arsenic Removal from Drinking Water by Absorptive Media-U.S. EPA Demonstration Project at Desert Sands MDWCA, NM Final Performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at the Desert Sands Mutual Domestic Water Consumers Association (MDWCA) facility in Anthony, NM. The objectives of the project were to evalu...

  7. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars.

    PubMed

    Wierzchos, J; Cámara, B; de Los Ríos, A; Davila, A F; Sánchez Almazo, I M; Artieda, O; Wierzchos, K; Gómez-Silva, B; McKay, C; Ascaso, C

    2011-01-01

    The scarcity of liquid water in the hyperarid core of the Atacama Desert makes this region one of the most challenging environments for life on Earth. The low numbers of microbial cells in the soils suggest that within the Atacama Desert lies the dry limit for life on our planet. Here, we show that the Ca-sulfate crusts of this hyperarid core are the habitats of lithobiontic micro-organisms. This microporous, translucent substrate is colonized by epilithic lichens, as well as endolithic free-living algae, fungal hyphae, cyanobacteria and non photosynthetic bacteria. We also report a novel type of endolithic community, "hypoendoliths", colonizing the undermost layer of the crusts. The colonization of gypsum crusts within the hyperarid core appears to be controlled by the moisture regime. Our data shows that the threshold for colonization is crossed within the dry core, with abundant colonization in gypsum crusts at one study site, while crusts at a drier site are virtually devoid of life. We show that the cumulative time in 1 year of relative humidity (RH) above 60% is the best parameter to explain the difference in colonization between both sites. This is supported by controlled humidity experiments, where we show that colonies of endolithic cyanobacteria in the Ca-sulfate crust undergo imbibition process at RH >60%. Assuming that life once arose on Mars, it is conceivable that Martian micro-organisms sought refuge in similar isolated evaporite microenvironments during their last struggle for life as their planet turned arid. PMID:20726901

  8. Winter photosynthetic activity of twenty temperate semi-desert sand grassland species.

    PubMed

    Tuba, Zoltán; Csintalan, Zsolt; Szente, Kálmán; Nagy, Zoltán; Fekete, Gábor; Larcher, Walter; Lichtenthaler, Hartmut K

    2008-09-29

    The winter photosynthetic activity (quantified by net CO(2) assimilation rates and chlorophyll (Chl) a fluorescence parameters) of 20 plant species (including two lichens and two mosses) of a Hungarian temperate semi-desert sand grassland was determined on one occasion per year in 1984, 1989 and 1994. Throughout winter, the overwintering green shoots, leaves or thalli were regularly exposed to below zero temperatures at night and daytime temperatures of 0-5 degrees C. In situ tissue temperature varied between -2.1 and +6.9 degrees C and the photosynthetic photon flux density (PPFD) between 137 and 351 micromol m(-2)s(-1). Under these conditions 18 of the grassland species exhibited photosynthetic CO(2) uptake (range: vascular plants ca. 0.2-3.8 micromol m(-2)s(-1), cryptogams 0.3-2.79 micromol kg(-1)s(-1)) and values of 0.9-5.1 of the Chl fluorescence decrease ratio R(Fd). In 1984, Festuca vaginata and Sedum sexangulare had net CO(2) assimilation at leaf temperatures of -0.85 to -1.2 degrees C. In 1989, all species except Cladonia furcata showed net CO(2) assimilation at tissue temperatures of 0 to +3.3 degrees C, with the highest rates observed in Poa bulbosa and F. vaginata. The latter showed a net CO(2) assimilation saturation at a PPFD of 600 micromol m(-2)s(-1) and a temperature optimum between +5 and +18 degrees C. At the 1994 measurements, the photosynthetic rates were higher at higher tissue water contents. The two mosses and lichens had a net photosynthesis (range: 1.1-2.79 micromol CO(2)kg(-1)s(-1)) at 2 degrees C tissue temperature and at 4-5 degrees C air temperature. Ca. 80% of the vascular grassland plant species maintained a positive C-balance during the coldest periods of winter, with photosynthetic rates of 1.5-3.8 micromol CO(2)m(-2)s(-1). In an extremely warm beginning March of the relatively warm winter of 2006/2007, the dicotyledonous plants had much higher CO(2) assimilation rates on a Chl (range 6-14.9 micromol g(-1)Chl s(-1)) and on a dry

  9. Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Reed, S.C.; Belnap, J.; Phillips, S.L.

    2002-01-01

    Summers on the Colorado Plateau (USA) are typified by harsh conditions such as high temperatures, brief soil hydration periods, and high UV and visible radiation. We investigated whether community composition, physiological status, and pigmentation might vary in biological soil crusts as a result of such conditions. Representative surface cores were sampled at the ENE, WSW, and top microaspects of 20 individual soil crust pedicels at a single site in Canyonlands National Park, Utah, in spring and fall of 1999. Frequency of cyanobacterial taxa, pigment concentrations, and dark adapted quantum yield (Fv/Fm) were measured for each core. The frequency of major cyanobacterial taxa was lower in the fall compared to spring. The less-pigmented cyanobacterium Microcoleus vaginatus showed significant mortality when not in the presence of Nostoc spp. and Scytonema myochrous (Dillw.) Agardh. (both synthesizers of UV radiation-linked pigments) but had little or no mortality when these species were abundant. We hypothesize that the sunscreen pigments produced by Nostoc and Scytonema in the surface of crusts protect other, less-pigmented taxa. When fall and spring samples were compared, overall cyanobacterial frequency was lower in fall, while sunscreen pigment concentrations, chlorophyll a concentration, and Fv/Fm were higher in fall. The ratio of cyanobacterial frequency/chlorophyll a concentrations was 2-3 times lower in fall than spring. Because chlorophyll a is commonly used as a surrogate measure of soil cyanobacterial biomass, these results indicate that seasonality needs to be taken into consideration. In the fall sample, most pigments associated with UV radiation protection or repair were at their highest concentrations on pedicel tops and WSW microaspects, and at their lowest concentrations on ENE microaspects. We suggest that differential pigment concentrations between microaspects are induced by varying UV radiation dosage at the soil surface on these different

  10. SAR studies in the Yuma Desert, Arizona: Sand penetration, geology, and the detection of military ordnance debris

    USGS Publications Warehouse

    Schaber, G.G.

    1999-01-01

    Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from

  11. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter.

    PubMed

    Xue, Xiuqing; Zhang, Kundi; Cai, Feng; Dai, Jun; Wang, Yang; Rahman, Erkin; Peng, Fang; Fang, Chengxiang

    2012-01-01

    A Gram-negative, rod-shaped, non-motile, strictly aerobic bacterium, strain S3-63(T), was isolated from desert sand of Xinjiang, China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S3-63(T) had highest similarity to type strains of the genus Altererythrobacter, i.e. Altererythrobacter marinus H32(T) (97.2% similarity), Altererythrobacter marensis MSW-14(T) (95.9%), Altererythrobacter aestuarii KCTC 22735(T) (95.5%), Altererythrobacter epoxidivorans JCS350(T) (95.1%), Altererythrobacter namhicola KCTC 22736(T) (95.1%), Altererythrobacter luteolus SW-109(T) (95.0%) and Altererythrobacter indicus LMG 23789(T) (93.5%). Growth occurred at 20-37 °C (optimum 30 °C), at pH 7.0-9.0 (optimum pH 8.0) and in 0-3% (w/v) NaCl (optimum 1%). The major respiratory quinone was ubiquinone-10 and the predominant cellular fatty acids were C(18:1)ω7c (50.8%), summed feature 3 (C(16:1)ω7c and/or C(16:1)ω6c; 12.6%), C(16:0) (12.3%), C(14:0) 2-OH (7.3%) and C(17:1)ω6c (4.5%). The DNA G+C content was 64.6 mol%. Therefore, the phylogenetic, physiological and chemotaxonomic data demonstrated that strain S3-63(T) represents a novel species of the genus Altererythrobacter, for which the name Altererythrobacter xinjiangensis sp. nov. is proposed; the type strain is S3-63(T) (=CCTCC AB 207166(T)=CIP 110125(T)). An emended description of the genus Altererythrobacter is provided. PMID:21317278

  12. The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance.

    PubMed

    Treves, Haim; Raanan, Hagai; Kedem, Isaac; Murik, Omer; Keren, Nir; Zer, Hagit; Berkowicz, Simon M; Giordano, Mario; Norici, Alessandra; Shotland, Yoram; Ohad, Itzhak; Kaplan, Aaron

    2016-06-01

    Excess illumination damages the photosynthetic apparatus with severe implications with regard to plant productivity. Unlike model organisms, the growth of Chlorella ohadii, isolated from desert soil crust, remains unchanged and photosynthetic O2 evolution increases, even when exposed to irradiation twice that of maximal sunlight. Spectroscopic, biochemical and molecular approaches were applied to uncover the mechanisms involved. D1 protein in photosystem II (PSII) is barely degraded, even when exposed to antibiotics that prevent its replenishment. Measurements of various PSII parameters indicate that this complex functions differently from that in model organisms and suggest that C. ohadii activates a nonradiative electron recombination route which minimizes singlet oxygen formation and the resulting photoinhibition. The light-harvesting antenna is very small and carotene composition is hardly affected by excess illumination. Instead of succumbing to photodamage, C. ohadii activates additional means to dissipate excess light energy. It undergoes major structural, compositional and physiological changes, leading to a large rise in photosynthetic rate, lipids and carbohydrate content and inorganic carbon cycling. The ability of C. ohadii to avoid photodamage relies on a modified function of PSII and the dissipation of excess reductants downstream of the photosynthetic reaction centers. The biotechnological potential as a gene source for crop plant improvement is self-evident. PMID:26853530

  13. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    DOE PAGESBeta

    Nunes da Rocha, Ulisses; Cadillo-Quiroz, Hinsby; Karaoz, Ulas; Rajeev, Lara; Klitgord, Niels; Dunn, Sean; Truong, Viet; Buenrostro, Mayra; Bowen, Benjamin P.; Garcia-Pichel, Ferran; et al

    2015-04-14

    Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration ofmore » BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.« less

  14. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    PubMed Central

    Nunes da Rocha, Ulisses; Cadillo-Quiroz, Hinsby; Karaoz, Ulas; Rajeev, Lara; Klitgord, Niels; Dunn, Sean; Truong, Viet; Buenrostro, Mayra; Bowen, Benjamin P.; Garcia-Pichel, Ferran; Mukhopadhyay, Aindrila; Northen, Trent R.; Brodie, Eoin L.

    2015-01-01

    Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures. PMID:25926821

  15. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    SciTech Connect

    Nunes da Rocha, Ulisses; Cadillo-Quiroz, Hinsby; Karaoz, Ulas; Rajeev, Lara; Klitgord, Niels; Dunn, Sean; Truong, Viet; Buenrostro, Mayra; Bowen, Benjamin P.; Garcia-Pichel, Ferran; Mukhopadhyay, Aindrila; Northen, Trent R.; Brodie, Eoin L.

    2015-04-14

    Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.

  16. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    DOE PAGESBeta

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-08-13

    In this paper we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relativemore » abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Finally, taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.« less

  17. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    SciTech Connect

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-08-13

    In this paper we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Finally, taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  18. High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert

    PubMed Central

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R.; Vincent, Warwick F.

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost. PMID:23967218

  19. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    PubMed

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost. PMID:23967218

  20. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert.

    PubMed

    Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing

    2014-05-01

    The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed. PMID:24699917

  1. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D.; Breed, C. S.; Harris, L. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Examination of sand samples from both dune and interdune areas at White Sands, New Mexico, indicates marked differences in composition and texture between these two types of facies. If these differences are characteristics of dune fields in general, information concerning them may help to explain the contrast in appearance of the two kinds of sand areas on ERTS imagery and to permit interpretation of similar features in remote areas, such as Saudi Arabia.

  2. An investigation of major sand seas in desert areas throughout the world

    NASA Technical Reports Server (NTRS)

    Mckee, E. D.; Breed, C. S.

    1974-01-01

    This study of sand seas on a global scale consists of identifying and measuring characteristic sand forms, examining structures, determining the processes involved, and ascertaining the world distribution of various types of sand bodies. Fifteen major areas or sites in the Eastern Hemisphere and three sites in the Western Hemisphere have been examined. In this study an attempt is made to develop a strictly objective classification of worldwide application. Ultimate objectives are threefold. First, a better understanding of stratification in ancient rocks of dune origin; such structures are important in the migration of water and oil. Second, a further insight into the controls of sand migration that in some areas adversely affects various enterprises of man may be obtained. Finally, an appreciation of certain similar patterns on Mars, apparently wind-formed, may result.

  3. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D.; Breed, C. S.; Harris, L. F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The assembling of photomosaics from color prints of ERTS images has made possible the recognition and description of san patterns, and these are to be the basis of a worldwide classification of sand bodies. Progress has been as rapid as the acquisition of the bulk composite images will permit and for some areas the mosaics are now nearly complete. A second step, which consists of the accumulation and analysis of regional wind data, to be plotted as overlays for the dune patterns, is now underway and should soon give tangible results. Other aspects of the project include the gathering of ground truth in the form of air photographs, needed to interpret geomorphic forms and the sampling of sand deposits for analyzing the texture and composition of sand bodies. A start has been made on these studies in several selected areas.

  4. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D.; Breed, C. S.

    1973-01-01

    A description and classification of major types of sand seas on the basis of morphological pattern and lineation are discussed. The steps involved in analyzing the patterns of deposits on ERTS-1 imagery, where the visible forms are mostly dune complexes rather than individual dunes are outlined. After completion of thematic maps portraying the pattern and lineation of the sand bodies, data on directions and intensity of prevailing and other winds are plotted on corresponding bases, as a preliminary to determination of internal structures through ground truth.

  5. Living in biological soil crust communities of African deserts-Physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients.

    PubMed

    Karsten, Ulf; Herburger, Klaus; Holzinger, Andreas

    2016-05-01

    Green algae of the genus Klebsormidium (Klebsormidiales, Streptophyta) are typical members of biological soil crusts (BSCs) worldwide. The phylogeny and ecophysiology of Klebsormidium has been intensively studied in recent years, and a new lineage called superclade G, which was isolated from BSCs in arid southern Africa and comprising undescribed species, was reported. Three different African strains, that have previously been isolated from hot-desert BSCs and molecular-taxonomically characterized, were comparatively investigated. In addition, Klebsormidium subtilissimum from a cold-desert habitat (Alaska, USA, superclade E) was included in the study as well. Photosynthetic performance was measured under different controlled abiotic conditions, including dehydration and rehydration, as well as under a light and temperature gradient. All Klebsormidium strains exhibited optimum photosynthetic oxygen production at low photon fluence rates, but with no indication of photoinhibition under high light conditions pointing to flexible acclimation mechanisms of the photosynthetic apparatus. Respiration under lower temperatures was generally much less effective than photosynthesis, while the opposite was true for higher temperatures. The Klebsormidium strains tested showed a decrease and inhibition of the effective quantum yield during desiccation, however with different kinetics. While the single celled and small filamentous strains exhibited relatively fast inhibition, the uniserate filament forming isolates desiccated slower. Except one, all other strains fully recovered effective quantum yield after rehydration. The presented data provide an explanation for the regular occurrence of Klebsormidium strains or species in hot and cold deserts, which are characterized by low water availability and other stressful conditions. PMID:26422081

  6. Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Smith, S.D.

    2007-01-01

    Biological soil crusts are an integral part of dryland ecosystems. We monitored the cover of lichens and mosses, cyanobacterial biomass, concentrations of UV-protective pigments in both free-living and lichenized cyanobacteria, and quantum yield in the soil lichen species Collema in an undisturbed Mojave Desert shrubland. During our sampling time, the site received historically high and low levels of precipitation, whereas temperatures were close to normal. Lichen cover, dominated by Collema tenax and C. coccophorum, and moss cover, dominated by Syntrichia caninervis, responded to both increases and decreases in precipitation. This finding for Collema spp. at a hot Mojave Desert site is in contrast to a similar study conducted at a cool desert site on the Colorado Plateau in SE Utah, USA, where Collema spp. cover dropped in response to elevated temperatures, but did not respond to changes in rainfall. The concentrations of UV-protective pigments in free-living cyanobacteria at the Mojave Desert site were also strongly and positively related to rainfall received between sampling times (R2 values ranged from 0.78 to 0.99). However, pigment levels in the lichenized cyanobacteria showed little correlation with rainfall. Quantum yield in Collema spp. was closely correlated with rainfall. Climate models in this region predict a 3.5-4.0 ??C rise in temperature and a 15-20% decline in winter precipitation by 2099. Based on our data, this rise in temperature is unlikely to have a strong effect on the dominant species of the soil crusts. However, the predicted drop in precipitation will likely lead to a decrease in soil lichen and moss cover, and high stress or mortality in soil cyanobacteria as levels of UV-protective pigments decline. In addition, surface-disturbing activities (e.g., recreation, military activities, fire) are rapidly increasing in the Mojave Desert, and these disturbances quickly remove soil lichens and mosses. These stresses combined are likely to lead to

  7. Dynamics of soil organic carbon and its fractions after revegetation on sand dunes in the Tengger Desert, Northern China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, Y.; Li, X.

    2015-12-01

    Revegetation has become increasingly important for desertified land restoration in arid and semiarid regions. Little is known about the dynamics of soil organic carbon (SOC) after the establishment of shrubland on shifting sand dunes; especially the changes in SOC fractions following planting were poorly understood. 0-10 cm soil samples were collected along chronosequence plots were to: (1) quantitatively analyze the changes of SOC and its fractions over time following the establishment of shrublands on shifting sand dunes; (2) precisely assess the relative contribution of different components to total organic carbon at different times. The results showed that revegetation can promote SOC accumulation in desert regions. SOC increased from 0.33±0.11 g kg-1 in mobile sand dunes to 5.08±0.11 g kg-1 in 57-year shrublands, while the light fraction of organic C (LF-OC) ranged from 0.05±0.02 g kg-1 to 2.96±0.24 g kg-1, the dissolved organic C (DOC) increased from 5.95±0.42 mg kg-1 to 23.63±2.79 mg kg-1 and microbial biomass C (MBC) from 6.54±1.64 mg kg-1 to 135.35±19.49 mg kg-1. Their dynamics patterns can be divided into three stages, i.e. slow increase, fast increase and slow increase stages; especially, both SOC and its fractions showed no significant changes in the first 14 years, which suggested that soil restoration is a slow process in dry environments, and therefore the maintenance of soil habitat is a crucial for land management. Our results also demonstrated that revegetation can increase the ratio of labile to stable pools in desert regions. Although, the content of HF-OC significantly increased after afforestation, but its contribution to SOC decreased from 85.15% to 41.52%, implied that more SOC stocks were stabilized in labile pools with the elapse of time, this would give rise to the risk of significant SOC losses caused by potential global warming and human-induced disturbances.

  8. A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia

    NASA Technical Reports Server (NTRS)

    Mckee, E. D.; Breed, C. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The regional studies of sand seas made possible by analysis of ERTS-1 imagery have established that widespread patterns of eolian sand deposition exist in many places and that similarities and differences in these patterns can be measured and compared, on a worldwide scale. Analysis of the relationships of depositional patterns to controlling factors will require completion of the color mosaics of the test sites, and acquisition of adequate supporting ground truth data, especially wind data. Once analyses are complete, the results will be applicable to the regional study of ancient eolian sandstones. Such sandstones were formed many millions of years ago under conditions believed to be identical to those under which the sand seas that are observed being formed today. The understanding of the deposition of eolian sands provided by analysis of ERTS-1 imagery will be applicable to an understanding of the structure and distribution of ancient eolian sandstones and their potential as reservoirs of oil and water.

  9. δ18O and chemical composition of Libyan Desert Glass, country rocks, and sands: New considerations on target material

    NASA Astrophysics Data System (ADS)

    Longinelli, Antonio; Sighinolfi, Giampaolo; de Michele, Vincenzo; Selmo, Enricomaria

    2011-02-01

    Oxygen isotope and chemical measurements were carried out on 25 samples of Libyan Desert Glass (LDG), 21 samples of sandstone, and 3 of sand from the same area. The δ18O of LDG samples range from 9.0‰ to 11.9‰ (Vienna Standard Mean Ocean Water [VSMOW]); some correlations between isotope data and typological features of the LDG samples are pointed out. The initial δ18O of a bulk parent material may be slightly increased by fusion due to the loss of isotopically light pore water with no isotope exchange with oxygen containing minerals. Accordingly, the δ18O of the bulk parent material of LDG may have been about 9.0 ± 1‰ (VSMOW). The measured bulk sandstone and sand samples have δ18O values ranging from 12.6‰ to 19.5‰ and are consequently ruled out as parent materials, matching the results of previous studies. However, separated quartz fractions have δ18O values compatible with the LDG values suggesting that the modern surface sand inherited quartz from the target material. This hypothesis fits previous findings of lechatelierite and baddeleyite in these materials. As the age of the parent material reported in previous studies is Pan-African, we measured the δ18O values of bulk rock and quartz from intrusives of Pan-African age and the results obtained were compatible with the LDG values. The main element abundances (Fe, Mg, Ca, K, Na) in our LDG samples conform to previous estimates; Fe, Mg, and K tend to be higher in heterogeneous samples with dark layers. The hypothesis of a low-altitude airburst involving silica-rich surface materials deriving from weathered intrusives of Pan-African age, partially melted and blown over a huge surface by supersonic winds matches the results obtained.

  10. The effect of lichen-dominated biological soil crusts on growth and physiological characteristics of three plant species in a temperate desert of northwest China.

    PubMed

    Zhuang, W W; Serpe, M; Zhang, Y M

    2015-11-01

    Biocrusts (biological soil crusts) cover open spaces between vascular plants in most arid and semi-arid areas. Information on effects of biocrusts on seedling growth is controversial, and there is little information on their effects on plant growth and physiology. We examined impacts of biocrusts on growth and physiological characteristics of three habitat-typical plants, Erodium oxyrhynchum, Alyssum linifolium and Hyalea pulchella, growing in the Gurbantunggut Desert, northwest China. The influence of biocrusts on plant biomass, leaf area, leaf relative water content, photosynthesis, maximum quantum efficiency of PSII (F(v)/F(m)), chlorophyll, osmotic solutes (soluble sugars, protein, proline) and antioxidant enzymes (superoxide dismutase, catalase, peroxidase) was investigated on sites with or without biocrust cover. Biomass, leaf area, leaf water content, photosynthesis, F(v)/F(m) and chlorophyll content in crusted soils were higher than in uncrusted soils during early growth and lower later in the growth period. Soluble sugars, proline and antioxidant enzyme activity were always higher in crusted than in uncrusted soils, while soluble protein content was always lower. These findings indicate that biocrusts have different effects on these three ephemeral species during growth in this desert, primarily via effects on soil moisture, and possibly on soil nutrients. The influence of biocrusts changes during plant development: in early plant growth, biocrusts had either positive or no effect on growth and physiological parameters. However, biocrusts tended to negatively influence plants during later growth. Our results provide insights to explain why previous studies have found different effects of biocrusts on vascular plant growth. PMID:26084731

  11. Under-canopy microclimate within sand dunes in the Negev Desert

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.

    2010-10-01

    SummaryScattered shrubs are a common phenomenon in many arid landscapes. Once established, shrubs are known to create "islands of fertility", i.e., preferential habitats for annuals and animals. In an attempt to characterize the physical conditions prevailing under the shrub, radiation, temperatures and soil moisture (0-40 cm) following rain were measured during 1993-1995 at the shaded under-canopy (UC) and at the exposed inter-shrub habitat (EXP) of two pairs of shrubs located at the north- and south-facing slopes of dunes in the Nizzana research site, western Negev Desert, Israel. In addition, the soil organic matter (SOM) and the fine (silt and clay) content (FC) were also measured. Whereas the differences in the amounts of SOM and FC were small, daylight temperatures at UC were substantially lower (6-15 °C), subsequently resulting in extended time during which the UC habitat remained wet. Moisture was retained for up to 10.5-42.6% longer at UC in comparison to EXP, mainly explained by the shading effect. SOM was found to explain only 8.6-19.6% of the results. By shading, shrubs in the Negev Desert may thus provide relatively wetter conditions for annuals, rendering them an advantage over inter-shrub habitats at this harsh arid environment.

  12. WIND VELOCITIES AND SAND FLUXES IN MESQUITE DUNE-LANDS IN THE NORTHERN CHIHUAHUAN DESERT: A COMPARISON BETWEEN FIELD MEASUREMENTS AND THE QUIC (QUICK URBAN AND INDUSTRIAL COMPLEX) MODEL

    EPA Science Inventory

    The poster shows comparisons of wind velocities and sand fluxes between field measurements and a computer model, called QUIC (Quick Urban & Industrial Complex). The comparisons were made for a small desert region in New Mexico.

  13. Effects of an invasive plant on a desert sand dune landscape

    USGS Publications Warehouse

    Barrows, C.W.; Allen, E.B.; Brooks, M.L.; Allen, M.F.

    2009-01-01

    Given the abundance of non-native species invading wildland habitats, managers need to employ informed triage to focus control efforts on weeds with the greatest potential for negative impacts. Our objective here was to determine the level of threat Sahara mustard, Brassica tournefortii, represents to meeting regional goals for protecting biodiversity. Sahara mustard has spread throughout much of the Mojave and lower Sonoran Deserts. It has occurred in southern California's Coachella Valley for nearly 80 years, punctuated by years of extremely high abundance following high rainfall. In those years the mustard has clear negative impacts on the native flora. Using mustard removal experiments we identified reductions in native plant reproduction, shifting composition increasingly toward Sahara mustard while decreasing the fraction of native species. High between-year variance in precipitation may be a key to maintaining biodiversity as the mustard is less abundant in drier years. Sahara mustard impacts to the native fauna were much less evident. Of the animal species evaluated, only the Coachella Valley fringe-toed lizard, Uma inornata, demonstrated a negative response to mustard abundance; however the impacts were short-lived, lasting no more than a year after the mustard's dominance waned. Without control measures the long-term impacts to desert biodiversity may rest on the changing climate. Wetter conditions or increased periodicity of high rainfall years will favor Sahara mustard and result in reduced biodiversity, especially of native annual plants. Drier conditions will keep the mustard from becoming dominant but may have other negative consequences on the native flora and fauna. ?? 2008 Springer Science+Business Media B.V.

  14. Geodermatophilus telluris sp. nov., an actinomycete isolated from Saharan desert sand.

    PubMed

    Montero-Calasanz, Maria del Carmen; Göker, Markus; Pötter, Gabriele; Rohde, Manfred; Spröer, Cathrin; Schumann, Peter; Klenk, Hans-Peter; Gorbushina, Anna A

    2013-06-01

    A novel Gram-positive, multiloculated thalli-forming, aerobic, actinobacterial strain, CF9/1/1(T), was isolated in 2007 during environmental screening for xerophilic fungi in arid desert soil from the Sahara desert, Chad. The isolate grew best at a temperature range of 20-35 °C and at pH 6.0-8.5 and with 0-4% (w/v) NaCl, forming black-coloured and irregular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G+C content of the novel strain was 75.4 mol%. The peptidoglycan contained meso-diaminopimelic acid as a diagnostic diamino acid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, a not yet structurally identified aminophospholipid and a small amount of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose was a diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C16:0 and iso-C15:0. The 16S rRNA gene sequence of the isolate showed 94.6-97.0% sequence similarities with those of five members of the genus: Geodermatophilus ruber DSM 45317(T) (94.6%), Geodermatophilus obscurus DSM 43160(T) (94.8%), Geodermatophilus siccatus DSM 45419(T) (96.2%), Geodermatophilus nigrescens DSM 45408(T) (96.7%) and Geodermatophilus arenarius DSM 45418(T) (97.0%). Based on the evidence from this polyphasic taxonomic study, a novel species, Geodermatophilus telluris sp. nov., is proposed; the type strain is CF9/1/1(T) (=DSM 45421(T)=CCUG 62764(T)). PMID:23159748

  15. The formation of the patterns of desert shrub communities on the Western Ordos Plateau, China: the roles of seed dispersal and sand burial.

    PubMed

    Wang, Yange; Yang, Xiaohui; Shi, Zhongjie

    2013-01-01

    The western Ordos Plateau is a key area of shrub diversity and a National Nature Reserve of endangered shrub species in north-west China. Desert expansion is becoming the most important threat to these endangered species. However, little is known about the effects of sand burial on the dynamics of the shrub community. This study aims to investigate how the shrubs as a community and as different individual shrubs respond to the disturbances caused by the desert expansion. The approach used by this study is to separate the seed-dispersal strategy from the sand-burial forces that are involved in structuring the shrub communities at different disturbance stages. Four communities for different disturbance stages were surveyed by using 50×50 m plots. The individual shrubs were classified into coloniser and successor groups at the seed-dispersal stage and strong and weak sand-burial tolerance groups at the sand-expansion stage. We employed spatial point pattern analysis with null models for each community to examine the seed-dispersal strategy and sand-burial forces affecting community distribution patterns. At the seed-dispersal stage, the interactions between the colonisers and the successors showed significant positive correlation at a scale of 0-1 m and significant negative correlation at a scale of 2 m; significant negative correlations between the groups with strong and weak sand-burial tolerance in the early stage of sand expansion at scales of 3-6 m, and significant positive correlation in the later stage of sand expansion at a scale of 13 m, were found. Seed-dispersal strategy is a reasonable mechanism to explain the shrub community pattern formation in the earlier stages, whereas sand burial is the primary reason for the disappearance of shrubs with weak sand-burial tolerance, this irreversible disturbance causes homogenisation of the community structure and produces aging populations of shrub species. This has an important influence on the succession direction

  16. The Formation of the Patterns of Desert Shrub Communities on the Western Ordos Plateau, China: The Roles of Seed Dispersal and Sand Burial

    PubMed Central

    Wang, Yange; Yang, Xiaohui; Shi, Zhongjie

    2013-01-01

    The western Ordos Plateau is a key area of shrub diversity and a National Nature Reserve of endangered shrub species in north-west China. Desert expansion is becoming the most important threat to these endangered species. However, little is known about the effects of sand burial on the dynamics of the shrub community. This study aims to investigate how the shrubs as a community and as different individual shrubs respond to the disturbances caused by the desert expansion. The approach used by this study is to separate the seed-dispersal strategy from the sand-burial forces that are involved in structuring the shrub communities at different disturbance stages. Four communities for different disturbance stages were surveyed by using 50×50 m plots. The individual shrubs were classified into coloniser and successor groups at the seed-dispersal stage and strong and weak sand-burial tolerance groups at the sand-expansion stage. We employed spatial point pattern analysis with null models for each community to examine the seed-dispersal strategy and sand-burial forces affecting community distribution patterns. At the seed-dispersal stage, the interactions between the colonisers and the successors showed significant positive correlation at a scale of 0–1 m and significant negative correlation at a scale of 2 m; significant negative correlations between the groups with strong and weak sand-burial tolerance in the early stage of sand expansion at scales of 3–6 m, and significant positive correlation in the later stage of sand expansion at a scale of 13 m, were found. Seed-dispersal strategy is a reasonable mechanism to explain the shrub community pattern formation in the earlier stages, whereas sand burial is the primary reason for the disappearance of shrubs with weak sand-burial tolerance, this irreversible disturbance causes homogenisation of the community structure and produces aging populations of shrub species. This has an important influence on the succession

  17. Dune ages in the sand deserts of the southern Sahara and Sahel

    NASA Astrophysics Data System (ADS)

    Bristow, Charlie; Armitage, Simon

    2015-04-01

    In this paper we aim to document the history of aeolian processes within the southern Sahara as part of the INQUA Dune Atlas. We review available luminescence ages for sand dunes across the southern Sahara and attempt to correlate periods of sand accumulation and to develop an improved understanding of the dune chronology on a regional basis. This was achieved by analysing dune age by country, as well as by latitude and longitude. The results show a very patchy spatial distribution of dune ages with large gaps that encompass some of the largest sand seas. Despite these gaps, some related patterns in dune morphology and stratigraphy appear to be consistent between northern Nigeria and southern Mali where older linear dunes are distinct from younger Late Holocene transverse and barchanoid dunes. Elsewhere in Mauretania linear dunes with different orientations appear to have accumulated at different times, most likely in response to changes in atmospheric circulation. Regional climatic changes are identified where dunes are transgressed by lake deposits within endorehic basins. We identify four locations where dune accumulation is terminated by lacustrine transgressions, two of which, in Lake Chad and the Bodélé Depression, occur shortly after the last glacial maximum (LGM). The third example at Gobiero in Niger occurred later, in the early Holocene, around 8.4 ka and a fourth marks a later transgression of Palaeolake MegaChad after 4.7 ka. Larger-scale latitudinal and longitudinal distributions in dune ages across the southern Sahara do not show any consistent patterns, though this may due to the small sample size relative to the study area. In addition, local variations in external controls such as wind regime, rainfall, vegetation and sand supply need to be considered, sometimes on a site by site basis. Limiting the analysis to dune ages determined using the single-aliquot regenerative-dose (SAR) protocol indicates a lack of dune preservation during the LGM and

  18. Runoff initiation versus runoff yield: Understanding the complexity of the hydrological effect of biological soil crusts

    NASA Astrophysics Data System (ADS)

    Kidron, G. J.; Monger, H. C.; Büdel, B.; Vonshak, A.; Conrod, W.

    2012-04-01

    The differentiation between runoff initiation and runoff yield (amount) is not always clear. In many cases they often seem interchangeable. Some of the differences were pinpointed following research conducted at two sand fields in Israel (Nizzanim, NIM, at the southern coast and Nizzana, NIZ in the Negev) and three sites in the Chihuahuan Desert, New Mexico, USA (silty-loessial sediments at the Jornada Experimental Range, JER; quartzose sand in the Sevilleta Wildlife Refuge, SEV; gypseous sand at the White Sands National Monument, WS) during which intact plots were compared to scalped plots. While the parent material, the effective rain, and the exopolysacharide (EPS) content of the crust determined runoff initiation in the Chihuahuan Desert, the effective rain and the crust microrelief determined the amount (yield) of runoff in areas where runoff initiation took place. Low EPS-crusts did not facilitated runoff initiation, even at high-chlorophyll crusts such as in WS. Similar results were obtained for NIM. Data from NIZ also highlighted the fundamental role played by the EPS in the determination of the amounts of runoff. This however was not the case with the chlorophyll content per se, that did not determine runoff initiation or yield. The findings also indicate that under the conditions examined, microrelief could not have controlled runoff initiation. Nevertheless, it affected the runoff amounts, as found in the Chihuahuan Desert and the Negev. The presence of rills and gullies may be indicative of the potentiality of BSCs to initiate runoff.

  19. Temporal observations of a linear sand dune in the Simpson Desert, central Australia: Testing models for dune formation on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.; Tooth, Stephen; Zimbelman, James R.; Wilson, Sharon A.; Maxwell, Ted A.; Kling, Corbin

    2015-10-01

    Linear dunes are the most common dune form found on planetary surfaces, yet questions remain about their formation. Temporal observations of a linear dune located in the Simpson Desert of central Australia were made to monitor dune movement and to test competing hypotheses regarding linear dune formation. Our observations were collected on three separate occasions from 2006 to 2014. Rebar stakes were placed in a gridded pattern so that multiple measurements of sand thickness, GPS surveys, and photographs could be taken at the same locations over time. We observed widespread reworking of sand on and around the dune crest, with sand accumulation locally exceeding a meter between surveys. Overall, the height of the dune crest increased by several centimeters. We also observed fluctuations in the sand cover in the adjacent swales that often exceeded 2-3 cm between surveys, yet we did not observe any appreciable changes in the position of the dune's downwind terminus. Weather data indicate that the effective sand-transporting winds in the Simpson are widely unimodal. Net sediment flux (resultant drift direction) is toward the north-northwest, locally at an oblique angle to dune orientation. Collectively, our results suggest that the linear dune is actively maintained by vertical accretion. The implications from our observations are that linear dunes on other planetary surfaces could form in wind regimes that are widely unimodal, even where the resultant drift direction is locally oblique to dune orientation. In particular, such findings may provide support for global circulation models of Titan.

  20. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    NASA Astrophysics Data System (ADS)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  1. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques.

    PubMed

    Langhans, Tanja Margrit; Storm, Christian; Schwabe, Angelika

    2009-08-01

    In temperate regions, biological soil crusts (BSCs: complex communities of cyanobacteria, eukaryotic algae, bryophytes, and lichens) are not well investigated regarding community structure and diversity. Furthermore, studies on succession are rare. For that reason, the community assembly of crusts representing two successional stages (initial, 5 years old; and stable, >20 years old) were analyzed in an inland sand ecosystem in Germany in a plot-based approach (2 x 18 plots, each 20 x 20 cm). Two different methods were used to record the cyanobacteria and eukaryotic algae in these communities comprehensively: determination directly out of the soil and enrichment culture techniques. Additionally, lichens, bryophytes, and phanerogams were determined. We examine four hypotheses: (1) A combination of direct determination and enrichment culture technique is necessary to detect cyanobacteria and eukaryotic algae comprehensively. In total, 45 species of cyanobacteria and eukaryotic algae were detected in the study area with both techniques, including 26 eukaryotic algae and 19 cyanobacteria species. With both determination techniques, 22 identical taxa were detected (11 eukaryotic algae and 11 cyanobacteria). Thirteen taxa were only found by direct determination, and ten taxa were only found in enrichment cultures. Hence, the hypothesis is supported. Additionally, five lichen species (three genera), five bryophyte species (five genera), and 24 vascular plant species occurred. (2) There is a clear difference between the floristic structure of initial and stable crusts. The different successional stages are clearly separated by detrended correspondence analysis, showing a distinct structure of the community assembly in each stage. In the initial crusts, Klebsormidium flaccidum, Klebsormidium cf. klebsii, and Stichococcus bacillaris were important indicator species, whereas the stable crusts are especially characterized by Tortella inclinata. (3) The biodiversity of BSC taxa

  2. Intrinsic and scattering attenuation in the crust of the Abu Dabbab area in the eastern desert of Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Ali K.; Morsy, M.; El-Hady, Sh.; Kim, K. Y.; Sami, M.

    2008-05-01

    Fifty-five microearthquakes recorded by a digital-temporary seismic network in the Abu Dabbab area in the Eastern Desert of Egypt were used to estimate the direct S-wave ( Qβ), coda ( Qc), intrinsic ( Qi), and scattering quality factors ( Qs). Sato's [Sato H., 1977] single-scattering assumption was used to fit the amplitude envelopes of the coda at seven central frequency bands (1.5, 3, 6, 9, 12, 18, and 24 Hz), obtaining a Qc varying with frequency as generally observed in tectonically active areas. Lapse time dependence was also studied for the area, with the coda waves analyzed at window lengths ranging from 10 to 40 s starting from the onset of the S-wave arrival. The direct S-wave Qβ was estimated using the coda normalization method [Aki, K., 1980a]. The frequency dependence of Q was investigated for the direct S-waves and coda waves. Results show a low quality factor and a high frequency parameter, indicating that the upper lithosphere of the Abu Dabbab area is seismically active and heterogeneous. Using the independent estimates of Qc and Qβ, the intrinsic quality factor Qi was separated from the scattering quality factor. The results suggest that intrinsic dissipation plays a predominant role with respect to scattering phenomena in the area; the obtained Q values seem closer to those reported by analyzing volcano-tectonic earthquakes. This finding reflects that the cause of Abu Dabbab earthquake swarms might be igneous activity where the magma is ascending through joints or serpentinized joints that are dewatering.

  3. [Storages and distributed patterns of soil organic carbon and total nitrogen during the succession of artificial sand-binding vegetation in arid desert ecosystem].

    PubMed

    Jia, Xiao-Hong; Li, Xin-Rong; Zhou, Yu-Yan; Li, Yuan-Shou

    2012-03-01

    Soil carbon pool acts as the largest one of carbon pools in the terrestrial ecosystem. The storages and distributed patterns of soil organic carbon (SOC) and total nitrogen (TN) evaluated accurately are helpful to predict the feedback between the terrestrial ecosystem and climate changes. Based on the data about bulk density, content of SOC and TN at 0-100 cm soil profile, the density of SOC and TN at the temporal (chronosequence of artificial vegetation) and spatial (vertical) distributed patterns have been estimated. The results indicated that storages of SOC and TN at 0-100 cm depth increased with the chronosequence of artificial vegetation. The storages of SOC and TN showed the same tendency with the succession time of artificial vegetation. Storages of SOC and TN significantly increased at the early stage of banding sand by artificially vegetation (< 16 a), then piled up at the mid-stage (16-25 a), and markedly increased at the late stage (> 25 a). The variation of storages mainly occurred in the 0-20 cm depth. The storages decreased with the soil vertical depth. At the early stage of banding sand, increase in storage included every depth (0-100 cm). Whereas, at the later stage, increase in storage at 0-20 cm depth was main, and increase in the 20-100 cm was inconspicuous. The accumulation of storage at the shallow soil depth was more notability with the succession of artificial vegetation. The distributed pattern of storage in SOC and TN has been confirmed in arid desert regions below 200 mm annual precipitation. This was beneficial to understand the carbon cycle and to predict the feedback relationship between desert ecosystem and climate changes. PMID:22624391

  4. The physiology mechanisms on drought tolerance and adaptation of biological soil crust moss Bryum argenteum and Didymodon vinealis in Tenger Desert

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Shi, Y.; Chen, C.; Jia, R.; Li, X.

    2012-04-01

    Bryum argenteum Hedw. and Didymodon vinealis Brid are two dominant moss species in the restored vegetation area in Tenger Desert, which sampled from biological soil crusts and where is an extreme drought regions. We found that they resorted to different osmotic adjustment strategies to mitigate osmotic stress. Under the gradual drought stress, both Bryum argenteum and Didymodon vinealis accumulated K+ and soluble sugar such as sucrose and trehalose. Their glycine betaine contents both decreased, while their proline content had no significant change. With enhanced drought stress, Bryum argenteum's Na+ content was low and decreased significantly, whereas Didymodon vinealis's Na+ content increased sharply and reached to a high level. We found the different of the mechanism of between active oxygen scavenging on Enzymatic and non - enzymatic system in two species moss of Bryum argenteum Hedw and Didymodon vinealis Brid under extreme drought stress. The result showed that two species of Moss of SOD activity gradually enhanced, and they have the material basis for effectively eliminates in vivo of Superoxide free radical. POD in Didymodon nigrescen and CAT in Bryum argeneum are major resistance o oxidative stress effects. The content of GSH rise with the stress also enhanced. The mechanism of finding Bryum argenteum Hedw and Didymodon vinealis Brid tolerance of dehydration ability were focus on different direction, but they are all given positive response to stress and enhance resistance. We investigated the responses of signal transduction substances to gradual drought stress in Didymodon vinealis and Bryum argenteum. The results suggested that: under gradual drought stress, the activities of TP H+-ATPase and PM H+-ATPase of Didymodon vinealis and Bryum argenteum both increased, resulting in their increase of K+ contents and turgor pressures, and triggered biosynthesis of signal transduction substances. ABA had no obvious effect in signal transduction of Bryum argenteum

  5. Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts

    PubMed Central

    Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng

    2014-01-01

    Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668

  6. Temperature and humidity measurements within desert barchan sand dunes, relation to dune aeolian mobility and microbial growth

    NASA Astrophysics Data System (ADS)

    Louge, Michel; Hay, Anthony; Richer, Renee; Valance, Alexandre; Ould el Moctar, Ahmed; Xu, Jin; Abdul-Majid, Sara

    2013-04-01

    We present diurnal variations of temperature and humidity profiles below the surface of hyper-arid aeolian crescent-shaped "barchan" dunes in Qatar and Mauritania, measured using a thermal probe and a new ultra-sensitive capacitance instrument that we developed for this purpose. We also report long-term measurements from a probe sunk on the downwind avalanche face of a mobile Qatar barchan, recording temperature and humidity until it emerged on the upwind slope 15 months later. We interpret the data by modeling heat and moisture transfer at the surface in terms of measured net surface radiation, wind, and atmospheric conditions. We demonstrate the presence of microbes on sand grains within these mobile dunes using microscopic observations, fluorescence counts, metagenomic sequencing, and C12/C13 isotope analysis of carbon dioxide sampled below the surface. By determining how water activity grows with moisture adsorbed on these sands, we delimit regions within the dune where our instruments recorded humidity conducive to microbial growth. Finally, we compare the mobility of two adjacent Mauritania barchans having distinct surface grain size, shape, and depth humidity profiles. Armored by large grains on its surface, the smaller dune was more oblong. As a result, it lacked flow recirculation in its wake, trapped less aeolian sand downwind, and was much less mobile than its smaller size would suggest. This slower mobility led to greater humidity and cohesion at depth than the larger dune exposed to the same atmospheric and wind conditions.

  7. Thar Desert

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER sub-scene covers an area of 12 x 15 km in NW India in the Thar Desert. The sand dunes of the Thar Desert constantly shift and take on new shapes. Located in northwestern India and eastern Pakistan, the desert is bounded on the south by a salt marsh known as the Rann of Kutch, and on the west by the Indus River plain. About 800 kilometers long and about 490 kilometers wide, the desert's terrain is mainly rolling sandhills with scattered growths of shrub and rock outcroppings. Only about 12 to 25 centimeters of rain fall on the desert each year, and temperatures rise as high as 52 degrees Celsius. Much of the population is pastoral, raising sheep for their wool. The image is located at 24.4 degrees north latitude and 69.3 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  8. Characterization of magnetic spherical fractions in sand deposits for interpretation of environmental change around the El- Zayyan temple, Kharga Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Watanabe, Makiko; Koizumi, Natsuko; Kato, Sayuri; Kikuchi, Ryohei; Kamei, Hiroyuki

    2014-05-01

    Desertification in North Africa has rapidly advanced over the last 6,000 years. Such environmental changes began in the Early Dynastic Period of Egypt (4200 - 3150 BC), and the occupation of Achaemenid Persian and Roman cultures in Egypt occurred under even drier climates. Kharga is the largest oasis of the five oases, located in the western desert of Egypt that contains a treasure trove of archaeological resources. This oasis has been highlighted to promote resource exploration and development of archaeological tourism since the 1980's. The El-Zayyan temple is located 27 km south of the central Kharga oasis. Zayyan was once called 'Tchonemyris', which has connection with the means of 'huge well' in Greek. Although major portions of the temple were rebuilt in 140 AD during the rule of the Roman Emperor Antoninus Pius, this temple is considered to be originally built in the Ptolemaic period (4c-1c BC). It is likely that the area had a sufficient water supply in the past as the El-Zayyan temple stands at the lowest point (-18 m a.s.l.) in the Kharga oasis. Furthermore, the El-Ghueita temple that stands on a hill top at 68.5 m a.s.l., 4 km northward from the El-Zayyan temple, has given name that means 'beautiful garden' in Greek. From these facts, we can imagine that the past landscape of this area contained green surroundings. The El-Ghueita temple was well known as a production centre of high quality wine since the mid-Dynastic age (2050 -1786 BC). As this area is currently arid, it is expected that there were irrigation facilities to maintain the vast farm land during the ancient period. To deepen our knowledge of how people developed their technologies and conducted their life within the natural environment of a drastic drying period, understanding the process of environmental change on a region scale is necessary. The aim of this study was to extract proxies from sand deposits in the western desert area to estimate the change in the environment. We examined the

  9. Ubiquity, diversity and physiological characteristics of Geodermatophilaceae in Shapotou National Desert Ecological Reserve

    PubMed Central

    Sun, Hong-Min; Zhang, Tao; Yu, Li-Yan; Sen, Keya; Zhang, Yu-Qin

    2015-01-01

    The goal of this study was to gain insight into the diversity of culturable actinobacteria in desert soil crusts and to determine the physiological characteristics of the predominant actinobacterial group in these crusts. Culture-dependent method was employed to obtain actinobacterial strains from desert soil samples collected from Shapotou National Desert Ecological Reserve (NDER) located in Tengger Desert, China. A total of 376 actinobacterial strains were isolated and 16S rRNA gene sequences analysis indicated that these isolates belonged to 29 genera within 18 families, among which the members of the family Geodermatophilaceae were predominant. The combination of 16S rRNA gene information and the phenotypic data allowed these newly-isolated Geodermatophilaceae members to be classified into 33 “species clusters,” 11 of which represented hitherto unrecognized species. Fermentation broths from 19.7% of the isolated strains showed activity in at least one of the six screens for antibiotic activity. These isolates exhibited bio-diversity in enzymatic characteristics and carbon utilization profiles. The physiological characteristics of the isolates from different types of crusts or bare sand samples were specific to their respective micro-ecological environments. Our study revealed that members of the family Geodermatophilaceae were ubiquitous, abundant, and diverse in Shapotou NDER, and these strains may represent a new major group of potential functional actinobacteria in desert soil. PMID:26483778

  10. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Yan-xia; Wang, Xin-ping; Zhang, Ya-feng

    2010-06-01

    SummarySoil moisture in the upper layer plays an important role in arid desert ecosystems. Dew as an additional source of fresh water, may have a positive impact upon the ecosystems in arid and semi-arid zones. Measurements on dew formation amount and duration were carried out in the whole October of 2008 at different condensing surface types (bare dune sands, physical soil crusts and biological soil crusts) associated with different inter-space positions between plants, and at the area under plant canopy in a revegetation-stabilized arid desert ecosystem in Shapotou area, China. The results indicated that there was a positive linear correlation between dew amounts and relative humidity, while mean temperature was negatively linearly related to dew amounts and no significant relationship was found between dew amounts and wind speed. Clear and foggy mornings were characterized by higher dew amounts and longer dew duration, whereas less dew was recorded during cloudy and especially windy mornings. Crusts, especially the biological soil crusts, obtained significantly higher amounts of dew than that of bare moving sand dunes. It was more difficult for dew to condense under the canopy of the plants than on the bare sand dunes. At the first stage of ecological engineering projects, dew can renew the moisture losing through the evaporation of soil and transpiration of leaves, and thus can supply important source of water for xerophytic shrubs. The higher dew amount at the inter-space of re-vegetated plants is an important driving factor for the growth of microorganisms and spore plants, which further accelerate the formation of biological soil crusts and stabilization of moving sand dunes. The presence of biological soil crusts, in turn, helps to facilitate the formation of dew. Therefore, a mutual enhanced effect exists between dew and artificially revegetation ecosystems.

  11. Recovery of symbiotic nitrogen fixing acacia rhizobia from Merzouga Desert sand dunes in South East Morocco--Identification of a probable new species of Ensifer adapted to stressed environments.

    PubMed

    Sakrouhi, Ilham; Belfquih, Meryem; Sbabou, Laïla; Moulin, Patricia; Bena, Gilles; Filali-Maltouf, Abdelkarim; Le Quéré, Antoine

    2016-03-01

    Bacteria capable of nodulating Acacia tortilis and A. gummifera could be recovered from sand dunes collected in the Moroccan Merzouga desert. The trapping approach enabled the recovery of 17 desert rhizobia that all clustered within the Ensifer (Sinorhizobium) genus. Four isolates of the dominant genotype comprising 15 strains as well as 2 divergent strains were further characterized by MLSA. Phylogenetic analyzes indicated that the dominant genetic type was belonging to a new and yet undefined species within the Ensifer genus. Interestingly, housekeeping gene phylogenies showed that this possibly new species is also present in another desert but in India. Phylogenetic analyses of nifH and nodC sequences showed high sequence conservation among the Moroccan strains belonging to the dominant genotype but high divergence with sequences from Indian isolates suggesting acquisition of symbiotic genes through Horizontal Gene Transfer. These desert rhizobia were capable of growing in media containing high salt concentrations, under high pH and most of the strains showed growth at 45°C. Only recovered from desert type of Biome, yet, this new taxon appears particularly adapted to such harsh environment. PMID:26867773

  12. The effect of the time interval used to calculate mean wind velocity on the calculated drift potential, relative drift potential, and resultant drift direction for sands from three deserts in northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcai; Dong, Zhibao; Zhao, Aiguo

    2016-01-01

    Wind is the power behind many erosion processes and is responsible for many of the characteristics of arid zone geomorphology. Wind velocity is a key factor in determining the potential sand transport, but the nature of the wind velocity data can strongly affect assessments of the risk of blowing sand. In this study, we obtained real-time wind velocity data in a region of the Tengger Desert with shifting sands, in the Badain Jaran Desert, and in the Madoi desertification land, with the data obtained at 1-min intervals, and used the data to determine the influence of how the wind velocity was calculated (mean versus mid-point values and the averaging time used to calculate these values) on sand drift potential. In the three regions, for both the mean and the mid-point wind velocities, the estimated drift potential decreased with increasing averaging time. The relationships between velocities calculated using the different averaging time intervals and the value calculated using a 1-min interval could be expressed as linear functions. The drift potential calculated using the mid-point wind velocity was larger than that calculated using the mean wind velocity.

  13. Seasonal changes in plasma concentrations of gonadotropins and in the responsiveness of the pituitary and testis to GnRH in a desert rodent, the sand rat (Psammomys obesus).

    PubMed

    Khammar, F; Brudieux, R

    1991-01-01

    The male sand rat (Psammomys obesus), captured alive in the Sahara desert in the area of Béni-Abbès (Algeria), exhibited seasonal changes in plasma concentrations of LH, characterized by an increase in early summer. Administration of a standard dose of GnRH (200 ng/100 g body weight) failed to elicit significant season-dependent changes in LH release, whereas the increase in plasma testosterone was maximum in June-July and quite small between November and March-April. The present results suggest that the summer seasonal onset of the testicular endocrine activity of the sand rat is due to increases both in LH release and in testis sensitivity to gonadotropin. PMID:1777059

  14. High Resolution Mapping of Soils and Landforms for the Desert Renewable Energy Conservation Plan (DRECP)

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.; Li, Shuang

    2014-01-01

    The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.

  15. Delineating contamination of basaltic magma by mafic crust VIA U/Th disequilibrium determined by TIMS, Pisgah Craters, Mojave Desert, California

    SciTech Connect

    Ramos, F.C.; Reid, M.R. . Dept. of Earth and Space Sciences)

    1993-04-01

    Compositional changes in basaltic lavas at Pisgah Craters, CA, are hypothesized to reflect contamination by variable amounts of mafic crust (Glazner et al, 1991). Data determined by Glazner and coworker indicate that the lavas range in isotopic composition from [sup 143]Nd/[sup 144]Nd = 0.51293--0.51276 and [sup 87]Sr/[sup 86]Sr = 0.7038--0.7050, and have decreasing concentrations of incompatible elements with decreasing MgO. The lavas are postulated to range from nearly pure primitive mantle-derived magmas (>8 wt % MgO) early in the eruptive history to nearly pure melts of mafic crust (<4.5 wt % MgO) late in the eruptive history. Preliminary U-series isotopic results obtained by thermal ionization mass spectrometry suggest that the crustal contaminant contains minor concentrations of Th and U. Th and U concentrations in the lavas correlate positively with MgO contents, with ([sup 238]U)/([sup 232]Th) increasing by almost 30% over a variation from 8 to 4.5 wt % MgO. In contrast, [sup 232]Th/[sup 230]Th varies little with MgO concentration and averages 1.8 [times] 10[sup 5] (([sup 230]Th)/([sup 232]Th) [approximately]1.03; 5 samples). The [sup 232]Th/[sup 230]Th ratios of the Pisgah lavas are those expected for mantle-derived magmas based on their Sr and Nd isotopic compositions. The lack of Th isotopic variation coupled with decreasing Th concentrations suggests that the contaminant contained very little Th, consistent with a mafic and/or deep crustal source. U/Th disequilibrium in these lavas indicates that contamination and eruption occurred within the past 50,000 years from the present.

  16. Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert.

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2012-04-01

    Heterothermy, a variability in body temperature beyond the normal limits of homeothermy, is widely viewed as a key adaptation of arid-adapted ungulates. However, desert ungulates with a small body mass, i.e. a relatively large surface area-to-volume ratio and a small thermal inertia, are theoretically less likely to employ adaptive heterothermy than are larger ungulates. We measured body temperature and activity patterns, using implanted data loggers, in free-ranging Arabian oryx (Oryx leucoryx, ±70 kg) and the smaller Arabian sand gazelle (Gazella subgutturosa marica, ±15 kg) inhabiting the same Arabian desert environment, at the same time. Compared to oryx, sand gazelle had higher mean daily body temperatures (F(1,6) = 47.3, P = 0.0005), higher minimum daily body temperatures (F(1,6) = 42.6, P = 0.0006) and higher maximum daily body temperatures (F(1,6) = 11.0, P = 0.02). Despite these differences, both species responded similarly to changes in environmental conditions. As predicted for adaptive heterothermy, maximum daily body temperature increased (F(1,6) = 84.0, P < 0.0001), minimum daily body temperature decreased (F(1,6) = 92.2, P < 0.0001), and daily body temperature amplitude increased (F(1,6) = 97.6, P < 0.0001) as conditions got progressively hotter and drier. There were no species differences in activity levels, however, both gazelle and oryx showed a biphasic or crepuscular rhythm during the warm wet season but shifted to a more nocturnal rhythm during the hot dry season. Activity was attenuated during the heat of the day at times when both species selected cool microclimates. These two species of Arabian ungulates employ heterothermy, cathemerality and shade seeking very similarly to survive the extreme, arid conditions of Arabian deserts, despite their size difference. PMID:22001971

  17. Diurnal emissivity dynamics in bare versus biocrusted sand dunes.

    PubMed

    Rozenstein, Offer; Agam, Nurit; Serio, Carmine; Masiello, Guido; Venafra, Sara; Achal, Stephen; Puckrin, Eldon; Karnieli, Arnon

    2015-02-15

    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel-Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand/biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales. PMID:25437760

  18. Diurnal emissivity dynamics in bare versus biocrusted sand dunes

    NASA Astrophysics Data System (ADS)

    Rozenstein, O.

    2015-12-01

    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel-Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand / biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales.

  19. Aeolian sand ripples around plants.

    PubMed

    Zhang, Qian-Hua; Miao, Tian-De

    2003-05-01

    Plants in the desert may locally change the aeolian process, and hence the pattern of sand ripples traveling nearby. The effect of plants on ripples is investigated using a coupled map lattice model with nonuniform coupling coefficients. PMID:12786143

  20. The negative effect of biocrusts upon annual-plant growth on sand dunes during extreme droughts

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.

    2014-01-01

    The moisture content of crusted and non-crusted habitats on sand was measured.Higher available water characterized the non-crusted habitats during drought years.Non-crusted habitats had higher species diversity, density and biomass.Crusts exert a negative effect on annual plants during droughts.Mobile sand serve as fertility belts for annual plants during drought years.

  1. Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert

    NASA Astrophysics Data System (ADS)

    Whitney, J. W.; Breit, G. N.; Buckingham, S. E.; Reynolds, R. L.; Bogle, R. C.; Luo, L.; Goldstein, H. L.; Vogel, J. M.

    2015-02-01

    The erosion and deposition of sediments by wind from 1901 to 2013 have created large changes in surface features of Mesquite Lake playa in the Mojave Desert. The decadal scale recurrence of sand-sheet development, migration, and merging with older dunes appears related to decadal climatic changes of drought and wetness as recorded in the precipitation history of the Mojave Desert, complemented by modeled soil-moisture index values. Historical aerial photographs, repeat land photographs, and satellite images document the presence and northward migration of a mid-20th century sand sheet that formed during a severe regional drought that coincided with a multi-decadal cool phase of the Pacific Decadal Oscillation (PDO). The sand sheet slowly eroded during the wetter conditions of the subsequent PDO warm phase (1977-1998) due to a lack of added sediment. Sand cohesion gradually increased in the sand sheet by seasonal additions of salt and clay and by re-precipitation of gypsum, which resulted in the wind-carving of yardangs in the receding sand sheet. Smaller yardangs were aerodynamically shaped from coppice dunes with salt-clay crusts, and larger yardangs were carved along the walls and floor of trough blowouts. Evidence of a 19th century cycle of sand-sheet formation and erosion is indicated by remnants of yardangs, photographed in 1901 and 1916, that were found buried in the mid-20th century sand sheet. Three years of erosion measurements on the playa, yardangs, and sand sheets document relatively rapid wind erosion. The playa has lowered 20 to 40 cm since the mid-20th century and a shallow deflation basin has developed since 1999. Annually, 5-10 cm of surface sediment was removed from yardang flanks by a combination of wind abrasion, deflation, and mass movement. The most effective erosional processes are wind stripping of thin crusts that form on the yardang surfaces after rain events and the slumping of sediment blocks from yardang flanks. These wind

  2. Sidewinding snakes on sand

    NASA Astrophysics Data System (ADS)

    Marvi, Hamidreza; Dimenichi, Dante; Chrystal, Robert; Mendelson, Joseph; Goldman, Daniel; Hu, David; Georgia Tech and Zoo Atlanta Collaboration

    2012-11-01

    Desert snakes such as the rattlesnake Crotalus cerastes propel themselves over sand using sidewinding, a mode of locomotion relying upon helical traveling waves. While sidewinding on hard ground has been described, the mechanics of movement on more natural substrates such as granular media remain poorly understood. In this experimental study, we use 3-D high speed video to characterize the motion of a sidewinder rattlesnake as it moves on a granular bed. We study the movement both on natural desert sand and in an air-fluidized bed trackway which we use to challenge the animal on different compactions of granular media. Particular attention is paid to rationalizing the snake's thrust on this media using friction and normal forces on the piles of sand created by the snake's body. The authors thank the NSF (PHY-0848894), Georgia Tech, and the Elizabeth Smithgall Watts endowment for support. We would also like to thank Zoo Atlanta staff for their generous help with this project.

  3. Namib Desert, Namibia, Africa

    NASA Technical Reports Server (NTRS)

    1990-01-01

    One of the driest regions on Earth, the Namib Desert, Namibia, Africa (23.0N, 15.0E) lies adjacent to the Atlantic coast but upwelling oceanic water causes a very stable rainless atmosphere. The few local inland rivers do not reach the sea but instead appear as long indentations where rivers penetrate the dune fields and end as small dry lakes. The vast dune fields are the result of sands deposited over millions of years by the stream flow.

  4. Namib Desert, Namibia, Africa

    NASA Technical Reports Server (NTRS)

    1990-01-01

    One of the driest regions on Earth, the Namib Desert, Namibia, Africa (23.0N, 15.0E) lies adjacent to the Atlantic coast but the upwelling oceanic water causes a very stable rainless atmosphere. The few local inland rivers do not reach the sea but instead, appear as long indentations where they penetrate the dune fields and end as small dry lakes. The vast dune fields are the result of sands deposited over millions of years by the stream flow.

  5. Remote Sensing of Desert Loess and Dune Fields Aids Revealing Proximal Loess Sources

    NASA Astrophysics Data System (ADS)

    Crouvi, O.; Gillespie, A.; Amit, R.; Enzel, Y.

    2008-12-01

    Loess is an eolian deposit composed mostly of silt-sized quartz, which serves as an important archive of Quaternary climate changes. Despite the long term support for the 'classical' glacial concept of loess formation, there have been challenges to this model focusing on the formation of silt grains in deserts, which is still controversial. The aim of this study is to trace the proximal dust sources of the Negev loess, Israel, using comprehensive remote-sensing mapping, field surveys, and laboratory analyses of hilltop, primary loess sequences. Based on field and spectral characterization of primary and secondary loess, we developed remote-sensing methodology to: 1) distinguish and classify loess types to better choose hilltop, un-reworked loess study sites; 2) map loess regionally and examine its spatial association with potential dust sources. The different loess types are spectrally distinguishable by using the difference in the magnitude of chlorophyll, ferric, Al-OH, and carbonate absorptions features that vary systematically by the relative abundance of clasts, loessial biogenic crust, and vegetation. We used band ratios and liner un-mixing techniques on ASTER and Landsat TM reflectance and thermal data to successfully map the different loess types and the regional loess distribution. We conclude that the border between the loess and the adjacent, upwind sand dunes exhibit gradual patterns of grain size, mineralogy, and spectral characteristics. These findings, together with detailed analyses of loess sequences show that the proximal dust source of the Negev loess is the adjacent sand dunes, and suggest that the silt grains were formed through eolian abrasion of sand grains. Applying the remote-sensing methodology on other desert loess (e.g. Tunisia) indicates similar pattern of gradual transition from sand dunes to loess, and suggests that this association is not unique to the Negev. Our findings imply that sand dunes are much more important proximal dust

  6. Seasonal changes in plasma testosterone concentrations in response to administration of hCG in a desert rodent, the sand rat (Psammomys obesus).

    PubMed

    Khammar, F; Brudieux, R

    1989-01-01

    In adult male sand rats inhabiting the Béni-Abbès area (Algeria), testicular endocrine activity increased in early summer (June-July), was highest in autumn-winter and decreased throughout spring. Testosterone secretion by the testis of the sand rat was stimulated (by 10-60-fold) throughout the year by exogenously administered hCG (25 i.u.). However, the response exhibited annual changes mainly characterized by a marked increase in early summer (June-July); the response to hCG was depressed in autumn and became minimal in winter and in early spring. The results strongly suggest that the summer onset of testicular endocrine activity is, at least in part, due to an increase in the testis sensitivity to LH. PMID:2644426

  7. WIND CHARACTERISTICS OF MESQUITE STREETS IN THE NORTHERN CHIHUAHUAN DESERT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Past research has shown that the most important areas for active sand movement in the northern part of the Chihuahuan Desert are mesquite-dominated desert ecosystems possessing sandy soil texture. The most active sand movement in the mesquite-dominated ecosystems has been shown to take place on elon...

  8. Effects of surface characteristics on infiltration patterns in an arid shrub desert

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Ping; Li, Xin-Rong; Xiao, Hong-Lang; Berndtsson, Ronny; Pan, Yan-Xia

    2007-01-01

    Precipitation is often the sole source of water replenishment in arid and semi-arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf-shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time-domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf-shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7.5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub

  9. Seasonal changes in in vivo cortisol response to ACTH and in plasma and pituitary concentrations of ACTH in a desert rodent, the sand rat (Psammomys obesus).

    PubMed

    Amirat, Z; Brudieux, R

    1993-01-01

    1. During spring, decreased sensitivity of the adrenal cortex to adrenocorticotrophic hormone (ACTH) in the sand rat inhabiting the Béni-Abbès area (Algeria), results in a reduction in the production of cortisol. Thus the secretion of ACTH is enhanced, becoming maximal in June and presumably also during the following weeks. 2. Increase in ACTH secretion, together with a slightly increased adrenal sensitivity, is likely to stimulate corticosteroidogenesis throughout the summer. 3. In autumn, as levels of cortisol are high, the negative feedback increases leading to a reduction in ACTH production. 4. An increase in the adrenocortical sensitivity to ACTH allows a high production of cortisol until February. PMID:8094658

  10. Use of coal ash for enhancing biocrust development in stabilizing sand dunes

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Katra, Itzhak; Sarig, Shlomo

    2015-04-01

    In dryland environments, biocrusts are considered ecosystem engineers since they play significant roles in ecosystem processes. In the successional pathway of crust communities, the new areas are colonized after disturbance by pioneers such as filamentous cyanobacteria - Microcoleus spp. This stage is followed by colonization of green algae, mosses, and lichens. Aggregation of soil granules is caused by metabolic polysaccharides secreted by cyanobacteria and green algae, gluing the soil particles to form the crust layer. It was suggested that incorporating dust into the biocrusts encourages the growth of cyanobacteria, leading to a strengthening of the biocrusts' cohesion. Moreover, biocrusts cover a larger portion of the surface when the soil contains finer particles, and it was observed that at least 4-5% of clay and silt is required to support a measurable biocrust. While natural and undisturbed sand dunes are generally stabilized by biocrusts in the north-western Negev desert, stabilization of disturbed and movable sand dunes is one of the main problems in this desertified land, as in vast areas in the world. Daily breezes and seasonal wind storms transport sand particles to populated and agricultural areas causing damages to field crops and livelihood. Moving sand dunes consist of relatively coarse grains (250-2000 μm) with a low percent of clay and silt. This phenomenon negatively affects cyanobacterial colonization rate, even in relatively wet desert areas (100-250 mm rainfalls). In order to face the problem it was suggested to enrich the dune surface by using coal fly-ash. The research was conducted in two stages: first, examining the feasibility in Petri-dishes in laboratory conditions and in Experimental Aeolian Greenhouse conditions. The results showed that adding coal fly-ash and biocrust inoculum increased aggregate stability, penetration resistance and shear strength, as opposed to the control-sand plot. Using mobile wind-tunnel simulations, sand

  11. The age of the Taklimakan Desert.

    PubMed

    Sun, Jimin; Liu, Tungsheng

    2006-06-16

    The Taklimakan Desert is located in the foreland basin of the Tibetan Plateau. We report here the results of stratigraphic investigations of a 1626-meter-thick sequence with interbedded wind-blown silt from the southern marginal Taklimakan Desert. Because the studied section is located downwind of the desert, the eolian silt accumulation is closely linked to desert formation. Our new evidence indicates that shifting sand dunes prevailed in the Tarim Basin by at least 5.3 million years ago, as they do today. We attribute this event to late Cenozoic climatic deterioration, as well as to changes in atmospheric circulation induced by Tibetan Plateau uplift. PMID:16778048

  12. Keeping the desert at bay

    SciTech Connect

    El-Kassas, M.

    1981-02-01

    Man-made desert (areas that are no longer productive) has increased the world's deserts from 36.3 to 43% of the land surface. Desertification involves ecological degradation that makes the land less productive or allows an uneconomic type of vegetation, such as mesquite, to replace an economic plant. The process was first thought to be an encroachment by expanding deserts, but, except for the movement of sand dunes, desertification is now viewed as productive land that deteriorated and was added to the desert. Land is lost to agriculture by erosion, loss of nutrients, compaction, salination, urban development, and pollution. The interacting biosphere, technosphere, and social sphere form the framework of man's existence. An understanding of this framework is crucial to those offering technological assistance to developing countries. (DCK)

  13. Deserts of China

    USGS Publications Warehouse

    Walker, Alta S.

    1982-01-01

    Improving arid land quality requires an understanding of the original state of the land and its relationship to wind, water, and plant regimes, as well as understanding of interactions within the present ecosystem.  Chinese scientists and local residents have made significant advances in improving arid environments in gobi and sandy deserts and in less arid sandy lands.  Wind patterns are being changed by planting forest belts to protect oases and sandy lands, and on a smaller scale by planting grasses and shrubs or constructing straw grids.  Research on reclamation of deserts is now focusing on how sand-fixing plants may be adapted to local environments, and how the resources of grazing land and water may be effectively exploited without being overused.

  14. Desert Communities.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on desert communities, their similarities, and differences; (2) student activities on this topic; and (3) ready-to-copy student pages with pictures of desert animals and plants. Each activity includes objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. (DH)

  15. Desert Sojourn.

    ERIC Educational Resources Information Center

    Greenman, Geri

    1999-01-01

    Focuses on an activity in which the students in a beginning drawing class used middle-value brown paper and earthen shades of conte to draw pictures of bones in a desert environment. Discusses how the assignment teaches appreciation of the colors, sounds, and shapes of the desert. (CMK)

  16. Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.; Fenton, C. R.; Kober, F.; Wiggs, G. F. S.; Bristow, C. S.; Xu, S.

    2010-12-01

    The Namib Sand Sea is one of the world's oldest and largest sand deserts, yet little is known about the source of the sand in this, or other large deserts. In particular, it is unclear whether the sand is derived from local sediment or comes from remote sources. The relatively uniform appearance of dune sands and low compositional variability within dune fields make it difficult to address this question. Here we combine cosmogenic-nuclide measurements and geochronological techniques to assess the provenance and migration history of sand grains in the Namib Sand Sea. We use U-Pb geochronology of detrital zircons to show that the primary source of sand is the Orange River at the southern edge of the Namib desert. Our burial ages obtained from measurements of the cosmogenic nuclides 10Be, 26Al and 21Ne suggest that the residence time of sand within the sand sea is at least one million years. We therefore conclude that, despite large climatic changes in the Namib region associated with Quaternary glacial-interglacial cycles, the area currently occupied by the Namib Sand Sea has never been entirely devoid of sand during the past million years.

  17. Desert and desertification in Iran

    NASA Astrophysics Data System (ADS)

    Bahrami, M.

    2009-04-01

    One of the greatest environmental concerns in Iran as in other arid and semiarid countries is the transformation of once productive, or marginally productive, land to deteriorated land and soil unable to support plants and animals. Because the land becomes barren and dry, the process is described as desertification, which occurs as a sequence of events. The area of deserts in Iran is about 340,000 Km2 (less than one fifth of its total area), of which 100,000 Km2 is being used for some cultivation, 120,000 Km2 is subjected to moving sands about 40 % of which is active sand dunes. Most of features and processes usual in world famous deserts are also observed in Iran: low precipitation, high evaporation, poor or lack of vegetation, saline and alkaline soils, low population and small and sparse oases. The deserts of Iran are generally classified in the subtropical, warm, arid and semiarid group, but the effect and presence of some geographical and geoclimatical factors such as height, vicinity to Indian Ocean and so on do some changes in climatic conditions and geographical features causing some local and regional differences in them. Geographically, two groups of deserts have been known in Iran: (1) Coastal deserts which, like a ribbon with variable width, stretch from extreme southeast to extreme southwest, at the north parts of Oman Sea and Persian Gulf. One important feature of these deserts is relatively high humidity which differentiates them from other deserts. This causes an increase in vegetation coverage and hence a decrease in eolian erosion and also a dominance of chemical weathering to that of physical. (2) internal deserts, which rest in central, eastern and southeastern plateau of the country and in independent and semi dependent depressions. This situation, which is due to the surrounding high mountains, blocks humidity entry and causes the aridity of these deserts. Wind as a dominant process in the area causes deflated features such as Reg (desert

  18. Estimation of Endocarpon pusillum Hedwig carbon budget in the Tengger Desert based on its photosynthetic rate.

    PubMed

    Ding, Liping; Zhou, Qiming; Wei, Jiangchun

    2013-09-01

    This study investigated the photosynthetic rate of the lichen Endocarpon pusillum at the Chinese Academy of Sciences Shapotou Desert Research Station and estimated its annual contribution to the carbon budget in the ecosystem. The software SigmaPlot 10.0 with "Macro-Area below curves" was used to calculate the carbon fixation capacity of the lichen. The total carbon budget (ΣC) of the lichen was obtained by subtracting the respiratory carbon loss (ΣDR) from the photosynthetic carbon gain (ΣNP). Because water from precipitation plays an important role in photosynthesis in this ecosystem, the annual carbon budget of E. pusillum at the station was estimated based on the three-year average precipitation data from 2009 to 2011. Our results indicate that the lichen fixes 14.6 g C m(-2) annually. The results suggest that artificial inoculation of the crust lichen in the Tengger Desert could not only help reduce the sand and dust storms but also offer a significant carbon sink, fixing a total of 438000 t of carbon over the 30000 km(2) of the Tengger Desert. The carbon sink could potentially help mitigate the atmospheric greenhouse effect. Our study suggests that the carpet-like lichen E. pusillum is an excellent candidate for "Bio-carpet Engineering" of arid and semi-arid regions. PMID:23907293

  19. The Continental Crust.

    ERIC Educational Resources Information Center

    Burchfiel, B. Clark

    1983-01-01

    Continental crust underlies the continents, their margins, and also small shallow regions in oceans. The nature of the crust (much older than oceanic crust) and its dynamics are discussed. Research related to and effects of tectonics, volcanism, erosion, and sedimentation on the crust are considered. (JN)

  20. How biological crusts are stabilizing the soil surface? The devolpment of organo-mineral interactions in the initial phase

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Veste, M.; Wiehe, W.; Lange, P.

    2009-04-01

    First colonizers of new land surfaces are cryptogames which often form biological soil crusts (BSC) covering the first millimetre of the top soil in many ecosystems from polar to desert ecosystems. These BSC are assemblages of cyanobacteria, green algae, mosses, liverworts, fungi and/or lichens. The development of soil surface crusts plays a major role for the further vegetation pattern through changes to the physico-chemical conditions and influencing various ecosystem processes. We studied the development of BSC on quaternary substrate of an initial artificial water catchment in Lusatia, Germany. Due to lack of organic matter in the geological substrate, photoautotrophic organisms like green algae and cyanobacteria dominated the initial phases of ecosystem development and, hence, of organo-mineral ineractions. We combined SEM/EDX and FTIR microscopy to study the contact zone of extracellular polymeric substances (EPS) of green algae and cyanobacteria with quartz, spars and mica on a >40 µm scale in undisturbed biological soil crusts, which had a maximum thickness of approx. 2 mm. SEM/EDX microscopy was used to determine the spatial distribution of S, Ca, Fe, Al, Si and K in the profiles, organic compounds were identified using FTIR microscopy. Exudates of crust organisms served as cementing material between sand particles. The crust could be subdivided into two horizontal layers. The upper layer, which had a thickness of approx. 200 µm, is characterized by accumulation of Al and K, but absence of Fe in microbial derived organic matter, indicating capture of weathering products of feldspars and mica by microbial exudates. The pore space between mineral particles was entirely filled with organic matter here. The underlying layer can be characterized by empty pores and organo-mineral bridges between the sand particles. Contrarily to the upper layer of the crust, Fe, Al and Si were associated with organic matter here but K was absent. Highest similarity of the FTIR

  1. Condensation of water vapour on moss-dominated biological soil crust, NW China

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Ya-Feng; Zhang, Hao

    2014-03-01

    Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3◦C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4◦C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to

  2. Discovering Deserts.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1985-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Discovering Deserts." Contents are organized into the following sections: (1)…

  3. Desert Survivors!

    ERIC Educational Resources Information Center

    Horton, Jessica; Friedenstab, Steve

    2013-01-01

    This article describes a special third-grade classroom unit based on the reality show "Survivor." The goal of this engaging and interactive unit was to teach students about physical and behavioral adaptations that help animals survive in various desert biomes. The activity combines research, argument, and puppet play over one week of…

  4. Acclimation of microorganisms to harsh soil crust conditions: Experimental and genomic approaches

    NASA Astrophysics Data System (ADS)

    Raanan, Hagai; Kaplan, Aaron

    2015-04-01

    Biological soil crusts (BSC) are formed by the adhesion of sand particles to cyanobacterial exo- polysaccharides and play an important role in stabilizing sandy desert. Its destruction promotes desertification. These organisms cope with extreme temperatures, excess light and frequent hydration/dehydration cycles; the mechanisms involved are largely unknown. With the genome of newly sequenced Leptolyngbya, isolated from Nizzana BSC, we conduct comparative genomics of three desiccation tolerant cyanobacteria. This yield 46 unique genes, some of them similar to genes involve in sporulation of the gram positive bacteria Bacillus. In order to understand the molecular mechanisms taking place during desiccation we built an environmental chamber capable of simulating dynamic changes of environmental conditions in the crust. This chamber allows us to perform repetitive and accurate desiccation/rehydration experiments and follow cyanobacterial physiological and molecular response to such environmental changes. When we compared fast desiccation (less than 5 min) of isolated cyanobacteria to simulation of natural desiccation, we observed a 60% lower fluorescence recovery rate. The extent of damage from desiccation depended on the stress conditions during the dry period. These results suggest that cyanobacteria activated protection mechanisms in response to desiccation stress but which were not activated in 5 min desiccation tests. Gene expression patterns during desiccation are being analyzed in order to provide a better understanding of desiccation stress protection mechanisms.

  5. [Development and succession of biological soil crusts and the changes of microbial biomasses].

    PubMed

    Wu, Li; Zhang, Gao-Ke; Chen, Xiao-Guo; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-04-01

    Biological soil crusts (BSCs) play important ecological roles in vegetation and ecological restoration in desert regions, and different crust developmental and successional stages have different ecological functions. In this experiment, the BSCs in Shapotou region (at southeast edge of Tengger Desert) were investigated to study crust development and succession through field investigation, microscopic observation combined with quantitative analysis of microbial biomasses. The results showed that BSCs in this region generally developed and succeeded from algal crusts, lichen crusts to moss crusts. With the development and succession of BSCs, crust photosynthetic biomass gradually increased, while microalgal biomass showed a first increasing and then decreasing trend. Among the crust algae (cyanobacteia), Microcoleus vaginatus, as the first dominant species, occupied the most algal biomass and reached a maximum of 0.33 mm3 x g(-1) crusts in algal crusts; while Scytonema javanicum and Nostoc sp. have their maximal biomasses in the later lichen crusts. In addition, it was found that the heterotrophic microbial biomass began to increase in algal crusts, and then decreased in lichen crusts; followed by another increase and the increase achieved the maximum at last in moss crusts. Through the correlation analysis, it was found that bacterial biomass significantly positively correlated with crust organic carbon and Na+ content, while fungal biomass positively correlated with K+ and Na+ content (P < 0.05). In conclusion, this study investigated the developmental and successional patterns of BSCs in Shapotou region, and discussed the effects of crust development and succession on several microbial biomasses from the point of view of environmental adaptation and functional requirement, which may be helpful for us to understand crust development and succession, and provide theoretical and practical significances for crust maintenance and management in ecological restoration of

  6. Soil respiration sensitivities to water and temperature in a revegetated desert

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Shan; Dong, Xue-Jun; Xu, Bing-Xin; Chen, Yong-Le; Zhao, Yang; Gao, Yan-Hong; Hu, Yi-Gang; Huang, Lei

    2015-04-01

    Soil respiration in water-limited ecosystems is affected intricately by soil water content (SWC), temperature, and soil properties. Eight sites on sand-fixed dunes that revegetated in different years since 1950s, with several topographical positions and various biological soil crusts (BSCs) and soil properties, were selected, as well as a moving sand dune (MSD) and a reference steppe in the Tengger Desert of China. Intact soil samples of 20 cm in depth were taken and incubated randomly at 12 levels of SWC (0 to 0.4 m3 m-3) and at 9 levels of temperature (5 to 45°C) in a growth chamber; additionally, cryptogamic and microbial respirations (RM) were measured. Total soil respiration (RT, including cryptogamic, microbial, and root respiration) was measured for 2 years at the MSD and five sites of sand-fixed dunes. The relationship between RM and SWC under the optimal SWC condition (0.25 m3 m-3) is linear, as is the entire range of RT and SWC. The slope of linear function describes sensitivity of soil respiration to water (SRW) and reflects to soil water availability, which is related significantly to soil physical properties, BSCs, and soil chemical properties, in decreasing importance. Inversely, Q10 for RM is related significantly to abovementioned factors in increasing importance. However, Q10 for RT and respiration rate at 20°C are related significantly to soil texture and depth of BSCs and subsoil only. In conclusion, through affecting SRW, soil physical properties produce significant influences on soil respiration, especially for RT. This indicates that a definition of the biophysical meaning of SRW is necessary, considering the water-limited and coarse-textured soil in most desert ecosystems.

  7. Freshly brewed continental crust

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Hayes, J. L.; Caddick, M. J.; Madrigal, P.

    2015-12-01

    Earth's crust is the life-sustaining interface between our planet's deep interior and surface. Basaltic crusts similar to Earth's oceanic crust characterize terrestrial planets in the solar system while the continental masses, areas of buoyant, thick silicic crust, are a unique characteristic of Earth. Therefore, understanding the processes responsible for the formation of continents is fundamental to reconstructing the evolution of our planet. We use geochemical and geophysical data to reconstruct the evolution of the Central American Land Bridge (Costa Rica and Panama) over the last 70 Ma. We also include new preliminary data from a key turning point (~12-6 Ma) from the evolution from an oceanic arc depleted in incompatible elements to a juvenile continental mass in order to evaluate current models of continental crust formation. We also discovered that seismic P-waves (body waves) travel through the crust at velocities closer to the ones observed in continental crust worldwide. Based on global statistical analyses of all magmas produced today in oceanic arcs compared to the global average composition of continental crust we developed a continental index. Our goal was to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust. We suggest that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone, a process probably more common in the Achaean where most continental landmasses formed, can produce the starting material necessary for juvenile continental crust formation.

  8. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature beneath well-developed, late-successional stage crusts than immature, early-successional stage crusts. We identified and enumerated nematodes by genus from beneath early- and late-stage crusts from both the Colorado Plateau, Utah (cool, winter rain desert) and Chihuahuan Desert, New Mexico (hot, summer rain desert) at 0-10 and 10-30 cm depths. As hypothesized, nematode abundance, richness, diversity, and successional maturity were greater beneath well-developed crusts than immature crusts. The mechanism of this aboveground-belowground link between biological soil crusts and nematode community composition is likely the increased food, habitat, nutrient inputs, moisture retention, and/or environmental stability provided by late-successional crusts. Canonical correspondence analysis of nematode genera demonstrated that nematode community composition differed greatly between geographic locations that contrast in temperature, precipitation, and soil texture. We found unique assemblages of genera among combinations of location and crust type that reveal a gap in scientific knowledge regarding empirically derived characterization of dominant nematode genera in deserts soils and their functional role in a crust-associated food web. ?? 2006 Elsevier B.V. All rights reserved.

  9. Nationwide desert highway assessment: a case study in China.

    PubMed

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-07-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert's comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection. PMID:21845155

  10. Thermal and water relations of desert beetles

    NASA Astrophysics Data System (ADS)

    Cloudsley-Thompson, J.

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these - such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  11. Thermal and water relations of desert beetles.

    PubMed

    Cloudsley-Thompson, J L

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these--such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments. PMID:11771473

  12. Effects of Altered Temperature & Precipitation on Soil Bacterial & Microfaunal Communities as Mediated by Biological Soil Crusts

    SciTech Connect

    Neher, Deborah A.

    2004-08-31

    With increased temperatures in our original pot study we observed a decline in lichen/moss crust cover and with that a decline in carbon and nitrogen fixation, and thus a probable decline of C and N input into crusts and soils. Soil bacteria and fauna were affected negatively by increased temperature in both light and dark crusts, and with movement from cool to hot and hot to hotter desert climates. Crust microbial biomass and relative abundance of diazotrophs was reduced greatly after one year, even in pots that were not moved from their original location, although no change in diazotroph community structure was observed. Populations of soil fauna moved from cool to hot deserts were affected more negatively than those moved from hot to hotter deserts.

  13. What Makes a Desert a Desert?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Presents background information and activities which focus on definition of a desert, locations of deserts, and factors influencing locations. Activities include objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. Two ready-to-copy pages with desert landforms and temperature/rainfall data are…

  14. Desert pavements and associated rock varnish in the Mojave Desert: How old can they be?

    NASA Astrophysics Data System (ADS)

    Quade, Jay

    2001-09-01

    Desert pavements are common features of arid landscapes and have been widely used as a relative age indicator of the geomorphic surfaces upon which they are developed. In this study I examined the patterns of pavement development as a function of elevation in the Mojave Desert as well as the causes for the gradual disappearance of pavement at high elevations. Pavement density, as measured by percentage of pebble coverage, decreases systematically with elevation gain by ˜3% per 100 m, from 95% coverage below 500 m to less than 60% at 1700 m. Plants appear to be the main agent of pavement disruption; plant density decreases as pavement density increases. Burrowing by rodents and crusting by cryptobiota also disrupt pavement development at higher elevation. During the last glacial maximum, plant communities were displaced 1000 1400 m downward in the Mojave Desert. Pavements today generally do not survive above the blackbush (Coleogyne ramossisma)-sagebrush (Artemisia tridentata) zone. Evidence from packrat middens shows that these and other plants typical of high elevations today grew as low as 300 400 m during the last glacial maximum. I suggest that during the last glacial maximum, desert pavements were confined to the lowest alluvial fans of Death Valley and adjoining low valleys. No alluvial desert pavements above ˜400 m in the region are older than the latest Pleistocene. By the same reasoning, desert varnish on desert pavements above 400 m may all be Holocene in age, except where developed on stable boulders.

  15. Fog Bank, Namib Desert, Namibia, Africa

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Fog is the only source of moisture for desert dwelling animals and plants living in the Namib Desert sand dune field, Namibia (23.5N, 15.0E). Coastal stratus clouds provide most of the life supporting moisture as fog droplets in this arid land where the usual annual rainfall is less than a quarter of an inch for decades at a time. In this view, the stratus clouds over the coast conform to the dune pattern proving that the fog is in ground contact.

  16. Nationwide Desert Highway Assessment: A Case Study in China

    PubMed Central

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-01-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert’s comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection. PMID:21845155

  17. The Oceanic Crust.

    ERIC Educational Resources Information Center

    Francheteau, Jean

    1983-01-01

    The earth's oceanic crust is created and destroyed in a flow outward from midocean ridges to subduction zones, where it plunges back into the mantle. The nature and dynamics of the crust, instrumentation used in investigations of this earth feature, and research efforts/findings are discussed. (JN)

  18. Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA

    USGS Publications Warehouse

    Belnap, Jayne; Miller, David M.; Bedford, David R.; Phillips, Susan L.

    2014-01-01

    Biological soil crusts (biocrusts) are ubiquitous in drylands globally. Lichens and mosses are essential biocrust components and provide a variety of ecosystem services, making their conservation and management of interest. Accordingly, understanding what factors are correlated with their distribution is important to land managers. We hypothesized that cover would be related to geologic and pedologic factors. We sampled 32 sites throughout the eastern Mojave Desert, stratifying by parent material and the age of the geomorphic surfaces. The cover of lichens and mosses on ‘available ground’ (L + Mav; available ground excludes ground covered by rocks or plant stems) was higher on limestone and quartzite-derived soils than granite-derived soils. Cover was also higher on moderately younger-aged geomorphic surfaces (Qya2, Qya3, Qya4) and cutbanks than on very young (Qya1), older-aged surfaces (Qia1, Qia2), or soils associated with coppice mounds or animal burrowing under Larrea tridentata. When all sites and parent materials were combined, soil texture was the most important factor predicting the occurrence of L + Mav, with cover positively associated with higher silt, very fine sand, and fine sand fractions and negatively associated with the very coarse sand fraction. When parent materials were examined separately, nutrients such as available potassium, iron, and calcium became the most important predictors of L + Mav cover.

  19. Sands-on Learning.

    ERIC Educational Resources Information Center

    Vandervoort, Frances S.

    1989-01-01

    Provides information for the development of a lesson which teaches students about sand, discusses facts about sands, sand studies, life in the sands, and sand activities. Includes diagrams showing the range in sand grain shape, formation of sand ripples, and sand samples from around the world. (RT)

  20. Lateral migration of linear dunes in the Strzelecki Desert, Australia

    USGS Publications Warehouse

    Rubin, D.M.

    1990-01-01

    Preferential accumulation of sand on east-facing flanks indicates that the dunes migrated eastward several metres during the Holocene. Moreover, the west-facing flanks of some dunes have experienced a minimum of tens of metres of erosion. This asymmetric erosion and deposition were caused by dune obliquity and lateral migration that may have begun as early as the Pleistocene. Dunes in the Strzelecki Desert and in the adjacent Simpson Desert display a variety of grossly different internal structures. -from Author

  1. Morphodynamics of Planetary Deserts: A Laboratory Approach

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Courrech Du Pont, S.; Rodriguez, S.

    2014-12-01

    Earth deserts show a rich variety of dune shapes from transverse to barchan, star and linear dunes depending on the history of wind regimes (strength and variability) and sand availability [1]. In desert, exposed to one wind direction, dunes perpendicular to the wind direction are found to be transverse or barchans, only sand availability plays a key role on their formation and evolution. However, the evolution time scale of such structures (several years) limits our investigation of their morphodynamics understanding. We use here, a laboratory experiment able to considerably reduce space and time scales by reproducing millimeter to centimeter subaqueous dunes by controlling environmental parameters such as type of wind (multi-winds, bimodal, quasi-bimodal or unidirectional wind) and amount of sediment [2,3]. This set up allows us to characterize more precisely the different modes of dune formation and long-term evolution, and to constrain the physics behind the morphogenesis and dynamics of dunes. Indeed, the formation, evolution and transition between the different dune modes are better understood and quantified thanks to a new setting experiment able to give a remote sediment source in continuous (closer to what happens in terrestrial desert): a sand distributor that controls the input sand flow. Firstly, in a one wind direction conditions, we managed to follow and quantify the growth of the instability of transverse dunes that break into barchans when the sand supply is low and reversely when the sand supply is higher, barchan fields evolve to bars dunes ending to form transverse. The next step will be to perform experiments under two winds conditions in order to better constrain the formation mode of linear dunes, depending also only on the input sand flux. Previous experiments shown that linear "finger" dunes can be triggered by the break of transverse dunes and then the elongating of one barchan's arm [4]. These studies can farther explain more precisely in

  2. Chemical characteristics of aerosol particles (PM2.5) at a site of Horqin Sand-land in northeast China.

    PubMed

    Shen, Zhen-xing; Cao, Jun-ji; Li, Xu-xiang; Wang, Ya-qiang; Jie, Dong-mei; Zhang, Xiao-ye

    2006-01-01

    The objective of this study was to characterize the mass concentration and chemical composition of aerosol particles (PM2.5) collected at Tongliao (Inner Mongolia Autonomous Region, China), a site in Horqin Sand-land in northeast China. During spring 2005, the mass concentration for PM2.5 was (126 +/- 71)microg/m3 in average. Five dust storm events were monitored with higher concentration of (255 +/- 77)microg/m3 in average than the non dusty days of (106 +/- 44)microg/m3. Concentrations for 20 elements were obtained by the PIXE method. Mass concentrations of Al, Mg, Si, K, Ca, Ti, Mn, and V, which increased with the PM2.5 concentration, were higher than the pollution elements (S, Cl, Zn, Ar, Se, Br, and Pb). Enrichment factor relative to crust material was also calculated, which showed dust trace elements were mainly from earth upper crust and pollution elements were dominated the anthropogenic aerosols. The Si/Al, Ca/Al, and Fe/Al ratios in PM2.5 samples at Tongliao were 4.07, 0.94, and 0.82, respectively, which were remarkably different with those on other source regions, such as "Western desert source region", "North desert source region" and central Asia source. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongliao, but have the similar elemental ratios, implying that elemental signatures for dust aerosol from Horqin Sand-land were different with other regions. PMID:17078548

  3. Post-Glacial Ant Generated Desert Pavements in Southeastern Oregon

    NASA Astrophysics Data System (ADS)

    Leonard, K. C.

    2001-12-01

    Desert pavements typically require thousands to tens of thousands of years to reach a high level of development. In a pluvial lake valley in Southeastern Oregon I have observed harvester ants creating desert pavement-like features in less than two months. The summer lake basin is a fairly simple sedimentary system. In the eastern half of the basin, the basaltic bedrock is buried under tens of meters of alluvial deposits which lie beneath an approximately ten meter thick dune sheet. The dune sands are noticably different in grainsize and chemistry than the fine component of the alluvial deposits. The dunes began to form at the end of the last pluvial interval (Allison 1980) and continue to be active today. Roughly one fourth of the total area of the dune sheet is mantled with desert pavement, consisting of very coarse sand and fine pebbles (1-8 mm diameter). The dune sand is very fine grained with a considerable amount of silt and minimal clay. It forms thin (2-20 cm thick) well developed Av horizons beneath the desert pavement. Owyhee harvester ants (Pogonomyrmex owyheei) in the area use pebbles of the same size and petrology as the desert pavements to construct their hills. For the ants the closest source of these pebbles is often the alluvium, ten meters below the anthill, rather than in a desert pavement deposit at some distance away overland. An experiment conducted between June and August 1999 demonstrated that the ants rebuild their hills with newly excavated pebbles. When the colonies die off after 5-25 years, the pebbles are stranded at the surface. Processes such as those described by Haff and Werner (1996), where jackrabbits and birds were observed kicking desert pavement clasts aross the ground serve to redistribute the pebbles across the surface of the sand dunes. The sand dunes have been forming over an 8000 year period. Based on anthill-regrowth measurements, the lifespan of an individual colony of harvester ants leads to the excavation of only enough

  4. Desert Voices: Southwestern Children's Literature.

    ERIC Educational Resources Information Center

    Polette, Keith

    1997-01-01

    Examines three books with different ways of writing about the desert. Discusses: "Here Is the Southwestern Desert" by Madeline Dunphy, "The Desert Is My Mother" by Pat Mora, and "The Desert Mermaid" by Alberto Blanco. (PA)

  5. The dual role of soil crusts in desertification

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Thompson, S. E.; Chen, L.; Svoray, T.; Sela, S.; Katul, G. G.

    2015-10-01

    Vegetation cover in dry regions is a key variable in determining desertification. Soils exposed to rainfall by desertification can form physical crusts that reduce infiltration, exacerbating water stress on the remaining vegetation. Paradoxically, field studies show that crust removal is associated with plant mortality in desert systems, while artificial biological crusts can improve plant regeneration. Here it is shown how physical crusts can act as either drivers of or buffers against desertification depending on their environmental context. The behavior of crusts is first explored using a simplified theory for water movement on a uniform, partly vegetated slope subject to stationary hydrologic conditions. Numerical model runs supplemented with field data from a semiarid Long-Term Ecological Research site are then applied to represent more realistic environmental conditions. When vegetation cover is significant, crusts can drive desertification, but this process is potentially self-limiting. For low vegetation cover, crusts mitigate against desertification by providing water subsidy to plant communities through a runoff-runon mechanism.

  6. The influence of biological soil crusts on mineral uptake by associated vascular plants

    USGS Publications Warehouse

    Harper, K.T.; Belnap, Jayne

    2001-01-01

    Soil surfaces dominated by cyanobacteria and cyanolichens (such as Collema sp.) are widespread in deserts of the world. The influence of these biological soil crusts on the uptake of bioessential elements is reported for the first time for six seed plants of the deserts of Utah. This sample almost doubles the number of species for which the influence of biological soil crusts on mineral uptake of associated vascular plants is known. These new case studies, and others previously published, demonstrate that cyanobacterial or cyanobacteria- Collema crusts significantly alter uptake by plants of many bioessential elements. In studies now available, these crusts always increase the N content of associated seed plants. Uptake of Cu, K, Mg, and Zn is usually (>70% of reported cases) increased in the presence of the biological soil crusts. Soil crusts are generally negatively associated with Fe and P levels in associated seed plant tissue, while plant tissue levels of Ca, Mn, and Na are positively as often as negatively associated with the presence of soil crusts. Increases in bioessential elements in vascular plant tissue from biologically-crusted areas are greatest for short-lived herbs that are rooted primarily within the surface soil, the horizon most influenced by crustal organisms. The mineral content of a deeply rooted shrub (Coleogyne ramosissima) was less influenced by co-occurrence of biological soil crusts.

  7. The meaning of desert color in earth orbital photographs

    NASA Technical Reports Server (NTRS)

    El-Baz, F.

    1978-01-01

    The color of desert surfaces as seen in earth orbital photographs is indicative of soil composition. Apollo-Soyuz photographs of the Sturt and Simpson Deserts of Australia confirm that sand grains become redder as the distance from the source increases. Reddening is caused by a thin iron-oxide coating on individual sand grains and can be used, in some cases, to map relative-age zones. Photographs of the Western (Libyan) Desert of Egypt indicate three distinct and nearly parallel color zones that have been correlated in the field with: (1) arable soil composed of quartz, clay, and calcium carbonate particles; (2) relatively active sand with or without sparse vegetation; and (3) relatively inactive sand mixed with dark (desert-varnished) pebbles. The youngest sands are in the form of longitudinal dunes, which are migrating to the south-southeast along the prevailing wind direction. Some of the young dune fields are encroaching on the western boundary of the fertile Nile Valley.

  8. Tar sands

    SciTech Connect

    Wennekers, J.H.N.

    1981-10-01

    The four largest oil sand deposits contain over 90% of the world's known heavy oil. The total heavy oil and bitumen in place, estimated at nearly 6 trillion barrels is almost entirely concentrated in western Canada, principally Alberta, and eastern Venezuela. The known tar sand resource in the United States consists of about 550 occurrences located in 22 states. The total oil in place in 39 of these occurrences is estimated to be between 23.7 billion and 32.7 billion barrels. At least 90% of this resource is located in Utah. Other significant deposits are in Texas, New Mexico, California, and Kentucky. Bituminous sand deposits and petroleum-impregnated rocks are found in Malagasy, Albania, Rumania, the USSR, and Trinidad. 4 figures, 2 tables. (DP)

  9. Spatial and temporal variations of blowing dust events in the Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; Shen, Shuanghe; Yang, Fan; He, Qing; Ali, Mamtimin; Huo, Wen; Liu, Xinchun

    2016-08-01

    The Taklimakan Desert is the source of most blowing dust events in China. However, previous studies of sandstorms in this region have not included data from the inner desert because of the difficulty in making observations in this area. In this study, the spatial and temporal variations of blowing dust events, including sandstorms and blowing sand, and its relations with climatic parameters in the Taklimakan Desert were analyzed using data from ten desert-edge meteorological stations during 1961 to 2010 and two inner-desert meteorological stations during 1988 to 1990, 1996 to 2010, and 1992 to 2010. The results identified two regions (Pishan-Hotan-Minfeng and Xiaotang-Tazhong) where blowing dust events occur on average more than 80 days per year. The regions with the highest occurrence of sandstorms, blowing sand, and blowing dust events were different, with sandstorms centered in the north of the desert (Xiaotang, 46.9 days), whereas the central location for blowing sand (Pishan, 86.4 days) and blowing dust events (Minfeng, 113.5 days) activity was located at the southwestern and southern edges of the desert, respectively. The occurrence of sandstorms generally decreased from 1961 to 2010, while the occurrence of blowing sand increased from 1961 to 1979 and then generally decreased. The temporal variation of blowing dust events was mainly affected by the occurrence of strong wind and daily temperature, with average correlation coefficients of 0.46 and -0.41 for these variables across the whole desert.

  10. MONITORING WYOMING'S RED DESERT WATERSHEDS USING VERY-LARGE SCALE AERIAL PHOTOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming's Red Desert is "One of America's most extraordinary empty places. ... thousands of square miles spread out across sage (brush)-covered hills, sand dunes and canyons" (Frank Clifford, Los Angeles Times). To the BLM, the Red Desert is 15 million acres of public rangeland to be assessed, monit...

  11. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  12. Corium crust strength measurements.

    SciTech Connect

    Lomperski, S.; Nuclear Engineering Division

    2009-11-01

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  13. Raindrop induced crust formation

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Józsa, Sándor; Németh, Tibor; Kovács, Ivett; Szalai, Zoltán

    2016-04-01

    Rainfall simulators are wildly used to study soil erosion because all parts of the erosion process can be simulated with them. Small-scale laboratory rainfall simulator was used to examine the detachment phase of the erosion and study the redistribution trend of the organic and mineral components of the soil. Splash erosion often creates crust on the soil surface that decreases porosity and infiltration. Crusts have crucial role in physical soil degradation processes, erosion and crop production fall. Intensive rainfall on a recently tilled Regosol and a Cambisol plots detached the aggregates and the occurred runoff scattered the individual particles on the surface. Oriented thin sections from the various morphological types of surface crusts were made similar as a thin section from any rock but during the preparation the samples were saturated often with dilute two-component adhesive to solidify the soil to preserve the crust. Raman spectroscopy and XRD analysis measurements are in progress in order to identify spatial changes in organic matter and mineralogical composition among the crust layers. Preliminary results suggest the separation of the mineral and organic soil components. The lighter organic matter seems to be enriched in the soil loss while the heavier minerals are deposited and stratified in the deeper micromorphological positions of the surface. The understanding of this selectivity is necessary in soil loss estimation.

  14. Strange Quark Star Crusts

    SciTech Connect

    Steiner, Andrew W.

    2007-02-27

    If strange quark matter is absolutely stable, some neutron stars may be strange quark stars. Strange quark stars are usually assumed to have a simple liquid surface. We show that if the surface tension of droplets of quark matter in the vacuum is sufficiently small, droplets of quark matter on the surface of a strange quark star may form a solid crust on top of the strange quark star. This solid crust can significantly modify the predictions for the photon emission for the surface in an observable way.

  15. Defrosting Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    19 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark spots formed in carbon dioxide frost that covers the surfaces of patches of sand in the south polar region. As spring arrived this year in the martian southern hemisphere, so began the annual defrosting process. The fact that sand dunes begin to defrost earlier than other surfaces, and that the defrosting process involves the formation of spots like these, has been known since the earliest days of the MGS mission.

    Location near: 66.8oS, 15.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  16. Deserts: Information and Hands-On Activities. Interactive Geography Kit.

    ERIC Educational Resources Information Center

    Bernard, Robin

    This book is designed to introduce students to a variety of fascinating desert ecosystems through a series of learning activities including games, graphs, experiments, and crafts. Each section contains an information section along with student activities and worksheets. The section topics are sand, scorpions, and snow; scenic sculpture; desert…

  17. Trajectories of saltating sand particles behind a porous fence

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo

    2015-01-01

    Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.

  18. Investigation of the sand sea with the tallest dunes on Earth: China's Badain Jaran Sand Sea

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Qian, Guangqiang; Lv, Ping; Hu, Guangyin

    2013-05-01

    China's Badain Jaran Sand Sea features the tallest dunes on Earth and a unique mega-dune-lake landscape. It had been explored little until the 1990s, though early scientific explorations surrounding the sand sea had begun by the early 20th century. Heated debates now focus on the desert environment, and particularly how the mega-dunes and desert lakes develop and evolve. This paper reviews the status of these debates and summarizes the supporting evidences. The environmental research mainly concerns formation and evolution of the sand sea, and its relationship with climate change. The proposed formation time ranges from the Early Pleistocene to the Holocene. Opinions vary about climate change on different time scales. The reconstructed climate change history is shorter than the sand sea's history, with the longest record extending to the Late Pleistocene. The mega-dune research focuses on sediments, dune morphology, and formation processes. It remains unclear whether the mega-dunes result primarily from wind action, control by the underlying topography, or groundwater maintenance. The sources of lake water are also debated, but there are four main hypotheses: atmospheric precipitation, groundwater from nearby areas, precipitation and snowmelt in remote areas such as the Qilian Mountains and the Qinghai-Tibetan Plateau, or paleowater that formed during past periods of wet climate. We believe that the sand sea deserves further study in terms of its dune geomorphology, evolution, and hydrology, and their responses to climate change. Meteorological and hydrological observations and monitoring in the sand sea are particularly necessary.

  19. Threshold velocities for input of soil particles into the air by desert soils

    SciTech Connect

    Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R.

    1980-10-20

    Desert soils mostly from the Mojave Desert were tested for threshold friction velocity (the friction velocity above which soil erosion takes place) with an open-bottomed portable wind tunnel. Several geomorphological settings were chosen to be representative of much of the surface of the Mojave Desert, for example, playas, alluvial fans, and aeolian features. Variables which increase threshold velocity are decreasing proportion of sand, increasing size of dry aggregates of the soil, and increasing fraction of the soil mass larger than 1 mm. Threshold velocity increases with different types of soil surfaces in the following order: disturbed soils (except disturbed heavy clay soils), sand dunes, alluvial and aeolian sand deposits, disturbed playa soils, skirts of playas, playa centers, and desert pavement (alluvial deposits). 21 references, 5 figures, 6 tables.

  20. Earthquakes in Stable Continental Crust.

    ERIC Educational Resources Information Center

    Johnston, Arch C.; Kanter, Lisa R.

    1990-01-01

    Discussed are some of the reasons for earthquakes which occur in stable crust away from familiar zones at the ends of tectonic plates. Crust stability and the reactivation of old faults are described using examples from India and Australia. (CW)

  1. Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: Implications for land management

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Herrick, J.E.; Johansen, J.R.

    2007-01-01

    Recently disturbed and 'control' (i.e. less recently disturbed) soils in the Mojave Desert were compared for their vulnerability to wind erosion, using a wind tunnel, before and after being experimentally trampled. Before trampling, control sites had greater cyanobacterial biomass, soil surface stability, threshold friction velocities (TFV, i.e. the wind speed required to move soil particles), and sediment yield than sites that had been more recently disturbed by military manoeuvres. After trampling, all sites showed a large drop in TFVs and a concomitant increase in sediment yield. Simple correlation analyses showed that the decline in TFVs and the rise in sediment yield were significantly related to cyanobacterial biomass (as indicated by soil chlorophyll a). However, chlorophyll a amounts were very low compared to chlorophyll a amounts found at cooler desert sites, where chlorophyll a is often the most important factor in determining TFV and sediment yield. Multiple regression analyses showed that other factors at Fort Irwin were more important than cyanobacterial biomass in determining the overall site susceptibility to wind erosion. These factors included soil texture (especially the fine, medium and coarse sand fractions), rock cover, and the inherent stability of the soil (as indicated by subsurface soil stability tests). Thus, our results indicate that there is a threshold of biomass below which cyanobacterial crusts are not the dominant factor in soil vulnerability to wind erosion. Most undisturbed soil surfaces in the Mojave Desert region produce very little sediment, but even moderate disturbance increases soil loss from these sites. Because current weathering rates and dust inputs are very low, soil formation rates are low as well. Therefore, soil loss in this region is likely to have long-term effects.

  2. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China

    NASA Astrophysics Data System (ADS)

    Hu, Fangen; Yang, Xiaoping

    2016-01-01

    Identifying provenance of aeolian deposits in the mid-latitude deserts of Asia is essential for understanding formation and changes of Earth surface processes due to palaeoclimatic fluctuations. While some earlier studies focused on the interpretation of palaeoenvironments on the basis of aeolian deposits mainly in the desert margins and inter-dune lacustrine sediments, research on provenance of desert sands in the vast Asian mid-latitude deserts is still rare. In this paper, we present new geochemical data which provide insight to the provenance of dune sands in the Badain Jaran Desert, northwestern China, an important part of this desert belt. We sampled aeolian and lacustrine sediments in various parts of the Badain Jaran Desert, and examined their major, trace and rare earth elements (REE) in bulk samples, coarse and fine fractions, respectively. In addition, we took and analyzed samples from a rarely known dune field with red sands, northeast of the Badain Jaran. Our results show that the sands from the Badain Jaran Desert are generally different from those in the red sand dune field in terms of REE pattern and geochemical characteristics, suggesting different sediment origins. Geochemical composition of the aeolian sand samples indicates these sediments should be mainly derived from mixed source rocks of granite, granitoids and granodiorite. Comparing the immobile trace elements and REE ratios of the samples from the Badain Jaran Desert, red sand dune field with rocks of granite, granitoids in their potential source areas, we conclude that: (1) The aeolian deposits in the Badain Jaran Desert are predominantly derived from the Qilian Mountains, northeastern Tibetan Plateau initially via fluvial processes; (2) The Altay Mountains and Mongolian Gobi are the ultimate source areas for the red sand dune field; (3) The Altai Mountains and Mongolian Gobi in the northwest, that could produce massive amounts of materials via intensive deflation and alluvial process

  3. Water repellency and infiltration of biological soil crusts on an arid and a temperate dunes

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Yair, Aaron; Geppert, Helmut; Veste, Maik

    2014-05-01

    properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: a comparison between an arid and a temperate site. Catena 110:155-160 Breckle, S.-W, Yair, A., Veste, M. (eds.), Arid Dune Ecosystems - The Nizzana Sands in the Negev Desert, Ecological Studies 200, Springer, Berlin Heidelberg New York.

  4. Geometeorological data collected by the USGS Desert Winds Project at Desert Wells, Sonoran Desert, central-west Arizona, 1981 - 1996

    USGS Publications Warehouse

    Helm, Paula J.; Breed, Carol S.; Tigges, Richard; Creighton, Shawn

    1998-01-01

    The data in this report were obtained by instruments deployed on a GOES-satellite data collection station operated by the U.S. Geological Survey Desert Winds Project at Desert Wells (latitude 33° 42' 08" N, longitude 113° 48' 40" W), La Paz County, west-central Arizona. The elevation is 344 m (1,130 ft). From January 9, 1981 through May 31, 1995 the station recorded eight parameters: wind direction, wind speed, peak gust, air temperature, precipitation, humidity, barometric pressure, and soil temperature. On June 1, 1995, the station was upgraded by adding a SENSIT sand-flux sensor, which records grain impacts concurrently with wind speed and wind direction measurements. Included with the data is descriptive text on the geology, soils, climate, vegetation, and land use at the site, as well as text on data format, date retrieval software and instructions, and metadata

  5. Dust emissions from undisturbed and disturbed, crusted playa surfaces: cattle trampling effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry playa lake beds can be significant sources of fine dust emission. This study used a portable field wind tunnel to quantify the PM10 emissions from a bare, fine-textured playa surface located in the far northern Chihuahua Desert. The natural, undisturbed crust and its subjection to two levels of ...

  6. Searching for Life in Death Valley (and Other Deserts) - Microchemical Investigations on Desert Varnish

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Al-Amri, A. M.; Jochum, K. P.; Kappl, M.; Kilcoyne, A. D.; Macholdt, D.; Müller, M.; Pöhlker, C.; Weber, B.; Weigand, M.

    2014-12-01

    Desert varnishes are thin, shiny, blackish to brown coatings frequently found on the surfaces of exposed rocks in deserts around the globe. They have been proposed as terrestrial analogues of superficial hematite enrichments observed on Mars. While the first scientific studies of such varnishes go back to Darwin and von Humboldt, and intensive studies by a variety of techniques have been conducted over the last few decades, their origin is still a matter of debate. Microscopic and molecular studies have shown the presence of fungi and bacteria, but it is still unclear whether they are involved in the formation of the varnish material or just opportunistic colonizers on available surfaces. We have analysed samples of desert varnish from sites in Death Valley, the Mojave Desert, the Negev of Israel, Central Saudi Arabia, and the Succulent Karoo by a variety of microanalytical techniques. Measurements by UV-femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry show enrichments of manganese, iron, barium and other elements. Isotopic and trace chemical signatures show that these enriched elements cannot originate from the rocks that form the substrate on which the crusts have been deposited, but most likely are the result of (bio?)chemical transformation of windblown material. For a more detailed investigation of the internal structure of the crusts, we prepared ultra-thin sections (~100 nm) using focused ion beam slicing and analysed them by Scanning Transmission X-ray Microscopy with Near-Edge X-ray Absorption Fine Structure spectroscopy (STXM-NEXAFS). This technique revealed layered or chaotic structures consisting of alternating Mn and Fe-rich zones. Some of these layers are enriched in organic carbon with spectral features dominated by aromatic and carboxylate functionalities, indicating a biological origin of some of the crust material. Some crusts also show cavities that are lined with similar organic material. Since the age of these crusts is

  7. Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; van Pelt, R.; Fredrickson, E. L.

    2009-12-01

    Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the dust emissions from a bare, fine-textured playa surface located in the Chihuahua Desert at the Jornada Experimental Range, near Las Cruces, New Mexico, USA. We tested natural, undisturbed crusted surfaces and surfaces that had been subjected to two levels of domestic animal disturbance. The animal disturbance was provided by trampling produced from one and ten passes along the length of the wind tunnel by a 630 kg Angus-Hereford cross cow. The trampling broke the durable crust and created loose erodible material. Each treatment (natural crust, one pass, and ten passes) was replicated three times. A push-type wind tunnel with a 6 m long, 0.5 m wide, and 1 m high test section was used to generate dust emissions under controlled conditions. Clean medium sand was dropped onto the playa surface to act as an abrader material. The tunnel wind speed was equivalent to 15 m/s at a height of 2 m over a smooth soil surface. The tunnel was initially run for ten minutes, with no abrader added. A second 30 minute run was subsequently sampled as abrader was added to the wind stream. Dust and saltating material were collected using an isokinetic slot sampler at the end of the tunnel. Total airborne dust was collected on two 25 cm x 20 cm glass fiber filters (GFF) and measured using a GRIMM particle monitor every 6 sec throughout each test run. Disturbance by trampling generated increased saltating material and airborne dust. The amount of saltating material measured during the initial (no abrader added) run was approximately 70% greater and 5.8 times the amount of saltating material measured on the one pass and ten pass plots, respectively, compared with that observed on the undisturbed

  8. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2011-01-01

    Domestic production of industrial sand and gravel in 2010 was about 26.5 Mt (29.2 million st), a 6-percent increased from 2009. Certain end uses of industrial sand and gravel, such as sand for container glass, golf course sand, recreational sand, specialty glass and water filtration, showed increased demand in 2010.

  9. [Nitrification of biological soil crusts and soil system during drought process and its response to temperature and moisture: A case study in the Shapotou region, Northwest China].

    PubMed

    Xu, Bing-xin; Chen, Yong-le; Hu, Yi-gang; Zhang, Zhi-shan; Li, Gang; Li, Meng-ru; Chen, Dong

    2015-04-01

    Two types of soil covered by biological soil crusts (BSCs) , i.e. moss and algae, and moving sand in the natural vegetation area at the southeast fringe of the Tengger Desert were collected intactly. They were incubated continuously for 20 days under two different temperatures (15 degrees C and 25 degrees C) and moistures (10% and 25%) condition in the laboratory, and soil NO3(-)-N contents were measured after 1, 2, 5, 8, 12, 20 days of incubation and net nitrification rate was evaluated during dehydration. The results showed that NO3(-)-N content of the moss-covered soil (2.29 mg x kg(-1)) was higher than that of the algae-covered soil (1.84 mg x kg(-1)) and sand (1.59 mg x kg(-1)). Net nitrification rate of the three soil types ranged from -3.47 to 2.97 mg x kg(-1) x d(-1). For the moss-covered soil and algae-covered soil at 10% and 25% moisture levels, the net nitrification rates at 15 degrees C were 75.1%, 0.7% and 99.1%, 21.3% higher than those at 25 degrees C, respectively. Also, the net nitrification rates at 15 degrees C and 10% moisture levels were 193.4% and 107.3% higher than those at 25 degrees C and 25% moisture levels, respectively. The results suggested that regardless of soil moisture increasing or decreasing under the global warming senior, the net nitrification rate of BSCs-soil system in the desert would probably be limited to some extent during drought process. PMID:26288862

  10. Analysis of wind-blown sand movement over transverse dunes.

    PubMed

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-01-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372

  11. Analysis of Wind-blown Sand Movement over Transverse Dunes

    PubMed Central

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-01-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372

  12. Analysis of Wind-blown Sand Movement over Transverse Dunes

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  13. Reducing Sand Fly Numbers in Leishmania Endemic Regions in Kenya with Insecticide Treated Camouflage Screening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current US military operations in deserts face persistent threats from sand flies that transmit human Leishmania. Methods to reduce the risk of human infection from leishmaniasis by reducing the number of sand fly vectors were investigated in Kenya. Bifenthrin treated and un-treated camouflage netti...

  14. Desert Storm environmental effects

    NASA Astrophysics Data System (ADS)

    Kimball, E. W.

    It is noted that after more than six months of operation of the Patriot launch station in the Saudi Arabian desert no problems that were attributed to high temperature occurred. The environmental anomalies that did occur were cosmetic in nature and related to dust and salt fog. It was concluded that the Desert Storm environmental effects were typical of worldwide hot, dry climates.

  15. Animals of the Desert.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information and student activities on how desert animals have adapted to dryness and heat, how and when animals move on the desert, and nocturnal/diurnal animals. Each activity includes objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. Ready-to-copy pages are included for a…

  16. People and Deserts.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on ways people affect deserts and ways deserts affect people; (2) student activities on this topic; and (3) ready-to-copy materials (culture match worksheet and causes worksheet). Each activity includes objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. (DH)

  17. Sand Diver

    NASA Astrophysics Data System (ADS)

    Scott, Alan J.

    2005-01-01

    A few years ago, I was preparing to teach a summer enrichment program for middle school students at the University of Wisconsin-Stout. With swimming on the minds of most kids during the summer, I thought buoyancy would be a fun topic to discuss. An interesting way to introduce this concept is by discussing the beer-drinking balloonist who, in a lawn chair, floated to 11,000 feet above Los Angeles in 1997. However, I needed a hands-on project and was not about to go purchase some lawn chairs to duplicate this experiment. A simple submersible called the "Sand Diver" was designed and is now used as a hands-on activity for my introductory physics course.

  18. Combating wind erosion of sandy soils and crop damage in the coastal deserts: Wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Genis, Arthur; Vulfson, Leonid; Ben-Asher, Jiftah

    2013-06-01

    In the western Negev desert of Israel frequent sandstorms cause heavy damage to young lettuce, carrot, peanut and potato plants during the planting season. The damage of plants is based mainly on the mechanical impact of saltating sand particles, which causes irreversible injuries to the plant leaves. Current agro-technique measures taken to prevent wind damage to crop in Israel are based on high frequency irrigation. Although the high-frequency irrigation helps bind soil particles together by forming a soil crust, it is associated with the large waste of water, which is not practical under the arid conditions. Application of polyacrylamide (PAM) as a chemical stabilizer has proved to be effective for prevention of soil erosion, saving irrigation water and a stable growth of plants in the early stages. Although the technique of PAM application is not yet used commercially in Israel, the preliminary studies suggested that it might have the potential to reduce the damage to the plant leaves by sandstorms, providing both environmental and agricultural benefits. In this study the effectiveness of PAM for preventing sandstorms in the western Negev was also investigated. Optimal concentration and volume of PAM solution per hectare of bare sandy soil were determined. For this purpose a wind tunnel was used to determine wind velocities of the first and continuous detachment of particles. The ability of PAM application to minimize the damage of plants by sandstorms was experimentally verified using image analysis tools.

  19. Sand resistance of sunscreens.

    PubMed

    Caswell, Michael; Wood, Caryl; Martinez, Alexa

    2012-01-01

    Like water resistance in sunscreens, sand resistance in sunscreens is the ability of the sunscreen to retain its effectiveness while undergoing sand treatment. The influence of the type of sand on the sand resistance of sunscreens has not been described. The sand resistance of a control standard sunscreen, P2, and data on three grades of Quickrete commercial grade sand, #1961, #1962, and #1152, are described. These sands represent a fine sand, a medium sand, and an all-purpose sand. Using the methodology described in the 2007 proposed amendment of the Final Monograph (1) with one exception, we obtained an SPF of 16.5 (1.6) for the control standard, compared to the expected SPF of 16.3 (3.4). After a five-minute treatment of sand #1961, #1962, or #1151, the SPF of the control standard was 18.3 (1.6), 18.4 (2.0), and 17.5 (2.2), respectively. Thus, all three sands exhibited a similar sand-resistance response. Thus, there was no significant difference in the average SPF with and without sand. The medium grade sand, Quickrete commercial grade #1962, was preferred for sand-resistance testing because the fine sand was difficult to remove from the subject's backs and the coarse sand was unpleasant to the subjects. PMID:23193889

  20. Variation of bee communities on a sand dune complex in the Great Basin: Implications for sand dune conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sand dunes across the Mojave and Great Basin Deserts house rich bee communities. The pollination services these bees provide can be vital in maintaining the diverse, and often endemic, dune flora. These dune environments, however, are threatened by intense off-highway vehicle (OHV) use. Conservati...

  1. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  2. [Crusted scabies: A review].

    PubMed

    Jouret, G; Bounemeur, R; Presle, A; Takin, R

    2016-04-01

    Crusted scabies is a rare and severe form of infestation by Sarcoptes scabies var. hominis. It is characterized by profuse hyperkeratosis containing over 4000 mites per gram of skin, with treatment being long and difficult. The condition is both direct and indirectly contagious. It has a central role in epidemic cycles of scabies, the incidence of which is on the rise in economically stable countries. Recent discoveries concerning the biology of mites, the pathophysiology of hyperkeratosis and the key role of IL-17 in this severe form open up new therapeutic perspectives. PMID:26948093

  3. Are Food Deserts Also Play Deserts?

    PubMed

    Cohen, Deborah A; Hunter, Gerald; Williamson, Stephanie; Dubowitz, Tamara

    2016-04-01

    Although food deserts are areas that lack easy access to food outlets and considered a barrier to a healthy diet and a healthy weight among residents, food deserts typically comprise older urban areas which may have many parks and street configurations that could facilitate more physical activity. However, other conditions may limit the use of available facilities in these areas. This paper assesses the use of parks in two Pittsburgh food desert neighborhoods by using systematic observation. We found that while the local parks were accessible, they were largely underutilized. We surveyed local residents and found that only a minority considered the parks unsafe for use during the day, but a substantial proportion suffered from health limitations that interfered with physical activity. Residents also felt that parks lacked programming and other amenities that could potentially draw more park users. Parks programming and equipment in food desert areas should be addressed to account for local preferences and adjusted to meet the needs and limitations of local residents, especially seniors. PMID:27033184

  4. Sand, Syrup and Supervolcanoes

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Jellinek, M.; Stix, J.

    2006-12-01

    Supervolcanic eruptions are amongst the most awesome events in the history of the Earth. A supervolcano can erupt thousands of cubic kilometers of ash devastating entire countries and changing the climate for decades. During the eruption, the magma chamber partially empties and collapses. As the chamber collapses at depth, a massive subsidence pit develops at the surface, called a caldera, some calderas can be the size of the entire San Francisco Bay Area. Fortunately, a supervolcano of this size has not erupted since the development of modern man. Due to the infrequency and massive scale of these eruptions, volcanologists do not yet fully understand how calderas form and how the eruption is affected by the roof collapse and vice versa. Therefore, simple analogue experiments are amongst the best ways to understand these eruptions. We present two of these experiments that can be fun, cheap, and helpful to high school and university instructors to demonstrate caldera formation. The first experiment illustrates how magma chamber roofs collapse to produce different style calderas, the second experiment demonstrates how the magma in the chamber affects the collapse style and magma mixing during a supervolcanic eruption. The collapse of a magma chamber can be demonstrated in a simple sandbox containing a buried balloon filled with air connected to a tube that leads out of the sandbox. At this small scale the buried balloon is a good analogue for a magma chamber and sand has an appropriate strength to represent the earths crust. Faults propagate through the sand in a similar way to faults propagating through the crust on a larger scale. To form a caldera just let the air erupt out of the balloon. This experiment can be used to investigate what controls the shape and structure of calderas. Different shaped balloons, and different burial depths all produce sand calderas with different sizes and structures. Additionally, experiments can be done that erupt only part of the

  5. Wind profiles on the stoss slope of sand dunes: Implications for eolian sand transport

    SciTech Connect

    Frank, A.; Kocurek, G. . Dept. of Geological Sciences)

    1993-04-01

    Starting with the work of R.A. Bagnold it has been recognized that the shear stress exerted by the wind on sand grains is the driving force for eolian sand transport. Calculation of accurate rates of sand transport is essential for prediction of migration rates of sand dunes in modern environments as well as reconstructing paleoclimates (wind speed and direction) from eolian deposits. Because a sand dune is a streamlined obstacle in the path of the wind, continuity necessitates that the flow field is compressed over the windward side of a dune and shear stress should progressively increase up the slope as the flow accelerates. However, airflow measurements over 14 dunes (at White Sands, New Mexico; Algodones, CA; and Padre Island, TX) show that compression of the flow field occurs very close to the surface and as a consequence, the overlying flow actually shows an overall decrease in shear stress up the slope. Measurements commonly collected in the overlying zone are not representative of the near-surface, sand-driving wind. Furthermore, near-surface compression of the flow field implies that a pressure gradient exists that would render the current transport models inappropriate for sloping surfaces that dominate natural sandy desert terrains.

  6. Mineral compositions and sources of the riverbed sediment in the desert channel of Yellow River.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2011-02-01

    The Yellow River flows through an extensive, aeolian desert area and extends from Xiaheyan, Ningxia Province, to Toudaoguai, Inner Mongolia Province, with a total length of 1,000 km. Due to the construction and operation of large reservoirs in the upstream of the Yellow River, most water and sediment from upstream were stored in these reservoirs, which leads to the declining flow in the desert channel that has no capability to scour large amount of input of desert sands from the desert regions. By analyzing and comparing the spatial distribution of weight percent of mineral compositions between sediment sources and riverbed sediment of the main tributaries and the desert channel of the Yellow River, we concluded that the coarse sediment deposited in the desert channel of the Yellow River were mostly controlled by the local sediment sources. The analyzed results of the Quartz-Feldspar-Mica (QFM) triangular diagram and the R-factor models of the coarse sediment in the Gansu reach and the desert channel of the Yellow River further confirm that the Ningxia Hedong desert and the Inner Mongolian Wulanbuhe and Kubuqi deserts are the main provenances of the coarse sediment in the desert channel of the Yellow River. Due to the higher fluidity of the fine sediment, they are mainly contributed by the local sediment sources and the tributaries that originated from the loess area of the upper reach of the Yellow River. PMID:20354782

  7. Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea.

    PubMed

    An, S; Sin, H H; DuBow, M S

    2015-05-01

    The transport of desert soil into the atmosphere during desert sandstorms can affect the Earth's climate and environmental health. Asian desert sandstorms occur almost every year during the Spring, as the atmosphere in the Northern hemisphere warms. It is conceivable that these Asian desert sandstorms may transport microbes from deserts, such as the Gobi and Taklamaken deserts, over long distances in China, east Asia and the Pacific. In this study, we examined local atmospheric sand particle-associated bacterial populations collected in the absence (sterile sand exposed for 24 h to the air in the absence of a sandstorm) and presence of sandstorms in five Asian cities. We used pyrosequencing of PCR-amplified 16S rDNA genes from sand-extracted total DNA to overcome cultivation limitations of bacterial enumeration. We found that >90% of the control and sandstorm sequences could be classified as representing bacteria belonging to four phyla: Proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. The sand-associated bacterial populations in sandstorm samples were distinct from sand-associated bacteria in the absence of a sandstorm. Members of the phylum Proteobacteria were found to significantly increase in sandstorm samples (P=0.01). Principal component analyses showed that the sand-associated bacterial populations were best clustered by sampling year, rather than location. DNA sequences representing bacteria belonging to several genera (including putative human pathogens) were observed to increase in sand-associated samples from sandstorms, whereas others were found to decrease, when comparing sand-associated bacterial populations versus those in control samples, suggesting human/environmental implications of sandstorm events. PMID:25388140

  8. Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea

    PubMed Central

    An, S; Sin, H H; DuBow, M S

    2015-01-01

    The transport of desert soil into the atmosphere during desert sandstorms can affect the Earth's climate and environmental health. Asian desert sandstorms occur almost every year during the Spring, as the atmosphere in the Northern hemisphere warms. It is conceivable that these Asian desert sandstorms may transport microbes from deserts, such as the Gobi and Taklamaken deserts, over long distances in China, east Asia and the Pacific. In this study, we examined local atmospheric sand particle-associated bacterial populations collected in the absence (sterile sand exposed for 24 h to the air in the absence of a sandstorm) and presence of sandstorms in five Asian cities. We used pyrosequencing of PCR-amplified 16S rDNA genes from sand-extracted total DNA to overcome cultivation limitations of bacterial enumeration. We found that >90% of the control and sandstorm sequences could be classified as representing bacteria belonging to four phyla: Proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. The sand-associated bacterial populations in sandstorm samples were distinct from sand-associated bacteria in the absence of a sandstorm. Members of the phylum Proteobacteria were found to significantly increase in sandstorm samples (P=0.01). Principal component analyses showed that the sand-associated bacterial populations were best clustered by sampling year, rather than location. DNA sequences representing bacteria belonging to several genera (including putative human pathogens) were observed to increase in sand-associated samples from sandstorms, whereas others were found to decrease, when comparing sand-associated bacterial populations versus those in control samples, suggesting human/environmental implications of sandstorm events. PMID:25388140

  9. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2012-01-01

    Domestic production of industrial sand and gravel in 2011 was about 30 Mt (33 million st), increasing slightly compared with 2010. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  10. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  11. What is Desert RATS?

    NASA Video Gallery

    The mission manager and test coordinators for the 2011 mission explain why Desert RATS was started 14 years ago, questions being studied in this year's activities, technologies being tested and the...

  12. Sudan challenges the sand dragon.

    PubMed

    Tinker, J

    1978-01-01

    Formerly productive areas have become wasteland as the desert advances in the Sudan. To understand how desertification is undermining the very survival of the Sahel, one ecosystem is reviewed in detail here: the gum arabic zone of Kordofan. After cotton, gum arabic is Sudan's largest export, worth from $14-26 million in recent years. In this zone the ecologically balanced cycle of gum gardens, fire, grain crops, and fallow is now breaking down; the 1968-1973 drought having in many areas delivered the final blow. Because of a growing population, the cultivation period is extended, and the soil becomes impoverished. Overgrazing in the fallow period, and the lopping of gum trees for firewood is producing a low return on the gum trees. Without this gum to harvest for cash, farmers must repeatedly replant their subsistence crops until the land becomes useless sand. The Sudanese have recognized the problem earlier than most, and a number of imaginative and practicable pilot projects are already in use: 1) waterpoint management; 2) construction of firebreaks; 3) land threatened by shifting dunes has been enclosed by stockproof fence and afforested with local trees; and 4) shelter belts have been planted around town perimeters where old gum tree stumps have started to sprout and the grass is reseeding itself. Out of these pilot projects, and with the advice of the U.N. Environment Program, the U.N. Development Program, and FAO, the Sudanese have developed a modest $26 million desert encroachment control and rehabilitation program (DECARP). PMID:12278008

  13. Wet sand flows better than dry sand

    NASA Astrophysics Data System (ADS)

    Wagner, Christian

    2015-03-01

    Wet sand that does not contain too much water is known to be stiff enough to build sand castles or in physical words has a significant yield stress. However, we could recently show that there are quite a few conditions under which such wet sand opposes less resistant to flow than its dry counterpart. This effect might have been already known to the old Egyptians: The Ancient painting of El Bersheh at the tomb of Tehutihetep shows that there was liquid poured in front of the sledge that was used to transport heavy weight stones and statues. While archeologist have attributed this to a sacral ceremony, our data clearly show that wetting the sand ground drastically decreases the effective sliding friction coefficient. We first study the stress-strain behavior of sand with and without small amounts of liquid under steady and oscillatory shear. Using a technique to quasistatically push the sand through a tube with an enforced parabolic (Poiseuille-like) profile, we minimize the effect of avalanches and shear localization. We observe that the resistance against deformation of the wet (partially saturated) sand is much smaller than that of the dry sand, and that the latter dissipates more energy under flow. Second we show experimentally that the sliding friction on sand is greatly reduced by the addition of some--but not too much--water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding.

  14. Dust emissions from undisturbed and disturbed, crusted playa surfaces: Cattle trampling effects

    NASA Astrophysics Data System (ADS)

    Baddock, Matthew C.; Zobeck, Ted M.; Van Pelt, R. Scott; Fredrickson, Ed L.

    2011-06-01

    Dry playa lake beds can be significant sources of fine dust emission. This study used a portable field wind tunnel to quantify the PM 10 emissions from a bare, fine-textured playa surface located in the far northern Chihuahua Desert. The natural, undisturbed crust and its subjection to two levels of animal disturbance (one and ten cow passes) were tested. The wind tunnel generated dust emissions under controlled conditions for firstly an initial blow-off of the surface, followed by two longer runs with sand added to the flow as an abrader material. Dust was measured using a GRIMM particle monitor. For the study playa, no significant differences in PM 10 concentration and emission flux were found between the untrampled surface and following a single animal pass. This was the case for both the initial blow-offs and tests on plots under a steady abrader rate. Significantly higher dust loading was only associated with the effect of 10 animal passes. In the blow-offs, the higher PM 10 yield after 10 passes reflected the greater availability of easily entrainable fine particles. Under abrasion, the effect of the heaviest trampling increased the emission flux by a third and abrasion efficiency by around 50% more than values on the untrampled surface. This enhanced abrasion efficiency persisted for a 30 min period under abrasion before the positive effect of the disturbance was no longer evident. The findings highlight the role of a threshold of disturbance that determines if supply-limited surfaces will exhibit enhanced wind erosion or not after undergoing perturbation.

  15. Influence of Disturbance on Soil Respiration in Biologically Crusted Soil during the Dry Season

    PubMed Central

    Feng, Wei; Zhang, Yu-qing; Wu, Bin; Zha, Tian-shan; Jia, Xin; Qin, Shu-gao; Shao, Chen-xi; Liu, Jia-bin; Lai, Zong-rui; Fa, Ke-yu

    2013-01-01

    Soil respiration (Rs) is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs) are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss), as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60–70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration. PMID:24453845

  16. Nelson's big horn sheep (Ovis canadensis nelsoni) trample Agassiz's desert tortoise (Gopherus agassizii) burrow at a California wind energy facility

    USGS Publications Warehouse

    Agha, Mickey; Delaney, David F.; Lovich, Jeffrey E.; Briggs, Jessica; Austin, Meaghan; Price, Steven J.

    2015-01-01

    Research on interactions between Agassiz's desert tortoises (Gopherus agassizii) and ungulates has focused exclusively on the effects of livestock grazing on tortoises and their habitat (Oldemeyer, 1994). For example, during a 1980 study in San Bernardino County, California, 164 desert tortoise burrows were assessed for vulnerability to trampling by domestic sheep (Ovis aries). Herds of grazing sheep damaged 10% and destroyed 4% of the burrows (Nicholson and Humphreys 1981). In addition, a juvenile desert tortoise was trapped and an adult male was blocked from entering a burrow due to trampling by domestic sheep. Another study found that domestic cattle (Bos taurus) trampled active desert tortoise burrows and vegetation surrounding burrows (Avery and Neibergs 1997). Trampling also has negative impacts on diversity of vegetation and intershrub soil crusts in the desert southwest (Webb and Stielstra 1979). Trampling of important food plants and overgrazing has the potential to create competition between desert tortoises and domestic livestock (Berry 1978; Coombs 1979; Webb and Stielstra 1979).

  17. Discussion. Cemented horizon in subarctic Alaskan sand dunes.

    USGS Publications Warehouse

    Galloway, J.P.; Koster, E.A.; Hamilton, T.D.

    1985-01-01

    Exception is taken to the conclusions (M.A. 84M/4465) concerning the distribution, age and origin of the cementing materials of carbonate crusts in the eaeolian sand deposits of the dune field in the central Kobuk Valley. (Following abstract)-M.S.

  18. Continental crust: a geophysical approach

    SciTech Connect

    Meissner, R.

    1986-01-01

    This book develops an integrated and balanced picture of present knowledge of the continental crust. Crust and lithosphere are first defined, and the formation of crusts as a general planetary phenomenon is described. The background and methods of geophysical studies of the earth's crust and the collection of related geophysical parameters are examined. Creep and friction experiments and the various methods of radiometric age dating are addressed, and geophysical and geological investigations of the crustal structure in various age provinces of the continents are studied. Specific tectonic structures such as rifts, continental margins, and geothermal areas are discussed. Finally, an attempt is made to give a comprehensive view of the evolution of the continental crust and to collect and develop arguments for crustal accretion and recycling. 647 references.

  19. Habitability Of Europa's Crust

    NASA Astrophysics Data System (ADS)

    Greenberg, R.; Tufts, B. R.; Geissler, P.; Hoppa, G.

    Physical characterization of Europa's crust shows it to be rich in potentially habitable niches, with several timescales for change that would allow stability for organisms to prosper and still require and drive evolution and adaptation. Studies of tectonics on Europa indicate that tidal stress causes much of the surface cracking, that cracks pen- etrate through to liquid water (so the ice must be thin), and that cracks continue to be worked by tidal stress. Thus a global ocean is (or was until recently) well linked to the surface. Daily tidal flow (period~days) transports substances up and down through the active cracks, mixing surface oxidants and fuels (cometary material) with the oceanic reservoir of endogenic and exogenic substances. Organisms moving with the flow or anchored to the walls could exploit the disequilibrium chemistry, and those within a few meters of the surface could photosynthesize. Cracks remain active for at least ~10,000 yr, but deactivate as nonsynchronous rotation moves them to different stress regimes in less than a million yr. Thus, to survive, organisms squeezed into the ocean must migrate to new cracks, and those frozen in place must hibernate. Most sites remelt and would release captive organisms within about a million yr based on the prevalence of chaotic terrain, which covers nearly half of Europa. Linkage of the ocean to the surface also could help sustain life in the ocean by delivering oxidants and fuels. Suboceanic volcanism (if any) could provide additional sites and support for life, but is not necessary. Recent results support this model. We further constrain the non-synchronous rotation rate, demonstrate the plausibility of episodic melt-through, show that characteristics of pits and uplift features do not imply thick ice, and demonstrate polar wander, i.e. that the ice crust is detached from the solid interior and has slipped as a unit relative to the spin axis. Thus Europa's biosphere (habitable if not inhabited) likely

  20. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion

    USGS Publications Warehouse

    Barger, N.N.; Herrick, J.E.; Van Zee, J.; Belnap, J.

    2006-01-01

    In this study, we conducted rainfall simulation experiments in a cool desert ecosystem to examine the role of biological soil crust disturbance and composition on dissolved and sediment C and N losses. We compared runoff and sediment C and N losses from intact late-successional dark cyanolichen crusts (intact) to both trampled dark crusts (trampled) and dark crusts where the top 1 cm of the soil surface was removed (scraped). In a second experiment, we compared C and N losses in runoff and sediments in early-successional light cyanobacterial crusts (light) to that of intact late-successional dark cyanolichen crusts (dark). A relatively high rainfall intensity of approximately 38 mm per 10-min period was used to ensure that at least some runoff was generated from all plots. Losses of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonium (NH 4+ ) were significantly higher from trampled plots as compared to scraped and intact plots. Sediment C and N losses, which made up more than 98% of total nutrient losses in all treatments, were more than 4-fold higher from trampled plots relative to intact plots (sediment C g/m2, intact = 0.74, trampled = 3.47; sediment N g/m2, intact = 0.06, trampled = 0.28). In light crusts, DOC loss was higher relative to dark crusts, but no differences were observed in dissolved N. Higher sediment loss in light crusts relative to dark crusts resulted in 5-fold higher loss of sediment-bound C and N. Total C flux (sediment + dissolved) was on the order of 0.9 and 7.9 g/m2 for dark and light crusts, respectively. Sediment N concentration in the first minutes after runoff from light crusts was 3-fold higher than the percent N of the top 1 cm of soil, suggesting that even short-term runoff events may have a high potential for N loss due to the movement of sediments highly enriched in N. Total N loss from dark crusts was an order of magnitude lower than light crusts (dark = 0.06 g N/m2, light = 0.63 g/m2). Overall, our

  1. Bioclogging and Biocementation in Construction of Water Pond in Sand

    NASA Astrophysics Data System (ADS)

    Chu, J.; Ivanov, V.; Stabnikov, V.; Li, B.

    2012-12-01

    Conventionally, compacted bentonite, geosynthetic clay liner or plastic liners are used to seal ponds, channels, and reservoirs in sand. Recently, a new approach to form a low permeability layer of several centimetres thick through the microbially induced calcium carbonate precipitation (MICP) process has been developed (Chu et al., 2012). This method has been adopted to build a laboratory scale water pond model in sand. Calcium solution for bioclogging and biocementation was supplied initially by spaying to form a layer of the clogged sand by precipitation in the pores and then by slow percolation from solution above sand surface, which formed a crust of calcite. This combination of bioclogging and biocementation formed a sand layer of 1 - 3 cm depth with low permeability. The permeability of sand after this treatment was reduced from the order of 10^-4 m/s to 10^-7 m/s when an average 2.1 kg of Ca per m^2 of sand surface was precipitated. The bending strengths of the walls and the base of the model pond were in the range of 90 to 256 kPa. The unconfined compressive strengths obtained from samples from the walls and the base were in the range of 215 to 932 kPa. The graded sand and uniform supply of calcium solution were used for the model pond construction but it was significant spatial three-dimensional heterogeneity of sand bioclogging and biocementation.

  2. Cyanobacterial community composition in Arctic soil crusts at different stages of development.

    PubMed

    Pushkareva, Ekaterina; Pessi, Igor S; Wilmotte, Annick; Elster, Josef

    2015-12-01

    Cyanobacterial diversity in soil crusts has been extensively studied in arid lands of temperate regions, particularly semi-arid steppes and warm deserts. Nevertheless, Arctic soil crusts have received far less attention than their temperate counterparts. Here, we describe the cyanobacterial communities from various types of soil crusts from Svalbard, High Arctic. Four soil crusts at different development stages (ranging from poorly-developed to well-developed soil crusts) were analysed using 454 pyrosequencing of the V3-V4 variable region of the cyanobacterial 16S rRNA gene. Analyses of 95 660 cyanobacterial sequences revealed a dominance of OTUs belonging to the orders Synechococcales, Oscillatoriales and Nostocales. The most dominant OTUs in the four studied sites were related to the filamentous cyanobacteria Leptolyngbya sp. Phylotype richness estimates increased from poorly- to mid-developed soil crusts and decreased in the well-developed lichenized soil crust. Moreover, pH, ammonium and organic carbon concentrations appeared significantly correlated with the cyanobacterial community structure. PMID:26564957

  3. Cyanobacterial community composition in Arctic soil crusts at different stages of development

    PubMed Central

    Pushkareva, Ekaterina; Pessi, Igor S.; Wilmotte, Annick; Elster, Josef

    2015-01-01

    Cyanobacterial diversity in soil crusts has been extensively studied in arid lands of temperate regions, particularly semi-arid steppes and warm deserts. Nevertheless, Arctic soil crusts have received far less attention than their temperate counterparts. Here, we describe the cyanobacterial communities from various types of soil crusts from Svalbard, High Arctic. Four soil crusts at different development stages (ranging from poorly-developed to well-developed soil crusts) were analysed using 454 pyrosequencing of the V3-V4 variable region of the cyanobacterial 16S rRNA gene. Analyses of 95 660 cyanobacterial sequences revealed a dominance of OTUs belonging to the orders Synechococcales, Oscillatoriales and Nostocales. The most dominant OTUs in the four studied sites were related to the filamentous cyanobacteria Leptolyngbya sp. Phylotype richness estimates increased from poorly- to mid-developed soil crusts and decreased in the well-developed lichenized soil crust. Moreover, pH, ammonium and organic carbon concentrations appeared significantly correlated with the cyanobacterial community structure. PMID:26564957

  4. Morphological characteristics of interactions between deserts and rivers in northern China

    NASA Astrophysics Data System (ADS)

    Yan, Ping; Li, XiaoMei; Ma, YuFeng; Wu, Wei; Qian, Yao

    2015-12-01

    Arid regions are affected by long-term interactions between various factors including water and wind. Recent research has concentrated on aeolian-fluvial interactions in dryland environments, including the important role of rivers in providing sand and spaces for deserts development, as well as the influences of aeolian activity upon river landforms. However, there is still a lack of comprehensive data at the large watershed scale to support such research. In this study, we analyzed statistically the morphological parameters related to twelve deserts and ten watersheds in dryland regions of northern China using remote sensing data, maps of desert and watershed distributions, and classification of aeolian landforms. Results indicate that, in view of the relationship between deserts and rivers, the geomorphic structures of drainage basins in northern China can be overall divided into five large drainage zones: northwestern drainage (ND), western drainage (WD), drainage of northern Qinghai-Tibet Plateau (PD), middle drainage (MD) and eastern drainage (ED). In the terms of percent area of desert in drainages, it can be sequenced as WD > MD > ND > ED > PD. For percent area of shifting dunes in deserts, WD > PD > MD > ED > ND. Considering the classification of aeolian dunes, transverse dune dominates in all drainages, and its proportion can be sorted as PD > ED > MD > WD > ND. There is a significant difference in their morphological parameters between interior and exterior watersheds. In exterior watersheds, desert area, shifting dune or transverse dune areas are not significantly associated with drainage area respectively, but interior watersheds have good correlations between them. And in three rivers of Tarim Basin, along with increasing distance from the river bank, the types of aeolian dune (complexity) increased step-wisely, implying that sand dune extends along the river terrace. Those data and preliminary findings confirm that the rivers are indispensable to the

  5. Estimation of saltation emission in the Kubuqi Desert, North China.

    PubMed

    Du, Heqiang; Xue, Xian; Wang, Tao

    2014-05-01

    The Kubuqi Desert suffered more severe wind erosion hazard. Every year, a mass of aeolian sand was blown in the Ten Tributaries that are tributaries of the Yellow River. To estimate the quantity of aeolian sediment blown into the Ten Tributaries from the Kubuqi Desert, it is necessary to simulate the saltation processes of the Kubuqi Desert. A saltation submodel of the IWEMS (Integrated Wind-Erosion Modeling System) and its accompanying RS (Remote Sensing) and GIS (Geographic Information System) methods were used to model saltation emissions in the Kubuqi Desert. To calibrate the saltation submodel, frontal area of vegetation, soil moisture, wind velocity and saltation sediment were observed synchronously on several points in 2011 and 2012. In this study, a model namely BEACH (Bridge Event And Continuous Hydrological) was introduced to simulate the daily soil moisture. Using the surface parameters (frontal area of vegetation and soil moisture) along with the observed wind velocities and saltation sediments for the observed points, the saltation model was calibrated and validated. To reduce the simulate error, a subdaily wind velocity program, WINDGEN was introduced in this model to simulate the hourly wind velocity of the Kubuqi Desert. By incorporating simulated hourly wind velocity, and model variables, the saltation emission of the Kubuqi Desert was modeled. The model results show that the total sediment flow rate was 1-30.99 tons/m over the last 10years (2001-2010). The saltation emission mainly occurs in the north central part of the Kubuqi Desert in winter and spring. Integrating the wind directions, the quantity of the aeolian sediment that deposits in the Ten Tributaries was estimated. Compared with the observed data by the local government and hydrometric stations, our estimation is reasonable. PMID:24534701

  6. Patton's tracks in the Mojave Desert, USA: An ecological legacy

    USGS Publications Warehouse

    Belnap, J.; Warren, S.D.

    2002-01-01

    Recovery of soil properties from World War II-era military training exercises in the Mojave Desert was measured approximately 55 years following disturbance. Tracks from military vehicles were still visible, particularly in areas of desert pavement. Soil penetrability was much lower in visible tracks than outside the tracks. Soils in tracks had fewer rocks in the top 10 cm of the soil profile than adjacent untracked soils. Larger particles (> 4.8 mm) formed a moderately well-developed pavement outside of the tracks, while smaller, loose particles (???4.8 mm) dominated the surface of the tracks. The time required to restore the desert pavement is likely to be measured in centuries. Based on biomass estimates, the cyanobacterial component of biological soil crusts had recovered 46-65% in tracks, compared to outside the tracks. Overall recovery of lichen cover has been much slower. Under plant canopies, cover of Collema tenax was not significantly different between areas inside and outside the tracks; however, recovery of Catapyrenium squamulosum was only 36%. In plant interspaces with less favorable moisture and temperature conditions, C. tenax showed a 6% recovery and C. squamulosum a 3% recovery. Assuming recovery of the biological soil crust is linear, and complete only when the most sensitive species (C. squamulosum) has fully recovered in the most limiting microhabitats (plant interspaces), it may require almost two millennia for full recovery of these areas.

  7. Sounds of the Desert.

    ERIC Educational Resources Information Center

    McCullough-Brabson, Ellen; Achilles, Elayne; Ashcraft, Joan

    1997-01-01

    Discusses the program called "Sounds of the Desert" that celebrates the Southwest indigenous culture and focuses on understanding music in relation to history and culture. Emphasizes the study of Mariachi music that is being taught alongside band, orchestra, and chorus from the third grade to senior high in many Tucson (Arizona) schools. (CMK)

  8. How desert varnish forms?

    NASA Astrophysics Data System (ADS)

    Perry, Randall S.; Kolb, Vera M.; Lynne, Bridget Y.; Sephton, Mark A.; Mcloughlin, Nicola; Engel, Michael H.; Olendzenski, Lorraine; Brasier, Martin; Staley, James T., Jr.

    2005-09-01

    Desert varnish is a black, manganese-rich rock coating that is widespread on Earth. The mechanism underlying its formation, however, has remained unresolved. We present here new data and an associated model for how desert varnish forms, which substantively challenges previously accepted models. We tested both inorganic processes (e.g. clays and oxides cementing coatings) and microbial methods of formation. Techniques used in this preliminary study include SEM-EDAX with backscatter, HRTEM of focused ion beam prepared (FIB) wafers and several other methods including XRPD, Raman spectroscopy, XPS and Tof-SIMS. The only hypothesis capable of explaining a high water content, the presence of organic compounds, an amorphous silica phase (opal-A) and lesser quantities of clays than previously reported, is a mechanism involving the mobilization and redistribution of silica. The discovery of silica in desert varnish suggests labile organics are preserved by interaction with condensing silicic acid. Organisms are not needed for desert varnish formation but Bacteria, Archaea, Eukarya, and other organic compounds are passively incorporated and preserved as organominerals. The rock coatings thus provide useful records of past environments on Earth and possibly other planets. Additionally this model also helps to explain the origin of key varnish and rock glaze features, including their hardness, the nature of the "glue" that binds heterogeneous components together, its layered botryoidal morphology, and its slow rate of formation.

  9. Plants of the Desert.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information and student activities on plants of the desert, including various adaptations for life with limited water supplies. Each activity includes objective(s), recommended age level(s), subject area(s), list of materials needed, and procedures. A ready-to-copy student worksheet is included. (DH)

  10. Mojave Desert Diary

    ERIC Educational Resources Information Center

    Breed, Allen F.

    1974-01-01

    This is an account of a trip to the Mojave Desert sponsored by the California Youth Authority's Community Parole Center for wards who are selected on the basis of their potential for growth and their ability to make a connection between what they do in the wilderness and what they do on the streets. (PD)

  11. Investigation of Biological Soil Crusts Metabolic Webs Using Exometabolomic Analysis

    NASA Astrophysics Data System (ADS)

    Northen, T.; Karaoz, U.; Jenkins, S.; Lau, R.; Bowen, B.; Cadillo-Quiroz, H.; Garcia-Pichel, F.; Brodie, E.; Richard, B.

    2014-12-01

    Desert biological soil crusts are simple cyanobacteria-dominated surface soil microbial communities found in areas with infrequent wetting, often extreme temperatures, low coverage of vascular plants and constitute the world's largest biofilm. They exist for extended periods in a desiccated dormant state, yet rapidly re-boot metabolism within minutes of wetting. These soil microbial communities are highly dependent on filamentous cyanobacteria such as Microcoleus vaginatusto stabilize the soil and to act as primary producers for the community through the release carbon sources to feed a diversity of heterotrophs. Exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including may novel compounds. Only a small set of which being targeted by all isolates. Beyond these few metabolites, the individual bacteria examined showed specialization towards specific metabolites. Surprisingly, many of the most abundant oligosaccharides and other metabolites were ignored by these isolates. The observed specialization of biological soil crust bacteria may play a significant role in determining community structure.

  12. A study of Desert Dermatoses in the Thar Desert Region

    PubMed Central

    Chatterjee, Manas; Vasudevan, Biju

    2015-01-01

    Introduction: Desert dermatology describes the cutaneous changes and the diseases affecting those living in the desert. Diurnal variation in temperature is high and is characteristic of the deserts. The lack of water affects daily activities and impacts dermatological conditions. Adaptation to the desert is therefore important to survival. This original article focuses on dermatoses occurring in a population in the Thar desert of India, predominantly located in Rajasthan. Materials and Methods: This is a descriptive study involving various dermatoses seen in patients residing in the Thar desert region over a duration of 3 years. Results: Infections were the most common condition seen among this population and among them fungal infections were the most common. The high incidence of these infections would be accounted for by the poor hygienic conditions due to lack of bathing facilities due to scarcity of water and the consequent sweat retention and overgrowth of cutaneous infective organisms. Pigmentary disorders, photodermatoses, leishmaniasis and skin tumors were found to be more prevalent in this region. Desert sweat dermatitis was another specific condition found to have an increased incidence. Conclusion: The environment of the desert provides for a wide variety of dermatoses that can result in these regions with few of these dermatoses found in much higher incidence than in other regions. The concept of desert dermatology needs to be understood in more details to provide better care to those suffering from desert dermatoses and this article is a step forward in this regard. PMID:25657392

  13. Crest line minimal model for sand dune

    NASA Astrophysics Data System (ADS)

    Guignier, Lucie; Valance, Alexandre; Lague, Dimitri

    2013-04-01

    In desert, complex patterns of dunes form. Under unidirectional wind, transverse rectilinear dunes or crescent shaped dunes called barchan dunes can appear, depending on the amount of sediment available. Most rectilinear transverse sand dunes are observed to fragment, for example at White Sands (New Mexico, United States of America) or Walvis Bay (Namibia). We develop a reduced complexity model to investigate the morphodynamics of sand dunes migrating over a non-erodible bed under unidirectional wind. The model is simply based on two physical ingredients, namely, the sand capture process at the slip face and the cross-wind sand transport. The efficiency of the sand capture process is taken to be dependent of the dune height and lateral diffusion is considered on both the windward and lee sides of the dune. In addition, the dune cross section is assumed to be scale invariant and is approximated by a triangular shape. In this framework, the dune dynamics is reduced to the motion of a string representing the dune crest line and is expressed as a set of two coupled nonlinear differential equations. This simple model reveals its ability to reproduce basic features of barchan and transverse dunes. Analytical predictions are drawn concerning dune equilibrium shape, stability and long-term dynamics. We derive, in particular, analytical solutions for barchan dunes, yielding explicit relationships between their shape and the lateral sand diffusion; and analytical predictions for the migration speed and equilibrium sand flux. A stability analysis of a rectilinear transverse dune allows us to predict analytically the wavelength emerging from fluctuations of the dune crest. We also determine the characteristic time needed for the rectilinear dune to fragment into a multitude of barchan dunes. These outcomes show that extremely simple ingredients can generate complex patterns for migrating dunes. From several dune field data, we are able to determine values of the model

  14. WIND CHARACTERISTICS OF MESQUITE STREETS IN THE NORTHERN CHIHUAHUAN DESERT, NEW MEXICO, USA

    EPA Science Inventory

    The most active areas for sand movement in the mesquite-dominated ecosystems in the northern part of the Chihuahuan Desert are elongated bare soil patches referred to as "streets." Wind properties were measured at two flat mesquite sites having highly similar sandy textures but...

  15. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength

    USGS Publications Warehouse

    Mason, J.A.; Lu, H.; Zhou, Y.; Miao, X.; Swinehart, J.B.; Liu, Z.; Goble, R.J.; Yi, S.

    2009-01-01

    Wind-blown sands were mobile at many sites along the desert margin in northern China during the early Holocene (11.5-8 ka ago), based on extensive new numerical dating. This mobility implies low effective moisture at the desert margin, in contrast to growing evidence for greater than modern monsoon precipitation at the same time in central and southern China. Dry conditions in the early Holocene at the desert margin can be explained through a dynamic link between enhanced diabatic heating in the core region of the strengthened monsoon and increased subsidence in drylands to the north, combined with high evapotranspiration rates due to high summer temperatures. After 8 ka ago, as the monsoon weakened and lower temperatures reduced evapotranspiration, eolian sands were stabilized by vegetation. Aridity and dune mobility at the desert margin and a strengthened monsoon can both be explained as responses to high summer insolation in the early Holocene. ?? 2009 Geological Society of America.

  16. Synthetic Aperture Radar Interferometry for Digital Elevation Model of Kuwait Desert - Analysis of Errors

    NASA Astrophysics Data System (ADS)

    Jassar, H. K. Al; Rao, K. S.

    2012-07-01

    Using different combinations of 29 Advanced Synthetic Aperture Radar (ASAR) images, 43 Digital Elevations Models (DEM) were generated adopting SAR Interferometry (InSAR) technique. Due to sand movement in desert terrain, there is a poor phase correlation between different SAR images. Therefore, suitable methodology for generating DEMs of Kuwait desert terrain using InSAR technique were worked out. Time series analysis was adopted to derive the best DEM out of 43 DEMs. The problems related to phase de-correlation over desert terrain are discussed. Various errors associated with the DEM generation are discussed which include atmospheric effects, penetration into soil medium, sand movement. The DEM of Shuttle Radar Topography Mission (SRTM) is used as a reference. The noise levels of DEM of SRTM are presented.

  17. Sedimentological, Mineralogical and Geochemical Characterization of Sand Dunes in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Benaafi, Mohammed; Abdullatif, Osman

    2014-05-01

    Sedimentological, mineralogical, morphological and geochemical studies of sand dunes from ten locations in Saudi Arabia were conducted in order to determine the differences between them and to find out the provenance and tectonic setting of these sand dunes. Sixty seven samples were collected from different sand dunes types ranging in morphology from linear, barchans, parabolic to stars dunes. In overall, the sand dunes are fine to coarse grained mean grain size, moderately sorted, near symmetrical skewness with mesokurtic distribution characterized sand dunes in most locations. The sand dunes grains are subrounded in all locations except in the Red sea, Qassim, central Arabia and the eastern province which showed sub-angular grains. The main mineral compositions of studied aeolian sand dunes are quartz, feldspar, calcite, and mica. Quartz is the dominant mineral in locations with significant amount of feldspars and mica in Najran, Red sea and Central Arabia locations. Moreover, calcite is present in Sakaka and NW Empty Quarter (Jafurah). Basement related sand dunes in Najran, Central Arabia and Red sea locations are sub-mature in terms of their mineralogical maturity. Whereas, sand dunes in other locations are texturally mature except those from the Red sea which showed sub-mature sand. The sands are classified as quartz arenite, except in the basement related sand dunes in Najran, central Arabia and the Red sea are ranging from sub-arkose, sub-litharenite and lithraenite. Morphologically, parallel to sub-parallel sand ridges with NE-SW orientation occurred in east and north parts of Empty Quarter (Najran and Jafurah) and NW-SE orientation in Dahna and Nafud deserts in central and north regions of Saudi Arabia. Parabolic sand dunes characterized the Nafud desert (Hail, Sakaka, Tayma locations). Barchans and star sand dunes characterize the Empty Quarter (Jafurah). Major, trace, and rare earth elements studies were carried out to determine the composition

  18. Oceanic crust deep seismic survey

    NASA Astrophysics Data System (ADS)

    McBride, J. H.; White, R. S.

    In September 1991, the British Institutions Reflection Profiling Syndicate (BIRPS) collected 578 km of deep seismic reflection profiles over the oceanic crust beneath the Cape Verde abssyal plain in approximately 4900 m of water (Fig. 1). The survey, under the direction of J. H. McBride, was undertaken in response to a proposal made by R. S. White at the 1990 BIRPS open syndicate meeting in Birmingham, England, and was acquired using GECO-PRAKLA'S M/V Bin Hai 511. The survey consisted of two strike lines parallel to magnetic sea-floor lineations and nine orthogonal crossing lines oriented parallel to the spreading direction (Fig. 2). Adjacent lines are spaced at 4 km. For the first time, this provides the ability to map oceanic crust in “3D,” since the line spacing is less than or equal to the Fresnel-zone diameter for the lower crust.

  19. Profiling planktonic foraminiferal crust formation

    NASA Astrophysics Data System (ADS)

    Steinhardt, Juliane; de Nooijer, Lennart L. J.; Brummer, Geert-Jan; Reichart, Gert-Jan

    2015-07-01

    Planktonic foraminifera migrate vertically through the water column during their life, thereby growing and calcifying over a range of depth-associated conditions. Some species form a calcite veneer, crust, or cortex at the end of their lifecycle. This additional calcite layer may vary in structure, composition, and thickness, potentially accounting for most of their total shell mass and thereby dominating the element and isotope signature of the whole shell. Here we apply laser ablation ICP-MS depth profiling to assess variability in thickness and Mg/Ca composition of shell walls of three encrusting species derived from sediment traps. Compositionally, Mg/Ca is significantly lower in the crusts of Neogloboquadrina dutertrei and Globorotalia scitula, as well as in the cortex of Pulleniatina obliquiloculata, independent of the species-specific Mg/Ca of their lamellar calcite shell. Wall thickness accounts for nearly half of the total thickness in both crustal species and nearly a third in cortical P. obliquiloculata, regardless of their initial shell wall thickness. Crust thickness and crustal Mg/Ca decreases toward the younger chambers in N. dutertrei and to a lesser extent, also in G. scitula. In contrast, the cortex of P. obliquiloculata shows a nearly constant thickness and uniform Mg/Ca through the complete chamber wall. Patterns in thickness and Mg/Ca of the crust indicate that temperature is not the dominant factor controlling crust formation. Instead, we present a depth-resolved model explaining compositional differences within individuals and between successive chambers as well as compositional heterogeneity of the crust and lamellar calcite in all three species studied here.

  20. Deserts and Arid Lands

    NASA Astrophysics Data System (ADS)

    Brown, Glen F.

    The exponential growth of global population and often concomitant degradation of the environment has forced human expansion into the more hostile and less well-known terrains of arid lands and deserts. Drought in the African Sahel, with recent wholesale movement of tribes seeking survival, has focused interest in such regions. However, geologic and geomorphic knowledge of deserts has expanded slowly until the last few decades. For instance, the arid cycle of erosion, as conceived by William Morse Davis (now deceased; formerly, Harvard University, Cambridge, Mass.), with modifications by W. Penck (now deceased; formerly, Leipzig University, Leipzig, German Democratic Republic), and L. C. King (University of Natal and Durban, South Africa), has dominated desert geomorphological deductions until recently. Since World War II and the verification of plate tectonics, the knowledge of arid lands has increased dramatically, especially in synoptic mapping from remote sensing data and space photography, which transcends political boundaries, thanks to the open skies policy of the U.S. space pioneers.

  1. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2006-01-01

    In 2005, domestic production of industrial sand and gravel was about 31 Mt, a 5% increase from 2004. This increase was bouyed by robust construction and petroleum sectors of the US economy. Based on estimated world production figures, the United States was the world's leading producer and consumer of industrial sand and gravel. In the short term, local shortages of industrial sand and gravel will continue to increase.

  2. The Desert Crossings of Mars

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.

    Apart from the polar caps, the Martian volcanoes and the Valles Marineris, ~80% of the martian surface can essentially be classified as `desert'. The methods used to explore Mars, the scientific priorities and the philo- sophical and historical precedents that drive human exploration on Mars will primarily come from our experiences in terrestrial deserts. Here, the methods and approaches used for terrestrial desert expeditions are discussed with reference to Mars. Some of the physical challenges such as low temperature and frost formation will be akin to cold polar desert exploration on Earth. However, some challenges, such as dust storms and lack of liquid water will be akin to hot desert exploration. Expeditions that draw the appropriate lessons from both hot and cold desert terrestrial expeditions will succeed. Examples of major regions on Mars that might be regarded as significant exploratory challenges for expeditions are identified. Key parameters of these expeditions including distance and plausible scientific objectives are provided.

  3. Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Ramsey, Michael S.; Christensen, Philip R.

    1995-01-01

    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991.

  4. Wind erodibility response of physical and biological crusts to rain and flooding

    NASA Astrophysics Data System (ADS)

    Aubault, H.; Bullard, J. E.; Strong, C. L.; Ghadiri, H.; McTainsh, G. H.

    2015-12-01

    Soil surface crusts are important controllers of the small-scale wind entrainment processes that occur across all dust source regions globally. The crust type influences water and wind erosion by impacting infiltration, runoff, threshold wind velocity and surface storage capacity of both water and loose erodible material. The spatial and temporal patterning of both physical and biological crusts is known to change with rainfall and flooding. However, little is known about the impact of differing water quantity (from light rainfall through to flooding) on soil crusting characteristics (strength, roughness, sediment loss). This study compares the response of two soil types (loamy sand - LS, sandy loam - SL) with and without BSCs to three different rainfall events (2mm, 8mm, 15mm). Two BSC treatments were used one that simulated a young cyanobacteria dominated crust and an older flood induced multi species biological crust. For both soil types, soil surface strength increased with increasing rainfall amount with LS having consistently higher resistance to rupture than SL. Regardless of texture, soils with BSCs were more resistant and strength did not change in response to rainfall impact. Soil loss due to wind erosion was substantially higher on bare LS (4 times higher) and SL (3 times higher) soils compared with those with BSCs. Our results also show that young biological crust (formed by the rainfall event) have reduced soil erodibility with notably greater strength, roughness and reduced sediment losses when compared to soils with physical crust. Interestingly though, the erodibility of the old BSC did not differ greatly from that of the young BSC with respect to strength, roughness and sediment loss. This raises questions regarding the rapid soil surface protection offered by young colonising cyanobacteria crusts. Further analyses exploring the role of biological soil crusts on surface response to rainfall and wind saltation impact are ongoing.

  5. Warming and increased precipitation frequency on the Colorado Plateau: Implications for biological soil crusts and soil processes

    SciTech Connect

    Zelikova TJ; Hosman DC; Grote EE; Neher DA; Belnap J

    2011-03-21

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  6. Jeeps Penetrating a Hostile Desert

    ERIC Educational Resources Information Center

    Bailey, Herb

    2009-01-01

    Several jeeps are poised at base camp on the edge of a desert aiming to escort one of them as far as possible into the desert, while the others return to camp. They all have full tanks of gas and share their fuel to maximize penetration. In a friendly desert it is best to leave caches of fuel along the way to help returning jeeps. We solve the…

  7. Microbial origin of desert varnish.

    PubMed

    Dorn, R I; Oberlander, T M

    1981-09-11

    Scanning electron microscopy and energy dispersive x-ray analyses of desert varnish reveal that microorganisms concentrate ambient manganese that becomes greatly enhanced in brown to black varnish. Specific characteristics of desert varnish and of varnish bacteria support a microbial origin for manganese-rich films. Varnish microbes can be cultured and produce laboratory manganese films. Accordingly, natural desert varnish and also manganese-rich rock varnishes in nondesert environments appear to be a product of microbial activity. PMID:17744757

  8. A Comparative Analysis of the Microfabrics of Surface Horizons and Desert Varnish in Extremely Arid Soils of the Mojave (USA) and Trans-Altai Gobi (Mongolia) Deserts

    NASA Astrophysics Data System (ADS)

    Lebedeva, M. P.; Shishkov, V. A.

    2016-02-01

    The mineralogical composition of coarse fraction and characteristic features of the micro- and submicrofabrics and chemical composition of desert varnish on gravels of desert pavements and the underlying vesicular crust soil horizons were studied in the extremely arid soils of the Mojave (USA) and Trans-Altai Gobi (Mongolia) deserts. A set of common diagnostic features of elementary pedogenetic processes was identified in the automorphic desert soils developed on ancient (70-90 ka) piedmont plains composed of alluvial deposits with the high content of red-earth clay. The results of this study attest to the long and complicated history of the extremely arid soils with alternation of the humid and arid phases of pedogenesis reflected in a specific combination of textural (clay-illuvial) and carbonate pedofeatures and in the distribution patterns of iron, manganese, titanium, and barium in different layers of the desert varnish. The chemical composition of the latter did not depend on the mineralogical composition of the underlying substrates and was formed with active participation of soil microorganisms. This allowed us to conclude about the polygenetic (accretionary-microbiological) nature of desert varnish.

  9. Have the northwest Negev dunefield sands reddened since their deposition?

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Tsoar, Haim; Blumberg, Dan G.; Porat, Naomi; Rozensten, Ofer

    2010-05-01

    Sand grain coating redness has been extensively both in coastal and inland desert dunes. In Israel, sand redness has been quantified by calculating a spectral redness index (RI) using single RGB bands (RI= R2/(B*G3)) from reflectance spectroscopy. The RI values have been correlated to ferric oxide mass that was dissolved from sand grain coatings (Ben Dor et al., 2006; Tsoar et al., 2008). Five main requirements have been proposed to enhance sand grain reddening: iron source from the weathering of iron-bearing minerals originating from parent rock or aeolian dust, minimum moisture content, oxidizing interstitial conditions, sediment stability and time. Thus, as many researches have suggested, when the source factors and climatic conditions are homogenous, redder sands indicate increased maturity. The northwest Negev dunefield has been classified by Tsoar et al. (2008) into 3 incursion units based upon contouring a grid of RI values for surface sand samples. The central incursion unit has been suggested to be younger due to relatively lower RI values that decrease to the east. This work tests the relationship between RI values and optically stimulated luminescence (OSL) ages of aeolian sand sampled from the near surface down to dune substrate throughout the NW Negev dunefield. Room-dried sand samples were measured in the laboratory with an ASD FieldSpec spectrometer and RI was calculated. Dune sections have been found to usually have similar RI values throughout their vertical profile despite OSL ages ranging between recent and Late Pleistocene. Along a W-E transect, RI values also tend to be similar. The central (Haluzza) part of the dunefield exhibits significantly lower RI values than RI of sands south of the Qeren Ridge. Dune base OSL ages possibly representing burial/stabilization of an initial incursion are slightly more mature in the south and may be evidence of the earliest dune incursion into the Negev. Thus the increased redness may be attributed to an

  10. Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes

    SciTech Connect

    Zelikova, Tamara J.; Housman, David C.; Grote, Ed E.; Neher, Deborah A.; Belnap, Jayne

    2012-01-20

    Changes in temperature and precipitation are expected to influence ecosystem processes worldwide. Despite their globally large extent, few studies to date have examined the effects of climate change in desert ecosystems, where biological soil crusts are key nutrient cycling components. The goal of this work was to assess how increased temperature and frequency of summertime precipitation affect the contributions of crust organisms to soil processes. With a combination of experimental 2°C warming and altered summer precipitation frequency applied over 2 years, we measured soil nutrient cycling and the structure and function of crust communities. We saw no change in crust cover, composition, or other measures of crust function in response to 2°C warming and no effects on any measure of soil chemistry. In contrast, crust cover and function responded to increased frequency of summer precipitation, shifting from moss to cyanobacteria-dominated crusts; however, in the short timeframe we measured, there was no accompanying change in soil chemistry. Total bacterial and fungal biomass was also reduced in watered plots, while the activity of two enzymes increased, indicating a functional change in the microbial community. Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation.

  11. Effects of aerosols and surface shadowing on bidirectional reflectance measurements of deserts

    NASA Technical Reports Server (NTRS)

    Bowker, David E.; Davis, Richard E.

    1987-01-01

    Desert surfaces are probably one of the most stable of the Earth's natural targets for remote sensing. The bidirectional reflectance properties of the Saudi Arabian desert was investigated during the Summer Monsoon Experiment (Summer Monex). A comparison of high-altitude with near-surface measurements of the White Sands desert showed significant differences. These discrepancies have been attributed to forward scattering of the dust-laden atmosphere prevalent during Summer Monex. This paper is concerned in general with modeling the effects of atmospheric aerosols and surface shadowing on the remote sensing of bidirectional reflectance factors of desert targets, and in particular with comparing the results of these models with flight results. Although it is possible to approximate the latter, it is felt that a surface reflectance model with a smaller specular component would have permitted using a more realistic set of atmospheric conditions in the simulations.

  12. Eolian features in the Western Desert of Egypt and some applications to Mars.

    USGS Publications Warehouse

    El-Baz, F.; Breed, C.S.; Grolier, M.J.; McCauley, J.F.

    1979-01-01

    Relations of landform types to wind regimes, bedrock composition, sediment supply, and topography are shown by field studies and satellite photographs of the Western Desert. This desert provides analogs of Martian wind-formed features and sand dunes, alternating light and dark streaks, knob 'shadows' and yardangs. Surface particles have been segregated by wind into dunes, sand sheets, and light streaks, that can be differentiated by their grain size distributions, surface shapes, and colors. Throughgoing sand of mostly fine to medium grain size is migrating S in longitudinal dune belts and barchan chains whose long axes lie parallel to the prevailing W winds, but topographic variations such as scarps and depressions strongly influence the zones of deposition and dune morphology. -from Authors

  13. Statistics of Magnetar Crusts Magnetoemission

    NASA Astrophysics Data System (ADS)

    Kondratyev, V. N.; Korovina, Yu. V.

    2016-05-01

    Soft repeating gamma-ray (SGR) bursts are considered as magnetoemission of crusts of magnetars (ultranamagnetized neutron stars). It is shown that all the SGR burst observations can be described and systematized within randomly jumping interacting moments model including quantum fluctuations and internuclear magnetic interaction in an inhomogeneous crusty nuclear matter.

  14. Steam sand dryer in northeast part of sand tower. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steam sand dryer in northeast part of sand tower. View to northeast - Duluth & Iron Range Rail Road Company Shops, Sand Tower, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  15. Long-Term Observations of Dust Storms in Sandy Desert Environments

    NASA Astrophysics Data System (ADS)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  16. Late Oligocene-early Miocene birth of the Taklimakan Desert.

    PubMed

    Zheng, Hongbo; Wei, Xiaochun; Tada, Ryuji; Clift, Peter D; Wang, Bin; Jourdan, Fred; Wang, Ping; He, Mengying

    2015-06-23

    As the world's second largest sand sea and one of the most important dust sources to the global aerosol system, the formation of the Taklimakan Desert marks a major environmental event in central Asia during the Cenozoic. Determining when and how the desert formed holds the key to better understanding the tectonic-climatic linkage in this critical region. However, the age of the Taklimakan remains controversial, with the dominant view being from ∼ 3.4 Ma to ∼ 7 Ma based on magnetostratigraphy of sedimentary sequences within and along the margins of the desert. In this study, we applied radioisotopic methods to precisely date a volcanic tuff preserved in the stratigraphy. We constrained the initial desertification to be late Oligocene to early Miocene, between ∼ 26.7 Ma and 22.6 Ma. We suggest that the Taklimakan Desert was formed as a response to a combination of widespread regional aridification and increased erosion in the surrounding mountain fronts, both of which are closely linked to the tectonic uplift of the Tibetan-Pamir Plateau and Tian Shan, which had reached a climatically sensitive threshold at this time. PMID:26056281

  17. Late Oligocene–early Miocene birth of the Taklimakan Desert

    PubMed Central

    Zheng, Hongbo; Wei, Xiaochun; Tada, Ryuji; Clift, Peter D.; Wang, Bin; Jourdan, Fred; Wang, Ping; He, Mengying

    2015-01-01

    As the world’s second largest sand sea and one of the most important dust sources to the global aerosol system, the formation of the Taklimakan Desert marks a major environmental event in central Asia during the Cenozoic. Determining when and how the desert formed holds the key to better understanding the tectonic–climatic linkage in this critical region. However, the age of the Taklimakan remains controversial, with the dominant view being from ∼3.4 Ma to ∼7 Ma based on magnetostratigraphy of sedimentary sequences within and along the margins of the desert. In this study, we applied radioisotopic methods to precisely date a volcanic tuff preserved in the stratigraphy. We constrained the initial desertification to be late Oligocene to early Miocene, between ∼26.7 Ma and 22.6 Ma. We suggest that the Taklimakan Desert was formed as a response to a combination of widespread regional aridification and increased erosion in the surrounding mountain fronts, both of which are closely linked to the tectonic uplift of the Tibetan–Pamir Plateau and Tian Shan, which had reached a climatically sensitive threshold at this time. PMID:26056281

  18. Permeability within basaltic oceanic crust

    NASA Astrophysics Data System (ADS)

    Fisher, Andrew T.

    1998-05-01

    Water-rock interactions within the seafloor are responsible for significant energy and solute fluxes between basaltic oceanic crust and the overlying ocean. Permeability is the primary hydrologic property controlling the form, intensity, and duration of seafloor fluid circulation, but after several decades of characterizing shallow oceanic basement, we are still learning how permeability is created and distributed and how it changes as the crust ages. Core-scale measurements of basaltic oceanic crust yield permeabilities that are quite low (generally 10-22 to 10-17 m²), while in situ measurements in boreholes suggest an overlapping range of values extending several orders of magnitude higher (10-18 to 10-13 m²). Additional indirect estimates include calculations made from borehole temperature and flow meter logs (10-16 to 10-11 m²), numerical models of coupled heat and fluid flow at the ridge crest and within ridge flanks (10-16 to 10-9 m²), and several other methods. Qualitative indications of permeability within the basaltic oceanic crust come from an improved understanding of crustal stratigraphy and patterns of alteration and tectonic modification seen in ophiolites, seafloor samples and boreholes. Difficulties in reconciling the wide range of estimated permeabilities arise from differences in experimental scale and critical assumptions regarding the nature and distribution of fluid flow. Many observations and experimental and modeling results are consistent with permeability varying with depth into basement and with primary basement lithology. Permeability also seems to be highly heterogeneous and anisotropic throughout much of the basaltic crust, as within crystalline rocks in general. A series of focused experiments is required to resolve permeability in shallow oceanic basement and to directly couple upper crustal hydrogeology to magmatic, tectonic, and geochemical crustal evolution.

  19. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  20. An Affair with Sand.

    ERIC Educational Resources Information Center

    Stroud, Sharon

    1980-01-01

    Described is a resource idea developed for the teaching of oceanography to junior high students. Sand is studied to help make the study of beaches more relevant to students who may have never seen an ocean. Sand samples are brought into the classroom from various coastal cities, then analyzed and compared. (Author/DS)

  1. Aircraft and satellite remote sensing of desert soils and landscapes

    NASA Technical Reports Server (NTRS)

    Petersen, G. W.; Connors, K. F.; Miller, D. A.; Day, R. L.; Gardner, T. W.

    1987-01-01

    Remote sensing data on desert soils and landscapes, obtained by the Landsat TM, Heat Capacity Mapping Mission (HCMM), Simulated SPOT, and Thermal IR Multispectral Scanner (TIMS) aboard an aircraft, are discussed together with the analytical techniques used in the studies. The TM data for southwestern Nevada were used to discriminate among the alluvial fan deposits with different degrees of desert pavement and varnish, and different vegetation cover. Thermal-IR data acquired from the HCMM satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures in central Utah. Simulated SPOT data for northwestern New Mexico identified geomorphic features, such as differences in eolian sand cover and fluvial incision, while the TIMS data depicted surface geologic features of the Saline Valley in California.

  2. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    USGS Publications Warehouse

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  3. Collescipoli - An unusual fusion crust glass. [chondrite

    NASA Technical Reports Server (NTRS)

    Nozette, S.

    1979-01-01

    An electron microprobe study was conducted on glass fragments taken from the fusion crust and an internal glass-lined vein in the H-5 chondrite Collescipoli. Microprobe analyses of the glasses revealed an unusual fusion crust composition, and analyses of glass from inside the meteorite showed compositions expected for a melt of an H-group chondrite. Studies of fusion crusts by previous workers, e.g., Krinov and Ramdohr, showed that fusion crusts contain large amounts of magnetite and other oxidized minerals. The Collescipoli fusion crusts do contain these minerals, but they also contain relatively large amounts of reduced metal, sulphide, and a sodium-rich glass. This study seems to indicate that Collescipoli preserved an early type of fusion crust. Oxidation was incomplete in the fusion crust melt that drained into a crack. From this study it is concluded that fusion crust formation does not invariably result in complete oxidation of metal and sulphide phases.

  4. Insecticide Treated Camouflage Sceening Reduces Sand Fly Numbers in Leishmania-Endemic Regions in Kenya

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current U.S. military operations in deserts face persistent threats from sand flies that transmit human Leishmania. In this study we investigated the efficacy of artificial barriers treated with residual insecticide to potentially reduce the risk of human infection from leishmaniasis by reducing the...

  5. Libyan Desert, Libya, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Desert landscapes such as this part of the northern Sahara (27.0N, 11.0E) may be analogous to other planets which have no soil or plant growth. The dark rocks in this view are probably volcanic in origin and have many stream beds leading into the dune areas. These stream beds carry sediments towards the lower terrain where the water evaporates, leaving the sediments to be wind blown into the complex dune patterns. The red color comes from iron oxides.

  6. Elemental profiles and signatures of fugitive dusts from Chinese deserts.

    PubMed

    Zhang, Rong; Cao, Junji; Tang, Yanrong; Arimoto, Richard; Shen, Zhenxing; Wu, Feng; Han, Yongming; Wang, Gehui; Zhang, Jiaquan; Li, Guohui

    2014-02-15

    Elemental profiles were determined for size-separated fugitive dust particles produced from Chinese desert and gobi soils. Seventeen surface soil samples from six Chinese deserts were collected, composited, resuspended, and sampled through TSP, PM10, and PM2.5 inlets onto Teflon® filters, which were analyzed for twenty-six elements. Two major dust sources could be distinguished based on differences in crustal and enriched elements-the northwestern (NW) region (Taklimakan Desert, Xinjiang Gobi, and Anxinan Gobi) and northern (N) region (Ulan Buh Desert, Central Inner Mongolia Desert, and Erenhot Gobi). The N sources showed lower concentrations of mineral elements (Fe, K, Na, Ti, Mn, Cr, and Rb in PM10, and Fe, K, Ti, Mn, Co, and V in PM2.5) and higher levels of contaminants (S, Zn, Mo, Cu, Cr, Pb, Cd, and As) than the NW ones, especially in PM2.5. Enrichment factors for Cu, Cr, Zn, Pb, As, Mo, and Cd calculated relative to the upper continental crust showed enrichments of one to two orders-of-magnitude, and they were much higher for N sources than NW ones, implying stronger anthropogenic impacts in north China. Aerosol elemental concentrations during dust events at Horqin, Beijing, and Xi'an matched the mass percentages of mineral elements from their presumptive sources better than the alternative ones, validating the differences between the NW and N sources. Additionally, Na/S, Mg/S, Fe/Al, K/Al, Si/Fe, and Na/Al ratios were suggested to differentiate the two dust source regions. The elemental ratios of Ca/Al, K/Al, Fe/Al, and Ti/Fe in the source regions matched those in aerosols collected downwind, and they can be considered as possible source indicators. PMID:24361747

  7. Influence of development stage and disturbance of physical and biological soil crusts on soil water erosion

    NASA Astrophysics Data System (ADS)

    Chamizo, S.; Cantón, Y.; Lázaro, R.; Solé-Benet, A.; Calvo-Cases, A.; Miralles, I.; Domingo, F.

    2009-04-01

    Most soils exposed to rainfall are prone to sealing and crusting processes causing physical soil crusts (PSCs). When climate and soil stability conditions are suitable, PSCs can be consolidated by a complex community consisting of cyanobacteria, bacteria, green algae, microfungi, lichens and bryophytes, which are collectively known as biological soil crust (BSC). The influence of soil crusts on erosion processes is complex: crusts may reduce detachment, increasing soil stability and protecting soil against raindrop impact, although that protection will depend on the type of soil crust and the stage of development; they can also build up runoff, suggesting that downstream erosion may actually be increased or favoured water harvesting to vegetated areas. On the other hand, BSCs have been demonstrated to be very vulnerable to disturbance which in turn can lead to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of their disturbance is highly likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The objective of this work is to analyse the erosional response of PSCs and BSCs in different stages of their development and subject to distinct disturbances when extreme rainfalls intensities are applied at plot scale in semiarid environments. Small plots on the most representative crust types, corresponding to different stages of crust development, in two semiarid ecosystems in SE Spain, El Cautivo (in the Tabernas Desert) and Amoladeras (in the Natural Park Cabo de Gata-Níjar), were selected and three disturbance treatments were applied on each crust type: a) no disturbance (control), b) trampling, stepping 100 times over the crust and c) scraping. Two consecutive rainfall simulation experiments (50 mm/h rainfall intensity) were carried out on each plot: the first on dry soil and the second, 30 minutes later, on wet soil conditions

  8. Impact and monitoring of dust storms in Taklimakan desert

    NASA Astrophysics Data System (ADS)

    Feng, G. G.; Li, X.; Zheng, Z.

    2012-12-01

    The Taklimakan is China's largest, driest, and warmest desert in total area of 338000km^2 with perimeter of 436 km, it is also known as one of the world's largest shifting-sand deserts. Fully 85 percent of the total area consists of mobile, crescent-shaped sand dunes and are virtually devoid of vegetation. The abundant sand provides material for frequent intense dust storms. The Taklimakan desert fills the expansive Tarim Basin between the Kunlun Mountains and the Tibet Plateau to the south and the Tian Shan Mountains to the north. The Tarim River flows across the basin from west-to-east. In these places, the oases created by fresh surface water support agriculture. Studies outside Xinjiang indicated that 80% dust source of storms was from farmland. Dust storms in the Tarim Basin occur for 20 to 59 days, mainly in spring every year. However, little effort was taken to investigate soil wind erosion and dust emission around the desert. Quantitative understanding of individual dust events in the arid Taklimakan desert, for example, the dust emission rates and the long-range transport, are still incomplete. Therefore, the dust events were observed through routine satellite sensors, lidar instruments, airborne samplers, and surface-based aerosol monitors. Soil wind erosion and suspended particulates emission of four major dust storms from the desert and the typical oasis farmlands at the north rim of the desert were measured using creep sampler, BSNE and TSP at eight heights in 2012. In addition, Aqua satellite AOD data, the NAAPS Global Aeosol model, the CALIPSO satellite products, EPA's AirNow AQI of PM2.5 and HYSPLIT Back Trajectory model were applied to analyze dust transport across the Pacific. Four significant dust storms were observed at the north rim of Taklimakan desert in the spring, 2012. During those events, predominant wind direction ranged from 296 to 334°, wind speed over 7 m/s at 2 m lasted for 471-1074 min, gust wind speed ranged from 11-18m/s. It was

  9. Simulation of barchan dynamics with inter-dune sand streams

    NASA Astrophysics Data System (ADS)

    Katsuki, Atsunari; Kikuchi, Macoto

    2011-06-01

    A group of barchans, crescent sand dunes, exhibit a characteristic flying-geese pattern in deserts on Earth and Mars. This pattern implies that an indirect interaction between barchans, mediated by an inter-dune sand stream, which is released from one barchan's horns and caught by another barchan, plays an important role in the dynamics of barchan fields. We used numerical simulations of a recently proposed cell model to investigate the effects of inter-dune sand streams on barchan fields. We found that a sand stream from a point source moves a downstream barchan laterally until the head of the barchan is finally situated behind the stream. This final configuration was shown to be stable by a linear stability analysis. These results indicate that flying-geese patterns are formed by the lateral motion of barchans mediated by inter-dune sand streams. By using simulations we also found a barchan mono-corridor generation effect, which is another effect of sand streams from point sources.

  10. Watching Faults Grow in Sand

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2015-12-01

    Accretionary sandbox experiments provide a rich environment for investigating the processes of fault development. These experiments engage students because 1) they enable direct observation of fault growth, which is impossible in the crust (type 1 physical model), 2) they are not only representational but can also be manipulated (type 2 physical model), 3) they can be used to test hypotheses (type 3 physical model) and 4) they resemble experiments performed by structural geology researchers around the world. The structural geology courses at UMass Amherst utilize a series of accretionary sandboxes experiments where students first watch a video of an experiment and then perform a group experiment. The experiments motivate discussions of what conditions they would change and what outcomes they would expect from these changes; hypothesis development. These discussions inevitably lead to calculations of the scaling relationships between model and crustal fault growth and provide insight into the crustal processes represented within the dry sand. Sketching of the experiments has been shown to be a very effective assessment method as the students reveal which features they are analyzing. Another approach used at UMass is to set up a forensic experiment. The experiment is set up with spatially varying basal friction before the meeting and students must figure out what the basal conditions are through the experiment. This experiment leads to discussions of equilibrium and force balance within the accretionary wedge. Displacement fields can be captured throughout the experiment using inexpensive digital image correlation techniques to foster quantitative analysis of the experiments.

  11. Relamination and the Differentiation of Continental Crust

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Kelemen, P. B.; Behn, M. D.

    2014-12-01

    Most immature crust must be refined to attain the composition of mature continental crust. This refining may take the form of weathering, delamination, or relamination. Although delamination and relamination both call upon gravity-driven separation of felsic rock into the crust and mafic rock into the mantle, delamination involves foundering of rock from the base of active magmatic arcs, whereas relamination involves the underplating/diapirism of subducted sediment, arc crust, and continent crust to the base of the crust in any convergence zone. Relamination may be more efficient than lower crustal foundering at generating large volumes of material with the major- and trace-element composition of continental crust, and may have operated rapidly enough to have refined the composition of the entire continental crust over the lifetime of Earth. If so, felsic rocks could form much of the lower crust, and the bulk continental crust may be more silica rich than generally considered. Seismic wavespeeds require that only ~10-20% of the lowermost 5-15 km of continental crust must be mafic; combined heat-flow and wavespeed constraints permit continental lower crust to have 50 to 65 wt% SiO2.

  12. Risk assessment of desert pollution on composite high voltage insulators.

    PubMed

    El-Shahat, Mohammed; Anis, Hussein

    2014-09-01

    Transmission lines located in the desert are subjected to desert climate, one of whose features is sandstorms. With long accumulation of sand and with the advent of moisture from rain, ambient humidity and dew, a conductive layer forms and the subsequent leakage current may lead to surface discharge, which may shorten the insulator life or lead to flashover thus interrupting the power supply. Strategically erected power lines in the Egyptian Sinai desert are typically subject to such a risk, where sandstorms are known to be common especially in the spring. In view of the very high cost of insulator cleaning operation, composite (silicon rubber) insulators are nominated to replace ceramic insulators on transmission lines in Sinai. This paper examines the flow of leakage current on sand-polluted composite insulators, which in turn enables a risk assessment of insulator failure. The study uses realistic data compiled and reported in an earlier research project about Sinai, which primarily included grain sizes of polluting sand as well as their salinity content. The paper also uses as a case study an ABB-designed composite insulator. A three-dimensional finite element technique is used to simulate the insulator and seek the potential and electric field distribution as well as the resulting leakage current flow on its polluted surface. A novel method is used to derive the probabilistic features of the insulator's leakage current, which in turn enables a risk assessment of insulator failure. This study is expected to help in critically assessing - and thus justifying - the use of this type of insulators in Sinai and similar critical areas. PMID:25685525

  13. Indirect Interaction of Barchan Dunes by Inter-dune Sand Flow

    NASA Astrophysics Data System (ADS)

    Katsuki, A.

    2008-12-01

    The most impressive sand structure seen in desert is crescent sand dunes called barchan. Barchan dune has two horns and sand flow release from the tips of them. Seeing aerial photos of deserts, we recognize that barchan dunes tend to align in a characteristic pattern, that is, the horn of one barchan pointing to the center of leeward barchan. As a result, barchans form a convoy with a geese-flying like triangular pattern or align in an slanted line. The pattern has been observed also for barchans found on Mars, and thus there should be some universal mechanism underlying it. Also barchan dunes are highly mobile; human-made structures such as roads or pipelines in their way are sometimes buried in sand. It has been a long-standing problem how we can control this unstoppable march of barchan dunes. There are some interaction such as collision and inter-dune sand flow in marching barchan dunes. Here we investigated interaction dynamics of barchan dunes focusing on the effect of indirect interactions mediated by an inter-dune sand flow using computer simulations. We showed that a barchan is driven laterally by a sand stream to right below the point source of sand.Principal mechanism of this motion is a fast mixing of sand in a barchan that keeps the symmetric shape unchanged.We thereby propose a possibility of controlling the motion of a barchan using a sand stream. In addition,the very same mechanism produces an indirect interaction between barchans mediated by sand stream and can induce the self-organization of the geese-flying like pattern.

  14. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  15. Magnetic structure of the crust

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1985-01-01

    The bibuniqueness aspect of geophysical interpretation must be constrained by geological insight to limit the range of theoretically possible models. An additional step in depth understanding of the relationship between rock magnetization and geological circumstances on a grand scale is required. Views about crustal structure and the distribution of lithologies suggests a complex situation with lateral and vertical variability at all levels in the crust. Volcanic, plutonic, and metamorphic processes together with each of the observed anomalies. Important questions are addressed: (1) the location of the magnetic bottom; (2) whether the source is a discrete one or are certain parts of the crust cumulatively contributing to the overall magnetization; (3) if the anomaly to some recognizable surface expression is localized, how to arrive at a geologically realistic model incorporating magnetization contrasts which are realistic; (3) in the way the primary mineralogies are altered by metamorphism and the resulting magnetic contracts; (4) the effects of temperature and pressure on magnetization.

  16. Chronology of early lunar crust

    NASA Technical Reports Server (NTRS)

    Dasch, E. J.; Nyquist, L. E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed.

  17. Desert landscape irrigation

    SciTech Connect

    Quinones, R.

    1995-06-01

    Industrialization can take place in an arid environment if a long term, overall water management program is developed. The general rule to follow is that recharge must equal or exceed use. The main problem encountered in landscape projects is that everyone wants a lush jungle setting, tall shade trees, ferns, with a variety of floral arrangements mixed in. What we want, what we can afford, and what we get are not always the same. Vegetation that requires large quantities of water are not native to any desert. Surprisingly; there are various types of fruit trees, and vegetables that will thrive in the desert. Peaches, plums, nut trees, do well with drip irrigation as well as tomatoes. Shaded berry plans will also do well, the strawberry being one. In summary; if we match our landscape to our area, we can then design our irrigation system to maintain our landscape and grow a variety of vegetation in any arid or semiarid environment. The application of science and economics to landscaping has now come of age.

  18. Supersymmetry without the Desert

    SciTech Connect

    Nomura, Yasunori; Poland, David

    2006-09-26

    Naturalness of electroweak symmetry breaking in weak scale supersymmetric theories may suggest the absence of the conventional supersymmetric desert. We present a simple, realistic framework for supersymmetry in which (most of) the virtues of the supersymmetric desert are naturally reproduced without having a large energy interval above the weak scale. The successful supersymmetric prediction for the low-energy gauge couplings is reproduced due to a gauged R symmetry present in the effective theory at the weak scale. The observable sector superpotential naturally takes the form of the next-to-minimal supersymmetric standard model, but without being subject to the Landau pole constraints up to the conventional unification scale. Supersymmetry breaking masses are generated by the F-term and D-term VEVs of singlet and U(1){sub R} gauge fields, as well as by anomaly mediation, at a scale not far above the weak scale. We study the resulting pattern of supersymmetry breaking masses in detail, and find that it can be quite distinct. We construct classes of explicit models within this framework, based on higher dimensional unified theories with TeV-sized extra dimensions. A similar model based on a non-R symmetry is also presented. These models have a rich phenomenology at the TeV scale, and allow for detailed analyses of, e.g., electroweak symmetry breaking.

  19. Design criteria for light high speed desert air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Abulnaga, B. E.

    An evaluation is made of the applicability and prospective performance of ACVs in trans-Saharan cargo transport, in view of the unique characteristics of the dry sand environment. The lightweight/high-speed ACV concept envisioned is essentially ground effect aircraftlike, with conventional wheels as a low-speed backup suspension system. A propeller is used in ground effect cruise. Attention is given to the effects on vehicle stability and performance of sandy surface irregularities of the desert topography and of cross-winds from various directions relative to vehicle movement.

  20. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  1. Magnetization of the Lunar Crust

    NASA Technical Reports Server (NTRS)

    Carley, R. A.; Whaler, K. A.; Purucker, M. E.; Halekas, J. S.

    2012-01-01

    Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magnetization is expressed in terms of localized basis functions, with a magnetization solution selected having the smallest root-mean square magnetization for a given fit to the data, controlled by a damping parameter. Suites of magnetization models for layers with thicknesses between 10 and 50 km are able to reproduce much of the input data, with global misfits of less than 0.5 nT (within the uncertainties of the data), and some surface field estimates. The magnetization distributions show robust magnitudes for a range of model thicknesses and damping parameters, however the magnetization direction is unconstrained. These global models suggest that magnetized sources of the lunar crust can be represented by a 30 km thick magnetized layer. Average magnetization values in magnetized regions are 30-40 mA/m, similar to the measured magnetizations of the Apollo samples and significantly weaker than crustal magnetizations for Mars and the Earth. These are the first global magnetization models for the Moon, providing lower bounds on the magnitude of lunar crustal magnetization in the absence of multiple sample returns, and can be used to predict the crustal contribution to the lunar magnetic field at a particular location.

  2. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  3. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2010-01-01

    Domestic production of industrial sand and gravel in 2009 was about 27 Mt (30 million st), declining by 10 percent compared with 2008. Certain end uses of industrial sand and gravel, such as foundry and glassmaking sand, may have declined by a factor greater than 10 percent in 2009. U.S. apparent consumption was 24.7 Mt (27.2 million st) in 2009, down by 10 percent from the previous year, and imports declined to 83 kt (91,000 st).

  4. Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared short-term effects of lug-soled boot trampling disturbance on water infiltration and soil erodibility on coarse-textured soils covered by a mixture of fine gravel and coarse sand over weak cyanobacterially-dominated biological soil crusts. Trampling significantly reduced final infiltrati...

  5. Target detection in desert backgrounds: infrared hyperspectral measurements and analysis

    NASA Astrophysics Data System (ADS)

    Eismann, Michael T.; Seldin, John H.; Schwartz, Craig R.; Maxwell, James R.; Ellis, Kenneth K.; Cederquist, Jack N.; Stocker, Alan D.; Oshagan, Ara; Johnson, Ray O.; Shaffer, William A.; Surette, Marc R.; McHugh, Martin J.; Schaum, Alan P.; Stotts, Larry B.

    1995-09-01

    Infrared multispectral sensors are being investigated as a means for day and night target detection. Infrared multispectral sensors would exploit high spectral band-to-band correlation to reject high background clutter. An infrared Fourier transform spectrometer-based field measurement system was used to collect spectral signature data of targets and desert scrub and sand backgrounds from a 100 foot tower at White Sands Missile Range. The measurements include target-to-background spectral contrast, subpixel targets, background spectral correlation, and background spatial power spectra. The measurements have been analyzed to determine multispectral signal-to-clutter ratios versus target, background, diurnal, and weather variations, background correlation versus temperature clutter variations, and spectral correlation versus spatial scale. These measurements contribute to the expanding target and background infrared hyperspectral signature database. The results of the analysis demonstrate the utility and robustness of infrared multispectral techniques for target detection.

  6. The Landscape Evolution of Ulan Buh Desert in North China during Late Quaternary

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Li, Guoqiang; Zhao, Hui; Jin, Ming; Fan, Yuxin; Madsen, David; Chun, Xi

    2013-04-01

    Desert evolution was one of the major environmental changes in northern China during Quaternary. Ulan Buh Desert (UBD), at margin of present summer monsoon, is one of main desert fields and dust source areas in the north and northwest China. In this paper we present the results of lithology, Optical Stimulated Luminescence (OSL) dates, grain-size, carbonate content, organic content and pollen analysis from the drilling cores in the different parts of UBD. Our results show that most area of the present Ulan Buh desert was covered by the Jilantai-Hetao mage-paleolake before ~90 ka ago, a uniform paleolake of about 34,000 km2 covering the whole Hetai palin, and sevrious eolian and desert environment was prevailing during the last glacial and early Holoccene. Then an Ulan Buh paleolake (UB paleolake), likely a desert-wetland enviroment, formed in the northern part of UBD and Jilantai salt lake at around 8-7 ka, leaving dry lake bed landform in northern UBD, while high dune landscape probably prevailed in south UBD. After that, the mordern UBD landscape formed. The Jilantai Salt Lake in western UBD continued to exist until present with high lake level during UB paleolake preiod. During the recent 2000 years aeolian sand from Badan Jaran desert invaded the north UBD through Langshan mountain to form dune landform covered on dry UB paleolake bed and seperated main Ulan Buh desert and Jilantai Salt Lake. Human activities such as changing low wetland to farmland and following abandonment resulted the formation of easten Ulan Buh desert in Han dynasty since 200 BC. The formation of UBD landfporms was suggedted to be relate to disintegration of Jilantai-Hetao mage-paleolake, and was also likely to corresponding to summer monsoon changes during during last glacial and Holocene.

  7. Foundry sand reclamation

    SciTech Connect

    Filipovitch, A.J.; Bleuenstein, J.M.

    1984-05-22

    A dry method of conditioning spent foundry sand is disclosed. After having sized the sand and removal of tramp metallic elements, the sand is subjected to a sequence of squeezing under a high-stress low kinetic energy system for a period of 5-30 minutes, and then propelled against a target with high-kinetic energy in the presence of a suction for several minutes. This sequence can be preferably repeated to increase the quality of the resulting product which should have 0.1% or less of fine particles, a pH of 6-9, a clay content and organic combustible content of substantially zero. The reclaimed sand will exhibit a density of at least 100 grams/biscuit when compacted for core making or molding.

  8. The role of water content in triboelectric charging of wind-blown sand

    PubMed Central

    Gu, Zhaolin; Wei, Wei; Su, Junwei; Yu, Chuck Wah

    2013-01-01

    Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the different mobility of H+/OH− between the contacting sands with a temperature difference. Computational fluid dynamics (CFD) and discrete element method (DEM) were used to demonstrate the dynamics of the sand charging. The numerically simulated charge-to-mass ratios of sands and electric field strength established in wind tunnel agreed well with the experimental data. The charging mechanism could provide an explanation for the charging process of all identical granular systems with water content, including Martian dust devils, wind-blown snow, even powder electrification in industrial processes. PMID:23434920

  9. Sand Volcano Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)

  10. A Microscopists View of Desert Varnish from the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Garvie, L. A. J.; Burt, D. M.; Buseck, P. R.

    2009-03-01

    Nanometer-scale element mapping and spectroscopy of desert varnish reveals a dynamic disequilibrium system characterized by post-depositional mineralogical, chemical, and structural changes, activated by liquid water.

  11. Spectral detection of different types of soil crusts under intact and disturbance conditions in semiarid environments from SE Spain.

    NASA Astrophysics Data System (ADS)

    Chamizo, S.; Stevens, A.; Cantón, Y.; Domingo, F.; van Wesemael, B.

    2009-04-01

    Biological Soil Crusts (BSCs) consist of an association of soil particles with cyanobacteria, algae, microfungi, liverworts, bryophytes and lichens creating a cohesive thin horizontal layer on the soil surface. They have a widespread distribution in arid and semiarid regions, which comprise over 40% of the world's land surface. BSCs play an important role on hydrological and ecological functioning of arid and semiarid ecosystems since they influence all components of hydrological balance (runoff, rainfall capture, infiltration, evaporation, water retention capacity) and erosion. It is well known that BSCs at local scale reduce water erosion by protecting soil against raindrop impact. However, their effects have to be evaluated at different spatial scales, because in many cases BSCs lead to an increase of runoff and downslope erosion or water harvesting from crusted areas to nourish adjacent vegetated areas. Moreover, BSCs are easily damaged by livestock or human activities and the disturbance usually has great significance for the coverage and the composition of the community of the BSCs, the developmental stage of the BSC and their effects on hydrology and erosion. So, to accurately predict runoff and erosion processes, the spatial distribution of soil crust types and their disturbance conditions should be included in models. To map soil crusting at large scales, the use of their spectral characteristics can be a useful method. The objectives of this work are i) to analyze the spectral characteristics of different crust types (physical and biological soil crusts), also corresponding to different crust development stages, in two semiarid areas in SE Spain, El Cautivo (in the Tabernas Desert) and Amoladeras (in the Natural Park Cabo de Gata-Níjar), ii) to demonstrate the efficiency of diffuse reflectance spectroscopy, especially in the visible part of the spectrum, for classifying different crust types and different crust disturbance conditions. Spectral

  12. Water balance in desert arthropods. Despite their small size, arthropods may be highly adapted for life in xeric conditions.

    PubMed

    Edney, E B

    1967-05-26

    As judged by the number of species, or of individuals, arthropods are an extremely successful group of desert inhabitants. There is very great structural and physiological diversity within the group, and since adaptations to desert life open to one are not open to all. we should not expect to find the maximum possible development of adaptive features in any arthropod simply because it lives in a desert. Most adult insects fly; their larvae and all other arthropods do not, and their adaptations will differ accordingly. Desert beetles have very impermeable cuticles and tolerate high body temperatures, while desert cockroaches live below the sand. have more permeable cuticles, and absorb water vapor. There is probably no single respect in which all desert arthropods differ from insects of other environments. Perhaps a profitable way of viewing desert animals is to recognize that each is a whole organism with a specific collection of adaptations that must be consistent within themselves and which are associated with a specific mode of life and a specific evolutionary history. The arthropod organization is capable of producing highly efficient desert species. There is, however, a converse way of looking at the situation, Which is often neglected but which may be of general biological interest: does the evolution of adaptations to desert environments necessarily involve loss of viability in more mesic habitats? If so, then what are these disavantages- what, for example, is the disadvantage of a highly impermeable cuticle? In some cases the answer is clear: sandroaches need sand dunes to live in because they are morphologically and behaviorly specialized for this habitat. More often the answer is not obvious. PMID:6024185

  13. Challenge of a desert: revegetation of disturbed desert lands

    SciTech Connect

    Wallace, A.; Romney, E.M.; Hunter, R.B.

    1980-01-01

    The revegetation of disturbed, arid lands is one of the great challenges of a desert. An attempt to encourage it is not an impossible task, however, if the natural and the man-made resources available are utilized and managed. Where rainfall and temperature conditions approach or exceed those of the Great Basin desert, restoration of disturbed land will occur through natural revegetation processes within a reasonable period of time. This is not generally the case in the more arid Mojave Desert areas where the moisture and temperature conditions are less favorable for germination and seedling survival. Restoration of vegetation by natural reseeding can, however, occur within local sites where moisture has concentrated as the result of terrain features forming catchment basins. Otherwise, the natural revegetation processes in the Mojave Desert areas require much longer periods of time (possibly decades or centuries) than are practical for meeting environmental protection standards imposed by current legislation. Through better understanding of the processes governing revegetation and the ability to control them, it is possible for man to more rapidly restore disturbed desert lands. Terrain manipulation to form moisture catchment basins, selection of seed from pioneering shrub species, preservation of existing shrub clump fertile islands in the soil, supplemental fertilization, irrigation, organic amendments, and transplanting vigorous shrub species are some of the important things that can be done to help restore disturbed desert land.

  14. MODELING FLOW PATTERNS IN A SMALL VEGETATED AREA IN THE NORTHERN CHICHUAHUAN DESERT USING QUIC ( QUIC URBAN AND INDUSTRIAL COMPLEX )

    EPA Science Inventory

    Sandstorms are frequent in the northern Chihuahuan Desert in New Mexico, an area characterized by open areas lacking vegetation, individual mesquite bushes, and mesquite coppice dunes. Field measurements of sand fluxes and wind velocities over a two year period provided a descri...

  15. History of the earth's crust

    SciTech Connect

    Eicher, D.L.; Mcalester, A.L.; Rottman, M.L.

    1984-01-01

    The history of the earth's crust since its formation 4.6 Gyr ago is traced in an introductory textbook, with consideration of the global climate and the general outline of biological evolution. The methodology of paleogeology is introduced, and the origin of the solar system, the accumulation and differentiation of the earth, the beginnings of life, and the history of the moon are examined. Separate chapters are then devoted to the Precambrian, Paleozoic, Mesozoic, and Cenozoic earth. Photographs, maps, diagrams, and drawings are provided. 49 references.

  16. The cumulative effects of using fine particles and cyanobacteria for rehabilitation of disturbed active sand dunes

    NASA Astrophysics Data System (ADS)

    Zaady, Eli; Katra, Itzhak; Barkai, Daniel; Knoll, Yaakov; Sarig, Shlomo

    2016-04-01

    One of the main problems in desertified lands worldwide is active wind-borne sand dunes, which lead to covering of fertile soils and agricultural fields. In regions with more than 100 mm of annual rainfall, sand dunes may be naturally stabilized by biocrusts (biological soil crusts). One of the main restraints of biocrust development is the typical lack of fine particles in sand dunes. Our study investigated the combined application of fine particles [coal fly-ash <100 micrometer] and bio-inoculant of filamentous cyanobacteria, isolated from nearby natural stabilized sand dunes, on the soil surface of active sands for increasing resistance to wind erosion. Boundary-layer wind tunnel experiments were conducted in experimental plots within a greenhouse for examining the effects of adding coal fly-ash and bio-inoculant to active sands. The biocrust development was evaluated via several physical and bio-physiological variables. In all the physical measurements and the bio-physiological variables, the treatment of "sand+inoculum+coal fly-ash" showed significant differences from the "sand-control". The combination led to the best results of surface stabilization in boundary-layer wind tunnel experiments, with the lowest sand fluxes. The filamentous cyanobacteria use the fine particles of the coal fly-ash as bridges for growing toward and adhering to the large sand particles. The cumulative effects of biocrusts and coal fly-ash enhance soil surface stabilization and may allow long-term sustainability.

  17. Construction techniques for the Taklamakan Desert Highway: research on the construction materials and the results of field tests

    NASA Astrophysics Data System (ADS)

    Jin, Changning; Dong, Zhibao; Li, Zhinong

    2006-03-01

    After conducting many laboratory and field experiments, several key technical issues related to the construction of China’s Taklamakan Desert Highway have been satisfactorily resolved. In particular, considerable progress has been made on the dry compaction of a sand sub-base, road design parameters, the creation of a structure that combines a sub-grade and asphalt pavement, analysis of the stability of a sand sub-base strengthened with geotextiles, and on the development of a complete set of construction techniques. The achievements of this research were successfully applied for the first time in the Taklamakan Desert, where the environmental conditions are extremely harsh. The results suggest that the construction of this highway was economical and that the simple construction methods produced a reliable highway. The resulting highway is believed to be the world’s first long-distance graded highway running through a huge desert with migrating dunes.

  18. Contribution to improving of the sands-bitumen

    NASA Astrophysics Data System (ADS)

    Haddadi, S.; Saoula, S.; Muñoz, M. E.; Santamaría, A.

    2012-09-01

    Algeria is a country made up of about 75% desert. It is a country rich in sand dune. Roads made in these regions have had very significant damage. Their repairs are very expensive because there are generally isolated roads and supporting low traffic. Aggregates represent about 94% of the asphalt mixture. Aggregate quarries which have good characteristics for bituminous concrete are found in northern Algeria. The transport of these aggregates from north to south is extremely expensive. This makes the project to the south of Algeria very expensive. In order to overcome the lack of aggregates, the use of local materials becomes a necessity. In this study we were interested in the sand dunes in two regions of southern Algeria: El-Oued and Ouargla. The objective of this work is to find ways to improve the mechanical properties of these sands to increase the life of pavements with low traffic in these areas. We have associated with these sands: crushed sand of the north, cement, lime and sulfur. Hubbard Field test, Marshall test, and Duriez test were applied to the different bituminous mixtures. This study showed that some associations have given encouraging results.

  19. Aeolian process-induced hyper-concentrated flow in a desert watershed

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan; Wang, Haibin; Jia, Xiaopeng

    2014-04-01

    Ephemeral desert channels are characterized by very high rates of sediment transport during infrequent flood events. Here we show that aeolian process-induced hyper-concentrated (AHC) flows occur in the Sudalaer desert watershed in the Ordos Plateau of China, which primarily transport 0.08-0.25 mm non-cohesive aeolian sand and have a peak suspended sediment concentration of 1.1-1.4 × 106 mg l-3. Aeolian sand supply and storage in the channel play a crucial role in causing hyper-concentrated flow. Our results indicate that non-cohesive aeolian sand can be entrained from the bed and suspended in the turbulent flow when the channel bed slope exceeds a critical threshold (0.0003). We also show that if the frequency ratio of wind-blown sandstorms to rainstorms Tw/Tp exceeds β(γ - γ0)/α (P/V3) (A/L) (where α is the wind-blown sand transport coefficient, β is the runoff coefficient, γ - γ0 is the increase in suspension concentration caused by addition of aeolian sands, P is the density of rainstorms, V is the wind speed of sandstorms, A is the runoff-generating area, L is the aeolian sand-filled channel length), an AHC flow occurs during the passage of a flood in a desert channel. Since high-frequency aeolian processes provide an adequate quantity of transportable sediment and promote AHC flow, most of the infrequent rainfall-induced floods occurring in arid zones can develop as AHC flows.

  20. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  1. Orbital radar studies of paleodrainages in the central Namib Desert

    USGS Publications Warehouse

    Lancaster, N.; Schaber, G.G.; Teller, J.T.

    2000-01-01

    Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area. (C) Elsevier Science Inc., 2000.Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area.

  2. Community succession of bacteria and eukaryotes in dune ecosystems of Gurbantünggüt Desert, Northwest China.

    PubMed

    Li, Ke; Bai, Zhihui; Zhang, Hongxun

    2015-01-01

    Pyrosequencing and quantitative polymerase chain reaction of small subunit rRNA genes were used to provide a comprehensive examination of bacterial, cyanobacterial, and eukaryotic communities in the biological soil crusts (BSCs) of Gurbantünggüt Desert sand dunes (China). Three succession stages were recognized based on the analyses of eukaryotic communities: a late succession stage of BSCs in a swale with eukaryotes mainly related to the Bryophyta clade, an initial succession stage in a slope with barely any eukaryotic phototrophic microorganisms detected, and an intermediate succession type detected from both the swale and slope BSCs dominated by the phylum Chlorophyta. Moreover, the cyanobacterial community dominated all of the BSCs (48.2-69.5% of the total bacteria) and differed among the three succession stages: sequences related to Microcoleus steenstrupii and the genus Scytonema were abundant in the later succession stage, whereas both the initial and intermediate stages were dominated by Microcoleus vaginatus. Compared with swales, BSCs from slopes are exposed to a harsher environment, e.g., higher irradiance and lower water availability, and thus may be restricted from developing to a higher succession stage. Other disturbances such as wind and grazing may explain the different succession stages observed in swales or slopes. However, no clear differences were detected from non-phototrophic bacterial communities of the three succession stages, and sequences related to Alphaproteobacteria and Actinobacteria were most abundant in all the BSCs. The closest matches for the most frequent non-phototrophic bacterial genera were mainly derived from harsh environments, indicating the robustness of these genera. PMID:25253412

  3. Mate desertion in the snail kite

    USGS Publications Warehouse

    Beissinger, S.R.; Snyder, N.F.R.

    1988-01-01

    Mate desertion during the breeding cycle was documented at 28 of 36 (78%) snail kite, Rostrhamus sociabilis nests in Florida between 1979 and 1983. Offspring mortality occurred at only one deserted nest, however. Parents that were deserted by their mates continued to care for their young until independence (3?5 additional weeks) and provided snails at a rate similar to that of both parents combined before desertion. Males and females deserted with nearly equal frequency, except in 1982 when more females deserted. No desertion occurred during drought years, whereas desertion occurred at nearly every nest during favourable conditions. The occurrence of mate desertion was generally related to indirect measures of snail abundance: foraging range, snail delivery rates to the young and growth rates. Small broods were deserted more frequently by females than by males and tended to be deserted earlier than large ones. After desertion, deserters had the opportunity to re-mate and nest again since breeding seasons were commonly lengthy, but whether they did so was impossible to determine conclusively in most cases. The deserted bird sometimes incurred increased energetic costs and lost breeding opportunities during periods of monoparental care.

  4. Three-link Swimming in Sand

    NASA Astrophysics Data System (ADS)

    Hatton, R. L.; Ding, Yang; Masse, Andrew; Choset, Howie; Goldman, Daniel

    2011-11-01

    Many animals move within in granular media such as desert sand. Recent biological experiments have revealed that the sandfish lizard uses an undulatory gait to swim within sand. Models reveal that swimming occurs in a frictional fluid in which inertial effects are small and kinematics dominate. To understand the fundamental mechanics of swimming in granular media (GM), we examine a model system that has been well-studied in Newtonian fluids: the three-link swimmer. We create a physical model driven by two servo-motors, and a discrete element simulation of the swimmer. To predict optimal gaits we use a recent geometric mechanics theory combined with empirically determined resistive force laws for GM. We develop a kinematic relationship between the swimmer's shape and position velocities and construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical predictions; thus geometric tools can be used to study locomotion in GM.

  5. Direct Production of Silicones From Sand

    SciTech Connect

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  6. Pacific ferromanganese crust geology and geochemistry

    SciTech Connect

    Andreev, S.I.; Vanstein, B.G.; Anikeeva, L.I. )

    1990-06-01

    Cobaltiferous ferromanganese crusts form part of a large series of oceanic ferromanganese oxide deposits. The crusts show high cobalt (commonly over 0.4%), low nickel and copper sum (0.4-0.8%), considerably high manganese (18-20%), and iron (14-18%). Less abundant elements in crusts are represented by molybdenum and vanadium; the rare-earth elements cerium, lanthenum, and yttrium; and the noble metals platinum and rhodium. Co-rich crusts form at water depths of 600 to 2,500 m. Crust thicknesses range from millimeters to 15-17 cm, averaging 2-6 cm. The most favorable conditions for 4-10 cm thick crusts to occur is at water depths of 1,200-2,200 m. The crusts formed on basaltic, calcareous, siliceous, and breccia bedrock surfaces provided there were conditions preventing bottom sedimentation at them. If the sedimentation takes place, it may be accompanied by nodules similar in composition to the crusts. The most favorable topography for extensive crust formation is considered to be subdued (up to 20{degree}) slopes and summit platforms of conical seamounts, frequently near faults and their intersection zones. Subhorizontal guyot summits do not usually favor crust growth. Crust geochemistry is primarily defined by mineralogy and manganese hydroxides (vernadite)/iron ratio. The first associated group of compounds includes cobalt, nickel, molybdenum, vanadium, cerium, and titanium; the other is strontium, yttrium, cerium, and cadmium. The aluminosilicate phase is associated with titanium, iron, chromium, and vanadium; phosphate biogenic phase includes copper, nickel, zinc, lead, and barium. The crucial point in cobaltiferous crust formation is their growth rate on which is dependent the degree of ferromanganese matrix sorption saturation with cobalt. The optimum for cobalt-rich ferromanganese ores is the conditions facilitating long-term and continuous hydrogenic processes.

  7. [Study on the change of dune CO2 concentration in the autumn at Minqin in Tengger desert].

    PubMed

    Shao, Tian-Jie; Zhao, Jing-Bo; Yu, Ke-Ke; Dong, Zhi-Bao

    2010-12-01

    In order to find out the CO2 concentration of the desert area, the influence of it on the CO2 in the atmosphere and the role that it played on the global carbon cycle, the research team utilized in September 2009 infrared CO2 monitor to observe the CO2 concentration of the 12 drill holes day and night in Minqin desert area in the Tengger desert. The difference of various observation spots' CO2 concentration of the desert area in the Tengger desert area is relatively big. The CO2 concentration at night is low but high in the daytime and the CO2 concentration at each observation spot changes from 310 x 10(-6) to 2 630 x 10(-6). The CO2 concentration is also obviously different in depth and the CO2 concentration at different depths in order of size is as follows: 4 m(3m) > 2 m > 1m. Compared with Xi' an area where is in the temperate and semi-humid region, the CO2 concentration of the desert area in Tengger desert is very low. The diurnal variation of CO2 concentration of the desert area in Tengger desert is obvious, and from the day 09:00 am to 09:00 am the next day, the CO2 concentrations at different depths which rang from 1 m to 4 m present the regularity that it changes from low to high, and then from high to low. The diurnal variation in temperature is the main reason that causes the change of the CO2 concentration in the sand layer, both of which have the positive correlation. The sand layer's CO2 concentration with higher water content is obviously higher than that with lower water content. The moisture content of sand layer is the main factor of the CO2 concentration. The CO2 concentration above 4m in the desert area is higher than that above the surface, which maybe indicates that the CO2 from the highest desert area is also the resource of CO2 in the atmosphere. PMID:21360892

  8. Pulsar glitches: the crust is not enough.

    PubMed

    Andersson, N; Glampedakis, K; Ho, W C G; Espinoza, C M

    2012-12-14

    Pulsar glitches are traditionally viewed as a manifestation of vortex dynamics associated with a neutron superfluid reservoir confined to the inner crust of the star. In this Letter we show that the nondissipative entrainment coupling between the neutron superfluid and the nuclear lattice leads to a less mobile crust superfluid, effectively reducing the moment of inertia associated with the angular momentum reservoir. Combining the latest observational data for prolific glitching pulsars with theoretical results for the crust entrainment, we find that the required superfluid reservoir exceeds that available in the crust. This challenges our understanding of the glitch phenomenon, and we discuss possible resolutions to the problem. PMID:23368300

  9. Ganges Chasma Sand Sheet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Today's sand sheet is located in the Ganges Chasma portion of Valles Marineris. As with yesterday's image, note that the dune forms are seen only at the margin and that the interior of the sand sheet at this resolution appears to completely lack dune forms.

    Image information: VIS instrument. Latitude -6.4, Longitude 310.7 East (49.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Sand Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  11. Diversity and Community Composition of Vertebrates in Desert River Habitats

    PubMed Central

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  12. Holocene aeolian activities in the southeastern Mu Us Desert, China

    NASA Astrophysics Data System (ADS)

    Jia, Feifei; Lu, Ruijie; Gao, Shangyu; Li, Jinfeng; Liu, Xiaokang

    2015-12-01

    Aeolian deposits from three sites in the Mu Us Desert were used to reconstruct the history of aeolian activities during the Holocene. The results of the lithologies, chronologies and proxy indicators showed that aeolian activities occurred at ∼9.96 cal ka BP, 7.9-6.9 ka BP, 6.4 ka BP and 3.8 cal ka BP∼. The cold event that occurred around 6.4 ka BP interrupted the Holocene Optimum period, which is largely consistent with the findings from sediments in adjacent regions and the monsoon areas of China. Combined with punished OSL and 14C ages of aeolian deposits samples in this region, the environmental changes in the Mu Us Desert were divided into four stages. Active sand dunes dominated before 11 ka BP. Aeolian activities occurred regionally from 11 to 8.5 ka BP and typical sandy paleosol widely developed with episodic aeolian activities between 8.5 and 4 ka BP. Dunes have reactivated and active sand dunes have gradually increased since 4 ka BP. Comparisons with the other paleoclimatic records indicated that the evolution of the Mu Us Desert was closely related to the East Asian monsoon. Paleosol development depended more on the precipitation brought by the East Asian summer monsoon (EASM). The stronger East Asian winter monsoon (EAMW) and higher isolation resulted in the aeolian activities in the early Holocene, while during the mid-Holocene the fluctuating EAWM played a more important role in inducing episodic aeolian activities. The environmental deterioration during the late Holocene can be related to weakened EASM or to increased anthropogenic influence.

  13. Diversity and Community Composition of Vertebrates in Desert River Habitats.

    PubMed

    Free, C L; Baxter, G S; Dickman, C R; Lisle, A; Leung, L K-P

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  14. Early Formation of Terrestrial Crust

    NASA Astrophysics Data System (ADS)

    Harrison, T. M.; Schmitt, A. K.; McCulloch, M. T.; Lovera, O. M.

    2007-12-01

    Early (≥4.5 Ga) Formation of Terrestrial Crust T.M. Harrison1, A.K. Schmitt1, M.T. McCulloch2, and O.M. Lovera1 1Department of Earth and Space Sciences and IGPP, UCLA, Los Angeles, CA 90095, USA; 2Research School of Earth Sciences, Australian National University, Canberra, A.C.T. 2601 AUSTRALIA Large deviations in ǎrepsilonHf(T) from bulk silicate Earth seen in >4 Ga detrital zircons from Jack Hills, Western Australia, have been interpreted as reflecting a major differentiation of the silicate Earth at ca. 4.4 to 4.5 Ga. We have expanded the characterization of 176Hf/177Hf (Hf) in Hadean zircons by acquiring a further 116 laser ablation Lu-Hf measurements on 87 grains with ion microprobe 207Pb/206Pb ages up to 4.36 Ga. Most measurements employed concurrent Lu-Hf and 207Pb/206Pb analyses, permitting assessment of the use of ion microprobe data to characterize the age of the volumetrically larger domain sampled by laser drilling. Our new results confirm and extend the earlier observation of significant negative deviations in ǎrepsilonHf(T) throughout the Hadean, although no positive ǎrepsilonHf(T) values were documented in this study. These data yields an essentially uniform spectrum of single-stage model ages between 4.54 and 4.20 Ga for extraction of the zircons' protoliths from a chondritic reservoir. We derived the full error propagation expression for a parameter, ǎrepsilono, which measures the difference of a sample from solar system initial (Hf) (Hfo), and from this conclude that data plotting close to (Hfo), are statistically meaningful and consistent with silicate differentiation at 4.540±0.006 Ga. δ18O and Ti thermometry for these Hadean zircons show little obvious correlation with initial (Hf), consistent with their derivation through fusion of a broad suite of crustal rock types under near water-saturated conditions. Together with the inclusion assemblage and other isotopic and trace element data obtained from these ancient zircons, our results

  15. Apulian crust: Top to bottom

    NASA Astrophysics Data System (ADS)

    Amato, Alessandro; Bianchi, Irene; Agostinetti, Nicola Piana

    2014-12-01

    We investigate the crustal seismic structure of the Adria plate using teleseismic receiver functions (RF) recorded at 12 broadband seismic stations in the Apulia region. Detailed models of the Apulian crust, e.g. the structure of the Apulian Multi-layer Platform (AMP), are crucial for assessing the presence of potential décollements at different depth levels that may play a role in the evolution of the Apenninic orogen. We reconstruct S-wave velocity profiles applying a trans-dimensional Monte Carlo method for the inversion of RF data. Using this method, the resolution at the different depth level is completely dictated by the data and we avoid introducing artifacts in the crustal structure. We focus our study on three different key-elements: the Moho depth, the lower crust S-velocity, and the fine-structure of the AMP. We find a well defined and relatively flat Moho discontinuity below the region at 28-32 km depth, possibly indicating that the original Moho is still preserved in the area. The lower crust appears as a generally low velocity layer (average Vs = 3.7 km/s in the 15-26 km depth interval), likely suggestive of a felsic composition, with no significant velocity discontinuities except for its upper and lower boundaries where we find layering. Finally, for the shallow structure, the comparison of RF results with deep well stratigraphic and sonic log data allowed us to constrain the structure of the AMP and the presence of underlying Permo-Triassic (P-T) sediments. We find that the AMP structure displays small-scale heterogeneities in the region, with a thickness of the carbonates layers varying between 4 and 12 km, and is underlain by a thin, discontinuous layer of P-T terrigenous sediments, that are lacking in some areas. This fact may be due to the roughness in the original topography of the continental margins or to heterogeneities in its shallow structure due to the rifting process.

  16. Desert winds; monitoring wind-related surface processes in Arizona, New Mexico, and California

    USGS Publications Warehouse

    Breed, Carol S., (Edited By); Reheis, Marith C.

    1999-01-01

    The 18-year Desert Winds Project established instrumented field sites in the five major regions of the North American Desert to obtain meteorological, geological, and vegetation data for natural desert sites affected by wind erosion. The eight chapters in this volume describe the settings and operation of the stations and summarize eolian-related research to date around the stations. The report includes studies of the sand-moving effectiveness of storm winds, wind-erosion susceptibility of different ground-surface types, relations of dust storms to meteorological conditions, mediation of wind erosion by vegetation, remote sensing to detect vegetation changes related to climate change, and comparison of regional dust deposition to that near Owens (dry) Lake.

  17. Mars Rover Curiosity Traverses of Sand Ripples

    NASA Astrophysics Data System (ADS)

    Stein, N.; Arvidson, R. E.; Zhou, F.; Heverly, M.; Maimone, M.; Hartman, F.; Bellutta, P.; Iagnemma, K.; Senatore, C.

    2014-12-01

    Martian sand ripples present a challenge for rover mobility, with drives over ripples often characterized by high wheel sinkage and slippage that can lead to incipient embedding. Since landing in Gale Crater, Curiosity has traversed multiple sand ripples, including the transverse aeolian ridge (TAR) straddling Dingo Gap on sols 533 and 535. On sol 672, Curiosity crossed backward over a series of sand ripples before ending its drive after high motor currents initiated visual odometry (VO) processing, which detected 77% slip, well in excess of the imposed 60% slip limit. At the end of the drive, the right front wheel was deeply embedded at the base of a ripple flank with >20 cm sinkage and the rear wheels were near a ripple crest. As Curiosity continues its approach to Mount Sharp it will have to cross multiple ripples, and thus it is important to understand Curiosity's performance on sol 672 and over similar ripples. To this end the sol 672 drive was simulated in ARTEMIS (Adams-Based Rover Terramechanics Interaction Simulator), a software tool consisting of realistic rover mechanical models, a wheel-terrain interaction module for deformable and non-deformable surfaces, and realistic terrain models. ARTEMIS results, Dumont Dunes tests performed in the Mojave Desert using the Scarecrow test rover, and single wheel tests performed at MIT indicate that the high slip encountered on sol 672 likely occurred due to a combination of rover attack angle, ripple geometry, and soil properties. When ripple wavelength approaches vehicle length, the rover can reach orientations in which the leading wheels carry minimal normal loads and the trailing wheels sink deeply, resulting in high slippage and insufficient thrust to propel the rover over ripples. Even on relatively benign (i.e. low tilt) terrains, local morphology can impose high sinkage, thus impeding rover motion. Work is underway to quantify Curiosity's drive performance over various ripple geometries to retrieve soil

  18. Two-phase measurements of wind and saltating sand in an atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yuan; Lee, Sang-Joon

    2007-07-01

    Wind-blown sand movement is a particle-laden two-phase flow related to wind erosion in which the velocity distributions of both wind and sand are of particular interest. In the present study, two types of natural sand, one collected from the Pohang beach (diameter d = 200-300 μm) in South Korea and the other from the Taklimakan desert ( d = 100-125 μm) in China, were tested in a simulated atmospheric boundary layer. A high-speed digital camera system was used to capture images of the saltating sand particles at 2000 fps with an exposure time of 1/3000 s. Instantaneous velocity fields of the saltating sand particles were obtained using a particle tracking velocimetry (PTV) method. From these data, the particle resultant velocity, volume concentration, and streamwise mass flux were estimated as a function of height. The results reveal that the resultant particle velocity has an approximate log-linear profile with vertical height. Both the particle concentration and streamwise mass flux decay dramatically in the near surface region ( z < 20 mm for the beach sand, and z < 15 mm for the desert sand), then decline mildly beyond this region. To investigate the modification of the surrounding wind by the saltating sand particles, a hot-wire anemometry with a robust hot-film probe was employed to measure the wind velocity profiles with and without saltation. The present experimental data on both the saltating sand and wind provide useful information that enhances our understanding of saltation transport and further development of control techniques of wind erosion.

  19. Thin viscous middle-crust and evolving fault distribution during continental rifting: Insights from analog modeling experiments

    NASA Astrophysics Data System (ADS)

    Keppler, R.; Rosas, F. M.; Nagel, T. J.

    2013-11-01

    Analog modeling of continental rifting, assuming a crustal scale “jelly sandwich”-like rheology, was carried out to test the mechanical effect of varying the absolute thickness of a weak (viscous) middle crust (silicone layer), interbedded between a brittle upper crust (sand layer) and a strong lower crust. Results consistently show a delocalization of the brittle deformation (i.e. a uniform scattering of the faults) throughout the upper brittle layer. This effect is interpreted to be associated with pressure driven flow in the viscous layer, caused by the tectonic collapse of upper brittle fault blocks into the viscous substratum. A reduction of the overall viscous layer thickness increases its resistance to accommodate internal thickness variations, which promotes delocalization of the fault pattern in the upper brittle layer. Our results contribute to the understanding of the mechanics of the so-called “upper plate paradox”, a large-scale structure often recognized at non-volcanic rifted margins. A thin viscous middle crust provides means of decoupling the deformation affecting upper and lower crust during rifting. On one hand this promotes a uniform scattering of faults throughout the upper brittle crust, on the other hand it allows for a strong localization of the deformation in lower crust and upper mantle expressed by the lithospheric necking in the rift center.

  20. Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation

    USGS Publications Warehouse

    Belnap, Jayne; Harper, Kimball T.; Warren, Steven D.

    1994-01-01

    Cryptobiotic soil crusts are an important component of semiarid and arid ecosystems. An important role of these crusts is the contribution of fixed nitrogen to cold‐desert ecosystems. This study examines the residual effects of various intensities and combinations of different surface disturbances (raking, scalping, and tracked vehicles) on nitrogenase activity, chlorophyll content, and chlorophyll degradation in these soil crusts. Nine months after disturbance chlorophyll content of disturbed soils was not statistically different from undisturbed controls, except in the scalped treatments, indicating recovery of this characteristic is fairly quick unless surface material is removed. Differences in chlorophyll degradation among treatments were not statistically significant. However, nitrogenase activity in all treatments showed tremendous reductions, ranging from 77–97%, when compared to the control, indicating this characteristic is slow to recover. Consequently, assessment of crustal recovery from disturbance must include not only visual and biomass characteristics but other physiological measurements as well. Areas dominated by these crusts should be managed conservatively until the implications of crustal disturbance is better understood.

  1. Diurnal variations of saltation activity at Tazhong: the hinterland of Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; He, Qing; Mamtimin, Ali; Huo, Wen; Liu, Xinchun

    2013-02-01

    The Taklimakan Desert of China is a region of frequent sandstorms and, thus, is a major sand and dust source area. Tazhong, a small mining village, is located near the center of the Taklimakan Desert at a distance of 220 km from the desert margins. Near Tazhong, we conducted a 2-year field investigation designed to monitor the diurnal variation of saltation activity using fast-responding piezoelectric saltation sensors (Sensits). Results suggest that saltation activity tends to occur more frequently during daytime in all seasons, relatively high levels of saltation activity are maintained from around 11:30 to around 16:30 local standard time (LST), because of stronger wind speed, higher soil temperature and lower relative humidity. During the spring and summer seasons, the saltation activity can occur at any time of the day, while there are some periods with zero saltation seconds at night and in the early morning during autumn and winter seasons. The results confirm that sandstorms tend to occur more frequently during daylight hours, so it may be helpful to forecast and guard against the occurrence of blowing sand or sandstorms in the Taklimakan Desert.

  2. Building with Sand

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2010-01-01

    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  3. Ganges Chasma Sands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand in the form of dunes and a broad, relatively flat, sand sheet in Ganges Chasma, part of the eastern Valles Marineris trough complex. The winds responsible for these dunes blew largely from the north. Sand dunes on Mars, unlike their Earthly counterparts, are usually dark in tone. This is a reflection of their composition, which includes minerals that are more rich in iron and magnesium than the common silica-rich dunes of Earth. Similar dark sands on Earth are found in volcanic regions such as Iceland and Hawaii. A large dune field of iron/magnesium-rich grains, in the form fragments of the volcanic rock, basalt, occurs south of Moses Lake, Washington, in the U.S.

    Location near: 7.7oS, 45.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  4. Late Quaternary stratigraphy and luminescence geochronology of the northeastern Mojave Desert

    USGS Publications Warehouse

    Mahan, S.A.; Miller, D.M.; Menges, C.M.; Yount, J.C.

    2007-01-01

    The chronology of the Holocene and late Pleistocene deposits of the northeastern Mojave Desert have been largely obtained using radiocarbon ages. Our study refines and extends this framework using optically stimulated luminescence (OSL) to date deposits from Valjean Valley, Silurian Lake Playa, Red Pass, and California Valley. Of particular interest are eolian fine silts incorporated in ground-water discharge (GWD) deposits bracketed at 185-140 and 20-50 ka. Alluvial fan deposits proved amenable for OSL by dating both eolian sand lenses and reworked eolian sand in a matrix of gravel that occurs within the fan stratigraphy. Lacustrine sand in spits and bars also yielded acceptable OSL ages. These OSL ages fill gaps in the geochronology of desert deposits, which can provide data relevant to understanding the responses of several depositional systems to regional changes in climate. This study identifies the most promising deposits for future luminescence dating and suggests that for several regions of the Mojave Desert, sediments from previously undated landforms can be more accurately placed within correct geologic map units.

  5. 100 Kyr Old Desert of Western India: Morhodynamics and Environmental Significance

    NASA Astrophysics Data System (ADS)

    Bhatt, N.

    2012-04-01

    The Late Quaternary oscillations in sea levels and resultant changes in the coastal environment have remained a popular aspect of study amongst the earthscientists and archaeologists. The Saurashtra peninsula of the western India that lies on the southwestern side of the Thar Desert, has archived a fascinating record of such environmental changes since last interglacial (~120kyr) in the form of a fossil desert exhibiting various aeolian land forms constituted by the sand largely derived from the coastal areas due to an oscillatory sea level change. A variety of dunes viz., coastal transverse, parabolic, longitudinal, barchans, climbing and falling dunes along with valley fills and sand sheets have been mapped. Being biogenic calcium carbonate rich, the sands have been lithified under the influence of an increase in moisture and thus the dune and bed forms are preserved in its best shape. The intense aeolian activities are also evident in the form of desert varnish on rocky outcrops. The sequence comprises smaller climate perturbations in the form of stabilization, erosion and karstification of older dunes and deposition of fluvial sediments in between. The paper deals with the mode of occurrence, response of sediments to wind dynamics and palaeo topography, internal structures, later modifications of sediments and significance of the geochronologically constrained aeolianites in understanding of environmental changes since 100kyr in the region.

  6. Extracting Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Ford, L. B.; Daly, D.

    1984-01-01

    Recovery of oil from tar sands possible by batch process, using steam produced by solar heater. In extraction process, solar heater provides steam for heating solvent boiler. Boiling solvent removes oil from tar sands in Soxhlet extractor.

  7. Formation of present desert landscape surrounding Jilantai Salt Lake in northern China based on OSL dating

    NASA Astrophysics Data System (ADS)

    Fan, Yuxin; Chen, Xiaolong; Liu, Wenhao; Zhang, Fu; Zhang, Fan

    2015-09-01

    The Jilantai Salt Lake (JSL), a lake of importance due to its salt production in China since the early Qing dynasty, is surrounded by sand dunes. Exploration of the development of these sand dunes will be helpful for identifying the forces underlying the desert landscape and for identifying a solution to protect the salt resources. Through field investigation, we found sand dunes overlying either lacustrine and bog deposits on the lake bed at a lower altitude or littoral sediments on the higher lakeshores. Optically Stimulated Luminescence (OSL) dating results indicate that sands started to accumulate around the JSL as early as the early Holocene (around 11 ka), while the rapid development of sand dunes occurred within the latest 0.1 ka. By comparison with climatic documents and human activities in adjacent regions, the initiation of sand accumulation around the JSL as early as the early Holocene is considered to be the result of low effective moisture in the Jilantai area. However, the rapid development of the sand dunes in the vast area surrounding the JSL was likely initiated by the intensified human activities which occurred within the latest 0.1 ka under warm and dry climatic conditions.

  8. Plagioclase flotation and lunar crust formation

    NASA Technical Reports Server (NTRS)

    Walker, D.; Hays, J. F.

    1977-01-01

    Anorthitic plagioclase floats in liquids parental to the lunar highlands crust. The plagioclase enrichment that is characteristic of lunar highlands rocks can be the result of plagioclase flotation. Such rocks would form a gravitationally stable upper crust on their parental magma.

  9. Western Gas Sands Subprogram

    SciTech Connect

    Not Available

    1983-12-01

    The Western Gas Sands Subprogram (WGSS) is a multidisciplinary research effort within the US Department of Energy program on Unconventional Gas Recovery. The subprogram, managed by DOE's Morgantown Energy Technology Center, is directed towards the development of tight (very low permeability) lenticular gas sands in the western United States. The purpose of the subprogram is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. The subprogram has two broad goals: (1) to reduce the uncertainty of the reservoir production potential and (2) to improve the extraction technology. With input from the gas industry, universities, and geologic and engineering consulting firms, the WGSS was broadened to include more fundamental research and development. Consequently, for the last five years it has focused on improving diagnostic instrumentation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of the three priority basins containing tight sands and selected by DOE as research targets have also been pursued as part of this new effort. To date, the following tentative conclusions have evolved: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than conventional gas deposits. Nineteen western geologic basins and trends containing significant amounts of tight gas have been identified. Gas resources in the priority geologic basins are Piceance Basin, 49 tcf., Uinta Basin, 20 tcf., and Greater Green River Basin, 136 tcf. The presence of natural micro-fractures within the production zone of a reservoir and the effective propped length of hydraulically-induced fractures are the critical parameters for successful development of tight sand resources. 8 figures.

  10. Northern Sand Sea

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 82 degrees North latitude during Northern spring. The image is completely dominated by dunes. In sand seas, it is very common for a single type of dune to occur, and for a single predominate wind to control the alignment of the dunes.

    Image information: VIS instrument. Latitude 82.2, Longitude 152.5 East (207.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Connecting Brabant's cover sand landscapes through landscape history

    NASA Astrophysics Data System (ADS)

    Heskes, Erik; van den Ancker, Hanneke; Jungerius, Pieter Dirk; Harthoorn, Jaap; Maes, Bert; Leenders, Karel; de Jongh, Piet; Kluiving, Sjoerd; van den Oetelaar, Ger

    2015-04-01

    Noord-Brabant has the largest variety of cover sand landscapes in The Netherlands, and probably in Western Europe. During the Last Ice Age the area was not covered by land ice and a polar desert developed in which sand dunes buried the existing river landscapes. Some of these polar dune landscapes experienced a geomorphological and soil development that remained virtually untouched up to the present day, such as the low parabolic dunes of the Strabrechtse Heide or the later and higher dunes of the Oisterwijkse Vennen. As Noord-Brabant lies on the fringe of a tectonic basin, the thickness of cover sand deposits in the Centrale Slenk, part of a rift through Europe, amounts up to 20 metres. Cover sand deposits along the fault lines cause the special phenomenon of 'wijst' to develop, in which the higher grounds are wetter than the boarding lower grounds. Since 4000 BC humans settled in these cover sand landscapes and made use of its small-scale variety. An example are the prehistoric finds on the flanks and the historic towns on top of the 'donken' in northwest Noord-Brabant, where the cover sand landscapes are buried by river and marine deposits and only the peaks of the dunes protrude as donken. Or the church of Handel that is built beside a 'wijst' source and a site of pilgrimage since living memory. Or the 'essen' and plaggen agriculture that developed along the stream valleys of Noord-Brabant from 1300 AD onwards, giving rise to geomorphological features as 'randwallen' and plaggen soils of more than a metre thickness. Each region of Brabant each has its own approach in attracting tourists and has not yet used this common landscape history to connect, manage and promote their territories. We propose a landscape-historical approach to develop a national or European Geopark Brabants' cover sand landscapes, in which each region focuses on a specific part of the landscape history of Brabant, that stretches from the Late Weichselian polar desert when the dune

  12. Phytoremediation for Oily Desert Soils

    NASA Astrophysics Data System (ADS)

    Radwan, Samir

    This chapter deals with strategies for cleaning oily desert soils through rhizosphere technology. Bioremediation involves two major approaches; seeding with suitable microorganisms and fertilization with microbial growth enhancing materials. Raising suitable crops in oil-polluted desert soils fulfills both objectives. The rhizosphere of many legume and non-legume plants is richer in oil-utilizing micro-organisms than non-vegetated soils. Furthermore, these rhizospheres also harbour symbiotic and asymbiotic nitrogen-fixing bacteria, and are rich in simple organic compounds exuded by plant roots. Those exudates are excellent nutrients for oil-utilizing microorganisms. Since many rhizospheric bacteria have the combined activities of hydrocarbon-utilization and nitrogen fixation, phytoremediation provides a feasible and environmentally friendly biotechnology for cleaning oil-polluted soils, especially nitrogen-poor desert soils.

  13. Morphologic characteristics and migration rate assessment of barchan dunes in the Southeastern Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Hamdan, M. A.; Refaat, A. A.; Abdel Wahed, M.

    2016-03-01

    This work explores the morphologic characteristics of aeolian dune sand in the southeastern part of Western Desert of Egypt. It aims to assess the movement of barchan dunes and evaluate their environmental influence on the Toshka Project. Morphometric investigation of barchan dunes in the Toshka area revealed that most barchans have high length/width (a/c) ratios (fat to pudgy), while one-fifth of the studied barchans have lower a/c ratios and so appear normal in their morphologic forms. Statistical analysis of the main parameters of barchan dunes in Toshka and other desert regions in the Kharga (Egypt), Kuwait, Southern Morocco, California and Southern Peru demonstrates that barchans of the Toshka area are distinctive in their appearance. They are characterized by distinct aspect with higher values of length and width and greater growth in height. The high-energy wind environment in addition to the large amount of drifting sand are principal factors responsible for the unique shape of Toshka barchans. The migration rate of barchan dunes in four chosen test locations, within the central and western Toshka area, ranges from about 3 to 10.82 m/year. The calculated average migration rate of these dunes is about 6 m/year in a SSW direction. Sand encroachment is more extensive in the central and western parts of the investigated Toshka area. Risk evaluation of sand dune movements in the southeastern part of the Western Desert points to medium to high sand encroachment risk values. These may represent serious hazards to the newly-established Toshka Project, threatening roads, as well as cultivated lands in the area.

  14. The Crusts of Mars and Earth

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Taylor, S. R.; Hahn, B. C.

    2007-05-01

    The differentiation of terrestrial planets and large moons results in crusts with compositions differing greatly from primitive mantles. Typically, large fractions of incompatible elements, including heat-producing elements, are transferred into the crust. Mechanisms and timing of this process differ greatly from planet to planet. Accordingly, in order to understand planetary evolution, it is necessary to understand the composition and evolution of planetary crusts. Crustal evolution on Earth is perhaps the least representative of the terrestrial planets and large moons of the solar system. Although Earth substantially melted after the giant impact that resulted in the Moon, there is little evidence for the existence of a primary crust suggesting that such crust was recycled and mixed into the mantle during the Hadean. Instead, Earth has a very young, continually recycled basaltic secondary (oceanic) crust and an andesitic tertiary (continental) crust, unique in the solar system, that grew episodically over 4 Gyr, but with an average age of about 2 Gyr. The continental - oceanic crust dichotomy, temporal changes in continental crust composition, role of plume volcanism and continental growth are largely consequences of evolving plate- tectonic processes. Mars provides a valuable comparison to Earth because it is a planet that is, in many ways, intermediate between Earth and planetary bodies, such as the Moon and Mercury, that completed crustal development by about 3 Gyr and have been dormant since. Martian crust is mostly ancient (>3.5 Gyr) but volcanism has persisted, possibly episodically, to 200 Myr or younger. Proposals of early plate tectonics persist, but the weight of evidence suggests Mars is a one-plate planet. The 50 km thick crust constitutes 3.2% of the mass of the planet and, even with modest levels of LILE enrichment (K=0.33%), has had well in excess of 50% of incompatible elements removed from the mantle during early differentiation that likely

  15. The effects of body properties on sand-swimming

    NASA Astrophysics Data System (ADS)

    Sharpe, Sarah; Kuckuk, Robyn; Koehler, Stephan; Goldman, Daniel

    2014-03-01

    Numerous animals locomote effectively within sand, yet few studies have investigated how body properties and kinematics contribute to subsurface performance. We compare the movement strategies of two desert dwelling subsurface sand-swimmers exhibiting disparate body forms: the long-slender limbless shovel-nosed snake (C. occipitalis) and the relatively shorter sandfish lizard (S. scincus). Both animals ``swim'' subsurface using a head-to-tail propagating wave of body curvature. We use a previously developed granular resistive force theory to successfully predict locomotion of performance of both animals; the agreement with theory implies that both animal's swim within a self-generated frictional fluid. We use theory to show that the snake's shape (body length to body radius ratio), low friction and undulatory gait are close to optimal for sand-swimming. In contrast, we find that the sandfish's shape and higher friction are farther from optimal and prevent the sandfish from achieving the same performance as the shovel-nosed snake during sand-swimming. However, the sandfish's kinematics allows it to operate at the highest performance possible given its body properties. NSF PoLS

  16. OSL age and stratigraphy of the Strauss sand sheet in New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Hall, Stephen A.; Goble, Ronald J.

    2015-07-01

    The Strauss sand sheet occurs in south-central New Mexico, USA, and northern Chihuahua, Mexico, covering an area of about 4740 km2. Its chronology is determined by 19 OSL ages. The sand sheet formed primarily during three phases of eolian deflation and deposition, each phase with a separate sand source and under different climatic and environmental circumstances. The first phase of eolian sedimentation occurred 45 to 15 ka with the deposition of unit 1. The sand source for the first phase was beach-related features along the eastern shoreline of pluvial Lake Palomas in Mexico. The glacial-age climate was cool, wet, and windy because of the southern path of the jet stream at that time. After 15 ka, with the onset of warmer conditions of the Bølling-Allerød, the shutting down of the Palomas sand source, and wet conditions of the Younger Dryas, the sand sheet stabilized with weak soil development in unit 1. By 11 ka, the climate shifted to Holocene drying conditions and the second phase of sand accumulation began, forming unit 2; the sand source was the local deflation of the previously deposited unit 1 sand. The sand sheet stabilized again by 1.9 ka with slightly wetter late Holocene climate; a weak soil formed in unit 2 sand. About A.D. 1500 and extending to about A.D. 1850 or later, an A horizon formed on the sand sheet, probably in response to a desert grassland vegetation during the period of wet climate of the Little Ice Age. In an anthropogenic third phase of eolian activity, after A.D. 1850, the vegetation was likely disturbed by overgrazing; and the unit 2 and A horizon (unit 3) sands were deflated, resulting in the deposition of a thin layer of massive eolian sand (unit 4) across the sand sheet. By about A.D. 1900 mesquite shrubs had increased in abundance; and deflated sand, largely from unit 2, began to accumulate around the shrubs, forming coppice dunes (unit 5). Mesquite coppice dunes continued to increase in number and volume during the twentieth

  17. Initial insights into the age and origin of the Kubuqi sand sea of northern China

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Forman, Steven; Hu, Fangen; Zhang, Deguo; Liu, Ziting; Li, Hongwei

    2016-04-01

    The Kubuqi Desert is the only active sand sea in the semiarid regions of northern China and occurs along the southern margin of the Yellow River. Little is known about the age and origin of this large (17,000 km2) sand sea with a present annual precipitation of 200-480 mm. Sand drift potentials indicated net capable winds for aeolian transport are from the northwest, though winds are stronger to north beyond the dune field than within the sand sea. Geomorphic and stratigraphic observations indicate that Holocene aeolian sand often drapes over bedrock and river terraces as a palimpsest landscape. Field investigations identified four stratigraphic sections with multiple aeolian sand units and palaeosols, with age control by optically stimulated luminescence (OSL) dating of quartz grains. Palaeosols are weakly developed, mostly accumulative A horizon with organic carbon content < 1% and reflect sand sheet deposition possibly in a steppe environment. Although sediments near river channels or former lakes might give old ages, the initial formation and age of the Kubuqi sand sea should be judged from the occurrence of the sandy palimpsest of the landscape that is OSL dated to the Holocene in general. The latest period of aeolian reactivation may be related to human activity associated with grazing and farming from lost cities in the Kubuqi Desert during the Han (206 B.C. - A.D. 220) and the Tang (A.D. 608 - 907) Dynasties. Also, variable discharge of the Yellow River with local diversions for irrigation and throughout the catchment resulted in possibly an increased supply of aeolian particles for dune field expansion in the past 2 ka.

  18. Fine-scale simulations of aeolian sediment dispersion in a small area in the northern Chihuahuan Desert

    NASA Astrophysics Data System (ADS)

    Bowker, George E.; Gillette, Dale A.; Bergametti, Gilles; Marticorena, BéAtrice; Heist, David K.

    2008-06-01

    The northern Chihuahuan Desert in New Mexico contains mesquite bushes and small coppice dunes as well as open areas lacking vegetation. Sandstorms are common in this area, gradually reshaping the flat grassland into a landscape of mesquite coppice dunes and bare open patches. During storms, complex airflows entrain sediment from the open areas, depositing it around downwind bushes and dunes. Understanding and quantifying these processes could help to clarify the ongoing process of desert formation. Sand flux patterns for eight storms occurring in April 2003 and April 2004 were predicted for a (60 m by 60 m) site on the basis of 297 10-min average velocity simulations using a semiempirical mass consistent diagnostic wind field model: Quick Urban & Industrial Complex version 3.5 (QUIC) used with a sand flux parameterization. The sand flux patterns were highly heterogeneous, varying with wind direction and differing between storms. Generally, the nonvegetated areas experienced high sand fluxes, while wake areas behind dunes experienced little or no sand flux. Sediment erosion and deposition patterns were calculated by taking the divergence of the sand flux. The open areas were the sources of the sediment, while the windward sides of the mesquite bushes and dunes were the primary deposition areas. The simulated sediment erosion and deposition magnitudes were qualitatively similar to an annual average from 45 years of measurements.

  19. The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of the Central Namib Desert.

    PubMed

    Gombeer, S; Ramond, J-B; Eckardt, F D; Seely, M; Cowan, D A

    2015-09-01

    Notwithstanding, the severe environmental conditions, deserts harbour a high diversity of adapted micro-organisms. In such oligotrophic environments, soil physicochemical characteristics play an important role in shaping indigenous microbial communities. This study investigates the edaphic bacterial communities of three contrasting desert terrain types (gravel plains, sand dunes and ephemeral rivers) with different surface geologies in the Central Namib Desert. For each site, we evaluated surface soil physicochemistries and used explorative T-RFLP methodology to get an indication of bacterial community diversities. While grain size was an important parameter in separating the three terrain types physicochemically and specific surface soil types could be distinguished, the desert edaphic bacterial communities displayed a high level of local spatial heterogeneity. Ten variables contributed significantly (P < 0.05) to the variance in the T-RFLP data sets: fine silt, medium and fine sand content, pH, S, Na, Zn, Al, V and Fe concentrations, and 40% of the total variance could be explained by these constraining variables. The results suggest that local physicochemical conditions play a significant role in shaping the bacterial structures in the Central Namib Desert and stress the importance of recording a wide variety of environmental descriptors to comprehensively assess the role of edaphic parameters in shaping microbial communities. PMID:25939371

  20. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  1. Windblown Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-557, 27 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows sand dunes and large ripples in a crater in the Hellespontus region of Mars. The winds that formed these dunes generally blew from the left/lower-left (west/southwest). Unlike the majority of dunes on Earth, sand dunes on Mars are mostly made up of dark, rather than light, grains. This scene is located near 50.3oS, 327.5oW. The image covers an area 3 km (1.9 mi) wide, and is illuminated by sunlight from the upper left.

  2. Dynamic sand dunes.

    PubMed

    Amarouchene, Y; Boudet, J F; Kellay, H

    2001-05-01

    When sand falling in the spacing between two plates goes past an obstacle, a dynamic dune with a parabolic shape and an inner triangular region of nonflowing or slowly creeping sand forms. The angle of the triangular zone increases with the height of the dune and saturates at a value determined by the geometry of the cell. The width of the dune, related to the radius of curvature at the tip, shows universal features versus its height rescaled by geometrical parameters. The velocity profile in the flowing part is determined and found to be nonlinear. The parabolic shape can be accounted for using a simple driven convection-diffusion equation for the interface. PMID:11328156

  3. Dark Sand Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    13 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. The dominant winds responsible for these dunes blew from the lower left (southwest). They are located near 76.6oN, 257.2oW. The picture covers an area 3 km (1.9 mi) across; sunlight illuminates the scene from the upper right.

  4. Western gas sands

    SciTech Connect

    Not Available

    1985-03-01

    The purpose of this research is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. Two broad research goals have been defined: (1) reducing the uncertainty of the reservoir production potential, and (2) improving the extraction technology. These goals are being pursued by conducting research and encouraging industrial efforts in developing the necessary technology, including: (1) providing fundamental research into the nature of tight, lenticular gas sands and the technologies for diagnosing and developing them: (2) developing and verifying the technology for effective gas production; and (3) promoting the transfer of research products and technology advances to the gas industry in usable forms. The focus of the research for the last several years has been improving diagnostic instrumentation for reservoir and stimulation performance evaluation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of three basins containing tight lenticular sands, which were selected by DOE as priority research targets, have also been pursued as part of this new effort. To date, the following tentative conclusions have been formed: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than that of conventional gas deposits. Nineteen western geologic basins and trends containing significant volumes of tight gas have been identified. Gas resources in the priority geologic basins have been estimated - Piceance Basin 49 Tcf.; Greater Green River Basin, 136 Tcf.; Uinta Basin, 20 Tcf. Presence of natural micro-fractures within a reservoir and the effective propped length of hydraulically induced fratures are the critical parameters for successful development of tight sand resources. Stimulation technology at the present time is insufficient to efficiently recover gas from lenticular tight reservoirs. 8 figs., 3 tabs.

  5. Controls on sediment production in two U.S. deserts

    USGS Publications Warehouse

    Belnap, Jayne; Walker, Beau J.; Munson, Seth M.; Gill, Richard A.

    2014-01-01

    Much of the world’s airborne sediment originates from dryland regions. Soil surface disturbances in these regions are ever-increasing due to human activities such as energy and mineral exploration and development, recreation, suburbanization, livestock grazing and cropping. Sediment production can have significant impacts to human health with particles potentially carrying viruses such as Valley Fever or causing asthma or other respiratory diseases. Dust storms can cause decreased visibility at the ground level, resulting in highway accidents, and reduced visual quality in park and wildland airsheds. Sediment production and deposition is also detrimental to ecosystem health, as production reduces soil fertility at its source and can bury plants and other organisms where it is deposited. Therefore, it is important to understand how we can predict what areas are prone to producing sediment emissions both before and after soil surface disturbance. We visited 87 sites in two deserts of the western U.S. that represented a range of soil texture and surface cover types. We used a portable wind tunnel to estimate the threshold friction velocity (TFV) required to initiate sediment transport and the amount of sediment produced by the tunnel at a set wind speed. Wind tunnel runs were done before and after soil surface disturbance with a four-wheel drive vehicle. Results show that most undisturbed desert soils are very stable, especially if covered by rocks or well-developed biological soil crusts, which make them virtually wind-erosion proof. Particles at disturbed sites, in contrast, moved at relatively low wind speeds and produced high amounts of sediment. Silt was an important predictor of TFV and sediment production across all sites, whereas the influence of rock cover and biological soil crusts was site-dependent. Understanding the vulnerability of a site after disturbance is important information for land managers as they plan land use activities and attempt to

  6. Controls on sediment production in two U.S. deserts

    NASA Astrophysics Data System (ADS)

    Belnap, Jayne; Walker, Beau J.; Munson, Seth M.; Gill, Richard A.

    2014-09-01

    Much of the world’s airborne sediment originates from dryland regions. Soil surface disturbances in these regions are ever-increasing due to human activities such as energy and mineral exploration and development, recreation, suburbanization, livestock grazing and cropping. Sediment production can have significant impacts to human health with particles potentially carrying viruses such as Valley Fever or causing asthma or other respiratory diseases. Dust storms can cause decreased visibility at the ground level, resulting in highway accidents, and reduced visual quality in park and wildland airsheds. Sediment production and deposition is also detrimental to ecosystem health, as production reduces soil fertility at its source and can bury plants and other organisms where it is deposited. Therefore, it is important to understand how we can predict what areas are prone to producing sediment emissions both before and after soil surface disturbance. We visited 87 sites in two deserts of the western U.S. that represented a range of soil texture and surface cover types. We used a portable wind tunnel to estimate the threshold friction velocity (TFV) required to initiate sediment transport and the amount of sediment produced by the tunnel at a set wind speed. Wind tunnel runs were done before and after soil surface disturbance with a four-wheel drive vehicle. Results show that most undisturbed desert soils are very stable, especially if covered by rocks or well-developed biological soil crusts, which make them virtually wind-erosion proof. Particles at disturbed sites, in contrast, moved at relatively low wind speeds and produced high amounts of sediment. Silt was an important predictor of TFV and sediment production across all sites, whereas the influence of rock cover and biological soil crusts was site-dependent. Understanding the vulnerability of a site after disturbance is important information for land managers as they plan land use activities and attempt to

  7. Characterization of detrital zircon U-Pb age patterns of the sandy and Gobi desert and implication for Chinese loess source

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Lu, H.; Xu, X.; Liu, X.; Yang, T.; Stevens, T.; BIRD, A.; Xu, Z.; Zhang, T.; LEI, F.; Feng, H.

    2015-12-01

    Detrital zircon age distribution pattern provides a possibility to discriminate the potential sources of aeolian sand and loess in north China. 8 surface samples from the North Tibetan Plateau (NTP) plain and Gobi Altay Mountains (GAMs) plain and 21 modern sand samples from the Tengger desert and Mu Us sand field are collected to obtain detrital zircon age distribution patterns for the investigation of the potential provenance of aeolian sand and silt in north China. Combined with existing detrital zircon age data from potential source areas, zircon grains at different ages can be assigned different origins. Using the zircon age distribution pattern of all samples on the NTP plain as one end member, that on the GAMs plain as another, and those from the North China Craton (NCC) as a third, the mixing ratio of the three deposits could be calculated. Following this, deposits in the Tengger Desert, Mu Us sand field and CLP are divided into different groups by different sources. Tengger Desert sediments are mainly made of sediments from GAM plain, except for thoes on the southern edge, which are mainly influenced by sediments from the NTP plain. Sediments in the northeast Mu Us sand field are largely from NCC material and those in the southwest are mainly from the NTP plain. Moreover, we estimate that at least more than 60% of Quaternary loess materials on the CLP probably originate from the materials on the NTP plain. The CLP sediment involved in this study can be considered as broadly homogenous.

  8. Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence

    NASA Astrophysics Data System (ADS)

    Davila, Alfonso F.; Gómez-Silva, Benito; de Los Rios, Asunción; Ascaso, Carmen; Olivares, Hector; McKay, Christopher P.; Wierzchos, Jacek

    2008-03-01

    The hyperarid core of the Atacama Desert is considered the dry limit for life on Earth. Soils in this region have very low abundance of heterotrophic bacteria and are practically barren of photosynthetic microorganisms because of the extreme dry conditions (≤2 mm a-1 rainfall). However, relatively abundant endolithic communities of cyanobacteria (Chroococcidiopsis) occur within halite crusts in paleolake evaporitic deposits. By means of continuous monitoring of the microclimate conditions (temperature, relative humidity, water vapor density, wetness, and photosynthetically active radiation) inside and around the halite crusts, we demonstrate here that water vapor condenses within the pore space of the halite at relative humidity (RH) levels that otherwise hinder the occurrence of liquid water in the surrounding environment. Water condensation occurs at RH >75%, which corresponds to the deliquescence point of halite. We have estimated a total of 57 deliquescence events (i.e., water condensation) within the halite crusts, as opposed to only 1 liquid water event outside. These wet events resulted in a total of 213.8 h of potential photosynthetic activity for the endolithic microorganisms versus only 6 h for organisms outside the halite crusts. Halite crusts may therefore represent the last available niche for photosynthetic activity in extreme arid environments on Earth.

  9. Intricately Rippled Sand Deposits

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for Intricately Rippled Sand Deposits (QTVR)

    NASA's Mars Exploration Rover Spirit welcomed the beginning of 2006 on Earth by taking this striking panorama of intricately rippled sand deposits in Gusev Crater on Mars. This is an approximate true-color rendering of the 'El Dorado' ripple field provided by Spirit over the New Year's holiday weekend. The view spans about 160 degrees in azimuth from left to right and consists of images acquired by Spirit's panoramic camera on Spirit's 708th and 710th Martian days, or sols, (Dec. 30, 2005 and Jan. 1, 2006). Spirit used the Pancam's 750-nanometer, 530-nanometer and 430-nanometer filters to capture the colors on Mars. Scientists have eliminated seams between individual frames in the sky portion of the mosaic to better simulate the vista a person standing on Mars would see. Spirit spent several days acquiring images, spectral data, and compositional and mineralogical information about these large sand deposits before continuing downhill toward 'Home Plate.'

  10. Continental Lower Crust: Wavespeeds, Composition, and Relamination

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Kelemen, P. B.; Behn, M. D.

    2015-12-01

    The composition of much of Earth's lower continental crust is enigmatic. The available heat-flow and wavespeed constraints can be satisfied if lower continental crust elsewhere contains anywhere from 49 to 62 wt% SiO2 (similar to andesite and dacite), with high to moderate concentrations of K, Th and U. Beneath shields and platforms, Vp suggests that 20-30% of lower crust is mafic. A large fraction of this material could be denser than peridotite. In these settings the underlying upper mantle is too cold to permit development of a convective instability. High Vp lithologies in these settings may be the result of mafic underplating, or slow metamorphic growth of large proportions of garnet. Vp from lower crust of Paleozoic-Mesozoic orogens indicates a smaller amount of mafic rock and little or no material that is denser than peridotite. Beneath rifts, arcs, and volcanic plateaux and beneath continent-collision zones, ~10-20% of lower crust is mafic, and about half that is denser than peridotite. The inferred gravitational instability and high Moho temperatures suggest that the mafic lower crust in these regions may be temporary. During sediment subduction, subduction erosion, arc subduction, and continent subduction, mafic rocks become eclogite and may continue to descend into the mantle, whereas more silica-rich rocks are transformed into felsic gneisses that are less dense than peridotite but more dense than continental upper crust. These more-felsic rocks may rise buoyantly, undergo decompression melting and melt extraction, and may be relaminated to the base of the crust. As a result of this refining/differentiation process, such relatively felsic rocks could form much of lower crust.

  11. Experimental measurement of diffusive extinction depth and soil moisture gradients in dune sand of Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mughal, I.; Jadoon, K. Z.; Mai, P. M.; Al-Mashharawi, S.; Missimer, T. M.

    2012-12-01

    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration and water is commonly stored within them because of the low hydraulic conductivity soils within the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the "extinction depth", where it is protected from evaporation during the long dry periods. The stored moisture below the extinction depth can be utilized to support desert agriculture and the subsurface areas below this depth can serve as potential sites for storage of surface runoff or treated waste water by artificial recharge. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. A barrel with a diameter 150 cm and a height of 150 cm was installed underground in the field and was filled with dune sand. The sand was saturated with water and was exposed to natural conditions (evaporation and precipitation) for thirty days. The decline of the water level in the sand column was continuously recorded by using transducers and sensors installed at different depths to monitor the temporal variation of temperature and moisture content within the sand. The moisture content gradient showed a gradual decline during measurement. The effect of the diurnal variation of temperature was observed by the sensors installed in the upper 75 cm and was negligible at greater depths. The water level decline stabilized after twenty days and the extinction depth was established at 85 cm. In the field, a similar extinction depth was observed in the region where sand dunes overlay an impervious basement.

  12. Sidewinding as a control template for climbing on sand

    NASA Astrophysics Data System (ADS)

    Marvi, Hamidreza; Gong, Chaohui; Travers, Matthew; Gravish, Nick; Mendelson, Joseph; Hatton, Ross; Choset, Howie; Hu, David; Goldman, Daniel

    2014-03-01

    Sidewinding, translation of a limbless system through lifting of body segments while others remain in static contact with the ground, is used by desert-dwelling snakes like sidewinder rattlesnakes Crotalus cerastes to locomote effectively on hard ground, rocky terrain, and loose sand. Biologically inspired snake robots using a sidewinding gait perform well on hard ground but suffer significant slip when trying to ascend granular inclines. To understand the biological organisms and give robots new capabilities, we perform the first study of mechanics of sidewinding on granular media. We vary the incline angle (0 < θ <20°) of a trackway composed of desert sand. Surface plate drag measurements reveal that as incline angle increases, downhill yield stresses decrease by 50%. Our biological measurements reveal that the animals double the length of the contact region as θ increases; we hypothesize that snakes control this contact to reduce ground shear stress and so avoid slipping. Implementing this anti-slip strategy in a snake robot using contact patch modulation enables the robot to successfully ascend granular inclines.

  13. Sidewinding as a control template for climbing on sand

    NASA Astrophysics Data System (ADS)

    Marvi, Hamidreza; Gong, Chaohui; Gravish, Nick; Mendeslon, Joseph; Hatton, Ross; Choset, Howie; Goldman, Daniel; Hu, David

    2013-11-01

    Sidewinding, translation of a limbless system through lifting of body segments while others remain in static contact with the ground, is used by desert-dwelling snakes like sidewinder rattlesnakes Crotalus cerastes to locomote effectively on hard ground, rocky terrain, and loose sand. Biologically inspired snake robots using a sidewinding gait perform well on hard ground but suffer significant slip when ascending granular inclines. To understand the biological organisms and give robots new capabilities, we perform the first study of sidewinding on granular media. We vary the incline angle (0 < θ <20°) of a trackway composed of desert sand. Surface plate drag measurements reveal that as incline angle increases, downhill yield stresses decrease by 50%. Our biological measurements reveal that the animals double the length of the contact region as θ increases; we hypothesize that the snakes control this contact to reduce ground shear stress and avoid slipping. Implementing the anti-slip motion in a snake robot using contact patch modulation enables the robot to ascend granular inclines.

  14. Biogeomorphology of a Mojave Desert landscape - Configurations and feedbacks of abiotic and biotic land surfaces during landform evolution

    NASA Astrophysics Data System (ADS)

    Pietrasiak, Nicole; Drenovsky, Rebecca E.; Santiago, Louis S.; Graham, Robert C.

    2014-02-01

    Terrestrial ecosystems can be more holistically understood by investigating the morphology of landscape mosaics, the assemblage of their ecological communities, and the linkages and feedbacks between the mosaics and communities. The overarching objectives of this study were to: (1) study the abiotic and biotic configurations of landform units as mosaics within a Mojave Desert chronosequence; and (2) elucidate their potential feedbacks, interactions, and dynamics during landform evolution. Seven landform units distributed over three geomorphic ages were identified, including: young bars and swales; intermediate-aged flattened bars, flattened swales, and bioturbation units; and old desert pavements and shrub zones. These landform units were characterized according to abiotic and biotic land surface properties. Landform units were statistically distinct and predictable based on a specific suite of abiotic and biotic properties. Vascular plant functional group and biological soil crust community diversity varied with geomorphology, with greatest diversity associated with bars and shrub zones and lowest diversity associated with desert pavements. Biological soil crust communities were controlled by geomorphic age, surface rock size, and protruding rocks with young bar units having the highest abundance and diversity. Perennial forbs were observed in old shrub zones with small rocks and few protruding rocks. A high clast density and a finer-sized clast distribution were found particularly in desert pavements and flattened swales, and generally inhibited biological soil crust and plant cover. Evolutionary trajectories for landforms of a lower piedmont landscape can be dominated by either abiotic and biotic landform processes. These two trajectories are distinctly different and are associated with their own unique linkages, feedbacks, and dynamics of abiotic and biotic land surface properties, producing a highly diverse desert landscape.

  15. Modeling Soil Moisture in the Mojave Desert

    USGS Publications Warehouse

    Miller, David M.; Hughson, Debra; Schmidt, Kevin M.

    2008-01-01

    The Mojave Desert is an arid region of southeastern California and parts of Nevada, Arizona, and Utah; the desert occupies more than 25,000 square miles (fig. 1). Ranging from below sea level to over 5,000 feet (1,524 m) in elevation, the Mojave Desert is considered a ?high desert.? On the west and southwest it is bounded by the Sierra Nevada, the San Gabriel, and the San Bernardino Mountains. These imposing mountains intercept moisture traveling inland from the Pacific Ocean, producing arid conditions characterized by extreme fluctuations in daily temperatures, strong seasonal winds, and an average annual precipitation of less than six inches. The Mojave Desert lies farther south and at a lower elevation than the cooler Great Basin Desert and grades southward into the even lower and hotter Sonoran Desert.

  16. Mapping the Stratigraphy of Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, N. M.; Hunt, M. L.; Clayton, R. W.

    2008-12-01

    Booming dunes emit a loud rumbling sound after a man-made or natural sand avalanche is generated on the slip face of a large desert dune. The sound consist of one dominant frequency (70 - 105 Hz) with several higher harmonics. A recent publication (Vriend et al., 2007) presented a model of an internal, natural waveguide that propagates the booming emission, amplifies the sound, and sets the booming frequency. The mapping of the subsurface layering, which is necessary for the existence of a waveguide, prompted additional work on the dune structure and stratigraphy. The current work highlights geophysical measurements at Eureka Dunes in Death Valley National Park, CA and Dumont Dunes in the Mojave Desert, CA. Seismic refraction studies indicate strong layering with large velocity jumps across the interfaces. Ground Penetrating Radar (GPR) profiles, at frequencies of 100 MHz and 200 MHz, map out the stratigraphic structure of the dunes. Variations in the near surface layering are able to predict the seasonal variability in booming frequency both quantitatively and qualitatively. The Kirchhoff migrated GPR profiles are superimposed on the local topography obtained with a laser rangefinder. The complex dune structure is resolved to a depth of over 30 meters for the 100 MHz antenna. The GPR profiles of the longitudinal Eureka dune display complex internal structures from old dune crests. Both slopes have slip faces at 30 degrees with parallel layering (< 2m) at the near surface. At the transverse Dumont dune the GPR profile exhibits strong parallel layering on the booming leeward slipface only. The shallower windward face features a remarkable tilted repetitive layering that cuts through the surface. At Dumont Dunes the layering on the leeward face explains the change in booming frequency between 70 - 95 Hertz in the period 2005 - 2008. The tilted layering structure of the shallow windward face prevents the formation of a waveguide and is never able to sustain the

  17. Desert Pathfinder at Work

    NASA Astrophysics Data System (ADS)

    2005-09-01

    The Atacama Pathfinder Experiment (APEX) project celebrates the inauguration of its outstanding 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, passed successfully its Science Verification phase in July, and since then is performing regular science observations. This new front-line facility provides access to the "Cold Universe" with unprecedented sensitivity and image quality. After months of careful efforts to set up the telescope to work at the best possible technical level, those involved in the project are looking with satisfaction at the fruit of their labour: APEX is not only fully operational, it has already provided important scientific results. "The superb sensitivity of our detectors together with the excellence of the site allow fantastic observations that would not be possible with any other telescope in the world," said Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project. ESO PR Photo 30/05 ESO PR Photo 30/05 Sub-Millimetre Image of a Stellar Cradle [Preview - JPEG: 400 x 627 pix - 200k] [Normal - JPEG: 800 x 1254 pix - 503k] [Full Res - JPEG: 1539 x 2413 pix - 1.3M] Caption: ESO PR Photo 30/05 is an image of the giant molecular cloud G327 taken with APEX. More than 5000 spectra were taken in the J=3-2 line of the carbon monoxide molecule (CO), one of the best tracers of molecular clouds, in which star formation takes place. The bright peak in the north of the cloud is an evolved star forming region, where the gas is heated by a cluster of new stars. The most interesting region in the image is totally inconspicuous in CO: the G327 hot core, as seen in methanol contours. It is a truly exceptional source, and is one of the richest sources of emission from complex organic molecules in the

  18. Bacterial Composition and Quantitation in the Yungay Region of the Atacama Desert, Chile

    NASA Technical Reports Server (NTRS)

    Fletcher, Lauren; Conley, Catharine A.; Ishkhanova, Galina; Kovacs, Gregory; Jordan, Jeanne; Cullings, Ken; Gomez-Silva, Benito; McKay, Christopher

    2006-01-01

    Voyager would have produced similar negative results if tested in the Yungay region (Navarro-Gonzales et al, 2003). However, the number of bacteria present per gr'am in the Yungay sands is not well-established, being below the detection limit of culture methods. For the past several years, this group has been analyzing Yungay sands by quantitative Polymerase Chain Reaction (qPCR), both in the lab and in the field, to establish protocols for counting bacteria. We use primers that detect a broad range of bacterial taxa, including both proteobacteria and firmicutes. Optimization of DNA extraction and qPCR analysis is critical for accurate counts. Comparison of qPCR results with PhosphoLipid Fatty Acid (PLFA)-analysis and other counting methods indicates that there are detectable bacteria in sand obtained from the upper few centimeters of the desert surface.

  19. Evapotranspiration of Caragana korshinskii communities in a revegetated desert area: Tengger Desert, China

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Ping; Brown-Mitic, Constance M.; Kang, Er-Si; Zhang, Jing-Guang; Li, Xin-Rong

    2004-12-01

    More than 40 years of revegetation using mainly Caragana korshinskii at Shapotou Desert Experimental Research Station in China has established a dwarf-shrub and herbaceous cover on the stabilized sand dunes. The evapotranspiration (ET) of the dwarf-shrub C. korshinskii community and the evaporation (E) of the bare soil were measured by the auto-weighing lysimeter method during the growing seasons from 1990 to 1995. The average ET rate was 0.83 mm d-1, which varied from 0.71 to 1.06 mm d-1 during the 6-year period. Monthly ET ranged from 0.14 to 2.35 mm d-1, with a monthly precipitation (P) range of 0 to 3.12 mm d-1. Monthly ET/P ratios varied from 0.94 to 1.28 and averaged 97·4% overall. Most of the precipitation in this area usually falls between June and September. The lowest precipitation was recorded in 1991, with most of it falling during April and May. This temporal anomaly in the precipitation resulted in the highest ET/P ratio (by 0.33) and soil moisture depletion (S = -31·5 mm) for the 6-year period. ET from the revegetated sand dunes around Shapotou under natural precipitation may account for 1.·2% of the potential evaporation. Cumulative P and cumulative ET and E were highly correlated, with a well-defined linear relationship of ET = 0.80P + 10.0 and E = 0.55P + 5.89, with regression R2 ranging from 0.953 to 0.985. In 1991, however, the regression equations for both ET and E were considerably different than the other years, with a steeper slope and a negative intercept resulting from the anomaly in the precipitation pattern.

  20. Deriving polarization properties of desert-reflected solar spectra with PARASOL data

    NASA Astrophysics Data System (ADS)

    Sun, W.; Baize, R. R.; Lukashin, C.; Hu, Y.

    2015-07-01

    One of the major objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) is to conduct highly accurate spectral observations to provide an on-orbit inter-calibration standard for relevant Earth-observing sensors with various channels. To calibrate an Earth-observing sensor's measurements with the highly accurate data from the CLARREO, errors in the measurements caused by the sensor's sensitivity to the polarization state of light must be corrected. For correction of the measurement errors due to the light's polarization, both the instrument's dependence on the incident polarization state and the on-orbit knowledge of the polarization state of light as a function of observed scene type, viewing geometry, and solar wavelength are required. In this study, an algorithm for deriving the spectral polarization state of solar light from the desert is reported. The desert/bare land surface is assumed to be composed of two types of areas: fine sand grains with diffuse reflection (Lambertian non-polarizer) and quartz-rich sand particles with facets of various orientations (specular-reflection polarizer). The Adding-Doubling Radiative Transfer Model (ADRTM) is applied to integrate the atmospheric absorption and scattering in the system. Empirical models are adopted in obtaining the diffuse spectral reflectance of sands and the optical depth of the dust aerosols over the desert. The ratio of non-polarizer area to polarizer area and the angular distribution of the facet orientations are determined by fitting the modeled polarization states of light to the measurements at three polarized channels (490, 670, and 865 nm) by the Polarization and Anisotropy of Reflectances for Atmospheric Science instrument coupled with Observations from a Lidar (PARASOL). Based on this physical model of the surface, the desert-reflected solar light's polarization state at any wavelength in the whole solar spectra can be calculated with the ADRTM.

  1. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  2. Drilling to gabbro in intact ocean crust.

    PubMed

    Wilson, Douglas S; Teagle, Damon A H; Alt, Jeffrey C; Banerjee, Neil R; Umino, Susumu; Miyashita, Sumio; Acton, Gary D; Anma, Ryo; Barr, Samantha R; Belghoul, Akram; Carlut, Julie; Christie, David M; Coggon, Rosalind M; Cooper, Kari M; Cordier, Carole; Crispini, Laura; Durand, Sedelia Rodriguez; Einaudi, Florence; Galli, Laura; Gao, Yongjun; Geldmacher, Jörg; Gilbert, Lisa A; Hayman, Nicholas W; Herrero-Bervera, Emilio; Hirano, Nobuo; Holter, Sara; Ingle, Stephanie; Jiang, Shijun; Kalberkamp, Ulrich; Kerneklian, Marcie; Koepke, Jürgen; Laverne, Christine; Vasquez, Haroldo L Lledo; Maclennan, John; Morgan, Sally; Neo, Natsuki; Nichols, Holly J; Park, Sung-Hyun; Reichow, Marc K; Sakuyama, Tetsuya; Sano, Takashi; Sandwell, Rachel; Scheibner, Birgit; Smith-Duque, Chris E; Swift, Stephen A; Tartarotti, Paola; Tikku, Anahita A; Tominaga, Masako; Veloso, Eugenio A; Yamasaki, Toru; Yamazaki, Shusaku; Ziegler, Christa

    2006-05-19

    Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D. PMID:16627698

  3. Have graben wall scarps accumulated sand and dust on Mars?

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Davis, P. A.

    1991-01-01

    Grabens are linear fault bounded troughs that are extremely abundant on Mars (about 7000 cover the Western Hemisphere). Analysis of lunar and Martian grabens as well as analogous structures on Earth indicates that grabens form under extension when the crust is pulled apart. On Mars, topographic maps are not of sufficient resolution to measure graben wall slopes. Seismic shaking on Mars might be capable of reducing 60 deg fault scarps to an angle of repose. Some other process must be responsible for further reducing graben wall slopes. If the deposition of sand and dust along graben walls is responsible for their extremely low slopes, then a variety of implications are possible. Sand and/or dust movement and deposition is ubiquitous in grabens over most of Mars, as similar looking grabens are found over the entire Western Hemisphere and this requires a plentiful supply of sand or dust. If the material that accumulates is of low density and cohesion, attempts to traverse graben walls might be difficult. Rimless shallow depressions could be more effective sinks for sand and dust on Mars than has been realized.

  4. Workshop on the Growth of Continental Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D. (Editor)

    1988-01-01

    Constraints and observations were discussed on a fundamental unsolved problem of global scale relating to the growth of planetary crusts. All of the terrestrial planets were considered, but emphasis was placed on the Earth's continental crust. The title of each session is: (1) Extraterrestrial crustal growth and destruction; (2) Constraints for observations and measurements of terrestrial rocks; (3) Models of crustal growth and destruction; and (4) Process of crustal growth and destruction.

  5. Spatial Variability and Stocks of Soil Organic Carbon in the Gobi Desert of Northwestern China

    PubMed Central

    Zhang, Pingping; Shao, Ming'an

    2014-01-01

    Soil organic carbon (SOC) plays an important role in improving soil properties and the C global cycle. Limited attention, though, has been given to assessing the spatial patterns and stocks of SOC in desert ecosystems. In this study, we quantitatively evaluated the spatial variability of SOC and its influencing factors and estimated SOC storage in a region (40 km2) of the Gobi desert. SOC exhibited a log-normal depth distribution with means of 1.6, 1.5, 1.4, and 1.4 g kg−1 for the 0–10, 10–20, 20–30, and 30–40 cm layers, respectively, and was moderately variable according to the coefficients of variation (37–42%). Variability of SOC increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. Significant correlations were detected between SOC and soil physical properties, i.e. stone, sand, silt, and clay contents and soil bulk density. The relatively coarse fractions, i.e. sand, silt, and stone contents, had the largest effects on SOC variability. Experimental semivariograms of SOC were best fitted by exponential models. Nugget-to-sill ratios indicated a strong spatial dependence for SOC concentrations at all depths in the study area. The surface layer (0–10 cm) had the largest spatial dependency compared with the other layers. The mapping revealed a decreasing trend of SOC concentrations from south to north across this region of the Gobi desert, with higher levels close to an oasis and lower levels surrounded by mountains and near the desert. SOC density to depths of 20 and 40 cm for this 40 km2 area was estimated at 0.42 and 0.68 kg C m−2, respectively. This study provides an important contribution to understanding the role of the Gobi desert in the global carbon cycle. PMID:24733073

  6. Leaf epidermal appendages of desert plant: an ecological perspective

    NASA Astrophysics Data System (ADS)

    Liu, Yubing; Li, Xinrong; Li, Mengmeng

    2014-05-01

    Desert plant often have few, tiny or no leaves, which reduces transpiration. The epidermis of their leaves is often ornamented outgrowths called trichomes or hairs and a thick waxy cuticle. Hairs on the leaf surface trap humidity in dry climates and waxy leaf surfaces reduce water loss. Our present study is to investigate the characteristics of trichomes and waxy cuticle in leaf surface of desert plant, which in the long term acclimation in semi-humid, semi-arid and arid ecosystems of Northern China, from east (Zhangwu county, Liaoning province) to west (Korla city, Xinjiang Uygur Autonomous Region), passing through several provinces including the Inner Mongolia Autonomous Region, Shanxi province, the Ningxia Hui Autonomous Region and Gansu province. 68 shrubs and 7 trees were selected in the natural habitats which were artificial sand fixing vegetation and the adjacent natural vegetation in sandy areas. The leaf epidermis was observed by scanning electron microscopy (SEM) and the cuticle thickness was calculated in the leaf cross-section by transmission electron microscopy (TEM). The results indicated that the epidermis of selected materials was divided into five categories: (1) Trichomes with different forms covered completely on the adaxial and abaxial surfaces of leaf, and any other epidermal appendages could not been observed. (2) Epicuticular wax crystals with different forms almost completely covered in the epistomatal chambers as well as on the surrounding epidermis, and there were no other appendages on the leaf surface. (3) A lot of warty hairs arranged neatly on the surface and the stomatal index was too low. (4) Several or even dozens of papillary epidermal cells covered with waxy crystals enclosed a sunken stomata chamber, therefore the stomatal density is very low. (5) Like ordinary terrestrial plants, epidermal cells and cell outline are clear, with epidermal hairs or not, and the stomata and waxy crystals are visible. TEM showed that desert plants

  7. Restoring the biological crust cover of soils across biomes in arid North America

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran; Antoninka, Anita; Bowker, Matthew; Giraldo Silva, Ana; Nelson, Corey; Velasco Ayuso, Sergio; Barger, Nichole; Belnap, Jayne; Reed, Sasha; Duniway, Michael

    2015-04-01

    Biological soil crust communities provide important ecosystem services to arid lands, particularly regarding soil fertility and stability against erosion. In North America, and in many other areas of the globe, increasingly intense human activities, ranging from cattle grazing to military training, have resulted in the significant deterioration of biological soil surface cover of soils. With the intent of attaining sustainable land use practices, we are conducting a 5-year, multi-institutional research effort to develop feasible soil crusts restoration strategies for US military lands. We are including field sites of varying climatic regions (warm and cold deserts, in the Chihuahuan Desert and in the Great Basin, respectively) and varying edaphic characteristics (sandy and silty soils in each). We have multiple aims. First, we aim to establishing effective "biocrust nurseries" that produce viable and pedigreed inoculum, as a supply center for biocrust restoration and for research and development. Second, we aim to develop optimal field application methods of biocrust inoculum in a series of field trials. Currently in our second year of research, we will be reporting on significant advances made on optimizing methodologies for the large-scale supply of inoculum based on a) pedigreed laboratory cultures that match the microbial community structure of the original sites, and b) "in soil" biomass enhancement, whereby small amounts of local crusts are nursed under greenhouse conditions to yield hundred-fold increases in biomass without altering significantly community structure. We will also report on field trials for methodologies in field application, which included shading, watering, application of chemical polymers, and soil surface roughening. In a soon-to-be-initiated effort we also aim to evaluate soil and plant responses to biocrust restoration with respect to plant community structure, soil fertility, and soil stability, in multi-factorial field experiments. An

  8. Frozen magma lenses below the oceanic crust.

    PubMed

    Nedimović, Mladen R; Carbotte, Suzanne M; Harding, Alistair J; Detrick, Robert S; Canales, J Pablo; Diebold, John B; Kent, Graham M; Tischer, Michael; Babcock, Jeffrey M

    2005-08-25

    The Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust. Thermal modelling, tomography, compliance and wide-angle seismic studies, supported by geological evidence, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres. Until now, however, no reflection images have been obtained of such a structure within the Moho transition zone. Here we show images of groups of Moho transition zone reflection events that resulted from the analysis of approximately 1,500 km of multichannel seismic data collected across the intermediate-spreading-rate Juan de Fuca ridge. From our observations we suggest that gabbro lenses and melt accumulations embedded within dunite or residual mantle peridotite are the most probable cause for the observed reflectivity, thus providing support for the hypothesis that the crust is generated from multiple magma bodies. PMID:16121179

  9. Oxygen consumption in subseafloor basaltic crust

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Wheat, C. G.; Hulme, S.; Edwards, K. J.; Bach, W.

    2012-12-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass, yet little is known about the form and function of life in this vast subseafloor realm that covers nearly two-thirds of the Earth's surface. A deep biosphere hosted in subseafloor basalts has been suggested from several lines of evidence; yet, empirical analysis of metabolic reaction rates in basaltic crust is lacking. Here we report the first measure of oxygen consumption in young (~ 8 Ma) and cool (<25 degrees C) basaltic crust, calculated from modeling oxygen and strontium profiles in basal sediments collected during Integrated Ocean Drilling Program (IODP) Expedition 336 to 'North Pond', a sediment 'pond' on the western flank of the Mid-Atlantic Ridge (MAR), where vigorous fluid circulation within basaltic crust occurs. Dissolved oxygen concentrations increased towards the sediment-basement interface, indicating an upward diffusional supply from oxic fluids circulating within the crust. A parametric reaction-transport model suggests oxygen consumption rates on the order of 0.5-500 nmol per cubic centimeter fluid per day in young and cool basaltic crust, providing sufficient energy to support a subsurface crustal biosphere.

  10. Early formation of evolved asteroidal crust.

    PubMed

    Day, James M D; Ash, Richard D; Liu, Yang; Bellucci, Jeremy J; Rumble, Douglas; McDonough, William F; Walker, Richard J; Taylor, Lawrence A

    2009-01-01

    Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System. PMID:19129845

  11. Interactive Effects of Moss-Dominated Crusts and Artemisia ordosica on Wind Erosion and Soil Moisture in Mu Us Sandland, China

    PubMed Central

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion. PMID:24982973

  12. Sand Dunes, Afghanistan

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER image covers an area of 10.5 x 15 km in southern Afghanistan and was acquired on August 20, 2000. The band 3-2-1 composite shows part of an extensive field of barchan sand dunes south of Kandahar. The shape of the dunes indicates that the prevailing wind direction is from the west. The image is located at 30.7 degrees north latitude and 65.7 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Ganges Rocks and Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 January 2004 The top half of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows wind-eroded remnants of sedimentary rock outcrops in Ganges Chasma, one of the troughs of the Valles Marineris system. The lower half shows a thick accumulation of dark, windblown sand. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left. These features are located near 7.6oS, 49.4oW.

  14. Fortune Cookie Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-432, 25 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

  15. Sand dollar sites orogenesis

    NASA Astrophysics Data System (ADS)

    Amos, Dee

    2013-04-01

    The determinology of the humble sand dollars habitat changing from inception to the drastic evolution of the zone to that of present day. Into the cauldron along the southern Californian 'ring of fire' lithosphere are evidence of geosynclinals areas, metasedimentary rock formations and hydrothermal activity. The explanation begins with 'Theia' and the Moon's formation, battles with cometary impacts, glacial ages, epochs with evolutionary bottlenecks and plate tectonics. Fully illustrated the lecture includes localised diagrams and figures with actual subject photographic examples of plutonic, granitic, jade and peridodite. Finally, the origins of the materials used in the lecture are revealed for prosecution by future students and the enjoyment of interested parties in general.

  16. Defrosting Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-434, 27 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows retreating patches of frost on a field of large, dark sand dunes in the Noachis region of Mars. Large, windblown ripples of coarse sediment are also seen on some of the dunes. This dune field is located in a crater at 47.5oS, 326.3oW. The scene is illuminated by sunlight from the upper left.

  17. Sand Dunes in Hellas

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-537, 7 November 2003

    The smooth, rounded mounds in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture are sand dunes. The scene is located in southern Hellas Planitia and was acquired in mid-southern autumn, the ideal time of year for Hellas imaging. Sunlight illuminates the scene from the upper left. These dunes are located near 49.1oS, 292.6oW. The picture covers an area 3 km (1.9 mi) wide.

  18. Compressive behavior of fine sand.

    SciTech Connect

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo; Chen, Wayne

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  19. Distribution of desert varnish in Arizona

    NASA Technical Reports Server (NTRS)

    Elvidge, Christopher D.

    1989-01-01

    Desert varnish is the dark coat of clay and ferromanganese oxides developed on exposed rock surfaces in arid regions. It forms from the accretion of material from windblown dust. The distribution of desert varnish was mapped in Arizona. It was discovered that desert varnish could be mapped on a regional scale. Well developed desert varnish is common on stable rock surfaces in areas having alkaline soils and less than about 25 cm of annual precipitation. Rock surfaces in areas having more than 40 cm of annual precipitation are generally devoid of desert varnish. An experiment was conducted with varnished desert pavement stone. The stones were broken in half and half was set on a roof in central Illinois from April until October. Removed from the alkaline desert environment, it only took seven months for the varnish to develop an eroded appearance. This experiment graphically illustrates the dependency of desert varnish on alkalinity. In this context, the zones of eroded desert varnish in Arizona indicate that the area of active desert varnish formation has fluctuated, expanding in drier times and contracting/eroding in wetter times.

  20. Harvesting meteorites in the Omani desert: implications for astrobiology

    NASA Astrophysics Data System (ADS)

    Hofmann, Beda A.; Gnos, Edwin; Al-Kathriri, Ali

    2004-03-01

    Meteorites will remain the most accessible, most diverse and most abundant source of extraterrestrial materials for many years to come. New sources of large numbers of meteorites allow the recovery of rare types particularly relevant for astrobiology, including Martian and Lunar samples. Oman has become an important source of meteorites only since 1999. Conditions for search and recovery are particularly favourable in many areas here because of an abundance of flat, light-colored, sand- and vegetation-free surfaces. During search expeditions carried out in the central deserts of Oman in 2001-2003 large numbers of meteorites, including a Martian and a Lunar sample, were recovered. The mass of recovered meteorites is 1334 kg, corresponding to approximately 150 to 200 fall events. We aim to classify all recovered specimens and study pairing and weathering effects. Our expeditions demonstrate the possibility to recover meteorite samples with astrobiological relevance with modest investments of finances and manpower.

  1. Monitoring Ecosystem Quality and Function in Arid Settings of the Mojave Desert

    USGS Publications Warehouse

    Belnap, Jayne; Webb, Robert H.; Miller, Mark E.; Miller, David M.; DeFalco, Lesley A.; Medica, Philip A.; Brooks, Matthew L.; Esque, Todd C.; Bedford, Dave

    2008-01-01

    Monitoring ecosystem quality and function in the Mojave Desert is both a requirement of state and Federal government agencies and a means for determining potential long-term changes induced by climatic fluctuations and land use. Because it is not feasible to measure every attribute and process in the desert ecosystem, the choice of what to measure and where to measure it is the most important starting point of any monitoring program. In the Mojave Desert, ecosystem function is strongly influenced by both abiotic and biotic factors, and an understanding of the temporal and spatial variability induced by climate and landform development is needed to determine where site-specific measurements should be made. We review a wide variety of techniques for sampling, assessing, and measuring climatic variables, desert soils, biological soil crusts, annual and perennial vegetation, reptiles, and small mammals. The complete array of ecosystem attributes and processes that we describe are unlikely to be measured or monitored at any given location, but the array of possibilities allows for the development of specific monitoring protocols, which can be tailored to suit the needs of land-management agencies.

  2. Transdomes sampling of lower and middle crust

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Whitney, D. L.; Roger, F.; Rey, P. F.

    2015-12-01

    Migmatite transdomes are formed by lateral and upward flow of partially molten crust in transtension zones (pull-apart structures). In order to understand the flow leading to this type of domes, 3D numerical models were set-up to simulate the general case of an extensional domain located between two strike-slip faults (pull-apart or dilational bridge). Results show that upper crust extension induces flow of the deep, low-viscosity crust, with rapid upward movement of transdome material when extension becomes localized. At this point a rolling hinge detachment allows rapid removal of upper crust. The internal structure of transdomes includes a subvertical high strain zone located beneath the zone of localized upper crust extension; this shear zone separates two elongate subdomes of foliation that show refolded/sheath folds. Lineation tends to be oriented dominantly subhorizontal when the amount of strike-slip motion is greater than the amount of upward flow of dome rocks. Models also predict nearly isothermal decompression of transdome material and rapid transfer of ~50 km deep rocks to the near surface. These model results are compared to the structural and metamorphic history of several transdomes, and in particular the Variscan Montagne Noire dome (French Massif Central) that consists of two domes separated by a complex high strain zone. The Montagne Noire dome contains ~315 Ma eclogite bodies (U-Pb zircon age) that record 1.4 GPa peak pressure. The eclogite bodies are wrapped in highly sheared migmatite that yield 314-310 Ma monazite ages interpreted as the metamorphism and deformation age. Based on these relations we conclude that the Montagne Noire transdome developed a channel of partially molten crust that likely entrained eclogite bodies from the deep crust (~50 km) before ascending to the near-surface. One implication of this work is that the flowing crust was deeply seated in the orogen although it remained a poor recorder of peak pressure of metamorphism

  3. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event.

    PubMed

    Angel, Roey; Conrad, Ralf

    2013-10-01

    Biological soil crusts (biocrusts) are photosynthetic mats formed through an association of prokaryotic and eukaryotic microorganisms with soil particles. Biocrusts are found in virtually any terrestrial ecosystem where vascular plant coverage is abiotically limited, with drylands comprising the primary habitat for them. We studied the dynamics of the active bacterial community in two biocrusts from an arid and a hyperarid region in the Negev Desert, Israel, under light-oxic and dark-anoxic incubation conditions after simulated rainfall. We used H2(18)O for hydrating the crusts and analysed the bacterial community in the upper and lower parts of the biocrust using an RNA-stable isotope probing approach coupled with 454-pyrosequencing. In both biocrusts, two distinct bacterial communities developed under each incubation condition. The active anaerobic communities were initially dominated by members of the order Bacillales which were later replaced by Clostridiales. The aerobic communities on the other hand were dominated by Sphingobacteriales and several Alphaproteobacteria (Rhizobiales, Rhodobacterales, Rhodospirillales and Rubrobacteriales). Actinomycetales were the dominant bacterial order in the dry crusts but quickly collapsed and accounted for < 1% of the community by the end of the incubation. Our study shows that biocrusts host a diverse community whose members display complex interactions as they resuscitate from dormancy. PMID:23648088

  4. Osmium Isotope Straigraphy of Ferromanganese Crusts

    NASA Astrophysics Data System (ADS)

    Bolz, V.; Levasseur, S.; Frank, M.; Hein, J.; Halliday, A.

    2004-12-01

    To interpret the changes in isotopic compositions recorded in hydrogenetic ferromanganese (Fe-Mn) crusts over time it is essential to calibrate them in terms of time. The 10Be method is only reliable for the first 10 Myr. For older parts of the crusts the Co-constant flux method is used. Both approaches however, will fail to account for any growth hiatus or erosion in the sections older than 10 Ma. Attempts at using Sr isotope stratigraphy failed because of post-depositional exchange. For osmium (Os) isotopes on the other hand, calculations of the rate of post-depositional exchange suggest that long-term records in Fe-Mn crusts are reliable. This would allow the 187Os/188Os profile of any hydrogeneous Fe-Mn crust to be fitted against the 187Os/188Os seawater record established for the last 80 Myr. This stratigraphic method would determine the age of crusts at any depth and identify changes in growth rate, cessation of growth and/or intervals of crust erosion. We tested this hypothesis on the hydrogeneous crust CD29-2 from the Central Pacific Ocean which had been subject to many previous radiogenic isotope studies. CD29-2 is a 105mm thick crust with a growth rate of 2.1mm/Myr, as determined from 10Be/9Be ratios and the Co-constant flux method. This gives a minimum age of 50 Ma for the lowermost portions of the crust. Samples were taken every 2mm through the crust which results in a time-spacing of 1Myr assuming a constant growth. For each sample the 187Os/188Os ratio and the 187Os concentration ([187Os]) were determined by ID-NTIMS. The [187Re] was measured by MC-ICPMS, allowing correction for 187 Re-decay. The corrected 187Os/188Os ratios were compared to the seawater record. Using the Be and Co time scales, the 187Os/188Os curve obtained from the crust shows a distorted version of the established seawater record. A good match is found if three hiatuses are allowed. The first hiatus of 15 Myr is assigned to the period between 13 and 28 Ma, a second one of 3 Myr to

  5. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Rino, Shuji; Maruyama, Shigenori; Hirata, Takafumi

    2010-04-01

    We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga. The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than

  6. Microwave Radiometric Signatures of Different Surface Types in Deserts

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Rossow, William B.; Matthews, Elaine; Marticorena, Beatrice

    1999-01-01

    In arid environments, specific microwave signatures have been observed with the Special Sensor Microwave/Imager (SSM/I). For a given diurnal change in surface skin temperature, the corresponding change in the microwave brightness temperature is smaller than expected. With the help of a 1D, time-dependent heat conduction model, this behavior is explained by microwave radiation coming from different depths in the soil, depending on the soil type and on the microwave radiation frequency. Using the eight-times daily estimates of the surface skin temperature by the International Satellite Cloud Climatology Project (ISCCP) and a simple Fresnel model, collocated month-long time series of the SSM/I brightness temperatures and the surface skin temperatures give a consistent estimate of the effective microwave emissivity and penetration depth parameters. Results are presented and analyzed for the Sahara and the Arabian Peninsula, for July and November 1992. The case of the Australian desert is also briefly mentioned. Assuming a reasonable thermal diffusivity for the soil in desert areas, the microwave radiation is estimated to come from soil layers down to depths of at least five wavelengths in some locations. Regions where the microwave radiation comes from deeper soil layers also have large microwave emissivity polarization differences and large visible reflectances, suggesting that these areas correspond to sand dune fields.

  7. Partial melting of subducting oceanic crust

    NASA Astrophysics Data System (ADS)

    Peacock, Simon M.; Rushmer, Tracy; Thompson, Alan Bruce

    1994-01-01

    The conditions under which partial melting of subducting oceanic crust occurs can be determined by combining a partial melting model for basaltic compositions with two-dimensional thermal models of subduction zones. For porosities of approximately 1% containing H2O the amount of partial melt generated at the wet basaltic solidus is limited to less than 5 vol%. At higher temperatures (approximately 1000 C at 1.5 GPa) large amounts of partial melt, up to 50 vol%, form by the breakdown of amphibole and the release of structurally bound H2O. In most subduction zones, substantial partial melting of subducting oceanic crust will only occur if high shear stresses (greater than approximately 100 MPa) can be maintained by rocks close to, or above, their melting temperatures. In the absence of high shear stresses, substantial melting of the oceanic crust will only occur during subduction of very young (less than 5 Ma) oceanic lithosphere. Partial melting of hydrated basalt (amphibolites) derived from the mid-ocean ridge has been proposed as being responsible for the generation of certain recent high-Al andesitic to dacitic volcanic rocks (adakites). Three of these volcanic suites (Mount St. Helens, southern Chile, and Panama) occur in volcanic arcs where oceanic crust less than 25 Ma is being subducted at rates of 1 - 3 cm/yr and the calculated thermal regime is several hundreds of degrees hotter than more typical subduction zone environments. However, oceanic lithosphere is not currently being subducted beneath Baja and New Guinea, where recent adakites are also present, suggesting that some adakite magmas may form by water-undersaturated partial melting of underplated mafic lower crust or previously subducted oceanic crust. Further experimental work on compositions representative of oceanic crust is required to define the depth of possible adakite source regions more accurately.

  8. Network topology of the desert rose

    NASA Astrophysics Data System (ADS)

    Hope, Sigmund; Kundu, Sumanta; Roy, Chandreyee; Manna, Subhrangshu; Hansen, Alex

    2015-09-01

    Desert roses are gypsum crystals that consist of intersecting disks. We determine their geometrical structure using computer assisted tomography. By mapping the geometrical structure onto a graph, the topology of the desert rose is analyzed and compared to a model based on diffusion limited aggregation. By comparing the topology, we find that the model gets a number of the features of the real desert rose right, whereas others do not fit so well.

  9. Basin Excavation, Lower Crust, Composition, and Bulk Moon Mass balance in Light of a Thin Crust

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Korotev, R. L.; Ziegler, R. A.

    2013-01-01

    New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust.

  10. Magmatic intrusions in the lunar crust

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  11. Transplant experiments to examine the habitat exclusivity of lichen dominated soil crust communities in the El Cautivo badlands, SE Spain

    NASA Astrophysics Data System (ADS)

    Bevan, J.; Alexander, R.; Lazaro-Suau, R.

    2012-04-01

    ) control not touched x3 replicates b) host crust / lichen species replanted to the same site x3 replicates c) reciprocal transplants x3 replicates each. This resulted in a total of 18 plots in each site. The transplants were monitored at regular intervals over a period of 5 years to assess the degree to which they flourished, remained unchanged or died/disappeared. Key findings are that BC is the most able to colonize bare areas, while L. crassissima has the narrowest habit preference being the species least able to colonize out of its preferred habitat. D. diacapsis and L. lentigera have intermediate success colonising locations outside their preferred locations. However they only reach significant abundance when optimally located according to their ecophysiological requirements. The results support the successional sequence proposed for the Tabernas Desert by Lazaro (2008).

  12. Metagenomic characterization of biodiversity in the extremely arid desert soils of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kutovaya, O. V.; Lebedeva, M. P.; Tkhakakhova, A. K.; Ivanova, E. A.; Andronov, E. E.

    2015-05-01

    For the first time, the composition of microbiomes in the biological crust (AKL) horizons of extremely arid desert soils (Aridic Calcisols) developed from saline and nonsaline alluvial deposits in the Ili Depression (eastern Kazakhstan) was analyzed. To describe the diversity of microorganisms in the soil samples, a novel method of pyrosequencing (Roche/454 Life Sciences) was applied. It was shown that bacteria from the Proteobacteria, Actinobacteria, Firmicutes, Verrucomicrobia, Acidobacteria, and Bacteroidetes phyla predominate in all the samples; these are typical representatives of the microbiome of soil crusts. A distinctive feature of the extremely arid soils is the high contribution of cyanobacteria (25-30%) to the total DNA. In the soils developed from saline sediments, representatives from the Rubrobacteraceae, Streptococcaceae, and Caulobacteraceae families and from the Firmicutes phylum predominated. In the soils developed from nonsaline gypsiferous deposits, bacteria from the class of Acidobacteria, subgroup Gp3, of the Methylobacteriaceae family and the class of Subdivision 3 from the Verrucomicrobia phylum predominated.

  13. The Continental Crust: A Geophysical Approach

    NASA Astrophysics Data System (ADS)

    Christensen, Nikolas I.

    Nearly 80 years ago, Yugoslavian seismologist Andrija Mohorovicic recognized, while studying a Balkan earthquake, that velocities of seismic waves increase abruptly at a few tens of kilometers depth , giving rise to the seismological definition of the crust. Since that discovery, many studies concerned with the nature of both the continental and oceanic crusts have appeared in the geophysical literature.Recently, interest in the continental crust has cascaded. This is largely because of an infusion of new data obtained from major reflection programs such as the Consortium for Continental Reflection Profiling (COCORP) and British Institutions Reflection Profiling Syndicate (BIRPS) and increased resolution of refraction studies. In addition, deep continental drilling programs are n ow in fashion. The Continental Crust: A Geophysical Approach is a summary of present knowledge of the continental crust. Meissner has succeeded in writing a book suited to many different readers, from the interested undergraduate to the professional. The book is well documented , with pertinent figures and a complete and up-to-date reference list.

  14. Growth of the lower continental crust

    NASA Technical Reports Server (NTRS)

    Rudnick, Roberta L.

    1988-01-01

    One of the largest uncertainties in crustal composition and growth models is the nature of the lower continental crust. Specifically, by what processes is it formed and modified, and when is it formed, particularly in reference to the upper crust? The main reason for this lack of information is the scarcity of lower crustal rock samples. These are restricted to two types: rocks which outcrop in granulite facies terrains and granulite facies xenoliths which are transported to the earth's surface by young volcanics. The important conclusions arising from the xenolith studies are: the majority of mafic lower crustal xenoliths formed through cumulate process, resitic xenoliths are rare; and formation and metamorphism of the deep crust is intimately linked to igneous activity and/or orogeny which are manifest in one form or another at the earth's surface. Therefore, estimates of crustal growth based on surface exposures is representative, although the proportion of remobilized pre-existing crust may be significantly greater at the surface than in the deep crust.

  15. Sand Dune Ridge Alignment Effects on Surface BRF over Libya-4 Calibration Site

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves

    2015-12-01

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm..

  16. Sand dune ridge alignment effects on surface BRF over the Libya-4 CEOS calibration site.

    PubMed

    Govaerts, Yves M

    2015-01-01

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm. PMID:25654721

  17. Phlebotomine sand flies (Diptera: Psychodidae) transmitting visceral leishmaniasis and their geographical distribution in China: a review.

    PubMed

    Guan, Li-Ren; Zhou, Zheng-Bin; Jin, Chang-Fa; Fu, Qing; Chai, Jun-Jie

    2016-01-01

    After the existence of phlebotomine sand flies was first reported in China in 1910, the distribution of different species and their role in the transmission of visceral leishmaniasis (VL) have been extensively studied. Up until 2008, four species have been verified as vectors of VL, namely, Phlebotomus chinensis (Ph. sichuanensis), Ph. longiductus (Ph. chinensis longiductus), Ph. wui (Ph. major wui), and Ph. alexandri. The sand fly species vary greatly depending on the natural environments in the different geographic areas where they are endemic. Ph. chinensis is euryecious and adaptable to different ecologies, and is thus distributed widely in the plain, mountainous, and Loess Plateau regions north of the Yangtze River. Ph. longiductus is mainly distributed in ancient oasis areas south of Mt. Tianshan in the Xinjiang Uygur autonomous region. Ph. wui is the predominant species in deserts with Populus diversifolia and Tamarix vegetation in Xinjiang and the western part of the Inner Mongolia autonomous region. Finally, Ph. alexandri is steroecious and found only in stony desert areas, such as at the foot of the mountains in Xinjiang and the western Hexi Corridor, in Gansu province. This review summarized the relationship between the geographic distribution pattern of the four sand fly species and their geographical landscape in order to foster research on disease distribution and sand fly control planning. Furthermore, some problems that remained to be solved about vectors of VL in China were discussed. PMID:26906187

  18. Sand Dune Ridge Alignment Effects on Surface BRF over the Libya-4 CEOS Calibration Site

    PubMed Central

    Govaerts, Yves M.

    2015-01-01

    The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm. PMID:25654721

  19. Science Learning in the Sand.

    ERIC Educational Resources Information Center

    Sexton, Ursula

    1997-01-01

    Presents activities that allow students to think about the Earth in a contextual manner and become familiar with constructive and destructive processes as they relate to sand - its origins, cyclical processes, and yielding of new products. Explores the bigger idea with a developmentally appropriate study of water, rocks, sand, physical phenomena,…

  20. Sand and Dust on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Haberle, Robert M.

    1991-01-01

    Mars is a planet of high scientific interest. Various studies are currently being made that involve vehicles that have landed on Mars. Because Mars is known to experience frequent wind storms, mission planners and engineers require knowledge of the physical and chemical properties of Martian windblown sand and dust, and the processes involved in the origin and evolution of sand and dust storms.

  1. Vacuum Head Removes Sanding Dust

    NASA Technical Reports Server (NTRS)

    Bengle, C. G.; Holt, J. W.

    1982-01-01

    Vacuum sander prevents sanding dust from entering a work area, since dust particles are drawn off as quickly as they are produced. Tool is useful where dust presents health hazards, interferes with such processes as semiconductor manufacture, or could destroy wet paint or varnish finishes. Could be used to sand such materials as lead paint.

  2. Atlas of Dutch drift sands

    NASA Astrophysics Data System (ADS)

    Riksen, Michel; Jungerius, Pieter

    2013-04-01

    The Netherlands is well known for its aeolian landscapes. Frequent storms during the High Middle Ages (1000-1300 AD) reactivated Pleistocene coversands and river dunes and are responsible for the formation of the Holocene drift sands at a scale which is unique for Europe. A hypothesized relationship with farmer practices for making plaggensoils has recently been refuted, because drift sand formation began centuries earlier. The coastal dune belt with their parabolic dunes dates from the same period as the drift sand. An estimate of the extent of drift sands can be made from soil maps: drift sands are too young to show much profile development (Regosols). With this method Koster estimated the maximum extent of Holocene drift sands in the Netherlands to be about 800 km2 (Koster 2005). Laser altimetry allows a more precise estimate of the total surface affected by wind from the characteristic relief patterns produced by the Holocene wind, which is different from the smooth surface of cover sand deposits. Laser altimetry has been used before to investigate the mechanism of drift sand formation (Jungerius & Riksen 2010). Most of the surface affected by wind is not active anymore, but the tell-tale rough surface survived ages of different landuse. The total affected surface amounts to 825 km2. It is noteworthy that both methods give comparable results. We recorded a total number of 367 of affected areas of varying shapes, ranging in size from 1.6 ha to a large complex of drif sands of 7,119.5 ha. As is to be expected from their mode of origin, most occurrences are associated with cover sands, and with river dunes along the river Meuse and smaller rivers in other parts of the country. Particularly the final phases of cover sand and river dunes that show more relief as parabolic dunes were affected. There are also small aeolian deposits at the lee side blown from fallow agricultural fields but they are (sub)recent. Most of the relief is irregular, but the larger

  3. Sand and Water

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 7 November 2003

    This image shows a relatively small crater (35 km across) in the heavily cratered terrain of the southern highlands. At the midlatitudes, this area is known both for its water-formed gullies and its sand dunes. This crater shows spectacular examples of both. In fact, the gullies running down the northern edge of the crater made it to the cover of Science magazine on June 30, 2000. The large dark spot in the floor of the crater is sand that has accumulated into one large dune with a single curvilinear crest.

    Image information: VIS instrument. Latitude -54.9, Longitude 17.5 East (342.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Deep-ocean ferromanganese crusts and nodules

    USGS Publications Warehouse

    Hein, James R.; Koschinsky, Andrea

    2013-01-01

    Ferromanganese crusts and nodules may provide a future resource for a large variety of metals, including many that are essential for emerging high- and green-technology applications. A brief review of nodules and crusts provides a setting for a discussion on the latest (past 10 years) research related to the geochemistry of sequestration of metals from seawater. Special attention is given to cobalt, nickel, titanium, rare earth elements and yttrium, bismuth, platinum, tungsten, tantalum, hafnium, tellurium, molybdenum, niobium, zirconium, and lithium. Sequestration from seawater by sorption, surface oxidation, substitution, and precipitation of discrete phases is discussed. Mechanisms of metal enrichment reflect modes of formation of the crusts and nodules, such as hydrogenetic (from seawater), diagenetic (from porewaters), and mixed diagenetic–hydrogenetic processes.

  5. Elemental composition of the Martian crust.

    PubMed

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B

    2009-05-01

    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars. PMID:19423810

  6. Rocks of the early lunar crust

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1980-01-01

    Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.

  7. The crust of Iceland- a reassessment

    NASA Astrophysics Data System (ADS)

    Longhinos, Biju

    2014-05-01

    The evolving knowledge is at variance with the expectations build upon the idea of an island in making, around Iceland. Shallow thick crusted Shetland-Greenland ridge, extensive distribution of old and continental rocks along Mid Atlantic Ridge, granitic and dolomitic xenoliths in Quaternary Icelandic lava, rhyolitic to dacitic central volcanoes, voluminous pumice drifted onto eastern shores of Atlantic are a few among the valid reasons to consider that the Iceland bears a hidden continental crust. In present study, gravity, seismic and magnetic data over Iceland were scrutinized to pick up continental characteristics. To test the hypothesis here, Iceland is considered as remnant continent, which failed to be eaten up by mantle during Cenozoic basification. It denies any chance for lithospheric spreading centered to Iceland and looks at crustal- mantle hybridization processes resulting in basalt and its derivatives ( crustal basification) as alternative explanation to the exotic ( in terms of plate tectonics) geological and geophysical behaviour of Icelandic crust.

  8. Breeding system and its consequence on fruit set of a rare sand dune shrub Eremosparton songoricum (Fabaceae: Papilionoideae): implications for conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The breeding system and its consequence on fruit set of Eremosparton songoricum (Litv.) Vass., a rare shrubby legume occurring in moving or semi-fixed sand dunes of Central Asian deserts, were examined by manipulative experiments and observational studies in natural populations during the period of ...

  9. Satellite-based estimates of groundwater depletion in the Badain Jaran Desert, China

    NASA Astrophysics Data System (ADS)

    Jiao, Jiu Jimmy; Zhang, Xiaotao; Wang, Xusheng

    2015-03-01

    Despite prevailing dry conditions, groundwater-fed lakes are found among the earth's tallest sand dunes in the Badain Jaran Desert, China. Indirect evidence suggests that some lakes are shrinking. However, relatively few studies have been carried out to assess the regional groundwater conditions and the fate of the lakes due to the remoteness and severity of the desert environment. Here we use satellite information to demonstrate an ongoing slow decrease in both lake level and groundwater storage. Specifically, we use Ice, Cloud, and land Elevation Satellite altimetry data to quantify water levels of the lakes and show overall decreases from 2003 to 2009. We also use water storage changes from the Gravity Recovery and Climate Experiment and simulated soil and water changes from the Global Land Data Assimilation System to demonstrate long-term groundwater depletion in the desert. Rainfall increase driven by climate change has increased soil water and groundwater storage to a certain degree but not enough to compensate for the long-term decline. If countermeasures are not taken to control the pumping, many lakes will continue to shrink, causing an ecological and environmental disaster in the fragile desert oases.

  10. Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Li, Guoqiang; Zhao, Hui; Jin, Ming; Chen, Xuemei; Fan, Yuxin; Liu, Xiaokang; Wu, Duo; Madsen, David

    2014-05-01

    The evolution of arid environments in northern China was a major environmental change during the Quaternary. Here we present the dating and environmental proxy results from a 35 m long core (A-WL10ZK-1) collected from the Ulan Buh Desert (UBD), along with supplemental data from four other cores. The UBD is one of the main desert dune fields in China and our results indicate the UBD has undergone complex evolution during the late Quaternary. Most of the present UBD was covered by a Jilantai-Hetao Mega-paleolake lasting until ~ 90 ka ago. A sandy desert environment prevailed throughout the UBD during the last glacial period and early Holocene. A wetland environment characterized by the formation of numerous interdunal ponds in the northern UBD occurred at ~ 8-7 ka, although a dune field persisted in the southern UBD. The modern UBD landscape formed after these wetlands dried up. During the last 2000 years, eolian sand from the Badain Jaran Desert has invaded the northern UBD, while farming and overgrazing resulted in the formation of the eastern UBD. We suggest that the formation of UBD landforms is related to the disintegration of the megalake Jilantai-Hetao and to summer monsoon changes during the last glaciation and Holocene.

  11. Satellite-based estimates of groundwater depletion in the Badain Jaran Desert, China.

    PubMed

    Jiao, Jiu Jimmy; Zhang, Xiaotao; Wang, Xusheng

    2015-01-01

    Despite prevailing dry conditions, groundwater-fed lakes are found among the earth's tallest sand dunes in the Badain Jaran Desert, China. Indirect evidence suggests that some lakes are shrinking. However, relatively few studies have been carried out to assess the regional groundwater conditions and the fate of the lakes due to the remoteness and severity of the desert environment. Here we use satellite information to demonstrate an ongoing slow decrease in both lake level and groundwater storage. Specifically, we use Ice, Cloud, and land Elevation Satellite altimetry data to quantify water levels of the lakes and show overall decreases from 2003 to 2009. We also use water storage changes from the Gravity Recovery and Climate Experiment and simulated soil and water changes from the Global Land Data Assimilation System to demonstrate long-term groundwater depletion in the desert. Rainfall increase driven by climate change has increased soil water and groundwater storage to a certain degree but not enough to compensate for the long-term decline. If countermeasures are not taken to control the pumping, many lakes will continue to shrink, causing an ecological and environmental disaster in the fragile desert oases. PMID:25760683

  12. The Early Evolution of Mars' Crust

    NASA Astrophysics Data System (ADS)

    Samuel, H.; Baratoux, D.; Kurita, K.

    2014-12-01

    The Mars crustal density and thickness have been recently re-evaluated using petrological constraints from remote sensing, in-situ data, and SNC meteorites. This work indicates that the present-day Martian crust is denser and thicker than previously proposed if essentially basaltic in composition. As a consequence, the average crustal thickness would be commensurable with the depth of the basalt/eclogite transition, re-opening the question of crustal recycling on Early Mars and more generally throughout all its history. We have therefore investigated the conditions under which a thick ancient crust with an eclogitic root could survive through the history of Mars using numerical modelling. Delamination may occur if the combination of poorly constrained physical parameters induces the presence of gravitationally unstable layers and favors a rheological decoupling. To study the conditions and the time scales for the occurrence of crustal delamination on Mars, we investigated the influence of critical parameters for a plausible range of values corresponding to the Martian mantle. For each case we follow the dynamic evolution over geological times of a three-layer system (i.e., crust-mantle with a distinction between low pressure, buoyant basaltic crust and higher pressure, denser eclogitic material). We systematically varied four governing parameters within plausible ranges: (1) the basalt-eclogite transition depth, (2) the density difference between the mantle and the basaltic crust, (3) the density difference between the eclogitic crust and the lithosphere & mantle, (4) the viscous rheology. These experiments allow determining the average Martian crustal thickness at early and late evolutionary stages.

  13. An agent-based model of dune interactions produces the emergence of patterns in deserts

    NASA Astrophysics Data System (ADS)

    GéNois, Mathieu; Pont, Sylvain Courrech; Hersen, Pascal; GréGoire, Guillaume

    2013-08-01

    Crescent-shaped barchan dunes are highly mobile dunes which are ubiquitous on Earth and other solar system bodies. Although they are unstable when considered separately, they form large assemblies in deserts and spatially organize in narrow corridors that extend in the wind direction. Collision of barchans has been proposed as a mechanism to redistribute sand between dunes and prevent the formation of very large dunes. Here we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan fields. We tune the dune field density by changing the sand load/lost ratio and follow the transition between dilute fields, where barchans barely interact, and dense fields, where dune collisions control and stabilize the dune field. In this dense regime, barchans have a small, well-selected size and form flocks: the dune field self-organizes in narrow corridors of dunes, as it is observed in real dense barchan deserts.

  14. An agent-based model of dune interactions produces the emergence of patterns in deserts

    NASA Astrophysics Data System (ADS)

    Génois, M.; Courrech Du Pont, S.

    2013-12-01

    Crescent-shaped barchan dunes are highly mobile dunes which are ubiquitous on Earth and other solar system bodies. Although they are unstable when considered separately, they form large assemblies in deserts and spatially organize in narrow corridors that extend in the wind direction. Collision of barchans has been proposed as a mechanism to redistribute sand between dunes and prevent the formation of very large dunes. Here, we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan fields. We tune the dune field density by changing the sand load/lost ratio and follow the transition between dilute fields, where barchans barely interact, and dense fields, where dune collisions control and stabilize the dune field. In this dense regime, barchans have a small, well selected size and form flocks: the dune field self-organizes in narrow corridors of dunes, as it is observed in real dense barchan deserts. Simulated dense barchan field, with spatial structuring along the wind direction.

  15. Respiratory disease among military personnel in Saudi Arabia during Operation Desert Shield.

    PubMed Central

    Richards, A L; Hyams, K C; Watts, D M; Rozmajzl, P J; Woody, J N; Merrell, B R

    1993-01-01

    OBJECTIVES. The purpose of this study was to determine whether respiratory disease due to crowded living conditions and high levels of suspended and blowing sand had a major adverse impact on US military personnel during Operation Desert Shield. METHODS. A questionnaire survey was administered to 2598 combat troops stationed in Northeast Saudi Arabia for a mean of 102 days. Samples of surface sand from seven different locations were analyzed by scanning electron microscopy and x-ray diffraction. RESULTS. Among surveyed troops, 34.4% reported a sore throat, 43.1% complained of a cough, 15.4% complained of chronic rhinorrhea, and 1.8% were unable to perform their routine duties because of upper respiratory symptoms. Evaluation of sleeping accommodations indicated that complaints of a sore throat and cough were most closely associated with sleeping in air-conditioned buildings; in contrast, complaints of rhinorrhea were associated with exposure to the outdoor environment while living in tents. Sand samples consisted mostly of quartz, with just 0.21% by weight of respirable size (< 10 microns in diameter). CONCLUSIONS. These findings indicate that upper respiratory complaints were frequent among Operation Desert Shield troops and were related both to the troops' housing and to their exposure to the outside environment. PMID:8363011

  16. Dune field reactivation from blowouts: Sevier Desert, UT, USA

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2013-12-01

    Dune field reactivation (a shift from vegetated to unvegetated state) has important economic, social, and environmental implications. In some settings reactivation is desired to preserve environmental values, but in arid regions reactivation is typically a form of land degradation. Little is known about reactivation due to a lack of published records, making modeling and prediction difficult. Here we detail dune reactivations from blowout expansion in the Sevier Desert, Utah, USA. We use historical aerial photographs and satellite imagery to track the transition from stable, vegetated dunes to actively migrating sediment in 3 locations. We outline a reactivation sequence: (i) disturbance breaches vegetation and exposes sediment, then (ii) creates a blowout with a deposition apron that (iii) advances downwind with a slipface or as a sand sheet. Most deposition aprons are not colonized by vegetation and are actively migrating. To explore causes we examine local sand flux, climate data, and stream flow. Based on available data the best explanation we can provide is that some combination of anthropogenic disturbance and climate may be responsible for the reactivations. Together, these examples provide a rare glimpse of dune field reactivation from blowouts, revealing the timescales, behaviour, and morphodynamics of devegetating dune fields.

  17. Crusted scabies and multiple dosages of ivermectin.

    PubMed

    Ortega-Loayza, Alex G; McCall, Calvin O; Nunley, Julia R

    2013-05-01

    We present the case of a bone marrow transplant patient who was diagnosed with crusted scabies but did not respond to the usual approach with topical permethrin and ivermectin. The Centers for Disease Control and Prevention were contacted and suggested a 7-dose regimen of ivermectin. The patient started to improve remarkably after the third dose, and the skin eruption was resolved after 7 doses. This case supports the use of a more prolonged course of oral ivermectin for crusted scabies in those who fail the conventional approach. PMID:23652958

  18. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    NASA Astrophysics Data System (ADS)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    We report the first accurate and precise data for mass-dependent fractionation of tungsten (W) stable isotopes, using a double spike technique and MC-ICPMS. Results are expressed relative to the NIST 3136 W isotope standard as per mil deviations in 186W/184W (δ186W). Although heavy element mass-dependent fractionations are expected to be small, Tl and U both display significant low temperature isotopic fractionations. Theoretical calculations indicate that W nuclear volume isotopic effects should be smaller than mass-dependent fractionations at low temperatures. Hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from seawater and have been used as paleoceanographic recorders of temporal changes in seawater chemistry. Crusts are strongly enriched in W and other metals, and are a promising medium for exploring W isotopic variability. Tungsten has a relatively long residence time in seawater of ~61,000 years, mainly as the tungstate ion (WO42-). Water depth profiles show conservative behaviour. During adsorption on Fe-Mn crusts, W species form inner-sphere complexes in the hexavalent (W6+) state. The major host phase is thought to be Mn oxides and the lighter W isotope is expected to be absorbed preferentially. Surface scrapings of 13 globally distributed hydrogenetic Fe-Mn crusts display δ186W from -0.08 to -0.22‰ (±0.03‰, 2sd). A trend toward lighter W isotope composition exists with increasing water depth (~1500 to ~5200m) and W concentration. One hydrothermal Mn-oxide sample is anomalously light and Mn nodules are both heavy and light relative to Fe-Mn crusts. Tungsten speciation depends on concentration, pH, and time in solution and is not well understood because of the extremely slow kinetics of the reactions. In addition, speciation of aqueous and/or adsorbed species might be sensitive to pressure, showing similar thermodynamic stability but different effective volumes. Thus, W stable isotopes might be used as a water-depth barometer in

  19. Evolution of the lunar highland crust

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.; Bence, A. E.

    1975-01-01

    The evolution of three distinct element associations in the lunar highland crust is discussed in terms of the Taylor-Jakes model which involves melting of most of the moon during accretion. Sources for (1) high Ca, Al, Sr, Eu, (2) high Mg and Cr, and (3) high K, REE, Zr, Hf, Nb are suggested. Bombardment by large projectiles during the differentiation process causes melting and mixing, which produces a wide range of compositions in the crust. The formation of dunite, troctolite, high-, medium-, and low-K Fra Mauro basalts, and rocks close to the olivine-spinel-plagioclase peritectic point is considered.

  20. Deformation in the lower crust and downward extent of the San Andreas Fault as revealed by teleseismic waveforms

    NASA Astrophysics Data System (ADS)

    Zhu, Lupei

    2002-11-01

    High resolution images of crustal structure across the San Andreas Fault (SAF) were obtained by using the common conversion point stacking of teleseismic P-to- S converted waves recorded during the Los Angeles Region Seismic Experiments (LARSE-I and II). In the upper crust, several sedimentary basins were delineated in the images, including the San Fernando and the Santa Clarita Basins. The San Fernando Basin reaches a depth of 8 km under the northern edge of the San Fernando Valley. On the LARSE-I profile, the downward projection of the SAF truncates several lower crustal interfaces including the Moho on both sides. The Moho is vertically offset by as much as 8 km. Along the LARSE-II profile, the impedance contrast and slope of the Moho are seen to change across the fault. These results indicate that the fault penetrates into the lower crust and probably uppermost mantle as a narrow (<10 km) feature. The Moho beneath the San Gabriel Mountains is shallower (˜26 km) than under the San Gabriel Valley to the south and the Mojave Desert to the north, suggesting that the mountain ranges were lifted en masse by horizontal compression. On the northeast side of the SAF, the Mojave Desert has a sharp and essentially flat Moho at a depth of ˜32 km. The lower crustal structure beneath the San Fernando and Santa Clarita Valleys along the LARSE-II profile south of the SAF is complicated as indicated by the large undulation and low impedance contrast of the Moho. These observations suggest that the deformation in the lower crust is localized and often concentrates near boundaries of crustal blocks or beneath those places which have experienced intensive faulting and deformation in the upper crust.

  1. The Sand Seas of northern China: Important sinks and sources of global sediment fluxes and their changing roles during different climate conditions of Late Quaternary

    NASA Astrophysics Data System (ADS)

    Yang, X.

    2014-12-01

    Although the occurrence of aeolian sands in sedimentary sequences has been widely used as indicators of desert formation or proxies of desert climate, one should be aware that accumulation of aeolian sands does occur along river channels, in lake shores not necessarily associated with arid environment. Our ongoing geomorphological and paleoenvironmental studies in the deserts of northern China reconfirm that formation of sand seas is dependent on not only erodibility (arising from bare surface due to aridity) and wind power but more importantly sand availability related to sediment cycles under interactions between fluvial, lacustrine and aeolian processes. Here we present our ongoing geomorphological and paleoclimatic research on the Late Quaternary landscape and climatic changes in the Taklamkan Desert of northwestern China, the largest sand sea of China in arid zone, and in the Hunshandake Sandy Land at the east part of the Asian mid-latitude desert belt under semiarid climate. We find out that the occurrence of tall sand dunes in the over 300,000 km2 large Taklamakan Sand Sea is closely related to the sites of intensive fluvial sedimentation and convergence zone of surface winds. In the case of Hunshandake, the dunes (although much smaller) mainly occur along the shorelines of the former lake basins, and sediment sources are generally limited because of open hydrological systems in the south and east portions of this desert. The sedimentological and geomorphological records suggest that the climate has changed between arid and less-arid conditions in both of these deserts during Late Quaternary. Under wetter conditions the Taklamakan acts as an important sink of sediments brought by rivers with headwaters in the Tibetan Plateau and Tianshan, while under more arid conditions it acts as an important global sediment source whose dust is transported not only to East Asia and Pacific but also to Greenland ice via westerlies. The Hunshandake has the same pattern of

  2. Mass and Composition of the Continental Crust Estimated Using the CRUST2.0 Model

    NASA Astrophysics Data System (ADS)

    Peterson, B. T.; Depaolo, D. J.

    2007-12-01

    The mass, age, and chemical composition of the continental crust are fundamental data for understanding Earth differentiation. The inaccessibility of most of the volume of the crust requires that inferences be made about geochemistry using seismic and heat flow data, with additional constraints provided by scarce lower crustal samples (Rudnick and Fountain, Rev. Geophys., 1995; Rudnick and Gao, Treatise on Geochem., 2003). The global crustal seismic database CRUST2.0 (Bassin, et al., EOS, 2000; Mooney, et al., JGR, 1998; hereafter C2) provides a useful template with which the size and composition of the continents can be assessed, and may be a useful vehicle to organize and analyze diverse geochemical data. We have used C2 to evaluate the modern mass and composition of the continental crust and their uncertainties, and explored our results in the context of global mass balances, such as continents versus depleted mantle. The major source of uncertainty comes from the definition of "continent." The ultimate constraint is the total mass of Earth's crust (oceanic + continental), which, from C2, is 2.77 (in units of 1022 kg). Using crustal thickness as a definition of continent, the mass of continental crust (CC) is 2.195 if the minimum thickness is 12-18km, 2.085 for 22.5km, 2.002 for 25km, and 1.860 for 30km. These numbers include all sediment as continental crust. Using C2 definitions to distinguish oceanic and continental crust (and including oceanic plateaus which contain some continental crust), we calculate the CC mass as 2.171. To estimate chemical composition, we use the C2 reservoir masses. For minimum thickness of 22.5km, C2 yields the proportions 0.016 oceanic sediment, 0.038 continental sediment, 0.321 upper crust, 0.326 middle crust, 0.299 lower crust. Upper, middle, and lower crust are assigned compositions from Rudnick and Gao (2003), continental sediments are assigned upper crust composition, and oceanic sediments are assigned GLOSS composition (Plank

  3. Steady State Growth of Continental Crust?

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.

    2012-12-01

    More than twenty years since the publication of Armstrong's seminal paper, debate still rages about most aspects of the Earth's first billion years. Although orders of magnitude more data have been generated since then, the arguments remain the same. The debate is largely centered on the isotopic systematics of minerals and whole rocks, the major and trace element geochemistry of continental crust, and various geodynamic models for differentiation of the planet. Most agree that earth, like all the terrestrial planets, differentiated into a crust, mantle and core very early in its history. After that, models of crustal evolution diverge significantly, including the suggestions that modern style plate tectonics did not originate until ca. 2.7 Ga or younger and that plumes have played a major role in the generation of continental crust. Many believe that the preserved rock record and the detrital zircon record are consistent with episodic crustal growth, which in turn has led to geodynamic models of episodic mantle convection driving major crust forming events. High-precision and high-throughput geochronology have led to claims of episodicity even more pronounced than that presented in Gastil's 1960 paper. We believe that Earth history has been dominated by plate tectonics and that continental crust is formed largely by amalgamation of island arcs, seamounts, micro continents, and oceanic plateaus. While there are geochemical differences in the average composition of Archean igneous rocks when compared to younger rocks, the processes responsible for their formation may not have changed a great deal. In this view, the so-called crustal growth curves originated by Hurley are in fact crude approximations of crustal preservation. The most highly cited rationales for the view that little silicic crust formed during Earth's first billion years are the lack of known exposed crust older than 3.5 Ga and the paucity of detrital zircons older than 4.0 Ga in sedimentary rocks of

  4. Monitoring of desert dune field migration process by multi angle sensors

    NASA Astrophysics Data System (ADS)

    Park, Ho-Jun; Yoon, Ji-Ye; Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2013-04-01

    At the present time, the sandy desert is rapidly expanding worldwide, and this can potentially result in increased risks for socioeconomic as well as anthropogenic activities. For example, the increasing occurrences of mineral dust storms, which have presumably originated in the sandy deserts in northwest China, have become a serious threat to human activities as well as to public health over Far East Asian areas, as the interpretations by the MODIS analysis (Zhang et al., 2007) and the particle trajectory simulation with HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) (Kim et al., 2011) have identified. Since sand-dune activity has been recognized as an essential indicator of progressive desertification, it is important to establish a monitoring method of the aspects of the topographic characteristics, such as local roughness. Therefore, we employed an MISR (Multi-angle Imaging SpectroRadiometer) image sequence to extract Multi-angle Viewing (MAV) topographic parameters such as NDAI (Normalized Difference Angular Index), which represents the characteristics of the targeted desert topography. In this study, NDAI was expanded to all the viewing angles of MISR channels to constitute the feature spaces monitoring the local surface roughness. Then the extracted roughness values over the targeted sandy desert and the surrounding land covers, respectively, were compared. It showed very strong consistencies according to the land-cover type and especially over the dynamic dune fields. On the other hand, the variation of NDAIs of sandy desert combined with the meteorological observations, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim, were examined and showed a correlation between intensified sand-dune activities and surface wind conditions. For the validation of our observations based on the MAV sensor, two auxiliary datasets were further employed. At first, the geometric roughness from airborne LiDAR over dune fields

  5. Molecular Ecology of nifH Genes and Transcripts Along a Chronosequence in Revegetated Areas of the Tengger Desert.

    PubMed

    Wang, Jin; Bao, Jing-Ting; Li, Xin-Rong; Liu, Yu-Bing

    2016-01-01

    The colonization and succession of diazotrophs are essential for the development of organic soil layers in desert. We examined the succession of diazotrophs in the well-established revegetated areas representing a chronosequence of 0 year (control), 22 years (restored artificially since 1981), 57 years (restored artificially since 1956), and more than 100 years (restored naturally) to determine the community assembly and active expression of diazotrophs. The pyrosequencing data revealed that Alphaproteobacteria-like diazotrophs predominated in the topsoil of our mobile dune site, while cyanobacterial diazotrophs predominated in the revegetated sites. The cyanobacterial diazotrophs were primarily composed of the heterocystous genera Anabaena, Calothrix, Cylindrospermum, Nodularia, Nostoc, Trichormus, and Mastigocladus. Almost all the nifH sequences belonged to the Cyanobacteria phylum (all the relative abundance values >99.1 %) at transcript level and all the active cyanobacterial diazotrophs distributed in the families Nostocaceae and Rivulariaceae. The most dominant active cyanobacterial genus was Cylindrospermum in all the samples. The rank abundance and community analyses demonstrated that most of the diazotrophic diversity originated from the "rare" species, and all the DNA-based diazotrophic libraries were richer and more diverse than their RNA-based counterparts in the revegetated sites. Significant differences in the diazotrophic community and their active population composition were observed among the four research sites. Samples from the 1981-revegetating site (predominated by cyanobacterial crusts) showed the highest nitrogenase activity, followed by samples from the naturally revegetating site (predominated by lichen crusts), the 1956-revegetating site (predominated by moss crusts), and the mobile dune site (without crusts). Collectively, our data highlight the importance of nitrogen fixation by the primary successional desert topsoil and suggest

  6. Magnetic Analysis Techniques Applied to Desert Varnish

    NASA Technical Reports Server (NTRS)

    Schmidgall, E. R.; Moskowitz, B. M.; Dahlberg, E. D.; Kuhlman, K. R.

    2003-01-01

    Desert varnish is a black or reddish coating commonly found on rock samples from arid regions. Typically, the coating is very thin, less than half a millimeter thick. Previous research has shown that the primary components of desert varnish are silicon oxide clay minerals (60%), manganese and iron oxides (20-30%), and trace amounts of other compounds [1]. Desert varnish is thought to originate when windborne particles containing iron and manganese oxides are deposited onto rock surfaces where manganese oxidizing bacteria concentrate the manganese and form the varnish [4,5]. If desert varnish is indeed biogenic, then the presence of desert varnish on rock surfaces could serve as a biomarker, indicating the presence of microorganisms. This idea has considerable appeal, especially for Martian exploration [6]. Magnetic analysis techniques have not been extensively applied to desert varnish. The only previous magnetic study reported that based on room temperature demagnetization experiments, there were noticeable differences in magnetic properties between a sample of desert varnish and the substrate sandstone [7]. Based upon the results of the demagnetization experiments, the authors concluded that the primary magnetic component of desert varnish was either magnetite (Fe3O4) or maghemite ( Fe2O3).

  7. ECOLOGY OF DESERT SYSTEMS BOOK REVIEW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 12 chapters of Whitford's book, Ecology of Desert Systems, summarize the comprehensive experiences and knowledge of a scientist with an extensive research background on a wide variety of physical and biological aspects of desert ecology. The author illustrates facts and concepts presented in th...

  8. Notes from the Great American Desert

    ERIC Educational Resources Information Center

    Grady, Marilyn L.; LaCost, Barbara Y.

    2005-01-01

    In the good old days, the state that is Nebraska was identified as part of the Great American Desert. In many ways, in climate and terrain, it still bears a resemblance to a desert. As a frontier or a land of pioneers, it deserves recognition. Invisibility may be one of the greatest challenges women face. One of the great flaws in the writing of…

  9. Collective excitations in neutron-star crusts

    NASA Astrophysics Data System (ADS)

    Chamel, N.; Page, D.; Reddy, S.

    2016-01-01

    We explore the spectrum of low-energy collective excitations in the crust of a neutron star, especially in the inner region where neutron-proton clusters are immersed in a sea of superfluid neutrons. The speeds of the different modes are calculated systematically from the nuclear energy density functional theory using a Skyrme functional fitted to essentially all experimental atomic mass data.

  10. Norwegian crusted scabies: an unusual case presentation.

    PubMed

    Maghrabi, Michael M; Lum, Shireen; Joba, Ameha T; Meier, Molly J; Holmbeck, Ryan J; Kennedy, Kate

    2014-01-01

    Scabies is a contagious condition that is transmitted through direct contact with an infected person and has been frequently associated with institutional and healthcare-facility outbreaks. The subtype Norwegian crusted scabies can masquerade as other dermatologic diseases owing to the heavy plaque formation. Successful treatment has been documented in published reports, including oral ivermectin and topical permethrin. Few case studies documenting the treatment of Norwegian crusted scabies have reported the use of surgical debridement as an aid to topical and/or oral treatment when severe plaque formation has been noted. A nursing home patient was admitted to the hospital for severe plaque formation of both feet. A superficial biopsy was negative for both fungus and scabies because of the severity of the plaque formation on both feet. The patient underwent a surgical, diagnostic biopsy of both feet, leading to the diagnosis of Norwegian crusted scabies. A second surgical debridement was then performed to remove the extensive plaque formation and aid the oral ivermectin and topical permethrin treatment. The patient subsequently made a full recovery and was discharged back to the nursing home. At 2 and 6 months after treatment, the patient remained free of scabies infestation, and the surgical wound had healed uneventfully. The present case presentation has demonstrated that surgical debridement can be complementary to the standard topical and oral medications in the treatment of those with Norwegian crusted scabies infestation. PMID:24370484

  11. Resonant shattering of neutron star crusts.

    PubMed

    Tsang, David; Read, Jocelyn S; Hinderer, Tanja; Piro, Anthony L; Bondarescu, Ruxandra

    2012-01-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (SGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ∼10{46}-10{47}  erg of energy seconds before the merger of a NS-NS or NS-black-hole binary. Such properties are consistent with Swift/BAT detections of SGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. PMID:22304251

  12. Particle-size fractionation of aeolian sand along a climatic and geomorphic gradient of the Sinai-Negev erg

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.

    2015-04-01

    along the dune transport path enhanced vegetative and biogenic soil crust cover in the NE Sinai and NW Negev and enabled deposition of the very fine sand component within VLDs that was probably transported by low suspension. We hypothesize that very fine sands also probably compose a partial coarse fraction of the late Pleistocene northern Negev loess deposits, adjacently downwind of the NW Negev dunefield. Our results suggest that particle-size distribution can elucidate much about erg and dunefield history especially where a climatic gradient exists, over timescales of a glacial-interglacial cycle.

  13. Offshore sand bank dynamics

    NASA Astrophysics Data System (ADS)

    Williams, J. J.; MacDonald, N. J.; O'Connor, B. A.; Pan, S.

    2000-02-01

    The present paper reports some key results from field investigations and numerical modelling studies of the tide- and wind-induced hydrodynamics and sediment dynamics of Middelkerke Bank (MB) in the southern North Sea of Europe conducted during December 1992 to March 1993. Strong surface current refraction and acceleration effects were observed over MB using the HF radar system OSCR ( Ocean Surface Current Radar). Results suggest that OSCR data may be used remotely to monitor large-scale bathymetry in shallow coastal environments. Spatial variation in tidal propagation characteristics and modification of shoreward propagating waves was not detected at locations around MB during the experiment. Observed residual currents were found to be correlated strongly with wind speed and direction during the period 26 February to 18 March 1993. However, in low wind stress condition, a three-dimensional numerical model (3D-Bank) indicated the presence of a clockwise residual circulation of water around MB consistent with theory. Spatial and temporal variation in the average total drag coefficient ( Cd) of MB were investigated and found to correlate strongly with tidal current speed. Fluorescent sand tracers, used to monitor net sediment transport pathways, revealed a net clockwise movement of sediments around MB consistent with predictions by 3D-Bank and with theory.

  14. Saltation of Non-Spherical Sand Particles

    PubMed Central

    Wang, Zhengshi; Ren, Shan; Huang, Ning

    2014-01-01

    Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement. PMID:25170614

  15. Desert Test Site Uniformity Analysis

    NASA Technical Reports Server (NTRS)

    Kerola, Dana X.; Bruegge, Carol J.

    2009-01-01

    Desert test sites such as Railroad Valley (RRV) Nevada, Egypt-1, and Libya-4 are commonly targeted to assess the on-orbit radiometric performance of sensors. Railroad Valley is used for vicarious calibration experiments, where a field-team makes ground measurements to produce accurate estimates of top-of-atmosphere (TOA) radiances. The Sahara desert test sites are not instrumented, but provide a stable target that can be used for sensor cross-comparisons, or for stability monitoring of a single sensor. These sites are of interest to NASA's Atmospheric Carbon Observation from Space (ACOS) and JAXA's Greenhouse Gas Observation SATellite (GOSAT) programs. This study assesses the utility of these three test sites to the ACOS and GOSAT calibration teams. To simulate errors in sensor-measured radiance with pointing errors, simulated data have been created using MODIS Aqua data. MODIS data are further utilized to validate the campaign data acquired from June 22 through July 5, 2009. The first GOSAT vicarious calibration experiment was conducted during this timeframe.

  16. Desert test site uniformity analysis

    NASA Astrophysics Data System (ADS)

    Kerola, Dana X.; Bruegge, Carol J.

    2009-08-01

    Desert test sites such as Railroad Valley (RRV) Nevada, Egypt-1, and Libya-4 are commonly targeted to assess the on-orbit radiometric performance of sensors. Railroad Valley is used for vicarious calibration experiments, where a field-team makes ground measurements to produce accurate estimates of top-of-atmosphere (TOA) radiances. The Sahara desert test sites are not instrumented, but provide a stable target that can be used for sensor cross-comparisons, or for stability monitoring of a single sensor. These sites are of interest to NASA's Atmospheric Carbon Observation from Space (ACOS) and JAXA's Greenhouse Gas Observation SATellite (GOSAT) programs. This study assesses the utility of these three test sites to the ACOS and GOSAT calibration teams. To simulate errors in sensor-measured radiance with pointing errors, simulated data have been created using MODIS Aqua data. MODIS data are further utilized to validate the campaign data acquired from June 22 through July 5, 2009. The first GOSAT vicarious calibration experiment was conducted during this timeframe.

  17. Characteristics of the disastrous wind-sand environment along railways in the Gobi area of Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-jun; Jiang, Fu-qiang; Xue, Chun-xiao; Xin, Guo-wei; Li, Kai-chong; Yang, Yin-hai

    2015-02-01

    Based on detailed long-term data of wind regimes collected from typical ventilation sites along the railways in the Gobi area of Xinjiang, this study systematically analyzes the characteristics of the disastrous wind-sand environment along the railways by combining gradient sand sampling data collected by a wind-drift sand monitoring system and site survey data. Wind direction and speed rose diagrams revealed the prevailing wind direction in each wind area along the railways, and this is the wind direction from which the maximum frequency of sandstorms occurred. Drift potential characteristic parameters (RDP, RDD) and the direction variability (RDP/DP) showed that each wind area along the Gobi railway featured a long wind period, with strong power in a single wind direction. The special geological environment of the Gobi determines the wind-drift sand that features gravel of large grain size and unsaturation, which are different from the wind-drift sand in deserts. With increasing wind velocity, the density of the wind-drift sand increased steadily; however, at a certain critical value, the density surged. This study on the wind-sand environment of the Gobi has significance for railway safety. The critical value of wind velocity corresponded to an abrupt increase in the wind-drift sand density and should be taken into account during the planning process of railway safety passage, since this will lead to a decrease in frontal visual distance, and an associated decrease in safety. Additionally, the specific features of wind-drift sand activities, such as the abruptness and higher than usual sand height, should be considered during the process of designing sand-damage-control engineering measures.

  18. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Mooney, W. D.

    2011-12-01

    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm

  19. Deposition of carbonate mud beds within high-energy subtidal sand Dunes, Bahamas

    SciTech Connect

    Dill, R.F.; Steinen, R.P.

    1988-01-01

    Laminated, carbonate mud beds are being deposited in the interisland channels of the Exuma Cays in the Bahamas. They are associated with stromatolites and interbedded with ooid sands that form large migrating subtidal dunes on flood tidal deltas and bars. Currents up to 3 knots sweep in and out of the 4-8 m deep channels 3 hours out of every 6 hours, creating a high-energy bank margin environment not usually considered to be the site of mud-sized particle deposition. Mud deposits reach thicknesses of 1 m and have individual beds 2-5 cm thick. When exposed to flowing seawater, bed surfaces become encrusted with carbonate cement and algal mats. The white interior of mud beds between the crusts appears homogeneous, is soft, and has the consistency of ''tooth paste.'' Loose uncemented ooid sand is found above and below the mud beds, showing that both are occupying the same depositional environment. Rip-up clasts of the crusted mud beds, formed by scour of underlying sands, are carried throughout the channels and accumulate as a lag deposit within the troughs of migrating dunes. Some clasts are colonized by algal mats that trap ooid and skeletal sands forming stromatolite structures that can grow up to 2 m high.

  20. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  1. Diurnal patterns of blowing sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex process that involves an interaction between solar heating, thermal instability, atmospheric turbulence, wind strength, and surface threshold conditions. During the day, solar heating produces thermal instability, which enhances the convect...

  2. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    PubMed

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data. PMID:22617941

  3. Influence of atmospheric aerosols and desert reflectance properties on satellite radiance measurements

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.; Davis, R. E.

    1992-01-01

    The influence of surface bidirectional reflectance factors, including shadowing, and of atmospheric aerosol variability are modeled for their effects on the remote sensing of desert targets from space in the 0.7-micron region at high spatial resolution. The white sand reflectance data of Salomonson (1968) are used as the basis for the simulation. The effects of the surface bi-directional reflectance and atmospheric aerosol on the nadir-normalized reflectance measured at the satellite are discussed individually and jointly. The net influence of these two factors is shown to depend on the magnitude of other parameters, such as the surface reflectance and solar zenith angle.

  4. The Ayala Mazar-Xiaohe culture: new archaeological discoveries in the Taklamakan desert, China.

    PubMed

    Baumer, Christoph

    2011-01-01

    This article, accompanied by colour photos, records the author's recent archaeological expedition in the Taklamakan Desert. His advance northwards along the now mostly sand-covered beds of the Keriya River proved to be a march backward through time, from the Iron Age city of Jumbulakum to the early Bronze Age necropolis of Ayala Mazar. The artifacts he found are contemporary with, and similar to Chinese discoveries at Xiaohe. This proves that Xiaohe was not an isolated case and provides evidence for a whole culture based on some sort of fertility cult. The remains also suggest that some, at least, of the peoples concerned had Indo-European affiliations. PMID:21305797

  5. CRUST1.0: An Updated Global Model of Earth's Crust

    NASA Astrophysics Data System (ADS)

    Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. E.

    2012-04-01

    We present an updated global model of Earth's crustal structure. The new model, CRUST1.0, serves as starting model in a more comprehensive effort to compile a global model of Earth's crust and lithosphere, LITHO1.0. CRUST1.0 is defined on a 1-degree grid and is based on a new database of crustal thickness data from active source seismic studies as well as from receiver function studies. In areas where such constraints are still missing, for example in Antarctica, crustal thicknesses are estimated using gravity constraints. The compilation of the new crustal model initially follows the philosophy of the widely used crustal model CRUST2.0 (Bassin et al., 2000; http://igppweb.ucsd.edu/~gabi/crust2.html). Crustal types representing properties in the crystalline crust are assigned according to basement age or tectonic setting. The classification of the latter loosely follows that of an updated map by Artemieva and Mooney (2001) (http://www.lithosphere.info). Statistical averages of crustal properties in each of these crustal types are extrapolated to areas with no local seismic or gravity constraint. In each 1-degree cell, boundary depth, compressional and shear velocity as well as density is given for 8 layers: water, ice, 3-layer sediment cover and upper, middle and lower crystalline crust. Topography, bathymetry and ice cover are taken from ETOPO1. The sediment cover is essentially that of our sediment model (Laske and Masters, 1997; http://igppweb.ucsd.edu/~sediment.html), with several near-coastal updates. In the sediment cover and the crystalline crust, updated scaling relationships are used to assign compressional and shear velocity as well as density. In an initial step toward LITHO1.0, the model is then validated against our new global group velocity maps for Rayleigh and Love waves, particularly at frequencies between 30 and 40 mHz. CRUST1.0 is then adjusted in areas of extreme misfit where we suspect deficiencies in the crustal model. These currently include

  6. Modern Graywacke-Type Sands.

    PubMed

    Hollister, C D; Heezen, B C

    1964-12-18

    A preliminary study of more than 100 deep-sea cores from abyssal plains has revealed two examples of recent muddy sands of the graywacke type which, together with the microcrystalline matrix, form a bimodal-size distribution sands have a well-sorted framework of quartz, feldspar, and rock fragments which, together with the microcrystalline matrix, form a bimodal-size distribution that is also typical of ancient graywackes. The matrix is considered to be primary. PMID:17775982

  7. Deucalionis Regio, Mars: Evidence for a unique mineralogic endmember and a crusted surface

    NASA Astrophysics Data System (ADS)

    Merenyi, E.; Edgett, K. S.; Singer, R. B.

    1993-03-01

    A small equatorial region south of Sinus Meridiani, Deucalionis Regio, has been found spectrally distinct from other regions as seen in a high spectral resolution telescopic image of the meridian hemisphere of Mars. Analysis of Viking IRTM and other related data suggest that Deucalionis Regio has a crusted surface. The crust-bonding minerals may contribute to the spectral uniqueness of this region. Two independent analyses of spectral images, linear spectral mixing and supervised classification based on the spectral shapes, showed that in addition to the well-known spectral endmember regions in this image (western Arabia, south Acidalia, and Sinus Meridiani), Deucalionis Regio has spectral properties that are unique enough to make it a principle endmember unit. In those earlier works, Deucalionis Regio was referred to as 'Meridiani Border.' Analysis of thermal inertia, rock abundance, and albedo information derived from Viking images and Infrared Thermal Mapper (IRTM) data obtained 1977-80 also indicate that Deucalionis Regio has a surface of distinctly different physical properties when compared to Arabia, Sinus Meridiani, and Acidalia. Deucalionis Regio has a thermal inertia equivalent to the Martian average, a low rock abundance (less than 5 percent), and an intermediate albedo and color. Considerable effort by previous investigators has revealed a consistent model for the surface (upper few cm) properties of the endmember reigons Arabia, Sinus Meridiani, and Acidalia. Compared with these regions, we consider that Deucalionis Regio is not a region of either (1) unconsolidated, fine bright dust like Arabia, (2) considerable windblown unconsolidated sand like Sinus Meridiani, or (3) a rocky-and-sandy surface like Acidalia. Thus, we are forced to consider that either the surface of Deucalionis Regio is made of unconsolidated fine to medium sand (about 250 microns) of an unusual and previously unreported color and albedo, or that the surface is crusted, fine

  8. Dust and Sand Mixing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 10 November 2003

    The bright and dark tones observed in this THEMIS image of part of an unnamed impact crater (85 km in diameter) near the larger impact crater Schiaparelli are due to variable amounts of bright dust and dark sand covering the surface. Wind Shadows observed around small impact craters at the top of the image and small grooves and ripple-like marks observed throughout the scene illustrate dynamic and continued aeolian processes on Mars.

    Image information: VIS instrument. Latitude -1.4, Longitude 10.9 East (349.1 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. 75 FR 57761 - Desert Southwest Power, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Energy Regulatory Commission Desert Southwest Power, LLC; Notice of Filing September 14, 2010. Take notice that on September 10, 2010, Desert Southwest Power, LLC (Desert Southwest) filed responses to the... Commission's July 28, 2010 letter regarding Desert Southwest's petition for declaratory order...

  10. Dynamics of the Precambrian Continental Crust

    NASA Astrophysics Data System (ADS)

    Perchuk, L. L.; Gerya, T. V.; van Reenen, D. D.; Smit, C. A.

    2003-04-01

    The Precambrian continental crust is mainly composed of (1) granite greenstone belts (GGB) and (2) granulite facies complexes (GFC). The GFC are often separated from GGB by inward dipping crustal scale shear zones with characteristic sense of movements reflecting thrusting of GFC onto cratonic rocks. The isotope age of the shear zones is identical to GFC, while the latter are always younger than the granite greenstone belts. The dynamics relationships between these two geological units strongly determine tectonic evolution of the Precambrian continental crust. Numerous thermobarometric studies of magmatic and metamorphic rocks show that the Archaean to Early Protorozoic crust as well as the Mantle were hot and therefore relatively soft. Such geothermal regimes may limit separation and movement of micro continents, limiting collisional mechanisms in evolution of the Precambrian crust. The goal of this paper is to show evidence for an alterative model that is based on the mechanism of gravitational redistribution of rocks within the Precambrian continental crust, which might be initiated by a fluid/heat flow related to mantle plumes. The model is tested on the basis of geological, geochemical, geophysical and petrologic data for many paired GFT GGB complexes around the word. Studied granulite complexes are located in between Archaean GGB from which they are separated by inward dipping crustal scale shear zones with reverse sense of movements. The most important evidence for this mechanism is: (i) the near isobaric cooling (IC) and (ii) decompression cooling (DC) shapes of the retrograde P T paths recorded in GFC, while rocks from the juxtaposed GGB in footwalls of the bounding shear zones record P T loops. The Pmax of the loops corresponds to the Pmin, recorded in GFC. Thus the GGB P T loop reflects the burial and ascending of the juxtaposed GGB while the GFC P T path records the exhumation only. The identical isotopic age of GFC and contacting rocks from the shear

  11. The fate of Ceres' original crust

    NASA Astrophysics Data System (ADS)

    Roberts, James H.; Rivkin, Andrew S.

    2015-11-01

    The bulk density of Ceres implies that water ice comprises a substantial fraction of Ceres’ interior. However, water ice is not stable at Ceres orbital distance and if exposed would have a loss rate of 1 km Myr-1 or more. The near-hydrostatic shape of Ceres, and relatively low melting point of ice suggests that the interior is at least partly differentiated. Because Ceres’ surface remains exposed to space, it radiates very effectively, and models predicting differentiation retain an undifferentiated crust. This would be denser than the ice shell beneath it resulting in an unstable stratification. This has led to expectations that the crust would founder and the surface of Ceres might be very smooth and relaxed. But could the crust have remained to the present day?Here, we model global-scale overturn on Ceres using both analytical two-layer linear stability analyses, and numerical models to predict the most unstable wavelength, and growth timescales for Rayleigh-Taylor instabilities. We find that for a 10 km-thick crust above a 75 km-thick ice layer, instabilities grow fastest at spherical harmonic degree l=4. The growth timescale is a function of the viscosity of the upper layer. This timescale is less than the age of the solar system unless the effective viscosity of the crust is > 1024 Pa s. We conclude that the crust of Ceres could remain at the surface if it either has some finite elastic strength over a ~800 km length scale, or is an unconsolidated regolith with a large, (> 50%) macro-porosity, such that the regolith is buoyant relative to water ice.Neither end-member for the crustal strength precludes convective activity in the underlying ice layer. However we note that a thick, porous regolith is a fantastic insulator and may promote heating of the interior and potential foundering of the regolith if the top of the ice becomes too warm. This possibility can be evaluated by models of thermal evolution (e.g., Castillo-Rogez et al., 2010). An episode of

  12. Diffuse degassing through magmatic arc crust (Invited)

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Ingebritsen, S.

    2013-12-01

    The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these

  13. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    PubMed Central

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  14. Simulated soil crust conditions in a chamber system provide new insights on cyanobacterial acclimation to desiccation.

    PubMed

    Raanan, Hagai; Oren, Nadav; Treves, Haim; Berkowicz, Simon M; Hagemann, Martin; Pade, Nadin; Keren, Nir; Kaplan, Aaron

    2016-02-01

    Environmental research often faces two major hurdles: (i) fluctuating spatial and temporal conditions and consequently large variability in the organisms' abundance and performance, and (ii) complex, costly logistics involved in field experiments. Measurements of physiological parameters or molecular analyses often represent single shot experiments. To study desiccation acclimation of filamentous cyanobacteria, the founders and main primary producers in desert biological soil crusts (BSC), we constructed an environmental chamber that can reproducibly and accurately simulate ambient conditions and measure microorganism performance. We show that recovery from desiccation of BSC cyanobacteria and Leptolyngbya ohadii isolated thereof are strongly affected by dehydration rate following morning dew. This effect is most pronounced in cells exposed to high light and temperature in the dry phase. Simultaneous measurements of water content, gas exchange and fluorescence were performed during dehydration. Photosynthetic performance measured by fluorescence begins declining when light intensity reaches values above 100 μmol photons m(-2) s(-1), even in fully hydrated cells. In contrast, photosynthetic rates measured using O2 evolution and CO2 uptake increased during rising irradiance to the point where the water content declined below ∼ 50%. Thus, fluorescence cannot serve as a reliable measure of photosynthesis in desert cyanobacteria. The effects of drying on gas exchange are discussed. PMID:26234786

  15. Melt evolution and residence in extending crust: Thermal modeling of the crust and crustal magmas

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Dufek, Josef

    2015-09-01

    Tectonic extension and magmatism often act in concert to modify the thermal, mechanical, and chemical structure of the crust. Quantifying the effects of extension and magma flux on melting relationships in the crust is fundamental to determining the rate of crustal melting versus fractionation, magma residence time, and the growth of continental crust in rift environments. In order to understand the coupled control of tectonic extension and magma emplacement on crustal thermal evolution, we develop a numerical model that accounts for extension and thermal-petrographic processes in diverse extensional settings. We show that magma flux exerts the primary control on melt generation and tectonic extension amplifies the volume of melt residing in the crustal column. Diking into an extending crust produces hybrid magmas composed of 1) residual melt remaining after partial crystallization of basalt (mantle-derived melt) and 2) melt from partial melting of the crust (crustal melt). In an extending crust, mantle-derived melts are more prevalent than crustal melts across a range of magma fluxes, tectonic extension rates, and magmatic water contents. In most of the conditions, crustal temperatures do not reach their solidus temperatures to initiate partial melting of these igneous lithologies. Energy balance calculations show that the total enthalpy transported by dikes is primarily used for increasing the sensible heat of the cold surrounding crust with little energy contributing to latent heat of melting the crust (maximum crustal melting efficiency is 6%). In the lower crust, an extensive mush region develops for most of the conditions. Upper crustal crystalline mush is produced by continuous emplacement of magma with geologically reasonable flux and extension rates on timescales of 106 yr. Addition of tectonic effects and non-linear melt fraction relationships demonstrates that the magma flux required to sustain partially molten regions in the upper crust is within the

  16. Eu Anomalies Constrain Recycling of Lower Continental Crust

    NASA Astrophysics Data System (ADS)

    Tang, M.; Rudnick, R. L.; McDonough, W. F.; Gaschnig, R. M.; Huang, Y.

    2014-12-01

    Europium is fractionated from Sm and Gd during intra-crustal differentiation since Eu (II) strongly partitions into feldspar. Statistical analysis of Sm-Eu-Gd concentrations in over 2000 samples from the continental crust reveal that the bulk continental crust has a negative Eu anomaly. Samples include (1) shales, loess, and tillites which represent upper continental crust (n = 415); (2) amphibolite facies rocks, which represent the middle continental crust (n = 1325) and (3) granulite facies rocks (n = 845), which represent the lower continental crust. The upper and middle continental crust have a significant negative Eu anomaly, while the lower continental crust has a significant positive Eu anomaly. The Eu deficit in the upper and middle continental crust, however, cannot be compensated by the Eu excess in the lower continental crust, leaving the bulk continental crust with a negative Eu anomaly (Eu/Eu* = 0.81 ± 0.04, 95% conf.). Since the building blocks of the continental crust (mantle-derived basalts or tonalitic slab melts) do not possess a negative Eu anomaly, removal of lower continental crust, which is the only crustal reservoir enriched in Eu, is required during crustal evolution. A mass balance model of the continents, based on Sm-Eu-Gd systematics, indicates that at least 2.2-3.0 crustal masses may have been added back to the mantle over Earth history via lower crustal recycling.

  17. Influence of substrate rocks on Fe-Mn crust composition

    USGS Publications Warehouse

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  18. Eleven years of itching: a case report of crusted scabies.

    PubMed

    Kutlu, Nurdan S; Turan, Enver; Erdemir, Asli; Gürel, Mehmet S; Bozkurt, Erol

    2014-08-01

    Crusted scabies is a rare and highly contagious form of scabies that is characterized by uncontrolled proliferation of mites in the skin, extensive hyperkeratotic scaling, crusted lesions, and variable pruritus. We report the case of a 48-year-old man with an 11-year history of pruritic, hyperkeratotic, psoriasiform plaques and widespread erythematous papules that was diagnosed as crusted scabies. PMID:25184648

  19. Effects of desert wildfires on desert tortoise (Gopherus agassizii) and other small vertebrates

    USGS Publications Warehouse

    Esque, T.C.; Schwalbe, C.R.; DeFalco, L.A.; Duncan, R.B.; Hughes, T.J.

    2003-01-01

    We report the results of standardized surveys to determine the effects of wildfires on desert tortoises (Gopherus agassizii) and their habitats in the northeastern Mojave Desert and northeastern Sonoran Desert. Portions of 6 burned areas (118 to 1,750 ha) were examined for signs of mortality of vertebrates. Direct effects of fire in desert habitats included animal mortality and loss of vegetation cover. A range of 0 to 7 tortoises was encountered during surveys, and live tortoises were found on all transects. In addition to desert tortoises, only small (<1 kg) mammals and reptiles (11 taxa) were found dead on the study areas. We hypothesize that indirect effects of fire on desert habitats might result in changes in the composition of diets and loss of vegetation cover, resulting in an increase in predation and loss of protection from temperature extremes. These changes in habitat also might cause changes in vertebrate communities in burned areas.

  20. Effects of added Zn, Ni and Cd on desert shrubs grown in desert soil

    SciTech Connect

    Patel, P.M.; Wallace, A.; Romney, E.M.; Alexander, G.V.

    1980-01-01

    Desert shrubs - Ambrosia dumosa, Lycium andersonii, Larrea tridenata, and Ephedra nevadensis wre grown in a glasshouse in desert (calcarous) soil with different levels of added Zn, Ni, and Cd. The objective was to study effects of the metals on growth and yield and uptake and translocation of metals in desert plant species which are common in the Mojave Desert (areas of Nevada and southeast California). Zinc and Cd considerably decreased yields of all four species. Yields of E. nevadensis were increased by Ni at 250 and 500 mg/kg applied to desert soil. Ephedra nevadensis was more tolerant of Ni than were the other three desert shrubs. Some interactions were observed among various elements: manganese concentration was increased in shrubs by Zn. Particularly, application of Ni reduced the concentrations of Zn and Mn over the control.

  1. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature

    NASA Astrophysics Data System (ADS)

    Sauzéat, Lucie; Rudnick, Roberta L.; Chauvel, Catherine; Garçon, Marion; Tang, Ming

    2015-10-01

    Lithium isotopes are increasingly used to trace both present-day and past weathering processes at the surface of the Earth, and could potentially be used to evaluate the average degree of past weathering recorded by the upper continental crust (UCC). Yet the previous estimate of average δ7Li of the UCC has a rather large uncertainty, hindering the use of Li isotopes for this purpose. New δ7Li for desert and periglacial loess deposits (windblown dust) from several parts of the world (Europe, Argentina, China and Tajikistan) demonstrate that the former are more homogeneous than the latter, and may therefore serve as excellent proxies of the average composition of large tracts of the UCC. The Li isotopic compositions and concentrations of desert loess samples are controlled by eolian sorting that can be quantified by a binary mixing between a weathered, fine-grained end-member, dominated by phyllosilicates and having low δ7Li, and an unweathered, coarse-grained end-member, that is a mixture of quartz and plagioclase having higher δ7Li. We use correlations between insoluble elements (REE, Nd/Hf and Fe2O3/SiO2), Li concentrations (henceforth referred as [Li]), and δ7Li to estimate a new, more precise, average Li isotopic composition and concentration for the UCC: [ Li ] = 30.5 ± 3.6 (2 σ) ppm, and δ7Li = + 0.6 ± 0.6 (2 σ). The δ7Li for desert loess deposits is anti-correlated with the chemical index of alteration (CIA). Using this relationship, along with our average δ7Li, we infer that (1) the present-day CIA of the average UCC is 61-2+4 (2 σ), higher than the common reference value of 53, and (2) the average proportion of chemically weathered components is as high as 37-10+17 (2 σ)% at the surface of the Earth.

  2. A Thermal Infrared View of Altered Noachian Martian Crust

    NASA Astrophysics Data System (ADS)

    Michalski, J.; Noe, E.; Mustard, J.; Bibring, J.

    2007-12-01

    Exposures of altered, ancient Martian crust seemingly represent a distant epoch in Mars" history where aqueous surface processes were active and the planet may have been habitable. In this study, thermal infrared remote sensing data are analyzed in order to better understand these deposits and the geological conditions under which they formed. Three questions are addressed: 1) On surfaces where VNIR datasets detect clay minerals, do thermal IR datasets also detect clays? 2) Aside from clay minerals, what other minerals are detected in the clay-bearing deposits based on thermal IR spectroscopy? 3) What are the thermophysical properties of clay mineral-bearing deposits? Thermal IR data used include TES and THEMIS datasets. To date, one deposit has been detected in the Mawrth Vallis region where thermal IR spectra have features attributable to trioctahedral clay minerals - possibly serpentine. Many other deposits (elsewhere in Mawrth Vallis and the Nili Fossae region) have subtle features at long wavelengths (> 20 microns) suggestive of Mg- and/or Fe-bearing clay mineralogy. Most of the deposits that show strong clay mineral signatures in the VNIR have basaltic character in the thermal IR. Thermal inertia values for these altered deposits are consistent with a combination of bedrock and sand at subpixel levels - consistent with the interpretation of the clay minerals as bulk component of in situ bedrock. Understanding the bulk composition of ancient, clay-bearing bedrock is critical to unraveling the geologic formation mechanisms of these deposits and their significance related to ancient Martian climate and habitability. In the Mawrth Vallis region, the basaltic signatures from clay-bearing deposits are relatively weak. In the Nili Fossae region, the basaltic signatures are stronger with surface mineralogy dominated by plagioclase feldspar, pyroxene, and in some cases, olivine. At this point, it is difficult to strongly constrain the abundance of clay minerals in

  3. The displaced eugeoclinal rocks in the El Paso Mountains and northern Mojave Desert: A Triassic sliver

    SciTech Connect

    Miller, J.S.; Glazner, A.F. . Dept. of Geology); Walker, J.D.; Martin, M.W. . Dept. of Geology)

    1993-04-01

    Many workers have drawn attention to the displaced eugeoclinal rocks in the northern Mojave Des